
Declarative Theorem Proving for Operational SemanticsDon SymeApril 1, 1999

ii

Contents
1 Introduction 11.1 Overview . 11.2 Structured Operational Semantics and its Uses 31.3 Formal Checking for Operational Semantics 41.3.1 The Method and its Challenges 41.3.2 Related Work . 51.4 Declarative Theorem Proving and Declare 71.4.1 What is \Declarative" Theorem Proving? 81.4.2 Costs and Bene�ts . 81.4.3 A Tutorial Introduction to Declare 101.4.4 Checking the Article . 17I Tools and Techniques 192 Speci�cation and Validation 212.1 Foundations and Higher Order Logic 212.2 Speci�cation Constructs for Operational Semantics 242.2.1 Pattern Matching . 242.2.2 Simple De�nitions and Predicates 252.2.3 Datatypes . 252.2.4 Fixed Point Relations . 262.2.5 Recursive Functions . 282.2.6 Partial Functions and Unde�nedness 282.2.7 Declarative Speci�cation and Modularity 292.3 Labelling and Theorem Extraction 292.3.1 Possible Extensions to the Mechanism 312.3.2 Related Work . 332.4 Validation . 332.4.1 Mercury . 342.4.2 Example translations . 352.4.3 Related Work . 38iii

iv CONTENTS3 Declarative Proof Description 413.1 The Principles of Declarative Proof 413.2 Three Constructs For Proof Description 443.3 Decomposition and Enrichment . 463.3.1 A longer example . 483.4 Justi�cations, Hints and Automation 493.4.1 Highlighting Relevant Facts 503.4.2 Explicit Instantiations . 503.4.3 Explicit Resolutions . 513.4.4 Explicit Case Splits . 533.5 Second order Schema Application . 533.5.1 Induction in Typical Tactic Proof Languages 543.5.2 Induction in Declare without a special construct 553.5.3 The Induction Construct in Declare 573.5.4 The Cases . 583.5.5 Strong Induction . 603.5.6 Co-induction and Strengthening 603.5.7 ihyp macros . 613.5.8 Discarding Facts . 623.5.9 Mutually Recursive Inductive Proofs 623.6 Related Work . 633.6.1 Tactics . 633.6.2 A short statistical comparison 653.6.3 Mizar . 674 Automated Reasoning for Declarative Proof 714.1 Requirements . 714.1.1 An Example Problem . 734.2 Techniques used in Declare . 764.2.1 Ground Reasoning in Equational Theories 764.2.2 Rewriting . 774.2.3 Inbuilt Rewrite Procedures 784.2.4 Grinding . 804.2.5 First Order Reasoning . 824.3 Interface and Integration . 834.3.1 Quoting and Pragmas . 834.3.2 Integration . 834.3.3 Feedback . 854.4 Appraisal . 864.5 Related Work . 87

CONTENTS v5 Interaction for Declarative Proof 895.1 Metrics for Interactive Systems . 895.2 IDeclare . 905.2.1 Logical Navigation and Debugging 925.3 Appraisal . 94II Case Study 976 JavaS 996.1 Java . 996.2 Our Model of JavaS . 1006.2.1 The Java Subset Considered 1006.2.2 Comparison with Drossopoulou and Eisenbach 1016.2.3 Syntax . 1026.3 Preliminaries . 1046.3.1 The Structure of Type Environments 1046.3.2 Well-formed Types . 1056.3.3 The vclass , vintf and :imp Relations 1066.3.4 Widening . 1066.3.5 Visibility . 1076.3.6 Well-formedness for Type Environments 1096.4 Static Semantics for JavaA . 1116.5 Static Semantics for JavaS . 1126.6 The Runtime Semantics . 1136.6.1 Con�gurations . 1136.6.2 The Term Rewrite System . 1156.7 The Model as a Declare Speci�cation 1197 Type Soundness for JavaS 1217.1 Conformance . 1217.2 Safety, Liveness and Annotation . 1257.2.1 Key Lemmas . 1267.3 Example Proofs in Declare . 1287.3.1 Example 1: Inherited Fields Exist 1287.3.2 Example 2: Field Assignment 1297.3.3 Example 3: Monotonicity of Value Conformance Under Allo-cation . 1307.4 Errors Discovered . 1317.4.1 An Error in the Java Language Speci�cation 1317.4.2 Runtime Typechecking, Array Assignments, and Exceptions . 1327.4.3 Side-e�ects on Types . 1337.5 Appraisal . 1337.5.1 Related Work . 134

vi CONTENTS8 Summary 1378.1 Future Work . 138A An Extract from the Declare Model 141A.1 psyntax.art - Primitives and types 141A.2 widens.art - Environments, Widening and Visibility 142A.3 wfenv.art - Constraints on Environments 147A.4 rsyntax.art - Syntax of JavaR . 153A.5 rstatics.art - Conformance and some proofs 155

List of Figures4.1 A typical obligation to be discharged by automated reasoning. . . . 745.1 IDeclare: The Interactive Development Environment for Declare . . 916.1 Components of the Semantics and their Relationships 1016.2 The Abstract Syntax of JavaS and JavaA 1036.3 von Oheimb's Extended Range of Types 1036.4 Type checking environments . 1056.5 Connections in the Subtype Graph 1076.6 The Runtime Machine: Con�gurations and State 1146.7 The syntax of runtime terms . 1146.8 Organisation of the Model in Declare 119

vii

viii LIST OF FIGURES

List of Tables2.1 The Result at a Location. 302.2 The Minimal Logical Support at a Location. 312.3 Possible reversed support rules for $. 312.4 Possible Support Rules for Fixed Points 322.5 Pragmas relevant to Mercury . 353.1 Syntactic variations on enrichment/decomposition with equivalent prim-itive forms. 473.2 Pragmas relevant to induction and justi�cations 533.3 Source Level Statistics for Three Operational Developments 664.1 Pragmas recognised by the automated reasoning engine 845.1 Approximate time analysis for IDeclare 945.2 Approximate time analysis for Declare 95

ix

x LIST OF TABLES

AbstractThis dissertation is concerned with techniques for formally checking properties ofsystems that are described by operational semantics. We describe innovations andtools for tackling this problem, and a large case study in the application of thesetools. The innovations centre on the notion of \declarative theorem proving", andin particular techniques for declarative proof description. We de�ne what we meanby this, assess its costs and bene�ts, and describe the impact of this approach withrespect to four fundamental areas of theorem prover design: speci�cation, proofdescription, automated reasoning and interaction. We have implemented our tech-niques as the Declare system, which we use to demonstrate how the ideas translateinto practice.The case study is a formally checked proof of the type soundness of a subsetof the Java language, and is an interesting result in its own right. We argue whydeclarative techniques substantially improved the quality of the results achieved,particularly with respect to maintainability and readability.DeclarationThis dissertation is the result of my own work and includes nothing which is theoutcome of work done in collaboration.

xi

xii LIST OF TABLES

AcknowledgementsIn the last four years I have met so many wonderful individuals that it is hard toknow who to thank �rst, but through it all have been my o�ce mates Mark andMichael, who have provided me with both warm friendship and an invigorating ifsometimes exacting level of intellectual camaraderie. Similarly, my supervisor, MikeGordon has consistently given of his time, and I thank him for for the examplehe has set, particularly in striking a balance between pragmatic and theoreticalcomputer science. I particularly also thank John Harrison, who has contributed sogreatly to the intellectual environment in which I have had the privilege to workin, as have Tom Melham, Larry Paulson, Andy Pitts and Andy Gordon. Manyothers have developed the academic �elds which form the background to this thesis,and in particular I thank those who have worked on the HOL, Isabelle, PVS, ACL2,Mizar, O'Caml and Mercury systems, and especially Sophia Drossopoulou and SusanEisenbach at Imperial for their work on Java.During my studies I have had the unbelievable good fortune to receive two in-ternships in the United States, at SRI International in 1996, and at Intel in 1998.On both occasions I was privileged to work with people of great intelligence, skilland energy. In particular, I thank John Rushby, Natarajan Shankar, Carl Seger andJohn O'Leary for the many discussions we had about declarative proof and relatedtopics.Michael Norrish, Katherine Eastaugh�e and Mike Gordon assisted with the �nalpreparation of this document, for which I am very grateful. The CommonwealthScholarship Commission provided the funds for my studies, without which I would,no doubt, have been homeless and destitute for these four years | many thanks!My time at Cambridge and in America has, in many ways, been the richest andmost ful�lled of my life, and for that I am wholly indebted to my friends. They havebrought me great happiness, both intellectual and emotional, and I think particularlyof Kona, Florian, Beth, Jill, Darren, Daryl, Sue, Carlos, Byron, Jess, Maria, JohnMatthews, John Wentworth, Peter, Phil, and my housemates Juliet, Jonathan, Kate,Sam, S�ren, Kieran and Saskia, as well as those mentioned above. These people aredear to me: they are my family, my friends. Finally, I thank Julie: may your lifealways be �lled with as much joy as you brought into mine.
xiii

xiv LIST OF TABLES

Chapter 1Introduction1.1 OverviewThis dissertation is concerned with techniques for formally checking properties ofsystems that are described by operational semantics. Roughly speaking, this meanssystems speci�ed by a naive, high level interpreter (or in such a way that the pro-duction of such an interpreter is a simple task). Such formalizations are extremelycommon in computer science, and are used to provide speci�cations of:� The dynamic execution of programs;� Static checks on programs such as type checking and inference;� Statics and dynamics for highly non-deterministic systems such as process cal-culi;� Security protocols [Pau97].Real machines such as hardware devices can also be described operationally, pre-suming an appropriate level of abstraction is chosen.\Formal checking" means proving properties to a su�cient degree that our for-malization may be checked by a relatively simple computer program. We describeinnovations and tools for tackling this problem in the context of operational seman-tics, and a large case study in the application of these tools.A computer program used to develop and check such formalizations is called atheorem prover. Our primary contribution is the application and further developmentof a particular style of speci�cation and proof called declarative theorem proving.We have produced an implementation of these techniques in the form of a theoremprover called Declare, and this system will be the focus of discussion for much of thisdissertation.The remainder of this chapter considers the application of a particular kind ofoperational description known as Structured Operational Semantics (SOS). We arguewhy formal checking is interesting for this problem domain, and describe previous1

2 CHAPTER 1. INTRODUCTIONexamples of formal checking for SOS. We then give a tutorial-style introduction toDeclare, using a small example that is similar in
avour to our later case study, andde�ne what we mean by \declarative" theorem proving.In Chapters 2 to 5 we discuss the impact of a declarative approach on four aspectsof mechanized theorem proving systems, and describe the techniques we have adoptedin Declare:� Speci�cation and Validation i.e. methods for describing operational systems ina fashion acceptable to both mathematician and machine, and for informallyvalidating that these speci�cations meet our informal requirements. We de-scribe a range of speci�cation constructs, their realisation in Declare, a newlabelling system for extracting results that follow easily from speci�cations,and a new validation method based on translation to the Mercury [SHC96]system.� Proof Description i.e. methods for describing the proofs of problems that maynot be solved immediately by automated reasoning. We describe what consti-tutes a declarative proof language, the pros and cons of a declarative approachto proof and the particular proof language implemented in Declare. We thencontrast declarative proof with existing proof description techniques.� Automated Reasoning i.e. algorithms for automatically determining the validityof formulae that arise in our problem domain. We de�ne our requirements withregard to automated reasoning and describe the particular techniques used inDeclare (many are derivative, but some are new). We then assess how ourautomated prover does and does not meet our requirements.� The Interactive Development Environment i.e. the system used to constructdeclarative speci�cations and proofs interactively. We consider how we candetermine if an interactive development environment is a success, describe theprinciples behind our environment IDeclare, and assess it via an informal task-analysis.Where our techniques depart from \best known practice" we describe how theyrepresent an improvement. By \best known practice" we mean the state-of-the-artin the domain as embodied in existing interactive theorem provers, such as Isabelle,ACL2, HOL and PVS[Pau90, GM93, COR+95, KM96a, Har96a]. We use Declare asa means to demonstrate our ideas, though the ideas themselves are independent ofthe actual theorem proving system used.In Chapters 6 and 7 we turn our attention to our major case study, where weformally check the type soundness of a major subset of the Java language. Thiscase study is one of the more complex formally checked proofs about operationalsemantics in existence, and is an interesting result in its own right. We argue thatdeclarative techniques played a positive role throughout the case study, and sub-stantially improved the quality of the results achieved, particularly with respect tomaintainability and readability.

