1887

Abstract

is a rare wild edible mushroom from northwest China, and grows naturally in mild saline-alkali soil, which is also unusual in mushrooms. represents a potential model organism for explaining saline-alkali tolerance mechanisms and revealing related physiological processes in mushrooms. Here, we provide a high-quality genome of . Comparative genomic analyses reveal has numerous changes to its genome organization after a solitary evolutionary history under saline-alkali environments, such as gene family contraction, retrotransposon expansion and rapid evolution of adaptative genes. Our saline and alkali tolerance tests show that mycelium growth and fruit body formation of this species are effected by mild alkalinity. Transcriptomic analyses reveal that genes involved in carbon and nitrogen utilization, cell stability and fruit body formation of could be activated under mildly alkaline conditions. In particular, the ‘starch and sucrose metabolism’, ‘biosynthesis of amino acids’ and ‘phenylpropanoid biosynthesis’ pathways are important for mildly alkaline tolerance of . Like plants and arbuscular mycorrhizal fungi, in the rot fungus , the biosynthesis of intracellular small molecules could be enhanced to counter osmotic and oxidative stresses caused by mild alkalinity, and the biosynthesis of monolignol could be suppressed to increase cell wall infiltrates under mildly alkaline conditions. This research provides an understanding of the genomic evolution and mechanisms of in tolerance to saline-alkali environments. The genome constitutes a valuable resource for evolutionary and ecological studies of .

Funding
This study was supported by the:
  • Precise Breeding and Directional Development of Important Edible Fungi Germplasm, Henan Province, China (Award 221111110600)
    • Principle Award Recipient: RuilinZhao
  • the Biodiversity Survey and Assessment Project of the Ministry of Ecology and Environment, China (Award 2019HJ2096001006)
    • Principle Award Recipient: RuilinZhao
  • the Beijing Innovative Consortium of Agriculture Research System (Award BAIC05-2019)
    • Principle Award Recipient: RuilinZhao
  • the National Natural Science Foundation of China (Award 31970010, 31961143010)
    • Principle Award Recipient: RuilinZhao
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000928
2023-03-08
2024-05-21
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/3/mgen000928.html?itemId=/content/journal/mgen/10.1099/mgen.0.000928&mimeType=html&fmt=ahah

