Declarative Theorem Proving for Operational Semantics

Don Syme

April 1, 1999

ii

Contents

Introduction

1.1 Overview e

1.2 Structured Operational Semantics and its Uses

1.3 Formal Checking for Operational Semantics
1.3.1 The Method and its Challenges
1.3.2 Related Work oL

1.4 Declarative Theorem Proving and Declare
1.4.1 What is “Declarative” Theorem Proving?
1.4.2 Costs and Benefits 0oL,
1.4.3 A Tutorial Introduction to Declare
1.4.4 Checking the Article

Tools and Techniques

Specification and Validation

2.1 Foundations and Higher Order Logic

2.2 Specification Constructs for Operational Semantics
2.2.1 Pattern Matching
2.2.2 Simple Definitions and Predicates
2.2.3 Datatypes
2.2.4 Fixed Point Relations
2.2.5 Recursive Functions 0.
2.2.6 Partial Functions and Undefinedness
2.2.7 Declarative Specification and Modularity

2.3 Labelling and Theorem Extraction
2.3.1 Possible Extensions to the Mechanism
2.3.2 Related Worko

2.4 Validation
241 Mercury e e e e e
2.4.2 Example translations
2.4.3 Related Work

iii

00 00 =1 UV W i W = =

—_ =
~N O

19

v

3 Declarative Proof Description

3.1 The Principles of Declarative Proof
3.2 Three Constructs For Proof Description
3.3 Decomposition and Enrichment
3.3.1 Alongerexample.
3.4 Justifications, Hints and Automation
3.4.1 Highlighting Relevant Facts
3.4.2 Explicit Instantiations
3.4.3 Explicit Resolutions
3.4.4 Explicit Case Splits
3.5 Second order Schema Application
3.5.1 Induction in Typical Tactic Proof Languages . . .

3.5.2 Induction in Declare without a special construct

3.5.3 The Induction Construct in Declare
354 TheCases
3.5.5 Strong Inductiono
3.5.6 Co-induction and Strengthening
3.5.7 dihypmacros
3.5.8 Discarding Facts
3.5.9 Mutually Recursive Inductive Proofs
3.6 Related Work L.
3.6.1 Tactics.
3.6.2 A short statistical comparison
3.6.3 Mizar

4 Automated Reasoning for Declarative Proof

4.1 Requirements
4.1.1 An Example Problem
4.2 'Techniques used in Declare
4.2.1 Ground Reasoning in Equational Theories
422 Rewriting oo oo
4.2.3 Inbuilt Rewrite Procedures
424 Grinding oo oo
4.2.5 First Order Reasoning
4.3 Interface and Integration,
4.3.1 Quoting and Pragmas
4.3.2 Imntegration
433 Feedback
4.4 Appraisal
4.5 Related Work oo

CONTENTS

CONTENTS v

5 Interaction for Declarative Proof 89
5.1 Metrics for Interactive Systemso 89
5.2 IDeclare e 90

5.2.1 Logical Navigation and Debugging 92
5.3 Appraisal 94

II Case Study 97

6 Javag 99
6.1 Java L e e e 99
6.2 Our Modelof Javag 100

6.2.1 The Java Subset Considered 100
6.2.2 Comparison with Drossopoulou and Eisenbach 101
6.2.3 Syntax 102
6.3 Preliminaries o 104
6.3.1 The Structure of Type Environments 104
6.3.2 Well-formed Types 105
6.3.3 The Cijuss, Eingy and tjmp Relationso ... 106
6.3.4 Widening 106
6.3.0 Visibility 107
6.3.6 Well-formedness for Type Environments 109
6.4 Static Semantics for Javas oL Lo 111
6.5 Static Semantics for Javag Lo 112
6.6 The Runtime Semantics 113
6.6.1 Configurations 113
6.6.2 The Term Rewrite System 115
6.7 The Model as a Declare Specification 119

7 Type Soundness for Javag 121
7.1 Conformance e 121
7.2 Safety, Liveness and Annotation 125

721 KeyLemmas, 126

7.3 Example Proofs in Declareo 128

7.3.1 Example 1: Inherited Fields Exist 128

7.3.2 Example 2: Field Assignment 129
7.3.3 Example 3: Monotonicity of Value Conformance Under Allo-

cation Lo 130

7.4 Errors Discovered 131

7.4.1 An Error in the Java Language Specification 131

7.4.2 Runtime Typechecking, Array Assignments, and Exceptions . 132

7.4.3 Side-effectson Types oo 133

7.5 Appraisal 133

7.5.1 Related Work 134

vi

8 Summary

A

8.1

Future Work

An Extract from the Declare Model

Al
A2
A3
A4
A5

psyntax.art - Primitives and types

widens.art - Environments, Widening and Visibility

wfenv.art - Constraints on Environments
rsyntax.art - Syntax of Javag
rstatics.art - Conformance and some proofs

CONTENTS

137

List of Figures

4.1

5.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

A typical obligation to be discharged by automated reasoning.
IDeclare: The Interactive Development Environment for Declare

Components of the Semantics and their Relationships
The Abstract Syntax of Javag and Javay
von Oheimb’s Extended Range of Types
Type checking environments
Connections in the Subtype Graph
The Runtime Machine: Configurations and State
The syntax of runtime terms
Organisation of the Model in Declare

vii

viii LIST OF FIGURES

List of Tables

2.1
2.2
2.3
24
2.5

3.1

3.2
3.3

4.1

5.1
5.2

The Result at a Location.
The Minimal Logical Support at a Loca
Possible reversed support rules for <.
Possible Support Rules for Fixed Points
Pragmas relevant to Mercury

Syntactic variations on enrichment/decomposition with equivalent prim-

itive forms.

tion.

Pragmas relevant to induction and justifications.
Source Level Statistics for Three Operational Developments

Pragmas recognised by the automated r

Approximate time analysis for IDeclare
Approximate time analysis for Declare

ix

easoning engine

30
31
31
32
35

93
66

84

94
95

LIST OF TABLES

Abstract

This dissertation is concerned with techniques for formally checking properties of
systems that are described by operational semantics. We describe innovations and
tools for tackling this problem, and a large case study in the application of these
tools. The innovations centre on the notion of “declarative theorem proving”, and
in particular techniques for declarative proof description. We define what we mean
by this, assess its costs and benefits, and describe the impact of this approach with
respect to four fundamental areas of theorem prover design: specification, proof
description, automated reasoning and interaction. We have implemented our tech-
niques as the Declare system, which we use to demonstrate how the ideas translate
into practice.

The case study is a formally checked proof of the type soundness of a subset
of the Java language, and is an interesting result in its own right. We argue why
declarative techniques substantially improved the quality of the results achieved,
particularly with respect to maintainability and readability.

Declaration

This dissertation is the result of my own work and includes nothing which is the
outcome of work done in collaboration.

x1

xii LIST OF TABLES

Acknowledgements

In the last four years I have met so many wonderful individuals that it is hard to
know who to thank first, but through it all have been my office mates Mark and
Michael, who have provided me with both warm friendship and an invigorating if
sometimes exacting level of intellectual camaraderie. Similarly, my supervisor, Mike
Gordon has consistently given of his time, and I thank him for for the example
he has set, particularly in striking a balance between pragmatic and theoretical
computer science. I particularly also thank John Harrison, who has contributed so
greatly to the intellectual environment in which I have had the privilege to work
in, as have Tom Melham, Larry Paulson, Andy Pitts and Andy Gordon. Many
others have developed the academic fields which form the background to this thesis,
and in particular I thank those who have worked on the HOL, Isabelle, PVS, ACL2,
Mizar, O’Caml and Mercury systems, and especially Sophia Drossopoulou and Susan
Eisenbach at Imperial for their work on Java.

During my studies I have had the unbelievable good fortune to receive two in-
ternships in the United States, at SRI International in 1996, and at Intel in 1998.
On both occasions I was privileged to work with people of great intelligence, skill
and energy. In particular, I thank John Rushby, Natarajan Shankar, Carl Seger and
John O’Leary for the many discussions we had about declarative proof and related
topics.

Michael Norrish, Katherine Eastaughffe and Mike Gordon assisted with the final
preparation of this document, for which I am very grateful. The Commonwealth
Scholarship Commission provided the funds for my studies, without which I would,
no doubt, have been homeless and destitute for these four years — many thanks!

My time at Cambridge and in America has, in many ways, been the richest and
most fulfilled of my life, and for that I am wholly indebted to my friends. They have
brought me great happiness, both intellectual and emotional, and I think particularly
of Kona, Florian, Beth, Jill, Darren, Daryl, Sue, Carlos, Byron, Jess, Maria, John
Matthews, John Wentworth, Peter, Phil, and my housemates Juliet, Jonathan, Kate,
Sam, Sgren, Kieran and Saskia, as well as those mentioned above. These people are
dear to me: they are my family, my friends. Finally, I thank Julie: may your life
always be filled with as much joy as you brought into mine.

xiii

xiv LIST OF TABLES

Chapter 1

Introduction

1.1 Overview

This dissertation is concerned with techniques for formally checking properties of
systems that are described by operational semantics. Roughly speaking, this means
systems specified by a naive, high level interpreter (or in such a way that the pro-
duction of such an interpreter is a simple task). Such formalizations are extremely
common in computer science, and are used to provide specifications of:

e The dynamic execution of programs;
e Static checks on programs such as type checking and inference;

e Statics and dynamics for highly non-deterministic systems such as process cal-
culi;

e Security protocols [Pau97].

Real machines such as hardware devices can also be described operationally, pre-
suming an appropriate level of abstraction is chosen.

“Formal checking” means proving properties to a sufficient degree that our for-
malization may be checked by a relatively simple computer program. We describe
innovations and tools for tackling this problem in the context of operational seman-
tics, and a large case study in the application of these tools.

A computer program used to develop and check such formalizations is called a
theorem prover. Our primary contribution is the application and further development
of a particular style of specification and proof called declarative theorem proving.
We have produced an implementation of these techniques in the form of a theorem
prover called Declare, and this system will be the focus of discussion for much of this
dissertation.

The remainder of this chapter considers the application of a particular kind of
operational description known as Structured Operational Semantics (SOS). We argue
why formal checking is interesting for this problem domain, and describe previous

2 CHAPTER 1. INTRODUCTION

examples of formal checking for SOS. We then give a tutorial-style introduction to
Declare, using a small example that is similar in flavour to our later case study, and
define what we mean by “declarative” theorem proving.

In Chapters 2 to 5 we discuss the impact of a declarative approach on four aspects
of mechanized theorem proving systems, and describe the techniques we have adopted
in Declare:

o Specification and Validation i.e. methods for describing operational systems in
a fashion acceptable to both mathematician and machine, and for informally
validating that these specifications meet our informal requirements. We de-
scribe a range of specification constructs, their realisation in Declare, a new
labelling system for extracting results that follow easily from specifications,
and a new validation method based on translation to the Mercury [SHC96]
system.

e Proof Description i.e. methods for describing the proofs of problems that may
not be solved immediately by automated reasoning. We describe what consti-
tutes a declarative proof language, the pros and cons of a declarative approach
to proof and the particular proof language implemented in Declare. We then
contrast declarative proof with existing proof description techniques.

e Automated Reasoning i.e. algorithms for automatically determining the validity
of formulae that arise in our problem domain. We define our requirements with
regard to automated reasoning and describe the particular techniques used in
Declare (many are derivative, but some are new). We then assess how our
automated prover does and does not meet our requirements.

o The Interactive Development Environment i.e. the system used to construct
declarative specifications and proofs interactively. We consider how we can
determine if an interactive development environment is a success, describe the
principles behind our environment IDeclare, and assess it via an informal task-
analysis.

Where our techniques depart from “best known practice” we describe how they
represent an improvement. By “best known practice” we mean the state-of-the-art
in the domain as embodied in existing interactive theorem provers, such as Isabelle,
ACL2, HOL and PVS[Pau90, GM93, COR 95, KM96a, Har96a]. We use Declare as
a means to demonstrate our ideas, though the ideas themselves are independent of
the actual theorem proving system used.

In Chapters 6 and 7 we turn our attention to our major case study, where we
formally check the type soundness of a major subset of the Java language. This
case study is one of the more complex formally checked proofs about operational
semantics in existence, and is an interesting result in its own right. We argue that
declarative techniques played a positive role throughout the case study, and sub-
stantially improved the quality of the results achieved, particularly with respect to
maintainability and readability.

1.2. STRUCTURED OPERATIONAL SEMANTICS AND ITS USES 3

Finally in Chapter 8 we reiterate the major themes we have addressed, summarize
our results and discuss possible avenues for future research.

1.2 Structured Operational Semantics and its Uses

This work shall focus on systems described by “Structured Operational Semantics,”
a kind of operational description first developed systematically by Plotkin [Plo91]
and which has subsequently become the standard technique for describing the for-
mal semantics of programming languages, type systems and process calculi. Classic
examples of its use include the formal definition of Standard ML [MTHM97] and the
definition and theory of CCS [Mil80].

The primary features of an SOS description are:

e Terms that represent the abstract syntax of the program being executed by an
abstract machine;

e Terms that represent a configuration of an abstract machine, usually combining
a fragment of the abstract syntax that represents the remainder of the program
to be executed, with extra terms to represent state and input/output;

e Inductively defined relations that describe the execution of the machine. These
are either big step (if we relate configurations with values that represent the
complete effects of their execution); or small step (if we relate configurations
to new configurations);

e Inductively defined relations that describe the type system for the language.

In practice, SOS is more than a style of mathematics: it is a methodology. SOS is
sufficiently well developed that it may be used as a method of systematic analysis
during the development of a programming language. A striking example of its utility
in this role is recent work by Drossopoulou and Eisenbach (whose work we shall
consider in a case study in Chapters 6 and 6.6.2). They have used operational
semantics to analyse the semantics of “binary compatibility” in the Java language
[DE98], and have consequently discovered a serious flaw in the type system of the
language. Considering the importance of the language and the subtle nature of the
problem they detected this is a remarkable result. All that was required here was
a systematic means for analysing the language: operational semantics can provide
this. Thus, the role of SOS and our subsequent contribution can be summarized as:

Structured operational semantics is a formal methodology for defining and
analysing abstract machines. We seek tools to support this methodology.

Of course, nearly any discrete system in computing may be described opera-
tionally. Such descriptions are not always mathematically satisfying (being insuf-
ficiently abstract or modular); and yet are sometimes too abstract for system im-
plementors (because they may abstract away crucial details such as the allowable

4 CHAPTER 1. INTRODUCTION

interactions with the outside world). We are not trying to demonstrate that opera-
tional reasoning is the “correct” approach to proving properties of languages. After
all, if more abstract (e.g. categorical) models of a language are available then they
will be more appropriate for many purposes. On the other side of the coin, we accept
that most operational descriptions are indeed quite distant from real implementa-
tions of languages. However the techniques we present should scale well as more
complex systems are considered, and the fact that our case studies already deal with
quite large systems and yet remain tractable indicates this.

1.3 Formal Checking for Operational Semantics

Why are we interested in formally checking results based on operational semantics?
It is useful to answer this in the context of our major case study: a type soundness
result for a subset of Java.

A type soundness result states that if a program typechecks then certain prob-
lems won’t occur during the execution of the program on a certain abstract ma-
chine. Thus, proving type soundness is verifying a property of the abstract machine
described by the semantics. By doing this we give a proof of the feasibility of a
sound implementation of the language. In addition, we can see the abstract machine
as a primitive implementation, and when we prove type soundness we get a handle
on how we might prove the result for a more realistic implementation. However,
verifying type soundness for such an implementation would take considerably more
work.

This justifies why we are interested in such results, but why formally check them?
Formal checking is primarily a tool for maintaining certainty in the presence of
complezity. Our case study in Chapter 6 describes a large operational system that
is still undergoing rapid development by language researchers [DE98]. It is difficult
to maintain the integrity of paper proofs of properties as such systems develop:
the number of cases to analyse is high and there is always the concern that some
unexpected combination of language features will lead to a soundness problem. Thus
we turn to formal machine checking. Our Java case study demonstrates its value: it
has been developed in parallel with the written formalization by Drossopoulou and
Eisenbach, and has provided the researchers with valued feedback.

1.3.1 The Method and its Challenges

In principle, the formal checking of results about a system described by operational
semantics is a relatively simple task. We must:

e Compose a formal description of the system that is correct with respect to the
informal semantics (or existing implementations).

e Translate this description to create a model of the system in the framework of

1.3. FORMAL CHECKING FOR OPERATIONAL SEMANTICS 5

the formal checking tool;!
e Formulate a specification of the the properties we are interested in proving.

e Formulate the proofs of these properties such that the proofs are tractable for
a machine to check.

Things are, of course, never as straightforward as this. The primary difficulty is
complexity: formal checking may “maintain certainty in the presence of complexity,”
but the very use of formal checking is a difficult thing in its own right, and can turn
easy problems into hard ones (consider, for example, the headaches caused by simple
arithmetic in generations of theorem proving systems: many arithmetic proofs that
humans consider trivial may take considerable effort in a theorem proving system).
Nearly all the devices we present in this work can be seen as mechanisms for managing
the complexity of the theorem proving process. Hopefully by doing so we free the
user to focus on the challenges inherent in the properties they are checking.

Two particular source of difficulty in the process of formal checking are getting
the details right and maintaining the formalization. Our case study represents the
application of formal checking to a problem where no 100% correct formalization
was previously known: a written formalization existed but it was found to be defi-
cient in many ways. In addition formalizations must be modified, extended, revised
and reused. This can contribute substantially to the overall complexity of formal
checking, if not well supported. In applied verification, we can assume neither that
the problem of interest is stable, nor that the formulation we begin with is correct.

The techniques we present in this dissertation have been greatly influenced by
these factors. While we have not solved the problems completely, we have certainly
made progress, and summarize why in Chapter 8.

1.3.2 Related Work

Many attempts have been made to reason about the operational semantics of pro-
gramming languages in theorem proving systems:

e Melham and Camilleri pioneered representational techniques for inductive re-
lations in the HOL system and studied the operational semantics of some small
imperative languages [CM92]. This culminated in the proof of the Church-
Rosser theorem for combinatorial logic. The proof has since been reworked
and improved in Isabelle [Ras95, Nip96].

e Nipkow, Naraschewski and Nazareth have proved the correctness of the W

algorithm for type inference for a small functional language, using Isabelle-
HOL [NN96|.

We do not use “model” in its proof theoretic sense, but rather to distinguish the “abstract”
formal system (as expressed in the written mathematical vernacular) from the “embedded” formal
system (realised in a formal checking tool).

6 CHAPTER 1. INTRODUCTION

e Syme and Hutchins have embedded the dynamic semantics of the core language
of Standard ML in the HOL system [Hut90, Sym93]. They proved some simple
meta-level results, including the determinacy of the semantics, and developed
a symbolic evaluator for proving results about particular programs. Gunter,
Maharaj and Van Inwegen [ME93, GM95], constructed a model for the dynamic
semantics of the entire Standard ML language. Van Inwegen has tackled the
considerably more difficult task of proving type soundness for the core language
[Inw96], though the proof itself was beset with difficulties.

e Norrish [Nor98] has developed a model of the C language in HOL based on
the (informal) ANSI standard. The main difficulty here was to even find a
model for the language, and to derive results that avoid the complexities of the
language when only simple constructs are used, e.g. Norrish has proved that in
some situations the side-effecting nature of expressions may be safely ignored.
We use this work to statistically contrast declarative and procedural styles of
proof in Chapter 3.

e Nipkow and von Oheimb [Nv98] have developed a proof of the type soundness
of a subset of Java that closely resembles our own case study (see Chapter 6).

There are many other similar works on a smaller scale, for example those by Frost,
Nesi and Melham [Fro93, Nes92, Mel91].

As indicated by the above list, researchers have applied a range of theorem prov-
ing tools to assist with the formal checking of proofs related to operational semantics.
Furthermore, as shall be clear in the following chapters, it is possible to draw on work
from across the spectrum of theorem proving tools in order to provide this support.
Some of the systems that have most influenced our work are:

e HOL [GM93]. This is an implementation of polymorphic higher order logic
implemented in an “LCF-style” [GMW77]. That is the logic is mechanized
starting with a simple set of rules and axioms, and HOL relies heavily on user-
programmed rules of inference written in a dialect of ML. HOL supports a wide
range of specification constructs and automated reasoning routines. Proofs are
described using tactics, a topic we shall return to in Section 3.6.1.

e Isabelle [Pau90]. This is also an LCF-style system, but is generic and may be
instantiated to a number of different “object logics,” including polymorphic
higher order logic and set theory. Specification is succinct and a wide range of
notational conventions are supported. Proofs are again described using tactics,
and a number of powerful generic proof routines including first order provers
and simplification engines are available.

e PVS [COR™95]. This is an implementation of a rich higher order logic, in-
cluding “predicate subtypes”, notable for its excellent interactive environment,
powerful integrated decision procedures and pragmatic approach to integrating
model checking. It has not been widely applied to operational semantics.

1.4. DECLARATIVE THEOREM PROVING AND DECLARE 7

e ACL2 [KM96b]. ACL2 implements an “integrated collection of rules for defin-
ing (or axiomatizing) recursive functions, stating properties of those functions,
and rigorously establishing those properties.” It is notable for its use of deci-
sion procedures, its pioneering use of rewriting, its underlying computational
model and induction heuristics. We make heavy use of techniques from ACL2
and its predecessors in Chapter 4.

e Mizar [Rud92]. This is a system for formalizing general mathematics, designed
and used by mathematicians, and a phenomenal amount of the mathematical
corpus has been covered. The foundation is set theory, which pervades the
system, and proofs are expressed as detailed proof outlines, leaving the machine
to fill in the gaps. We discuss this system in more detail in Chapter 3. It has
not been applied to operational semantics.

Many of the techniques we utilise in this thesis are derived from ideas found in
the above systems, though the ones we describe in detail are novel or significant
extensions to existing techniques. Our most notable point of departure is with regard
to proof description. Our contention is that none of the above systems, with the
possible exception of Mizar, have addressed the question of “how proof outlines
should be expressed” in sufficient depth. We claim that, in many ways, “declarative”
techniques form a better method of proof description when proving properties of
operational systems. We define what we mean by this in the following section and
chapters, and will frequently compare and contrast our work with the related features
available in the above systems.

1.4 Declarative Theorem Proving and Declare

The following chapters are concerned with techniques that improve the state of the
art of theorem proving as applied to operational semantics. We have implemented
these as the system Declare [Sym97a]. We use this system to demonstrate the prin-
ciples underlying our techniques and how they may be implemented. We have also
used this system for the case study described in Chapters 6 to 7.

Declare is not a fully polished system, and its aim is not to supplant existing
interactive theorem provers or to needlessly duplicate hard work. Rather we seek
to explore mechanisms of specification, proof and interaction that may eventually
be incorporated into those systems, and thus complement them. We encourage
developers and users of other theorem provers to consider the ideas contained in
Declare with a view to incorporating them in other systems.

Later in this chapter we introduce the techniques we propose via a short Declare
tutorial. However, we first discuss the general principles of declarative theorem
proving and analyse some of the potential benefits of a declarative approach.

8 CHAPTER 1. INTRODUCTION

1.4.1 What is “Declarative” Theorem Proving?

In the general setting, a construct is considered declarative if it states what effect
is to be achieved, and not how. “Declarative” is inevitably a relative notion: one
construct is more declarative than another if it gives fewer operational details.

Declarative ideas are common in computing: Prolog and BTEX are examples of
languages that aspire to high declarative content. In Prolog, programs are indepen-
dent of many of the operational details found in procedural languages and KTEX
documents are relatively independent of physical layout information. The term pro-
cedural is often used to describe systems that are non-declarative.

What, then, is declarative theorem proving? In an ideally declarative system we
would, of course, simply state a property without describing how it is to be proved.
For complex properties this is, unfortunately, impossible, so we set our sights a good
deal lower:

One theorem proving style is more declarative than another if it reduces
the amount of “procedural information” and the number of “procedural
dependencies” required to specify properties and their proofs. Such de-
pendencies include: reliance on the orderings of cases, variables, facts,
goals and subgoals; reliance on irrelevant internal representations rather
than external properties; reliance upon one of a number of logically equiv-
alent forms (e.g. n > 1 versus n > 2); and reliance on the under-specified
behaviour of proof procedures (e.g. how names are chosen).

To take a simple concrete example, proofs in interactive theorem provers (e.g. HOL,
PVS and Isabelle) are typically sensitive to the order in which subgoals are produced
by an induction utility. That is, if the N-induction utility suddenly produced the
step case before the base case, then most proofs would break. There are many
similar examples from existing theorem proving system, enough that proofs in these
systems can be extremely fragile, or reliant on a lot of hidden, assumed detail. The
aim of declarative proof is to eliminate such dependencies where possible. In the
next two chapters (particularly Chapter 3) we discuss the exact techniques we have
implemented in Declare, and assess them relative to this definition of “declarative.”

1.4.2 Costs and Benefits

There are costs and benefits to taking a declarative approach. The possible benefits
in the general setting are:

e Brevity. The elimination of procedural content may reduce the overall size
of a development. For example, Prolog programs are usually shorter than
equivalent C programs.

e Relative Simplicity. Eliminating procedural content reduces the complexity of
an artifact. For example, most Prolog programs are certainly simpler than
equivalent C programs (as well as being shorter).

1.4. DECLARATIVE THEOREM PROVING AND DECLARE 9

e Readability. Procedural content often obscures the structure and intent of a
development, and eliminating it will thus clearly improve readability.

o Re-usability. Declarative content can often be reused in a similar setting, e.g.
KTEX source can typically be re-typeset for any number of output arrange-
ments, and Prolog code can easily be transferred from system to system. Pro-
cedural code is more difficult to reuse precisely because it is often dependent
on aspects of the environment that are subject to change.

e Robustness. Declarative content is often robust under changes to the way in
which the information is interpreted. For example, pure Prolog programs may
be independent of evaluation order, at least in the sense that if a predicate has
a finite number of solutions, then the set of solutions will remain identical even
under the reordering of conjuncts.

Note, however, that these potential benefits are not always realised. That is, the
elimination of “how” dependencies can come at some cost. One problem is when the
“declarative” specification is implicit in the “procedural”. For example, one declara-
tive technique used in Declare proofs is to state some propositions, and list the facts
that provide support for their deduction (the automated prover is left to figure out
the details). Procedurally, one might instead describe the syntactic manipulations
(modus-ponens, specialization etc.) that deduce the given facts. Eliminating the pro-
cedural specification may be advantageous, however in order to provide a declarative
specification of the operation we actually have to write out the deduced facts. These
were left implicit in the procedural specification, and thus the procedural approach
might be more succinct.

Furthermore, the declarative approach leaves the computer to work out the syn-
tactic manipulations required to justify the step deductively. This demonstrates the
two potential drawbacks of a declarative approach:

e Requires a Specification. Specifying a declarative view of an operation takes
text, and thus does not come for free if this is was previously left implicit.?

o Complexity of Interpretation. Eliminating detail may increase the complexity
of the interpretation process.?

We discuss the pros and cons of declarative theorem proving further in Chapters 3
and 8. To summarize, declarative theorem proving is about the elimination of detail
and dependencies that might otherwise be present. This does not come for free,
but in the balance we aim to achieve benefits that can only arise from a declarative
approach.

2 Another example is the specification of a a signature to a module in a programming language
(a declarative view of a module). Writing and maintaining the signature takes effort, and in small
programs it may be better to leave the interface implicit.

3 Again another example: Prolog compilers must be quite sophisticated in order to achieve rea-
sonable efficiency.

10 CHAPTER 1. INTRODUCTION

Finally, some declarative systems like N TEX allow access to a “procedural level”

when necessary. One could certainly allow this in a declarative theorem proving
system, e.g. via an LCF-like programmable interface. For the moment, however, we
shall not give in to such temptations!

1.4.3 A Tutorial Introduction to Declare

We now introduce Declare in a tutorial style, with the aim of demonstrating some
of the declarative techniques we propose. The tutorial is designed simply to place
the discussion of the following chapters in a concrete setting, and we shall frequently
refer back to the examples presented here. We shall use Declare to construct the
runtime operational semantics for a toy programming language (a lazy, explicitly
typed, monomorphic lambda calculus with de Bruijn indexes). We prove that exe-
cution in this language is type safe by proving a subject reduction theorem. This
will demonstrate:

e The terms and types of Declare’s underlying logic.

e The specification constructs for datatypes, simple definitions, recursive defini-
tions and least fixed points.

e Validating the specification by compiling to executable code.

e The proof outlining constructs for proof by decomposition, proof by automation
and proof by induction.

e The justification language constructs for giving theorems, case analyses and
explicit instantiations as hints: this is the interface to the automated reasoning
engine.

The toy programming language has the following abstract syntax:

ty = ty =ty (function type)
| i (integer type)
exp = int (constant)
| nat (de Bruijn indexed bound variable)
| Aiy-exp (abstraction)
|

exp exp (application)
Bound variable indices refer to lambda bindings, counting outward, thus Aj_,5.
Ai- 1 0 could be written Afj Azj. f z. One-step lazy evaluation is given by the
following rules:
f~f
fa~ fla (A; bod) a ~ subst a bod
where subst a b implements the replacement by « of those variables in b that have
index equal to the count of their outer lambda bindings. Typing is given by:
Fny=7 TFkFfimp—=>m I'Fa:m I' - bod: 1
'ke:d 'kEn:7t I'fxz:m LEA,.bod:T —

1.4. DECLARATIVE THEOREM PROVING AND DECLARE 11

The specification

The first declarations in our Declare file (called an “article”) are shown below. Note
that we are constructing a document: batch-mode interaction with Declare is by
constructing documents and submitting them for checking. The checker is very
quick, so the working environment is essentially interactive. A truly interactive
environment is also available: we discuss this in Chapter 5.

We begin with a notation declaration®, and then the abstract syntax is specified
as two recursive types, using ML-like notation. The auxiliary recursive function
subst_aux is defined using pattern matching.

infixl 11 “%¢;

datatype typ = TyInt | TyFun typ typ;

datatype exp
Int int
| Var nat

| Lam typ exp

| (%) exp exp;

let rec "subst_aux n t e =
match t with
Var m -> if (m = n) then e else t
| Lam ty bod -> Lam ty (subst_aux (n+1) bod e)
| £ % a -> subst_aux n f e J subst_aux n a e
| _ =>t";

let "subst subst_aux 0";

The term defining subst_aux is quoted because it is a term of the underlying logic,
i.e. the variant of higher order logic we describe in Section 2.1. Unquoted portions
of the input are part of the meta-language used to manipulate terms of the logic.
Declare has temporarily abandoned the traditional use of highly programmable meta-
languages (such as the ML dialects in LCF-style systems [GMWT77]) in order to
investigate declarative rather than procedural proof specification techniques. The aim
has been to find a small set of “highly declarative” commands to use for specification
and proof, and we have found it useful to abandon the constraints of a strictly typed
meta-language for this purpose.

The evaluation and typing relations are defined as the least fixed points (1£fp)
of sets of rules (we have used lists to model type environments, though typically we
use partial functions).?

“Notation declarations are typically kept in a .ntn file and imported with a notation <file>

directive.
SComments are nested (* ... #*) or to end-of-line //....

12 CHAPTER 1. INTRODUCTION

infixr 10 ‘--->¢;
1fp (—-->) =
<appl> "el ---> el’"
/] mmm
"el) e2 ——=> el’ %, e2"
<beta>
/] mmm
"(Lam ty bod) % e2 ---> subst bod e2";
threefix ‘|- hastype;

1fp hastype =
<Int> [autorw]

/] —mm e
"TE |- (Int i) hastype TyInt"
<Var> [autorw] "i < len TE A ty = el(i)(TE)"
/] mmm
"TE |- (Var i) hastype ty"
<Lam> [autorw] "(dty#TE) |- bod hastype rty"
A R
"TE |- (Lam dty bod) hastype (TyFun dty rty)"
<App> "TE |- f hastype (TyFun dty rty) A
TE |- a hastype dty"
/] mmmm

"TE |- (£ % a) hastype rty";

The [autorw] tag is a pragma: this is how we declare extra-logical information to
the automated prover. Pragmas may either be declared when a theorem is declared,
or may be asserted at a later stage, e.g.

pragma autorw <hastype.Int>;
pragma autorw <hastype.Var>;
pragma autorw <hastype.Lam>;

Validation by execution

Having completed a model of the toy language, it is natural to validate this model
by executing it on some test examples. Declare can translate many specifications to
a target language called Mercury [SHC96] by a relatively simple set of translations.
We discuss validation and the translation to Mercury further in Section 2.4, and
shall just give a taste of what is possible here.

1.4. DECLARATIVE THEOREM PROVING AND DECLARE 13

Mercury is a pure Prolog-like programming language with higher order predicates
and functions. It includes algorithms to statically analyse programs for type, mode
and other constraints, and can generate extremely efficient code as a result. Predi-
cates such as hastype become Mercury relations, and other terms become Mercury
data expressions. The user is required to specify mode constraints for predicates:

pragma mode "inp ---> outp";
pragma mode "inp |- inp hastype outp";

If, for example, the <app1> rule above had been

<appl> "el ---> el?’"

"el % e2 ——=> el’ % e2"

then Mercury’s mode analysis would detect that the rule fails to specify a definite
output for e1’ on the bottom line.

Test programs are specified in Declare as predicates generating values for an
unknown:

let "id = Lam TyInt (Var 0)";
pragma test "[] |- id hastype X";
pragma test "[] |- (id % id) hastype X";

The first test generates all types that may be assigned to id. Higher order operators
may be used to trace the execution of a transition relation:%

pragma test "(id % Int 1) RTC(--->) X";
pragma test "(id % (id % Int 1)) Fringe(--->) X";

The Mercury program produced by the Declare code generator executes these test
programs:”

test on line 82: "[] |- id hastype X"
X = TyFun(TyInt,TyInt)

test on line 83 "[] |- (id % id) hastype X"
no solutions

SHere RTC is a parameterized infix operator that takes the reflexive transitive closure of a relation,
and Fringe finds all elements in this closure that have no further transitions. Both are defined in
the standard Declare basis.

"The actual implementation does not print output terms quite so nicely, but given the meta-
programming facilities of a Prolog system this would not be difficult to implement.

14 CHAPTER 1. INTRODUCTION

test on line 84:
X = Lam(TyInt,Var(0)) % Int(1)
X = Int(1)

test on line 85:
X = Int(1)

Our first proofs

We now wish to prove subject reduction, i.e. if a reduction can be made to a well-
typed closed term, then it produces a term of the same type. We can formalise this
with the following theorem declaration:

thm <small_step_lazy_safe>
if "[1 |- e hastype ty"

"e ---> e’" <step>
then "[] |- e’ hastype ty";

Investigations quickly lead us to conclude that we must first prove that typing is
“monotonic over increasing type contexts” (we might discover this midway through
the outline of the subject reduction proof, which we shall come to below). A larger
type environment (< or <<=) is one that possibly has additional entries:®

infixl 10 "<<=" --> leq;
let "TE1l <<= TE2 « dJl1. TE1@l = TE2";

Two consequences follow easily from the definition of <<=, and the statement and
proof outline for each of these is shown below. The propositions are introduced as
theorem declarations and are followed by proof outlines (in this case very simple
ones!):

thm <leq_nil> [autorw] "[] <<= TE";
proof |qed by <leq>;|<Proof outline

thm <cons_leq_cons> [autorw]
"(x#TE1) <<= (x’#TE2) < (x = x’) A TEl <<= TE2";
proof ged by <leg>;

Fresh symbols (such as TE in the first example) are implicitly universally quantified.
Proofs are given in a declarative proof language made up of justifications by automa-
tion, case splits, and second-order schema applications: in each case above we have

8In higher order logic, “if and only if” (<+) is simply equality (=) over booleans, but syntactically
has a lower precedence. The operators @ and # are “append” and “cons” over lists as usual. In
Declare the infix1 declaration defines an infix operator and gives an alpha-numeric identifier which
is used as an alternative label in, for example, theorem names.

1.4. DECLARATIVE THEOREM PROVING AND DECLARE 15

only used justification by automation (using ged), adding the hint that the definition
for <<= be used in the automated proofs. Each ged step generates one proof obliga-
tion. In this case the automated engine can check these proof obligations by using a
combination of rewriting (utilising background rules), instantiation and arithmetic
decision procedures.

An inductive proof

We can now state the monotonicity result. Informally, we might state and prove it
as follows:

Theorem 1 Monotonicity IfT'Fe:7 and ' <T' thenT' Fe: 7

The proof is by induction on the derivation of the typing judgement. The interesting
case is when e = Av. b and 7 = 7/ — p where the induction hypothesis gives us
L<I" =T"Fb:pforallI". When I' = 7/, T" the result follows by the typing rule
for lambda applications. In Declare the problem is stated as:

thm <hastype_mono>

if "TE |- e hastype ty" <e_typing>
"TE <<= TE’"

then "TE’ |- e hastype ty";

Within the sequent, the label <e_typing> gives a name to a local fact. The corre-
sponding Declare proof outline is:

2nd Order Schema Application
proof

|proceed by rule induction on <e_typing> with TE,e,ty,TE’ variable;

case Int: | qed;
qed; Cases arising from the induction
[case kpp; [<Gea By <Bastype.App>;

"e = Lam ty’ bod"
| |

"ty = TyFun ty’ rty"|

"ihyp (ty’#TE) bod rty" <ihyp>:|

ged by |<ihyp> ["ty’#TE’"]|f———————E@plicit Instantiation as a Hint

end;

The proof itself first utilises the induction proof language construct, described in
detail in Section 3.5. The induction predicate is:

ATE v ty. VIE’. TE <<= TE’> — TE’ |- v hastype ty

16 CHAPTER 1. INTRODUCTION

This predicate becomes the macro ihyp on the branches of the proof.

The induction construct itself generates no proof obligation, but rather four cases,
corresponding to the four rules for the least-fixed point. The cases may be given in
any order. In three of the cases the induction hypotheses are left implicit and the
proof is simple. In the Lam case a small hint is required: the explicit instantiation
of an induction hypothesis (by <ihyp> ["dty#TE’"]). To enforce good declarative
proof style, Declare demands that we can only use facts if they are present in the
text of the proof document, and so we record the induction hypothesis explicitly.
These are:

e The equational constraints for the Lam case; and
e The induction hypotheses from the top line of the rule on page 12.

We then explicitly instantiate the fact <ihyp> on the justification line, which com-
pletes the proof up to the four proof obligations that must be checked by Declare.
What theorem results from the successful proof on the main branch of the article?
The local constants TE, v,ty and TE’ are universally quantified, and the sequent
becomes an implicative formula:

thm <hastype_mono> "VTE TE’ v ty. TE |- v hastype ty A TE <<= TE’
— TE’ |- v hastype ty"

The subject reduction proof

The next fact we prove is that substitution preserves types:?

thm <subst_aux_safe>
if "[] |- v hastype vty"

"len TE = n"

"(TE #! vty) |- e hastype ty" <typing>
then "TE |- (subst_aux n e v) hastype ty";

We omit the proof: it is not interesting for our purposes as it uses only the constructs
described above. Finally we prove the subject reduction theorem itself:

thm <small_step_lazy_safe>
if "[1 |- e hastype ty" <typing>
"e ——=> e’" <step>
then "[] |- e’ hastype ty";
proof
proceed by rule induction on <step> with ty variable;
case beta
"e = Lam xty bod % e2"
"e’ = subst bod e2";

[1 is the empty list, 1en is the length of a list and #! adds an element to the end of a list

1.4. DECLARATIVE THEOREM PROVING AND DECLARE 17

|consider dty st

| "[1 |- Lam xty bod hastype (TyFun dty ty)" <ty2>

"[] |- e2 hastype dty"

by rulecases(<typing>) |;

ged by rulecases(<ty2>), <subst_aux_safe> ["[]"],
<nil_snoc_cons>;
case appl; ged by <hastype.App>,rulecases(<typing>);
end;

The long case of the proof corresponds to a beta-reduction step. The consider
construct is an instance of the third (and final) proof outlining construct of the
proof language: case decomposition combined with constant and fact introduction.
The general form is described in Section 3.3. In the example we assert the existence
of an object dty with the properties given by the two facts, justified by automatic
proof and several theorems.

1.4.4 Checking the Article

Once written, the article may be checked as follows. For illustrative purposes, we
show the output if rulecases(<typing>) is replaced simply by <typing> on the
last line of the proof.

> decl lang.art

DECLARE v. 0.2a

parsing...done

importing and merging abstracts...done
type checking...done

checking proof of <small_step_safe>

File "db.art", line 192, characters 13-34:
This step could not be justified.