1.2. STRUCTURED OPERATIONAL SEMANTICS AND ITS USES 3Finally in Chapter 8 we reiterate the major themes we have addressed, summarizeour results and discuss possible avenues for future research.1.2 Structured Operational Semantics and its UsesThis work shall focus on systems described by \Structured Operational Semantics,"a kind of operational description �rst developed systematically by Plotkin [Plo91]and which has subsequently become the standard technique for describing the for-mal semantics of programming languages, type systems and process calculi. Classicexamples of its use include the formal de�nition of Standard ML [MTHM97] and thede�nition and theory of CCS [Mil80].The primary features of an SOS description are:� Terms that represent the abstract syntax of the program being executed by anabstract machine;� Terms that represent a con�guration of an abstract machine, usually combininga fragment of the abstract syntax that represents the remainder of the programto be executed, with extra terms to represent state and input/output;� Inductively de�ned relations that describe the execution of the machine. Theseare either big step (if we relate con�gurations with values that represent thecomplete e�ects of their execution); or small step (if we relate con�gurationsto new con�gurations);� Inductively de�ned relations that describe the type system for the language.In practice, SOS is more than a style of mathematics: it is a methodology. SOS issu�ciently well developed that it may be used as a method of systematic analysisduring the development of a programming language. A striking example of its utilityin this role is recent work by Drossopoulou and Eisenbach (whose work we shallconsider in a case study in Chapters 6 and 6.6.2). They have used operationalsemantics to analyse the semantics of \binary compatibility" in the Java language[DE98], and have consequently discovered a serious
aw in the type system of thelanguage. Considering the importance of the language and the subtle nature of theproblem they detected this is a remarkable result. All that was required here wasa systematic means for analysing the language: operational semantics can providethis. Thus, the role of SOS and our subsequent contribution can be summarized as:Structured operational semantics is a formal methodology for de�ning andanalysing abstract machines. We seek tools to support this methodology.Of course, nearly any discrete system in computing may be described opera-tionally. Such descriptions are not always mathematically satisfying (being insuf-�ciently abstract or modular); and yet are sometimes too abstract for system im-plementors (because they may abstract away crucial details such as the allowable

4 CHAPTER 1. INTRODUCTIONinteractions with the outside world). We are not trying to demonstrate that opera-tional reasoning is the \correct" approach to proving properties of languages. Afterall, if more abstract (e.g. categorical) models of a language are available then theywill be more appropriate for many purposes. On the other side of the coin, we acceptthat most operational descriptions are indeed quite distant from real implementa-tions of languages. However the techniques we present should scale well as morecomplex systems are considered, and the fact that our case studies already deal withquite large systems and yet remain tractable indicates this.1.3 Formal Checking for Operational SemanticsWhy are we interested in formally checking results based on operational semantics?It is useful to answer this in the context of our major case study: a type soundnessresult for a subset of Java.A type soundness result states that if a program typechecks then certain prob-lems won't occur during the execution of the program on a certain abstract ma-chine. Thus, proving type soundness is verifying a property of the abstract machinedescribed by the semantics. By doing this we give a proof of the feasibility of asound implementation of the language. In addition, we can see the abstract machineas a primitive implementation, and when we prove type soundness we get a handleon how we might prove the result for a more realistic implementation. However,verifying type soundness for such an implementation would take considerably morework.This justi�es why we are interested in such results, but why formally check them?Formal checking is primarily a tool for maintaining certainty in the presence ofcomplexity. Our case study in Chapter 6 describes a large operational system thatis still undergoing rapid development by language researchers [DE98]. It is di�cultto maintain the integrity of paper proofs of properties as such systems develop:the number of cases to analyse is high and there is always the concern that someunexpected combination of language features will lead to a soundness problem. Thuswe turn to formal machine checking. Our Java case study demonstrates its value: ithas been developed in parallel with the written formalization by Drossopoulou andEisenbach, and has provided the researchers with valued feedback.1.3.1 The Method and its ChallengesIn principle, the formal checking of results about a system described by operationalsemantics is a relatively simple task. We must:� Compose a formal description of the system that is correct with respect to theinformal semantics (or existing implementations).� Translate this description to create a model of the system in the framework of

1.3. FORMAL CHECKING FOR OPERATIONAL SEMANTICS 5the formal checking tool;1� Formulate a speci�cation of the the properties we are interested in proving.� Formulate the proofs of these properties such that the proofs are tractable fora machine to check.Things are, of course, never as straightforward as this. The primary di�culty iscomplexity: formal checking may \maintain certainty in the presence of complexity,"but the very use of formal checking is a di�cult thing in its own right, and can turneasy problems into hard ones (consider, for example, the headaches caused by simplearithmetic in generations of theorem proving systems: many arithmetic proofs thathumans consider trivial may take considerable e�ort in a theorem proving system).Nearly all the devices we present in this work can be seen as mechanisms for managingthe complexity of the theorem proving process. Hopefully by doing so we free theuser to focus on the challenges inherent in the properties they are checking.Two particular source of di�culty in the process of formal checking are gettingthe details right and maintaining the formalization. Our case study represents theapplication of formal checking to a problem where no 100% correct formalizationwas previously known: a written formalization existed but it was found to be de�-cient in many ways. In addition formalizations must be modi�ed, extended, revisedand reused. This can contribute substantially to the overall complexity of formalchecking, if not well supported. In applied veri�cation, we can assume neither thatthe problem of interest is stable, nor that the formulation we begin with is correct.The techniques we present in this dissertation have been greatly in
uenced bythese factors. While we have not solved the problems completely, we have certainlymade progress, and summarize why in Chapter 8.1.3.2 Related WorkMany attempts have been made to reason about the operational semantics of pro-gramming languages in theorem proving systems:� Melham and Camilleri pioneered representational techniques for inductive re-lations in the HOL system and studied the operational semantics of some smallimperative languages [CM92]. This culminated in the proof of the Church-Rosser theorem for combinatorial logic. The proof has since been reworkedand improved in Isabelle [Ras95, Nip96].� Nipkow, Naraschewski and Nazareth have proved the correctness of the Walgorithm for type inference for a small functional language, using Isabelle-HOL [NN96].1We do not use \model" in its proof theoretic sense, but rather to distinguish the \abstract"formal system (as expressed in the written mathematical vernacular) from the \embedded" formalsystem (realised in a formal checking tool).

6 CHAPTER 1. INTRODUCTION� Syme and Hutchins have embedded the dynamic semantics of the core languageof Standard ML in the HOL system [Hut90, Sym93]. They proved some simplemeta-level results, including the determinacy of the semantics, and developeda symbolic evaluator for proving results about particular programs. Gunter,Maharaj and Van Inwegen [ME93, GM95], constructed a model for the dynamicsemantics of the entire Standard ML language. Van Inwegen has tackled theconsiderably more di�cult task of proving type soundness for the core language[Inw96], though the proof itself was beset with di�culties.� Norrish [Nor98] has developed a model of the C language in HOL based onthe (informal) ANSI standard. The main di�culty here was to even �nd amodel for the language, and to derive results that avoid the complexities of thelanguage when only simple constructs are used, e.g. Norrish has proved that insome situations the side-e�ecting nature of expressions may be safely ignored.We use this work to statistically contrast declarative and procedural styles ofproof in Chapter 3.� Nipkow and von Oheimb [Nv98] have developed a proof of the type soundnessof a subset of Java that closely resembles our own case study (see Chapter 6).There are many other similar works on a smaller scale, for example those by Frost,Nesi and Melham [Fro93, Nes92, Mel91].As indicated by the above list, researchers have applied a range of theorem prov-ing tools to assist with the formal checking of proofs related to operational semantics.Furthermore, as shall be clear in the following chapters, it is possible to draw on workfrom across the spectrum of theorem proving tools in order to provide this support.Some of the systems that have most in
uenced our work are:� HOL [GM93]. This is an implementation of polymorphic higher order logicimplemented in an \LCF-style" [GMW77]. That is the logic is mechanizedstarting with a simple set of rules and axioms, and HOL relies heavily on user-programmed rules of inference written in a dialect of ML. HOL supports a widerange of speci�cation constructs and automated reasoning routines. Proofs aredescribed using tactics, a topic we shall return to in Section 3.6.1.� Isabelle [Pau90]. This is also an LCF-style system, but is generic and may beinstantiated to a number of di�erent \object logics," including polymorphichigher order logic and set theory. Speci�cation is succinct and a wide range ofnotational conventions are supported. Proofs are again described using tactics,and a number of powerful generic proof routines including �rst order proversand simpli�cation engines are available.� PVS [COR+95]. This is an implementation of a rich higher order logic, in-cluding \predicate subtypes", notable for its excellent interactive environment,powerful integrated decision procedures and pragmatic approach to integratingmodel checking. It has not been widely applied to operational semantics.

1.4. DECLARATIVE THEOREM PROVING AND DECLARE 7� ACL2 [KM96b]. ACL2 implements an \integrated collection of rules for de�n-ing (or axiomatizing) recursive functions, stating properties of those functions,and rigorously establishing those properties." It is notable for its use of deci-sion procedures, its pioneering use of rewriting, its underlying computationalmodel and induction heuristics. We make heavy use of techniques from ACL2and its predecessors in Chapter 4.� Mizar [Rud92]. This is a system for formalizing general mathematics, designedand used by mathematicians, and a phenomenal amount of the mathematicalcorpus has been covered. The foundation is set theory, which pervades thesystem, and proofs are expressed as detailed proof outlines, leaving the machineto �ll in the gaps. We discuss this system in more detail in Chapter 3. It hasnot been applied to operational semantics.Many of the techniques we utilise in this thesis are derived from ideas found inthe above systems, though the ones we describe in detail are novel or signi�cantextensions to existing techniques. Our most notable point of departure is with regardto proof description. Our contention is that none of the above systems, with thepossible exception of Mizar, have addressed the question of \how proof outlinesshould be expressed" in su�cient depth. We claim that, in many ways, \declarative"techniques form a better method of proof description when proving properties ofoperational systems. We de�ne what we mean by this in the following section andchapters, and will frequently compare and contrast our work with the related featuresavailable in the above systems.1.4 Declarative Theorem Proving and DeclareThe following chapters are concerned with techniques that improve the state of theart of theorem proving as applied to operational semantics. We have implementedthese as the system Declare [Sym97a]. We use this system to demonstrate the prin-ciples underlying our techniques and how they may be implemented. We have alsoused this system for the case study described in Chapters 6 to 7.Declare is not a fully polished system, and its aim is not to supplant existinginteractive theorem provers or to needlessly duplicate hard work. Rather we seekto explore mechanisms of speci�cation, proof and interaction that may eventuallybe incorporated into those systems, and thus complement them. We encouragedevelopers and users of other theorem provers to consider the ideas contained inDeclare with a view to incorporating them in other systems.Later in this chapter we introduce the techniques we propose via a short Declaretutorial. However, we �rst discuss the general principles of declarative theoremproving and analyse some of the potential bene�ts of a declarative approach.

8 CHAPTER 1. INTRODUCTION1.4.1 What is \Declarative" Theorem Proving?In the general setting, a construct is considered declarative if it states what e�ectis to be achieved, and not how. \Declarative" is inevitably a relative notion: oneconstruct is more declarative than another if it gives fewer operational details.Declarative ideas are common in computing: Prolog and LATEX are examples oflanguages that aspire to high declarative content. In Prolog, programs are indepen-dent of many of the operational details found in procedural languages and LATEXdocuments are relatively independent of physical layout information. The term pro-cedural is often used to describe systems that are non-declarative.What, then, is declarative theorem proving? In an ideally declarative system wewould, of course, simply state a property without describing how it is to be proved.For complex properties this is, unfortunately, impossible, so we set our sights a gooddeal lower:One theorem proving style is more declarative than another if it reducesthe amount of \procedural information" and the number of \proceduraldependencies" required to specify properties and their proofs. Such de-pendencies include: reliance on the orderings of cases, variables, facts,goals and subgoals; reliance on irrelevant internal representations ratherthan external properties; reliance upon one of a number of logically equiv-alent forms (e.g. n > 1 versus n � 2); and reliance on the under-speci�edbehaviour of proof procedures (e.g. how names are chosen).To take a simple concrete example, proofs in interactive theorem provers (e.g. HOL,PVS and Isabelle) are typically sensitive to the order in which subgoals are producedby an induction utility. That is, if the N-induction utility suddenly produced thestep case before the base case, then most proofs would break. There are manysimilar examples from existing theorem proving system, enough that proofs in thesesystems can be extremely fragile, or reliant on a lot of hidden, assumed detail. Theaim of declarative proof is to eliminate such dependencies where possible. In thenext two chapters (particularly Chapter 3) we discuss the exact techniques we haveimplemented in Declare, and assess them relative to this de�nition of \declarative."1.4.2 Costs and Bene�tsThere are costs and bene�ts to taking a declarative approach. The possible bene�tsin the general setting are:� Brevity. The elimination of procedural content may reduce the overall sizeof a development. For example, Prolog programs are usually shorter thanequivalent C programs.� Relative Simplicity. Eliminating procedural content reduces the complexity ofan artifact. For example, most Prolog programs are certainly simpler thanequivalent C programs (as well as being shorter).

1.4. DECLARATIVE THEOREM PROVING AND DECLARE 9� Readability. Procedural content often obscures the structure and intent of adevelopment, and eliminating it will thus clearly improve readability.� Re-usability. Declarative content can often be reused in a similar setting, e.g.LATEX source can typically be re-typeset for any number of output arrange-ments, and Prolog code can easily be transferred from system to system. Pro-cedural code is more di�cult to reuse precisely because it is often dependenton aspects of the environment that are subject to change.� Robustness. Declarative content is often robust under changes to the way inwhich the information is interpreted. For example, pure Prolog programs maybe independent of evaluation order, at least in the sense that if a predicate hasa �nite number of solutions, then the set of solutions will remain identical evenunder the reordering of conjuncts.Note, however, that these potential bene�ts are not always realised. That is, theelimination of \how" dependencies can come at some cost. One problem is when the\declarative" speci�cation is implicit in the \procedural". For example, one declara-tive technique used in Declare proofs is to state some propositions, and list the factsthat provide support for their deduction (the automated prover is left to �gure outthe details). Procedurally, one might instead describe the syntactic manipulations(modus-ponens, specialization etc.) that deduce the given facts. Eliminating the pro-cedural speci�cation may be advantageous, however in order to provide a declarativespeci�cation of the operation we actually have to write out the deduced facts. Thesewere left implicit in the procedural speci�cation, and thus the procedural approachmight be more succinct.Furthermore, the declarative approach leaves the computer to work out the syn-tactic manipulations required to justify the step deductively. This demonstrates thetwo potential drawbacks of a declarative approach:� Requires a Speci�cation. Specifying a declarative view of an operation takestext, and thus does not come for free if this is was previously left implicit.2� Complexity of Interpretation. Eliminating detail may increase the complexityof the interpretation process.3We discuss the pros and cons of declarative theorem proving further in Chapters 3and 8. To summarize, declarative theorem proving is about the elimination of detailand dependencies that might otherwise be present. This does not come for free,but in the balance we aim to achieve bene�ts that can only arise from a declarativeapproach.2Another example is the speci�cation of a a signature to a module in a programming language(a declarative view of a module). Writing and maintaining the signature takes e�ort, and in smallprograms it may be better to leave the interface implicit.3Again another example: Prolog compilers must be quite sophisticated in order to achieve rea-sonable e�ciency.