References

  1. Krizsán K, Almási É, Merényi Z, Sahu N, Virágh M et al. Transcriptomic atlas of mushroom development reveals conserved genes behind complex multicellularity in fungi. Proc Natl Acad Sci U S A 2019; 116:7409–7418 [View Article]
    [Google Scholar]
  2. Kalaras MD, Richie JP, Calcagnotto A, Beelman RB. Mushrooms: a rich source of the antioxidants ergothioneine and glutathione. Food Chem 2017; 233:429–433 [View Article]
    [Google Scholar]
  3. Wang Z-R, Parra LA, Callac P, Zhou J-L, Fu W-J et al. Edible species of Agaricus (Agaricaceae) from Xinjiang Province (Western China). Phytotaxa 2015; 202:185 [View Article]
    [Google Scholar]
  4. Zhou JM, Bai XM, Zhao RL. Microbial communities in the native habitats of Agaricus sinodeliciosus from Xinjiang Province revealed by amplicon sequencing. Sci Rep 2017; 7:15719 [View Article] [PubMed]
    [Google Scholar]
  5. Hao J, Zhang W, Wang H, Ziya N, Luo Y et al. Purification and properties of a laccase from the mushroom Agaricus sinodeliciosus. Biotechnol Appl Biochem 2021; 68:297–306 [View Article] [PubMed]
    [Google Scholar]
  6. Xu H, Liu H, Luo C. Identification, biological characteristics and artificial cultivation of wild Agaricus sinodeliciosus. Acta Edulis Fungi 2018; 25:56–61
    [Google Scholar]
  7. Cao B, Lin R, Liu D, Zhao R. Diversity of the ‘reed mushrooms’ and prediction of potential geographic distribution of agaricus sinodeliciosus. Mycosystema 2022; 41:190–203
    [Google Scholar]
  8. Xu J, Chen Q, Liu P, Jia W, Chen Z et al. Integration of mRNA and miRNA analysis reveals the molecular mechanism underlying salt and alkali stress tolerance in tobacco. Int J Mol Sci 2019; 20:2391 [View Article]
    [Google Scholar]
  9. Mahajan S, Pandey GK, Tuteja N. Calcium- and salt-stress signaling in plants: shedding light on SOS pathway. Arch Biochem Biophys 2008; 471:146–158 [View Article] [PubMed]
    [Google Scholar]
  10. Wang H, Wu Z, Chen Y, Yang C, Shi D. Effects of salt and alkali stresses on growth and ion balance in rice (Oryza sativa L.). Plant Soil Environ 2011; 57:286–294 [View Article]
    [Google Scholar]
  11. Liu C, Mao B, Yuan D, Chu C, Duan M. Salt tolerance in rice: physiological responses and molecular mechanisms. The Crop Journal 2022; 10:13–25 [View Article]
    [Google Scholar]
  12. Arst HN, Peñalva MA. pH regulation in Aspergillus and parallels with higher eukaryotic regulatory systems. Trends Genet 2003; 19:224–231 [View Article] [PubMed]
    [Google Scholar]
  13. Aréchiga-Carvajal ET, Ruiz-Herrera J. The RIM101/pacC homologue from the basidiomycete Ustilago maydis is functional in multiple pH-sensitive phenomena. Eukaryot Cell 2005; 4:999–1008 [View Article] [PubMed]
    [Google Scholar]
  14. Calcagno-Pizarelli AM, Negrete-Urtasun S, Denison SH, Rudnicka JD, Bussink H-J et al. Establishment of the ambient pH signaling complex in Aspergillus nidulans: PalI assists plasma membrane localization of PalH. Eukaryot Cell 2007; 6:2365–2375 [View Article] [PubMed]
    [Google Scholar]
  15. Cornet M, Gaillardin C. pH signaling in human fungal pathogens: a new target for antifungal strategies. Eukaryot Cell 2014; 13:342–352 [View Article] [PubMed]
    [Google Scholar]
  16. Ost KS, O’Meara TR, Huda N, Esher SK, Alspaugh JA. The cryptococcus neoformans alkaline response pathway: identification of a novel rim pathway activator. PLoS Genet 2015; 11:e1005159 [View Article]
    [Google Scholar]
  17. Wu F-L, Zhang G, Ren A, Dang Z-H, Shi L et al. The pH-responsive transcription factor PacC regulates mycelial growth, fruiting body development, and ganoderic acid biosynthesis in Ganoderma lucidum. Mycologia 2016; 108:1104–1113 [View Article] [PubMed]
    [Google Scholar]
  18. Kong L, Gong X, Zhang X, Zhang W, Sun J et al. Effects of arbuscular mycorrhizal fungi on photosynthesis, ion balance of tomato plants under saline-alkali soil condition. Journal of Plant Nutrition 2020; 43:682–698 [View Article]
    [Google Scholar]
  19. Lin J, Wang Y, Sun S, Mu C, Yan X. Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition. Sci Total Environ 2017; 576:234–241 [View Article] [PubMed]
    [Google Scholar]
  20. Lin J, Peng X, Hua X, Sun S, Wang Y et al. Effects of arbuscular mycorrhizal fungi on Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition conditions: from osmotic adjustment and ion balance. RSC Adv 2018; 8:14500–14509 [View Article] [PubMed]