Simplification produced
+ <App> Vdty TE f a rty.
(TE |- f hastype (TyFun dty rty)) A
(TE |- a hastype dty)
— (TE |- £ % a hastype rty)
+ <ihyp> Vty. ([] |- el hastype ty) — ([] |- el’ hastype ty)
+ <ihyp> el ---> el’
+ <typing> [] |- el 7, e2 hastype ty
<oblig> []1 |- el’ % e2 hastype ty

where e’ = el’ ¥ e2
e =el Y e2

18 CHAPTER 1. INTRODUCTION

The feedback shown is from the automated prover used to discharge proof obligations:
here it is easy to spot that a necessary condition in <ihyp> has not been discharged,
and hence deduce that a rule analysis on <typing> will be helpful. Note that Declare
has checked the rest of the proof on the assumption that the facts stated on line 192
were indeed derivable. If a proof obligation cannot be discharged by the automatic
prover, a warning is given and the fact is assumed.

An article is typically written and checked within IDeclare, the interactive devel-
opment environment (IDE) for Declare described in Chapter 5.

Part 1

Tools and Techniques

19

Chapter 2

Specification and Validation

In this chapter we consider specification and wvalidation techniques for operational
semantics, i.e. methods for describing systems in a fashion acceptable to both human
and machine, and for checking that our specifications correspond to our informal
requirements. Specifications must be interpreted with respect to some foundational
logical system. We briefly describe some such systems, and give a rationalization
for the choice of higher order logic (h.o.l.).! After introducing this logic we outline
the constructs we use to specify operational semantics, and give details of their
realization in Declare. Finally we address the issue of executing specifications for
the purposes of validation.

Specification is quite a well-understood area, so most of this chapter is back-
ground material. Our main contributions are around the edges:

e The use of a systematic labelling mechanism to easily “get a handle on” results
that follow trivially from definitions.

e The use of a higher order pure Prolog (Mercury) as a target language for gener-
ating executable code. This gives us the power to perform mode, determinism,
uniqueness and termination analyses on our specifications, and to execute test
cases to validate the specifications in particular cases.

2.1 Foundations and Higher Order Logic

A plethora of techniques has been developed for the formal specification of systems,
and the topic is a significant and complex one in its own right. Typically each tech-
nique is accompanied by a logic for use with the specification language, although
sometimes the specification language is precisely the logic and sometimes no co-
herent and complete logic is immediately apparent. Commonly cited specification
languages include: axiomatization in first order logic; the Z and VDM notations
[Spi88, Jac88]; variants of higher order logic (e.g. the specification languages of HOL

! As distinct from the HOL or Tsabelle/HOL implementations of higher order logic.

21

22 CHAPTER 2. SPECIFICATION AND VALIDATION

[GM93], PVS [COR'95] and Isabelle/HOL [Pau90]); set theory; temporal logics;
specialised formalisms for finite state machines and hardware; and restricted sub-
sets of logic that are highly amenable to automation (e.g. Monadic 2nd Order Logic
[JIM195]) and process calculi. This is not the place to give a detailed analysis of the
merits of these methods: Rushby has written a good introductory overview [Rus93].

We choose a simple higher order logic as our foundational system: everything
we do can be given a semantics by translation into this logic. The following issues
dictated our choice of logical foundation:

e We take it as axiomatic that a certain coherency and simplicity with regard
to semantics, implementation and use are all “Good Things” to look for in
a framework. Difficulties with providing a simple coherent semantics or good
tool support rule out approaches based on Z, VDM or object-oriented concepts.

e We are interested in modelling systems that have infinite state spaces. Thus
finite state techniques, where the model is compiled to some more convenient
representation, e.g. a finite state machine, are not immediately applicable.

e Similarly, we need to perform second-order reasoning such as induction argu-
ments. Thus approaches based around purely first-order techniques such as
Prolog are not sufficient. A more syntactic, explicit representation of knowl-
edge is required.

e We are thus led to the necessity of supporting a high degree of syntactic (or
deductive) reasoning, which is normally done using some variant of higher order
logic. An excellent summary of the benefits of this approach can be found in
[Rus93].

We now go on to give a brief account of higher order logic. We assume familiarity
with first order logic. Second order logic allows quantification over predicates. For
example this allows the encoding of induction schemes:

YP. P(0) A (Vk. P(k) — P(k +1)) — ¥Yn. P(n)

Second order logic can frequently “act as its own meta-language.” That is, higher
order theorems can express many effects normally achieved by proof procedures, e.g.
a single higher order theorem (interpreted as an algorithm in the obvious fashion)
can express the standard transformation to negation normal form.

Higher order logic allows quantification over functions of any order, as well as
predicates. Apart from second order quantification like the above, the most common
uses of higher order features are:

e For higher order predicates such as V, 3 or reflexive transitive closure.

e For higher order functions such as “map” (over a list), or the iterated applica-
tion of a function.

2.1. FOUNDATIONS AND HIGHER ORDER LOGIC 23

e To model “data” objects using functions, e.g. sets, or tables using partial func-
tions.

To avoid logical contradictions such as Russell’s paradox, higher order logics are
usually typed. Many typing schemes are possible: we adopt the simple polymorphic
typing scheme used in HOL and Isabelle. Other typing schemes, notably that of PVS,
address issues such as predicate and structural subtyping. Melham’s system allows
quantification over type variables [Mel92], and one can also admit record types. We
have been able to survive without such features in our case study.

The primitive terms of higher order logic are as in the A-calculus: variables, con-
stants, applications and functions. Types are either type variables («) or constructed
types using some type functor applied to a number of arguments (e.g. bool, « list
or « — «). Constants may be polymorphic, and the primitive constants are nor-
mally just =q 060015 — bool— bool—boot @nd the Hilbert-choice operator €(a— bool)—a+
Theorems are terms of type bool deduced from the primitive axioms and the rules
of the logic. These are typically «, 8 and 7 conversion, type and term specializa-
tion, modus-ponens, the congruence properties of equality, the axiom of choice and
deduction rules in a sequent style.

From the point of view of mechanization, polymorphic simple type theory seems
to occupy a neat, locally optimum position in the spectrum of possible logics. Type
checking is decidable and efficient, terms can be represented fairly compactly, and
a fair degree of expressiveness is achieved. It is not ideal for all purposes, but is
excellent for many. See Harrison’s HOL-lite [Har96a] for an elegant implementation
of h.o.l. from first principles.

Logic of description v. logic of implementation

Simple polymorphic higher order logic acts as the logic we use to provide a coherent
semantic framework for the system we implement. We could call this the “logic of
discourse”. Unlike the LCF family of theorem provers, it is not precisely the logic
we implement in Declare, in two senses:

e The mapping between the representation used for terms in the computer and
terms of the logic is not entirely trivial, e.g. see the representation of pattern
matching in Section 2.2.1.

e The logical system is extended with strong rules of inference, e.g. decision
procedures. We rely on the soundness of these and do not perform the proofs
by syntactic deduction (i.e. Declare is not “fully expansive”)

Both PVS and Isabelle follow similar approaches: while in principle the core of
Isabelle implements intuitionistic higher order logic, it also contains one powerful
primitive inference rule (simplification) — this is naturally omitted from the de-
scription of the logic implemented. Similarly the formal description of PVS describes
simpler logical rules than those actually built into the prover.

24 CHAPTER 2. SPECIFICATION AND VALIDATION

2.2 Specification Constructs for Operational Semantics

In this section we shall introduce the range of constructs we use to specify opera-
tional systems. We shall briefly describe each, and present their realisation in the
Declare specification language. Most of the constructs have been presented by ex-
ample in Section 1.4.3. At the end of the section we discuss the issues of partiality,
“declarative” specifications and modularity.

The devices presented in the following sections are shortcuts for declarations
given in a primitive language of types, constants, theorems (axioms) and annotations
(pragmas). We will show the equivalent declarations in each case. The shortcuts are
used for brevity and to greatly simplify the proof obligations that arise.

The language of pragmas is used to declare extra-logical information, normally
about theorems, for the benefit of tools such as the proof language analyser, the
automated reasoning engine and the code generator. Pragmas relating to each tool
are discussed in the following chapters, though their intuitive meaning should be
clear.

2.2.1 Pattern Matching

Pattern matching is a construct in specification and programming languages where
a term may be compared to other terms, the latter possibly containing fresh (bind-
ing) variables. Just as in programming languages this is a succinct way to specify
structural and other equational constraints. We replace A terms in h.o.l. by pattern
matching functions. For example consider the (equivalent) pattern match applica-
tions

1. (function
0 ->1
| 1 ->1

| n => fib(n-1) + fib(n-2)) t

2. match t with
0—>1
| 1 ->1
| n => fib(n-1) + £fib(n-2)

The informal semantics is the same as for functional languages: the first rule 0 —>
1 must fail before the second may be used, and if the first succeeds the others are
ignored. If no rules remain then the term represents some arbitrary member of its
type. We could decode pattern matching into simple higher order logic by using the
Hilbert choice operator. The term above would become:

Atmp.
Choose res.
(tmp = 0 A res = 1)

2.2. SPECIFICATION CONSTRUCTS FOR OPERATIONAL SEMANTICS 25

V (tmp <> 0 A tmp = 1 A res = 1)
V (3n. tmp <> 0 A tmp <> 1 A tmp = n A res = fib(n-1) + fib(n-2))

In our implementation we do not actually decode pattern matching, though all the
manipulations we perform on such terms (e.g. see Section 4.2.3) have equivalent
manipulations on the translated forms.

The patterns may be arbitrary terms, may bind an arbitrary number of variables
and variables may even be repeated in each pattern. Left-to-right interpretation
allows such liberal patterns because there is no obligation to prove that only one
path of the match may succeed.

2.2.2 Simple Definitions and Predicates

Simple non-recursive definitions account for the majority of definitions in a model
of an operational semantics, e.g.

let "(union) p q = (fun x -> p x V q x)";
let "subst = subst_aux 0";
let "(--*>) = RTC(———>)";

There is no proof obligation for such specification constructs, and in Declare they give
rise to a constant, an equational theorem, an “elimination” theorem and appropriate
pragmas, e.g.

constant union ":a set -+ a set — « set";

thm <union> "p union ¢ = (A\z. p x V q z)";

thm <union.elim> "(union) = Ap ¢ z. p = V q z";
pragma defn <union>;

pragma code <union.elim>;

pragma elim <union.elim>;

The interpretation of the above pragmas is discussed in later sections. Definitions can
be conditional in order to document constraints on their arguments: the functions
will be under-specified outside this domain (see Section 2.2.6). Arguments can be
any terms, just as with pattern matching.

2.2.3 Datatypes

Recursive datatypes, or free algebras are familiar to anyone who has programmed in
an ML dialect, and are a key construct for modelling operational systems. Typically
we require the construction of recursive types using (non-dependent) sums (- + _),

(non-dependent) products (- x _) and covariant type constructors such as _ list, « —

tabl . . .
_and o 7= _. We use datatypes to model pairs, lists, trees, records, enumerations

and abstract syntax. In our case study we use them for both the abstract syntax of
Java and runtime objects that get created. Some examples, using ML-like syntax,
are:

26 CHAPTER 2. SPECIFICATION AND VALIDATION

datatype («,8) (x) = (,) of a B3; // pairs
datatype « list = (#) of a | ([1);
datatype a option = None | Some of «;

Operational descriptions typically require mutually recursive datatypes to describe
abstract syntax succinctly. A common example of the use of mutual recursion is for
expressions and declarations in a functional programming language:

datatype exp = Dec of dec X exp | Int of int |
and dec = Let of string X exp | Decs of dec list |

Often we need more specific algebras, e.g. well-typed programs. Typically we use
predicate constraints to do this, defined inductively over the corresponding free al-
gebra.

Reductionist proofs of the existence of solutions (within higher order logic) for
recursive type equations that include nested constructors have been automated by
Gunter [Gun94], and for simpler types by Melham [Mel88]. For our purposes it
suffices to use a routine that generates the necessary axioms. Many other theorem
provers admit a similar range of types (e.g. PVS, LCF and Isabelle). Simple higher
order logic requires that types be non-empty, and an initiality condition must be
proved for each datatype. Declare does not currently check non-emptiness and ini-
tiality conditions, though in principle they can be determined automatically by a
graph search.

See Section 4.2.3 for a discussion of the automated reasoning routines that deal
with datatypes.

2.2.4 Fixed Point Relations

If datatypes are used to model syntax in operational descriptions of systems, then
(co)inductive relations and recursive functions are the essential tools to model se-
mantics. (Co)inductive relations are the preferred method for defining recursive
judgments declaratively because they abstract away from so many details: the logi-
cal structure of the possible derivations becomes immediately evident in the formulae,
and induction is over the space of all possible derivations, instead of some indexing
scheme (e.g. N) into this space.

An inductive relation is the least fixed point of a monotonic set transformer
F within the context of a universal set U. Such fixed points are guaranteed to
exist by the Knaster-Tarski theorem [Tar55]. Good references to the theory and its
mechanisation are [Pau94, CM92, Har95, PM93]. Typically the transformer F' is
defined by a set of rules, e.g. the definition of one-step lazy evaluation for the simple
lambda calculus:

f~f
App fa ~ App f'a App (Lam z bod) a ~ subst(z,a)bod

2.2. SPECIFICATION CONSTRUCTS FOR OPERATIONAL SEMANTICS 27

U = exp X exp
Fw) = W GFflap=(kppfa dppfia) A f o~ f))V
(3z bod a. p = (App (Lam = bod) a, subst(z,a)bod))

Note that the implicit equational constraint from the bottom line of each rule has
been explicitly quoted here. Intuitively, a ~» b holds if some derivation exists using
only the rules above.

In Declare we do not mechanise the theory of fixed points from first principles
— previous authors have addressed this issue [CM92, Har95, Pau94]. Instead, we
use an axiomatization of each relation. Examples of the syntax of least fixed point
declarations were shown in Section 1.4.3.

In the present implementation we do not generate the associated monotonicity
proof obligations, since this is well-understood, as is the automatic checking of mono-
tonicity conditions (e.g. see the Isabelle implementation [Pau94]). Explicit proofs of
monotonicity could be given in the proof language described in the next chapter, if
necessary.

As with datatypes, theorems are generated that encode the logical properties
of inductive relations in Declare. The example on page 10 generates the following
theorems — clearly the axiomatization in h.o.l. is straightforward:

thm <reduce>
"argl ---> arg?2
(el e1’ e2. argl = el % e2 A arg2 = el’ %, e2 N el ——=> el?)
V (Jel e2 ty bod. argl = el % e2 A arg2 = subst bod e2 A el = Lam ty bod)"
pragma defn <reduce>
pragma code <reduce>
thm <reduce.appl> "el ---> el’ — el % e2 --=> el’ } e2"
thm <reduce.beta> "el = Lam ty bod — el 7 e2 ---> subst bod e2"
thm <reduce.induct>
"(Vargl arg2.
(del e1’ e2.argl = el % €2 N arg2 = el’ % e2 N P el el’)
— P argl arg2)
AN (Vargl arg2.
(Jel e2 ty bod. argl = el % e2 A arg2 = subst bod e2 A el = Lam ty bod)
— P argl arg2)
A argl ---> arg2
— P argl arg2"
pragma induct <reduce.induct> [appl,betal
thm <reduce.cases>
"argl ---> arg2 —
(Jel el1’ e2. argl = el % e2 AN arg2 = el’ } e2 N el ——-=> el’)
V (Jel e2 ty bod. argl = el % e2 N arg2 = subst bod e2 A el = Lam ty bod)"
pragma rulecases <reduce.cases>
thm <reduce.elim>
"(-==>) = Xargl arg2.
1fp(AR (argl,arg2).
(Jel el” e2. argl = el % e2 A arg2 = el’ 7, e2 N R(el,el’))
V (Jel e2 ty bod. argl = el % e2 A arg2 = subst bod e2 A el = Lam ty bod))

28 CHAPTER 2. SPECIFICATION AND VALIDATION

argl arg2"
pragma elim <reduce.elim>

2.2.5 Recursive Functions

Recursive functions are admissible in h.o.l. if the recursion can be proven well-
founded. Slind has made a comprehensive study of this topic in the context of
deductive frameworks [S1i96] and has implemented his algorithms in a package called
TFL, suitable for use with HOL and Isabelle. Because his work has explored the issues
thoroughly, for our purposes it is adequate to simply axiomatize recursive functions.
Furthermore, in practice we only tend to use primitive recursive functions, and it
is easy to verify by inspection that our definitions are indeed primitive recursive.
However, the mechanism we propose to implement in future versions of Declare is
to axiomatize recursive functions up to the generation of a proof obligation, as in
PVS. We would ensure that Declare’s automatic prover could detect and prove side
conditions for the primitive recursive subset automatically.

2.2.6 Partial Functions and Undefinedness

Partial functions are only fully defined on some elements of their domain. What
“happens” outside this domain can vary greatly according to the logical treatment
chosen. Muller and Slind’s excellent overview of different treatments in a logic of total
functions [MS97] demonstrates that it is essential to take an approach to partiality
that is both accurate and pragmatic. The basic approaches available when using
h.o.l. are:

e Define fully. The function is given particular values outside its domain.

e Underspecify. The function has various values outside its domain but they are
arbitrary and otherwise uninterpreted.

e Use relations. That is, model the function by a subset of o x 8. This is precise,
but often requires additional lemmas.

e Use the option type. Model partial functions @ — (8 by total functions of type
« — 0 option. This is precise, but requires additional case splits and reasoning
about datatypes.

Whichever model is chosen, it is good “declarative” practice to avoid relying on the
behaviour of functions and relations outside their natural domain. For example, it
is bad practice to rely on 1/0 having a definite value (e.g. 0, as in n x (1/n) = 1),
since it becomes less clear what exactly has been proven, and theorems are not easily
transferable (textually) to other theorem proving systems.

We return briefly to these questions in Section 6.3.2 in the context of well-
formedness criteria for types and type environments in our case study.

2.3. LABELLING AND THEOREM EXTRACTION 29

2.2.7 Declarative Specification and Modularity

Specification is one area in which traditional theorem proving has largely achieved the
declarative ideal: sufficient forms are available that most specifications can be given
without resorting to “irrelevant” detail. The biggest potential source of such detail is
“specification by construction”, e.g. when constructing the theory of lists via a theory
of partial functions from an initial segment of N, or a theory of the real numbers
by an elaborate construction. Theorem provers typically support techniques which
admit wide classes of constructs declaratively (such as algebraic datatypes), and may
also provide mechanisms to hide constructions once they have been completed.

As with some other theorem provers (e.g. PVS), Declare goes a little further: a
theory may be specified and used independently of the proofs that demonstrate that
the theory is a sound extension of the logic. That is, Declare supports a primitive
notion of modularity. The interface to a theory may either be given in a separate
file (called an “abstract”), or may be extracted from an existing file (an “article”
— the proofs in the article need not be checked to do this). Naturally there need
be no textual dependency of an abstract on its article, and an article is checked for
conformance to its abstract. Additionally, every type and term constant in Declare is
qualified by the name of the module in which it occurs — discrimination of constants
occurs during parsing.

Unlike PVS, a Declare theory comes equipped with the pragmas that give extra-
logical information about the theory. Declare also comes with traditional compiler-
like tools for processing abstracts and articles, and make facilities can be employed
in the usual fashion.?

Finally, Declare comes with a standard library of theories that axiomatize first
order logic, pairs, lists, options, finite partial functions, first order set theory, finite
sets, lists-as-vectors and some conversions between these structures. We have not
yet provided proofs of the soundness of these axiomatizations, though they were
originally copied from similar theories in HOL and HOL-lite.

2.3 Labelling and Theorem Extraction

Predicates in h.o.l. are functions from several arguments to type bool. In this section
we describe a new mechanism whereby the labelling of a subterm within the definition
of a predicate gives rise to a “theorem for free”.?

For example, consider the following definition, which is an alternative way of
defining <<= from Section 1.4.3. The labels have been emphasized, and the under-
lining indicates the term identified by the labels:

let "El <<= E2 [<derive>]

2A prototype module system has also been designed and implemented for Declare, however this
is beyond the scope of this thesis.

3Indeed, while this mechanism is usually used within predicate definitions, it can also be used
within any fact stated anywhere in a specification or proof (proofs are discussed in Chapter 3).

30 CHAPTER 2. SPECIFICATION AND VALIDATION

pos._res_(P) = neg._res, (P) =-P
pos_resy ,(P A Q)= pos_res,(P) neg-res, ,(P A Q)= neg.res,(P)
pos_res, ,(P A Q)= pos_res,(Q) neg_res; ,(P A @)= neg_res,(Q)
pos_res, (L) = neg_res,(P) neg_res, ,(—P) = pos._res,,(P)
pos_res, (V. P) = pos_res,(P)

pos_resy ,(P > Q) = pos_res,(P) neg-res, (P < Q) = neg_res,(P)
pos_res, (P «» ()) = pos_res,(Q) neg_res; ,(P < @) = neg_res,(Q)

Table 2.1: The Result at a Location.

len FEI1 <= len E2 [<length>] A
(Vj. j <len EI — (el j E2 = el j EI) [<contents>])";

The corresponding three theorems are:

thm <leq.derive> "len E1 <= len E2 A
(Vj. j <len F1 — el j E2 =el j E1) —
El <<= E2"
thm <leq.length> "FEI <<= E2 — len EI <= len E2"
thm <leq.contents> "EI <<= E2 A j < len F1 — el j E2 = el j EI"

Labels can be placed anywhere within a propositional structure. The resulting theo-
rem is C' — P where C is the “minimal support” at the loci (defined formally below),
and P is the labelled term. P is negated if it appears in at a “negative” location,
e.g. under a single negation or immediately on the left of an implication. Labels may
also be placed under V quantifiers, which generate free variables in the theorem (no
two variables in the same scope may have the same name), and also under applied
pattern matches.

This mechanism was used extensively in the case studies, as it gives a succinct
way of “getting a handle on” the immediate consequences of a definition without
needlessly restating the obvious. This can save pages of text in a large specification.
The only down-side is that the term language must be syntactically extended to
include constructs that rightly seem to belong in the specification language, but this
is a small price to pay.

We can formalize what is going on here. Let a path be a list of zeros and ones,
and let pos_res,(A) be the result of a path p in term A, as defined in Table 2.1. Let
pos_supp,(A) be the minimal support as defined in Table 2.2. We have the following
soundness theorem:

Theorem 2 Soundness of Theorem Extraction. If A is a proposition, p is a well-
formed path for A, and A and pos_supp,(A) holds in the current theory, then pos_res,(A)
also holds. Similarly if ~A and neg_supp,(A) hold, then neg_res,(A) holds.

The proof is straightforward and is by induction on the length of the path p.

2.3. LABELLING AND THEOREM EXTRACTION 31

pos_supp,(P) = true neg_supp, (P) = true

pos_suppy ,(P A Q)= pos_supp,(P) neg-suppy , (P A Q)= —Q A neg_supp,(P)
pos_supp; ,,(P A Q)= pos_supp,(Q) neg-supp; ,(P A Q)= =P A neg_supp,(Q)
pos_suppy ,(=P) = negsupp,(P) neg-suppy ,(~P) = pos_supp,(P)
pos_suppy ,(Vz. P) = pos_supp,(P)

pos.suppy , (L <> Q) = Q A pos_supp,(P) neg-suppy (£ < Q) = Q A neg_supp,(P)
pos_supp, ,,(P <> @) = P A pos_supp,(Q) negsupp, ,(P < Q) = P A neg_supp,(Q)

Table 2.2: The Minimal Logical Support at a Location. We omit V, — and < since
they may be defined simply via A and —. There is no rule for neg_supp and V.

pos_resy. ,(P ¢ Q)= neg_res,(P) pos_suppy- ,,(P > @)= =Q A neg_supp,,(P)
pos_res;. ,(P «» Q)= neg_res,(Q) pos_supp;- ,(P > @)= =P A neg_supp,(Q)

neg_resy. ,(P < Q)= pos_res,(P) neg_suppy: ,(P < Q)= =Q A pos_supp,(P)
neg.res;. ,(P < Q)= pos_res,(Q) neg_supp;- ,(P < Q)= =P A pos_supp,(Q)

Table 2.3: Possible reversed support rules for <.

Tables 2.1 and 2.2 also define what happens at the ambiguous connective <. For
pos_supp, this is interpreted as a left-implication (<) when the path points to the
left, and a right-implication (—) when to the right, as we can see in the first example
above.

2.3.1 Possible Extensions to the Mechanism

It could potentially be useful to allow the reversal of the interpretation of <, inter-
preting it as (—) when on the path points to the left, as shown in Table 2.3 (we use
0* and 1* to indicate this in a path). For example:

let "either(P,l,r) [<*rulex>] < P() [<*left*>] V P(r) [<#right*>]";
would give the theorems:

thm <either.rule> "either(P,l,r) — P({) VvV P(r)"
thm <either.left> "P(l) — either(P,l,r)"
thm <either.right> "P(r) — either(P,l,r)"

Furthermore, the whole scheme could be extended to work with non-first order oper-
ators, for example fixed points.* Table 2.4 shows the appropriate rules. For example

*Rather than using the fixed point specification syntax from Section 2.2.4 we use 1fp to denote
a general least fixed point operator.

32 CHAPTER 2. SPECIFICATION AND VALIDATION

pos_suppy(Vz. c(z) < fp(APz. F[P,z])(z)) = F[c/P](z)
pos_supp; ,(Vz. c(z) « fp(APz. F[P, z])(x)) c(x) A pos_supp,(Fc/P](z))
pos_suppy: (Vz. c(z) < Ifp(APz. F[P,z])(x)) - F[c/P](z)

pos_supp;. ,(Vz. c(z) « fp(\Pz. F[P,z])(z)) = —c(z) A negsupp,(F[c/P](z))

8

8

Table 2.4: Possible Support Rules for Fixed Points. Here the fixed point expression
is given a name ¢ so we can succinctly unwind it once — several logically equivalent
forms could be similarly detected.

let "all P | [<*cases*>] <
1fp (lall 1.
(I = [1) [<*nil*>]
vV dh t. ((I = h#tt A P(h) A all t) [<*cons*>])
) 1

would give the theorems:

thm <all.cases> "all P | —
a =1
V (3h t. Il = h#tt A P(h) A all P t)"
thm <all.nil> "[= [] — all P ["
thm <all.cons> "l = h#t A P(h) A all Pt — all P 1"

This could unify the existing mechanism with the current labelling mechanism for
rules of fixed point relations. One could also investigate the generalisation of this
mechanism in a system such a Isabelle, perhaps allowing labels within further non-
first order (e.g. modal) structures if appropriate rules are present to interpret the
paths to these labels. We have not implemented these mechanisms.

In principle, labels could also be placed under positive 4 quantifiers, which would
be systematically skolemized to generate constants. For example:

let "big n [<derive>] ¢ dm. (m < n) [<ci1>] A (m > 1000) [<c2>]";

would give one constant (big.m) and four theorems:

thm <big> "bign < dm. m < n A m > 1000"

thm <big.cl1> "big n — big.m n < n"

thm <big.c2> "big n — big.m n > 1000"

thm <big.derive> "(Im. m < n A m > 1000) — big n"

Note the skolem constant big.m is parameterized by the free variable n. This mech-
anism was implemented, but was not used in the case studies.

2.4. VALIDATION 33

2.3.2 Related Work

Mizar [Rud92] allows facts to be labelled as they are stated, taking the current
context and generating an implicative theorem. This mechanism was the inspiration
for the mechanism presented here, but is not as general, since labels may not appear
inside arbitrary propositional structures.

2.4 Validation

If all proof obligations are discharged, the logical consistency of a specification is
essentially trivial to check, simply because of the limited range of specification con-
structs that we admit.’ Considerably more difficult is the wvalidity of the specifica-
tion, by which we mean whether the specification meets our informal expectations
of the system we are describing. For example, in Chapter 6 we must argue that, in
some sense, our model of the language conforms to the Java Language Specification
[GJS96].

We regard the issue of validation as extremely important in the context of opera-
tional semantics. Without validation, we really have no guarantee that our theorem
proving efforts have demonstrated anything useful. Whether we like it or not, spec-
ifications frequently contain errors, ranging from small syntactic mistakes to entire
rules that are simply forgotten. We found examples of such mistakes even toward
the end of our major case study (see Section 6.7).

Clearly complete formal validation is not possible, since this would require a
formal specification at least as accurate as our own. Thus we turn to partial and
informal techniques. In addition to simply eye-balling the specification, we utilise
the following (semi-)automatic techniques:

1. Type checking;

2. Static mode analysis;

3. Generation of executable code;
4. Execution of test cases.

Type checking is of course decidable in our variant of higher order logic, and success-
ful type checking at least demonstrates that the various terms within the specification
lie within the correct sets.

Typechecking finds many bugs, but is well-understood, and so the remaining
techniques are of more interest. As demonstrated in Section 1.4.3, we compile spec-
ifications to the programming language Mercury [SHC96] and leverage the static
analysis and animation facilities of that system. In the context of operational seman-
tics this generates an interpreter for the language based directly on our definitions.

5As mentioned in the previous sections, in the current implementation of Declare we must also
check (by inspection) that datatypes are initial, that inductive relations are monotonic and that
recursive function axiomatizations are indeed primitive recursive.

34 CHAPTER 2. SPECIFICATION AND VALIDATION

The interpreter is typically able to execute concrete programs if given a concrete
environment, and suffices to test small programs.

2.4.1 Mercury

Mercury is a pure Prolog-like programming language with higher order predicates
and functions (though without higher order unification). It includes algorithms to
statically analyse programs for type, mode, determinism, uniqueness and termination
constraints.

e The type system is based on polymorphic many-sorted logic and is much the
same as typical functional type systems. It includes polymorphic datatypes.®

e Modes specify the flow of information through a computation by indicating,
among other things, how predicates effect the “instantiatedness” of expressions.
Typical modes are in and out for inputs and outputs respectively. Other modes
include di and uo for destructive input and unique outputs: these are not yet
used in Declare, though there is no real reason why the entire Mercury mode
language could not be used.

e Determinism constraints indicate the potential number of solutions to a pred-
icate and form a lattice: nondet indicates 0 or more solutions, multi is 1 or
more, semidet is 0 or 1, det is 1, failure is 0. As yet we do not take ad-
vantage of Mercury’s determinism checks. They are, unfortunately, not quite
powerful enough to detect the determinism of our typical inductive relations
(that is, without substantial modification to the translation process, or consid-
erable artificiality in how the relations are formulated). We leave this as future
work, and for the moment declare all translated relations as nondet.

As with other Prologs, Mercury also warns about such common programming errors
as variables that are only used once within a particular scope.
Mercury predicates follow Prolog, though require type and mode declarations,

e.g.’

:- pred append(list(T), list(T), list(T)).
:- mode append(di, di, uo) is det.

:- mode append(in, in, out) is det.

:- mode append(in, out, in) is semidet.

:- mode append(out, out, in) is multi.

5Mercury has options to infer types. Since we have already inferred types in Declare we can
generate the type declarations directly.
[

"Familiarity with Prolog syntax is required to understand this section. A quick summary: *;

) ¢)

represents disjunction, ‘,’ conjunction, ‘=>’ implication, ‘:-’ is the turnstile. Variables begin with
capitals and constants with lowercase (unless quoted as in ’Var’). Clauses have the form pred (args)
:= goal. for predicates, and func(args) = expr :- goal. for expressions. Existential/universal

quantification is some/all.

2.4. VALIDATION 35

pragma code thm The theorem should be used to generate Mercury
code.
pragma func name The given constant should be translated a a Mer-

cury function generating boolean values, rather
than as a predicate.

pragma mode tlerm The term specifies a Mercury mode for a relation.

pragma test term The term specifies a test predicate.

Table 2.5: Pragmas relevant to Mercury

append ([1, Ys, Ys).
append([X | Xs], Ys, [X | Zs]) :-
append(Xs, Ys, Zs).

Higher order predicates may take expressions and predicates as arguments, e.g. re-
flexive transitive closure:

:- pred rtc(pred(A, A), A, A).

:- mode rtc(pred(in,out) is nondet, in, out) is nondet.
rtc(R,X,X).

rtc(R,X,Y) :- R(X,X1), rtc(X1,Y).

Expressions include the standard range of terms found in a pure functional program-
ming language, such as constructed terms, lambda expressions function applications
and conditional expressions, and also unassigned variables as in Prolog.®

Because of its extensive static analyses, Mercury can generate extremely efficient
code, often many times faster than existing Prolog systems. However, execution
times were not particularly important for our case studies, since the tests we ran
were small.

2.4.2 Example translations

We shall demonstrate the translation of specifications to Mercury by some examples.
The type declarations from page 11 (actually, with some slight variations) translate
as follows’

:- type typ ---> ’TyCon’; ’TyFun’ (typ,typ).
:— type exp ---> ’Var’(int); ’Con’; ’Lam’(typ,exp); ’App’ (typ,exp,exp).

8Expressions are normally deterministic, but may also be semi-deterministic or non-deterministic,
and thus denote sets of values. Non-deterministic expressions are rarely, if ever, used.

9Mercury does not accept curried datatype constructors, so we uncurry and demand that
datatype constructors are not partially instantiated in the specification.

36 CHAPTER 2. SPECIFICATION AND VALIDATION

The translation of curried functions is somewhat grotesque: Mercury’s preferred
syntactic form is to have uncurried functions, but to cleanly support the partial
application of functions we generate curried forms. The subst function from page 11
becomes:

:— func subst = (func(exp) = (func(exp) = exp)).
:— mode subst =

out (func(in)
out (func(in) = out is semidet) is semidet) is semidet.

subst = apply(subst_aux,0).

The first line specifies the (curried) type of the function, and the mode constraint
specifies that partial application produce outputs that are functions that subse-
quently produce further inputs. Note that if we uncurried, the form would be the
somewhat simpler:

:— func subst(exp,exp) = exp.
:— mode subst(in,in) = out is semidet.
subst(X,Y,Z) = subst_aux(0,X,Y,Z).

The axiom <reduce> from page 27 translates as follows!’

:— pred ’--->’(exp,exp) .
:— mode ’--->’(in,out) is nondet.

’—-->7 (Argl,Arg2) :-

(some (E1,Dty,El_prime,E2)
Argil = ’App’ (Dty,E1,E2),
Arg2 = ’App’ (Dty,El_prime, E2),
’--->’(E1,E1_prime))

; (some (Ty,Dty,Bod,E2)

Argl = ’App’ (Dty,’Lam’ (Ty,Bod) ,E2),
Arg2 = apply(apply(subst,Bod),E2)).

It is useful to extend the range of translated constructs by detecting first order
constructs that correspond to common idioms:

e Vj. m < j <n — P[j] and related forms are translated to a call to the higher
order predicate finite_int _forall:

finite_int_forall(M,N,P) :-
if M >= N then true else (P(M), finite_int_forall(M+1,N,P)).

10WWe also uncurry predicates, even though Mercury supports higher order predicates. This is
because Mercury has built in support for the partial application of “uncurried” predicates.

2.4. VALIDATION 37

e All other bounded universal quantifications are translated with the expectation
that the bound represents a call that generates a finite range of values, that is
Vi P[] — Q[#] becomes a call to the higher order predicate bounded forall:!!

bounded_forall(P,Q) :-
solutions(P,List), all [X] (member(X,List) => Q(X)).

e Pattern matches in the expressions become the appropriate Mercury condition-
als. For example

function [1 -> el | (h#t) -> e2
becomes the Mercury lambda expression

(func(X) =Y :- if X = [] then Y = ef
else if X =[H | T] then Y = €2
else fail)

That is, the result Y of the function with input X is the solution to the predicate
after the turnstile :-.

e Pattern matches in predicates are treated similarly. For example
match x with [1 -> true | (h # _t) -> (h = 1)
becomes the Mercury predicate!'?

if X = [] then true
else if X=[H | _T] then H=1
else fail

Note that boolean valued functions will normally be treated as predicates, unless
the func pragma is used (see Table 2.5).!3 Negation is translated to Mercury’s
negation-as-failure.

"The call solutions(P,List) deterministically generates a solution set for the predicate P.

12 Aficionados of functional programming languages may note that we have collapsed the function
application hidden inside the match expression. Applied pattern matches in predicates (such as
the above example) are not translated to corresponding higher order predicate applications because
Mercury does not recognise that it can f—reduce the immediate function application. In the given
example it would complain that H is being bound within a closure.

13The func pragma is not yet implemented in Declare, as manipulations on boolean values as data
are rare in our specifications. We mention it here to show how one might declare boolean valued
functions.

38 CHAPTER 2. SPECIFICATION AND VALIDATION

At the top level, Declare generates Mercury code off datatype declarations and
any axiom with a code pragma (see Table 2.5 for all the pragmas relevant to the
Mercury translation.'* These normally define a predicate by an if-and-only-if < or
a data value by an equation =. Declare implicitly generates code for all constructs
introduced by defn, 1fp or gfp unless the pragma nocode is given. Of course, not
all h.o.l. axioms represent executable code: in these cases the process normally fails
when the system tries to compile the generated Mercury code.!?

Declare produces a Mercury module for each Declare input file. The modules are
compiled together and linked against some core functionality and a main program
that executes all test pragmas (see also the example on page 13).

2.4.3 Related Work

A previous version of this work generated executable code by compiling specifica-
tions to CaML-light [Mau91] and performing a modicum of mode analysis during this
translation (see [Sym97b]). Although useful at the time, the translation was clumsy
in comparison to the translation to Mercury. The Mercury version allows consider-
ably more flexibility in the style in which specifications are written. Previously some
rather artificial devices were needed to distinguish relations from functions, higher
order relations could not be translated, bounded quantifications were clumsy, and
special hacks were needed to translate relations that generated lists of outputs.

The executability of specifications has been widely discussed amongst users of
the Z specification methodology. Early work by Hayes and Jones [HJ89] identified
that executable specifications may be inferior to non-executable ones. Two types of
reasous are cited:

e The executability mechanism may force the essentially the same specification
to be written in an unnatural style, e.g. conjuncts may need to be given in a
particular order.

e Executability may force a simple specification to be abandoned, e.g. because it
limits the use of many constructs such as negation, disjunction and universal
quantification.

Many of these criticisms are not terribly important in our problem domain, because
we are trying to prove properties of systems that should certainly be executable.
However, in any case,

e Mercury is very flexible in the programs it will accept. For example, it places
conjuncts in a sensible execution order using mode analysis.

e Declare allows code to be generated from any theorems, and not just definitions.
Thus a specification can be given in a natural fashion, and an equivalence or
refinement with an executable version can be proved.

14 A1l definitions have code pragmas unless the nocode pragma is used.
'50ne deficiency in the current system is that line numbers are not faithfully translated from
Declare to Mercury.

2.4. VALIDATION 39

Wahls, Leavens and Baker [WLB98] use the constraint based programming lan-
guage AKL [JH94] to provide an execution apparatus for their language SPECS-
C++. The apparatus is roughly as flexible as our own, though the flexibility is
provided by quite a different means: for example Mercury places conjuncts in a
sensible execution order using mode analysis, while AKL does this by propagating
constraints. AKL supports the additional expressive power of linear inequality con-
straints, but does not support higher order features. Whals et al. do not consider
the important issue of leveraging the static analysis algorithms available in the un-
derlying logic programming engine — clearly Mercury is particularly strong in this
regard.

Andrews [And97] translates the specification language S [JDD94] to Lambda
Prolog [FGMP90], a higher order Prolog, and this work has quite a similar feel to
our own. The result is convincing as far as it goes, however again static analyses are
not utilised. Mercury also supports the definition of expression (function) constants,
which Andrews notes as a particular obstacle for his translation.

Because of this rich range of features, Mercury appears to be very much a “natu-
ral” programming language corresponding to higher order logic (except for, perhaps,
the absence of higher order unification). Indeed Mercury is so strong (though a
little syntactically clumsy) that one could imagine turning the tables and using it
as a specification language. Specifications could then be given a semantics in h.o.l.
when theorem proving is required, and the meta-programming facilities available in
Mercury would make the implementation of the theorem prover relatively easy.

40

CHAPTER 2. SPECIFICATION AND VALIDATION

Chapter 3
Declarative Proof Description

In this chapter we describe the technique we use for proof description, called declar-
ative proof. We consider the principles that guided the design of the Declare proof
language and detail the three primary constructs of the language. The technique rep-
resents a somewhat radical departure from standard practice in higher order logic
theorem proving, and we explain the pros and cons of the approach.

3.1 The Principles of Declarative Proof

Harrison [Har97b] describes several different uses of the word “proof” in the field of
automated reasoning. Three of these are of interest here:

1. A proof as found in a mathematical text book, i.e. a sketch given in a mixture
of natural, symbolic and formal languages, sufficient to convince the reader.

2. A script to be presented to a machine for checking. This may be just a sketch,
or a program which describes the syntactic manipulations needed to construct
a formal proof.