10 CHAPTER 1. INTRODUCTIONFinally, some declarative systems like LATEX allow access to a \procedural level"when necessary. One could certainly allow this in a declarative theorem provingsystem, e.g. via an LCF-like programmable interface. For the moment, however, weshall not give in to such temptations!1.4.3 A Tutorial Introduction to DeclareWe now introduce Declare in a tutorial style, with the aim of demonstrating someof the declarative techniques we propose. The tutorial is designed simply to placethe discussion of the following chapters in a concrete setting, and we shall frequentlyrefer back to the examples presented here. We shall use Declare to construct theruntime operational semantics for a toy programming language (a lazy, explicitlytyped, monomorphic lambda calculus with de Bruijn indexes). We prove that exe-cution in this language is type safe by proving a subject reduction theorem. Thiswill demonstrate:� The terms and types of Declare's underlying logic.� The speci�cation constructs for datatypes, simple de�nitions, recursive de�ni-tions and least �xed points.� Validating the speci�cation by compiling to executable code.� The proof outlining constructs for proof by decomposition, proof by automationand proof by induction.� The justi�cation language constructs for giving theorems, case analyses andexplicit instantiations as hints: this is the interface to the automated reasoningengine.The toy programming language has the following abstract syntax:ty = ty ! ty (function type)j i (integer type)exp = int (constant)j nat (de Bruijn indexed bound variable)j �ty : exp (abstraction)j exp exp (application)Bound variable indices refer to lambda bindings, counting outward, thus �i!i:�i: 1 0 could be written �fi �xi: f x. One-step lazy evaluation is given by thefollowing rules: f ; f 0f a; f 0 a (�� bod) a; subst a bodwhere subst a b implements the replacement by a of those variables in b that haveindex equal to the count of their outer lambda bindings. Typing is given by:� ` i : i �(n) = �� ` n : � � ` f : �1 ! �2 � ` x : �1� ` f x : �2 � ` bod : �2� ` ��1 : bod : �1 ! �2

1.4. DECLARATIVE THEOREM PROVING AND DECLARE 11The speci�cationThe �rst declarations in our Declare �le (called an \article") are shown below. Notethat we are constructing a document: batch-mode interaction with Declare is byconstructing documents and submitting them for checking. The checker is veryquick, so the working environment is essentially interactive. A truly interactiveenvironment is also available: we discuss this in Chapter 5.We begin with a notation declaration4, and then the abstract syntax is speci�edas two recursive types, using ML-like notation. The auxiliary recursive functionsubst_aux is de�ned using pattern matching.infixl 11 `%`;datatype typ = TyInt | TyFun typ typ;datatype exp =Int int| Var nat| Lam typ exp| (%) exp exp;let rec "subst_aux n t e =match t withVar m -> if (m = n) then e else t| Lam ty bod -> Lam ty (subst_aux (n+1) bod e)| f % a -> subst_aux n f e % subst_aux n a e| _ -> t";let "subst = subst_aux 0";The term de�ning subst_aux is quoted because it is a term of the underlying logic,i.e. the variant of higher order logic we describe in Section 2.1. Unquoted portionsof the input are part of the meta-language used to manipulate terms of the logic.Declare has temporarily abandoned the traditional use of highly programmable meta-languages (such as the ML dialects in LCF-style systems [GMW77]) in order toinvestigate declarative rather than procedural proof speci�cation techniques. The aimhas been to �nd a small set of \highly declarative" commands to use for speci�cationand proof, and we have found it useful to abandon the constraints of a strictly typedmeta-language for this purpose.The evaluation and typing relations are de�ned as the least �xed points (lfp)of sets of rules (we have used lists to model type environments, though typically weuse partial functions).54Notation declarations are typically kept in a .ntn �le and imported with a notation <file>directive.5Comments are nested (* ... *) or to end-of-line //....

12 CHAPTER 1. INTRODUCTIONinfixr 10 `--->`;lfp (--->) =<app1> "e1 ---> e1'"// ---"e1 % e2 ---> e1' % e2"<beta> // ---"(Lam ty bod) % e2 ---> subst bod e2";threefix `|-` hastype;lfp hastype =<Int> [autorw]// ---"TE |- (Int i) hastype TyInt"<Var> [autorw] "i < len TE ^ ty = el(i)(TE)"// ---"TE |- (Var i) hastype ty"<Lam> [autorw] "(dty#TE) |- bod hastype rty"// ---"TE |- (Lam dty bod) hastype (TyFun dty rty)"<App> "TE |- f hastype (TyFun dty rty) ^TE |- a hastype dty"// ---"TE |- (f % a) hastype rty";The [autorw] tag is a pragma: this is how we declare extra-logical information tothe automated prover. Pragmas may either be declared when a theorem is declared,or may be asserted at a later stage, e.g.pragma autorw <hastype.Int>;pragma autorw <hastype.Var>;pragma autorw <hastype.Lam>;Validation by executionHaving completed a model of the toy language, it is natural to validate this modelby executing it on some test examples. Declare can translate many speci�cations toa target language called Mercury [SHC96] by a relatively simple set of translations.We discuss validation and the translation to Mercury further in Section 2.4, andshall just give a taste of what is possible here.

1.4. DECLARATIVE THEOREM PROVING AND DECLARE 13Mercury is a pure Prolog-like programming language with higher order predicatesand functions. It includes algorithms to statically analyse programs for type, modeand other constraints, and can generate extremely e�cient code as a result. Predi-cates such as hastype become Mercury relations, and other terms become Mercurydata expressions. The user is required to specify mode constraints for predicates:pragma mode "inp ---> outp";pragma mode "inp |- inp hastype outp";If, for example, the <app1> rule above had been<app1> "e1 ---> e1''"// ---"e1 % e2 ---> e1' % e2"then Mercury's mode analysis would detect that the rule fails to specify a de�niteoutput for e1' on the bottom line.Test programs are speci�ed in Declare as predicates generating values for anunknown:let "id = Lam TyInt (Var 0)";pragma test "[] |- id hastype X";pragma test "[] |- (id % id) hastype X";The �rst test generates all types that may be assigned to id. Higher order operatorsmay be used to trace the execution of a transition relation:6pragma test "(id % Int 1) RTC(--->) X";pragma test "(id % (id % Int 1)) Fringe(--->) X";The Mercury program produced by the Declare code generator executes these testprograms:7> ./main---Executable model generated from DECLARE specification in db.art---test on line 82: "[] |- id hastype X"X = TyFun(TyInt,TyInt)test on line 83 "[] |- (id % id) hastype X"no solutions6Here RTC is a parameterized in�x operator that takes the re
exive transitive closure of a relation,and Fringe �nds all elements in this closure that have no further transitions. Both are de�ned inthe standard Declare basis.7The actual implementation does not print output terms quite so nicely, but given the meta-programming facilities of a Prolog system this would not be di�cult to implement.

14 CHAPTER 1. INTRODUCTIONtest on line 84:X = Lam(TyInt,Var(0)) % Int(1)X = Int(1)test on line 85:X = Int(1)Our �rst proofsWe now wish to prove subject reduction, i.e. if a reduction can be made to a well-typed closed term, then it produces a term of the same type. We can formalise thiswith the following theorem declaration:thm <small_step_lazy_safe>if "[] |- e hastype ty""e ---> e'" <step>then "[] |- e' hastype ty";Investigations quickly lead us to conclude that we must �rst prove that typing is\monotonic over increasing type contexts" (we might discover this midway throughthe outline of the subject reduction proof, which we shall come to below). A largertype environment (� or <<=) is one that possibly has additional entries:8infixl 10 "<<=" --> leq;let "TE1 <<= TE2 $ 9l. TE1@l = TE2";Two consequences follow easily from the de�nition of <<=, and the statement andproof outline for each of these is shown below. The propositions are introduced astheorem declarations and are followed by proof outlines (in this case very simpleones!):thm <leq_nil> [autorw] "[] <<= TE";proof qed by <leq>; Proof outlinethm <cons_leq_cons> [autorw]"(x#TE1) <<= (x'#TE2) $ (x = x') ^ TE1 <<= TE2";proof qed by <leq>;Fresh symbols (such as TE in the �rst example) are implicitly universally quanti�ed.Proofs are given in a declarative proof language made up of justi�cations by automa-tion, case splits, and second-order schema applications: in each case above we have8In higher order logic, \if and only if" ($) is simply equality (=) over booleans, but syntacticallyhas a lower precedence. The operators @ and # are \append" and \cons" over lists as usual. InDeclare the infixl declaration de�nes an in�x operator and gives an alpha-numeric identi�er whichis used as an alternative label in, for example, theorem names.

1.4. DECLARATIVE THEOREM PROVING AND DECLARE 15only used justi�cation by automation (using qed), adding the hint that the de�nitionfor <<= be used in the automated proofs. Each qed step generates one proof obliga-tion. In this case the automated engine can check these proof obligations by using acombination of rewriting (utilising background rules), instantiation and arithmeticdecision procedures.An inductive proofWe can now state the monotonicity result. Informally, we might state and prove itas follows:Theorem 1 Monotonicity If � ` e : � and � � �0 then �0 ` e : �The proof is by induction on the derivation of the typing judgement. The interestingcase is when e = �� 0 : b and � = � 0 ! � where the induction hypothesis gives us� � �00 ! �00 ` b : � for all �00. When �00 = � 0;�0 the result follows by the typing rulefor lambda applications. In Declare the problem is stated as:thm <hastype_mono>if "TE |- e hastype ty" <e_typing>"TE <<= TE'"then "TE' |- e hastype ty";Within the sequent, the label <e_typing> gives a name to a local fact. The corre-sponding Declare proof outline is:2nd Order Schema Applicationproofproceed by rule induction on <e_typing> with TE,e,ty,TE' variable;case Int: qed;case Var: qed; Cases arising from the inductioncase App; qed by <hastype.App>;case Lam"e = Lam ty' bod""ty = TyFun ty' rty""ihyp (ty'#TE) bod rty" <ihyp>:qed by <ihyp> ["ty'#TE'"] ; Explicit Instantiation as a Hintend;The proof itself �rst utilises the induction proof language construct, described indetail in Section 3.5. The induction predicate is:�TE v ty. 8TE'. TE <<= TE' �! TE' |- v hastype ty

16 CHAPTER 1. INTRODUCTIONThis predicate becomes the macro ihyp on the branches of the proof.The induction construct itself generates no proof obligation, but rather four cases,corresponding to the four rules for the least-�xed point. The cases may be given inany order. In three of the cases the induction hypotheses are left implicit and theproof is simple. In the Lam case a small hint is required: the explicit instantiationof an induction hypothesis (by <ihyp> ["dty#TE'"]). To enforce good declarativeproof style, Declare demands that we can only use facts if they are present in thetext of the proof document, and so we record the induction hypothesis explicitly.These are:� The equational constraints for the Lam case; and� The induction hypotheses from the top line of the rule on page 12.We then explicitly instantiate the fact <ihyp> on the justi�cation line, which com-pletes the proof up to the four proof obligations that must be checked by Declare.What theorem results from the successful proof on the main branch of the article?The local constants TE, v,ty and TE' are universally quanti�ed, and the sequentbecomes an implicative formula:thm <hastype_mono> "8TE TE' v ty. TE |- v hastype ty ^ TE <<= TE'! TE' |- v hastype ty"The subject reduction proofThe next fact we prove is that substitution preserves types:9thm <subst_aux_safe>if "[] |- v hastype vty""len TE = n""(TE #! vty) |- e hastype ty" <typing>then "TE |- (subst_aux n e v) hastype ty";We omit the proof: it is not interesting for our purposes as it uses only the constructsdescribed above. Finally we prove the subject reduction theorem itself:thm <small_step_lazy_safe>if "[] |- e hastype ty" <typing>"e ---> e'" <step>then "[] |- e' hastype ty";proofproceed by rule induction on <step> with ty variable;case beta"e = Lam xty bod % e2""e' = subst bod e2";9[] is the empty list, len is the length of a list and #! adds an element to the end of a list

1.4. DECLARATIVE THEOREM PROVING AND DECLARE 17consider dty st"[] |- Lam xty bod hastype (TyFun dty ty)" <ty2>"[] |- e2 hastype dty"by rulecases(<typing>) ;qed by rulecases(<ty2>), <subst_aux_safe> ["[]"],<nil_snoc_cons>;case app1; qed by <hastype.App>,rulecases(<typing>);end;The long case of the proof corresponds to a beta-reduction step. The considerconstruct is an instance of the third (and �nal) proof outlining construct of theproof language: case decomposition combined with constant and fact introduction.The general form is described in Section 3.3. In the example we assert the existenceof an object dty with the properties given by the two facts, justi�ed by automaticproof and several theorems.1.4.4 Checking the ArticleOnce written, the article may be checked as follows. For illustrative purposes, weshow the output if rulecases(<typing>) is replaced simply by <typing> on thelast line of the proof.> decl lang.artDECLARE v. 0.2aparsing...doneimporting and merging abstracts...donetype checking...done...checking proof of <small_step_safe>File "db.art", line 192, characters 13-34:This step could not be justified.Simplification produced+ <App> 8dty TE f a rty.(TE |- f hastype (TyFun dty rty)) ^(TE |- a hastype dty)! (TE |- f % a hastype rty)+ <ihyp> 8ty. ([] |- e1 hastype ty) ! ([] |- e1' hastype ty)+ <ihyp> e1 ---> e1'+ <typing> [] |- e1 % e2 hastype ty- <oblig> [] |- e1' % e2 hastype tywhere e' = e1' % e2e = e1 % e2

18 CHAPTER 1. INTRODUCTIONThe feedback shown is from the automated prover used to discharge proof obligations:here it is easy to spot that a necessary condition in <ihyp> has not been discharged,and hence deduce that a rule analysis on <typing> will be helpful. Note that Declarehas checked the rest of the proof on the assumption that the facts stated on line 192were indeed derivable. If a proof obligation cannot be discharged by the automaticprover, a warning is given and the fact is assumed.An article is typically written and checked within IDeclare, the interactive devel-opment environment (IDE) for Declare described in Chapter 5.