    [Google Scholar]
  21. Yang C, Zhao W, Wang Y, Zhang L, Huang S et al. Metabolomics analysis reveals the alkali tolerance mechanism in Puccinellia tenuiflora plants inoculated with arbuscular mycorrhizal fungi. Microorganisms 2020; 8:327 [View Article]
    [Google Scholar]
  22. Kües U, Liu Y. Fruiting body production in basidiomycetes. Appl Microbiol Biotechnol 2000; 54:141–152 [View Article]
    [Google Scholar]
  23. Ling ZL, Wang HJ, Callac P, Zhao RL. Offspring analysis using two cleaved amplified polymorphic sequence (CAPS) markers reveals amphithallism in the edible mushroom Agaricus sinodeliciosus. Mycologia 2019; 111:384–394 [View Article] [PubMed]
    [Google Scholar]
  24. Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 2011; 27:764–770 [View Article] [PubMed]
    [Google Scholar]
  25. Vurture GW, Sedlazeck FJ, Nattestad M, Underwood CJ, Fang H et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 2017; 33:2202–2204 [View Article] [PubMed]
    [Google Scholar]
  26. Boetzer M, Pirovano W. SSPACE-LongRead: scaffolding bacterial draft genomes using long read sequence information. BMC Bioinformatics 2014; 15:211 [View Article] [PubMed]
    [Google Scholar]
  27. English AC, Richards S, Han Y, Wang M, Vee V et al. Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS One 2012; 7:e47768 [View Article]
    [Google Scholar]
  28. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article]
    [Google Scholar]
  29. Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol 2021; 38:4647–4654 [View Article]
    [Google Scholar]
  30. Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc Natl Acad Sci USA 2020; 117:9451–9457 [View Article] [PubMed]
    [Google Scholar]
  31. Bao Z, Eddy SR. Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res 2002; 12:1269–1276 [View Article] [PubMed]
    [Google Scholar]
  32. Price AL, Jones NC, Pevzner PA. De novo identification of repeat families in large genomes. Bioinformatics 2005; 21 Suppl 1:i351–8 [View Article] [PubMed]
    [Google Scholar]
  33. Yan H, Bombarely A, Li S. DeepTE: a computational method for de novo classification of transposons with convolutional neural network. Bioinformatics 2020; 36:4269–4275 [View Article] [PubMed]
    [Google Scholar]
  34. Han Y, Wessler SR. MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences. Nucleic Acids Res 2010; 38:e199 [View Article] [PubMed]
    [Google Scholar]
  35. Ou S, Jiang N. LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol 2018; 176:1410–1422 [View Article]
    [Google Scholar]
  36. Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O et al. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 2005; 110:462–467 [View Article] [PubMed]
    [Google Scholar]
  37. Tarailo-Graovac M, Chen N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinformatics 2009; Chapter 4:Unit [View Article]
    [Google Scholar]
  38. Stanke M, Waack S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 2003; 19 Suppl 2:ii215–25 [View Article] [PubMed]
    [Google Scholar]
  39. Majoros WH, Pertea M, Salzberg SL. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 2004; 20:2878–2879 [View Article] [PubMed]
    [Google Scholar]
  40. Korf I. Gene finding in novel genomes. BMC Bioinformatics 2004; 5:59 [View Article] [PubMed]
    [Google Scholar]
  41. Keilwagen J, Wenk M, Erickson JL, Schattat MH, Grau J et al. Using intron position conservation for homology-based gene prediction. Nucleic Acids Res 2016; 44:e89 [View Article] [PubMed]
    [Google Scholar]
  42. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 2019; 37:907–915 [View Article] [PubMed]
    [Google Scholar]
  43. Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 2015; 33:290–295 [View Article] [PubMed]
    [Google Scholar]
  44. Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol 2008; 9:R7 [View Article]
    [Google Scholar]
  45. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  46. Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT et al. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 2001; 29:22–28 [View Article] [PubMed]
    [Google Scholar]
  47. Dimmer EC, Huntley RP, Alam-Faruque Y, Sawford T, O’Donovan C et al. The UniProt-GO Annotation database in 2011. Nucleic Acids Res 2012; 40:D565–70 [View Article] [PubMed]
    [Google Scholar]
  48. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28:27–30 [View Article] [PubMed]