3. A formal ‘fully expansive’ proof in a particular formal system, e.g. a derivation
tree of inference rules and axioms.

We use the word ‘proof’ in the second sense, and ‘proof outline’ to mean proofs
(again in the second sense) that are merely sketches, and that require significant
reasoning to fill in gaps. Proofs in Declare are expressed as proof outlines, in a
language that approximates written mathematics. This builds on work done with
similar languages by the Mizar group [Rud92] and Harrison [Har96b].

One traditional form of proof description is “tactic” proof, described more fully at
the end of this chapter. Although tactics are in principle a very general mechanism,
in practice their use is highly “procedural”: the user issues proof commands like
“simplify the current goal”, “do induction on the first universally quantified variable”
or “do a case split on the second disjunctive formula in the assumptions”. That

41

42 CHAPTER 3. DECLARATIVE PROOF DESCRIPTION

is, tactic proof almost invariably proceeds by giving commands that syntactically
manipulate ezisting facts and goals. The primary proof description languages of
HOL, Isabelle and PVS are tactic based.

In contrast, a declarative style is based on decomposing and enriching the logical
environment (which is the sum of all available facts). Our proposal is that for many
purposes declarative proof is a superior method of proof description.

In a declarative proof, the logical environment is monotonically increasing along
any particular branch. That is, once a fact becomes available, it remains available.!
The user manages the logical context by labelling facts and goals, and specifying
meaningful names for local constants. This allows coherent reasoning within a com-
plicated logical context.

Our declarative proof language separates proof outlining from automated reason-
ing. We adopt the principle that these are separate activities and that the proof
outline should not invoke complicated routines such as simplification, except to dis-
charge obligations. The link between the two is provided by justifications, and the
justification language is quite different to the proof outlining language. This is as
opposed to tactic based theorem provers (see Section 3.6.1) where one mechanism is
typically used for both tasks.

Mechanisms for brevity are essential within declarative proofs, since a relatively
large number of terms must be quoted. Declare attempts to provide mechanisms
so that the user need never quote a particular term more than once within a proof.
For example one difficulty is when a formula must be quoted in both a positive and
a negative sense (e.g. as both a fact and an antecedent to a fact): this happens
with induction hypotheses. Another is when using chained (in)equality reasoning.
Later in this chapter we describe the particular mechanisms provided: local defi-
nitions; abbreviations; type checking in context; stating problems in sequent form;
instantiation up to type unification; and ihyp macros.

In our declarative proof language, the user states “where he/she wants to go”.
That is, the user declares an enrichment or decomposition, giving the logical state
he/she wants to reach, and only states “how to get there” in high level terms. The
user does not specify the syntactic manipulations required to get there, except for
some hints provided in the justification, via mechanisms we have tried to make as
declarative as possible. Often the justification is simply a set of theorem names.

Existing theorem provers with strong automation effectively support a kind of
declarative proof at the top level. For example, the Boyer-Moore prover [BM81] is
declarative in this sense — the user conjectures a goal and the system tries to prove
it. If the system fails, then the user adds more details and tries again. The process
is like presenting a proof to a colleague: one starts with an outline and then provides
extra detail if he/she fails to follow the argument. Declare extends this approach to
allow declarative decompositions and lemmas in the internals of a proof, thus giving
the benefits of scope and locality.

'There is one important exception to this rule: see Section 3.5

3.1. THE PRINCIPLES OF DECLARATIVE PROOF 43

In Section 1.4.1 we defined “declarative” to mean “relatively free of operational
detail”, i.e. “what” not “how”. Proofs in Declare are relatively independent of a
number of factors that are traditional sources of dependency in tactic proofs. These
include:

e The ordering of facts and goals in a problem statement (in Declare the context
is a set indexed by user supplied names);

e The order in which subgoals are produced by a proof utility (in Declare the
user can solve subgoals in any order, and Declare produces an obligation that
justifies the user’s choice of decomposition) ;

e The order of quantifiers in a formula (e.g. in Declare the difference between
Ya b.... vs. Vb a.... is irrelevant when providing an instantiation — c¢f. the
standard HOL mechanism that instantiates the outermost quantifier);

e The choice of names made by proof utilities for local constants and variables
(in Declare all local names are specified by the user);

e The absence of certain kinds of facts in the statement of the problem, e.g.
introducing an extra assumption may cause a rewriting proof utility to fail to
terminate, or may reduce a goal further than expected by a later tactic (in
Declare adding an extra fact to the context can do no harm, unless that fact
is explicitly placed in the databases of the automatic tools).

For example, Isabelle, HOL and PVS proofs frequently contain references to assump-
tion or subgoal numbers, i.e. indexes into lists of each. The proofs are sensitive to
many changes in problem specification where corresponding Declare proofs will not
be. In Declare such changes will alter the proof obligations generated, but often the
obligations will still be discharged by the same justifications.

Much “proof independence” (i.e. declarative content) arises from (and depends
on) the presence of powerful automation. For example, automating Presburger arith-
metic lets the user ignore the difference between x < 0 and z < —1 for most purposes,
and thus the user can operate on a semantic level with respect to parts of their the-
ory. Declare utilises the successful automation of large segments of propositional
first order reasoning to allow proofs that are relatively free of propositional and first
order dependencies.

The advantages of using a declarative proof language in contrast to tactic proof
are:

e Proofs are described using only a small number of simple constructs, and thus
proofs may be interpreted without knowing the behaviour of a large number
of (often adhoc) tactics.

e Declarative proofs are more readable.

44

CHAPTER 3. DECLARATIVE PROOF DESCRIPTION

A declarative style allows the user to easily specify “mid-points” in a line of
argument that divide the complexity of the reasoning into approximately equal
chunks (we give a lengthy example of this in Section 3.3.1).

Automation is aided by having explicit goals at each stage. For example we
typically give both the left and right hand sides of an equation, and leave the
automated engine to prove the equality.

Analysing the outline of a declarative proof always terminates, because we
can choose to simply generate and not discharge obligations. This means it
is possible to typecheck declarative proofs in their entirety, before trying the
obligations, thus catching many errors in proofs at an early stage.

It is relatively easy to implement error-recovery.

Three additional, important benefits seem probable but are difficult to demonstrate
conclusively:

Declarative proofs are potentially more maintainable;
Declarative proofs are potentially more portable;

Declarative proofs may appeal to a wider class of users, helping to deliver
automated reasoning and formal methods to mathematicians and others.

These, in principle, are instances of the general benefits that arise from increasing
the declarative content of an artifact, as discussed in Section 1.4.1.

3.2

Three Constructs For Proof Description

In this section we shall describe the three primary constructs of the Declare proof
language, which we have already introduced by example in Section 1.4.3. These are:

e Decomposition and enrichment;

e Proof by automation (with hints) using by clauses;

e 2nd order schema application for inductive and other arguments.

Sketching the Semantics

For each construct we shall briefly describe its semantics by using a proof system
with judgments

e I' - IV that is I is a conservative extension of I’ (i.e. IV possesses a standard

model (see [GM93]) if T' does);?

% Actually the conservative extension relation is the reflexive transitive closure of this relation.

3.2. THREE CONSTRUCTS FOR PROOF DESCRIPTION 45

e I' - F, that is I leads to a contradiction.?
Here T is a logical environment that contains:

e A signature of type and term constants;

e A set of axioms, each of which are closed higher order logic terms (free type
variables are treated as quantified at the outer level of each axiom).

Logical environments must always be well-formed: i.e. all their terms must typecheck
with respect to their signature. We omit well-formedness judgments in this chapter
since they may always be checked syntactically. Enrichment of logical environments
by new constants (®,y) and new axioms (@) are each defined in the obvious
way, with the (normally implicit) side condition that the new constants are not
already present in the environment. For simplicity, logical environments are always
assumed to contain all the standard propositional and first order connectives. In
the implementation of the logic, axioms in logical environments are named and are
tagged with “usage directives” as described in Chapter 4.

In this setting, each specification construct of the previous chapter corresponds
to a I' = IV inference rule, e.g. for simple definitions:

cisfreshin I
¢ not free in ¢

LH (T @9 C) Baz (c=1)

and for datatypes

D is a description of a free algebra

D is initial (given the types in I')

¢ are the type and term constants defined by D
All & are fresh in I’

ax is the algebraic axiom characterizing D

'k (F DPsig 6) Doz AT

It is possible to combine such rules into just one specification rule for type and
term constants: see Harrison’s rule in HOL-lite for example [Har96a]. Also see HOL
[GM93] for proofs that such constructs do indeed form conservative extensions to
higher order logic.

I' F F judgments are used when interpreting proofs. The two kinds of judgments
are linked by the problem-introduction rule:

F®sig6®azp17---:pm:_‘CIh---:_‘Qn'“F
FFLO,VO.p1 A oot A D=1 V...V

That is, if we can prove a contradiction after assuming all our facts and the negation
of each of our goals, then we have proved the corresponding implicative theorem, and
can add it to the environment.

3We prefer the simpler one-sided judgments I' - F, as compared to the traditional two-sided
sequent judgments of a sequent calculus because, when using classical higher order logic, goals
correspond precisely to negated facts, and the given presentation corresponds very closely to the
implementation.

46 CHAPTER 3. DECLARATIVE PROOF DESCRIPTION

3.3 Decomposition and Enrichment

Enrichment is the process of adding facts, goals and local constants to a logical envi-
ronment in a logically sound fashion. Most steps in vernacular proofs are enrichment
steps, e.g. “now we know a is even because 2x b = ¢” or “consider d and r such that
n=dxm-+rand 0 < r < m.” An enrichment step has a corresponding proof
obligation that constants “exist” with the given properties, i.e. have witnesses. In
Declare, the above examples would translate to, approximately,

(a) have "2%b = a" by ...;
have "even(a)" by ...;

(b) consider d, r such that
"n = dsm + r"
llO < T < mll
by ...;

The above are examples of forward reasoning. When goals are treated as negated
facts, backward reasoning also corresponds to enrichment. For example if our goal is
Vx.(3b.x = 4b) — even(x) then the vernacular “given b and z such that z = 4b then
by the definition of even it suffices to show Jc.2xc = z” is an enrichment step: based
on an existing goal, we add two new local constants (b, z), a new goal (J¢.2 x ¢ = x)
and a new fact (z = 4b). In Declare this would translate to:

consider b,x such that
+ "x = 4xb"
- "dc. 2xc = x"

by <even>,<goal>;

Decomposition is the process of splitting a proof into several cases. The Declare proof
language combines decomposition and enrichment in one construct. The general form
is:

cases justification
case label;
consider ¢11, ..., €1, such that

P11

p17m1 .
proofi

case label,
consider ¢, 1, ..., Cpk, such that

Dnj1

Dnm, ¢

proofy

3.3. DECOMPOSITION AND ENRICHMENT 47

External Form Internal Form

have facts justification; cases justification

rest of proof case facts : rest of proof
end;

consider wars st facts justification; | cases justification

rest of proof case

consider wars st facts :
rest of proof

end;

let id = term; cases

rest of proof case "id = term" : rest of proof
end;

sts goal justification; cases justification

rest of proof case - goal : rest of proof
end;

Table 3.1: Syntactic variations on enrichment/decomposition with equivalent prim-
itive forms.

The identifiers ¢ 1, ..., ¢y m, are the new local constants and the p; ; are the new
facts on each branch. New goals are simply negated facts, syntactically marked either
by the word goal or “~”. The proof obligation is that one of the cases always holds,
or, equivalently, if we assume the negation of each case we can prove a contradiction:

r @sig C1,1---C1,k, DPaz P1,1,---5P1,m, FF
r @sig Cn,l---Cnk, DPaz Pnis---3Pnm, FF

F @ax _|(30171 . Cl,kl' /\pl,i): ey —|(3cn71 . Cndn. /\pn,i) " F
THF

The last proof obligation corresponds to the “default” case of the split, where we
may assume each other case does not apply. The case labels are used to refer to
these assumptions.* The obligation is normally justified by an appeal to automated
reasoning, but a nested proof outline can also be given. Syntactically, case labels
and the consider line can normally be omitted (new symbols are assumed to be new
local constants); and we can shorten such that to st. The special derived forms
for the “linear” case n = 1 are shown in Table 3.1.

In principle all constant specification constructs could also be admitted within
the language, e.g. to define local constants by fixed points, with the implicit support
provided by the device in Section 2.2.4. Declare does not implement these within

“As it is, the cases are free-standing. They could be interpreted top-to-bottom, left-to-right, so
you could assume that previous cases have not held in the proof of a particular case. We have not
found this form useful in case studies.

48 CHAPTER 3. DECLARATIVE PROOF DESCRIPTION
proofs.?
3.3.1 A longer example

We shall now look at a longer example of the use of enrichment/decomposition. The
example is similar to one that arose in practice in our case study, but is modified to
demonstrate several points. The scenario is this:

We are trying to prove G(c, ') where ¢ and ¢’ are configurations of an abstract
machine and we know ¢~ ¢/,

We know we must do a case analysis on all possible ways this transition has
occurred.

~> is defined by many rules (say 50).

¢ takes a particular form (A(a,b),s) (that is, configurations are pairs of con-
structed terms and a state)

Only 8 of the rules apply when c is of this form.

Out of these 8, 5 represent “exceptional transitions”, that is, the machine
throws an exception and ¢ has the form (E(wval),s), i.e. the state doesn’t
change. For these cases, the goal G((t1,s),(E(val),s)) happens to be triv-
ial, in the sense that it follows easily from some previous results <L1> and
<L2>

The last 3 possible transitions arise from the following rules (note the rules do
not represent any particular transition system):
(a,5) ~ (v,8') V (b,5)~ (v,s')
(A(a,b),s) ~ (v,s") (A(a,b),s) ~ (a,s) (A(a,b),s) ~ (b,s)

So, how would we formulate the case split in the proof at this point? Consider the
following:

// The environment contains:

/7
/7

"e —==> ¢’" <trans>
"¢ = (A(a,b),s)"

// and <L1>, <L2>
cases by rulecases(<trans>), <L1>, <L2>, <goal>

case "C’ = (V’, S’)"

"(t,S) —_——> (V’,S’)"

SSpecification constructs that generate new monomorphic types within proofs would require

quantification over type variables in the underlying logic [Mel92], and admitting polymorphic types

would require quantification over type functions. However, there is little need for the definition of

types mid-proof.

3.4. JUSTIFICATIONS, HINTS AND AUTOMATION 49

"t =aVt=>b"":
rest of proof;
case "¢’ = (t, s)"
"t =aVt=>b":
rest of proof;
end;

The key point is that the structure of the decomposition does not have to match
the structure inherent in the theorems used to justify it (i.e. the structure of the
rules). There must, of course, be a logical match (one that can be discovered by the
automated engine), but the user is given a substantial amount of flexibility in how
the cases are arranged. He/she can:

o Implicitly discharge trivial cases. This is done by including the facts that
support the proof for the 5 “exceptional” cases in justification of the split.

o Maintain disjunctive cases. Many tactic based splitting tools such as STRIP-
_TAC in HOL would have generated two cases for the first case listed above,
by automatically splitting the disjunct. However, the proof may be basically
identical for these cases, up to the choice of ¢.

e Subsume similar cases. That is, two structurally similar cases may be sub-
sumed into one branch of the proof using disjuncts (as in the second case),
even if the case splitting theorem generated them separately.®

The user can use such techniques to split the proof into chunks that are of approx-
imately equal difficulty, or to dispose of many branches of the proof at one stroke.
This is much as in written mathematics, where much trivial reasoning is left to “come
out in the wash.”

3.4 Justifications, Hints and Automation

At the tips of a problem decomposition we find appeals to automated reasoning to
“fill in the gaps” of an argument. We shall discuss the composition of automated
reasoning engines for declarative proof in detail in the next chapter: here we shall
concentrate on issues related to the proof language.

The automated reasoning engine is treated as an oracle, though of course the
intention is that it is sound with respect to the axioms of higher order logic. A set
of “hints” (also called a justification) is provided to the engine:

prover(T', hints(T")) returns “yes”
THF

The significant issues here are the language used to describe justifications, and the
extra information we are allowed to add to I' to assist the automated reasoner. While

5This is, in a sense, a form of “first order factorization.” As in arithmetic, helpful factorizations
are hard to predict, but easy to justify (e.g. by distribution) once given.

50 CHAPTER 3. DECLARATIVE PROOF DESCRIPTION

the decomposition construct described in the previous section is clearly quite general
and not system-specific, a wide spectrum of justification languages is possible. For
example, we might have no language at all (which would assume the automated
engine can draw useful logical conclusions efficiently when given nothing but the
entire logical environment). Alternatively we might have a language that spells out
the syntactic proof in great detail (e.g. the forward inference rules of an LCF-like
theorem prover). In some domains it may be useful to have many domain specific
constructs.

We have concentrated on finding a minimal set of general justification constructs
that are adequate for our case studies. These have indicated that it is extremely
useful for the justification language to allow the user to:

e Highlight facts from the logical environment that are particularly relevant;
e Offer explicit instantiations and resolutions as hints;

e Offer case-splits as hints;

e Indicate how various facts can be utilised by the prover, using pragmas;

The first three constructs are quite declarative and correspond to constructs found
in vernacular proofs, and we describe them below. We discuss the last mechanism
in Chapter 4.

3.4.1 Highlighting Relevant Facts
Facts are highlighted in two ways:

e By simply quoting their label, as in “by <subst_aux_safe>”

e By never giving them a label in the first place, as all unlabelled facts within
proofs are treated as if they were highlighted in every subsequent proof step.

The exact interpretation of the effect highlighting is determined by the automated
engine and is described in Section 4.3.1, but the general idea is that highlighted
facts must be used by the automated engine for the purposes of rewriting, decision
procedures, first order search and so on.

3.4.2 Explicit Instantiations

Our case studies have indicated that a “difficult” proof often becomes quite tractable
by simple techniques (e.g. rewriting and first order search) by just providing a few
simple instantiations. Furthermore, explicit instantiations are an essential debug-
ging technique when problems are not immediately solvable: providing them usually
simplifies the feedback provided by the automated reasoning engine. In a declarative
proof language the instantiations are usually easy to write, because terms are parsed
in-context and convenient abbreviations are often available. Instantiations can be
given by two methods:

3.4. JUSTIFICATIONS, HINTS AND AUTOMATION

ol

e Type directed. A fact and a term are given, and we search for “instantiable
slots” (that is outer quantifiers of universal strength) that are type-compatible

up to the unification of type variables.

e Ezxplicitly named. A fact, a term and the name of the variable at an instantiable

slot are given.

The mechanism is pleasingly declarative: instantiations can be given in any order,
and do not depend on the ordering of instantiable slots in the target fact. For
example, consider the explicit instantiation of the theorem <subst_aux_safe> from

the example in Section 1.4.3. The fact being instantiated is:

<subst_aux_safe> +
Ve v zty TE n ty.
[1 |- v hastype zty A
len TE = n A
(TE #! zty) |- e hastype ty
— TFE |- (subst_aux n e v) hastype ty

and the instantiation directive is:

qed by ..., <subst_aux_safe> ["[]", "O", "xty"/xtyl, ...

We have one named and two type-directed instantiations.

After processing the

named instantiation five instantiable slots remain: e, v, TE,n and ty. Unifying types
gives the instantiations TF — [] and n — 0 and the final fact:

F Ve v ty.
[0 |- v hastype xty A
len [1 =0 A
([1 #! xty) |- e hastype ty
— [1 |- (subst_aux O e v) hastype ty

3.4.3 Explicit Resolutions

Ezxplicit resolution is a mechanism similar in spirit to explicit instantiation. It com-
bines instantiation and resolution by allowing a fact to be used to eliminate a unifying

instance in another fact. Continuing the example above:

have "[] |- e2 hastype xty" <e2_types>;

ged by ..., <subst_aux_safe> ["0", <e2_types>], ...

The explicit resolution on the justification line gives rise to the hint:

F Ve v ty.
true A

52 CHAPTER 3. DECLARATIVE PROOF DESCRIPTION

len [1 =0 A
([1 #! xty) |- e hastype ty
— [1 |- (subst_aux O e v) hastype ty

Note only one literal in <subst_aux_safe> unified with <e2_types>: resolutions must
be unique, in order to provide better feedback to the user. Literals do not have to
be resolved against antecedents: for example goals (or any negated literal) can be
used to resolve against consequents.

Note also that we have not destroyed the first-order structure in the process of
resolution. This aids debugging, since all hints are printed out before being passed
to the automated engine, and indeed supplying additional explicit resolutions was
the primary mechanism for debugging problematic proof steps in the case studies.

One problem with this mechanism is that, as it stands in Declare, unification
takes no account of ground equations available in the logical context, and thus some
resolutions do not succeed where we would expect them to. For example,

let "TE’ = [] #! xty";
have "TE’ |- bod hastype (dty --> ty)" <bod_types>;

ged by ..., <subst_aux_safe> [<bod_types>], ...

fails because the term constant TE’ does not unify with (TE #! xty) without
considering the equation introduced by the let. Such equations are used during
automatic proof, but not when interpreting the justification language (we discuss
ground equational reasoning and its integration during automatic proof further in
Sections 4.2.1 and 4.3). However, this can open a can of worms regarding the treat-
ment of equational reasoning during unification. For example, if we had used the
definition

let "TE’ = [xtyl";

then should the unification succeed? This would need some special knowledge within
the unification algorithm of the equation

F Ve [Q#'z = [2]17?

It is also tempting to allow this mechanism to abandon first-order unification and
instead generate equational constraints from some “obvious, intended unification”.
We could require, for example, that only one literal has a matching head constant.
However, note that this would not be sufficient to disambiguate the resolution above,
as there would now be two potential target literals. Thus we have chosen to live with
the syntactic constraints imposed by simple first order unification. If nothing else
this is easy for the user to predict and understand.

In this work we only consider explicit resolutions where one fact is a literal: it
may be useful to admit more general resolutions but we leave this for future research.

3.5. SECOND ORDER SCHEMA APPLICATION 53

pragma induct thm names The theorem specifies an induction scheme, and
names gives names the subgoals that arise from
the application of the schema.

pragma rulecases thm The theorem specifies a default rule case analysis
technique, suitable for use with the rulecases or
structcases mechanisms.

Table 3.2: Pragmas relevant to induction and justifications

3.4.4 Explicit Case Splits

Explicit case splits can be provided by instantiating a disjunctive theorem, rule case
analysis, or structural case analysis. Rule case analysis (rulecases) accepts a fact
indicating membership of an inductive relation, and generates a theorem that speci-
fies the possible rules that might have been used to derive this fact. Structural case
analysis (structcases) acts on a term belonging to a free algebra (i.e. any type with
an abstract datatype axiom): we generate a disjunctive theorem corresponding to
case analysis on the construction of the term.

Other case analysis theorems may be specified using the rulecases pragma (see
Table 3.2). The theorems must have a similar form to <reduce.cases> on page 27.
Case analyses could also be achieved by explicitly instantiating these theorems, how-
ever building default tables allows the machine to automatically infer the relevant
theorem to use.

3.5 Second order Schema Application

In principle, decomposition/enriching and automated proof with justifications are
sufficient to describe any proof in higher order logic, assuming a modicum of power
from the automated engine (e.g. that it implements the 8 primitive rules of higher
order logic described by Gordon and Melham [GM93]). However, we have found it
very useful to add one further construct for inductive arguments. The general form
we have adopted is second-order schema application, which includes structural, rule
and well-founded induction, and potentially a range of other proof strategies.

Why is this construct needed? Consider the proof of the theorem <subst_aux _safe>
from page 16:

thm <subst_aux_safe>
if "[1 |- v hastype xty" <v_hastype>
"len TE = n" <n>
"(TE #! xty) |- e hastype ty" <typing>
then "TE |- (subst_aux n e v) hastype ty";

We wish to induct over the derivation of the fact <typing>, that is over the structure
of this inductive set. The induction predicate that we desire is:

54 CHAPTER 3. DECLARATIVE PROOF DESCRIPTION

ATE e ty.
Vn. len TE = n —
TE |- (subst_aux n e v) hastype ty

It is essential that n be universally quantified, because it “varies” during the induc-
tion, in the sense that it is necessary to instantiate it with different values in different
cases of the induction. Likewise TE, e and ty also vary. Furthermore, because v and
xty do not vary, it is better to leave <v_hastype> out of the induction predicate to
avoid unnecessary extra antecedents to the induction hypothesis.

We now contrast how the induction step of the proof is described with a typical
tactic proof language, and in Declare with and without a special construct for this
purpose.

3.5.1 Induction in Typical Tactic Proof Languages

In a typical tactic language we must state the goal in such a way that the applica-
tion of the induction schema can be achieved by matching or rewriting, or a tactic
program. Thus the problem would be stated as follows (using a sequent form where
goals are marked - and facts +):

- Yu wty.
[1 |- v hastype zty —
VTE e ty.

(TE #! zty) |- e hastype ty —
Vn. len TE = n —
TE |- (subst_aux n e v) hastype ty

A HOL tactic program to perform an inductive step runs something like REPEAT
GEN_TAC THEN DISCH._TAC THEN RULE_INDUCT_TAC schema, meaning “repeatedly replace
universal quantifiers by local constants, then eliminate one implication by placing
the antecedent in the assumption list, then apply induction where the inductive set
is the antecedent of the current goal and the induction predicate implicit in the
consequent”. After the REPEAT GEN_TAC THEN DISCH_TAC steps the sequent is:

+ [1 |- v hastype zty

- VTE e ty.
(TE #! zty) |- e hastype ty —
Vn. len TE = n —
TE |- (subst_aux n e v) hastype ty

The user has syntactically isolated the facts that are unchanging from the “depen-
dent” facts that make up the induction predicate. This is not only artificial: we lose
the opportunity to mark dependent facts with meta-level information such as names
and usage directives when they are introduced.

3.5. SECOND ORDER SCHEMA APPLICATION 55

Perhaps most problematically, the RULE_INDUCT_TAC step typically chooses names
for local constants, and automatically place induction hypotheses in the assump-
tion lists. Choosing names automatically tends to make proofs fragile (in the sense
they become dependent on the rather arbitrary behaviour of the choice mechanism).
Also, further tactic steps would be required to attach meaningful names and usage
directives to induction facts. Furthermore, proofs of the cases must be listed in a
particular order, and the interpreter for the tactic language can’t make sense of the
proof if cases are omitted.

3.5.2 Induction in Declare without a special construct

It is naturally possible to use Declare’s decomposition construct, combined with an
explicit instantiation of the induction theorem, to express the desired decomposi-
tion:”

thm <subst_aux_safe>
if "[1 |- v hastype xty" <v_hastype>
then "(TE #! zty) |- e hastype ty A
len TE = n —
TE |- (subst_aux n e v) hastype ty"
proof
let "ihyp TE e ty =
Vn. len TE = n —
TE |- (subst_aux n e v) hastype ty";
cases by <hastype.induct> ["ihyp"], <goal>,
case + "e = Lam dty bod"
+ "ty = dty --> rty"
+ "ihyp (dty#(TE#!xty)) bod rty" <ihyp>
+ "len TE = n"

- "TE |- (subst_aux n e v) hastype ty" :
case + "e = f } a"
+ "ihyp (TE#!xty) f (dty --> ty)" <ihypl>
+ "ihyp (TE#!xty) a dty" <ihyp2> :
+ "len TE = n"
- "TE |- (subst_aux n e v) hastype ty" :
end;

end;

We have given one case for each rule of the induction relation where the proof is not
simple: the other cases can be “consumed” in the decomposition by merging their
justifications with that for the case split. For the non-trivial cases we have listed the

"In principle the automated engine might be able to find the higher order instantiation of the
induction theorem, but this is, in general, difficult to rely upon.

56 CHAPTER 3. DECLARATIVE PROOF DESCRIPTION

available induction hypotheses in a systematic fashion. This approach is, in some
ways, acceptable. Its advantages include:

e Flexibility: if any induction cases are simple then they may be omitted, leaving
the automated checker to discharge the corresponding decomposition obliga-
tion. In the above example we could omit two of the cases. In addition, the
cases may be presented in any order, since the automated engine will still be
able to discharge the obligation.

e Control: we name the local constants introduced on each branch of the induc-
tion, and can tag induction facts with names and usage directives.

e Clarity: the logic of the decomposition is made explicit.
Its disadvantages are:

e Verbosity: not only do we have to quote all induction hypotheses for non-trivial
cases, but we are obliged to restate

+ "len TE = n"

- "TE |- (subst_aux n e v) hastype ty" :

in each case also. This is because we had to state the original goal in quantified
form, as TFE, e and ty must all be universal if the decomposition obligation
is to be provable. As with the programmed approach above, we do not have
the opportunity to mark dependent facts with names and usage directives once
and for all, and would have to repeat these on each branch of the proof. Fur-
thermore, we must explicitly instantiate the induction theorem, and explicitly
define the induction predicate.

e Complex Proof Obligations: for induction decompositions involving many cases,
the decomposition obligation gets very large.

e Inaccuracy: it is fairly likely the user will make mistakes when recording in-
duction hypotheses.

e Debugging: it is non-trivial to provide good feedback to the user if they make
such a mistake.

Although sometimes the above form might be preferred, the majority of inductive
arguments follow a very standard pattern of highly syntactic reasoning. With a
dedicated induction construct we can improve the feedback provided to the user;
eliminate a source of particularly complex proof obligations; and make our proofs
far more succinct. We do, however, lose some flexibility, because an explicit proof
must be given for each case of the induction. That is, the reasoning is syntactic and
does not produce a proof obligation, and so the automated engine cannot be used
to subsume trivial proof steps.

3.5. SECOND ORDER SCHEMA APPLICATION o7

3.5.3 The Induction Construct in Declare

We now consider the corresponding Declare proof:

thm <subst_aux_safe>
if "[1 |- v hastype xty"
"len TE = n"

"(TE #! xty) |- e hastype ty" <typing>
then "TE |- (subst_aux n e v) hastype ty";
proof

proceed by rule induction on <typing> with n,TE,ty,e variable;
case Con:

case Var:

case Lam

"e = Lam dty bod"
"ty = dty --> rty"
"ihyp (dty#(TE#!xty)) bod rty" <ihyp> :

case App

"e = f % a"

"ihyp (TE#!xty) f (dty --> ty)" <f_ihyp>

"ihyp (TE#!xty) a dty" <a_ihyp> :
end;

end;

We explain the details of the construct below, but the approach we have taken is
clear: provide one very general construct for decomposing problems along syntactic
lines based on second-order arguments.® The scope of the induction predicate is de-
termined automatically by indicating those local constants (i.e. variables universally
quantified at the outer of the current proof) which vary during the induction. The
basic form of the construct is:

proceed by schema on fact with constants variable
case name;
factsy : proofi;

case name,

facts, : proofy,;
end;

where, as with the decomposition construct, each facts; has the form

consider ¢;1, ..., Cik; such that
Dina

8The argument is second-order because it involves instantiating a theorem with a predicate.

58 CHAPTER 3. DECLARATIVE PROOF DESCRIPTION

pi,mi

The fact must be an instance of the inductive set required by the given schema — it

is negated (e.g. a goal) for co-inductive schemas (see below) and it may be replaced

by a term if the inductive set is universal for some type (i.e. for structural induction).
The schema must be a fact in the logical environment of the form:

(V0. ihypsy — PU) A ... A (V0. ihyps, — PU) — (VU. Q[v] — P9)

where the inductive set given in the support fact is an instance of Q[¥] (this is the
form schemas take in HOL and Isabelle, except equational constraints must always be
encoded in the induction hypotheses). The schema fact must have a pragma giving
names to the subgoals of the induction (see Table 3.2). The production of schemas
is automated for inductive relations and datatypes, so the user rarely needs to know
the form that schemas take internally. However, the general mechanism is provided
to allow the declaration of the inductive structure of constructs that were not defined
via these mechanisms, and to allow several proof principles to be declared for the
same inductive set.

Q[v] takes the form R(?) for an inductive relation R, and —R(?) for a co-inductive
relation. The condition Q(%) is optional — without it @) is assumed to be universal.
Induction over the natural numbers is thus written as:

(Vn. n=0 — P n) A
(Vn. (k. n=k+1 AN P k) — P n)
— (Vn. P n)

If the naturals are considered an inductive subset of the integers, then the schema
is:

(Vi. i=0 — P i) A
(Vi. (3k. i=k+1) N P k) — P 1)
— (Vi. is_nat (@) — P 17)

We also admit forms where the schema is implicit from the induction fact: for
inductive relations, the schema can be determined from the outermost construct,
so “rule induction on fact,” suffices, and similarly “structural induction on

term” for inductive datatypes.

3.5.4 The Cases

Each antecedent of the inductive schema generates one new branch of the proof. At
each branch of the proof the user must specify either a proof, or a set of purported
hypotheses and a proof.

e If no purported hypotheses are given, then the actual hypotheses (i.e. those
specified in the schema) are made available implicitly, but may not be referred
to by name: they become “automatic” unlabelled facts.

3.5. SECOND ORDER SCHEMA APPLICATION 59

e [If purported hypotheses are given, then a syntactic check is made to ensure
they correspond to the actual hypotheses. This check is quite liberal: both
the purported and actual hypotheses are normalized with respect to various
equations (including beta reduction, local constant elimination and NNF), and
then must be equal up to alpha conversion. Thus the user gains control over
the naming of introduced constants and facts, and may also simultaneously
introduce local abbreviations: these may be convenient in the remainder of
that branch of the proof. Hypotheses must be listed in the order they appear
in the schema, but this is generally the most appropriate order in any case.

The semantics for the construct can be characterized as follows:
VP. (Vi.ihyps; — P(7))
(VU.ihyps, — P(?)) Caz I
— (VU.R(V) — P(7))
R(f) €4 T
P=XoNV.\@=1%) =TV
AT = f) A dhyps; — 31 ... Cig;pin N oo AN Digm; (Vi1 <i<n)
I'®siger1---Crky Paz P11y P1my FF

r Dsig Cn1--- Cnjky, Paz Pnly- -+ Pnymn FF
TFF

(3.1)

The conditions specify that:

e The schema is indeed a fact in the current logical context;

The inductive relation is satisfied for some terms ¢:
e In the generated hypotheses, P is replaced by the induction hypotheses;

e The matching criteria: the generated hypotheses must (as a minimum) imply
the purported hypotheses. In the generated hypotheses equational constraints
between @ and t are also available: these are always eliminated in the normal-
ization that precedes matching.

e Each actual subcase must be provable.

Here ¢y1,...,¢ym, are the new local constants and the p; ; are the new purported
hypotheses for each case. V' is the variance specified in the induction step, and I'/V’

represents the conjunction of all axioms in I' involving any of the local constants in
V.

9Note type constants may not vary: this could be supported if we admitted quantification over
type variables [Mel92] in the underlying logic.

60 CHAPTER 3. DECLARATIVE PROOF DESCRIPTION

3.5.5 Strong Induction

Strong induction is a simple modification to the above mechanism where the induc-
tion predicate is automatically augmented with membership of the inductive set:

R(t') S
P=).VV.(N@=1)—=T/V A R(®)

Strong induction is the default in the Declare proof language: weak induction must
be specified using the keyword weak and is useful only when the added information
is useless and confusing for the automated proof engine.

3.5.6 Co-induction and Strengthening

To illustrate the use of co-induction in the proof language, consider the definition of
divergence for a transition relation:

gfp Divergent =
<Step> Jb. R a b A Divergent R b

Divergent R a

Assume that R = ~ and Wy ~ Wy and Wy ~ Wy. If we want to prove that W; is
divergent, we use co-induction over an appropriately strengthened goal:'

thm <example>
if "Wl --> w2"
"W2 --> wi"
then "Divergent (-—>) (W1)" <gl>
proof
// Strengthen the goal a little...
consider x st
+ "x =Wl Vx=Ww2"
- "Divergent (-->) (x)" <g2>
// Co-induct and the rest is easy...
proceed by rule induction on <g2> with x variable discarding <gl>
case Step
-"db. x -->b A (b=WLV Db=W2"; // (could be left implict)
qed;
end
end

1ONote we use co-induction to demonstrate membership of the set, and rules to prove non-
membership. This is the opposite way around to the inductive case, as expected!

3.5. SECOND ORDER SCHEMA APPLICATION 61

We explain the discarding construct below. Not surprisingly, the proof is very
similar to an inductive proof, though we quote a goal rather than a fact as the
support for the co-induction.

3.5.7 ihyp macros

Writing out induction hypotheses in detail can be informative, but also time-consuming
and error-prone. T'wo mechanisms are available to help with this. First, the cases of
the induction can be generated automatically by Declare, though typically the user
still copies the hypotheses in order to record choices for new constants and names for
facts. We consider this in detail in Chapter 5. Secondly, the shorthand ihyp(...)
can be used within the scope of a proceed by ... construct as a macro for the im-
plicit induction predicate. Without this mechanism our example would have been:

thm <subst_aux_safe>

proceed by weak rule induction on <typing> with n,TE,ty,e variable;
case Con; ged by ...
case Var; qed by ...
case Lam
"e = Lam dty bod"
"ty = dty --> rty"
"WTE’>. TE’#!xty = dty#(TE#!xty) A
[1 |- v hastype xty A
len TE’ =n
— (TE’ #! xty) |- e hastype ty" <ihyp>;
qed by ...
case App ...
end;

ihyp provides a robust and succinct mechanism for quoting induction conditions,
at the risk of some obscurity. The expanded version could be recorded in the proof
script, but with a little practice it is easy to syntactically predict the available hy-
potheses, just as in hand proofs. The successful use of ihyp clearly relies on the
user having a strong intuitive understanding of induction (i.e. there is no substitute
for mathematical training!) Note the interactive environment for Declare displays
the induction predicate as it is generated, and also unwinds the use of ihyp when
displaying formulae (i.e. ihyp is regarded as a macro rather than a local constant).

It may be possible to extend the labelling mechanism of Section 2.3 to enable
labels on the top lines of rules (i.e. in inductive schemas) to be used to access elements
of the inductive hypotheses without re-quoting the terms involved — we leave this
for future research.

62 CHAPTER 3. DECLARATIVE PROOF DESCRIPTION

3.5.8 Discarding Facts

The coinductive example above demonstrates a common pattern in inductive proofs:
the goal must be strengthened, or the assumptions weakened, before an induction is
commenced. This is done in two steps: we prove that a stronger goal is sufficient (this
is usually trivial), and before we perform an induction we purge the environment of
all irrelevant facts, to avoid unnecessary antecedents being added to the induction
hypothesis. Unless we force the user to resort to a lemma, this last step requires a
“discarding” construct to be added to the proof language. Discarding facts destroys
the monotonicity property of the proof language, so to minimize its use we have
chosen to make it part of the induction construct. Our case studies suggest it is
only required when significant reasoning is performed before the induction step of a
proof, which is rare.
The semantics of the operator is trivial:

IF'\az+F
'FF

3.5.9 Mutually Recursive Inductive Proofs

The final twist on the schema-application construct comes when we consider mutually
recursive inductive proofs. This occurs in operational semantics when, for example,
we are proving facts about a functional language containing both expressions and
declarations. We can use odd and even numbers as a prototypical instance of this
problem, when characterized inductively by

even(m,) odd(m)
even(0) odd(m +1) even(m+1)

Typically we want to prove two facts “simultaneously” over the two inductive sets,
using the induction theorem for the inductive relation

VPeven Podd-
(Vn. n=0 — Peyen 1) A
Yn. @m. n=m+1 A Peyen m) — Poga n) A
(Vn. (3m. n=m+1 A Pogqg m) — Peyen 1)
— (Vn. even(n) — Peyen 1) A
(VYn. odd(n) — Pogq n)

For example, assume we are trying to show that if a number is odd, then it isn’t
even, and vice-versa. Unfortunately if we are to maintain the style of the proof
language, it is inevitable that the proof system be adapted to accommodate multiple
(conjoined) goals. In Declare we show that a number can’t be both odd and even as
follows:

thms

3.6. RELATED WORK 63

"—even(n)"

<odd_implies_not_even> if "odd n" <a> then
<even_implies_not_odd> if "even n" then "—odd(n)";
proof
proceed by rule induction on <a>, with n variable;
case zero:
case even:
case odd:
end;
end;

This is does not present any great logical problems, since logically sequents in higher
order logic correspond to implicative formulae.!' In a sense it just demonstrates
how formal proof systems must adapt when being used to assign meaning to more
declarative proof description styles. Formally, primitive judgments become

T FF,...,T,FF

where n is the number of mutually recursive goals. Multiple goals are only useful for
solving mutual recursion, and so the only proof rule we admit for the case n > 1 is
schema application. Modifying the semantic rule 3.1 for this case is straightforward.

3.6 Related Work

3.6.1 Tactics

Tactics, first used in LCF[GMWT77], are the traditional mechanism for proof descrip-
tion in LCF-style systems. In principle tactics simply decompose a problem and
return a justification which proves that the decomposition is logically sound:

type tactic = sequent — sequent list X justification
type justification = thm list — thm

Isabelle tactics return not just one but a stream of possible decompositions and
backtracking may be used over this search space.