Part ITools and Techniques

19

Chapter 2Speci�cation and ValidationIn this chapter we consider speci�cation and validation techniques for operationalsemantics, i.e. methods for describing systems in a fashion acceptable to both humanand machine, and for checking that our speci�cations correspond to our informalrequirements. Speci�cations must be interpreted with respect to some foundationallogical system. We brie
y describe some such systems, and give a rationalizationfor the choice of higher order logic (h.o.l.).1 After introducing this logic we outlinethe constructs we use to specify operational semantics, and give details of theirrealization in Declare. Finally we address the issue of executing speci�cations forthe purposes of validation.Speci�cation is quite a well-understood area, so most of this chapter is back-ground material. Our main contributions are around the edges:� The use of a systematic labelling mechanism to easily \get a handle on" resultsthat follow trivially from de�nitions.� The use of a higher order pure Prolog (Mercury) as a target language for gener-ating executable code. This gives us the power to perform mode, determinism,uniqueness and termination analyses on our speci�cations, and to execute testcases to validate the speci�cations in particular cases.2.1 Foundations and Higher Order LogicA plethora of techniques has been developed for the formal speci�cation of systems,and the topic is a signi�cant and complex one in its own right. Typically each tech-nique is accompanied by a logic for use with the speci�cation language, althoughsometimes the speci�cation language is precisely the logic and sometimes no co-herent and complete logic is immediately apparent. Commonly cited speci�cationlanguages include: axiomatization in �rst order logic; the Z and VDM notations[Spi88, Jac88]; variants of higher order logic (e.g. the speci�cation languages of HOL1As distinct from the HOL or Isabelle/HOL implementations of higher order logic.21

22 CHAPTER 2. SPECIFICATION AND VALIDATION[GM93], PVS [COR+95] and Isabelle/HOL [Pau90]); set theory; temporal logics;specialised formalisms for �nite state machines and hardware; and restricted sub-sets of logic that are highly amenable to automation (e.g. Monadic 2nd Order Logic[JJM+95]) and process calculi. This is not the place to give a detailed analysis of themerits of these methods: Rushby has written a good introductory overview [Rus93].We choose a simple higher order logic as our foundational system: everythingwe do can be given a semantics by translation into this logic. The following issuesdictated our choice of logical foundation:� We take it as axiomatic that a certain coherency and simplicity with regardto semantics, implementation and use are all \Good Things" to look for ina framework. Di�culties with providing a simple coherent semantics or goodtool support rule out approaches based on Z, VDM or object-oriented concepts.� We are interested in modelling systems that have in�nite state spaces. Thus�nite state techniques, where the model is compiled to some more convenientrepresentation, e.g. a �nite state machine, are not immediately applicable.� Similarly, we need to perform second-order reasoning such as induction argu-ments. Thus approaches based around purely �rst-order techniques such asProlog are not su�cient. A more syntactic, explicit representation of knowl-edge is required.� We are thus led to the necessity of supporting a high degree of syntactic (ordeductive) reasoning, which is normally done using some variant of higher orderlogic. An excellent summary of the bene�ts of this approach can be found in[Rus93].We now go on to give a brief account of higher order logic. We assume familiaritywith �rst order logic. Second order logic allows quanti�cation over predicates. Forexample this allows the encoding of induction schemes:8P: P (0) ^ (8k: P (k) �! P (k + 1)) �! 8n: P (n)Second order logic can frequently \act as its own meta-language." That is, higherorder theorems can express many e�ects normally achieved by proof procedures, e.g.a single higher order theorem (interpreted as an algorithm in the obvious fashion)can express the standard transformation to negation normal form.Higher order logic allows quanti�cation over functions of any order, as well aspredicates. Apart from second order quanti�cation like the above, the most commonuses of higher order features are:� For higher order predicates such as 8, 9 or re
exive transitive closure.� For higher order functions such as \map" (over a list), or the iterated applica-tion of a function.

2.1. FOUNDATIONS AND HIGHER ORDER LOGIC 23� To model \data" objects using functions, e.g. sets, or tables using partial func-tions.To avoid logical contradictions such as Russell's paradox, higher order logics areusually typed. Many typing schemes are possible: we adopt the simple polymorphictyping scheme used in HOL and Isabelle. Other typing schemes, notably that of PVS,address issues such as predicate and structural subtyping. Melham's system allowsquanti�cation over type variables [Mel92], and one can also admit record types. Wehave been able to survive without such features in our case study.The primitive terms of higher order logic are as in the �-calculus: variables, con-stants, applications and functions. Types are either type variables (�) or constructedtypes using some type functor applied to a number of arguments (e.g. bool, � listor � ! �). Constants may be polymorphic, and the primitive constants are nor-mally just =�!�!bool , !bool!bool!bool and the Hilbert-choice operator �(�!bool)!�.Theorems are terms of type bool deduced from the primitive axioms and the rulesof the logic. These are typically �, � and � conversion, type and term specializa-tion, modus-ponens, the congruence properties of equality, the axiom of choice anddeduction rules in a sequent style.From the point of view of mechanization, polymorphic simple type theory seemsto occupy a neat, locally optimum position in the spectrum of possible logics. Typechecking is decidable and e�cient, terms can be represented fairly compactly, anda fair degree of expressiveness is achieved. It is not ideal for all purposes, but isexcellent for many. See Harrison's HOL-lite [Har96a] for an elegant implementationof h.o.l. from �rst principles.Logic of description v. logic of implementationSimple polymorphic higher order logic acts as the logic we use to provide a coherentsemantic framework for the system we implement. We could call this the \logic ofdiscourse". Unlike the LCF family of theorem provers, it is not precisely the logicwe implement in Declare, in two senses:� The mapping between the representation used for terms in the computer andterms of the logic is not entirely trivial, e.g. see the representation of patternmatching in Section 2.2.1.� The logical system is extended with strong rules of inference, e.g. decisionprocedures. We rely on the soundness of these and do not perform the proofsby syntactic deduction (i.e. Declare is not \fully expansive")Both PVS and Isabelle follow similar approaches: while in principle the core ofIsabelle implements intuitionistic higher order logic, it also contains one powerfulprimitive inference rule (simpli�cation) | this is naturally omitted from the de-scription of the logic implemented. Similarly the formal description of PVS describessimpler logical rules than those actually built into the prover.

24 CHAPTER 2. SPECIFICATION AND VALIDATION2.2 Speci�cation Constructs for Operational SemanticsIn this section we shall introduce the range of constructs we use to specify opera-tional systems. We shall brie
y describe each, and present their realisation in theDeclare speci�cation language. Most of the constructs have been presented by ex-ample in Section 1.4.3. At the end of the section we discuss the issues of partiality,\declarative" speci�cations and modularity.The devices presented in the following sections are shortcuts for declarationsgiven in a primitive language of types, constants, theorems (axioms) and annotations(pragmas). We will show the equivalent declarations in each case. The shortcuts areused for brevity and to greatly simplify the proof obligations that arise.The language of pragmas is used to declare extra-logical information, normallyabout theorems, for the bene�t of tools such as the proof language analyser, theautomated reasoning engine and the code generator. Pragmas relating to each toolare discussed in the following chapters, though their intuitive meaning should beclear.2.2.1 Pattern MatchingPattern matching is a construct in speci�cation and programming languages wherea term may be compared to other terms, the latter possibly containing fresh (bind-ing) variables. Just as in programming languages this is a succinct way to specifystructural and other equational constraints. We replace � terms in h.o.l. by patternmatching functions. For example consider the (equivalent) pattern match applica-tions1. (function0 -> 1| 1 -> 1| n -> fib(n-1) + fib(n-2)) t2. match t with0 -> 1| 1 -> 1| n -> fib(n-1) + fib(n-2)The informal semantics is the same as for functional languages: the �rst rule 0 ->1 must fail before the second may be used, and if the �rst succeeds the others areignored. If no rules remain then the term represents some arbitrary member of itstype. We could decode pattern matching into simple higher order logic by using theHilbert choice operator. The term above would become:�tmp.Choose res.(tmp = 0 ^ res = 1)

2.2. SPECIFICATION CONSTRUCTS FOR OPERATIONAL SEMANTICS 25_ (tmp <> 0 ^ tmp = 1 ^ res = 1)_ (9n. tmp <> 0 ^ tmp <> 1 ^ tmp = n ^ res = fib(n-1) + fib(n-2))In our implementation we do not actually decode pattern matching, though all themanipulations we perform on such terms (e.g. see Section 4.2.3) have equivalentmanipulations on the translated forms.The patterns may be arbitrary terms, may bind an arbitrary number of variablesand variables may even be repeated in each pattern. Left-to-right interpretationallows such liberal patterns because there is no obligation to prove that only onepath of the match may succeed.2.2.2 Simple De�nitions and PredicatesSimple non-recursive de�nitions account for the majority of de�nitions in a modelof an operational semantics, e.g.let "(union) p q = (fun x -> p x _ q x)";let "subst = subst_aux 0";let "(--*>) = RTC(--->)";There is no proof obligation for such speci�cation constructs, and in Declare they giverise to a constant, an equational theorem, an \elimination" theorem and appropriatepragmas, e.g.constant union ":� set ! � set ! � set";thm <union> "p union q = (�x. p x _ q x)";thm <union.elim> "(union) = �p q x. p x _ q x";pragma defn <union>;pragma code <union.elim>;pragma elim <union.elim>;The interpretation of the above pragmas is discussed in later sections. De�nitions canbe conditional in order to document constraints on their arguments: the functionswill be under-speci�ed outside this domain (see Section 2.2.6). Arguments can beany terms, just as with pattern matching.2.2.3 DatatypesRecursive datatypes, or free algebras are familiar to anyone who has programmed inan ML dialect, and are a key construct for modelling operational systems. Typicallywe require the construction of recursive types using (non-dependent) sums (+),(non-dependent) products (�) and covariant type constructors such as list, �!and � table7�! . We use datatypes to model pairs, lists, trees, records, enumerationsand abstract syntax. In our case study we use them for both the abstract syntax ofJava and runtime objects that get created. Some examples, using ML-like syntax,are:

26 CHAPTER 2. SPECIFICATION AND VALIDATIONdatatype (�,�) (�) = (,) of � �; // pairsdatatype � list = (#) of � | ([]);datatype � option = None | Some of �;Operational descriptions typically require mutually recursive datatypes to describeabstract syntax succinctly. A common example of the use of mutual recursion is forexpressions and declarations in a functional programming language:datatype exp = Dec of dec � exp | Int of int | ...and dec = Let of string � exp | Decs of dec list | ...Often we need more speci�c algebras, e.g. well-typed programs. Typically we usepredicate constraints to do this, de�ned inductively over the corresponding free al-gebra.Reductionist proofs of the existence of solutions (within higher order logic) forrecursive type equations that include nested constructors have been automated byGunter [Gun94], and for simpler types by Melham [Mel88]. For our purposes itsu�ces to use a routine that generates the necessary axioms. Many other theoremprovers admit a similar range of types (e.g. PVS, LCF and Isabelle). Simple higherorder logic requires that types be non-empty, and an initiality condition must beproved for each datatype. Declare does not currently check non-emptiness and ini-tiality conditions, though in principle they can be determined automatically by agraph search.See Section 4.2.3 for a discussion of the automated reasoning routines that dealwith datatypes.2.2.4 Fixed Point RelationsIf datatypes are used to model syntax in operational descriptions of systems, then(co)inductive relations and recursive functions are the essential tools to model se-mantics. (Co)inductive relations are the preferred method for de�ning recursivejudgments declaratively because they abstract away from so many details: the logi-cal structure of the possible derivations becomes immediately evident in the formulae,and induction is over the space of all possible derivations, instead of some indexingscheme (e.g. N) into this space.An inductive relation is the least �xed point of a monotonic set transformerF within the context of a universal set U . Such �xed points are guaranteed toexist by the Knaster-Tarski theorem [Tar55]. Good references to the theory and itsmechanisation are [Pau94, CM92, Har95, PM93]. Typically the transformer F isde�ned by a set of rules, e.g. the de�nition of one-step lazy evaluation for the simplelambda calculus: f ; f 0App f a ; App f 0 a App (Lam x bod) a ; subst(x; a)bod

2.2. SPECIFICATION CONSTRUCTS FOR OPERATIONAL SEMANTICS 27U = exp� expF (;) = �p: (9f f 0 a: p = (App f a; App f 0 a) ^ f ; f 0) _(9x bod a: p = (App (Lam x bod) a; subst(x; a)bod))Note that the implicit equational constraint from the bottom line of each rule hasbeen explicitly quoted here. Intuitively, a ; b holds if some derivation exists usingonly the rules above.In Declare we do not mechanise the theory of �xed points from �rst principles| previous authors have addressed this issue [CM92, Har95, Pau94]. Instead, weuse an axiomatization of each relation. Examples of the syntax of least �xed pointdeclarations were shown in Section 1.4.3.In the present implementation we do not generate the associated monotonicityproof obligations, since this is well-understood, as is the automatic checking of mono-tonicity conditions (e.g. see the Isabelle implementation [Pau94]). Explicit proofs ofmonotonicity could be given in the proof language described in the next chapter, ifnecessary.As with datatypes, theorems are generated that encode the logical propertiesof inductive relations in Declare. The example on page 10 generates the followingtheorems { clearly the axiomatization in h.o.l. is straightforward:thm <reduce>"arg1 ---> arg2 $(9e1 e1' e2. arg1 = e1 % e2 ^ arg2 = e1' % e2 ^ e1 ---> e1')_ (9e1 e2 ty bod. arg1 = e1 % e2 ^ arg2 = subst bod e2 ^ e1 = Lam ty bod)"pragma defn <reduce>pragma code <reduce>thm <reduce.app1> "e1 ---> e1' ! e1 % e2 ---> e1' % e2"thm <reduce.beta> "e1 = Lam ty bod ! e1 % e2 ---> subst bod e2"thm <reduce.induct>"(8arg1 arg2.(9e1 e1' e2.arg1 = e1 % e2 ^ arg2 = e1' % e2 ^ P e1 e1')! P arg1 arg2)^ (8arg1 arg2.(9e1 e2 ty bod. arg1 = e1 % e2 ^ arg2 = subst bod e2 ^ e1 = Lam ty bod)! P arg1 arg2)^ arg1 ---> arg2! P arg1 arg2"pragma induct <reduce.induct> [app1,beta]thm <reduce.cases>"arg1 ---> arg2 !(9e1 e1' e2. arg1 = e1 % e2 ^ arg2 = e1' % e2 ^ e1 ---> e1')_ (9e1 e2 ty bod. arg1 = e1 % e2 ^ arg2 = subst bod e2 ^ e1 = Lam ty bod)"pragma rulecases <reduce.cases>thm <reduce.elim>"(--->) = �arg1 arg2.lfp(�R (arg1,arg2).(9e1 e1' e2. arg1 = e1 % e2 ^ arg2 = e1' % e2 ^ R(e1,e1'))_ (9e1 e2 ty bod. arg1 = e1 % e2 ^ arg2 = subst bod e2 ^ e1 = Lam ty bod))

28 CHAPTER 2. SPECIFICATION AND VALIDATIONarg1 arg2 "pragma elim <reduce.elim>2.2.5 Recursive FunctionsRecursive functions are admissible in h.o.l. if the recursion can be proven well-founded. Slind has made a comprehensive study of this topic in the context ofdeductive frameworks [Sli96] and has implemented his algorithms in a package calledTFL, suitable for use with HOL and Isabelle. Because his work has explored the issuesthoroughly, for our purposes it is adequate to simply axiomatize recursive functions.Furthermore, in practice we only tend to use primitive recursive functions, and itis easy to verify by inspection that our de�nitions are indeed primitive recursive.However, the mechanism we propose to implement in future versions of Declare isto axiomatize recursive functions up to the generation of a proof obligation, as inPVS. We would ensure that Declare's automatic prover could detect and prove sideconditions for the primitive recursive subset automatically.2.2.6 Partial Functions and Unde�nednessPartial functions are only fully de�ned on some elements of their domain. What\happens" outside this domain can vary greatly according to the logical treatmentchosen. Muller and Slind's excellent overview of di�erent treatments in a logic of totalfunctions [MS97] demonstrates that it is essential to take an approach to partialitythat is both accurate and pragmatic. The basic approaches available when usingh.o.l. are:� De�ne fully. The function is given particular values outside its domain.� Underspecify. The function has various values outside its domain but they arearbitrary and otherwise uninterpreted.� Use relations. That is, model the function by a subset of ���. This is precise,but often requires additional lemmas.� Use the option type. Model partial functions �! � by total functions of type�! � option. This is precise, but requires additional case splits and reasoningabout datatypes.Whichever model is chosen, it is good \declarative" practice to avoid relying on thebehaviour of functions and relations outside their natural domain. For example, itis bad practice to rely on 1=0 having a de�nite value (e.g. 0, as in n � (1=n) = 1),since it becomes less clear what exactly has been proven, and theorems are not easilytransferable (textually) to other theorem proving systems.We return brie
y to these questions in Section 6.3.2 in the context of well-formedness criteria for types and type environments in our case study.