    [Google Scholar]
  49. Boeckmann B, Bairoch A, Apweiler R, Blatter M-C, Estreicher A et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 2003; 31:365–370 [View Article] [PubMed]
    [Google Scholar]
  50. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article] [PubMed]
    [Google Scholar]
  51. Chen W, Lee M-K, Jefcoate C, Kim S-C, Chen F et al. Fungal cytochrome P450 monooxygenases: their distribution, structure, functions, family expansion, and evolutionary origin. Genome Biol Evol 2014; 6:1620–1634 [View Article] [PubMed]
    [Google Scholar]
  52. Nelson DR. The cytochrome P450 homepage. Hum Genomics 2009; 4:59–65 [View Article] [PubMed]
    [Google Scholar]
  53. Zhang H, Yohe T, Huang L, Entwistle S, Wu P et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2018; 46:W95–W101 [View Article] [PubMed]
    [Google Scholar]
  54. Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR et al. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res 2005; 33:D121–4 [View Article] [PubMed]
    [Google Scholar]
  55. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997; 25:955–964 [View Article] [PubMed]
    [Google Scholar]
  56. Kent WJ. BLAT--the BLAST-like alignment tool. Genome Res 2002; 12:656–664 [View Article] [PubMed]
    [Google Scholar]
  57. Birney E, Clamp M, Durbin R. GeneWise and Genomewise. Genome Res 2004; 14:988–995 [View Article] [PubMed]
    [Google Scholar]
  58. Prasanna AN, Gerber D, Kijpornyongpan T, Aime MC, Doyle VP et al. Model choice, missing data, and taxon sampling impact phylogenomic inference of deep basidiomycota relationships. Syst Biol 2020; 69:17–37 [View Article]
    [Google Scholar]
  59. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 2019; 20:238 [View Article] [PubMed]
    [Google Scholar]
  60. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods 2015; 12:59–60 [View Article] [PubMed]
    [Google Scholar]
  61. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  62. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540–552 [View Article] [PubMed]
    [Google Scholar]
  63. Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B et al. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol Biol Evol 2020; 37:291–294 [View Article]
    [Google Scholar]
  64. Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019; 35:4453–4455 [View Article] [PubMed]
    [Google Scholar]
  65. Varga T, Krizsán K, Földi C, Dima B, Sánchez-García M et al. Megaphylogeny resolves global patterns of mushroom evolution. Nat Ecol Evol 2019; 3:668–678 [View Article] [PubMed]
    [Google Scholar]
  66. Sanderson MJ. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 2003; 19:301–302 [View Article] [PubMed]
    [Google Scholar]
  67. Chen L, Gong Y, Cai Y, Liu W, Zhou Y et al. Genome sequence of the edible cultivated mushroom Lentinula edodes (Shiitake) reveals insights into Lignocellulose Degradation. PLoS ONE 2016; 11:e0160336 [View Article]
    [Google Scholar]
  68. Han MV, Thomas GWC, Lugo-Martinez J, Hahn MW. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Mol Biol Evol 2013; 30:1987–1997 [View Article] [PubMed]
    [Google Scholar]
  69. Wang Y, Tang H, Debarry JD, Tan X, Li J et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 2012; 40:e49 [View Article] [PubMed]
    [Google Scholar]
  70. Chen C, Chen H, Zhang Y, Thomas HR, Frank MH et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 2020; 13:1194–1202 [View Article]
    [Google Scholar]
  71. Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007; 24:1586–1591 [View Article] [PubMed]
    [Google Scholar]
  72. Rocha de Brito M, Foulongne-Oriol M, Moinard M, Souza Dias E, Savoie J-M et al. Spore behaviors reveal a category of mating-competent infertile heterokaryons in the offspring of the medicinal fungus Agaricus subrufescens. Appl Microbiol Biotechnol 2016; 100:781–796 [View Article] [PubMed]
    [Google Scholar]
  73. Joshi N, Fass J. Sickle:a sliding-window, adaptive, quality-based trimming tool for FastQ files(Version 1.33) [Software]; 2011 https://github.com/najoshi/sickle
  74. John JS. SeqPrep; 2016 https://github.com/jstjohn/SeqPrep
  75. Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 2016; 11:1650–1667 [View Article] [PubMed]
    [Google Scholar]
  76. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15:550 [View Article] [PubMed]