In practice tactic collections embody an interactive style of proof that proceeds
by syntactic manipulation of the sequent and existing top level theorems, and tactic
proofs are often examples of arcane adhoc programming in the extreme. The advan-
tage of tactic based proving is the programmability it affords, and common patterns
of manipulation can in theory be automated. A major disadvantage is that the se-
quent quickly becomes unwieldy, and the style discourages the use of abbreviations
and complex case decompositions.

We give one example from each of HOL and Isabelle. We make no attempt to
explain the proofs, precisely because it is so just hard to know what’s going on. The
following is the proof of a lemma taken from Norrish’s analysis of the semantics of

Pal

1 Again, the question of where type variables are quantified must be considered: in this context

they are considered global to the proof, not to each sequent.

64 CHAPTER 3. DECLARATIVE PROOF DESCRIPTION

val wf_type_offset = store_thm(
"wf_type_offset",
‘‘Ismap sn. well_formed_type smap (Struct sn) ==>
!f1d t. lookup_field_info (smap sn) fld t ==
?n. offset smap sn fld n‘°¢,

SIMP_TAC (hol_ss ++ impnorm_set) [offset,

definition "choltype" "lookup_field_info",

definition "choltype" "struct_info"] THEN
REPEAT STRIP_TAC THEN
IMP_RES_TAC (theorem "choltype" "well_formed_structs") THEN
FULL_SIMP_TAC hol_ss [well_formed_type_THM] THEN
FIRST_X_ASSUM SUBST_ALL_TAC THEN
FULL_SIMP_TAC hol_ss [definition "choltype" "struct_info"] THEN
POP_ASSUM_LIST (MAP_EVERY (fn th =>

if (free_in ‘‘nodup_flds‘‘ (concl th) orelse

free_in ‘‘[]:(string # CType) list‘‘ (concl th)) then
ALL_TAC

else MP_TAC th)) THEN
SPEC_TAC (dub ‘‘l:(string # CType) list‘‘) THEN
INDUCT_THEN 1ist_INDUCT ASSUME_TAC THEN SIMP_TAC hol_ss THEN
GEN_TAC THEN
STRUCT_CASES_TAC (ISPEC ‘‘h:string # CType‘‘ pair_CASES) THEN
SIMP_TAC hol_ss [DISJ_IMP_THM, Theorems.RIGHT_IMP_FORALL_THM,

FORALL_AND_THM] THEN

ONCE_REWRITE_TAC [offset’_rewrites] THEN REPEAT STRIP_TAC THEN
ASM_MESON_TAC [well_formed_type_sizeof]);

Even given all the appropriate definitions, we would challenge even an experienced
HOL user to accurately predict the logical context at a given point late in the proof.
Note how terms are quoted, but we don’t know how they relate to the problem —
where did “1” or “h” come from?

Isabelle proofs are usually substantially better, in the sense that they utilise fewer
programmed proof procedures, and make less use of “assumption hacking” devices
(e.g. POP_ASSUM_LIST above, which forces all assumptions through a function). For
example, the proof of the correctness of the W type inference algorithm in Nipkow
and Nazareth’s formulation [NN96] begins:

(* correctness of W with respect to has_type *)
goal W.thy
"IAStmn . new_tvnA --> Some (S,t,m) =WeAn-->$ A |-e :: t";
by (expr.induct_tac "e" 1);
(* case Var n *)
by (asm_full_simp_tac (simpset() addsplits [expand_if]) 1);
by (strip_tac 1);
by (rtac has_type.VarI 1);
by (Simp_tac 1);
by (simp_tac (simpset() addsimps [is_bound_typ_instance]) 1);
by (rtac exI 1);
by (rtac refl 1);
(* case Abs e *)
by (asm_full_simp_tac (simpset() addsimps [app_subst_list]
addsplits [split_option_bind]) 1);
by (strip_tac 1);
by (eres_inst_tac [("x","(mk_scheme (TVar n)) # A")] allE 1);

3.6. RELATED WORK 65

and continues in the same vein for 200 lines. The same questions can be posed
about this proof: what is the logical environment at each point? What is the result
of the adhoc hacking on the sequent using simplification and resolution? What would
happen if I stated the problem in a different (but logically equivalent) way? (e.g.
using just one implication symbol).

While neither style is declarative, it is worth noting that for experienced users,
both are effective for “getting the job done” (both verifications mentioned above
are certainly impressive pieces of work.) Ultimately different proof styles may be
applicable in different contexts, depending on the constraints of the project.

Some experienced users of tactic collections have successfully adopted a limited
style of proof which allows long arguments to be expressed with some accuracy
(e.g. see Harrison’s construction of the real numbers in HOL-lite). These styles
have not been systematized, and in often resemble aspects of our declarative proof
language (e.g. Harrison is often careful to give sensible names when introducing
local constants). In addition, Bailey [Bai98] has looked closely at the role of literate
programming in supporting readable proofs for the LEGO [LP92] proof assistant, in
the context of a major proof in algebra. He adopted a limited style of proof in places
in order to maximize readability. His source texts are not themselves particularly
readable — they first require extensive translation to ITEX. However, the end result
is certainly of high quality.

3.6.2 A short statistical comparison

Source level statistical analysis of different proof styles can give some indication of
their differences between them. Table 3.3 presents statistics from three developments:
the Java case study using Declare described in Chapters 6 and 7, a similar work by
von Oheimb in Isabelle [Nv98] (see also Section 7.5.1), and Norrish’s study of the
operational semantics of C [Nor98]).

A caveat: The studies are substantially different and the statistics are
only meant to give a rough impression of the nature of the style of proof
and specification used!

Controlled experiments are possible in such a domain, but require a significant re-
sources. Aitken et al. [AGMT98] have used controlled quantitative experiments to
investigate interaction (but not proof style) in HOL and PVS. Similar experiments
investigating proof style would be interesting but are beyond the scope of this thesis.
Truly controlled experiments would be very difficult, after all, these developments
take years to construct (e.g. Norrish’s C development took 3 man-years).

With these caveats in mind, we can turn to the figures. Certainly, for example,
one can see that both Isabelle and Declare have solved a chronic problem in the HOL
system: the need to add type annotations to terms quoted in proofs. This impedi-
ment alone is sufficient to deter most HOL users from a “declarative” style, because

66

CHAPTER 3. DECLARATIVE PROOF DESCRIPTION
Java 1 (Declare) | Java 2 (Isabelle) | C (HOL)
Lines 7900 3000 16500
Text Size (Kb, no comments) | 200 102 702
specification® 17% 32% 13%
theorem statements 20% 35% 27%
proofs 63% 33% 60%
outlines 26%
justifications 36%
Top level theorems® 93/280 ° 207/830 700/700
Term quotations in proofs’ 1050/3150 67/270 300/300
Adhoc proof procedures® 0/0 58/230 700/700
First order symbols’ 260/780 700/2800 9200,/2200
Proof steps 11007 /3300 670" /2700 7000° /7000
Explicit type annotations (%)’ | ~ 1% ~ 1% ~ 70%
Proof description devices * ~ 15 ~ 60 700+

Table 3.3: Source Level Statistics for Three Operational Developments. See

caveats in the text!

“The different components of the texts were separated using a combination of Unix tools
and manual editing. For Declare, the split was between thm declarations, their proofs, and
the remainder. For Isabelle, the specification included all . thy files, the proof statements all
proofs up until the first proof command, and proofs were everything else. For HOL, 5 files
were chosen at random from the 20 that make up the development, and manual editing was
used to select the three types of text. For both Isabelle and HOL “background theories”
such as those for partial functions were ignored. It is possible to quibble over what parts
of the texts should be included in each category, thus these figures should only be taken as
accurate to within a few percentage points.

bIncludes top level lemmas and theorems.

“The first figure is the approximate total. The second figure is the first adjusted based on
a rough estimate of the overall logical complexity of the development. This is clearly difficult
to measure, so we accept that these must be taken with a grain of salt. My assessment is
based on the total text size, but adjusting the Isabelle development because it uses extremely
compact syntax (thus is more complex than the text size reveals, and it would be unfair to
penalise it on this basis!). The factors we use are 3.0 for the Declare development, 4.0
for Isabelleand 1.0 for HOL (thus I have estimated Norrish’s C development to be the most
complex). This correlates with my personal estimate of the logical complexity, having viewed
the specifications and proofs. Note that “complexity” is sometimes self-induced, e.g. some
representation choices I made in the Java case study made things logically more difficult
than they might have been, and thus complexity is not a direct measure of merit!

YWhere two or more quotations appeared on the same line of text, they were counted as
one.

“Approximate number of val or fun declarations that do not define top level theorems, or
simple handles fetching top level theorems from a database. We have, perhaps, been overly
generous toward Isabelle and HOL here — many more adhoc combinations of tactics and
tactic-functionals are created mid-proof and are not bound to top level identifiers.

fApproximate number of explicit A , V , implications, iterated 3 or V or iterated con-
junction (LI...1] in Isabelle) symbols occurring within terms, apart from the specification.
For HOL the figure includes the specification but is divided by 1.5 to adjust.

YNumber of let, have, consider, induct, qed or sts steps.

h"Number of b y or K steps, each representing a tactic application.

Approximate number of THEN, THENL or REPEAT steps.

IPercentage of terms in proofs that have at least one explicit type annotation

k Approximate number of different proof description devices used, e.g. each different tactic
counts as 1. Again we may have been over-generous — see the note on adhoc proof procedures
above.

3.6. RELATED WORK 67

a declarative style will inevitably require more term quotation. We can see that
this is indeed the case: Declare proof contain many more terms than corresponding
Isabelle and HOL proofs.

The figures give some support for arguing that Declare proofs have better locality.
That is, more lemmas are stated and proved in the middle of a proof, rather than
being lifted to the top level. This is not surprising, as this is exactly the kind of
reasoning Declare is designed to support.

Similarly, the figures support the view that HOL developments are massively
overburdened with adhoc proof procedures, nearly all of which can be subsumed
by techniques used in Declare and Isabelle. In addition, Declare developments are
“simpler,” if simplicity is measured by the number of proof devices and/or adhoc
proof procedures used. However, the cost of a declarative style is also evident:
Declare proofs contain many more term quotations than Isabelle and HOL proofs.
This is precisely because terms are needed to “declare” the result of a step in a proof.

Finally, the figures do support the view that Declare proofs are relatively free
of explicit use of first order (including propositional) symbols. Traditional written
mathematics makes little use of first order symbols, e.g. I was not able to find any
in either General Topology by Willard or Calculus by Spivak [Spi67, Wil70]. In-
stead, they prefer to use first order terminology (not symbols), usually in the “meta-
language” surrounding the terms they are manipulating (i.e. in problem statements
and proof outlines). Much the same thing happens in Declare: most first order sym-
bols and manipulations are implicit in the statement and structure of a proof. It is
only in the specification that they are widely used.

3.6.3 Mizar

Mizar is a well established system for formalizing general mathematics, and a phe-
nomenal amount of the mathematical corpus has been covered.

Declare has been inspired in part by the Mizar system and Harrison’s ‘Mizar
Mode’ work [Har96b, Rud92]. In particular:

e The concept of specifying proofs as documents in a palatable proof language
is due to Mizar. The actual proof language we use is substantially different.

e The realisation that declarative proof techniques could be used within a higher
order logic based system is due to Harrison.

e The use of automated first order proof to discharge obligations arising from a
declarative language comes from both Mizar and Harrison.

Significantly, the realisation that declarative techniques achieve many of the re-
quirements of practical verification in the context of operational semantics (and, in
general, for large, evolving models and specifications) is our own. Prior to this work
it was commonly held that a declarative style would not work for “large” specifi-
cations, but only when specifications involved the small terms found in traditional
mathematics.

68 CHAPTER 3. DECLARATIVE PROOF DESCRIPTION

Mizar is a poorly documented system, so the following comments are observations
based on some sample Mizar scripts and the execution of the Mizar program. First,
there are large differences between the Mizar and Declare languages:

e Declare supports constructs common in operational semantics directly, whereas
Mizar supports constructs common in general abstract mathematics. For ex-
ample, we provide induction and case analysis constructs suited for reasoning
about inductive types and relations. In Mizar specifying and reasoning about
these constructs is possible, but clumsy. These differences can, more or less,
be explained by considering Declare as a system in a similar spirit to Mizar,
but applied to a different domain.

e Once the concrete syntax is stripped away, Mizar proofs are mostly specifica-
tions of fine-grained syntactic manipulations, e.g. generalization, instantiation,
and propositional introduction/elimination. We believe the decomposition con-
struct of the Declare language enables the user to specify logical leaps in larger
steps. For example, case splits in Mizar are usually small, and facts tend to
get introduced one at a time.

e The logic underlying Mizar is rich in devices but quite complex and perhaps
even adhoc. Many of its features are designed for abstract mathematics, and
are of little relevance to practical verification. The key idea (proof outlining)
can easily be transferred to a simpler setting and elaborated there,as we have
done in Declare.

e Specifications in Mizar are highly constructive, and it usually takes a lot of
text to get from an initial definition to the axioms that practically characterize
the new construct.

The differences may also stem from the automated support provided: justifications
in Mizar proofs rarely contain more than five facts, but in Declare we sometimes
provide 10 or 15 (and even another 10 or 20 “automatic background” facts). Mizar
provides little feedback when a step could not be justified, so perhaps it is difficult
to accurately formulate logical steps that are much larger.

These points are illustrated in the following Mizar proof about an operator idseq
that produces the list 0,1,...,n for a given n. In Declare or Isabelle the theorem
(which is "idseq (i+1) = (idseq i) ~ <*i+1x>" where """ is concatenation and
"<xx*>" is a singleton list) would either arise trivially from a recursive definition,
or would be proven automatically by rewriting and arithmetic from a definition
such as idseq = mk_list (Ai. i) (which is roughly the definition used in Mizar).
Although the Mizar proof comes late in the development of the theory of lists (after
2600 lines), the set theoretic constructions underlying the theory still rear their ugly
heads. Note also how fine-grained the reasoning is.

theorem Th45: idseq (i+l) = (idseq i) = <xi+1*>

3.6. RELATED WORK 69

proof

Al:

A2:

278:

A3:

Ad:
A5:

Bl:

idseq (i+1);

i + 1 by Th42; then
consider q being FinSequence , a being Any such that
P = q"<*a*> by Th21;

len p = len q + 1 by A2,Th20; then
len q = 1 by A1,REAL_1:10;

i+l € Seg(i + 1) by FINSEQ_1:6;
then p.(i+1) = i+l by Th43; then

a = i+l by A2,_278_,A1,FINSEQ_1:59;
dom q = Seg len q by FINSEQ_1:def 3;
for a st a € Seg i holds q.a = a

set p

len p

proof let a; assume
a € Seg i; then
reconsider j = a as Nat;
i < i+l by NAT_1:29;
then Seg i c= Seg (i+1) by FINSEQ_1:7;
then j € Seg(i+l) & p.j = q.j by B1,A2,A3,A5,Th18;
hence thesis by Th43;

end;

then q = id Seg i by FUNCT_1:34,A3,A5;
hence thesis by A2,A4,ID;

end;

On the plus side, Mizar does run extremely quickly (much faster than Declare), and
we must not forget that the system has been used to develop the most impressive
corpus of fully formalized mathematics ever.

70

CHAPTER 3. DECLARATIVE PROOF DESCRIPTION

Chapter 4

Automated Reasoning for
Declarative Proof

When writing a declarative proof, we leave gaps in the reasoning that we believe are
“obvious”, resulting in a proof obligation. We expect an automated reasoning engine
to discharge these obligations.

Automated reasoning is the most fundamental technique available to eliminate
procedural dependencies in proofs. Naturally we do not seek to solve the problem
of automated reasoning once and for all. Rather we focus on the problem we are
faced with: automated reasoning for declarative proof in the context of operational
semantics. We first set the scene by outlining the functionality we require of the
automated engine. We then describe the techniques that are used in Declare’s au-
tomated engine, how they are integrated, and discuss how these do and don’t meet
our requirements. Few of these techniques are novel, rather the challenge is to draw
on the wide range of techniques available in automated reasoning, and to compose
them in a suitable fashion.

4.1 Requirements

Naturally, we require the engine to be sound: it should only discharge an obligation if
a logically valid proof exists. We also require relative completeness: ideally we would
like the engine to successfully discharge all obligations for which a proof exists, and
to fail otherwise. Realistically, however, completeness will be relative to some class
of problems. At the extreme, when developing proofs interactively it is normal to
impose a time constraint whereby the prover must return a result within, say, 10
seconds, and so incompleteness is inevitable. Despite this, some notion of relative
completeness is clearly desirable. If the problem lies outside this class, then the user
must provide a more detailed outline of its proof.!

!The combination of the declarative proof language and the automated engine is complete
(though perhaps tedious to use) if the automated engine at least implements all the basic infer-

71

72 CHAPTER 4. AUTOMATED REASONING FOR DECLARATIVE PROOF

Section 1.4.1 defines declarative proof as a relative absence of procedural detail
or procedural dependencies. In Section 3.1 we expanded on this and explained how
automation could help achieve this. For example, automation may effectively make
a < 2b and 2a < 4b—1 indistinguishable as far as the user is concerned (for a,b € Z).
By doing so, we may have eliminated the procedural detail required to prove this to
the machine, which could be an advantage. Thus, one requirement of the automated
engine is to return equivalent results on some classes of equivalent problems. Consider
a first order example: if the automated engine can prove obligations like

P A (Vp. Q1(p) A Q2(p) +» R(p)) — Je d. R(c,d)

(regardless of P, R, Q1 and J2) then we expect it to be able to prove ones like

(Vyrye. R(y1,y2) < Q2(y1,¥2) A Q1(y1,¥2)) = (3p. R(p) V =P)

If it can, modifications that generate mildly different proof obligations will not break
proofs.

Perhaps unexpectedly, failure of the automated proof engine is the norm, in the
sense that when interactively developing complex proofs we spend most of our time
on obligations that are “almost” provable. Thus we would like the prover to give us
excellent feedback as to why obligations could not be discharged.

Ideally, declarative proof would be best served by black bor automated reason-
ing, where the user does not have to understand the operation of the prover to
any great depth. For example, propositional logic is decidable, and although NP-
complete, “broad-spectrum” algorithms (e.g. BDD based) exist that give acceptable
performance on most problems that arise in our domain, and furthermore counter
examples can be generated that can be interpreted without a knowledge of the algo-
rithm.

The essential challenge of automated reasoning in the declarative setting
s to come up with a single general purpose prover that is sound, complete
for some classes of problems, produces equivalent results on some classes
of equivalent problems, reliable, simple to understand, simple to use and
provides good feedback, yet still works efficiently on o sufficiently large
problem domain.

This is, needless to say, an extremely difficult task!

Unfortunately most existing work in automating non-propositional reasoning has
produced provers that are far from “black box”. To take one example, the first
order prover Otter [MW97] has over 100 different switches and endless potential
configurations and, although each has its purpose, there has been no real attempt to
characterize which switches are appropriate for which classes of problems, making the

ence rules of higher order logic e.g. the eight primitive rules of the HOL system, in the sense that
any proof that can be carried out in the HOL deductive system can be carried out in the combined
system.

4.1. REQUIREMENTS 73

use of such provers somewhat of a black art.? Proof techniques that require arcane
switch settings (e.g. weightings) within justifications negate the advantages we have
achieved by using declarative proof, e.g. readability of proofs and their robustness
under changes to the automated prover.

MacAllester has considered the question of “obviousness” with regard to auto-
mated deduction, and he has implemented some of his ideas in the Ountic system
[McA89]. We have not tried to develop “obviousness” as an absolute concept, and
are really more concerned with an automated prover that allows us to specify proof
outlines that are, in some limited sense, “natural”. In particular, it seems “un-
natural” to specify proofs that involve manipulations of propositional or first order
connectives, or tedious equality reasoning, or tedious arithmetic steps, and so our
proof techniques focus on automating these domains.

4.1.1 An Example Problem

Figure 4.1 shows a typical proof obligation that arises within the context of opera-
tional semantics and which is amenable to automated reasoning. The details of the
problem need not concern us (in particular it is not necessary to understand the
meaning of the constructs involved, since we have listed all relevant axioms here),
but the style of the problem does. We are trying to prove a property heap_conforms
about heapl and htl. These objects are modified versions of heap0O and ht0: we
have allocated a new location in heapO, and adjusted ht0 to ht1 to compensate. The
structural modifications boil down to operations on finite partial functions (tables).
We know that heap_conforms holds for heap0 and ht0. To prove the goal we must
prove the domains of heapl and htl are equal, and that heapobj_conforms holds
for every object heapl. The latter step is the harder: this requires the use of a
monotonicity result for heapobj_conforms and a case analysis between whether the
heapobj is a newly allocated object, or if it was an object already present.

We have shown only the relevant axioms and definitions here, though in general
the prover must also perform adequately in the presence of irrelevant information.
Most of the axioms were selected by the user as part of the justification line in the
declarative proof script, however some (marked !'!) are dragged in automatically by
reasoning tools from libraries. The automated reasoning engine is essentially free to
make use of any facts available in the current logical context, though it may require
guidance as to how different facts may be used (we discuss this later in this chapter).

The problem is shown approximately in first-order form, though some features
might need to be translated away before the problem would be acceptable to a first
order prover, in particular polymorphic equality; the use of conditionals at the level
of terms; and the let ... = ... in ... construct.

Although the problem shown is not large by the standards of some first order
automated reasoning tools, it is, perhaps surprisingly, at the upper end of the size of

2Recently, an “autonomous” mode has been added to Otter for the purposes of the CADE provers
competition [SS97]. Clearly it would be desirable to harness the work that has gone into such provers
within practical verification systems, and we consider this a good avenue for future research.

74 CHAPTER 4. AUTOMATED REASONING FOR DECLARATIVE PROOF

// The goal:
goal "heap_conforms(te,heapl,ht1)"

// Datatypes:

datatype ’a option = None | Some(’a);
datatype vt = VT(simp,nat);

datatype simp = A(string) | B(string) | C;
datatype heapobj = Object(...) | Array(...)

// Facts about local constants:

defn "htl = fupdate(ht0,addrl,VT(C(c),0))";
defn "heapobj = Object(fldvals,c)"

defn "(heapl,addrl) = alloc(heapO,heapobj)"

fact "ht_leq (te,htO,ht1)"
fact "heap_conforms (te,heapl,htl)"
fact "heapobj_conforms(te,ht0,heapobj,VT(C(c),0)";

// From the specification of the operational system:
defn "Vheap heapobj.
alloc(heap,heapobj) =
let addr = fresh(fdomain(heap))
in (fupdate (heap,addr,heapobj) ,addr)";

defn "Vte heap ht.
heap_conforms (te,heap,ht)
(fdomain heap = fdomain ht) A
(Vz y. flookup(heap) (z) = Some(y) —
(dz. flookup(ht) (x) = Some(z) A heapobj_conforms (te,ht,z,y)))"

fact "Vheapobj te htO htl.
ht_leq(te,ht0,htl) A
heapobj_conforms (te,ht0,heapobj,ty) —
heapobj_conforms (te,htl,heapobj,ty)";

// From the theory of finite sets:
rewrite "Vfsetl fset2. (fsetl = fset2) <> (Vx. z € fsetl < x € fset2)"

rewrite "Vfset x y. x € finsert(y,fset) < (x = y) V © € fset"; !!

// From the theory of finite partial functions:
rewrite "Vf z y z. flookup(fupdate(f,z,y),z) =
if (z = z) then y else flookup(f,z)"; 1
rewrite "Vf z y. fdomain(fupdate(f,z,y)) = finsert(z,fdomain(x))"; "
fact "Vfset. ~(fresh(fset) € fset)";

Figure 4.1: A typical obligation to be discharged by automated reasoning. The
names defn, fact and rewrite refer to different categorizations of the available

axioms given by pragmas.

4.1. REQUIREMENTS 75

problems that tend to occur in practice in our domain. This is because it is difficult
to accurately formulate proof steps that embody larger logical leaps, at least when
working on developing problems. Attempting to do so typically results in little
payoff, and it tends to be quicker to simply split the proof into two or three steps
rather than try to force things too far with the automated prover.

Now, consider the characteristics of this obligation:

e The problem involves a mixture of structural and logical reasoning, i.e. equa-
tional reasoning about constants and functions, and first order reasoning about
various predicates.

e The structural reasoning involves a significant amount of fairly naive equa-
tional reasoning, best attacked by some kind of rewriting: definitions must be
unfolded, and obvious reduction must be made.

e A degree of first order reasoning is clearly required: we must search for the key
instantiations of facts such as the monotonicity lemma.

e Some reasoning about the datatypes (pairs, option and vt) is required, e.g. -
Some(x) = Some(y) — = = y.

e [f the complexity of the problem is to be controlled, then several functions and
predicates must be treated as uninterpreted, e.g. unwinding the definition (not
shown here) of heapobj_conforms_to substantially complicates the first order
search.

e Similarly, some types are better treated as uninterpreted, e.g. we should not
speculatively case split on objects of type heapobj, since the structure of these
objects is irrelevant to the proof.

The obligation is atypical in the following ways:
e The predicates or functions are not recursively defined: typically some are.

e Once definitions have been expanded, the first order component of the problem
is essentially in Horn-clause form: sometimes this is not the case.

e Each first order formula need only be instantiated once, presuming the proof
search is organised well. Sometimes a formula needs 2 or 3 different instantia-
tions, though rarely more.

e No reasoning about arithmetic is required. Often small arithmetic reasoning
steps are required, e.g. proving 1 <= n in a logical context where n > 0 has
been asserted.

Nearly all problems in our case studies (and, perhaps, in the majority of applications
of theorem proving) require a mix of structural and first order reasoning. This has
long been recognised, though it is rarely made explicit: here we have just tried to
make this clear by an example, and to motivate the choices made in Declare.

76 CHAPTER 4. AUTOMATED REASONING FOR DECLARATIVE PROOF

4.2 Techniques used in Declare

We now describe the techniques used for automated reasoning in Declare, and the
method by which they are integrated to form a single prover. We have tried to
restrict ourselves to techniques that are predictable, complete for certain classes of
problems, simple, incremental and which offer good feedback for unsolvable problems.
However, for general first order problems good feedback will always be difficult,
especially when the search space is wide.

Some notes on the implementation: the reasoning tools in Declare use data-
bases derived from and stored alongside the current logical environment (that is, the
collection of all available facts). Facts are pushed into these databases incrementally
as they become known, e.g. by case splitting or by producing simplified versions
of formulae. The logical environment and databases are stored as applicative data
structures (i.e. with no references), so backtracking is trivial to implement.

Each technique described here can be made more powerful and more efficient,
at the expense of greater complexity in behaviour, interface and implementation.
The Declare implementation is structured so it is relatively easy to replace a reason-
ing component with one that uses more efficient data structures, by replacing the
corresponding database in the logical environment. Databases can be computed on
demand (lazily), to prevent their creation in instances where they are not used.

4.2.1 Ground Reasoning in Equational Theories

Decision procedures exist to determine the validity of formulae within various ground
equational theories. Some basic decidable theories are:

e Propositional logic, i.e. first order formulae containing only propositional con-
nectives and universal quantifiers at the outermost level, and finite types;

e Linear arithmetic, i.e. propositional logic extended with linear formulae over a
real closed field (e.g. R, using only <, >, <, >, =, <>, +, —);3

e Equational logic in the presence of uninterpreted function symbols, e.g. ¢ =
g(b) — f(a,g(b)) = f(a,a), normally implemented by a congruence closure
algorithm [NO80];

Frameworks exist for combining decision procedures for various theories. Nelson and
Oppen have a quite general scheme that has been successfully re-implemented in
theorem proving systems [NOT79, Bou95]. Shostak has an alternative scheme that
is less general but reputedly faster, and this is used in the STeP and PVS theorem
provers [Sho84, MBBC95, COR™95].

3This subset (Presburger arithmetic) is usually expanded to include rational constants and func-
tions that can be encoded in a linear/propositional framework, e.g. abs, maz, min etc. An incom-
plete but effective procedure for Z and N can be achieved by translating to a more general problem
over R.

4.2. TECHNIQUES USED IN DECLARE 77

Declare implements a Shostak-style integration of decision procedures for unin-
terpreted equality and arithmetic. The implementation is very naive (for example
no term graph is used, but rather we explicitly substitute), but sufficient for our
case studies. The central database is a sequence of convex sub-databases [NOS80],
each corresponding to one case of the disjunctive normal form of the propositional
structure of the logical environment.

Each convex database supports assert and satisfy functions. The former is
used to add available ground equalities, inequalities and propositional formulae. The
function satisfy is used to generate a satisfying instance, i.e. an assignment that
satisfies the various constraints. This can in turn be used as a counter example in
the context of refutation.

We discuss how we integrate the use of ground decision procedures with other
techniques below.

4.2.2 Rewriting

Rewriting is the process of repeatedly transforming a term by replacing subterms
with equivalent subterms, as justified by a set of equational rules. For example given
the axioms a =l and Vz y z . £ + (y + 2) = (z + y) + 2z we may rewrite as follows:

(wH+z)+(a+2)~ (w+z)+a)+z~ (w+z)+1)+ 2

The axioms available (the rewrite set) and the order and locality of their application
(the rewrite strategy) together form the rewrite system. Rewrite systems are often
used for both systematic and adhoc proof in mechanized reasoning. Properties we
look for in rewrite systems are termination (by ensuring that each rewrite axiom
reduces some global metric); confluence (that is, the order of application of rewrites
should not influence the final result); normalization (does the rewrite system reduce
terms to a normal form?); and completeness (does the rewrite systems fully solve a
class of problems?) An excellent introduction to the theory of rewriting can be found
in [BN98] and implementations in HOL and Isabelle are documented in [Bou92] and
[Nip89]. Some typical enhancements to basic rewriting described above are:

e Conditional rewriting, e.g. 2 > 0 A ¢ < length(t) — el(i)(h :: t) ~ el(i—1)(%)
perhaps using decision procedures to solve conditions.

e 2nd order and higher order matching. Equational axioms like ¢ = 1 are gen-
erally interpreted as left-to-right rewrites, the left being the pattern. Patterns
that contain free higher order variables can be interpreted as specifying families
of rewrites, e.g. (-Vz. P) ~ (3z. =P z). Other matching enhancements
are also possible, though those guaranteed to produce at most one match are
preferred.

e Contextual rewriting, e.g. the fact P is added to the logical environment when
rewriting @@ in P — (). Second order congruence rules may be specified for
derived constructs, as in the Isabelle theorem prover (see Table 4.1).

78 CHAPTER 4. AUTOMATED REASONING FOR DECLARATIVE PROOF

e Infinite sets of rewrite axioms, provided by programmed procedures.*

Rewriting in Declare implements all of the above features. As Declare is not directly
programmable the only rewriting procedures used are built in ones, which are de-
scribed below. In a fully developed system it would be appropriate to support user
programmable rewriting procedures, as many useful rewriting strategies can only be
specified with an infinite number of axioms.

From Facts to Rewrites

Rewrites are specified in Declare by pragmas, usually when a fact is declared —
this is discussed in the next section. Many facts (those not specified as left-to-right
rewrites, including contextual assumptions generated by congruence rules) are used
as “safe” rewrites of the form proposition ~ true. This ensures that rewriting always
terminates, presuming the user has specified other pragmas sensibly.

Like most theorem provers, Declare comes with theories of important constructs
such as partial functions, sets, finite partial functions, finite sets, first order logic
and lists. Rewriting gives effective (though incomplete) proof procedures in many of
these domains .

Declare does not implement Knuth-Bendix completion [KB70] on its rewrite set.
It would be desirable to investigate the costs and benefits of this routine in the
context of this problem domain, since occasionally the user must artificially modify
the statement of theorems and proofs to ensure a confluent and complete rewrite
strategy. For example, the user must sometimes ensure that all left-hand-side pat-
terns of rewrites are in normal form: completion could alleviate such problems, and
might further increase the declarative nature of proofs. However, most problematic
examples involve ground terms, and perhaps simply further integrating ground de-
cision procedures with rewriting (thus using congruence closure as a form of ground
completion) would be sufficient. Also, full Knuth-Bendix completion requires the
specification of a lexicographic term ordering. This is clearly non-declarative (in the
sense of Section 1.4.1) but perhaps a sufficiently general default ordering could be
specified.

4.2.3 Inbuilt Rewrite Procedures
Generalized Beta Conversion

Simple beta-conversion (Az.t)s ~ t[s/z] can be generalized to a procedure that can

evaluate most pattern matches against ground values, as in functional programming

lanenages®. e.o
guag g

4This technique was used by the author in his implementation of the ho190 rewriter system, and

has been adopted in other systems.

>This can in turn be generalized whenever patterns are specified by injective functions. Declare
currently supports the former but not the latter, though there is no real reason (except implemen-
tation complexity) not to support both in the context of a theorem proving environment.

4.2. TECHNIQUES USED IN DECLARE 79

match (Some(3),0) with (Some(x),0) -> t
~ t[3/z]

Matches can also be resolved in the negative:

match Some(u) with None -> t | = -> s
~» match Some(u) with z -> s
~> s[Some(u)/z]

Generalized beta-conversion can, of course, only resolve matches in certain circum-
stances, e.g. when both patterns and arguments are specified by concrete construc-
tions (datatype constructors, Z, N, and strings).

Resolving Matches by Throwing Side Conditions

Generalized beta-conversion may not be sufficient to make use of all the facts known
in the current logical environment. For example, the reduction

match a with 0 -> 0 | =z —> z+1
~> a+l

is logically valid when a € N and a > 0 is available in the logical context, because
in these circumstances we know the first rule does not apply. One solution to such
a problem is to throw off a side condition which can be solved by other, cooperating
tools, in particular the ground decision procedures.

We attempt to resolve matches in the positive whenever a ground pattern is used,
that is for an expression match t with p -> ... where p contains no variables we
generate the condition p = t. We always attempt to resolve them in the negative
presuming no other resolution is possible, so the condition for p containing variables
U is VU.p # t, presuming v are fresh names.

Solving for Unknowns

Declare incorporates quite powerful procedures for solving for unknowns in the mid-
dle of rewriting. Solving eliminates universal or existential quantifiers when a definite
value can be determined for the quantified variable. For example:

Jda. a=b+c A p(a,b) A q(b,a+2)
~ p(b+c,b) A q(b, (b+c)+2)

Some of this effect can be achieved by higher order rewriting with theorems such as
(Ja. a=t AN P a) = Pt

but this technique is not sufficiently general when quantifiers appear in the wrong
order or location. For example, the Declare automatic routine solves for a in the
following situation:

80 CHAPTER 4. AUTOMATED REASONING FOR DECLARATIVE PROOF

Ja b. (pla) A a=t A q(B)) V r(b)
~ Jb. (p@) A q®)) V r()

because a does not occur on the right of the disjunct. The routine also solves for
V-bound quantifiers:

Ya. a=b+c A p(a,b) — q(b,a+2)
~ p(b+c,b) — q(b, (b+c)+2)

In principle the routine could be extended to solve arithmetic equations and other
equational theories, but this has not yet been done.

Implementation Issues

Implementations of rewriting systems can vary greatly in efficiency and complexity.
Important issues to consider include:

e Dynamic v. Static? Can new rewrites and congruence rules be specified as
part of the input? Can rewrites arise dynamically, e.g. from contextual as-
sumptions?

e Compiled? Are rewrite sets compiled to some more efficient representation?

e Term or graph based? Graph-based rewriting algorithms can lead to far better
time and space complexity, at the expense of greater implementation complex-
ity, especially in the implementation of backtracking.

The Declare system is dynamic, uses minimal compilation in the form of term-nets
and for simplicity is implemented based on terms (i.e. the implementation is along
the same lines as rewriting in LCF, HOL-lite and Isabelle).

4.2.4 Grinding

Grinding (the terminology is borrowed from PVS) is essentially the repeated appli-
cation of rewriting, “safe” first order and splitting steps until no goals remain or no
further progress can be made. Grinding operates on a sequent (i.e. a list of conjoined
facts and disjoined goals) and results in several residue sequents each of which must
be solved by other techniques. The generation of an initial sequent is described in
the discussion of integration issues below: essentially it is made up of a set of facts
that have been selected as “primary.” (In Declare this is done by quoting them on a
justification line in the proof language). Grinding in Declare is fully contextual, in
the sense that when a fact is being reduced, all surrounding facts (and the negation
of all goals) are pushed into the logical context.5

5The facts may already appear in the context, but will normally have different pragmas, as dis-
cussed in the next section. In addition, their pragmas are maintained even though they dynamically
change during rewriting, which is a simple way to cross-normalise rewrites.

4.2. TECHNIQUES USED IN DECLARE 81

Declare uses two-way, repeated grinding, in the sense that we iterate back and
forth across the fact list looking for reductions, and all surrounding facts are available
for use. Both the Isabelle and HOL simplifiers start at one end of the assumption
list and only iterate in one direction. There is no particularly good reason for this
restriction, and it can make some proofs fail (e.g. (b*a)/a =c A a >0 — b =
¢, where the side condition a <> 0 to a cancellation rewrite is only provable if a >
0 is available.)

Safe Steps

Safe first order steps include the introduction of witnesses for 3 (V) quantifiers in
facts (goals), splitting conjuncts (disjuncts) in facts (goals). Grinding also eliminates
local constants defined by an equality, so if a = ¢ is a fact then a can be eliminated
in favour of the term ¢. The set of safe rules could be made extensible by using
methods from the Isabelle theorem prover [Pau90].

Pattern Based Splitting and Weakening

Splitting follows fairly conventional lines, splitting on disjunctive formulae as in PVS,
Isabelle and indeed most automated provers. Additional pattern based splitting rules
may be specified, for example:

F O — PN GDbLb— P(e)) > P (if b then t else e)

Such a rule is interpreted by a procedure that searches for a free subterm that
matches the pattern in the conclusion. New subgoals are then produced from the
appropriately instantiated antecedents of the splitting theorem. The code is an im-
proved version of a similar procedure found in Harrison’s HOL-lite, in particular the
theorem does not have to be an equality, which allows us to automatically “weaken”
the sequent in cases where a certain side condition should always be provable.

For example, subtraction over N is often problematic in theorem provers: how
should subtraction be defined outside the standard range? Our methodology is to
avoid relying on the behaviour of subtraction outside its domain (indeed we do not
even specify it in the definition of subtraction). Thus we require that the appropriate
bound is always provable in the context in which subtraction is used. We can use
pattern based weakening to generate this obligation and eliminate uses of subtraction
in favour of an addition over a fresh “difference” variable. The weakening rule is:

Fa>bA (Vd. a=b+td =+ P(d)) — P (a-b)

The side condition ¢ >= b can be regarded as a condition arising out of an implicit
dependent typing scheme for the subtraction operator.

Extensible splitting of a similar kind is available in the Isabelle simplifier, though
it is not clear if it has been utilised to eliminate dependently typed operators as above.

82 CHAPTER 4. AUTOMATED REASONING FOR DECLARATIVE PROOF

4.2.5 First Order Reasoning

First order reasoning has been the primary problem of interest in automated reason-
ing communities. Although we work in higher order logic, the vast majority of proof
obligations lie within equational first-order logic. The subset is semi-decidable, but
almost invariably requires heuristic proof search.

First order reasoning has been largely neglected in interactive higher order logic
based theorem provers (e.g. PVS has no support for unification and HOL existed
for years without it), with Isabelle being the major exception. In his summary of
first order proof in practice [Har97a] , Harrison describes the situation of interactive
theorem proving with respect to first order techniques as follows:

There is a trend away from monolithic automated theorem provers to-
wards using automation as a tool in support of interactive proof. ... It
raises a number of issues that are often neglected... Is first order automa-
tion actually useful, and if so, why? How can it be used for richer logics?
What are the characteristic examples that require solution in practice?
How do the traditional algorithms perform on these ‘practical’ examples
— are they deficient or are they already too powerful?

First order systems attempt to find a contradiction (refutation) given a set of ax-
ioms. Routines often assume the axioms are in some normal form, e.g. clauses and/or
prenex. The main task of algorithm is to find necessary instantiations (using uni-
fication) and to organise the search for these. Combining first order proof with
equational reasoning is particularly challenging: although equality may be axioma-
tized, this is not terribly effective, and special heuristic rules for equality are often
used.

The first order technique we use is model elimination [Lov68], which is essentially
the natural completion of Prolog as a proof technique when negation-as-failure is
excluded. The Horn clause restriction is also lifted by using the “contrapositives” of
a set of formulae as the rule set. Model elimination is a simple and effective way to
perform goal directed search, and as Harrison has reported [Har97a] in some cases
it can even work effectively when the equality axioms are used directly.