2.3. LABELLING AND THEOREM EXTRACTION 292.2.7 Declarative Speci�cation and ModularitySpeci�cation is one area in which traditional theorem proving has largely achieved thedeclarative ideal: su�cient forms are available that most speci�cations can be givenwithout resorting to \irrelevant" detail. The biggest potential source of such detail is\speci�cation by construction", e.g. when constructing the theory of lists via a theoryof partial functions from an initial segment of N, or a theory of the real numbersby an elaborate construction. Theorem provers typically support techniques whichadmit wide classes of constructs declaratively (such as algebraic datatypes), and mayalso provide mechanisms to hide constructions once they have been completed.As with some other theorem provers (e.g. PVS), Declare goes a little further: atheory may be speci�ed and used independently of the proofs that demonstrate thatthe theory is a sound extension of the logic. That is, Declare supports a primitivenotion of modularity. The interface to a theory may either be given in a separate�le (called an \abstract"), or may be extracted from an existing �le (an \article"| the proofs in the article need not be checked to do this). Naturally there needbe no textual dependency of an abstract on its article, and an article is checked forconformance to its abstract. Additionally, every type and term constant in Declare isquali�ed by the name of the module in which it occurs { discrimination of constantsoccurs during parsing.Unlike PVS, a Declare theory comes equipped with the pragmas that give extra-logical information about the theory. Declare also comes with traditional compiler-like tools for processing abstracts and articles, and make facilities can be employedin the usual fashion.2Finally, Declare comes with a standard library of theories that axiomatize �rstorder logic, pairs, lists, options, �nite partial functions, �rst order set theory, �nitesets, lists-as-vectors and some conversions between these structures. We have notyet provided proofs of the soundness of these axiomatizations, though they wereoriginally copied from similar theories in HOL and HOL-lite.2.3 Labelling and Theorem ExtractionPredicates in h.o.l. are functions from several arguments to type bool. In this sectionwe describe a new mechanism whereby the labelling of a subterm within the de�nitionof a predicate gives rise to a \theorem for free".3For example, consider the following de�nition, which is an alternative way ofde�ning <<= from Section 1.4.3. The labels have been emphasized, and the under-lining indicates the term identi�ed by the labels:let "E1 <<= E2 [<derive>] $2A prototype module system has also been designed and implemented for Declare, however thisis beyond the scope of this thesis.3Indeed, while this mechanism is usually used within predicate de�nitions, it can also be usedwithin any fact stated anywhere in a speci�cation or proof (proofs are discussed in Chapter 3).

30 CHAPTER 2. SPECIFICATION AND VALIDATIONpos res�(P) = Ppos res0;p(P ^ Q)= pos resp(P)pos res1;p(P ^ Q)= pos resp(Q)pos res0;p(:P) = neg resp(P)pos res0;p(8x: P) = pos resp(P)pos res0;p(P $ Q) = pos resp(P)pos res1;p(P $ Q) = pos resp(Q)
neg res�(P) = :Pneg res0;p(P ^ Q)= neg resp(P)neg res1;p(P ^ Q)= neg resp(Q)neg res0;p(:P) = pos resp(P)neg res0;p(P $ Q) = neg resp(P)neg res1;p(P $ Q) = neg resp(Q)Table 2.1: The Result at a Location.len E1 <= len E2 [<length>] ^(8j. j < len E1 ! (el j E2 = el j E1) [<contents>])";The corresponding three theorems are:thm <leq.derive> "len E1 <= len E2 ^(8j. j < len E1 ! el j E2 = el j E1) !E1 <<= E2"thm <leq.length> "E1 <<= E2 ! len E1 <= len E2"thm <leq.contents> "E1 <<= E2 ^ j < len E1 ! el j E2 = el j E1"Labels can be placed anywhere within a propositional structure. The resulting theo-rem is C ! P where C is the \minimal support" at the loci (de�ned formally below),and P is the labelled term. P is negated if it appears in at a \negative" location,e.g. under a single negation or immediately on the left of an implication. Labels mayalso be placed under 8 quanti�ers, which generate free variables in the theorem (notwo variables in the same scope may have the same name), and also under appliedpattern matches.This mechanism was used extensively in the case studies, as it gives a succinctway of \getting a handle on" the immediate consequences of a de�nition withoutneedlessly restating the obvious. This can save pages of text in a large speci�cation.The only down-side is that the term language must be syntactically extended toinclude constructs that rightly seem to belong in the speci�cation language, but thisis a small price to pay.We can formalize what is going on here. Let a path be a list of zeros and ones,and let pos resp(A) be the result of a path p in term A, as de�ned in Table 2.1. Letpos suppp(A) be the minimal support as de�ned in Table 2.2. We have the followingsoundness theorem:Theorem 2 Soundness of Theorem Extraction. If A is a proposition, p is a well-formed path for A, and A and pos suppp(A) holds in the current theory, then pos resp(A)also holds. Similarly if :A and neg suppp(A) hold, then neg resp(A) holds.The proof is straightforward and is by induction on the length of the path p.

2.3. LABELLING AND THEOREM EXTRACTION 31pos supp�(P) = truepos supp0;p(P ^ Q)= pos suppp(P)pos supp1;p(P ^ Q)= pos suppp(Q)pos supp0;p(:P) = neg suppp(P)pos supp0;p(8x: P) = pos suppp(P)pos supp0;p(P $ Q) = Q ^ pos suppp(P)pos supp1;p(P $ Q) = P ^ pos suppp(Q)
neg supp�(P) = trueneg supp0;p(P ^ Q)= :Q ^ neg suppp(P)neg supp1;p(P ^ Q)= :P ^ neg suppp(Q)neg supp0;p(:P) = pos suppp(P)neg supp0;p(P $ Q) = Q ^ neg suppp(P)neg supp1;p(P $ Q) = P ^ neg suppp(Q)Table 2.2: The Minimal Logical Support at a Location. We omit _, ! and sincethey may be de�ned simply via ^ and :. There is no rule for neg supp and 8.pos res0�;p(P $ Q)= neg resp(P)pos res1�;p(P $ Q)= neg resp(Q)neg res0�;p(P $ Q)= pos resp(P)neg res1�;p(P $ Q)= pos resp(Q) pos supp0�;p(P $ Q)= :Q ^ neg suppp(P)pos supp1�;p(P $ Q)= :P ^ neg suppp(Q)neg supp0�;p(P $ Q)= :Q ^ pos suppp(P)neg supp1�;p(P $ Q)= :P ^ pos suppp(Q)Table 2.3: Possible reversed support rules for $.Tables 2.1 and 2.2 also de�ne what happens at the ambiguous connective$. Forpos supp, this is interpreted as a left-implication () when the path points to theleft, and a right-implication (!) when to the right, as we can see in the �rst exampleabove.2.3.1 Possible Extensions to the MechanismIt could potentially be useful to allow the reversal of the interpretation of $, inter-preting it as (!) when on the path points to the left, as shown in Table 2.3 (we use0� and 1� to indicate this in a path). For example:let "either(P,l,r) [<*rule*>] $ P(l) [<*left*>] _ P(r) [<*right*>]";would give the theorems:thm <either.rule> "either(P,l,r) ! P(l) _ P(r)"thm <either.left> "P(l) ! either(P,l,r)"thm <either.right> "P(r) ! either(P,l,r)"Furthermore, the whole scheme could be extended to work with non-�rst order oper-ators, for example �xed points.4 Table 2.4 shows the appropriate rules. For example4Rather than using the �xed point speci�cation syntax from Section 2.2.4 we use lfp to denotea general least �xed point operator.

32 CHAPTER 2. SPECIFICATION AND VALIDATIONpos supp0(8x: c(x)$ lfp(�Px: F [P; x])(x)) = F [c=P](x)pos supp1;p(8x: c(x)$ lfp(�Px: F [P; x])(x)) = c(x) ^ pos suppp(F [c=P](x))pos supp0�(8x: c(x)$ lfp(�Px: F [P; x])(x)) = :F [c=P](x)pos supp1�;p(8x: c(x)$ lfp(�Px: F [P; x])(x)) = :c(x) ^ neg suppp(F [c=P](x))Table 2.4: Possible Support Rules for Fixed Points. Here the �xed point expressionis given a name c so we can succinctly unwind it once | several logically equivalentforms could be similarly detected.let "all P l [<*cases*>] $lfp (�all l.(l = []) [<*nil*>]_ 9h t. ((l = h#t ^ P(h) ^ all t) [<*cons*>])) l";would give the theorems:thm <all.cases> "all P l !(l = [])_ (9h t. l = h#t ^ P(h) ^ all P t)"thm <all.nil> "l = [] ! all P l"thm <all.cons> "l = h#t ^ P(h) ^ all P t ! all P l"This could unify the existing mechanism with the current labelling mechanism forrules of �xed point relations. One could also investigate the generalisation of thismechanism in a system such a Isabelle, perhaps allowing labels within further non-�rst order (e.g. modal) structures if appropriate rules are present to interpret thepaths to these labels. We have not implemented these mechanisms.In principle, labels could also be placed under positive 9 quanti�ers, which wouldbe systematically skolemized to generate constants. For example:let "big n [<derive>] $ 9m. (m < n) [<c1>] ^ (m > 1000) [<c2>]";would give one constant (big.m) and four theorems:thm <big> "big n $ 9m. m < n ^ m > 1000"thm <big.c1> "big n ! big.m n < n"thm <big.c2> "big n ! big.m n > 1000"thm <big.derive> "(9m. m < n ^ m > 1000) ! big n"Note the skolem constant big.m is parameterized by the free variable n. This mech-anism was implemented, but was not used in the case studies.

2.4. VALIDATION 332.3.2 Related WorkMizar [Rud92] allows facts to be labelled as they are stated, taking the currentcontext and generating an implicative theorem. This mechanism was the inspirationfor the mechanism presented here, but is not as general, since labels may not appearinside arbitrary propositional structures.2.4 ValidationIf all proof obligations are discharged, the logical consistency of a speci�cation isessentially trivial to check, simply because of the limited range of speci�cation con-structs that we admit.5 Considerably more di�cult is the validity of the speci�ca-tion, by which we mean whether the speci�cation meets our informal expectationsof the system we are describing. For example, in Chapter 6 we must argue that, insome sense, our model of the language conforms to the Java Language Speci�cation[GJS96].We regard the issue of validation as extremely important in the context of opera-tional semantics. Without validation, we really have no guarantee that our theoremproving e�orts have demonstrated anything useful. Whether we like it or not, spec-i�cations frequently contain errors, ranging from small syntactic mistakes to entirerules that are simply forgotten. We found examples of such mistakes even towardthe end of our major case study (see Section 6.7).Clearly complete formal validation is not possible, since this would require aformal speci�cation at least as accurate as our own. Thus we turn to partial andinformal techniques. In addition to simply eye-balling the speci�cation, we utilisethe following (semi-)automatic techniques:1. Type checking;2. Static mode analysis;3. Generation of executable code;4. Execution of test cases.Type checking is of course decidable in our variant of higher order logic, and success-ful type checking at least demonstrates that the various terms within the speci�cationlie within the correct sets.Typechecking �nds many bugs, but is well-understood, and so the remainingtechniques are of more interest. As demonstrated in Section 1.4.3, we compile spec-i�cations to the programming language Mercury [SHC96] and leverage the staticanalysis and animation facilities of that system. In the context of operational seman-tics this generates an interpreter for the language based directly on our de�nitions.5As mentioned in the previous sections, in the current implementation of Declare we must alsocheck (by inspection) that datatypes are initial, that inductive relations are monotonic and thatrecursive function axiomatizations are indeed primitive recursive.

34 CHAPTER 2. SPECIFICATION AND VALIDATIONThe interpreter is typically able to execute concrete programs if given a concreteenvironment, and su�ces to test small programs.2.4.1 MercuryMercury is a pure Prolog-like programming language with higher order predicatesand functions (though without higher order uni�cation). It includes algorithms tostatically analyse programs for type, mode, determinism, uniqueness and terminationconstraints.� The type system is based on polymorphic many-sorted logic and is much thesame as typical functional type systems. It includes polymorphic datatypes.6� Modes specify the
ow of information through a computation by indicating,among other things, how predicates e�ect the \instantiatedness" of expressions.Typical modes are in and out for inputs and outputs respectively. Other modesinclude di and uo for destructive input and unique outputs: these are not yetused in Declare, though there is no real reason why the entire Mercury modelanguage could not be used.� Determinism constraints indicate the potential number of solutions to a pred-icate and form a lattice: nondet indicates 0 or more solutions, multi is 1 ormore, semidet is 0 or 1, det is 1, failure is 0. As yet we do not take ad-vantage of Mercury's determinism checks. They are, unfortunately, not quitepowerful enough to detect the determinism of our typical inductive relations(that is, without substantial modi�cation to the translation process, or consid-erable arti�ciality in how the relations are formulated). We leave this as futurework, and for the moment declare all translated relations as nondet.As with other Prologs, Mercury also warns about such common programming errorsas variables that are only used once within a particular scope.Mercury predicates follow Prolog, though require type and mode declarations,e.g.7:- pred append(list(T), list(T), list(T)).:- mode append(di, di, uo) is det.:- mode append(in, in, out) is det.:- mode append(in, out, in) is semidet.:- mode append(out, out, in) is multi.6Mercury has options to infer types. Since we have already inferred types in Declare we cangenerate the type declarations directly.7Familiarity with Prolog syntax is required to understand this section. A quick summary: `;'represents disjunction, `,' conjunction, `=>' implication, `:-' is the turnstile. Variables begin withcapitals and constants with lowercase (unless quoted as in 'Var'). Clauses have the form pred(args):- goal. for predicates, and func(args) = expr :- goal. for expressions. Existential/universalquanti�cation is some/all.