    [Google Scholar]
  77. Schäpe P, Kwon MJ, Baumann B, Gutschmann B, Jung S et al. Updating genome annotation for the microbial cell factory Aspergillus niger using gene co-expression networks. Nucleic Acids Res 2019; 47:559–569 [View Article] [PubMed]
    [Google Scholar]
  78. Spearman C. The proof and measurement of association between two things. Int J Epidemiol 2010; 39:1137–1150 [View Article] [PubMed]
    [Google Scholar]
  79. Contreras-López O, Moyano TC, Soto DC, Gutiérrez RA. Step-by-step construction of gene co-expression networks from high-throughput Arabidopsis RNA sequencing data. Methods Mol Biol 2018; 1761:275–301 [View Article]
    [Google Scholar]
  80. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13:2498–2504 [View Article] [PubMed]
    [Google Scholar]
  81. Zhao R-L, Zhou J-L, Chen J, Margaritescu S, Sánchez-Ramírez S et al. Towards standardizing taxonomic ranks using divergence times – a case study for reconstruction of the Agaricus taxonomic system. Fungal Diversity 2016; 78:239–292 [View Article]
    [Google Scholar]
  82. Xu H, Andi B, Qian J, West AH, Cook PF. The alpha-aminoadipate pathway for lysine biosynthesis in fungi. Cell Biochem Biophys 2006; 46:43–64 [View Article] [PubMed]
    [Google Scholar]
  83. Orozco-Arias S, Isaza G, Guyot R. Retrotransposons in plant genomes: structure, identification, and classification through bioinformatics and machine learning. Int J Mol Sci 2019; 20:3837 [View Article]
    [Google Scholar]
  84. Castanera R, López-Varas L, Borgognone A, LaButti K, Lapidus A et al. Transposable elements versus the fungal genome: impact on whole-genome architecture and transcriptional profiles. PLoS Genet 2016; 12:e1006108 [View Article]
    [Google Scholar]
  85. Möller M, Stukenbrock EH. Evolution and genome architecture in fungal plant pathogens. Nat Rev Microbiol 2017; 15:756–771 [View Article] [PubMed]
    [Google Scholar]
  86. Leducq JB. Ecological genomics of adaptation and speciation in fungi. Adv Exp Med Biol 2014; 781:49–72 [View Article] [PubMed]
    [Google Scholar]
  87. Callac P, Billette C, Imbernon M, Kerrigan RW. Morphological, genetic, and interfertility analyses reveal a novel, tetrasporic variety of Agaricus bisporus from the Sonoran Desert of California. Mycologia 1993; 85:835–851 [View Article]
    [Google Scholar]
  88. Leadbeater DR, Oates NC, Bennett JP, Li Y, Dowle AA et al. Mechanistic strategies of microbial communities regulating lignocellulose deconstruction in a UK salt marsh. Microbiome 2021; 9:48 [View Article] [PubMed]
    [Google Scholar]
  89. Najjar A, Robert S, Guérin C, Violet-Asther M, Carrière F. Quantitative study of lipase secretion, extracellular lipolysis, and lipid storage in the yeast Yarrowia lipolytica grown in the presence of olive oil: analogies with lipolysis in humans. Appl Microbiol Biotechnol 2011; 89:1947–1962 [View Article] [PubMed]
    [Google Scholar]
  90. Chandra P, Singh R, Arora PK. Microbial lipases and their industrial applications: a comprehensive review. Microb Cell Fact 2020; 19:169 [View Article]
    [Google Scholar]
  91. Bar-Peled M, O’Neill MA. Plant nucleotide sugar formation, interconversion, and salvage by sugar recycling. Annu Rev Plant Biol 2011; 62:127–155 [View Article] [PubMed]
    [Google Scholar]
  92. Paul MJ, Oszvald M, Jesus C, Rajulu C, Griffiths CA. Increasing crop yield and resilience with trehalose 6-phosphate: targeting a feast-famine mechanism in cereals for better source-sink optimization. J Exp Bot 2017; 68:4455–4462 [View Article] [PubMed]
    [Google Scholar]
  93. Joshi R, Sahoo KK, Singh AK, Anwar K, Pundir P et al. Enhancing trehalose biosynthesis improves yield potential in marker-free transgenic rice under drought, saline, and sodic conditions. J Exp Bot 2020; 71:653–668 [View Article] [PubMed]
    [Google Scholar]
  94. Langner T, Göhre V. Fungal chitinases: function, regulation, and potential roles in plant/pathogen interactions. Curr Genet 2016; 62:243–254 [View Article] [PubMed]
    [Google Scholar]
  95. Ökmen B, Bachmann D, de Wit PJGM. A conserved GH17 glycosyl hydrolase from plant pathogenic Dothideomycetes releases A DAMP causing cell death in tomato. Mol Plant Pathol 2019; 20:1710–1721 [View Article] [PubMed]
    [Google Scholar]
  96. Grover A. Plant chitinases: genetic diversity and physiological roles. Crit Rev Plant Sci 2012; 31:57–73 [View Article]