Because we require quick feedback, and only use first order proof as a work
horse to find relatively simple instantiations, we time-limit the proof search (which
is based on iterative deepening) to 6 seconds in the interactive environment. This
can, naturally, be specified by the user.

What feedback can be provided by the first order engine when the problem is
not solvable? This is a very difficult issue: first order search spaces are large and it
is very hard to distinguish promising paths from unpromising. It may be possible
to employ some model generation procedure to give a counter example, but the only
simple solution appears to allow the user to inspect the internal actions of the prover.
Declare provides a trace of the search, though better would be an interactive method
to examine paths in the search, like that provided by Isabelle.

4.3. INTERFACE AND INTEGRATION 83

4.3 Interface and Integration

4.3.1 Quoting and Pragmas

In the previous chapter we delayed discussing certain aspects of the proof language,
because their semantics are interpreted by the automated proof engine. These con-
structs effectively form the interface to the automated engine. We are now in a
position to complete these details.

The first question is the semantics of “quoting a theorem in a justification”, or,
equivalently, leaving a local fact inside a proof unnamed (these are implicitly included
in all future justifications).

The second is related: we must describe the pragmas (“hints”) that the auto-
mated engine understands. Table 4.1 defines the relevant pragmas and defines their
meaning in terms of the proof procedures from the previous section.

Now, quoting a fact has the following effects. Most importantly, the fact is added
to a set of “primary” facts that will form the initial sequent for grinding (see below).
Before this is done, the pragmas of the fact may be slightly modified:

e [f the fact has a non-auto pragma such as defn or rw, then this is promoted
to the corresponding auto-pragma. The fact will be added to the appropriate
databases during grinding. Thus quotation means “use it like I said it could
be used.”

e [f the fact already had an auto pragma, the pragma is stripped from the copy
of the fact that is added to the “primary” set (the fact remains in the automatic
database). The assumption is that quoting the fact means the user is providing
it for some special purpose (e.g. is instantiating it). Thus the quotation means
“in addition to using it like I said, use it as an ordinary primary fact.”

This combination has been sufficient for the case studies, and in combination with
local pragmas allows any combination of pragmas to be specified. However, note
that once facts are placed in a database using an auto pragma they may not be
removed.

All facts implicitly have the saferw and meson pragmas, so quoting any fact
promotes these to auto, and thus all quoted facts get used as safe rewrites and for
first order proof.

4.3.2 Integration

The Declare automated prover uses grinding as the initial phase of the proof, before
calling the decision procedures and model elimination. The starting sequent is the
set of “primary” facts as defined above. This is thoroughly reduced and then model
elimination is applied on the residue sequents.

Measures must be taken to ensure the use of rewriting is not problematic: without
care rewriting can turn a problem otherwise be solvable by first order reasoning into
one that isn’t. Two typical problems arise:

84 CHAPTER 4. AUTOMATED REASONING FOR DECLARATIVE PROOF

pragma
pragma

pragma
pragma

pragma
pragma

pragma
pragma

pragma
pragma

pragma
pragma

pragma
pragma

pragma
pragma

defn thm
autodefn thm

elim thm
autoelim thm

rw thm
autorw thm

saferw thm
autosaferw thm

cong thm
autocong thm

split thm
autosplit thm

ground thm
autoground thm

meson thm
automeson thm

The fact specifies a set of (possibly recursive)
definitions that should be used as left-to-right
rewrites. Recursive definitions will be acceptable
because rewriting does not occur inside A terms,
the branches of conditionals or pattern matches.
The definitions may, in principle, be used by other
proof procedures such as congruence closure or
first order provers, but this does not occur in the
current implementation. autodefn adds the def-
initions to a database of automatically applied
definitions.

The fact specifies a set of non-recursive equations
that completely eliminate constants in favour of
their representations. Again these may, in princi-
ple, be used by other proof procedures. autoelim
adds the equations to an automatic database.

The fact specifies a set of (conditional) equations
that should be used as a left-to-right (conditional)
rewrite rules. autorw adds these to the database
of automatic rewrite rules.

The fact specifies a set of safe “boolean” rewrites
(see Section 4.2.2). All facts are implicitly tagged
with saferw.

The fact specifies a congruence rule in the style
of the Isabelle simplifier (see Section 4.2.2), e.g.
F P=P'" A (P' - Q=Q") — (PAQ) =
(P'ANQ"

The fact specifies a pattern based splitting rule
(see Section 4.2.4).

The fact specifies a ground fact and can be added
to the ground equational database. All facts with-
out outermost universal quantifiers are implicitly
tagged with ground.

The fact specifies a set of first order reasoning
rules, to be used by the model elimination proce-
dure. All facts are implicitly tagged with meson.

Table 4.1: Pragmas recognised by the automated reasoning engine

4.3. INTERFACE AND INTEGRATION 85

e Rewriting can simplify away an instantiation of a fact that has been especially
provided as a “hint” to help the first order prover.

This is prevented by not applying rules that rewrite to “true” /”false” when in
a positive/negative logical polarity.” This is rather adhoc, but it works well
enough.

e Rewriting normalizes expressions so that unification is no longer possible, e.g.
c¢+b might be AC-normalized to b+ ¢ which no longer unifies with ¢+ without
increasing the power of the unification algorithm.

We treat this problem by avoiding automatic rewrites that disturb the structure
of terms in this way.

The lesson is that when using rewriting as a preprocessor, the rewrite system must
“respect” the behaviour of other automated routines.
We use the ground decision procedures to:

e Attempt to decide side conditions to conditional rewrites, after recursively
grinding the condition, as in the Boyer-Moore prover [BM81];

e Attempt to decide the problem itself, again after grinding, but before model
elimination.

Other theorem provers do better: ideally, asserting an equality between ground terms
into should make those terms indistinguishable for nearly all purposes (this appears
to be an unstated aim of the PVS prover). For example, the unification algorithm
should be able to unify f(a,z) and £(g(b),c) when the equality a=g(b) is present
in the logical environment (i.e. ground E-unification). We do not take things so far,
though instances did arise in our cases studies where this would have led to shorter
proofs.

4.3.3 Feedback

The following feedback is available from a failed proof attempt:
e The sequent as it appeared before grinding began.

e The sequent of the first case not solved by grinding, decision procedures or
model elimination. The sequent is shown as it appears after grinding.

e Constraints that indicate how eliminated constants relate to constants in the
sequents, e.g. "p = (p.1, p.2)".

"As in Section 2.2.2, the logical polarity is positive/negative when reducing a redex within the
propositional structure of a fact that is effectively under an even/odd number of negations. So we
are ensuring, in limited circumstances, that rewriting progresses in the correct direction through
the boolean lattice.

86 CHAPTER 4. AUTOMATED REASONING FOR DECLARATIVE PROOF

e A counter example for the unsolvable case as generated by the ground decision
procedures.

e A list of the unsolved side conditions to rewrite rules, along with a counter
example for each.

In the interactive environment, much of this information is elided (in particular the
counter examples) and computed on demand, so the information is presented quickly
and compactly. Also, tracing may be applied to show the internal actions of grinding
and the model elimination prover.

4.4 Appraisal

The last three sections have described the requirements for an automated prover
in our problem domain, and the actual prover we have used in our case studies.
This begs the question: does the prover meet the requirements? To recap, the
requirements were:

e Relative completeness;

e Equivalent results on equivalent problems;

Simple to understand;

Simple to use;

One top level prover;

Excellent feedback;
o Works efficiently on a sufficiently large problem domain.

Certainly our prover provides a degree of relative completeness: one could identify
many sets of problems that it will accurately and consistently check (e.g. proposi-
tional logic, ground arithmetic, first order problems that require no more than 5-10
instantiations).

The second requirement is harder to meet: there are a substantial number of
“equivalent forms” for solvable problems that will not be solved by our prover. How-
ever, different but equivalent forms of

e Propositional structure;
e Ground terms in decidable theories;
e Local solvable constants (i.e. 3z. =t A P[x] v. PJt]);

e First order structure (e.g. Voy. Pz A Qy v. (Vx. Pz) A (Vy. Qy)

4.5. RELATED WORK 87

e Product-based structure (e.g. Q(a) A R(b) = P(a,b) v. Q(fst p) A R(snd p) —
P(p)

nearly always produce identical results. However, differences in instantiatedness,
pragmas or specifications of rewrite axioms often produce different results.

The prover is simple to use, once its powers are understood. Understanding the
prover would require a course in rewriting and first order proof, and training on a
selection of appropriate problems. This is similar to provers such as Isabelle.

The feedback provided is good when simplification is the main proof technique
being used, but is poor for first order proof. We have discussed this issue in Sec-
tion 4.2.5. The scope of the prover was adequate for our case study, but any im-
provement in scope could dramatically simplify many proofs.

4.5 Related Work

This chapter builds on many techniques developed in other theorem proving systems.
Most notably, the Boyer-Moore prover [BM81] pioneered the use of rewriting, the
decision procedures to solve conditions, and a tagging/pragma mechanism to identify
suitable rewrites. We have chosen not to adopt many of the heuristic aspects of Boyer
and Moore’s techniques in this work: for example we do not speculatively generate
instantiations of first order formulae within decision procedures, or speculatively
perform inductions. In the context of declarative proof the need for heuristics is
not so great: the user can either specify the hints when required, or decompose the
problem further. Indeed, heuristics go against the grain of many of our requirements.

Rewriting and grinding are used extensively for proof in PVS, again based mainly
on techniques from Boyer-Moore. PVS, STeP and other systems implement various
mixtures of ground decision procedures, and integrate them into the rewriting pro-
cess.

The elimination of existential and universal quantifiers by automatic solving is
a generalisation of the manual “unwinding” techniques from HOL [MTDRS&8], and
relates to many adhoc (and often manual) techniques developed in other theorem
provers. To the author’s knowledge, no other interactive prover uses automatic
solving techniques during rewriting to the same extent as Declare: searching for
such solutions is quite computationally expensive but exceptionally useful.

Model elimination was first used in interactive higher order logic based theorem
proving by Paulson and then Harrison [Har97a], and in general we owe much to
Harrison’s excellent implementations of model elimination and other procedures in
HOL-lite.

88 CHAPTER 4. AUTOMATED REASONING FOR DECLARATIVE PROOF

Chapter 5

Interaction for Declarative Proof

In the previous three chapters we have considered the central logical issues relating
to theorem proving for operational semantics: specification, proof description and
automated reasoning. The solution we have adopted for proof description is declar-
ative proof, as realised in the Declare system. In this chapter we turn to an issue
that is considerably different in nature: the design of an interactive development
environment (IDE) for Declare. This rounds out our treatment of tools for declar-
ative proof, and the principles should be applicable to declarative proof systems in
general.

“IDE” is jargon borrowed from the world of programming language implementa-
tions, particularly PC development suites such as Visual or Borland C++. IDEs are
essentially document preparation systems combining powerful text editing facilities
with tools to interpret and debug the programs developed (the documents being
program texts in a range of languages).

The topic of interactive environments is different in nature from the preceding
chapters because it is far more intimately concerned with human requirements, rather
than machine or mathematical limitations. Human requirements are, of course, dif-
ficult to pin down precisely, but we endeavour to follow a fairly analytical approach
in this chapter nevertheless, concentrating first on measurements of success for in-
teractive systems.

5.1 Metrics for Interactive Systems

Before discussing IDEs for declarative proof, we consider the following question:
what metrics should be applied to determine if an interactive system is a success?
Firstly, let’s make sure of our terminology: we call systems S; and Sy interfaces
if they support roughly the same fundamental task, though the means by which
they support it may be different. Thus the Microsoft Windows File Manager and a
subset of the Unix command line tools both support the tasks of moving, copying
and searching file structures. Emacs and vi both support the task of editing text
documents (amongst other things). A system is interactive if it has been designed

89

90 CHAPTER 5. INTERACTION FOR DECLARATIVE PROOF

primarily for use by humans.! Thus an IDE like Visual C++ is an interactive
interface to the underlying compilers.

One rather fundamental metric of success we can apply when comparing inter-
active interfaces is productivity, which is approximated by mean time to task com-
pletion.? So, all else being equal, one interface to a theorem prover is better than
another if it lets us get the same work done faster.

This, of course, begs the obvious question: how do we measure mean time to
completion? Controlled experiments to determine task completion times for com-
plex tasks such as theorem proving are expensive and difficult (¢f. Section 3.6.2).
However, this does not make the metric useless: it is possible to assess relative task
completion times using informal analyses of possible scenarios. Even better, many
interface devices are “clear winners” on this score: for example, a device that high-
lights errors in an original source text as they are detected is clearly going to improve
productivity over a system that simply prints a line number which the user must look
up manually. It is often surprisingly easy to argue the relative merits of individual
interactive devices in such a way.

However, it is difficult to assess the differential merits of two quite disparate
interactive methods. For example, we might like to be able to demonstrate that the
interface IDeclare (presented in this chapter) always improves productivity over, say,
the user’s favourite text editor combined with the Declare command line tools. This
is clearly difficult to demonstrate conclusively, and indeed is simply not the case: for
some tasks one method is superior and for others the converse. Fortunately it is not
an either-or situation, as we discuss later in this chapter.

5.2 IDeclare

Our IDE for Declare is called IDeclare, and a screen shot of the program in use is
shown in Figure 5.1. It is being used to correct the error from Section 1.4.4. The
principle features of IDeclare are:

e FEditing. A standard text editor is provided for writing Declare articles in the
usual fashion.

e Logical Navigation and Debugging. The state of the interface includes a logical
cursor, that is a location within the logical structure of an article. The cursor
acts much like the “program location” in a traditional program debugging
system. The cursor may be moved by executing declarations and stepping

!Not all interactive systems are simply interfaces: for example Microsoft Word provides substan-
tial functionality that can not realistically be accessed via any underlying mechanism.

When an interactive system is not simply an interface, we cannot use such simple productiv-
ity metrics: we also have to measure the relative values of the different functionality provided.
Comparing two systems that support the same overall tasks is considerably simpler.

3There are, of course, many other issues involved in overall usability. See Chapter 1 of [NL95]
for an excellent informal description.

91

IDECLARE

5.2.

TET

Ay adAqeey 8 -| TTU

Ay sddgsey 8 -] TIu

B L--- B

Ay adégsey a -| TTU

G2 55 poq = .2

78 % poq Ajx weT = 9

A3p adigser ga -| TTU

43 <-- fqp adigeey poq f3x we -| T

E]
Terrungd

:

U195

i

T35 1[0

£ =

[+

SUOTIETaT

Toog
LsaTnpOU FF

saddjejep TaasT dog L

3083 588

peUTIap WaIoat[y JEST AU Sl aJes Wne JEqns
TATEI0 T LT U0 T T (a8

TTE0g Fusiang

SR —

—

s pEA0Td WOTIERTTTITAD s4+

<brgos
(Mg adijeey ga -| TTU) % (43 <—- Ap adigsey poq Agw wet -| TTW) “Ap -
<gagelaTniy
((Ap adigeey » -| TTU) % (43 < Ap edigeey | -| TIU) 2 2 = » g}
o Ap)
Il (dp adigsey pog -| TTU # Ap) 3 43 = A <—- Ap 3 @ = pog Ap wet
A Agp pegi)
Il (A3 = Tru g {2 1 ¢ TTU UST 2 8 = 7 T2g %)
Il A3 = ungdr = & = uog +
uotTyebTTqe g7 BUTT

%88 £ FLIT ..

fpua
¢ (<butdig) sesecsna ‘¢ ddy ‘adAgsey> Aq pab :ydde mmmw
fCEU0DT D0uwsT TTU
TulDe “ul]a] <eges wne gsquer C(<gA3r)essessTol &g pab |
‘[(<PutdiiyjeaceaaTnr Ag L A3p adijsey za - [].

<Ay, (43 <-- Agp) adAgsey poq Agw we -| [].
35 A3p Isprsuoa
Cw3@ poq jEque = .3,
W38 % poq A3y we = 8,
ejaq ased
faTqeTIea A3 ‘.23 UY3Te ¢dajsr U0 UOTIAOPUT T0I Ag pasdoxd

ooxd

f Ay addyeey & - [], ust
<dayey .8 (--- &

<butdfys> 43 adhgeeq s -| []. 3T

cajes AzeT dage TTRUS: WILY
CUETTRY 3EUY S
goord e o sydwexs pooh e st soweTies syy wory A3, Butacwss qu g/

S5UETE LT OR, s

H TESU ATSUASWOS 001 B UTUITH| % fpua
s1geg peojay jasay opuf -Fngagq fingaq yrayn anpaq

spmejEuen dog [sworky do) [EjNejEU0D [ed0 [1%y 20

_ drem mopuii joelod obioT meiR wp3 A

The Interactive Development Environment for Declare

IDeclare:

Figure 5.1

92 CHAPTER 5. INTERACTION FOR DECLARATIVE PROOF

inside constructs such as case-splits. This is discussed further in the next
section.

e Visualisation. The location of logical cursor gives rise to a “current logical
environment”, in the sense of Section 3.1. The structures available in this are
accessible through a window on the right of the application. They are displayed
in hypertext form, i.e. with collapsible/expandable nodes for each article that
has been imported.

e Feedback. FErrors that arise during attempted manipulations of the logical
cursor are displayed in the bottom left window. Some elements of the feedback
are again displayed in hypertext form, e.g. counter examples can be accessed
by clicking on a highlighted region. This means large amounts of feedback can
be displayed quickly and compactly.

IDeclare is implemented in O’Caml-Tk [PR98] in 2000 lines of code, plus 10,000 lines
shared with the batch-mode Declare implementation. Declare typically utilises 6-10
MB of memory, and IDeclare does not add significantly to this total.

5.2.1 Logical Navigation and Debugging

Logical navigation is the process of moving the logical cursor to a desired location
within a Declare article. In IDeclare, the user controls the logical cursor with the
following commands:

e Declare. That is, “step over” a construct (e.g. a have, consider or ged as-
sertion, or a declaration in the specification language. Do not attempt to
discharge proof obligations that arise from it.

e Check. That is, “step over” a construct, but attempt to discharge proof obli-
gations.

e Step into. Move into a construct (e.g. a decomposition step). This will, for
example, move the logical cursor into the first branch of a case split.*

e Undo. Retract the last movement made with the logical cursor.

e Reset. Set the logical cursor back to the “empty” environment, that is, the
environment containing just the Declare standard basis.

One primary purpose of IDeclare is to allow the user to debug problematic justi-
fication steps within proofs, without repeatedly checking the entire script. This is
achieved as follows:

“Other cases may currently be selected by “declaring” the qed step that ends each branch, until
the desired case is reached. As in HOL IDeclare maintains a stack of pending cases. It would be
fairly straightforward to allow the user to select the desired case immediately.

5.2. IDECLARE 93

1. The user steps through the article, using a sequence of “Declare” and “Step
into” commands, moving the logical cursor to the problematic area of the
proof (for example, a ged step). Keyboard shortcuts are available for this, so
navigation becomes quite quick for the experienced user. No justifications need
be executed during this phase.

2. The user checks the justification with a “Check” command.

3. The user assesses the feedback, determines the adjustments that need to be
made to the proof, and edits the document accordingly.

4. The user tries the “Check” command again, and repeats steps 2-3 until the
step is accepted.

The “Declare” and “Step into” commands are only made possible by the use of
declarative proof. In particular, declarative proof allows logical navigation without
having to discharge obligations or execute user-defined tactics along the way. This is
precisely because a declarative description of a proof step tells us “what” is proved,
and not “how.”

Interactive logical navigation and debugging for tactic proofs was first developed
in TkHol [Sym95] (the author’s interface for the HOL theorem prover), where it is
possible to interactively move through the THEN/THENL structure of a HOL proof.
Each such navigation step requires the execution of a tactic (and thus, in the ter-
minology used above, we have a “Check” operation, and a “Step into” that requires
tactic-execution). The user could make incremental adjustments to the proof script
along the way, thus achieving a form of proof debugging. However, when navigating
typical tactic proof languages, the only feasible operation is to actually execute a
tactic, since we have no other way of knowing what its effects will be.

The navigation and debugging scheme we have described is primitive, but effec-
tive (we shall analyse why in the next section). Enhancements are certainly possible:

e The process of navigating to a problematic justification step could be easier
than at present. Ideally, the user would place the textual cursor at a location
and say “move the logical cursor here” or “show me the logical environment at
this location.” This would not be overly difficult to implement in the current
setting.

e The current system allows only one active logical cursor. Experience with
TkHol [Sym95] indicates that multiple active proofs are sometimes useful.

Finally, we emphasise that IDeclare does not maintain an exact correspondence
between the logical cursor and the text of the document. For example, if a definition
has been established (e.g. by a “Declare” step), and the user subsequently modifies
the definition (textually), then the user must undo the old definition and reassert the
new one to maintain the correspondence. That is, IDeclare is not a structure editor,
and the cursor of the text editor is not the same as the the logical cursor. Like many

94 CHAPTER 5. INTERACTION FOR DECLARATIVE PROOF

Task Typical (sec.)

Start up the interactive environment?® 5 (5)
Navigate to the location in the proof 10-60° (30)
Attempt to check the proof. 6-10¢ (10)
Interpret the feedback variable (30)
Determine the appropriate fix variable (30)
Textually make the fix variable (30)
Additional repetitions of last 4 steps (100)
Total (235)

“Presuming it is not already running

*Depending on the size and complexity of the proof, the location of the mistake
and the experience of the user

°The automated prover has a default timeout of 6 seconds

Table 5.1: Approximate time analysis for IDeclare. The “typical” times indicate a
range of typical possibilities, and the example times in parentheses represent one
hypothetical situation. Our analysis is deliberately informal: we are simply trying
to indicate the order of magnitude of the major contributing delays.

Emacs based environments [Sta95], IDeclare does have some understanding of the
syntactic structure of a Declare article — for example, it can syntactically detect the
textual bounds on the next declaration when executing a “Declare” step. It will then
move the textual cursor to the start of the next declaration, provided the previous
declaration was accepted.

5.3 Appraisal

In this section we perform an informal analysis on the costs and benefits of using
[Declare for a particular task, using “mean time to task completion” as our metric
of success. The times used are not meant to be definitive, and do not represent the
outcome of a controlled experiment. They are merely indicative, and based on the
author’s experience. This method of analysis is adapted from the analysis techniques
in Chapter 8 of Newman and Lamming’s Interactive System Design [NL95].

The task we shall analyse is that described in the previous section: correcting
an error in a justification in a proof. We have already outlined the steps required
to do this in IDeclare. Without IDeclare, the user must correct the mistake in a
standard text editor and then recheck the entire script. This must be repeated until
the mistake is fixed. Approximate analyses of completion times for the task in the
two systems are shown in Tables 5.1 and 5.2.

Although such an informal analysis does not establish conclusive results, it does
support our intuitions, and certainly helps guide the design of the interface. The
times for the hypothetical example indicate that, for a proof of medium complexity

5.3. APPRAISAL 95

Task Typical (sec.)

Start up the batch processor 5 (5)
Attempt to check all steps of the proof 10-180* (100)
Interpret the feedback variable (30)
Determine the appropriate fix variable (30)
Textually make the fix variable (30)
Additional repetitions of these steps (295)
Total (390)

“Depending on the size and complexity of the entire proof script. The delay can,
of course, be arbitrary large, but even long articles containing errors usually check in
under 3 minutes.

Table 5.2: Approximate time analysis for batch-mode Declare. See notes for Ta-
ble 5.1.

where two iterations are required to make the correction, IDeclare will indeed provide
a faster solution. This is not surprising: we have eliminated the repetition of a time
consuming step (the checking of other steps in a proof). The overheads required to
do this (such as navigating to the location) are not overly burdensome.’

We have chosen the task above in order to demonstrate a situation where IDeclare
is particularly useful. IDeclare is not always superior: for example, its text editor is a
little clunky and the user will normally prefer his/her own for large scale text editing
operations. Similarly, the visualisation tools are not always the quickest way to find
information: sometimes they are, but sometimes it is preferable to look through the
original source files. IDeclare is just a support tool, and its use is not mandated,
and so the user is free to select the approach that will be quickest depending on
the particular task. However, ideally further development could make IDeclare the
preferred tool for the majority of Declare related activities.

To summarize, what results have been established by developing IDeclare? Pri-
marily our aim has been to demonstrate that the proof debugging paradigm can
carry over to declarative proof systems. Furthermore, declarative structure is pre-
cisely what is required to support certain debugging actions (in particular “Declare”
and “Step into”). This indicates that a declarative proof style may allow for better
theorem prover interfaces, and this appears a promising direction for future research.

®As an aside, the analysis also indicates why the proposal to automate the navigation process
(see the end of Section 5.2.1) would provide a significant benefit, as it would cut 20-30 seconds off
the task completion time.

96

CHAPTER 5. INTERACTION FOR DECLARATIVE PROOF

Part 11

Case Study

97

Chapter 6
Javag

The previous chapters have described a set of tools and techniques for conduct-
ing “declarative” theorem proving in the context of operational semantics. In the
following two chapters we describe a major case study in the application of these
techniques: a proof of the type soundness of a subset of Java (Javag) using Declare.

The case study is significant in its own right, so for the most part we concentrate
on the substance of the case study rather than the role that declarative proof played
in its execution, which we summarize and discuss in Chapter 8.

Drossopoulou and Eisenbach have presented a formal semantics for approximately
the same subset of Java that we treat here [DE97a]. Our work is based on theirs
and improves it by correcting and clarifying many details.

Our main aim has not been to find errors. However, some significant mistakes in
the original formulation adopted by Drossopoulou and Eisenbach were discovered,
and we were able to provide feedback and suggestions to the authors. We also
independently rediscovered a significant error in the Java Language Specification
[GJS96]. Our methodology and tools enabled us to find the error relatively quickly,
and this demonstrates the positive role that machine checking can play when used
in conjunction with existing techniques.

In this chapter we briefly introduce Java and describe our formal model of Javag,
including our models of type checking and execution. We also briefly describe the
representation of the model in Declare, and asses the use of Declare for this purpose.
The proof of type soundness itself is described in the next chapter.

6.1 Java

Java [GJS96] is a programming language developed by Sun Microsystems, and has
exploded in popularity over the last 3 years. Although sometimes over-hyped as
heralding a new age of computing, the language design itself is highly competent,
incorporating many ideas into a framework palatable for the existing base of C++
programmers. It can be executed fairly efficiently with just-in-time compilers, and
comes equipped with a well-designed set of portable basis libraries. Perhaps most

99

100 CHAPTER 6. JAVAg

importantly, it is suitable for programming mobile code on the WWW, much more
so than C++ or other procedural languages.

Java’s suitability for WWW programming rests largely on its type system, which,
in principle, allows for efficient execution of code in a “sand-box.” Studies have
uncovered flaws in the security of Java and its implementations, including its type
system, and have pointed out the need for a formal semantics to complement the
existing language definition [DFW96, GJS96]. A full formal treatment of many
important aspects of the language (e.g. dynamic linking) has yet to be performed.
Because of these things, type soundness is clearly a property we are interested in for
this language.

The Java source language is compiled to a closely related bytecode format for
the Java Virtual Machine (JVM). Although the languages are different, their type
systems are quite similar. Java is defined by several standards, including those for
the source language [GJS96] and the Java Virtual Machine [LY97].

6.2 Our Model of Javag

The aim of a type correctness proof is to bridge the gap between:
e A model of the static checks performed on Javag programs; and
e A model of the runtime execution of the same.

The remainder of this chapter is devoted to describing these two models. We have
inherited much from Drossopoulou and Eisenbach’s work, so we concentrate on the
areas where our model differs. The material is rather technical and there are many
“building-blocks” to describe: the reader is encouraged to refer back to this section
as needed.

A picture of the components of the semantics is shown in Figure 6.1. We make use
of several intermediate languages along the way. The “annotated” language Javay
is the result of the static checking process and the “runtime” language Javapg is the
code executed at runtime. We assign typing semantics to each of these components
and show how these relate. We shall leave the description of the typing semantics of
Javap until the next chapter as it is an artifact of the type-soundness proof.!

6.2.1 The Java Subset Considered

The Java subset we consider includes primitive types, classes with inheritance, in-
stance variables and instance methods, interfaces, dynamic method binding, stati-
cally resolvable overloading of methods and instance variables, object creation, null
pointers, arrays, return statements, while loops, methods for the class Object and
a minimal treatment of exceptions. The subset excludes initializers, constructors,

IThe same is true of the static semantics for Javaa, but it is sufficiently close to those for Javas
that we describe them in this chapter.

6.2. OUR MODEL OF JAVAg 101

static
checking compilation execution
Java D Javas ~qnn Javag ~eomp Javag X state ~(T,p) Javag X state
!) !)
type = type = type Zwdn type

Figure 6.1: Components of the Semantics and their Relationships

finalizers, class variables and class methods, switch statements, local variables, class
modifiers, final/abstract classes and methods, super, strings, numeric promotions
and widening, concurrency, the handling of exceptions, dynamic linking, finalizers,
packages, binary compatibility and separate compilation.

In this study we are concerned with the Java language itself, rather than the
Java Virtual Machine (JVM). The two are closely related but the difference is non-
trivial: for example there are JVM bytecodes that do not correspond to any Java
text. Thus it remains a challenge to formalize and verify the corresponding type
soundness property for the JVM (for an attempt see [Qia97]). However, unlike many
high-level/low-level language combinations (e.g. C++/assembler) the type systems
of Java and the JVM are closely related, and a comprehensive study of the former is
a useful precursor to the study of the latter. Of course, even if we prove properties
of an abstract model of Java and/or the JVM, this does not guarantee the soundness
of a particular implementation.

6.2.2 Comparison with Drossopoulou and Eisenbach

Our model was originally based on that developed by Drossopoulou and Eisenbach in
version 2.01 of their paper [DE97b, DE97a].? The differences in the subset considered
are:3

e Object has Methods. We allow the primitive class Object to have methods.
It was when considering this extension that one mistake in the Java Language
Specification was discovered (see Section 7.4).

e Methods for Arrays. Arrays in Java support all methods supported by the class
Object (e.g. hashValue()). We include this in our model (with non-trivial
consequences). However our model of arrays is still incomplete, as Java arrays
support certain array-specific methods and fields, whereas in our treatment
they do not.

2This version was distributed only on the WWW, and is no longer directly available. If a version
is needed for reference please contact the authors.

3Note that Drossopoulou and Eisenbach have since progressed to model other aspects of the
language such as exceptions and binary compatibility [DE9S].

102 CHAPTER 6. JAVAg

o Return Statements. These were added as an exercise in extending the seman-
tics. They are non-trivial as static checks must ensure all computation paths
terminate with a return.

The main differences in the model itself are:

e Corrections. We correct minor mistakes, such as missing rules for null pointers,
some definitions that were not well-founded, some typing mistakes and some
misleading/ambiguous definitions (e.g. the definition of MethBody, and the
incorrect assertion that any primitive type widens to the null type).

e Representation. We choose different representations for some constructs, e.g.
type checking environments are represented by tables (finite partial functions)
rather than lists of declarations.

e Separate Languages. We differentiate between the source language Javag, the
annotated language Java,y and the ‘runtime terms‘ Javar. Javap is used to
model terms arising during execution and enjoy subtly different typing rules.
Drossopoulou and Eisenbach have since reported that the language Javay is
useful for modelling binary compatibility [DE9S8], because it allows us to model
precisely both compile-time and runtime analyses

e Simpler Well-formedness. We adopt a suggestion by von Oheimb that well-
formedness for environments be specified without reference to a declaration
order.

e No Static Substitution. We do not use substitution during typing, as it turns
out to be unnecessary given our representation of environments.

e No Dynamic Substitution. We do not use substitution during evaluation, but
use a model of stack frames instead. This seems simpler and is closer to a real
implementation.

The differences in our approach to the type soundness proof are detailed in the next
chapter.

6.2.3 Syntax

Figure 6.2 presents the abstract syntax of Javag programs, along with the changes
for the abstract syntax of the annotated language Java .

e Variables are terms that evaluate to storage locations and play the role of
lvalues in C.

e In Java, variables are annotated with the actual class referred to by the access,
and method calls are annotated by the argument signature resolved by static-
overloading.

6.2. OUR MODEL OF JAVAg

prim-type
simple-type
var-type
expr-type

literal

var

expr

stmt

method

field
class

prog

Figure 6.2: The Abstract Syntax of Javag and Javayu

bool | char | byte | short

int | long | float | double
primitive-type | class-id | interface-id
stmple-type[1™

var-type | void

bool | uchar | int8

int16 | int32 | int6] | ieee32 | ieeeb4
id
expr.field-name
ezpr. field-name
exprLexpr]
literal

class-name

var
null

expr. method-name(expr*)

expr. method-namemr_type hst(empr*)
new C

new comptypeLexpr]* [1*

if expr then stmt else stmi

while ezpr do stmt

var := expr
{ stmty; ...
erpr
return expr?

; stmit,; }

expr-type method-name (var-type xq, . ..
{ stmt }
var-type field-name
C extends U,y implements Iy, ...
fieldy; .. .; field,;

methody; ...; method,,;

, var-type x,)

In {

}

classy; .. .; classy;

prim-type = void | bool | char | byte | short

| int | long | float | double
ref-type = typell | class-id | interface-id | null
type = primitive-type | ref-type

Figure 6.3: von Oheimb’s Extended Range of Types

103

local variable)

object field)

annotated object field)
array element)

literal value)
dereferencing)

null literal)

method call)
annotated method call)

(

(

(

(

(

(

(

(

(

(object creation)
(array creation)
(conditional)
(while loop)
(assignment)
(block)
(evaluation)
(method return)
(method declaration)
(field declaration)
(class declaration)

(programs)

104 CHAPTER 6. JAVAg

e Formal parameters are represented by a list of identifiers and a table assigning
types to these identifiers.

The types that appear in the concrete syntax of Javag expressions are also shown in
Figure 6.2. Following von Oheimb’s treatment [Nv98] we extend the domain of types
to include a primitive void type, a null type to assign to the null literal during
typechecking, and syntactically differentiate between reference and plain types.*®
We use 7 and p to range over types, the latter used for method return types.

6.3 Preliminaries

In the next two sections we shall present the static semantics for Javas and Javag.
The complicating factors common to both are:

e Subtyping. Java allows subtyping in a typical object-oriented fashion, which
leads to a widening (<) relation.

o Forward Use. Java allows the use of classes before they are defined. Thus
we define type environments, extracted from all the classes and interfaces that
make up a program.

e Complex Well-formedness. The constraints on valid type environments are
non-trivial, e.g. non-circular class and interface hierarchy must result, classes
must implement interfaces and so on. One of the main challenges of this case
study is to identify precisely the well-formedness criteria required.

e Visibility. Aspects of the semantics depend on name-visibility properties, e.g.
to define fields and methods are visible from subclasses. Visibility is defined
by relations for traversing the class and interface hierarchies.

In this section we define the preliminaries that are required to deal with these prob-
lems.

6.3.1 The Structure of Type Environments

Constructs are given typing semantics with respect to type environments, which
contain several components (Figure 6.4). Always present are tables of class and
interface declarations. When typechecking variables and expressions we add a table
of local variable declarations, and for statements we also add the declared return type

4Unlike Standard ML, void is not a first-class type in Java, e.g. an array of voids is not possible.
We treat void as a first-class type in our models of Javaa and Javagr, but exclude it at the source
language Javas.

®Qur original model [Sym97b] used an overly complicated model of types, with multiple widening
and well-formedness relations for these. When we modified the proof to take advantage of von
Oheimb’s simpler formulation, the textual size of our formulation was reduced by around 15% — a
useful saving.

6.3. PRELIMINARIES 105

env = class-env X interface-env (Xvariable-env?) (xexpr-type?)
class-env = class-ids *°%5 class-dec
interface-env = interface-ids jable interface-dec
variable-env = variable-ids 2% type
class-dec = (superclass: class-id,

interfaces: set of interface-ids ,

fields: field-ids fable type,

methods: meth-ids X arg-types fable expr-type)
interface-dec = (superinterfaces: set of interface-ids ,

methods: meth-ids X arg-types bk type)

Figure 6.4: Type checking environments

of the method in order to check return statements. We often write environments as
records ((...)), and omit record tag names when it is obvious which record field is
being referred to.

We use T for a composite environment, I'V', I'C and I'! its respective components,
and I'(x) for the lookup of z in the appropriate table. We also use z € I" to indicate
that = has an entry in the relevant table in I'.

6.3.2 Well-formed Types

Types and other simple semantic objects are said to be well-formed, (e.g. I' = C' < 455 ,
or TE |- C wf_class in the Declare specification) if all classes and interfaces are in
scope. For example:

TFCOyuss =C €TC
Th IO =1el!

L' COcass rr Ioi"tf LH70y kT <>refty pt € prim-types
r-Cceo r-r1o FEr[1<¢ [E 70y ['Fpt Oy

refty refty refty
An Aside: Well-formedness predicates can be thought of as dependent predicate
subtypes (dependent because they are parameterized by, for example, I'). As such
they are not representable as types in simple h.o.l. (though would be in, say, PVS),
but in practice we treat them much like types.

Each relation we define has implicit side conditions, i.e. that each argument satis-
fies the appropriate well-formedness condition. For example, the relation I' - C C 455 C”
has the implicit side conditions - I'Oyeny, I' = C Oplass and I' E C7 O g5 . Using the

relation in Declare without being able to prove these side-conditions is a violation

5In the machine acceptable model we do not use such conveniences: the records are represented
as tuples.

106 CHAPTER 6. JAVAg

of our methodology, but correct usage is not proved automatically by typecheck-
ing. Note we may leave relations underspecified (see Section 2.2.6) where the side
conditions do not hold.

This matter is of some importance: for example, a typical type soundness the-
orem states that for each reduction to a new configuration cfg’ there exists some
7' such that the ¢fg’ conforms to 7/. (We define these terms in Chapter 7 — what
is important here is that 7 is existentially quantified.) If we don’t explicitly prove
that 7' is well-formed, then we have hardly guaranteed the correct operation of the
system. So, we explicitly add the assertion I' - 7/ & to the statement of the theo-
rem, and with such assertions, we can see by inspection that our final theorems treat
well-formedness correctly.”

6.3.3 The C 45, Cingy and :,, Relations

We define the subclass (Cjas5, Or subclass_of in Declare), subinterface (Ciyyp, or
subinterface_of) and implements (3, or implements) relations as shown below.
All classes are a subclass of the special class Object, though we do not have to
mention this explicitly as the well-formedness conditions for environments ensure it.

C has super Csyp T'F Csyp Cepgss C'
——— (reflC)]
P'ECC s C I'ECCass C

(stepC)

I has I, amongst its superinterfaces I' - Iy Cippyp I'
FF Ty 1 o) TF T oy I

(stepl)

C has I}, amongst its implemented interfaces
r-c Simp Ik

(implements)

6.3.4 Widening

Subtyping in Java is the combination of the subclass, subinterface and implements
relations, and is called widening (widens_to in Declare) and also for vectors of types
<yartys (tys_widen_to). The rules for widening in Java, are:

L'ECCgss C'
rec’ < class
'k C’ :imp I
N R
r-c C class c’ re1 Emtf r el '+ Igintf r pt € prim-types
TFC<C TFI<I T - I<O0bject TFC<I T F pt<pt

LE70 rEr<7
700 <0bject T'kFr<7[]

An example graph that covers all possible connection paths is shown in Figure 6.5.

"Thus it is insufficient to say “we assume all types are well-formed,” since well-formedness some-
times involves proof obligations.

6.3. PRELIMINARIES 107

void Object bool, int etc.
//Class
Iy Co
Eintf
I 1 Eclass
\m
Eintf Ch 7o [1
Eclass l <
I2 CQ T1 1
null

Figure 6.5: Connections in the Subtype (Widening) Graph.

6.3.5 Visibility

The relations <(gq and < (sees_field and seesmeth in Declare) tell us what
fields and methods are visible from a given class or interface.

e {etp: Finds the ‘nearest’ version of a method starting at a particular reference
type (i.e. an array, interface or class type).

For example, I' - 79 <petn (m, AT'), p holds whenever the method m with ar-
gument signature AT is visible from type 7 (in the type environment I') and
the ‘nearest’ version of the method has return type p.%

Methods may be overloaded, so, after static resolution, method call state-
ments are annotated with argument descriptors. Consequently we often write
(m, AT) as mdesc because the pair acts as a descriptor indexing into the
method tables. Methods with identical argument descriptors hide methods
further up the hierarchy, though their return types differ.”

The relation may be used with a definite argument descriptor, when it effec-
tively finds the return type for the visible version of that method. Constraints
on well-formed type environments ensure that this result is unique.

8Tt turns out not to matter exactly “where” the method was found.