2.4. VALIDATION 35pragma code thm The theorem should be used to generate Mercurycode.pragma func name The given constant should be translated a a Mer-cury function generating boolean values, ratherthan as a predicate.pragma mode term The term speci�es a Mercury mode for a relation.pragma test term The term speci�es a test predicate.Table 2.5: Pragmas relevant to Mercuryappend([], Ys, Ys).append([X | Xs], Ys, [X | Zs]) :-append(Xs, Ys, Zs).Higher order predicates may take expressions and predicates as arguments, e.g. re-
exive transitive closure::- pred rtc(pred(A, A), A, A).:- mode rtc(pred(in,out) is nondet, in, out) is nondet.rtc(R,X,X).rtc(R,X,Y) :- R(X,X1), rtc(X1,Y).Expressions include the standard range of terms found in a pure functional program-ming language, such as constructed terms, lambda expressions function applicationsand conditional expressions, and also unassigned variables as in Prolog.8Because of its extensive static analyses, Mercury can generate extremely e�cientcode, often many times faster than existing Prolog systems. However, executiontimes were not particularly important for our case studies, since the tests we ranwere small.2.4.2 Example translationsWe shall demonstrate the translation of speci�cations to Mercury by some examples.The type declarations from page 11 (actually, with some slight variations) translateas follows9:- type typ ---> 'TyCon'; 'TyFun'(typ,typ).:- type exp ---> 'Var'(int); 'Con'; 'Lam'(typ,exp); 'App'(typ,exp,exp).8Expressions are normally deterministic, but may also be semi-deterministic or non-deterministic,and thus denote sets of values. Non-deterministic expressions are rarely, if ever, used.9Mercury does not accept curried datatype constructors, so we uncurry and demand thatdatatype constructors are not partially instantiated in the speci�cation.

36 CHAPTER 2. SPECIFICATION AND VALIDATIONThe translation of curried functions is somewhat grotesque: Mercury's preferredsyntactic form is to have uncurried functions, but to cleanly support the partialapplication of functions we generate curried forms. The subst function from page 11becomes::- func subst = (func(exp) = (func(exp) = exp)).:- mode subst =out(func(in) =out(func(in) = out is semidet) is semidet) is semidet.subst = apply(subst_aux,0).The �rst line speci�es the (curried) type of the function, and the mode constraintspeci�es that partial application produce outputs that are functions that subse-quently produce further inputs. Note that if we uncurried, the form would be thesomewhat simpler::- func subst(exp,exp) = exp.:- mode subst(in,in) = out is semidet.subst(X,Y,Z) = subst_aux(0,X,Y,Z).The axiom <reduce> from page 27 translates as follows10:- pred '--->'(exp,exp).:- mode '--->'(in,out) is nondet.'--->'(Arg1,Arg2) :-(some (E1,Dty,E1_prime,E2)Arg1 = 'App'(Dty,E1,E2),Arg2 = 'App'(Dty,E1_prime, E2),'--->'(E1,E1_prime)); (some (Ty,Dty,Bod,E2)Arg1 = 'App'(Dty,'Lam'(Ty,Bod),E2),Arg2 = apply(apply(subst,Bod),E2)).It is useful to extend the range of translated constructs by detecting �rst orderconstructs that correspond to common idioms:� 8j: m � j < n! P [j] and related forms are translated to a call to the higherorder predicate finite int forall:finite_int_forall(M,N,P) :-if M >= N then true else (P(M), finite_int_forall(M+1,N,P)).10We also uncurry predicates, even though Mercury supports higher order predicates. This isbecause Mercury has built in support for the partial application of \uncurried" predicates.

2.4. VALIDATION 37� All other bounded universal quanti�cations are translated with the expectationthat the bound represents a call that generates a �nite range of values, that is8~v:P [~v]! Q[~v] becomes a call to the higher order predicate bounded forall:11bounded_forall(P,Q) :-solutions(P,List), all [X] (member(X,List) => Q(X)).� Pattern matches in the expressions become the appropriate Mercury condition-als. For examplefunction [] -> e1 | (h#t) -> e2becomes the Mercury lambda expression(func(X) = Y :- if X = [] then Y = e1else if X = [H | T] then Y = e2else fail)That is, the result Y of the function with input X is the solution to the predicateafter the turnstile :-.� Pattern matches in predicates are treated similarly. For examplematch x with [] -> true | (h # _t) -> (h = 1)becomes the Mercury predicate12if X = [] then trueelse if X = [H | _T] then H = 1else failNote that boolean valued functions will normally be treated as predicates, unlessthe func pragma is used (see Table 2.5).13 Negation is translated to Mercury'snegation-as-failure.11The call solutions(P,List) deterministically generates a solution set for the predicate P.12A�cionados of functional programming languages may note that we have collapsed the functionapplication hidden inside the match expression. Applied pattern matches in predicates (such asthe above example) are not translated to corresponding higher order predicate applications becauseMercury does not recognise that it can ��reduce the immediate function application. In the givenexample it would complain that H is being bound within a closure.13The func pragma is not yet implemented in Declare, as manipulations on boolean values as dataare rare in our speci�cations. We mention it here to show how one might declare boolean valuedfunctions.

38 CHAPTER 2. SPECIFICATION AND VALIDATIONAt the top level, Declare generates Mercury code o� datatype declarations andany axiom with a code pragma (see Table 2.5 for all the pragmas relevant to theMercury translation.14 These normally de�ne a predicate by an if-and-only-if $ ora data value by an equation =. Declare implicitly generates code for all constructsintroduced by defn, lfp or gfp unless the pragma nocode is given. Of course, notall h.o.l. axioms represent executable code: in these cases the process normally failswhen the system tries to compile the generated Mercury code.15Declare produces a Mercury module for each Declare input �le. The modules arecompiled together and linked against some core functionality and a main programthat executes all test pragmas (see also the example on page 13).2.4.3 Related WorkA previous version of this work generated executable code by compiling speci�ca-tions to CaML-light [Mau91] and performing a modicum of mode analysis during thistranslation (see [Sym97b]). Although useful at the time, the translation was clumsyin comparison to the translation to Mercury. The Mercury version allows consider-ably more
exibility in the style in which speci�cations are written. Previously somerather arti�cial devices were needed to distinguish relations from functions, higherorder relations could not be translated, bounded quanti�cations were clumsy, andspecial hacks were needed to translate relations that generated lists of outputs.The executability of speci�cations has been widely discussed amongst users ofthe Z speci�cation methodology. Early work by Hayes and Jones [HJ89] identi�edthat executable speci�cations may be inferior to non-executable ones. Two types ofreasons are cited:� The executability mechanism may force the essentially the same speci�cationto be written in an unnatural style, e.g. conjuncts may need to be given in aparticular order.� Executability may force a simple speci�cation to be abandoned, e.g. because itlimits the use of many constructs such as negation, disjunction and universalquanti�cation.Many of these criticisms are not terribly important in our problem domain, becausewe are trying to prove properties of systems that should certainly be executable.However, in any case,� Mercury is very
exible in the programs it will accept. For example, it placesconjuncts in a sensible execution order using mode analysis.� Declare allows code to be generated from any theorems, and not just de�nitions.Thus a speci�cation can be given in a natural fashion, and an equivalence orre�nement with an executable version can be proved.14All de�nitions have code pragmas unless the nocode pragma is used.15One de�ciency in the current system is that line numbers are not faithfully translated fromDeclare to Mercury.

2.4. VALIDATION 39Wahls, Leavens and Baker [WLB98] use the constraint based programming lan-guage AKL [JH94] to provide an execution apparatus for their language SPECS-C++. The apparatus is roughly as
exible as our own, though the
exibility isprovided by quite a di�erent means: for example Mercury places conjuncts in asensible execution order using mode analysis, while AKL does this by propagatingconstraints. AKL supports the additional expressive power of linear inequality con-straints, but does not support higher order features. Whals et al. do not considerthe important issue of leveraging the static analysis algorithms available in the un-derlying logic programming engine | clearly Mercury is particularly strong in thisregard.Andrews [And97] translates the speci�cation language S [JDD94] to LambdaProlog [FGMP90], a higher order Prolog, and this work has quite a similar feel toour own. The result is convincing as far as it goes, however again static analyses arenot utilised. Mercury also supports the de�nition of expression (function) constants,which Andrews notes as a particular obstacle for his translation.Because of this rich range of features, Mercury appears to be very much a \natu-ral" programming language corresponding to higher order logic (except for, perhaps,the absence of higher order uni�cation). Indeed Mercury is so strong (though alittle syntactically clumsy) that one could imagine turning the tables and using itas a speci�cation language. Speci�cations could then be given a semantics in h.o.l.when theorem proving is required, and the meta-programming facilities available inMercury would make the implementation of the theorem prover relatively easy.

40 CHAPTER 2. SPECIFICATION AND VALIDATION

Chapter 3Declarative Proof DescriptionIn this chapter we describe the technique we use for proof description, called declar-ative proof. We consider the principles that guided the design of the Declare prooflanguage and detail the three primary constructs of the language. The technique rep-resents a somewhat radical departure from standard practice in higher order logictheorem proving, and we explain the pros and cons of the approach.3.1 The Principles of Declarative ProofHarrison [Har97b] describes several di�erent uses of the word \proof" in the �eld ofautomated reasoning. Three of these are of interest here:1. A proof as found in a mathematical text book, i.e. a sketch given in a mixtureof natural, symbolic and formal languages, su�cient to convince the reader.2. A script to be presented to a machine for checking. This may be just a sketch,or a program which describes the syntactic manipulations needed to constructa formal proof.3. A formal `fully expansive' proof in a particular formal system, e.g. a derivationtree of inference rules and axioms.We use the word `proof' in the second sense, and `proof outline' to mean proofs(again in the second sense) that are merely sketches, and that require signi�cantreasoning to �ll in gaps. Proofs in Declare are expressed as proof outlines, in alanguage that approximates written mathematics. This builds on work done withsimilar languages by the Mizar group [Rud92] and Harrison [Har96b].One traditional form of proof description is \tactic" proof, described more fully atthe end of this chapter. Although tactics are in principle a very general mechanism,in practice their use is highly \procedural": the user issues proof commands like\simplify the current goal", \do induction on the �rst universally quanti�ed variable"or \do a case split on the second disjunctive formula in the assumptions". That41

42 CHAPTER 3. DECLARATIVE PROOF DESCRIPTIONis, tactic proof almost invariably proceeds by giving commands that syntacticallymanipulate existing facts and goals. The primary proof description languages ofHOL, Isabelle and PVS are tactic based.In contrast, a declarative style is based on decomposing and enriching the logicalenvironment (which is the sum of all available facts). Our proposal is that for manypurposes declarative proof is a superior method of proof description.In a declarative proof, the logical environment is monotonically increasing alongany particular branch. That is, once a fact becomes available, it remains available.1The user manages the logical context by labelling facts and goals, and specifyingmeaningful names for local constants. This allows coherent reasoning within a com-plicated logical context.Our declarative proof language separates proof outlining from automated reason-ing. We adopt the principle that these are separate activities and that the proofoutline should not invoke complicated routines such as simpli�cation, except to dis-charge obligations. The link between the two is provided by justi�cations, and thejusti�cation language is quite di�erent to the proof outlining language. This is asopposed to tactic based theorem provers (see Section 3.6.1) where one mechanism istypically used for both tasks.Mechanisms for brevity are essential within declarative proofs, since a relativelylarge number of terms must be quoted. Declare attempts to provide mechanismsso that the user need never quote a particular term more than once within a proof.For example one di�culty is when a formula must be quoted in both a positive anda negative sense (e.g. as both a fact and an antecedent to a fact): this happenswith induction hypotheses. Another is when using chained (in)equality reasoning.Later in this chapter we describe the particular mechanisms provided: local de�-nitions; abbreviations; type checking in context; stating problems in sequent form;instantiation up to type uni�cation; and ihyp macros.In our declarative proof language, the user states \where he/she wants to go".That is, the user declares an enrichment or decomposition, giving the logical statehe/she wants to reach, and only states \how to get there" in high level terms. Theuser does not specify the syntactic manipulations required to get there, except forsome hints provided in the justi�cation, via mechanisms we have tried to make asdeclarative as possible. Often the justi�cation is simply a set of theorem names.Existing theorem provers with strong automation e�ectively support a kind ofdeclarative proof at the top level. For example, the Boyer-Moore prover [BM81] isdeclarative in this sense | the user conjectures a goal and the system tries to proveit. If the system fails, then the user adds more details and tries again. The processis like presenting a proof to a colleague: one starts with an outline and then providesextra detail if he/she fails to follow the argument. Declare extends this approach toallow declarative decompositions and lemmas in the internals of a proof, thus givingthe bene�ts of scope and locality.1There is one important exception to this rule: see Section 3.5

3.1. THE PRINCIPLES OF DECLARATIVE PROOF 43In Section 1.4.1 we de�ned \declarative" to mean \relatively free of operationaldetail", i.e. \what" not \how". Proofs in Declare are relatively independent of anumber of factors that are traditional sources of dependency in tactic proofs. Theseinclude:� The ordering of facts and goals in a problem statement (in Declare the contextis a set indexed by user supplied names);� The order in which subgoals are produced by a proof utility (in Declare theuser can solve subgoals in any order, and Declare produces an obligation thatjusti�es the user's choice of decomposition) ;� The order of quanti�ers in a formula (e.g. in Declare the di�erence between8a b: : : : vs. 8b a: : : : is irrelevant when providing an instantiation | cf. thestandard HOL mechanism that instantiates the outermost quanti�er);� The choice of names made by proof utilities for local constants and variables(in Declare all local names are speci�ed by the user);� The absence of certain kinds of facts in the statement of the problem, e.g.introducing an extra assumption may cause a rewriting proof utility to fail toterminate, or may reduce a goal further than expected by a later tactic (inDeclare adding an extra fact to the context can do no harm, unless that factis explicitly placed in the databases of the automatic tools).For example, Isabelle, HOL and PVS proofs frequently contain references to assump-tion or subgoal numbers, i.e. indexes into lists of each. The proofs are sensitive tomany changes in problem speci�cation where corresponding Declare proofs will notbe. In Declare such changes will alter the proof obligations generated, but often theobligations will still be discharged by the same justi�cations.Much \proof independence" (i.e. declarative content) arises from (and dependson) the presence of powerful automation. For example, automating Presburger arith-metic lets the user ignore the di�erence between x < 0 and x � �1 for most purposes,and thus the user can operate on a semantic level with respect to parts of their the-ory. Declare utilises the successful automation of large segments of propositional�rst order reasoning to allow proofs that are relatively free of propositional and �rstorder dependencies.The advantages of using a declarative proof language in contrast to tactic proofare:� Proofs are described using only a small number of simple constructs, and thusproofs may be interpreted without knowing the behaviour of a large numberof (often adhoc) tactics.� Declarative proofs are more readable.