    [Google Scholar]
  97. Morin E, Kohler A, Baker AR, Foulongne-Oriol M, Lombard V et al. Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche. Proc Natl Acad Sci U S A 2012; 109:17501–17506 [View Article] [PubMed]
    [Google Scholar]
  98. Oliveira DM, Mota TR, Salatta FV, Sinzker RC, Končitíková R et al. Cell wall remodeling under salt stress: Insights into changes in polysaccharides, feruloylation, lignification, and phenolic metabolism in maize. Plant Cell Environ 2020; 43:2172–2191 [View Article] [PubMed]
    [Google Scholar]
  99. Cao B, Li N, Xu K. Crosstalk of phenylpropanoid biosynthesis with hormone signaling in Chinese cabbage is key to counteracting salt stress. Environ Exp Bot 2020; 179:104209 [View Article]
    [Google Scholar]
  100. Kang Y, Yang X, Liu Y, Shi M, Zhang W et al. Integration of mRNA and miRNA analysis reveals the molecular mechanism of potato (Solanum tuberosum L.) response to alkali stress. Int J Biol Macromol 2021; 182:938–949 [View Article] [PubMed]
    [Google Scholar]
  101. Jia X-M, Zhu Y-F, Hu Y, Zhang R, Cheng L et al. Integrated physiologic, proteomic, and metabolomic analyses of Malus halliana adaptation to saline-alkali stress. Hortic Res 2019; 6:91 [View Article] [PubMed]
    [Google Scholar]
  102. Jia X, Zhu Y, Zhang R, Zhu Z, Zhao T et al. Ionomic and metabolomic analyses reveal the resistance response mechanism to saline-alkali stress in Malus halliana seedlings. Plant Physiol Biochem 2020; 147:77–90 [View Article] [PubMed]
    [Google Scholar]
  103. Gallego-Giraldo L, Jikumaru Y, Kamiya Y, Tang Y, Dixon RA. Selective lignin downregulation leads to constitutive defense response expression in alfalfa (Medicago sativa L.). New Phytol 2011; 190:627–639 [View Article] [PubMed]
    [Google Scholar]
  104. Yang Y, Guo Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol 2018; 217:523–539 [View Article] [PubMed]
    [Google Scholar]
  105. Konopka JB, Thorner JW, Miller JJ. Pheromone Receptors (Yeast). In Reference Module in Life Sciences Elsevier; 2021 [View Article]
    [Google Scholar]
  106. Du C-X, Fan H-F, Guo S-R, Tezuka T, Li J. Proteomic analysis of cucumber seedling roots subjected to salt stress. Phytochemistry 2010; 71:1450–1459 [View Article] [PubMed]
    [Google Scholar]
  107. Patterson JH, Newbigin E, Tester M, Bacic A et al. Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. J Exp Bot 2009; 60:4089–4103 [View Article]
    [Google Scholar]
  108. Less H, Galili G. Principal transcriptional programs regulating plant amino acid metabolism in response to abiotic stresses. Plant Physiol 2008; 147:316–330 [View Article] [PubMed]
    [Google Scholar]
  109. Weijn A, Bastiaan-Net S, Wichers HJ, Mes JJ. Melanin biosynthesis pathway in Agaricus bisporus mushrooms. Fungal Genet Biol 2013; 55:42–53 [View Article] [PubMed]
    [Google Scholar]
  110. Falguera V, Pagán J, Ibarz A. A kinetic model describing melanin formation by means of mushroom tyrosinase. Food Research International 2010; 43:66–69 [View Article]
    [Google Scholar]
  111. Kamdee C, Imsabai W, Kirk R, Allan AC, Ferguson IB et al. Regulation of lignin biosynthesis in fruit pericarp hardening of mangosteen (Garcinia mangostana L.) after impact. Postharvest Biol Technol 2014; 97:68–76 [View Article]
    [Google Scholar]
  112. Wang Y, Mo Y, Li D, Xiang C, Jiang Z et al. The main factors inducing postharvest lignification in king oyster mushrooms (Pleurotus eryngii): Wounding and ROS-mediated senescence. Food Chem 2019; 301:125224 [View Article] [PubMed]
    [Google Scholar]
  113. Li L, Wang X, Kitazawa H, Sun H. Research on energy metabolism, lignification and veil opening in postharvest white mushroom (Agaricus bisporus) under high O2 /CO2 controlled atmospheres (HOC-CA). J Appl Bot Food Qual 2017; 90:174–182
    [Google Scholar]
  114. Ni Z, Xu S, Bu J, Ying T. Secondary metabolism associated with softening of shiitake mushroom (Lentinula edodes) induced by O2 depletion and CO2 accumulation. Int J Food Sci Technol 2017; 52:2303-2310 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000928
Loading
/content/journal/mgen/10.1099/mgen.0.000928
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL

Supplementary material 2

EXCEL

Supplementary material 3

EXCEL

Supplementary material 4

EXCEL

Supplementary material 5

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error