9This is not the case in Java, but is dealt with by Drossopoulou and Eisenbach. One must
take more care with this extension than originally thought by Drossopoulou and Eisenbach— see
Section 7.4.

108 CHAPTER 6. JAVAg

e Jjpq: Finds the ‘first visible’ definition of a field starting at a particular class.

For example, I' = Cy <gq (fid, C), 7 holds whenever the field fid is visible from
Cp at class C in the type environment I' and is declared to be of type 7.

In Drossopoulou and Eisenbach’s original formulation these definitions were given as
recursive functions (FDec and MSigs). They only make sense for well-formed envi-
ronments, as the search may not terminate for circular class and interface hierarchies.
To avoid this problem we define the constructs as inductively defined sets. Method
visibility <(es, is defined via <¢ <7 and <t4 for the the three different reference
types. All methods found in the type Object are visible from array and interface
types (see also Section 7.4.1):

I['(Cp).methods(mdesc) = L
Cy has superclass Ciyyp
I'(Cy).methods(mdesc) = p L't Csup < mdesc, p

'k Cy < mdese, p (BaseC) 'k Co < mdesc, p (StepC)

['(Ip).methods(mdesc) = L

Isyp is a superinterface of I

['(Iy).methods(mdesc) = ['F L, <5 mdesc, p
(Ip).methods(mdesc) = p (Base) p (StepD)
'+ Iy <5 mdesc, p 'k Iy <5 mdesc, p

I'F 19 <¢ mdesc, p or

I' F 19 <4 mdesc, p or

n>0 I'F O0bject <y mdesc, 't 79 <4 mdesc, p or

== ¢ (Array) - (Any)

'k 711" <4 mdesc, p T F 7o <ypety, mdesc, p

Field visibility is simpler:

[(Co) fields(fid) = L

Cy has superclass Cyyyp
[(Co)fields(fid) =7 Tk Coup g (1d,C), 7
['F Co<pq (fid, Co), T L'k Co<pq (fid,C), 7

This relation is only employed during type checking and annotation of Javag, in
particular to determine the class where a field is declared. Once field names are
resolved we require a relation <ufeqs (has_field in Declare) that finds all fields
including hidden ones:

Co has superclass Csyp T'F Csup <giifierds fldspec (Super) ['(Cy) fields(fid) = 7
uper
I'+ Co Qaifierds fldspec P I' b Co Qautfietas ((fid, Co),7)

If I' is well-formed (see the next section) then I' = Cy <yufierds (fid, C), T holds for at
most one 7 (given all other arguments).

(Hit)

6.3. PRELIMINARIES 109

6.3.6 Well-formedness for Type Environments

Well-formedness for a type checking environment (- I' Opyepy = wf_tyenv) en-
sures crucial properties such as subclasses providing methods compatible with their
superclasses, and classes providing methods that implement their declared inter-
faces. Drossopoulou and Eisenbach originally formulated this by an incremental
process, where the environment is constructed from a sequence of definitions. We
have adopted a suggestion from von Oheimb who has pointed out that this is not
necessary, since the definition is independent of any ordering constraints. A finite-
ness constraint is needed to ensure no infinite chains of classes exist that do not
terminate in ‘Object’.

The criteria for each class in an environment are: 10

e Its superclass (if it has one) and its implemented interfaces must be well-formed
and no circularities can occur in the hierarchy;

e [f the class has no superclass it must be the special class Object.
e All the methods declared for the class must have well-formed types.
e All declared fields must have well-formed types.

e Any declared method that overrides an inherited method (by having the same
name and argument types) must have a narrower return type;

e All methods accessible via each implemented interface must be matched by
a method in this class or some superclass. The method is allowed to have a
narrower return type.

These constraints are written formally as:

it [(C) = (Csup, Is, fields, methods) then

'k Csup Oclass (A'l)
and —(I'F Csup Cclass C) (A.2)
and VI€Is. I 1O,y (A.3)
and Vfld, 7. if fields(fld) = 7 then I' - 7 Oy (A.4)
and Vm, AT, p. if methods(m,AT) = pthen I'F AT Oy and ' p Oy (AL5)

and Vmdesc, p1, p2-

it methods(mdesc) = p1 and T' b, Csyp e, mdesc, pa

then I' F p; < ps (A.6)
and VI € Is, mdesc, py, p2.-

if '+, I <y mdesc,p1

then Jps.I' - C <o mdesc, p and I' F pa < pq (A7)

A similar set of constraints must hold for each interface declaration:

10There are other criteria that are implicit in the structures we have used for environments, e.g.
that no two methods have the same method descriptor.

110 CHAPTER 6. JAVAg

e Its superinterfaces must be well-formed and no circularities can occur in the
hierarchy;

e All the methods declared for the class must have well-formed types.
e All declared fields must have well-formed types.

e Any declared method that overrides an inherited method (by having the same
name and argument types) must have a narrower return type;

e Any declared method that overrides an Object method must have a narrower
return type;

These constraints are written formally as:

if T'(I) = (Is, methods) then
Visup € Is. T = Tup Cings (B.1)

and Vlsyp € Is. ~(0 = Tgup Eipgp 1) (B.2)
and Vm, AT, p. if methods(m,AT) = p then ' - AT Oy and ' p Oy (B.3)
and Vi, € Is, mdesc, p1, p2.

it methods(mdesc) = p1 and T' F Isyp e mdesc, po

then T'F p; < po (BA4)
and VI, € Is, mdesc, p1, p2.

if methods(mdesc) = p; and ' F Object ey, mdesc, p2

then I' F p; < po (B.5)

In addition the class Object must be defined and have no superclass, superinterfaces
or fields.

dmethods. I'(Object) = (None, { }, methods, { })

Well-formedness of a type environment is sufficient to guarantee many important
properties including:

e Reflexivity and transitivity of T j4ss, Eintr, <.
e Monotonicity of <, up to <, with possibly narrower return types.

e Monotonicity of <aferds up to < (<iﬂd is not monotonic because fields may be
hidden).

e Uniqueness of fields when qualified by class names.

We state these formally in the next chapter.

6.4. STATIC SEMANTICS FOR JAVA 4 111

6.4 Static Semantics for Javay

In this section we present the static semantics for the annotated language Java,.
We present this language first because its static semantics are considerably simpler
than those for Javag, and because they take us considerably closer to the heart of
the soundness proof presented in the next chapter. The types assigned to Javaa
fragments are the same as the types that appear in the Javag source language. The
rules give rise to a series of relations (avar_hastype through to aprog_hastype
denoted here by I' = _: _and I' F _v" — we use subscripts when the exact relation is
ambiguous). The rules for variables are:

C'kFarr:7[] C'Fobj:Cy
rVid) =t [ide :int I+ Co <aufierds (fid, (C, 1)) ,
Tridir) T amGidar (A0ss) TF obj fldg:r (Field)
The rules for expressions are:
T is the primitive type for pval .
I'Fpval:7 (Prim) ' - null:null (Null)
F'kFd;:int (1<i<n)
L'F varzer 7 ’ —— NewArra
T var iy r P T new rld] ... 14,107 017" (v)
LE710
'k obj:1
I'karg;:tys; (1<i<n)
T+ 7 <pes, (meth, AT), p
L'FCOuss ['F tys <vartys AT
e Call
I'Fnew C:C (NewClass) L'+ obj.metharCargy, ..., arg,):p (Call)

Statements are checked against a given return type, and are not themselves assigned
types.

'Fwar:r ' b:bool
I'Fexp:7 LpFHtv
F-+<r Assi Lipkev I
Topk (var := exp)v (Assign) T,pk (if b then t else e)V 1)
Lopkstmt; v (1 <i<n) Tke:r
== Block) —=———— (E
Topk {stmty;...;stmt,} v (Block) Lpkev (Ezpr)
I'texp:t
p # void
rHr<p ~ void
(Return) p=Tol (Return')

[,pF (return exp) v I,pF returnv

112 CHAPTER 6. JAVAg

'k b:bool
L,pbk stmtv

[,pt (while b do stmt) v

(While)

When checking statements used as method bodies with non-void return types, we
ensure that a return is always executed:'!

always_returns(stmt) =
match stmt with
Block(stmts) -> existsl always_returns stmts
| If(e,stmtl,stmt2) -> always_returns(stmtl) & always_returns(stmt2)
| Return(ropt) -> true
| _ -> false

This leads to the following rule for methods in class C'. Method bodies are written
here in lambda notation, and are typechecked with reference to C' as C provides the
type for the this variable:

VE = {this — C} ® AT
Lo VE,pt+ body v
if rt # void then always_returns(body)

I,C,p, AT + body v

Finally, the rules for classes and programs are:

[(C) = (Csup, Is, fields, methods)
for each m,AT
methods(m, AT) = pA
methbods(m, AT) = bod —
I,C,p, AT F bod v

'k class C extends (g, implements Is {fields; methbods} v

Lt class;vv (1 <i<n)
't classy; ...; class, v

6.5 Static Semantics for Javag

The type-checking rules for the source language Javag are close to those for Javag,.
The additional complicating factors are:

"'The function existsl checks that a predicate is satisfied for some element of a list.

6.6. THE RUNTIME SEMANTICS 113

e Deterministic Algorithm. The Javag typechecking rules must represent a prac-
tical type-checking algorithm, while the rules for Java,s simply check the va-
lidity of a type-assignment that can be derived from a successful application
of the Javag rules.

e Static Resolution. Java implementations disambiguate field and method refer-
ences at compile-time. Method calls may be statically overloaded (not to be
confused with the object oriented late-binding mechanism), and fields may be
hidden by superclasses.

Constraints are placed on types appearing in the source to accurately reflect the
Java language. We omit the typing rules for Javag, though they are formalised in
Declare. The rules to annotate Javag (~qppn) to produce Javay are similar to the
Javag type-checking rules and again we omit them here (see also Drossopoulou and
Eisenbach’s work [DE97a]).

6.6 The Runtime Semantics

We follow Drossopoulou and Eisenbach and model execution by a transition seman-
tics, i.e. a “small step” rewrite system [Plo91]. A small step system is chosen over a
“big step” (evaluation semantics) because it enables us to state substantially stronger
results about the runtime machine — in particular we can prove that the abstract
machine does not “get stuck” (see the liveness result in Chapter 7). This cannot
be done with a big step semantics. Small step systems also give meaning to non-
terminating and non-deterministic programs, and clearly we would like our model
to be extendable to non-deterministic Java constructs such as threads. However us-
ing a small step system does impose significant overheads in the safety portion of
the type soundness proof, precisely because certain intermediary configurations arise
that need not be considered in a big step system.

6.6.1 Configurations

A configuration (t,s) of the runtime system has a term t and a state s. The term
represents both expressions yet to be evaluated and the partial results of terms
evaluated so far. Because of this, the term language must be extended to include
addresses, void values and incomplete method invocations. We merge variables into
the term structure and deal with three kinds of terms: an expression, a list of
expressions, and a statement.'? The syntax for runtime terms is shown in Figure 6.7.

The program state s = (¢, f) consists of a frame ¢ of local variables and a heap
h containing objects and arrays. In Java, local variables are mutable, but only one
frame of variables is active at any one time, hence we cannot access locations further
up the stack.

12In principle the “top level” configuration always contains an expression since Java begins exe-
cution with the main method from a given class.

114 CHAPTER 6. JAVAg

configuration = (rexp | rexp list | rstmt) x state
| (exn-name x state)ayn
| (value x state) ety
state = (frame: (id fable val),
heap: addr fable heap-object)
heap-object = < (O, fldy) v wvaly,...,(Cpn, fid,) = val,, > (object)
| [lwaly,...,val,—111" (array)

Figure 6.6: The Runtime Machine: Configurations and State

rval = literal (literal value)
| addr (pointers)
| null (null pointer)
rexp = rval (simple value)
| id (local variable lookup)
| rezps.fld (field lookup)
| rexplrexp] (array lookup)
| rexp. Mar (rexpx) (method call)
| new C (object creation)
| new typelrexp] + [1* (array creation)
| {rstmt} frame (active method invocations)
rstmt = if rexzp then rstmt else rstmt (conditional)
| while rexp do rstmt (while)
| return rezp (return)
| id := rexp (local variable assignment)
| rexp.[C1fld := rexp (field assignment)
| rexplrexp]l := rexp (array assignment)
| {rstmiy;...;rstmi,; } (block)
| rexp

Figure 6.7: The syntax of runtime terms

6.6. THE RUNTIME SEMANTICS 115

Heap objects are annotated with types for runtime typechecking (in the case of
arrays this is the type of values stored in the array). The symbol @ denotes replacing
the active frame, while s(id) and s(addr) are the obvious lookups.

Global parameters to the rewrite system include an environment I' (containing
the class and interface hierarchies, needed for runtime typechecking) and the program
p being executed. The latter contains Java terms: each time a method is executed
we create a Javag term for the body of that method.

6.6.2 The Term Rewrite System

A configuration is progressively modified by making reductions. The rewrite system
thus specifies an abstract machine, which is an inefficient but simple interpreter for
our subset of Java. The reduction of terms ~» ;) is specified by three relations,
one for each kind of configuration (exp_reduces, exps_reduce, stmt_reduces in
Declare). We typically omit the parameters I' and p.

Ground Terms

A term is ground if it is in normal form, i.e. when no further reduction can be made.

e An expression e is ground iff it is a value, which we denote by k, b or v for an
integer, boolean or arbitrary value;

e A list of expressions is ground iff all the expressions are ground;

e A statement is ground iff it is an empty block of statements or a ground
expression.

Transfer of Control

The right-hand-side of a reduction may be either a regular configuration, or a con-
figuration that represents a transfer of control because of an exception or a return
statement (marked with exn! or return!). We do not list all the rules for propagating
exceptions or return statements here — examples of each are:

arr, s~ (exn,s') stmt, s ~ (rval, s")

return!
{stmt; stmts}, s ~ (rval,s")

exn!
arrLidz], s ~ (exn, s')

exn! return!

Note that transfer of control happens in a “bigstep” fashion, i.e. it takes only one
reduction to transfer control to the handling location. This is because no particularly
interesting intermediary configurations arise during transfer of control.

116 CHAPTER 6. JAVAg

Redex Rules

“Redex” rules serve to navigate to the location where we next reduce a term, and
thus define evaluation order. For example, the redex rules for array access are:

. . 1o
arr,s~» arr',s' iz, s~ idz, s

arrLidz],s ~ arr'[idz],s’ vlidzl, s~ vlidz'],s’

For brevity we omit redex rules from here on, except where they relate to catching
a transfer of control.

Array Access

Once the component expressions of an array access have been fully reduced we resolve
the access as follows:

k<0
addr[k],s ~» (IndOutBndExc, s)

nulllv], s ~ (NullExc,s)

exn! exn!

s(addr) = [lvalo,...,val,—111" k>n s(addr) = [Lvaly,...,val,_1117 0<k<n
addr [k],s ~ (IndOutBndExc, s)

exn! addr [k],s ~ vy, s

Field and Local Variable Access

s(addr) =< vals >

vals(C, fid) = v s(id) = v
null.fldg,s ~ (NullExc, s)aynl addr.fldc,s ~ v, s id,s~v,s
Object and Array Creation
addr is fresh in s
flds = {fldspec | T, C <gpfieias fldspec}
obj = < initial values for ﬂdsc >
s' = s « (addr, obj) 0<i<len(k) k;<O0
new C,s~» addr,s' new Tm [1™, s~ (BadSizeExc, s)exn!

V0 < i < len(k). k; >0
(s', addr) = Alloc(s, 7, k,m)

new Tm [1™, s~ addr,s'

6.6. THE RUNTIME SEMANTICS 117

Here Alloc recursively allocates k1 X ... k,_1 arrays that contain initial values appro-
priate for the type 7[1™. This process is described in detail in [GJS96].13

The heap is not garbage collected. A garbage collection rule allowing the collec-
tion of inaccessible items could be added. Note garbage collection is semantically
visible in Java because of the presence of finally methods.

Method Call

Tag(s, addr) =7
MethBody(meth, AT, T,p) = AZ.body
¢ = {& — U, this — addr}

null.methop(¥),s ~ (NullExc,s) addr. meth a7 (V), s ~ {body},, s

exn!

Tag finds the type tag for the array or object at the given address. MethBody(meth,
AT, 7,p) implements dynamic dispatch: it finds the method body with name meth
and type signature AT relative to the type 7.

The result of calling a method is a method invocation record. These may be
nested, and thus the term structure effectively records the stack of invocations.

Active Method Invocations

Inside active method invocation blocks we replace the frame of local variables. Trans-
fers of control due to a return are also handled here.

body, (¢, h) ~ body, (¢', ') body, (¢, 1) ~ (rval, (¢, 1)) reryrn!
{bOdy}¢7 (QsO; h) ~ {bOdy,}¢’7 (QsO; h’) {bOdy}¢7 (d)O; h) ~ rval, (¢07 h,)

Lists of Expressions

Vectors of expressions are reduced to values prior to method call and array creation,
using just one redex rule:

e, s~ e}, s

(V150 e vy Vit €4ye e y€p), 8~ (V1,00 V-1, €500 €0), S

!

13This model of array creation should be modified if threads or constructors are considered. Array
creation is not atomic with respect to thread execution, may execute constructors (and thus may
not even terminate), and may raise an out-of-memory exception.

118 CHAPTER 6. JAVAg

Block, If, While and Return Statements

The non-redex rules are:

stmt_ground(stmnt) if b then stmt = stmty else stmt = stmis
{stmt;stmts}, s ~ {stmts},s (if b then stmt, else stmtp),s ~> stmt,s

(while e do stmt),s~» (if e then {stmt;while e do stmt} else {}),s

return v, s~ (v,s) return, s ~ (void,s)

return! return!

Assign to Arrays

The rules for assigning to arrays are similar to the rules for resolving array accesses,
except, of course, when the action is resolved. For brevity we omit the rules that
detect null pointers and array bounds errors.

Java performs runtime typechecks at just two places: during array assignment,
and when casting reference values. Runtime typechecking is needed for array assign-
ment because the type available on the left may become arbitrarily narrower. Casts
are not covered in this case study: they are a trivial extension once runtime checking
for arrays is in place. The partial function Typecheck checks that an address value
addr to be stored is compatible with the type tag attached to a target array 7, i.e.
that I' - Tag(#, addr) < 714

s(addr) = [Lvaly,...,val,,—111"

0<k<n s(addr) = [Lwaly,...,val,,—1117
Typecheck(T, s, v, 7) 0<k<n
s’ = “replace valy with v in s” —Typecheck(T, s, v, T)

(addr (k] := v),s~ void,s’ (addr[k] := v),s~» (ArrayStoreExc, 5)ayp!

Assign to Fields and Local Variables

No runtime typechecking is required when assigning to fields or local variables, be-
cause, as we shall prove in the next chapter, the static checks are adequate.

s(addr) =< vals >’

s’ = “replace fld with v in vals” s’ = “replace s(id) with v in s”

(addr.fldo := v),s ~ void,s’ (id := v),s~ void, s’

14This notion of runtime type checking comes from Drossopoulou and Eisenbach’s original work
(weak conformance) and is really a little too strong: it allows the runtime machine to check the
conformance of primitive values to primitive types. No realistic implementation of Java checks at
runtime that a primitive type such as int fits in a given array slot.

6.7. THE MODEL AS A DECLARE SPECIFICATION 119

psyntax
syntax csyntax rsyntax
statics runtime

Figure 6.8: Organisation of the Model in Declare

6.7 The Model as a Declare Specification

So far we have described our model of Javag in the traditional manner — however,
the model has, of course, been realised as Declare specifications. The model runs
to around 2000 lines, and we have shown an extended excerpt in Appendix A. The
dependency graph between files in the model is shown in Figure 6.8. The use of three
similar versions of the language results in some duplication. However, the need for
clarity was perceived to be greater than the need for brevity. Importantly, the
Declare model could be easily read and understood by Drossopoulou and Eisenbach
when shown to them.

We have discussed the use of code generation to validate the correctness of a
Declare model against our informal expectations in Section 2.4. Declare produces
a Mercury module for each article we have written. Test programs are expressed
as higher order logic expressions.'® Many errors were discovered by using these
techniques (more than 15). The breakdown of these was roughly as follows:

e Around 5 variables that were only used once, because of some kind of typing
mistake.

e Around 5 Mercury mode violations, because of typing mistakes and some log-
ical errors.

e Around 5 logical mistakes in the typing and runtime rules, detected when
actually executing expressions.

It is clear that validation of this kind plays an essential role in stress-testing the
integrity of such a development. Further, the same tests can be used as the semantics

5Better would be the ability to parse, compile and run programs directly from concrete syntax.
Such a facility could be added, perhaps by using Boulton’s Claret tools [Bou97].

120 CHAPTER 6. JAVAg

is extended and modified. After making some modifications to the semantics we
detected several new mistakes by re-running earlier test cases.

Chapter 7
Type Soundness for Javag

In this chapter we describe the type soundness properties we proved for Javag and
state the major lemmas used in their proof. We also present extracts from the
Declare proofs, and discuss the errors found while performing these proofs.

7.1 Conformance

Informally, type soundness states that a well-typed Java program does not “go
wrong” at runtime, in the sense that it never reaches a state that violates condi-
tions implied by the typing rules. One aspect of type soundness is captured in the
following statement from the Java Language Specification [GJS96]:

The type [of a variable or expression] limits the possible values that the
variable can hold or the expression can produce at runtime. If a runtime
value is a reference that is not null, it refers to an object or array that
has a class ... that will necessarily be compatible with the compile-time

type.

The task of this chapter is to define what is meant here by “limits” and “compatible,”
a notion we call conformance (<:). We then show that conformance is an invariant of
the abstract runtime machine described in the previous chapter. Like all invariants,
it is a two-edged sword:

e Conformance must be strong enough to ensure the machine can always make
a transition from a conforming configuration;

e Conformance must be liberal enough to ensure that every such transition re-
sults in another conforming configuration.

Conformance is defined for all major artifacts of the runtime machine, beginning with
Javap values, expressions and statements. The rules for conformance naturally bear
a similarity to the typing rules for Javay,: e.g. conformance does not assign types,
but rather checks conformance given a particular type. However, unlike Java 4:

121

122 CHAPTER 7. TYPE SOUNDNESS FOR JAVAg

e Conformance is also defined for frames, heaps, states and configurations, rela-
tive to type assignments for these constructs;

e We define conformance “up to widening,” so that, for example, any runtime
reference object conforms with the type Object, and runtime objects of actual
class A are compatible with type B if I' - A C 455 B.

e In a few places (especially assignment), the rules for conformance must be
weaker than one might think. This accounts for certain intermediary states
that arise during computation but are not acceptable as inputs.

Without further ado, we proceed to the necessary definitions.

Frame, Heap and State Typings

A frame typing ¢, is a partial function that assigns a typing upper bound to each
storage location in a frame ¢. Similarly a heap typing h, assigns a type to each
storage location in a heap fi.' A state typing s, is a frame typing and a heap typing.
Well-formedness (I' - _<) extends to frame, heap and state typings in the natural
way. For heap typings we impose the constraint that all types in the assignment
must be reference types.

Value Conformance

A value v conforms to a type 7 with respect to a type environment I and heap typing
h according to the rules:

pt is the type for literal pval 7 is any reference type
[, A, Fvoid <:yq void [,k opval <tpygr pt LA Fnull <iyy 7

Cohr Fo<iyg T
h;(addr) =1 <7
D h Foaddr <y T Lo Fo<iyuT

Note the last rule gives value conformance up to widening.

LAs it happens the types in a heap typing are exact rather than upper bounds. Drossopoulou
and Eisenbach preferred not to use a heap typing and instead recovered the heap type information
from the runtime type tags stored alongside objects in the heap. We used a heap typing in later
versions of our work for consistency and to preserve the separation of concerns between runtime and
static type information. That heap static types can be fully reverse engineered from the runtime
tags in Java is somewhat unusual, and we have chosen an approach that works when this is not
possible.

7.1. CONFORMANCE 123

Frame and Heap Conformance

An object conforms to a class type C if its type tag is C' and each expected field
value is present and conforms to the appropriate type. Similarly, an array conforms
to a type if its type tag matches and its values all conform:

dom(vals) = {fide | I' b C <apfieras (fidz, 7)}
Vfidz, 7. T'F C Qanfierds (fide, 7) — U, he = ovals(fide) <ty 7

T, hy < vals > <:peapobj C

Vi.0<t<n =Dk Foal; <y 7
L, h; = [lvalo, ..., val, 1117 <ipeapobj 7L

A heap fi conforms to a heap typing A, if each has the same domain and each
heap object (either an array or object) conforms. Similarly, a frame ¢ conforms to
¢- (relative to a heap typing f;) if each has the same domain and their contents
conform point-wise.

dom(#) = dom(h;) dom(¢) = dom(¢,)
Vaddr € . T, ki F Ti(addr) <:heapoj ir(addr) — Vid € ¢. T, Ty b ¢(id) <:yo by (id)
I h<ipeqp ir Lohe B ¢ <:frame ¢r

Finally, a state conforms to a state typing if its components conform:
r'e h§5heap hr
Lh Fo < frame br
L'k (,h) <:(¢-,hir)

Term Conformance

Conformance of expressions and statements is measured relative to a state typing.
While most the rules ensure essentially the same typing conditions as Javay, we
have added rules for incomplete method invocations and to ensure the relation is
monotonic up to widening. Finally the rules for assignment are subtly different,
something which is essential as we shall see.

The rules for runtime expressions are:

/ F,ST F oarr <2ezp T[]
(i) Lo » 81 idy Szea:p int
[alA

F, (¢T, ﬁT) id <iemp T (C ccess)

I,s, = arrlide] <tegp T (ArrayAccess)

I, s, - obj <iewp Co
[= Co Qanfieras ((fid, C), 1) , Dohr Fo<iygT
: (FieldAccess)
Iysy Fobj.fldg <tegp T Ly (r, b)) Fo<iegyT

(Value)

124 CHAPTER 7. TYPE SOUNDNESS FOR JAVAg

LETOy
[,sr Fdi<tegpint (1<i<n) CFCO
— - — NewA class N
s, Fnew 7[di]...[dy] <tegpT[1" (NewArray) I')s; Fnew C <y C (NewClass)
LE710
[,s:Fobj <tegpT
I, s: Farg <iemp AT; (1<i<n)
T'F 7 <y (meth, AT), p
et (Call)
I',s; F obj.methCarg,, ..., arg,)<:iexpp
The new rules for expressions are:
I ¢;— <>frame—type
Lh F¢f < frame ¢
L, (¢!, k), pk body v IysrFe<iegyt
if p # void then always_returns(body F-+'<r
() (ActiveCall) (Mono)

T, (¢, hr) F {body}d,, <tezpp IsrFe<iegT

Note that checking conformance for an incomplete method call requires a ¢/ for the
frame ¢'.

The rules for runtime statements are as follows. We omit the rules for while, if
and block statements for brevity.

[,s, - oby <iemp o)

¢-(id) =T '+ Co <aiifietds ((fid, C), 1)
L (¢r, hr) Foeap <tegp 7' Iysy Foexp <tegp 7’
rer<r Local rer<r Field
T Gr i (i = e v D T (ob il = ey D)
L, sr b oarr <iegp T[]
[, sr Fidy <iegp int
Iysy Foexp <tegp 7’ IysrFe<ienyT
A — = (E
D,sr,pt (arrlidz]l := exp) v (Array) [sq,pkFev (Ezpr)
[)s; Fexp <iegpp
p (Return)

[,s;,pk (return exp) v

7.2. SAFETY, LIVENESS AND ANNOTATION 125

Configuration Conformance

A configuration of the runtime machine (e, s) conforms to a configuration typing
(1,s;) if and only if both the state and the expression conform. An exceptional
configuration conforms if the state conforms (exceptions do not carry values in our
model), and a return configuration conforms if the return value conforms to the
expected return type:

'ks<:s; 'ks<:s;
IsrFe<iegpT I'Fs<:s: U)sy Frval <:yq p
L'F(es)<:(r,sr) TI'k (e7s)exn! <:i(r,s7) T,pk (rvalas)return! <isp

We omit similar definitions for exceptional configurations and configurations where
the term is a statement or a vector of expressions.

Finally, we say that %, is smaller than 7, (h; peqpfiy) if and only if 7, is a sub-
function of A/, i.e. its domain is no greater and within its domain the functions agree.
The intuition is that A is the typing assigned after we allocate new elements in the
heap. Similarly one state typing s (= (¢, h;)) is smaller than another s = (¢, 7))
(srDstatesy) if ¢ = ¢l and (fir Dpeqph’.), and similarly for configuration types. Note
these relations are simple concepts, unrelated to widening, and z < y simply mean
“r has less cells allocated than y, but is otherwise identical.”

7.2 Safety, Liveness and Annotation

We are now in a position to state the type soundness results. As mentioned before,
we distinguish between a safety property (subject reduction) and a liveness property:

Theorem 3 Safety For a well-formed type environment I, an annotated, typechecked pro-
gram p and a configuration C that conforms to C;, then if C' can make a transition to some
C' there exists a larger C] such that C' conforms to CL. That is, if F I’ Otyenw, LFp <,

L' Cr O, ' C<LCr and C~pypy C' then there exists C] such that
e I CLO
L4 C1‘1' S‘cfg C,-

T

e '-C'L:C]

Note we assume a reduction is made, rather than proving that one exists. This
distinguishes the safety property from the liveness property. In the presence of non-
determinism it is not sufficient to prove that a safe transition exists: we want to
show that all possible transitions are safe.

Theorem 4 Liveness For a well-formed type environment I, an annotated, typechecked
program p and a C that conforms to C., then if the term in C is not ground then C can
make a transition to some C'.

126 CHAPTER 7. TYPE SOUNDNESS FOR JAVAg

To complement the type soundness proof, we prove that the process of annotation
preserves types:

Theorem 5 Annotation For a well-formed type environment ' and a typechecked Javas
program p then there exists a unique p’ such that T't- p~s g, p'. Furthermore p' typechecks
as a Javas program.

7.2.1 Key Lemmas

The following is a selective list of the lemmas that form the basis for the type
soundness results. These have, naturally, been checked using Declare.
All declared classes and interfaces are well-founded

That is, if I' = C' O ess then I' = C' C 455 Object, and similarly each declared
interface has a chain of superinterfaces that ultimately terminates with an
interface with no parents.

Object is the least class

If I' - Object C 455 C then C' = 0bject.

Widening is transitive and reflexive
The C 455, Cings and < relations are all transitive and reflexive for
well-formed environments and types.

Narrower types have matching structure

IfT'+ 7' <7 then

e If 7 is an array type o [1" then 7' is an array type o' [1" where
'ko' <o.

e Similarly, only primitive types are narrower than themselves, and only
subclasses are narrower than class types that are not Object.
Conforming values have matching structure
I, R o<y T then

e If 7 is a primitive type then v is a matching primitive value.

e If 7 is an array type o [1" then v is either null or an address addr with
hr(addr) =0'[1" and T+ o <o'.

e Similarly, if 7 is a non-Object class type C then v is either null or an
address addr with h;(addr) = C' and T' - C' C 455 C', and so on.
Field indexes are unique

That is, the relation <,yfe1qs finds at most one field for each field index.

7.2. SAFETY, LIVENESS AND ANNOTATION 127

Compatible fields and methods exist at subtypes

Methods and fields visible at one type must still be visible at narrower types,
though with possibly narrower return types. That is, if

F l_ Cl Eclass 00 and
['F Co <aitfields (fidz, tysia)
then I' b C1 <qgpifields (fidz, tysia)-

Similarly if T'F 7 <pep, (m, AT), p and T' F 7/ < 7 then there exists some p’
with

T F 7' < e (M, AT), p' and
L'kp' <p.
Method lookup behaves correctly
Fetching the annotated body of a method using dynamic dispatch from 7

results in a method of the type we expect, and furthermore the method was
typechecked with reference to a this-variable type that is compatible with 7,
ie.if

Tk 7 <pen (m, AT), p and

MethBody(m, AT, 7,p) = meth_body
then there exists C" such that

'+7<C" and
I, C'" - meth_body v .
Compilation behaves correctly

If I' F mbody : ty,e: and I' F mbody ~»comp rmbody then I' - rmbody : ty,e:,
where ~»cpp is the process of turning a Java, term into a Javap term. Note
compilation is an almost trivial process in the current system, so this lemma is
not difficult.

Relations are preserved under narrowing of heaps.

This holds for the value, frame, expression and statement conformance
relations.

Atomic state manipulations create conforming states

We prove this for all primitive state manipulations, including object and array
allocation, field, array and local variable assignment. The case for array
allocation involves a double induction because of the nested loop used to
allocate multi-dimensional arrays.

Method call creates a conforming state
That is, the frame allocated for a method call conforms.

Runtime typechecking is adequate

That is, typecheck guarantees that a value conforms to the given type.

128 CHAPTER 7. TYPE SOUNDNESS FOR JAVAg

7.3 Example Proofs in Declare

We now outline the Declare proofs of some of the theorems from in the previous
section. The reader should keep in mind that when these proofs were begun, the
only guide available was the rough outline in [DE97b], and this was based on a
formulation of the problem that was subsequently found to contain errors. Thus
the process was one of proof discovery rather than proof transcription. For each
proof we shall a short outline in vernacular mathematics, followed by the Declare
proof script, to demonstrate how proof outlines are transcribed. Although a wvery
powerful automated routine may be able to do away with most of our proof scripts
after the fact, the very process of writing them typically corrected significant errors
that would confound even the best prover.

7.3.1 Example 1: Inherited Fields Exist
Inherited Fields Exist

Given well-formed I', Cy, C1, 7 and a field descriptor fidz where

I'-Ch C class Co
I'F Co <aufietds (fidz,vr)

then I' b C1 <gpifieds (fide,v-). That is, field existence is preserved at
subclasses.

The proof is by induction over the derivation of the C s judgment: in each case
the result follows using the rules (Hit) and (Step) from page 108.
Now, the proof in Declare is:

thm <inherited-fields-exist>
if "TE wf_tyenv" <TE_wf>
"TE |- CO wf_class"
"TE |- C1 wf_class"
"TE |- Cl1 subclass_of CO" <subclass>
"TE |- CO has_field fspec"
then "TE |- C1 has_field fspec"
proof
proceed by rule induction on <subclass> with Cl variable;
case BaseC: ged by <has_field.Hit>;
case StepC: ged by <has_field.Step>,
<wf_tyenv.class_superclass_declared> [<TE_wf>];
end;
end;

In the step case of the induction we invoke a well-formedness condition (correspond-
ing to (A.1) on page 109) in order to prove the intermediary class in the subclass
relation is well-formed.

7.3.

7.3

EXAMPLE PROOFS IN DECLARE

.2 Example 2: Field Assignment

Field assignment preserves conformance.

Pro

129

Given well-formed I', C, C', ¢, ho, h1, so, 51, ¢+, Ar, S;, v, v; and a field

descriptor fidz where
so = (¢, ho) and s1 = (¢,)
'ksp<:s;
h-(addr) =C"'
I'F C" <anfierds (fidz, vr)
[h o<y vr

ho(addr) = < fidv, v valy, ..., fidz, = val, >

h1 = ho with fide — v at addr

then I' F 51 <:s,. That is, if s; is the result of a field assignment operation on

S0, then s; conforms to the same type bound as sg.

of: Let obj, =< (C1, fld,) v+ wvaly,...,(Cpn, fid,) = val,, > and obj, be the result
of replacing the value of field fidz by v in 0bj,. We have I, iir I 0bjy <:peqpopj C' because
so conforms at addr. This in turn means the type tags match, that is C = C'. The values
inside obj, conform to the types as found by <gfie1qs, as do the values inside obj, because
the new value v conforms. Thus T', ii; = 0bj; <tpegpopj C' and I' - hy <ipeqp fir by

straightforward application of the rules to derive these judgments and the result follows.

Now, the proof in Declare is:

thm
if

the
proo
le

ha

<field-assign-conforms-lemma>
"TE wf_tyenv" <TE_wf>
"TE |- C wf_class" <C_wf>
"sO0 = (frameO,heap0)"
"sl = (frameO,heapl)"
"ST = (FT,HT)"
"TE |- sO state_conforms_to ST"
"flookup HT taddr = Some(VT(ClassTy(C),0))" [autorw]
"TE |- C has_field (fidx,vty)"
"(TE,HT) |- sval rval_conforms_to Some(vty)"
"flookup heapO taddr = Some(OBJECT(fldvalsO,C’))"
"fldvalsl = fupdate fldvalsO (fidx,sval)"
"heapl = heapO <7++ (taddr,0BJECT(fldvalsl, C’))"

n "TE |- s1 state_conforms_to ST";
£
t "objO = OBJECT(fldvals0,C’)"
"objl = OBJECT(fldvalsi1,C’)";
ve "(TE,HT) |- objO heapobj_conforms_to VT(ClassTy(C),0)"

by <state_conforms_to.heap>, <heap_conforms_to.rool>;

<heapobj_conforms>

130 CHAPTER 7. TYPE SOUNDNESS FOR JAVAg

have "C = C*"
by <heapobj_conforms_to.object-tag-matches> [<heapobj_conforms>,"fldvalsO","C’"];

have "Vvty’. TE |- C has_field (fidx,vty’) < vty’ = vty" [rw] <x>
by <object-fields-form-graph> [<TE_wf>,<C_wf>],
<frel_is_graph_rool> ["Afspec. TE |- C has_field fspec"/R,"fidx"/x,"vty"/y]l;

have "(TE,HT) |- fldvalsl fldvals_conform_to C"
by <heapobj_conforms_to.object-fields-conform> [<heapobj_conforms>,"fldvalsO"],
<fldvals_conform_to.rool> ["fldvalsO","TE","HT","C"],
<fldvals_conform_to.derive> ["fldvalsi","TE","HT","C"], <x>;

have "(TE,HT) |- objl heapobj_conforms_to VT(ClassTy(C),0)"
by <heapobj_conforms_to>;

have "TE |- heapl heap_conforms_to HT"
by <heap_conforms_to>,<eq_fsets>,<state_conforms_to>,<in_fdomain>;

qed by <state_conforms_to>;

end;

The proof has clearly required extra detail: but although we have had to reason
about the uniqueness of field descriptors, otherwise the proof follows essentially the
same outline. Note that many of the explicit instantiations are not required post
facto (we leave them in after completing the proof simply because there is little
point in taking them out).

Note also that we have survived without naming many local facts. This is because
the proof obligations happen to be simple enough, so that implicitly including most
facts at each justification does not significantly confuse the automated engine.

7.3.3 Example 3: Monotonicity of Value Conformance Under Allo-
cation

Remember i, jeqp fil simply means A records types for some locations not men-
tioned in A;. Clearly the conformance relations for values and other terms are
monotonic under this relation:

Value conformance is monotonic under Jjqp.
Given well-formed I', h,, h., v and 7, where I', i, F v <ty 7 and h; peqp AL

then I', AL Fo<iygT.

The proof is by induction over the derivation of I', fi; - v <:,4 7, and the only non-
trivial case is typing for addresses, when we must use the appropriate property of
heap- The proof in Declare is:

thm <val_conforms_to-mono-lemma>

7.4. ERRORS DISCOVERED 131

if "TE wf_tyenv"
"HTO htyping_leq HT1"
"(TE,HTO) |- val rval_conforms_to ty" <conforms>
then "(TE,HT1) |- val rval_conforms_to ty";
proof
proceed by rule induction on <conforms> with val,ty variable;
case Prim: qed;
case Null: qged;
case Addr: ged by <htyping_leq.rool>, <in_fdomain>,
<rval_conforms_to.Addr>;
case Trans: ged by <rval_conforms_to.Trans>;
case Void: qed;
end;

end;

7.4 Errors Discovered

In this section we describe an error in the Java language specification that we inde-
pendently rediscovered during the course of this work. We also describe one major
error and a noteworthy omission in Drossopoulou and Eisenbach’s original presenta-
tion of the type soundness proof.

7.4.1 An Error in the Java Language Specification

In the process of finishing the proofs of the lemmas described in Section 7.2.1 we
independently rediscovered a significant flaw in the Java language specification that
had recently been found by developers of a Java implementation [PB97]. In theory
the flaw does not break type soundness, but the authors of the language specification
have confirmed that the specification needs alteration.

The problem is this: in Java, all interfaces and arrays are considered subtypes
of the type Object, in the sense that a cast from an interface or array type to
Object is permitted. The type Object supports several “primitive” methods, such
as hashValue() and getClass() (there are 11 in total). The question is whether
expressions whose static type is an interface support these methods.