44 CHAPTER 3. DECLARATIVE PROOF DESCRIPTION� A declarative style allows the user to easily specify \mid-points" in a line ofargument that divide the complexity of the reasoning into approximately equalchunks (we give a lengthy example of this in Section 3.3.1).� Automation is aided by having explicit goals at each stage. For example wetypically give both the left and right hand sides of an equation, and leave theautomated engine to prove the equality.� Analysing the outline of a declarative proof always terminates, because wecan choose to simply generate and not discharge obligations. This means itis possible to typecheck declarative proofs in their entirety, before trying theobligations, thus catching many errors in proofs at an early stage.� It is relatively easy to implement error-recovery.Three additional, important bene�ts seem probable but are di�cult to demonstrateconclusively:� Declarative proofs are potentially more maintainable;� Declarative proofs are potentially more portable;� Declarative proofs may appeal to a wider class of users, helping to deliverautomated reasoning and formal methods to mathematicians and others.These, in principle, are instances of the general bene�ts that arise from increasingthe declarative content of an artifact, as discussed in Section 1.4.1.3.2 Three Constructs For Proof DescriptionIn this section we shall describe the three primary constructs of the Declare prooflanguage, which we have already introduced by example in Section 1.4.3. These are:� Decomposition and enrichment;� Proof by automation (with hints) using by clauses;� 2nd order schema application for inductive and other arguments.Sketching the SemanticsFor each construct we shall brie
y describe its semantics by using a proof systemwith judgments� � ` �0, that is �0 is a conservative extension of � (i.e. �0 possesses a standardmodel (see [GM93]) if � does);22Actually the conservative extension relation is the re
exive transitive closure of this relation.

3.2. THREE CONSTRUCTS FOR PROOF DESCRIPTION 45� � ` F, that is � leads to a contradiction.3Here � is a logical environment that contains:� A signature of type and term constants;� A set of axioms, each of which are closed higher order logic terms (free typevariables are treated as quanti�ed at the outer level of each axiom).Logical environments must always be well-formed : i.e. all their terms must typecheckwith respect to their signature. We omit well-formedness judgments in this chaptersince they may always be checked syntactically. Enrichment of logical environmentsby new constants (�sig) and new axioms (�ax) are each de�ned in the obviousway, with the (normally implicit) side condition that the new constants are notalready present in the environment. For simplicity, logical environments are alwaysassumed to contain all the standard propositional and �rst order connectives. Inthe implementation of the logic, axioms in logical environments are named and aretagged with \usage directives" as described in Chapter 4.In this setting, each speci�cation construct of the previous chapter correspondsto a � ` �0 inference rule, e.g. for simple de�nitions:c is fresh in �c not free in t� ` (��sig c)�ax (c = t)and for datatypes D is a description of a free algebraD is initial (given the types in �)~c are the type and term constants de�ned by DAll ~c are fresh in �ax is the algebraic axiom characterizing D� ` (��sig ~c)�ax axIt is possible to combine such rules into just one speci�cation rule for type andterm constants: see Harrison's rule in HOL-lite for example [Har96a]. Also see HOL[GM93] for proofs that such constructs do indeed form conservative extensions tohigher order logic.� ` F judgments are used when interpreting proofs. The two kinds of judgmentsare linked by the problem-introduction rule:��sig ~v �ax p1; : : : ; pm;:q1; : : : ;:qn ` F� ` �;8~v: p1 ^ : : : ^ pm ! q1 _ : : : _ qnThat is, if we can prove a contradiction after assuming all our facts and the negationof each of our goals, then we have proved the corresponding implicative theorem, andcan add it to the environment.3We prefer the simpler one-sided judgments � ` F, as compared to the traditional two-sidedsequent judgments of a sequent calculus because, when using classical higher order logic, goalscorrespond precisely to negated facts, and the given presentation corresponds very closely to theimplementation.

46 CHAPTER 3. DECLARATIVE PROOF DESCRIPTION3.3 Decomposition and EnrichmentEnrichment is the process of adding facts, goals and local constants to a logical envi-ronment in a logically sound fashion. Most steps in vernacular proofs are enrichmentsteps, e.g. \now we know a is even because 2 � b = a" or \consider d and r such thatn = d � m + r and 0 < r < m." An enrichment step has a corresponding proofobligation that constants \exist" with the given properties, i.e. have witnesses. InDeclare, the above examples would translate to, approximately,(a) have "2*b = a" by ...;have "even(a)" by ...;(b) consider d, r such that"n = d*m + r""0 < r < m"by ...;The above are examples of forward reasoning . When goals are treated as negatedfacts, backward reasoning also corresponds to enrichment. For example if our goal is8x:(9b:x = 4b)! even(x) then the vernacular \given b and x such that x = 4b thenby the de�nition of even it su�ces to show 9c:2�c = x" is an enrichment step: basedon an existing goal, we add two new local constants (b; x), a new goal (9c:2 � c = x)and a new fact (x = 4b). In Declare this would translate to:consider b,x such that+ "x = 4*b"- "9c. 2*c = x"by <even>,<goal>;Decomposition is the process of splitting a proof into several cases. The Declare prooflanguage combines decomposition and enrichment in one construct. The general formis: cases justi�cationcase label1consider c1;1, ..., c1;k1 such thatp1;1...p1;m1 :proof1...case labelnconsider cn;1, ..., cn;kn such thatpn;1...pn;mn :proofn

3.3. DECOMPOSITION AND ENRICHMENT 47External Form Internal Formhave facts justi�cation;rest of proof cases justi�cationcase facts : rest of proofend;consider vars st facts justi�cation;rest of proof cases justi�cationcaseconsider vars st facts :rest of proofend;let id = term;rest of proof casescase "id = term" : rest of proofend;sts goal justi�cation;rest of proof cases justi�cationcase - goal : rest of proofend;Table 3.1: Syntactic variations on enrichment/decomposition with equivalent prim-itive forms.The identi�ers c1;1; : : : ; cn;mn are the new local constants and the pi;j are the newfacts on each branch. New goals are simply negated facts, syntactically marked eitherby the word goal or \-". The proof obligation is that one of the cases always holds,or, equivalently, if we assume the negation of each case we can prove a contradiction:��sig c1;1 : : : c1;k1 �ax p1;1; : : : ; p1;m1 ` F: : :��sig cn;1 : : : cn;kn �ax pn;1; : : : ; pn;mn ` F��ax :(9c1;1 : : : c1;k1 : V p1;i); : : : ;:(9cn;1 : : : cn;kn : V pn;i) ` F� ` FThe last proof obligation corresponds to the \default" case of the split, where wemay assume each other case does not apply. The case labels are used to refer tothese assumptions.4 The obligation is normally justi�ed by an appeal to automatedreasoning, but a nested proof outline can also be given. Syntactically, case labelsand the consider line can normally be omitted (new symbols are assumed to be newlocal constants); and we can shorten such that to st. The special derived formsfor the \linear" case n = 1 are shown in Table 3.1.In principle all constant speci�cation constructs could also be admitted withinthe language, e.g. to de�ne local constants by �xed points, with the implicit supportprovided by the device in Section 2.2.4. Declare does not implement these within4As it is, the cases are free-standing. They could be interpreted top-to-bottom, left-to-right, soyou could assume that previous cases have not held in the proof of a particular case. We have notfound this form useful in case studies.

48 CHAPTER 3. DECLARATIVE PROOF DESCRIPTIONproofs.53.3.1 A longer exampleWe shall now look at a longer example of the use of enrichment/decomposition. Theexample is similar to one that arose in practice in our case study, but is modi�ed todemonstrate several points. The scenario is this:� We are trying to prove G(c; c0) where c and c0 are con�gurations of an abstractmachine and we know c; c0.� We know we must do a case analysis on all possible ways this transition hasoccurred.� ; is de�ned by many rules (say 50).� c takes a particular form (A(a; b); s) (that is, con�gurations are pairs of con-structed terms and a state)� Only 8 of the rules apply when c is of this form.� Out of these 8, 5 represent \exceptional transitions", that is, the machinethrows an exception and c0 has the form (E(val); s), i.e. the state doesn'tchange. For these cases, the goal G((t1; s); (E(val); s)) happens to be triv-ial, in the sense that it follows easily from some previous results <L1> and<L2>� The last 3 possible transitions arise from the following rules (note the rules donot represent any particular transition system):(a; s); (v; s0) _ (b; s); (v; s0)(A(a; b); s); (v; s0) (A(a; b); s); (a; s) (A(a; b); s); (b; s)So, how would we formulate the case split in the proof at this point? Consider thefollowing:// The environment contains:// "c ---> c'" <trans>// "c = (A(a,b),s)"// and <L1>, <L2>cases by rulecases(<trans>), <L1>, <L2>, <goal>case "c' = (v', s')""(t,s) ---> (v',s')"5Speci�cation constructs that generate new monomorphic types within proofs would requirequanti�cation over type variables in the underlying logic [Mel92], and admitting polymorphic typeswould require quanti�cation over type functions. However, there is little need for the de�nition oftypes mid-proof.

3.4. JUSTIFICATIONS, HINTS AND AUTOMATION 49"t = a _ t = b" :rest of proof;case "c' = (t, s)""t = a _ t = b" :rest of proof;end;The key point is that the structure of the decomposition does not have to matchthe structure inherent in the theorems used to justify it (i.e. the structure of therules). There must, of course, be a logical match (one that can be discovered by theautomated engine), but the user is given a substantial amount of
exibility in howthe cases are arranged. He/she can:� Implicitly discharge trivial cases. This is done by including the facts thatsupport the proof for the 5 \exceptional" cases in justi�cation of the split.� Maintain disjunctive cases. Many tactic based splitting tools such as STRIP-TAC in HOL would have generated two cases for the �rst case listed above,by automatically splitting the disjunct. However, the proof may be basicallyidentical for these cases, up to the choice of t.� Subsume similar cases. That is, two structurally similar cases may be sub-sumed into one branch of the proof using disjuncts (as in the second case),even if the case splitting theorem generated them separately.6The user can use such techniques to split the proof into chunks that are of approx-imately equal di�culty, or to dispose of many branches of the proof at one stroke.This is much as in written mathematics, where much trivial reasoning is left to \comeout in the wash."3.4 Justi�cations, Hints and AutomationAt the tips of a problem decomposition we �nd appeals to automated reasoning to\�ll in the gaps" of an argument. We shall discuss the composition of automatedreasoning engines for declarative proof in detail in the next chapter: here we shallconcentrate on issues related to the proof language.The automated reasoning engine is treated as an oracle, though of course theintention is that it is sound with respect to the axioms of higher order logic. A setof \hints" (also called a justi�cation) is provided to the engine:prover(�; hints(�)) returns \yes"� ` FThe signi�cant issues here are the language used to describe justi�cations, and theextra information we are allowed to add to � to assist the automated reasoner. While6This is, in a sense, a form of \�rst order factorization." As in arithmetic, helpful factorizationsare hard to predict, but easy to justify (e.g. by distribution) once given.