By rights, interfaces should indeed support the Object methods — any class that
actually implements the interface will support these methods by virtue of being a
subclass of Object, or an array. Indeed, the Sun JDK toolkit allows calling these
methods from static interface types, as indicated by the successful compilation (but
not execution) of the code:

public interface I { }

public class Itest {
public static void main(String args[]) {
I all = { null, null };
a[0] .hashCode () ;

132 CHAPTER 7. TYPE SOUNDNESS FOR JAVAg

a[0] .getClass();
al[0] .equals(all]);

}
}

However, the existing language specification states explicitly that interfaces only
support those methods listed in the interface or its superinterfaces, and that there
is no ‘implicit’ superinterface (i.e. there is no analogue to the ‘mother-of-all-classes’
Object for interfaces). To quote:

The members of an interface are all of the following:
e Members declared from any direct superinterfaces

e Members declared in the body of the interface.

There is no analogue of the class Object for interfaces; that is, while
every class is an extension of class Object, there is no single interface of
which all interfaces are extensions.

[GJS96], pages 87 and 185

The error was detected when trying to prove the existence of compatible methods
and fields as we move from a type to a subtype, in particular from the type Object
to an interface type.

7.4.2 Runtime Typechecking, Array Assignments, and Exceptions

In Drossopoulou and Eisenbach’s original formulation the type soundness property
was stated along the following lines (emphasis added):

Theorem 6 If a well-typed term t is not ground, then it rewrites to some t' (and a new
state s and environment T'). Furthermore, either t' eventually rewrites to an exception,
or t' has some narrower type than t, in the new state and environment.

The iterated rewriting was an attempted fix for a problem demonstrated by the
following program:

void silly(C arr([], C s) {
arr[1] = s;

}

At runtime, arr may actually be an array of some narrower type, say C’ where C’ is
a subclass of C. Then the array assignment appears to become badly typed before the
exception is detected, because during the rewriting the left side becomes a narrower
type than the right. Thus they allow the exception to appear after a number of
additional steps.

However, arr can become narrower, and then subsequently fail to terminate!
Then an exception is never raised, e.g.

7.5. APPRAISAL 133

arr[loop()] = s;

The problem occurs in even simpler cases, e.g. when both arr and s have some nar-
rower types C’ [] and C’. Then, after the left side is evaluated, the array assignment
appears badly typed, but will again be well typed after the right side is evaluated.

Fixing this problem requires a different understanding of the role of the types we
assign to terms. Types for intermediary terms only exist to help express the type
soundness invariant of the abstract machine, i.e. to define the allowable states that
a well-typed execution can reach. In particular, the array assignment rule must be
relaxed to allow what appear to be badly typed assignments, but which later get
caught by the runtime typechecking mechanism.

This problem is an interesting case where the attempted re-use of typing rules in
a different setting (i.e. the runtime setting rather than the typechecking setting) led
to a subtle error, and one which we believe would only have been detected with the
kind of detailed analysis that machine formalization demands. The mistake could
not be missed in that setting! The difference between the Javag and Javag rules is
clearly necessary in retrospect, but failure to grasp this can lead to subtle errors.
For example, see the discussion on the types mailing list, where researchers were
concerned that subject reduction does not hold for the Java source language [Typ98].

7.4.3 Side-effects on Types

A significant omission in Drossopoulou and Eisenbach’s original proof was as follows:
when a term has two or more subterms, e.g. arrlidz] := e, and arr makes a
reduction to arr’, then the types of idz and e may change (become narrower) due
to side-effects on the state. This possibility had not originally been considered by
Drossopoulou and Eisenbach, and requires a proof that heap locations do not change
type (our notion of heap conformity suffices). The foremost of these lemmas has been
mentioned in Section 7.2.1. This problem was only discovered while doing detailed
machine checking of the rough proof outline.

7.5 Appraisal

The previous section has given several examples of Declare proofs from our case
study. We now address the following rather important question: what effect did
adopting declarative proof techniques have on the execution of the case study?

We have already described many of the small-scale contributions of declarative
proof in Chapter 3. The same pros and cons we have described there were played
Ott again and again in small ways throughout the development of the proofs. For
example, the flexibility in decomposition provided by Declare was used many times
throughout the case study, but similarly the number of terms quoted in Declare
proofs was always relatively high.

We can now step back to look at methodological issues:

134 CHAPTER 7. TYPE SOUNDNESS FOR JAVAg

e Proof Refinement. The declarative proof style meant we could repeatedly refine
approximate proof scripts, starting with notes and finishing with a machine-
checkable script.

o Muaintainability. The declarative proof style meant that it was often simple to
chase through the exact ramifications of a small change to the model. Primarily
this is because so much information is explicit in a declarative proof, and the
effects of a change could often be predicted even before checking a single step
of a proof, either by searching or typechecking proofs.

e Robustness. The declarative style meant that proofs rarely broke because of
modifications to Declare’s automated prover.

e Clarity. The disciplined approach enforced when mechanizing a proof ensures
errors like those described in Section 7.4 are detected. The declarative proof
language allowed the author to think clearly about the language while prepar-
ing the proof outlines. The error described in Section 7.4.1 was found when sim-
ply preparing the proof outline, rather than when checking it in detail. When
drafting a Declare proof the question “will a machine accept this proof?” is
always in mind, and this ensures that unwarranted logical leaps are not made.

We discuss these further in the next chapter.

7.5.1 Related Work

As mentioned at the start of Chapter 6, our model and proofs for Javag were based
on a paper version of similar proofs developed by Drossopoulou and Eisenbach. Our
soundness results, while similar in many respects, differ from Drossopoulou and
Eisenbach’s in detail. The main differences are:

e Heap Typing. We use a heap typing, which we believe makes definitions more
coherent and leads to a simpler problem statement.

e Safety and Liveness. We prove two complementary results, rather than at-
tempting to combine safety and liveness in one property. Drossopoulou and
Eisenbach’s property does not prove that all transitions result in conforming
configurations, just that there always exists at least one such transition. In
the presence of non-determinism this could mean that extra transitions are
possible to non-conforming states.

e Conformance includes Widening. The statement and proof of subject reduc-
tion is substantially simplified by using conformance over configurations, up to
widening.

e Conformance over Ezceptional Configurations. Exceptions are not mentioned
in the statement of subject reduction, since conformance is also defined for
exceptional configurations.

7.5. APPRAISAL 135

e No Reasoning about Multiple Steps. The statement of subject reduction does

Wright and Felleisen [WF94] have studied type soundness proof techniques for a wide
range of language constructs, though not for Java itself. They have not mechanized
their proofs.

Tobias Nipkow and David von Oheimb [Nv98] have developed a proof of the type
soundness property for a similar subset of Java in the Isabelle theorem prover. The
first version of their proof was developed at roughly the same time as our own, and
they have since continued to extend the subset covered and refine their formalization.
I am extremely grateful for the chance to meet with Nipkow and von Oheimb and
have adopted some suggestions they have made (indeed this has been mutual). These
two works are valuable “modern” case studies of theorem proving methods applied
this kind of problem. Isabelle is a mature system and has complementary strengths
to Declare, notably strong generic automation and manifest soundness. A tool which
unites these strengths with Declare’s would be an exciting prospect.

Several groups are working on type soundness properties for aspects of the JVM
[SA98, Qia97]. These proofs have not yet been mechanized, and thus are somewhat
removed from the concerns of this thesis.

136 CHAPTER 7. TYPE SOUNDNESS FOR JAVAg

Chapter 8
Summary

The aim of this dissertation has been to describe the use of a technique called “declar-
ative theorem proving” to fully formalise reasoning about operational semantics.
Part I concentrated on the technique itself, and at the heart of the technique lies
our method of proof description, based around three simple constructs, as described
in Chapter 3. We explained the impact of this and other techniques with respect to
four aspects of theorem proving tools: specification, proof description, automated
reasoning and interaction. We also proposed techniques for simplifying the extrac-
tion of results from theorems (Section 2.3), a method for validating specifications
by translation to Mercury (Section 2.4) and a language for providing justifications
and hints for the automated prover. Throughout we used the system Declare as an
example implementation of these techniques.

This has, in many ways, been the description of a long experiment in attempting
to conduct significant proofs while sticking to the “declarative ideal.” The resulting
techniques are, we claim, relatively faithful to this ideal, particularly in contrast to
tactic based provers. When considered as a package, the approach we have proposed
is quite novel, though it clearly draws from a range of ideas across the spectrum of
theorem proving. However, novelty aside, we must now address the more important
question: do declarative techniques make for better theorem proving? This is, of
course, difficult to answer definitively, as it requires a balanced assessment in the
context of a particular project. However, we can first consider the somewhat sim-
pler question: is declarative proof a suitable mechanism for proof description? The
arguments in favour are documented in Chapter 3 and Chapter 5. They include:

e A declarative style is more readable, uses far fewer proof description constructs,
and encourages good mathematical style.

e A declarative style allows considerable flexibility when decomposing a problem.

e A declarative style is pragmatically useful, as it allows proofs to be typechecked
without discharging obligations, error recovery is easy to implement, and it is
possible to implement a relatively simple and coherent interactive development
environment for developing such proofs.

137

138 CHAPTER 8. SUMMARY

One drawback is that declarative proofs require extensive term quotation in order
to specify logical steps. We have presented a range of mechanisms to alleviate this
problem without compromising the declarative ideal, but it remains a challenge for
future work.

Looking beyond the simple issue of describing proofs, we turn to the method-
ological issues described at the end of the previous chapter: proof refinement, main-
tainability, robustness and clarity. In many ways, these issues form the heart of the
matter. Proof is, after all, a social process as well as a formal one, as argued by
De Millo, Lipton and Perlis [MLP79]. Presuming declarative proof description can
be made at least as efficient as existing proof description techniques “in the small”,
then the benefits “in the large” may well tip the balance in its favour.

Part II has described a lengthy case study in the application of these techniques,
and indeed this study has considerable interest in its own right. Aside from issues of
declarative proof, it demonstrates how formal techniques can be used to help specify
a major language. Java itself is far more complicated than Javag, but we have still
covered a non-trivial subset. Drossopoulou and Eisenbach’s formalization was the
original inspiration for this work. We suggest that in the long run theorem prover
specifications may provide a better format for such formalizations, especially when
flexible tools are provided to read, execute and reason about them. In addition, the
independent rediscovery of the mistake in the Java language specification described in
Section 7.4.1 indicates that errors in language specifications can indeed be discovered
by the process of formal proof.

8.1 Future Work

Throughout this thesis we have hinted at places where future work looks particularly
promising. The following summarizes these, with the addition of some topics we have
not yet considered:

e Generalization of techniques? Isabelle has demonstrated how techniques in
theorem proving can be made generic across a range of theorem provers. Many
of the techniques presented here have been crafted for first order logic: it should
be possible to generalise these via the typical parameterization mechanisms
used in Isabelle.

e Declarative proofs in other logics? It may be useful to apply declarative proof
languages to other logics. How must the proof language change in this case?

e Automated Reasoning? Chapter 4 has described the requirements for an au-
tomated engine in our problem domain, and indicated how our current engine
fails to meet these requirements in some ways. Clearly further work is possible
here, especially to utilise techniques from other theorem provers in our context.

e Interfaces for declarative proof? Chapter 5 has presented a prototype interface
for Declare that takes advantage of some of the features of our declarative proof

8.1. FUTURE WORK 139

language, e.g. the small number of constructs to provide debugging support
for each. A lot of scope remains for finding and inventing the interactive
mechanisms to best support declarative proof.

In addition, the case study of Part IT could be greatly extended in scope, simply
by increasing the range of language constructs considered. Similar techniques could
be applied to a study of the Java Virtual Machine and other interesting operational
systems.

140 CHAPTER 8. SUMMARY

Appendix A

An Extract from the Declare
Model

This appendix contains an extended extract from the Declare sources for the case
study described in Chapters 6 and 7. This covers the model as far as the well-
formedness constraints on environments, and the definition of conformance. We have
also included the statements of many theorems up to this point, plus a selection of
proofs. We have used first order symbols rather than their ASCII equivalents.

A.1 psyntax.art - Primitives and types

datatype prim =
Void | Bool ":bool" | Char ":uchar" | Byte ":int8" | Short ":int16"
| Int ":int32" | Long ":int64" | Float ":ieee32" | Double ":ieee64";

datatype primTy =
VoidTy | BoolTy | CharTy | ByteTy | ShortTy
| IntTy | LongTy | FloatTy | DoubleTy;

datatype refTy = ClassRefTy ":id" | InterfaceRefTy ":id" | ArrayRefTy ":typ" | AnyRefTy
and typ = RefTy ":refTy" | PrimTy ":primTy";

def [autodefn] "ClassTy C = RefTy(ClassRefTy(C))";

def [autodefn] "InterfaceTy i = RefTy(InterfaceRefTy(i))";
def [autodefn] "ArrayTy i = RefTy(ArrayRefTy(i))";

def [autodefn] "intTy = PrimTy(IntTy)";

def [autodefn] "boolTy = PrimTy(BoolTy)";

def [autodefn] "voidTy = PrimTy(VoidTy)";

def [autodefn] "ObjectTy = RefTy(ClassTy ‘Object)";

def "mk_array_ty n aty = repeatn n aty (fun ty -> ArrayTy(ty))";

type argTy = ":typ list";

// Assign types to primitive values

141

142 APPENDIX A. AN EXTRACT FROM THE DECLARE MODEL

def '"prim_type pval =

match pval with
Bool(b) -> BoolTy
Byte(byte) -> ByteTy
Char(c) -> CharTy
Short(sh) -> ShortTy
Long(lng) -> LongTy
Int(i) -> IntTy
Float(f1l) -> FloatTy
Double(db) -> DoubleTy
Void -> VoidTy";

A.2 widens.art - Environments, Widening and Visibil-
ity

import psyntax;
notation rels;

[m = e e e e
// Type environments.

//

// These contain

// -- class and interface declarations

// -- local variable declarations

// The class and interface hierarchies are derivable from these, at
// least for well-formed environments.

datatype classDecl =
CLASS ": id option X
id fset X
(id |-?> typ) X
((id x typ list) |-?> typ)";

datatype interfaceDecl =
INTERFACE ":(id fset) X
((id x typ list) |-7> typ)";

type classenv = ":id |-7> classDecl";
type interfaceenv = ":id |-?> interfaceDecl";
type tyenv = ":(id [-7> classDecl) X
(id |-7?> interfaceDecl)";
type varenv = ":id |-7> typ";

reserve TE for ":tyenv"
and CE for ":classenv"

and IE for ":interfaceenv"
and VE for ":varenv"

and C for ":id"

and i for ":id";

// Now derive the class and interface hierarchies from the

A.2. WIDENS.ART - ENVIRONMENTS, WIDENING AND VISIBILITY 143

// declarations in the environment.
//
// First well-formed types.

def "TE |- C wf_class > (3CE IE cdec. TE = (CE,IE) A flookup CE C = Some cdec)";
mode "inpl |- inp2 wf_class";

def "TE |- i wf_interface <> (3ICE IE idec. TE = (CE,IE) A flookup IE i = Some idec)";
mode "inpl |- inp2 wf_interface";

constant wf_reftype ":tyenv -> refTy -> bool";
constant wf_type ":tyenv -> typ -> bool";

thm <wf_type> [defn,code]
"TE |- ty wf_type <
match ty with
RefTy rt -> TE |- rt wf_reftype
| PrimTy(pt) -> true";

thm <wf_reftype> [defn,code]
"TE |- rty wf_reftype ¢
match rty with
ClassRefTy C -> TE |- C wf_class

| InterfaceRefTy i -> TE |- i wf_interface
| ArrayRefTy(ty) -> TE |- ty wf_type
| AnyRefTy -> false";

mode "inpl |- inp2 wf_reftype";

mode "inpl |- inp2 wf_type";

// Hmmm.. can we extend labelling so we don’t have to restate these??
thm <prim-wf_type> [autorw,automeson] "TE |- PrimTy(pt) wf_type";
proof ged by <wf_type>; end;

thm <class-wf> [autorw]
"TE |- ClassTy(C) wf_type <> TE |- C wf_class";
proof ged by <wf_type>,<wf_reftype>; end;

thm <interface-wf> [autorw]
"TE |- InterfaceTy(i) wf_type <> TE |- i wf_interface";
proof ged by <wf_type>,<wf_reftype>; end;

thm <array-wf> [autorw]
"TE |- ArrayTy(ty) wf_type <> TE |- ty wf_type";
proof ged by <wf_type>,<wf_reftype>; end;

def "TE |- AT wf_types <> all (Avt. TE |- vt wf_type) AT";
mode "inpl |- inp2 wf_types";

def "TE |- VE wf_varenv <>
Vid vt. flookup(VE)(id) = Some(vt) —
(TE |- vt wf_type [<rool>])";
mode "inpl |- inp2 wf_varenv";

// The subclass relationship, derived from the declarations in TE.

//

144 APPENDIX A. AN EXTRACT FROM THE DECLARE MODEL

// nb. executable version does not terminate for circular class
// structures.

//

// Both arguments should be provably well-formed in the context
// where this predicate is used.

1fp subclass_of

<Refl>
/] =mmmmmmm
"TE |- C subclass_of C"
<Step>
"TE = (CE,IE) A flookup CE C = Some (CLASS(Some(Csup),_x1,_x2,_x3)) A
TE |- Csup subclass_of C’’"
/] m
"TE |- C subclass_of C’’"
mode "inpl |- inp2 subclass_of inp3";
mode "inpl |- inp2 subclass_of out3";
/e -

// The implements relationship, derived from the declarations in TE.

def "TE |- C implements i ¢
dCE IE dec _x1 _x2 _x3 Is.

TE = (CE,IE) A flookup CE C = Some (CLASS(_x1,Is,_x2,_x3)) A i € Is";

mode "inpl |- inp2 implements inp3";
mode "inpl |- inp2 implements out3";
[m

// The subinterface relationship

1fp subinterface_of =

<Refl>
[/ =mmmmmm e
"TE |- i subinterface_of i"
<Step> []
"TE = (CE,IE) A flookup IE i = Some (INTERFACE(Is,methods)) A
i’ € Is A
TE |- i’ subinterface_of i’’"
[/ === -
"TE |- i subinterface_of i’’"
mode "inpl |- inp2 subinterface_of inp3";
mode "inpl |- inp2 subinterface_of out3";
/e -
// Widening/Narrowing, derived from the declarations in the environment.
//

1fp widens_to =
<Prim> [automeson,autorw]

A.2. WIDENS.ART - ENVIRONMENTS, WIDENING AND VISIBILITY

"TE |- PrimTy(pt) widens_to PrimTy(pt)"

<ClassToClass> [automeson,autorw]
"TE |- C subclass_of C’"

"TE |- ClassTy(C) widens_to ClassTy(C’)"

<InterfaceToInterface> [automeson,autorw]

"TE |- i subinterface_of i’"
Y e I S
"TE |- InterfaceTy(i) widens_to InterfaceTy(i’)"
<InterfaceToObject> [automeson,autorw]
LA R S

"TE |- InterfaceTy(i) widens_to ObjectTy"

<ClassToInterface> [automeson]
"TE |- C subclass_of C’> A
TE |- C’ wf_class A
TE |- C’ implements i A
TE |- i wf_interface A
TE |- i subinterface_of i’"

"TE |- ClassTy(C) widens_to InterfaceTy(i’)"

<ArrayToObject> [automeson,autorw]
"TE |- ty wf_type"

"TE |- ArrayTy(ty) widens_to ObjectTy"

<Array> [automeson,autorw]
"TE |- ty widens_to ty’"

"TE |- ArrayTy(ty) widens_to ArrayTy(ty’)";
mode "inpl |- inp2 widens_to inp3";

def "TE |- tys tys_widen_to tys’ <

len tys = len tys’ A

(Vj. j < len(tys) — TE |- el(j)(tys) widens_to el(j)(tys’))";
mode "inpl |- inp2 tys_widen_to inp3";

// Search for field declarations, based off the declarations in TE.
// Sensibly defined for well formed hierarchies of interfaces and classes.

lfp VisField =
<Hit> "TE = (CE,IE) A flookup CE C = Some (CLASS(Csupo,Is,fields,methods)) A
flookup(fields)(v) = Some(vt)"
/[=== e
"VisField(TE,C,v)(C,vt)"

<Miss> "TE = (CE,IE) A flookup CE C = Some (CLASS(Some(Csup),Is,fields,methods)) A

flookup(fields)(v) = None A
VisField(TE,Csup,v) (res)"

145

146 APPENDIX A. AN EXTRACT FROM THE DECLARE MODEL

"VisField(TE,C,v) (res)";

mode "VisField(inp) (out)";

// Return all field declarations for a class, based off the declarations in
// TE. [FDecs(TE,C)] indicates all the fields in [C] A all the superclasses
// of [C], including hidden fields.

//

// For well-formed TE, vt is unique for a given (£,C).

1fp FieldExists =
<Hit> "TE = (CE,IE) A flookup CE C = Some (CLASS(Csupo,Is,fields,methods)) A
f € fdomain(fields) A
flookup(fields)(f) = Some(vt)"
F A R S
"((C,£),vt) € FieldExists(TE,C)"

<Super> "TE = (CE,IE) A flookup CE C = Some (CLASS(Some(Csup),Is,fields,methods)) A
(fidx,vt) € FieldExists(TE,Csup)"

"(fidx,vt) € FieldExists(TE,C)";
mode "FieldExists(inpl) (out2)";
def "AllFields (TE,C) = fset_of_set (FieldExists(TE,C))";
// Return all versions of a method, based off the declarations in
// TE. MSigs(TE,C,m) indicates all the method declarations (i.e. both the class of

// the declaration and the signature) for method m in class C, or inherited
// from one of its superclasses, and not hidden by any of its superclasses.

1fp MSigsC =
<Hit> "TE = (CE,IE) A flookup CE C = Some (CLASS(Csupo,Is,fields,methods)) A
flookup methods midx = Some(rt)"
[/ === e
"MSigsC(TE,C) (midx,rt)"
<Miss> "TE = (CE,IE) A flookup CE C = Some (CLASS(Some(Csup),Is,fields,methods)) A
MSigsC(TE,Csup) (midx,rt) A
flookup methods midx = None"
[/ === e

"MSigsC(TE,C) (midx,rt)"
mode "MSigsC(inp1) (out2)";
1lfp MSigsI =

<Hit> "TE = (CE,IE) A flookup IE i = Some (INTERFACE(Is,methods)) A
flookup methods midx = Some(rt)"
[/ ===
"MSigsI(TE,i) (midx,rt)"

<Miss> "TE = (CE,IE) A flookup IE i = Some (INTERFACE(Is,methods)) A

A.3. WFENV.ART - CONSTRAINTS ON ENVIRONMENTS

flookup methods midx = None A
(i’ € Is A MSigsI(TE,i’) (midx,rt) V
(Is = fempty A MSigsC(TE, ‘Object‘) (midx,rt)))"

"MSigsI(TE,i) (midx,rt)"

mode "MSigsI(inpl) (out2)";

// Arrays always support all methods found in ‘Object‘, unless they
// are overridden. I haven’t yet got arrays supporting methods and
// fields generic to all arrays, i.e. "size" and "clone".

def "MSigsA(TE)(midx,mt) <> MSigsC(TE, ‘Object) (midx,mt)";
mode "MSigsA(inpl)(out2)";

def "MSigs(TE,refty) (midx,mt) <>
match refty with
InterfaceTy(i) -> MSigsI(TE,i) (midx,mt)
| ClassTy(C) -> MSigsC(TE,C) (midx,mt)
| ArrayTy(ty’) -> MSigsA(TE) (midx,mt)";
mode "MSigs(inp1l) (out2)";

A.3 wfenv.art - Constraints on Environments

The proofs have been omitted from this file for brevity.

import psyntax widens;
notation rels;

reserve TE for ":tyenv"
and CE for ":classenv"

and IE for ":interfaceenv"
and C for ":id"

and i for ":id";

//
// PART 1. Define well-formed type environments

//

// At the roots of the tree we check that interfaces do not mess around
// with the return types of Object methods...

def "
TE wf_tyenv <>
(ddec methods. ((JCE IE. TE = (CE,IE) A flookup CE ‘Object‘ = Some(dec)) A

dec = CLASS(None,fempty,fpempty,methods)) [<Object_declared> [rw]]) A

(VC Csupo Is fields methods.

(3CE IE. TE = (CE,IE) A flookup CE C = Some(CLASS(Csupo,Is,fields,methods))) —

(match Csupo with
Some (Csup) ->
(TE |- Csup wf_class) [<class_superclass_declared>] A
(—(TE |- Csup subclass_of C)) [<no_circular_classes>] A

147

148 APPENDIX A. AN EXTRACT FROM THE DECLARE MODEL

(Vmidx rt1l. MSigsC(TE,Csup) (midx,rtl) —
Vrt2. flookup methods midx = Some rt2 —
(TE |- rt2 widens_to rtl) [<class_return_types_wider>])

| None ->
(C = ‘Object) [<only_Object_has_no_superclass> [rw]] A
(fields = fpempty) [<Object_has_no_fields> [rw]] A
(Is = fempty) [<Object_implements_no_interfaces> [rw]]l) A

(Vmidx rt. flookup methods midx = Some rt —
(Vm AT. midx = (m,AT) — (TE |- AT wf_types A TE |- rt wf_type) [<class-methtypes-wf>])) A

(Vfld ty. flookup fields fld = Some(ty) —
(TE |- ty wf_type) [<field-types-wf>]) A

(Vi. i € Is —
(TE |- i wf_interface) [<class_superinterfaces_declared>] A
(Vmidx rtil. MSigsI(TE,i)(midx,rtl) —
(Irt2. MSigsC(TE,C) (midx,rt2) A
TE |- rt2 widens_to rtl) [<interfaces_implemented>])))
A
(Vi Is methods.
(3CE IE. TE = (CE,IE) A flookup IE i = Some(INTERFACE(Is,methods))) —
(Vi’. i’ € Is —
(—(TE |- i’ subinterface_of i)) [<no_circular_interfaces>] A
(TE |- i’ wf_interface) [<interface_superinterfaces_declared>]) A

(Vmidx rt. flookup methods midx = Some rt —
(Vm AT. midx = (m,AT) — (TE |- AT wf_types A TE |- rt wf_type) [<interface-methtypes-wf>])) A

(Vi’. i’ € Is —
Vmidx rtl rt2.
MSigsI(TE,i’) (midx,rt1) A
flookup methods midx = Some(rt2) —
(TE |- rt2 widens_to rtl) [<interface_return_types_wider>]) A

(Vmidx rtil. flookup methods midx = Some(rtl) —
Vrt2. MSigsC(TE, ‘Object‘) (midx,rt2) —
(TE |- rtl widens_to rt2) [<interface_return_types_wider_than_Object>]))";

mode "inp wf_tyenv";

//
// PART 2. Transitivity and Reflexivity for Widening

thm <widens_to-refl> [autorw]
if "TE |- ty wf_type"
then "TE |- ty widens_to ty";

// Object is always a well-formed class, type, implements no interfaces
// and has no superclasses.

thm <wf_class-Object> [autorw]
if "TE wf_tyenv" <TE_wf>
then "TE |- ‘Object‘ wf_class";

A.3. WFENV.ART - CONSTRAINTS ON ENVIRONMENTS 149

thm <wf_type-Object> [autorw]
if "TE wf_tyenv"
then "TE |- ObjectTy wf_type";

thm <Object-implements-nothing> [autorw]
if "TE wf_tyenv" <TE_wf>
"TE |- i wf_interface"

then "—(TE |- ‘Object‘ implements i)";

thm <Object-subclass>[rw]
if "TE wf_tyenv" <TE_wf>
"TE |- C wf_class"
then "TE |- ‘Object® subclass_of C <> C = ‘Object‘";

thm <Object-widens> [rw]
if "TE wf_tyenv" <TE_wf>
"TE |- rt wf_type"
then "TE |- ObjectTy widens_to rt <> rt = ObjectTy";

// widens_to is transitive. Non-trivial as we must
// ensure confluence of the subtype graph.

thm <widens_to-trans>
if "TE wf_tyenv" <TE_wf>
"TE |- tyl wf_type"
"TE |- ty2 wf_type"
"TE |- ty3 wf_type"
"TE |- tyl widens_to ty2" <al>
"TE |- ty2 widens_to ty3" <a2>
then "TE |- tyl widens_to ty3";

/!
// PART 3. Decomposition results for widening for types of particular forms
//

// e.g. The only subtypes of an array type are covariant array

// types of the same dimension.

thm <array-widens-lemma>
"ty0 = ArrayTy(aty0) A
TE |- ty0 wf_type A
TE |- tyl wf_type A
TE |- tyl widens_to tyO
— Jatyl.
tyl = ArrayTy(atyl) A
TE |- atyl wf_type A
TE |- atyl widens_to aty0";

thm <prim-widens-lemma>
"TE |- ty wi_type A
TE |- ty widens_to PrimTy(pty)
— ty = PrimTy(pty)";

thm <class-widens-lemma>
if "TE wf_tyenv"

150 APPENDIX A. AN EXTRACT FROM THE DECLARE MODEL

"TE |- ty wf_type"
"TE |- C wf_class"
"TE |- ty widens_to ClassTy(C)"
"C <> ‘Object‘"
then "3C’. TE |- C’ subclass_of C A
TE |- C’> wf_class A
ty = ClassTy(C’)";

thm <reference-widens-lemma>
if "TE wf_tyenv"

"TE |- ty wf_type"

"TE |- ty widens_to RefTy(rt)"
then "Jrt’. ty = RefTy(rt’)";

//

// PART 4. Preservation of Visibility

e ittt
// Dependent typing of AllFields, MSigs etc.

//

// -- AllFields only finds wf. classes and wf. field types...

// -- MSigs only finds well-formed method types...

thm <FieldExists-wf>
if "TE wf_tyenv" <TE_wf>
"TE |- C wf_class"
"((C?,f),ty) € FieldExists(TE,C)" <a>
then "TE |- C’ wf_class A TE |- ty wf_type";

thm <FieldExists-finite>
if "TE wf_tyenv" <TE_wf>
"TE |- C wf_class" <x>
then "finite (FieldExists(TE,C))";

thm <AllFields-wf>
if "TE wf_tyenv"
"TE |- C wf_class"
"((C’,f),ty) € AllFields(TE,C)"
then "TE |- C’ wf_class A TE |- ty wf_type";

thm <MSigsC-wf>
if "TE wf_tyenv" <TE_wf>
"TE |- C wf_class"
"MSigsC(TE,C) (midx,rt)" <a>
"midx = (m,AT)"
then "TE |- AT wf_types A TE |- rt wf_type";

thm <MSigsI-wf>
if "TE wf_tyenv" <TE_wf>
"TE |- i wf_interface"
"MSigsI(TE, i) (midx,rt)" <a>
"midx = (m,AT)"
then "TE |- AT wf_types A TE |- rt wf_type";

thm <MSigs-wf>
if "TE wf_tyenv" <TE_wf>

A.3. WFENV.ART - CONSTRAINTS ON ENVIRONMENTS 151

"ty = RefTy(refty)"
"TE |- ty wf_type"
"MSigs(TE,refty) ((m,AT) ,rt)"

then "TE |- AT wf_types A TE |- rt wf_type";

// subclass_of preserves field existence (thoug not necessarily visibility)

thm <inherited-fields-exist>
if "TE |- CO wf_class" <a>
"TE |- C1 wf_class"
"TE wf_tyenv" <TE_wf>
"TE |- C1 subclass_of CO" <subclass>
"fspec € AllFields(TE,CO)" <x>
then "fspec € AllFields(TE,C1)" <y>;

// subtyping preserves method visibility up to narrowing of return type.

thm <class-inherited-class-methods-are-narrower>
if "TE wf_tyenv" <TE_wf>
"TE |- CO wf_class"
"TE |- C1 wf_class"
"TE |- C1 subclass_of CO" <C1_subclass>
"MSigsC(TE,C0) (midx,rt0)" <search>
then "Jrtl. MSigsC(TE,C1) (midx,rtl) A
TE |- rtl1 wf_type A
TE |- rtl widens_to rt0";

thm <interface-inherited-interface-methods-are-narrower>
if "TE wf_tyenv" <TE_wf>

"TE |- i0 wf_interface"
"TE |- il wf_interface"
"TE |- il subinterface_of i0" <il_subclass>

"MSigsI(TE,i0) (midx,rt0)" <search>
then "drtl. MSigsI(TE,il) (midx,rtl) A
TE |- rtl1 wf_type A
TE |- rtl widens_to rt0";

thm <class-inherited-interface-methods-are-narrower>
if "TE = (CE,IE)"
"TE wf_tyenv" <TE_wf>
"TE |- C wf_class"
"TE |- i wf_interface"
"TE |- C implements i" <imp>
"MSigsI(TE,i) (midx,rt0)" <search>
then "drtil. MSigsC(TE,C) (midx,rtl) A
TE |- rt1l wf_type A
TE |- rtl widens_to rt0";

thm <interface-inherited-Object-methods-are-narrower>
if "TE wf_tyenv" <TE_wf>
"TE |- i wf_interface"
"MSigsC(TE, ‘Object ‘) (midx,rt0)" <base>
then "drtil. MSigsI(TE,i)(midx,rtl) A
TE |- rtl1 wf_type A

152 APPENDIX A. AN EXTRACT FROM THE DECLARE MODEL

TE |- rtl widens_to rt0";

thm <array-inherited-Object-methods-are-identical>
"TE wf_tyenv A
MSigsC(TE, ‘Object ‘) (m,mt)
— MSigsA(TE) (m,mt)";

thm <inherited-methods-exist>
if "TE wf_tyenv"
"ty0 = RefTy(refty0)"
"tyl = RefTy(refty1)"
"TE |- ty0 wf_type"
"TE |- tyl wf_type"
"MSigs(TE,refty0) (midx,rt0)"
"TE |- tyl widens_to ty0" <a>
then "Jrti. MSigs(TE,reftyl) (midx,rtl) A
TE |- rtl wf_type A
TE |- rtl widens_to rt0";

// FieldExists only searches super classes.

//

thm <FieldExists-finds-subclasses>
if "TE wf_tyenv"
"TE |- C wf_class"
"((Cf,f),ty) € FieldExists(TE,C)" <deriv>
then "TE |- C subclass_of Cf";

// AllFields does not find more than one field type
// for a given field/class pair.

thm <object-fields-unique-lemma>
if "TE wf_tyenv" <TE_wf>
"TE |- C wf_class"
"((Cf,£),tyl) € FieldExists(TE,C)" <derivi>
"((Cf,f),ty2) € FieldExists(TE,C)" <deriv2>
then "tyl = ty2";

// And thus the graph found by AllFields form a partial function.
thm <object-fields-form-graph>
if "TE wf_tyenv" <TE_wf>
"TE |- C wf_class"
then "frel_is_graph (AllFields(TE,C))";
// Object has no visible fields...

thm <AllFields-0Object>
if "TE wf_tyenv" <TE_wf> then "—(x € AllFields(TE, ‘Object))";

A.4. RSYNTAX.ART - SYNTAX OF JAVApg 153

A.4 rsyntax.art - Syntax of Javap

// Syntax of JavaR - configurations of the abstract machine,
// and structural operations on them.

import psyntax widens;
notation rels runtime;

datatype rval =
RPrim ":prim"
| RAddr ":int option";

type frame = ":(id |-?> rval)";

datatype rexp =
RValue ":rval"
RStackVar ":id"
RAccess ":rexp X rexp"
RField ":rexp X id X id"
RNewClass ":id x ((id x id) [|-7> typ)"
RNewArray ":typ X rexp list"
RCall ":rexp X (id X argTy) X rexp list"

| RBody ":rstmt X frame"
and rstmt =

RBlock ":rstmt list"

| RIf ":rexp X rstmt X rstmt"

| RWhile ":rexp X rstmt"

| RReturn ":rexp"
| RAssignToStackVar ":id X rexp"
| RAssignToArray ":(rexp X rexp) X rexp"
| RAssignToField ":(rexp X id X id) X rexp"
| RExpr ":rexp";

reserve C for ":id"

and id for ":id"

and prog for ":cprog"

and mbody for ":cmethodbody"
and stmts for ":rstmt list"
and addr for ":int"

and val for ":rval”

and ty for ":typ";

// Heap Objects, Heaps, State and Configurations

//

// The type stored in an array indicates the type of elements
// stored in the array, not the type of the array itself

datatype heapobj =
OBJECT ":((id X id) [-7> rval) Xx id"
| ARRAY ":typxrval list";

type heap = ":(int,heapobj)fpfun";
type state = ":frame X heap";
type ’a cfg = ":’a X state"

154 APPENDIX A. AN EXTRACT FROM THE DECLARE MODEL

reserve heap for ":heap";

// Heap operations

def "hoType(heapobj) =
match heapobj with
OBJECT (fldvals,C) -> ClassRefTy(C)
| ARRAY(aty,vec) -> ArrayRefTy(aty)";

def "sAlloc(heap,heapobj) =
let addr = freshi(fdomain(heap))
in (heap <?++ (addr,heapobj),addr)";

// initial values during allocation

def "initial ty =
match ty with
RefTy rty -> RAddr(None)
| PrimTy(pt) ->
match pt with
BoolTy -> RPrim(Bool(false))
CharTy -> RPrim(Char (mk_uchar(32I)))
ByteTy -> RPrim(Byte(mk_int8(0I)))
ShortTy -> RPrim(Short(mk_int16(0I)))
IntTy -> RPrim(Int(mk_int32(0I)))
VoidTy -> RPrim(Void)
LongTy -> RPrim(Long(mk_int64(0I)))
FloatTy -> RPrim(Float(mk_ieee32(0I)))
DoubleTy -> RPrim(Double(mk_ieee64(0I)))";

R e R
// Define ground expressions, values etc.
// What all good expressions aspire to be.

//

def "exp_ground exp = (dv. exp = RValue(v))";
mode "exp_ground inp";

def "exps_ground exps = all exp_ground exps";
mode "exps_ground inp";

def "stmts_ground(stmts) = null(stmts)";
mode "stmts_ground inp";

def "stmt_ground(stmt) = (Jv. stmt = RExpr(RValue(v)))";
mode "stmt_ground inp";

[=
// Runtime type checking. This must be executable.

// In principle we can return None for illegal typechecks,

// thus allowing us to reason that these never happen.

def "typecheck((TE,heap),sval,cell_ty) =

A.5. RSTATICS.ART - CONFORMANCE AND SOME PROOEFS 155

match sval with
RPrim(pval) -> Some (dpt. cell_ty = PrimTy(pt) A prim_type(pval) = pt)

| RAddr(None) -> Some (3rt. cell_ty = RefTy(rt))
| RAddr(Some(addr)) ->

match flookup(heap)(addr) with

Some (heapobj) ->
Some (TE |- RefTy(hoType(heapobj)) widens_to cell_ty)
| None -> Some false";

A.5 rstatics.art - Conformance and some proofs

// Conformance for runtime structures,
// and preservation of this under various operations.

import psyntax rsyntax widens wfenv;
notation rels rstatics;

// A frame typing is the typing for local variables on the stack.
type ftyping = ":id [|-7> typ";

// A heap typing is the typing for things in the heap
type htyping = ":int [-?> refTy";

reserve TE for ":tyenv"

and FT,FTO,FT1 for ":ftyping"
and HT,HTO,HT1 for ":htyping"
and frame for ":frame"

and heap for ":heap"

and C,id for ":id"

and ty for ":typ"

and refty for ":refTy"
and stmts for ":rstmt list"

and ST for ":ftyping ## htyping";

def "TE |- FT wf_ftyping ¢
Vid ty. flookup(FT)(id) = Some(ty) —
(TE |- ty wf_type [<rool>])";

def "TE |- HT wf_htyping <
(Vaddr refty. flookup(HT)(addr) = Some(refty) —
(TE |- RefTy(refty) wf_type) [<rool>])";

def "TE |- (FT,HT) wf_styping ¢
(TE |- FT wf_ftyping [<frame>] A
TE |- HT wf_htyping [<heap>])";

1fp rval_conforms_to =
<NullToRef> [autorw,automeson]
[/ mmmm e
"(TE,HT) |- RAddr(None) rval_conforms_to RefTy(refty)"

156 APPENDIX A. AN EXTRACT FROM THE DECLARE MODEL
<Addr> [autorw]

"flookup(HT) (addr) = Some refty"

"(TE,HT) |- RAddr(Some(addr)) rval_conforms_to RefTy(refty)"

<Prim> [autorw,automeson]
"prim_type(p) = pt"

F B R S
"(TE,HT) |- RPrim(p) rval_conforms_to PrimTy(pt)"
<Trans> []
"(TE,HT) |- val rval_conforms_to ty’ A
TE |- ty’ wf_type A
TE |- ty’ widens_to ty"
[/ mmm
"(TE,HT) |- val rval_conforms_to ty";
=
// A heap conforms to a heap typing if:
// -- All the objects in the heap have precisely the structure expected for
// the type, including the correct runtime type tag.
// -- All the values in the objects in heap conform w.r.t. the heap typing.
// They may be narrower than their expected slots.

def "((TE,HT) |- fldvals fldvals_conform_to C) [<derive>] <>
(Vidx ty’. (idx,ty’) € AllFields(TE,C) —
(Jval. flookup(fldvals)(idx) = Some(val) A
(TE,HT) |- val rval_conforms_to ty’) [<rool>])";

def "(E |- vec els_conform_to ty) [<derive>] <
(Vj. j < len(vec) —
(E |- el(j)(vec) rval_conforms_to ty) [<rool>])";

def "(E |- heapobj heapobj_conforms_to refty) [<derive>] <>
match heapobj with
OBJECT(fldvals,C) ->

(refty = ClassTy(C)) [<object-tag-matches>] A
(E |- fldvals fldvals_conform_to C) [<object-fields-conform>]

| ARRAY(aty,vec) ->
(refty = ArrayTy(aty)) [<array-tag-matches>] A
(E |- vec els_conform_to aty) [<array-elements-conform>]";

def "(TE |- heap heap_conforms_to HT) [<derive>] <>
((fdomain heap = fdomain HT) [<domains-eq>] A
(Vaddr heapobj. flookup(heap)(addr) = Some(heapobj) —
(drefty. flookup(HT)(addr) = Some(refty) A
((TE,HT) |- heapobj heapobj_conforms_to refty)) [<rool>]))";

// Frame conformance -- all the values in the frame conform to
// the given types w.r.t. the given heap typing (they may also be narrower).

def "(E |- frame frame_conforms_to FT) [<derive>] <>
(fdomain FT = fdomain frame) [<frame-domains-eq> [rw]] A
(Vid ty. flookup(FT)(id) = Some(ty) —
(Jval. flookup(frame)(id) = Some(val) A

A.5. RSTATICS.ART - CONFORMANCE AND SOME PROOEFS

E |- val rval_conforms_to ty) [<stackvar-conforms>])";
/== e e e
// Rules for expressions, statements, variables
//

// For various resons these relations are non-executable, e.g. we
// cannot guess the return type of the body of an expression

// (it changes during execution, and maybe indeterminate, e.g. if
// the return value has been reduced to null).

def rec "ralways_returns(stmt) =
match stmt with
RBlock(stmts) -> existsl ralways_returns stmts
| RIf(e,stmtl,stmt2) -> ralways_returns(stmtl) A ralways_returns(stmt2)
| RReturn(e) -> true
| _ -> false";

1fp rexp_conforms_to =

<StackVar> "flookup(FT)(x) = Some(ty)"

[/ == e e e e e e
"(TE, (FT,HT)) |- RStackVar(x) rexp_conforms_to ty"
<Access> "(TE,ST) |- arr rexp_conforms_to ArrayTy(arrty) A
(TE,ST) |- idx rexp_conforms_to intTy"
LA

"(TE,ST) |- RAccess(arr,idx) rexp_conforms_to arrty"

<Field> "(TE,ST) |- obj rexp_conforms_to ClassTy(C) A
TE |- C wf_class A
((C?,£),ty) € AllFields(TE,C)"

[/ ===
"(TE,ST) |- RField(obj,C’,f) rexp_conforms_to ty"
<Value> "(TE,HT) |- v rval_conforms_to et"
[/ mm e e

"(TE, (FT,HT)) |- RValue(v) rexp_conforms_to et"

<NewClass> "TE |- C wf_class A
flds = fpfun_of_frel (AllFields(TE,C))"

YA S
"(TE,ST) |- RNewClass(C,flds) rexp_conforms_to ClassTy(C)"
<NewArray>
"TE |- aty wf_type A
(TE,ST) |- dims rexps_conform_to (replicate (len dims) intTy)"
F A e S

"(TE,ST) |- RNewArray(aty,dims) rexp_conforms_to (mk_array_ty (len dims)

<Call> "TE |- ty wf_type A
(TE,ST) |- e rexp_conforms_to ty A
MSigs(TE,ty) ((m,AT),rt) A
(TE,ST) |- args rexps_conform_to AT"

"(TE,ST) |- RCall(e,(m,AT),args) rexp_conforms_to rt"

aty) "

157

158 APPENDIX A. AN EXTRACT FROM THE DECLARE MODEL

<Body> "TE |- FT’ wf_ftyping A
(TE,HT) |- frame frame_conforms_to FT’ A
ST’ = (FT’,HT) A
(TE,ST’,rt) |- stmt rstmt_conforms A
(rt <> voidTy — ralways_returns(stmt))"

"(TE, (FT,HT)) |- RBody(stmt,frame) rexp_conforms_to rt"

<Trans> "(TE,ST) |- exp rexp_conforms_to ty’ A
TE |- ty’ wf_type A
TE |- ty’ widens_to ty"

"(TE,ST) |- exp rexp_conforms_to ty"
and rexps_conform_to =

<Exps>
"len(exps) = len(etys) A
(Vj. j < len(exps) — (TE,ST) |- el(j)(exps) rexp_conforms_to el(j)(etys))"

"(TE,ST) |- exps rexps_conform_to etys"

and rstmt_conforms =

<AssignToStackVar> []
"TE |- ty’ wf_type A
(TE,ST) |- e rexp_conforms_to ty’ A
ST = (FT,HT) A
flookup(FT)(id) = Some(ty) A
TE |- ty’ widens_to ty"

"(TE,ST,rt) |- RAssignToStackVar(id,e) rstmt_conforms"

<AssignToField> [automeson]
"TE |- ty’ wf_type A
(TE,ST) |- rexp rexp_conforms_to ty’ A
TE |- C’ wf_class A
(TE,ST) |- obj rexp_conforms_to ClassTy(C’) A
((C,£),ty) € AllFields(TE,C’) A
TE |- ty’ widens_to ty"

"(TE,ST,rt) |- RAssignToField((obj,C,f),rexp) rstmt_conforms"

<AssignToArray> [automeson]
"TE |- ty wi_type A
(TE,ST) |- e rexp_conforms_to ty A
TE |- simpty wf_type A
(TE,ST) |- arr rexp_conforms_to ArrayTy(aty) A
(TE,ST) |- idx rexp_conforms_to intTy"

"(TE,ST,rt) |- RAssignToArray((arr,idx),e) rstmt_conforms"

<If> [autorw,automeson]
"(TE,ST,rt) |- tstmt rstmt_conforms A

A.5. RSTATICS.ART - CONFORMANCE AND SOME PROOEFS

(TE,ST,rt) |- estmt rstmt_conforms A
(TE,ST) |- e rexp_conforms_to boolTy"

"(TE,ST,rt) |- RIf(e,tstmt,estmt) rstmt_conforms"
<Expr> [autorw,automeson]
"TE |- ty wi_type A
(TE,ST) |- e rexp_conforms_to ty"

"(TE,ST,rt) |- RExpr(e) rstmt_conforms"

<Block> [autorw,automeson]

"all (Astmt. (TE,ST,rt) |- stmt rstmt_conforms) stmts"
[/ e
"(TE,ST,rt) |- RBlock(stmts) rstmt_conforms"
<Return> "(TE,VE) |- e rexp_conforms_to rt"
/[== e e e
"(TE,VE,rt) |- RReturn(e) rstmt_conforms"
<While> "(TE,VE) |- exp rexp_conforms_to boolTy A
(TE,VE,rt) |- bod rstmt_conforms"
/] = e e e e e

"(TE,VE,rt) |- RWhile(exp,bod) rstmt_conforms";

thm <rexp_conforms_to-trans> []
if "TE wf_tyenv" <TE_wf>
"TE |- ST wf_styping" <ST_wf>
"TE |- ty’ wf_type"
"TE |- ty wf_type"
"(TE,ST) |- exp rexp_conforms_to ty’"
"TE |- ty’ widens_to ty"
then "(TE,ST) |- exp rexp_conforms_to ty";
proof ged by <rexp_conforms_to.Trans>; end;

thm <rexps_conform_to-trans> []
if "TE wf_tyenv" <TE_wf>
"TE |- ST wf_styping" <ST_wf>
“ST = (FT,HT)"
"(TE,ST) |- exps rexps_conform_to tys’"
"TE |- tys’ wf_types"
"TE |- tys wf_types"
"TE |- tys’ tys_widen_to tys"
then "(TE,ST) |- exps rexps_conform_to tys";
proof
consider j st
+ "len exps = len tys’" [autorw]
+ "j < len exps"
+ "(TE,ST) |- (el j exps) rexp_conforms_to (el j tys’)" <a>
- "(TE,ST) |- (el j exps) rexp_conforms_to (el j tys)"
by <tys_widen_to>,<rexps_conform_to>,<goal>;

ged by <rexp_conforms_to.Trans> [<a>,"(el j tys)"/tyl,
<wf_types>,<tys_widen_to>,<all>;
end;

159

160 APPENDIX A. AN EXTRACT FROM THE DECLARE MODEL

// Conformancs of configurations

def "(TE |- (frame,heap) state_conforms_to (FT,HT)) [<derive>] <>
(TE |- heap heap_conforms_to HT) [<heap>] A
((TE,HT) |- frame frame_conforms_to FT) [<frame>]";

def "(TE |- (exp,s) ecfg_conforms_to (ty,ST)) [<derive>] <>
(TE |- s state_conforms_to ST) [<state>] A
((TE,ST) |- exp rexp_conforms_to ty) [<term>]";

def "(TE |- (exps,s) escfg_conforms_to (tys,ST)) [<derive>] <>
(TE |- s state_conforms_to ST) [<state>] A
((TE,ST) |- exps rexps_conform_to tys) [<term>]";

def "((TE,rt) |- (stmt,s) scfg_conforms_to ST) [<derive>] <>
(TE |- s state_conforms_to ST) [<state>] A
((TE,ST,rt) |- stmt rstmt_conforms) [<term>]";
[/ ===

// Narrowing/enlarging between heap typings

def "HTO htyping_leq HT1 <>
(Vaddr. addr € fdomain HTO —
(flookup HT1 addr = flookup HTO addr) [<rool> [rw]])";

thm <htyping_leq-refl> [autorw,automeson] "HT htyping_leq HT";
proof ged by <htyping_leq>; end;

// State typings
def "(FTO,HTO) styping_leq (FT1,HT1) <> FTO = FT1 A HTO htyping_leq HT1";

thm <styping_leq-refl> [autorw,automeson] "ST styping_leq ST";
proof qed by <styping_leq>; end;

// Lemmas: as heap and frame typings get narrower, typing judgemsnts
// remain identical.

thm <val_conforms_to-mono-lemma>
if "TE wf_tyenv"
"HTO htyping_leq HT1"
"(TE,HTO) |- val rval_conforms_to val_ty" <hastype_in_HTO>
then "(TE,HT1) |- val rval_conforms_to val_ty";
proof
proceed by rule induction on <hastype_in_HTO> with val,val_ty variable;
case Prim: qged;
case NullToRef: qed;
case Addr: ged by <htyping_leq.rool>,<in_fdomain>,<rval_conforms_to.Addr>;
case Trans: ged by <rval_conforms_to.Trans>;
end;
end;

A.5. RSTATICS.ART - CONFORMANCE AND SOME PROOEFS

thm <frame-mono-lemma>
if "TE wf_tyenv"

"HTO htyping_leq HT1"

"(TE,HTO0) |- frame frame_conforms_to FT"
then "(TE,HT1) |- frame frame_conforms_to FT";
proof

qed by <frame_conforms_to.derive> [<oblig>],
<frame_conforms_to.stackvar-conforms>,
<frame_conforms_to.frame-domains-eq>,
<val_conforms_to-mono-lemma>;
end;

thm <heapobj-mono-lemma>
if "TE wf_tyenv"

"HTO htyping_leq HT1"

"(TE,HTO) |- heapobj heapobj_conforms_to refty"
then "(TE,HT1) |- heapobj heapobj_conforms_to refty";
proof

ged by structcases("heapobj"),
<heapobj_conforms_to>,
<fldvals_conform_to>,<els_conform_to>,
<val_conforms_to-mono-lemma>;
end;

thm
if "TE wf_tyenv"

"STO styping_leq ST1"
then <exp-mono-lemma>

if "(TE,STO) |- exp rexp_conforms_to ty" <exp_conforms_to>
then "(TE,ST1) |- exp rexp_conforms_to ty"

and <exps-mono-lemma>
if "(TE,STO) |- exps rexps_conform_to tys" <exps_conform_to>
then "(TE,ST1) |- exps rexps_conform_to tys"

and <stmt-mono-lemma>
if "(TE,STO,rt) |- stmt rstmt_conforms" <stmt_conforms>
then "(TE,ST1,rt) |- stmt rstmt_conforms";

proof

proceed by weak rule induction on
<exp_conforms_to> with exp,ty,STO0,ST1 variable,
<exps_conform_to> with exps,tys,ST0,ST1 variable,
<stmt_conforms> with stmt,STO0,ST1l,rt variable;

case StackVar: ged by <styping_leq>, <rexp_conforms_to.StackVar>;

case Access: ged by <rexp_conforms_to.Access> ;

case Field: ged by <rexp_conforms_to.Field>;

case Value: ged by <val_conforms_to-mono-lemma>, <styping_leq>;

case NewClass: qed;

case NewArray: qed by <rexp_conforms_to.NewArray>;

case Call: ged by <rexp_conforms_to.Call>;

case Trans: ged by <rexp_conforms_to.Trans>;

case Exps: ged by <rexps_conform_to.Exps>;

case Body:

ged by structcases("ty"),<rexp_conforms_to.Body> ["TE","ty"],

<frame-mono-lemma>, <styping_leq>,<pair_forall_elim>;

161

162 APPENDIX A. AN EXTRACT FROM THE DECLARE MODEL

case AssignToStackVar:
ged by <rstmt_conforms.AssignToStackVar>,
<styping_leq>,<pair_forall_elim>;

case AssignToField: qed by <rstmt_conforms.AssignToField>;
case AssignToArray: qed by <rstmt_conforms.AssignToArray>;
case If: ged by <rstmt_conforms.If>;
case While: ged by <rstmt_conforms.While>;
case Expr: ged by <rstmt_conforms.Expr>;
case Return: ged by <rstmt_conforms.Return>;
case Block: ged by <rstmt_conforms.Block>, <all>;
end;
end;

// Various operations on the state produce a narrower, conformant state.
// Allocation first.
//

// First prove "initial" creates values that conform

thm <initial-values-conform>
if "TE |- ty wf_type"
then "(TE,HT) |- initial(ty) rval_conforms_to ty";
proof
consider pt st "ty = PrimTy(pt)"
by <initial>,<goal>,
structcases("ty"),
<rval_conforms_to.NullToRef> ["TE","HT"];
ged by structcases("pt"),<initial>,<rval_conforms_to> ["initial(ty)","ty"],<prim_type>;
end;

// Simple allocation preserves conformance, if all the conditions are right.

//

thm <object-alloc-conforms-lemma>
if "TE wf_tyenv"
"TE |- STO wf_styping"
"TE |- C wf_class"
"flds = fpfun_of_frel (AllFields(TE,C))"
"fldvals = initial o_f flds"
"heapobj = O0BJECT(fldvals,C)"
"sAlloc(heapO,heapobj) = (heapl,addri)"
"TE |- sO state_conforms_to STO"
"sO0 = (frameO,heap0)"
"s1 = (frameO,heap1)"
then "3ST1. TE |- ST1 wf_styping A
TE |- sl state_conforms_to ST1 A
flookup(snd(ST1)) (addrl) = Some(ClassTy(C)) A
STO styping_leq ST1" <oblig>;
proof
have "Vfld ty. (fld,ty) € AllFields(TE,C) — TE |- ty wf_type" <fields_wf>
by <AllFields-wif>;

A.5. RSTATICS.ART - CONFORMANCE AND SOME PROOEFS

let "STO

(FTO,HTO)";

let "HT1 = HTO <?7++ (addrl,ClassTy(C))";

have
by

have

by

have
by

"HTO htyping_leq HT1" // <HTO_leq>

<htyping_leq>,<sAlloc>,
<freshi> ["fdomain heap0"],<state_conforms_to>,<heap_conforms_to>;

"(TE,HT1) |- fldvals fldvals_conform_to C"

<fields_wif>,
<object-fields-form-graph> ["TE","C"],
<initial-values-conform> ["TE","HT1"],<fldvals_conform_to>,
<frel_is_graph_rool> ["AllFields(TE,C)"/R];

"TE |- heapl heap_conforms_to HT1"
<heap_conforms_to>,<sAlloc>, <freshi> ["fdomain heap0"],
<eq_fsets>,<state_conforms_to>,
<heapobj-mono-lemma>,<heapobj_conforms_to>;

have "TE |- HT1 wf_htyping" by <wf_styping>,<wf_htyping>;

qed

end;

by <wf_styping>, <state_conforms_to>,
<oblig> ["(FTO,HT1)"], <frame-mono-lemma>, <styping_leq>;

163

164 APPENDIX A. AN EXTRACT FROM THE DECLARE MODEL

Bibliography

[AGMT98] J. S. Aitken, P. Gray, T. Melham, and M. Thomas. Interactive theo-

[And97]

[Bai98]

[BMS1]

[BN9S]

[Bou92]

[Bou95]

[Bou97]

[CMY92]

[COR*95]

rem proving: An empirical study of user activity. Journal of Symbolic
Computation, 25(2):263-284, February 1998.

James H. Andrews. Executing formal specifications by translation to
higher order logic programming. In Elsa L. Gunter and Amy Felty, ed-
itors, Theorem Proving in Higher Order Logics, Lecture Notes in Com-
puter Science, pages 17-32. Springer-Verlag, 1997.

Anthony Bailey. The Machine-checked literate formalisation of algebra
in type theory. PhD thesis, Department of Computer Science, University
of Manchester, 1998.

R. S. Boyer and J Strother Moore. Integrating decision procedures into
heuristic theorem provers. Technical report, Univ. of Texas, 1981.

F. Baader and T. Nipkow. Term Rewriting and aoll that. Cambridge
University Press, Cambridge, 1998.

R. Boulton. Boyer-Moore automation for the HOL system. In L.J.M.
Claesen and M.J.C. Gordon, editors, International Workshop on Higher
Order Logic Theorem Proving and its Applications, pages 133-145, Leu-
ven, Belgium, September 1992. IFIP TC10/WG10.2, North-Holland.
IFIP Transactions.

R. J. Boulton. Combining decision procedures in the HOL system. Lec-
ture Notes 1n Computer Science, 971:75-77, 1995.

R. J. Boulton. A tool to support formal reasoning about computer
languages. Lecture Notes in Computer Science, 1217:81, 1997.

J. Camilleri and T.F. Melham. Reasoning with inductively defined re-
lations in the HOL theorem prover. Technical Report 265, University of
Cambridge Computer Laboratory, August 1992.

Judy Crow, Sam Owre, John Rushby, Natarajan Shankar, and Man-
dayam Srivas. A tutorial introduction to PVS. In Proceedings of the

165

166

[DE97a]

[DE9T7D]

[DE9S]

[DFW96]

[FGMPY0]

[Fro93]

[GJS96]

[GM93]

[GMO5]

[GMW77]

[Gun94]

BIBLIOGRAPHY

Workshop on Industrial-Strength Formal Specification Techniques, Baco
Raton, Florida, 1995.

S. Drossopoulou and S. Eisenbach. Java is type safe — probably. Lecture
Notes in Computer Science, 1241:3891f, 1997.

Sophia Drossopoulou and Susan Eisenbach. Is the Java type system
sound? (version 2.01). Technical report, Imperial College, University
of London, Cambridge, CB2 3QG, U.K., January 1997. This version
was distributed on the Internet. Please contact the authors if a copy is
required for reference.

Sophia Drossopoulou and Susan Eisenbach. What is Java binary com-
patibility? Accepted for publication at Object Oriented Programming,
Systems, Languages and Applications, Vancouver, Canada, 1998.

Drew Dean, Edward W. Felten, and Dan S. Wallach. Java security:
from HotJava to Netscape and beyond. In IEEE, editor, 1996 IEEE
Symposium on Security and Privacy: May 6-8, 1996, Oakland, Califor-
nia, pages 190-200, 1109 Spring Street, Suite 300, Silver Spring, MD
20910, USA, 1996. IEEE Computer Society Press.

Amy Felty, Elsa Gunter, Dale Miller, and Frank Pfenning. Aprolog. In
M. E. Stickel, editor, Proceedings of the 10th International Conference
on Automated Deduction, volume 449 of LNAI pages 682-681, Kaiser-
slautern, FRG, July 1990. Springer Verlag.

Jacob Frost. A Case Study of Co-induction in Isabelle HOL. Technical
Report 308, University of Cambridge, Computer Laboratory, August
1993.

James Gosling, Bill Joy, and Guy Steele. The Java Language Specifica-
tion. Addison-Wesley, 1996.

M.J.C Gordon and T.F Melham. Introduction to HOL: A Theorem
Proving Assistant for Higher Order Logic. Cambridge University Press,
1993.

E. Gunter and S. Maharaj. Studying the ML module system in HOL.
The Computer Journal, 38(2):142-151, 1995.

Michael Gordon, R. Milner, and Christopher Wadsworth. Edinburgh
LCF. Internal Report CSR-11-77, University of Edinburgh, Department
of Computer Science, September 1977.

Elsa L. Gunter. A broader class of trees for recursive type definitions
for HOL. In Jeffery Joyce and Carl Seger, editors, Higher Order Logic
Theorem Proving and Its Applications, volume 780 of Lecture Notes in
Computer Science, pages 141-154. Springer-Verlag, February 1994.

BIBLIOGRAPHY 167

[Har95]

[Har96a)]

[Har96b)

[Har97al

[Har97b]

[HI8Y]

[Hut90]

[Inw96]

[Jac88]

[JDDY4]

J. Harrison. Inductive Definitions: Automation and Application. In E.T.
Schubert, P.J. Windley, and J. Alves-Foss, editors, 8th International
Workshop on Higher Order Logic Theorem Proving and its Applications,
volume 971 of Lecture Notes in Computer Science, pages 200-213, Aspen
Grove, Utah, USA, September 1995. Springer-Verlag.

J. Harrison. HOL light: A tutorial introduction. In M. Srivas and
A. Camilleri, editors, First international conference on formal methods
in computer-aided design, volume 1166 of Lecture Notes in Computer
Science, pages 265-269, Palo Alto, CA, USA, November 1996. Springer
Verlag.

J. Harrison. A Mizar Mode for HOL. In J. Von Wright, J. Grundy, and J.
Harrison, editors, Ninth international Conference on Theorem Proving
in Higher Order Logics TPHOL, volume 1125 of Lecture Notes in Com-
puter Science, pages 203—220, Turku, Finland, August 1996. Springer
Verlag.

John Harrison. First order logic in practice. In Maria Paola Bonacina
and Ulrich Furbach, editors, Int. Workshop on First-Order Theorem
Proving (FTP’97), RISC-Linz Report Series No. 97-50, pages 86—90.
Johannes Kepler Universitit, Linz (Austria), 1997.

John R. Harrison. Proof style. Technical Report 410, University of
Cambridge Computer Laboratory, Cambridge, CB2 3QG, U.K., January
1997.

Ian J. Hayes and CIiff B. Jones. Specifications are not (necessarily) ex-
ecutable. Technical Report UMCS-90-12-1, Department of Computer
Science, University of Manchester, Manchester M13 9PL, England, De-
cember 1989.

Matthew Hutchins. Machine assisted reasoning about Standard ML
using HOL, November 1990. Australian National University Honours
Thesis.

Myra Van Inwegen. The machine-assisted proof of programming lan-
guage properties. PhD thesis, University of Pennsylvania, December
1996.

M. I. Jackson. An overview of VDM. SafetyNet, 2, September 1988.

J. Joyce, N. Day, and M. Donat. S: A machine readable specification
notation based on higher order logic. Lecture Notes in Computer Science,
859:285ff, 1994.

168

[JH94]

[JIM*95]

[KB70]

[KM96a)]

[KMO6b]

[Lov68]

[LPY2]

[LY97]

[Mau91]

[MBBCY5]

[McA89]
[ME93]

BIBLIOGRAPHY

Sverker Janson and Seif Haridi. An introduction to AKL, A multi-
paradigm programming language. In B. Mayoh, E. Tyugu, and J. Pen-
jaam, editors, Constraint Programming: Proceedings 1993 NATO ASI
Parnu, Estonia, NATO Advanced Science Institute Series, pages 411—
443. Springer, 1994.

J. Gulmann, J. Jensen, M. Jgrgensen, N. Klarlund, T. Rauhe, and A.
Sandholm. Mona: Monadic second-order logic in practice. In U.H. Eng-
berg, K.G. Larsen, and A. Skou, editors, TACAS, pages 58-73. Springer
Verlag, LNCS, 1995.

D. E. Knuth and P. B. Bendix. Simple word problems in universal
algebra. In J. Leech, editor, Computational problems in abstract algebra,
pages 263—-297. Pergamon Press, Elmsford, N.Y, 1970.

Matt Kaufmann and J. Strother Moore. ACL2: An industrial strength
version of Nqthm. COMPASS — Proceedings of the Annual Confer-
ence on Computer Assurance, pages 23-34, 1996. IEEE catalog number
96CH35960.

Matt Kaufmann and J Strother Moore. ACL2: An industrial strength
version of nqthm. In Compass’96: Eleventh Annual Conference on Com-
puter Assurance, page 23, Gaithersburg, Maryland, 1996. National In-
stitute of Standards and Technology.

D. W. Loveland. Mechanical Theorem Proving by Model Elimination.
Journal of the ACM, 15:236-251, 1968.

Zhaohui Luo and Robert Pollack. The LEGO proof development system:
A wuser’s manual. Technical Report ECS-LFCS-92-211, University of
Edinburgh, May 1992.

Tim Lindholm and Frank Yellin. The Java Virtual Machine Specifica-
tion. The Java Series. Addison-Wesley, Reading, MA, USA, January
1997.

M. Mauny. Functional programming using CAML. Technical Report
RT-0129, National Institute for Research in Computer and Control Sci-
ences (INRIA), 1991.

Z. Manna, N. Bjoerner, A. Browne, and E. Chang. STeP: The Stanford
Temporal Prover. Lecture Notes in Computer Science, 915:793ff, 1995.

David McAllester. Ontic. The MIT Press, Cambridge, MA, 1989.

M. van Inwegen and E.L. Gunter. HOL-ML. In J.J. Joyce and C.-J.H.
Seger, editors, International Workshop on Higher Order Logic Theorem
Proving and its Applications, volume 780 of Lecture Notes in Computer

BIBLIOGRAPHY 169

[Mel8S]

[Mel91]

[Mel92]

[Mil80]

[MLP79]

[MS97]

[MTDRSS]

[MTHM97]

[MW97]

[Nes92]

[Nip89]

[Nip96]

Science, pages 59-73, Vancouver, Canada, August 1993. University of
British Columbia, Springer-Verlag, published 1994.

Thomas F. Melham. Automating recursive type definitions in higher
order logic. Technical Report 146, University of Cambridge Computer
Laboratory, Cambridge CB2 3QG, England, September 1988.

T. F. Melham. A mechanized theory of the w-calculus in HOL. In
Informal Proceedings of the Second Logical Framework Workshop, May
1991.

Thomas F. Melham. The HOL logic extended with quantification over
type variables. In L.J.M. Claesen and M.J.C. Gordon, editors, In-
ternational Workshop on Higher Order Logic Theorem Proving and
its Applications, pages 3-18, Leuven, Belgium, September 1992. IFIP
TC10/WG10.2, North-Holland. IFIP Transactions.

Robin Milner. A Calculus for Communicating Systems, volume 92 of
Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1980.

Richard A. De Millo, Richard J. Lipton, and Alan J. Perlis. Social
processes and proofs of theorems and programs. Communications of the
ACM, 22(5):271-280, May 1979.

Muller and Slind. Treating partiality in logic of total functions. COMPJ:
The Computer Journal, 40, 1997.

M.J.C. Gordon, T.F. Melham, D. Sheperd, and R. Boulton. The UN-
WIND Library. Manual part of the HOL system, 1988.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML (Revised). The MIT Press, 1997.

William McCune and Larry Wos. Otter—the CADE-13 competition
incarnations. Journal of Automated Reasoning, 18(2):211-220, April
1997.

M. Nesi. Formalizing a modal logic for CSS in the HOL theorem prover.
In L.J.M. Claesen and M.J.C. Gordon, editors, International Workshop
on Higher Order Logic Theorem Proving and its Applications, pages 279—
294, Leuven, Belgium, September 1992. IFIP TC10/WG10.2, North-
Holland. IFIP Transactions.

Tobias Nipkow. Equational reasoning in Isabelle. Science of Computer
Programming, 12(2):123-149, July 1989.

T. Nipkow. More Church-Rosser proofs (in Isabelle/HOL). Lecture
Notes in Computer Science, 1104:733ff, 1996.

170

[NL95)

[NN96]

[NOT79]

[NO8O0]

[Nor98]

[Nv98]

[Pau90]

[Pau94]

[Pau97]

[PB97]

[Plo91]

[PM93]

BIBLIOGRAPHY

William Newman and Mik Lamming. Interactive Systems Design.
Addison-Wesley, December 1995.

D. Nazareth and T. Nipkow. Formal verification of algorithm W: The
monomorphic case. In J. Von Wright, J. Grundy, and J. Harrison, edi-
tors, Ninth international Conference on Theorem Proving in Higher Or-
der Logics TPHOL, volume 1125 of Lecture Notes in Computer Science,
pages 331-346, Turku, Finland, August 1996. Springer Verlag.

C. G. Nelson and D. C. Oppen. Simplifications by cooperating deci-
sion procedures. ACM Transactions on Programming Languages and
Systems, 1(2), 1979.

Greg Nelson and Derek C. Oppen. Fast decision procedures based on
congruence closure. Journal of the ACM, 27(2):356-364, April 1980.

Michael Norrish. C Formalized in HOL. PhD thesis, University of Cam-
bridge, August 1998. Submitted for examination.

T. Nipkow and D. von Oheimb. Javag;yp; is type-safe — definitely. In
25th ACM Symp. Principles of Programming Languages. ACM Press,
1998.

L. C. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi,
editor, Logic and Computer Science, pages 361-385. Academic Press,
1990.

L.C. Paulson. A fixedpoint approach to implementing (co)inductive
definitions. In Alan Bundy, editor, Proceedings of the 12th International
Conference on Automated Deduction, volume 814 of LNAI, pages 148—
161, Berlin, June/July 1994. Springer.

L.C. Paulson. Proving properties of security protocols by induction.
In PCSFW: Proceedings of The 10th Computer Security Foundations
Workshop. IEEE Computer Society Press, 1997.

Roly Perera and Peter Bertelsen. The unofficial java
bug report, June 1997. Published on the WWW at
http://www2.vo.lu/homepages/gmid/java.htm.

Gordon D. Plotkin. A structural approach to operational semantics.
Technical report, Computer Science Department, Aarhus University,
DK-8000 Aarhus C. Denmark, September 1991.

Chr. Paulin-Mohring. Inductive definitions in the system Coq; rules and
properties. Lecture Notes in Computer Science, 664:328ff, 1993.

BIBLIOGRAPHY 171

[PROS8]

[Qia97]

[Ras95]

[Rud92]

[Rus93]

[SA98]

[SHC96]

[Sho84]

[S1i96]

[Spi67]
[Spi88]

[SS97]

F. Pessaux and F. Rouaix. The O’Caml-Tk implementation,
1998. From the O’Caml system distribution., available at
http://pauillac.inria.fr/caml.

Zhenyu Qian. A Formal Specification of Java Virtual Machine Instruc-
tions. Technical report, Universitit Bremen, FB3 Informatik, D-28334
Bremen, Germany, November 1997.

Ole Rasmussen. The Church-Rosser theorem in Isabelle: A proof porting
experiment. Technical Report 364, University of Cambridge, Computer
Laboratory, March 1995.

P. Rudnicki. An overview of the MIZAR project, 1992. Unpub-
lished; available by anonymous FTP from menaik.cs.ualberta.ca as
pub/Mizar/Mizar Over.tar.Z.

John Rushby. Formal methods and the certification of critical systems.
Technical Report SRI-CSL-93-7, Computer Science Laboratory, SRI In-
ternational, Menlo Park, CA, December 1993. Also issued under the title
Formal Methods and Digital Systems Validation for Airborne Systems as
NASA Contractor Report 4551, December 1993. A book based on this
material will be published by Cambridge University Press in 1998/9.

R. Stata and M. Abadi. A type system for Java bytecode subroutines. In
25th Annual ACM Symposium on Principles of Programming Languages,
pages 149-160, January 1998.

Zoltan Somogyi, Fergus Henderson, and Thomas Conway. The execu-
tion algorithm of Mercury, an efficient purely declarative logic program-
ming language. Journal of Logic Programming, 29(1-3):17-64, October—
November 1996.

R.E. Shostak. Deciding Combinations of Theories. Journal of the ACM,
31(1):1-12, January 1984.

K. Slind. Function definition in higher order logic. In J. Von Wright,
J. Grundy, and J. Harrison, editors, Ninth international Conference
on Theorem Proving in Higher Order Logics TPHOL, volume 1125 of
Lecture Notes in Computer Science, pages 381-398, Turku, Finland,
August 1996. Springer Verlag.

Michael Spivak. Calculus. W. A. Benjamin, Inc., New York, 1967.

J. M. Spivey. Understanding Z. Cambridge Tracts in Theoretical Com-
puter Science 3. Cambridge University Press, 1988. ISBN 0-521-33429-2.

Geoff Sutcliffe and Christian B. Suttner. The CADE-13 ATP system
competition. Journal of Automated Reasoning, 18(2):137-138, April
1997.

172

[Stags]

[Sym93]

[Sym95]

[Sym97a]

[Sym97b]

[Tarb5]

[Typ98]

[WF94]

[Wil70]
[WLB9S]

BIBLIOGRAPHY

Richard Stallman. GNU Emacs manual. Free Software Foundation, 675
Mass Ave, Cambridge, MA 02139, USA, Tel: (617) 876-3296, USA, 11th,
Emacs version 19.29 edition, June 1995. Includes GNU Emacs reference
card.

D. Syme. Reasoning with the Formal Definition of Standard ML in HOL.
In J.J. Joyce and C.-J.H. Seger, editors, International Workshop on
Higher Order Logic Theorem Proving and its Applications, volume 780
of Lecture Notes in Computer Science, pages 43-59, Vancouver, Canada,
August 1993. University of British Columbia, Springer-Verlag, published
1994. ftp://ftp.cl.cam.ac.uk/hvg/papers/MLinHOL.hug93.ps.gz.

D. Syme. A new interface for HOL — ideas, issues and implementation.
Lecture Notes in Computer Science, 971:324-77, 1995.

Don Syme. DECLARE: A prototype declarative proof system for higher
order logic. Technical Report 416, University of Cambridge Computer
Laboratory, Cambridge, CB2 3QG, U.K., March 1997.

Don Syme. Proving Java type soundness. Technical Report 427, Com-
puter Laboratory, Univeristy of Cambridge, June 1997.

A. Tarski. A fixed point theorem and its applications. Pacific J. Math.,
pages 285-309, 1955.

Types mailing list archive, 1998. Available at
http://www.cs.indiana.edu/types on the WWW.

Andrew K. Wright and Matthias Felleisen. A syntactic approach to
type soundness. Information and Computation, 115(1):38-94, November
1994.

Stephen Willard. General Topology. Addison-Wesley, New York, 1970.

Tim Wahls, Gary T. Leavens, and Albert L. Baker. Executing formal
specifications with constraint programming. Technical Report 97-12a,
Department of Computer Science, lowa State University, 226 Atanasoff
Hall, Ames, Towa 50011, August 1998. Available by anonymous ftp from
ftp.cs.iastate.edu or by e-mail from almanac@cs.iastate.edu.

Index

imp, 106
L class) 106
Ciniy, 106
<, 106

ACL2, 2, 7
active method invocations, 117
AKL, 39
automated reasoning, 2, 71-87
feedback, 85
integration, 83
interface, 83
requirements, 71-73

backward reasoning, 46

big step rewrite system, 113
Boyer-Moore prover, 42, 85, 87
brevity, 8, 42

CaML-light, 38
cases by ..., 47
clarity, 134
co-induction, 60
configurations, 113, 113, 125
conformance, 121, 126, 134
for configurations, 125
for frames, 123
for heaps, 123
for terms, 123
for values, 122
consider ... by ..., 47
constraint based programming, 39

datatypes, 25

decision procedures, 76

declarative proof, 41-69, 133, 137
constructs, 44-63

decomposition and enrichment, 42,
46-49
induction, 53-63
justifications, 49-53
principles, 41-44
role in case study, 133
simplicity, 8
declarative specification, 29
declarative theorem proving, 1, 2, 7, 8
case study, 99-135
costs and benefits, 8-10
tools and techniques, 21-95
Declare, 1, 2, 7, 8, 9, 23, 24, 26-29,
34, 41, 44, 76-83, 90, 99, 105—
108, 113, 115, 119, 121, 126,
129, 130
case study, 99-135
code generation, 38
example Java proofs, 128
induction, 55
standard basis, 29
tutorial introduction, 10-18
decomposition, 42, 46
definitions, 25
discarding facts, 62

enrichment, 42, 46
explicit resolutions, 51

feedback, 52, 56, 68, 72
from automated engine, 18, 50, 85
fixed points, 26-28
formal checking, 1, 4
forward reasoning, 46
frame typing, 122
frames, 113

174

future work, 138

generic theorem proving, see Isabelle
grinding, 80

ground reasoning, 76

ground terms, 115

have ... by ..., 47

heap typing, 122

heaps, 113

higher order logic, 22

HOL, 2, 5, 6, 8, 21, 23, 28, 29, 42, 43,
45, 49, 54, 58, 63-67, 72, 77,
81, 82, 87, 92, 93

HOL-lite, 29, 45, 65, 80, 81, 87

IDE, 89
ihyp macros, 42
ihyp macros, 61
implements relation, 106
induction, 53-63
by decomposition, 5556
example in Declare, 15
in Declare, 57-58
in tactic proof, 54
mutual recursion, 62
inductive relations, see fixed points
instantiations, 50
interactive development environment,
89
Isabelle, 2, 5, 8, 21, 23, 26-28, 32, 42,
43, 58, 6368, 77, 80-82, 84,
87, 135, 138

Java
arrays, 116, 118
configurations, 113
conformance, 121
example lemmas, 128
example proofs, 128
fields, 116, 118, 128
implements relation, 106
liveness, 125
method call, 117, 127
method lookup, 127

INDEX

model in Declare, 119

redex rules, 116

runtime semantics, 113

runtime typechecking, 118, 118, 127

safety, 125

side effects, 127, 133

statements, 118

subclass relation, 106

subinterface relation, 106

term rewrite system, 115

type environments, 104

type soundness, 125

well-formed types, 105

widening, 106, see widening
Java Virtual Machine, 135, 139
Javay, 100, 102, 104, 113, 126, 127
Javag, 100, 102, 115, 121, 127, 133
Javag, 99, 102, 104, 108, 111, 113, 119,

121, 126, 133, 138

static semantics, 112

justifications, 49-53

labelling, 29-33

Lambda Prolog, 39

LCF, 6, 6, 11, 23, 26, 50, 63, 80

let ... = ...,47

liveness, 125

logical environment, 42

logical foundations, 21-23
logic of description, 23
logic of implementation, 23

maintainability, 134

Mercury, 34
example translations, 35
expressions, 35
modes, 34
predicates, 34
static analyses, 34
types, 34

method call, 117

minimal support, 30

Mizar, 67-69

model elimination, 82

INDEX 175

obviousness, 73 type environments, 104

Ontic, 73 type soundness, 4, 99, 100, 106, 121,
operational semantics, 3 125

Otter, 72

validation, 2, 12, 33-39
partial functions, 28
pattern matching, 24
pragmas, 24
for automated engine, 84
for code generation, 35
for induction, 53
for justifications, 53
proof description, 2, 41
proof refinement, 134
PVS, 2, 8, 22, 23, 26, 28, 29, 42, 43,
65, 80-82, 85, 87, 105

weak induction, 60
well-formed types, 105
widening, 104, 106, 126

7, 38

re-usability, 9
readability, 9
recursive functions, 28
redex rules, 116
resolutions, 51
rewriting, 77
robustness, 9, 134

S, 39

safety, 125

second order logic, 22

second order schemas, 53-63
small step rewrite system, 113
solving, 79

specification, 2, 21-29

state typing, 122

strong induction, 60
structured operational semantics, 1, 3
sts ... by ..., 47
subclass relation, 106
subinterface relation, 106
subtyping, see widening

tactic proof, 63-67

induction in, 54

sensitivity to orderings, 8
term rewrite system, 115
type directed instantiations, 50