50 CHAPTER 3. DECLARATIVE PROOF DESCRIPTIONthe decomposition construct described in the previous section is clearly quite generaland not system-speci�c, a wide spectrum of justi�cation languages is possible. Forexample, we might have no language at all (which would assume the automatedengine can draw useful logical conclusions e�ciently when given nothing but theentire logical environment). Alternatively we might have a language that spells outthe syntactic proof in great detail (e.g. the forward inference rules of an LCF-liketheorem prover). In some domains it may be useful to have many domain speci�cconstructs.We have concentrated on �nding a minimal set of general justi�cation constructsthat are adequate for our case studies. These have indicated that it is extremelyuseful for the justi�cation language to allow the user to:� Highlight facts from the logical environment that are particularly relevant;� O�er explicit instantiations and resolutions as hints;� O�er case-splits as hints;� Indicate how various facts can be utilised by the prover, using pragmas;The �rst three constructs are quite declarative and correspond to constructs foundin vernacular proofs, and we describe them below. We discuss the last mechanismin Chapter 4.3.4.1 Highlighting Relevant FactsFacts are highlighted in two ways:� By simply quoting their label, as in \by <subst aux safe>"� By never giving them a label in the �rst place, as all unlabelled facts withinproofs are treated as if they were highlighted in every subsequent proof step.The exact interpretation of the e�ect highlighting is determined by the automatedengine and is described in Section 4.3.1, but the general idea is that highlightedfacts must be used by the automated engine for the purposes of rewriting, decisionprocedures, �rst order search and so on.3.4.2 Explicit InstantiationsOur case studies have indicated that a \di�cult" proof often becomes quite tractableby simple techniques (e.g. rewriting and �rst order search) by just providing a fewsimple instantiations. Furthermore, explicit instantiations are an essential debug-ging technique when problems are not immediately solvable: providing them usuallysimpli�es the feedback provided by the automated reasoning engine. In a declarativeproof language the instantiations are usually easy to write, because terms are parsedin-context and convenient abbreviations are often available. Instantiations can begiven by two methods:

3.4. JUSTIFICATIONS, HINTS AND AUTOMATION 51� Type directed. A fact and a term are given, and we search for \instantiableslots" (that is outer quanti�ers of universal strength) that are type-compatibleup to the uni�cation of type variables.� Explicitly named. A fact, a term and the name of the variable at an instantiableslot are given.The mechanism is pleasingly declarative: instantiations can be given in any order,and do not depend on the ordering of instantiable slots in the target fact. Forexample, consider the explicit instantiation of the theorem <subst aux safe> fromthe example in Section 1.4.3. The fact being instantiated is:<subst_aux_safe> `8e v xty TE n ty.[] |- v hastype xty ^len TE = n ^(TE #! xty) |- e hastype ty! TE |- (subst_aux n e v) hastype tyand the instantiation directive is:qed by ..., <subst_aux_safe> ["[]", "0", "xty"/xty], ...We have one named and two type-directed instantiations. After processing thenamed instantiation �ve instantiable slots remain: e,v,TE ,n and ty. Unifying typesgives the instantiations TE ! [] and n! 0 and the �nal fact:` 8e v ty:[] |- v hastype xty ^len [] = 0 ^([] #! xty) |- e hastype ty! [] |- (subst_aux 0 e v) hastype ty3.4.3 Explicit ResolutionsExplicit resolution is a mechanism similar in spirit to explicit instantiation. It com-bines instantiation and resolution by allowing a fact to be used to eliminate a unifyinginstance in another fact. Continuing the example above:...have "[] |- e2 hastype xty" <e2_types>;...qed by ..., <subst_aux_safe> ["0", <e2_types>], ...The explicit resolution on the justi�cation line gives rise to the hint:` 8e v ty:true ^

52 CHAPTER 3. DECLARATIVE PROOF DESCRIPTIONlen [] = 0 ^([] #! xty) |- e hastype ty! [] |- (subst_aux 0 e v) hastype tyNote only one literal in <subst aux safe> uni�ed with <e2 types>: resolutions mustbe unique, in order to provide better feedback to the user. Literals do not have tobe resolved against antecedents: for example goals (or any negated literal) can beused to resolve against consequents.Note also that we have not destroyed the �rst-order structure in the process ofresolution. This aids debugging, since all hints are printed out before being passedto the automated engine, and indeed supplying additional explicit resolutions wasthe primary mechanism for debugging problematic proof steps in the case studies.One problem with this mechanism is that, as it stands in Declare, uni�cationtakes no account of ground equations available in the logical context, and thus someresolutions do not succeed where we would expect them to. For example,...let "TE' = [] #! xty";have "TE' |- bod hastype (dty --> ty)" <bod_types>;...qed by ..., <subst_aux_safe> [<bod_types>], ...fails because the term constant TE' does not unify with (TE #! xty) withoutconsidering the equation introduced by the let. Such equations are used duringautomatic proof, but not when interpreting the justi�cation language (we discussground equational reasoning and its integration during automatic proof further inSections 4.2.1 and 4.3). However, this can open a can of worms regarding the treat-ment of equational reasoning during uni�cation. For example, if we had used thede�nitionlet "TE' = [xty]";then should the uni�cation succeed? This would need some special knowledge withinthe uni�cation algorithm of the equation` 8x []#!x = [x]?It is also tempting to allow this mechanism to abandon �rst-order uni�cation andinstead generate equational constraints from some \obvious, intended uni�cation".We could require, for example, that only one literal has a matching head constant.However, note that this would not be su�cient to disambiguate the resolution above,as there would now be two potential target literals. Thus we have chosen to live withthe syntactic constraints imposed by simple �rst order uni�cation. If nothing elsethis is easy for the user to predict and understand.In this work we only consider explicit resolutions where one fact is a literal: itmay be useful to admit more general resolutions but we leave this for future research.

3.5. SECOND ORDER SCHEMA APPLICATION 53pragma induct thm names The theorem speci�es an induction scheme, andnames gives names the subgoals that arise fromthe application of the schema.pragma rulecases thm The theorem speci�es a default rule case analysistechnique, suitable for use with the rulecases orstructcases mechanisms.Table 3.2: Pragmas relevant to induction and justi�cations3.4.4 Explicit Case SplitsExplicit case splits can be provided by instantiating a disjunctive theorem, rule caseanalysis, or structural case analysis. Rule case analysis (rulecases) accepts a factindicating membership of an inductive relation, and generates a theorem that speci-�es the possible rules that might have been used to derive this fact. Structural caseanalysis (structcases) acts on a term belonging to a free algebra (i.e. any type withan abstract datatype axiom): we generate a disjunctive theorem corresponding tocase analysis on the construction of the term.Other case analysis theorems may be speci�ed using the rulecases pragma (seeTable 3.2). The theorems must have a similar form to <reduce.cases> on page 27.Case analyses could also be achieved by explicitly instantiating these theorems, how-ever building default tables allows the machine to automatically infer the relevanttheorem to use.3.5 Second order Schema ApplicationIn principle, decomposition/enriching and automated proof with justi�cations aresu�cient to describe any proof in higher order logic, assuming a modicum of powerfrom the automated engine (e.g. that it implements the 8 primitive rules of higherorder logic described by Gordon and Melham [GM93]). However, we have found itvery useful to add one further construct for inductive arguments. The general formwe have adopted is second-order schema application, which includes structural, ruleand well-founded induction, and potentially a range of other proof strategies.Why is this construct needed? Consider the proof of the theorem <subst aux safe>from page 16:thm <subst_aux_safe>if "[] |- v hastype xty" <v_hastype>"len TE = n" <n>"(TE #! xty) |- e hastype ty" <typing>then "TE |- (subst_aux n e v) hastype ty";We wish to induct over the derivation of the fact <typing>, that is over the structureof this inductive set. The induction predicate that we desire is:

54 CHAPTER 3. DECLARATIVE PROOF DESCRIPTION�TE e ty.8n. len TE = n !TE |- (subst_aux n e v) hastype tyIt is essential that n be universally quanti�ed, because it \varies" during the induc-tion, in the sense that it is necessary to instantiate it with di�erent values in di�erentcases of the induction. Likewise TE , e and ty also vary. Furthermore, because v andxty do not vary, it is better to leave <v hastype> out of the induction predicate toavoid unnecessary extra antecedents to the induction hypothesis.We now contrast how the induction step of the proof is described with a typicaltactic proof language, and in Declare with and without a special construct for thispurpose.3.5.1 Induction in Typical Tactic Proof LanguagesIn a typical tactic language we must state the goal in such a way that the applica-tion of the induction schema can be achieved by matching or rewriting, or a tacticprogram. Thus the problem would be stated as follows (using a sequent form wheregoals are marked - and facts +):---------------------------------- 8v xty.[] |- v hastype xty !8TE e ty.(TE #! xty) |- e hastype ty !8n. len TE = n !TE |- (subst_aux n e v) hastype tyA HOL tactic program to perform an inductive step runs something like REPEATGEN TAC THEN DISCH TAC THEN RULE INDUCT TAC schema, meaning \repeatedly replaceuniversal quanti�ers by local constants, then eliminate one implication by placingthe antecedent in the assumption list, then apply induction where the inductive setis the antecedent of the current goal and the induction predicate implicit in theconsequent". After the REPEAT GEN TAC THEN DISCH TAC steps the sequent is:+ [] |- v hastype xty---------------------------------- 8TE e ty.(TE #! xty) |- e hastype ty !8n. len TE = n !TE |- (subst_aux n e v) hastype tyThe user has syntactically isolated the facts that are unchanging from the \depen-dent" facts that make up the induction predicate. This is not only arti�cial: we losethe opportunity to mark dependent facts with meta-level information such as namesand usage directives when they are introduced.

3.5. SECOND ORDER SCHEMA APPLICATION 55Perhaps most problematically, the RULE INDUCT TAC step typically chooses namesfor local constants, and automatically place induction hypotheses in the assump-tion lists. Choosing names automatically tends to make proofs fragile (in the sensethey become dependent on the rather arbitrary behaviour of the choice mechanism).Also, further tactic steps would be required to attach meaningful names and usagedirectives to induction facts. Furthermore, proofs of the cases must be listed in aparticular order, and the interpreter for the tactic language can't make sense of theproof if cases are omitted.3.5.2 Induction in Declare without a special constructIt is naturally possible to use Declare's decomposition construct, combined with anexplicit instantiation of the induction theorem, to express the desired decomposi-tion:7thm <subst_aux_safe>if "[] |- v hastype xty" <v_hastype>then "(TE #! xty) |- e hastype ty ^len TE = n !TE |- (subst_aux n e v) hastype ty"prooflet "ihyp TE e ty =8n. len TE = n !TE |- (subst_aux n e v) hastype ty";cases by <hastype.induct> ["ihyp"], <goal>, ...case + "e = Lam dty bod"+ "ty = dty --> rty"+ "ihyp (dty#(TE#!xty)) bod rty" <ihyp>+ "len TE = n"- "TE |- (subst_aux n e v) hastype ty" :...case + "e = f % a"+ "ihyp (TE#!xty) f (dty --> ty)" <ihyp1>+ "ihyp (TE#!xty) a dty" <ihyp2> :+ "len TE = n"- "TE |- (subst_aux n e v) hastype ty" :...end;end;We have given one case for each rule of the induction relation where the proof is notsimple: the other cases can be \consumed" in the decomposition by merging theirjusti�cations with that for the case split. For the non-trivial cases we have listed the7In principle the automated engine might be able to �nd the higher order instantiation of theinduction theorem, but this is, in general, di�cult to rely upon.

56 CHAPTER 3. DECLARATIVE PROOF DESCRIPTIONavailable induction hypotheses in a systematic fashion. This approach is, in someways, acceptable. Its advantages include:� Flexibility: if any induction cases are simple then they may be omitted, leavingthe automated checker to discharge the corresponding decomposition obliga-tion. In the above example we could omit two of the cases. In addition, thecases may be presented in any order, since the automated engine will still beable to discharge the obligation.� Control: we name the local constants introduced on each branch of the induc-tion, and can tag induction facts with names and usage directives.� Clarity: the logic of the decomposition is made explicit.Its disadvantages are:� Verbosity: not only do we have to quote all induction hypotheses for non-trivialcases, but we are obliged to restate+ "len TE = n"- "TE |- (subst_aux n e v) hastype ty" :in each case also. This is because we had to state the original goal in quanti�edform, as TE , e and ty must all be universal if the decomposition obligationis to be provable. As with the programmed approach above, we do not havethe opportunity to mark dependent facts with names and usage directives onceand for all, and would have to repeat these on each branch of the proof. Fur-thermore, we must explicitly instantiate the induction theorem, and explicitlyde�ne the induction predicate.� Complex Proof Obligations: for induction decompositions involving many cases,the decomposition obligation gets very large.� Inaccuracy: it is fairly likely the user will make mistakes when recording in-duction hypotheses.� Debugging: it is non-trivial to provide good feedback to the user if they makesuch a mistake.Although sometimes the above form might be preferred, the majority of inductivearguments follow a very standard pattern of highly syntactic reasoning. With adedicated induction construct we can improve the feedback provided to the user;eliminate a source of particularly complex proof obligations; and make our proofsfar more succinct. We do, however, lose some
exibility, because an explicit proofmust be given for each case of the induction. That is, the reasoning is syntactic anddoes not produce a proof obligation, and so the automated engine cannot be usedto subsume trivial proof steps.

3.5. SECOND ORDER SCHEMA APPLICATION 573.5.3 The Induction Construct in DeclareWe now consider the corresponding Declare proof:thm <subst_aux_safe>if "[] |- v hastype xty""len TE = n""(TE #! xty) |- e hastype ty" <typing>then "TE |- (subst_aux n e v) hastype ty";proofproceed by rule induction on <typing> with n,TE,ty,e variable;case Con: ...case Var: ...case Lam"e = Lam dty bod""ty = dty --> rty""ihyp (dty#(TE#!xty)) bod rty" <ihyp> :...case App"e = f % a""ihyp (TE#!xty) f (dty --> ty)" <f_ihyp>"ihyp (TE#!xty) a dty" <a_ihyp> :...end;end;We explain the details of the construct below, but the approach we have taken isclear: provide one very general construct for decomposing problems along syntacticlines based on second-order arguments.8 The scope of the induction predicate is de-termined automatically by indicating those local constants (i.e. variables universallyquanti�ed at the outer of the current proof) which vary during the induction. Thebasic form of the construct is:proceed by schema on fact with constants variablecase name1facts1 : proof1;...case namenfactsn : proofn;end;where, as with the decomposition construct, each factsi has the formconsider ci;1, ..., ci;ki such thatpi;18The argument is second-order because it involves instantiating a theorem with a predicate.

58 CHAPTER 3. DECLARATIVE PROOF DESCRIPTION...pi;miThe fact must be an instance of the inductive set required by the given schema | itis negated (e.g. a goal) for co-inductive schemas (see below) and it may be replacedby a term if the inductive set is universal for some type (i.e. for structural induction).The schema must be a fact in the logical environment of the form:(8~v: ihyps1 ! P~v) ^ : : : ^ (8~v: ihypsn ! P~v)! (8~v: Q[~v]! P~v)where the inductive set given in the support fact is an instance of Q[~v] (this is theform schemas take in HOL and Isabelle, except equational constraints must always beencoded in the induction hypotheses). The schema fact must have a pragma givingnames to the subgoals of the induction (see Table 3.2). The production of schemasis automated for inductive relations and datatypes, so the user rarely needs to knowthe form that schemas take internally. However, the general mechanism is providedto allow the declaration of the inductive structure of constructs that were not de�nedvia these mechanisms, and to allow several proof principles to be declared for thesame inductive set.Q[~v] takes the form R(~v) for an inductive relation R, and :R(~v) for a co-inductiverelation. The condition Q(~v) is optional | without it Q is assumed to be universal.Induction over the natural numbers is thus written as:(8n. n=0 ! P n) ^(8n. (9k. n=k+1 ^ P k) ! P n)! (8n. P n)If the naturals are considered an inductive subset of the integers, then the schemais:(8i. i=0 ! P i) ^(8i. (9k. i=k+1) ^ P k) ! P i)! (8i. is_nat(i) ! P i)We also admit forms where the schema is implicit from the induction fact: forinductive relations, the schema can be determined from the outermost construct,so \rule induction on fact ," su�ces, and similarly \structural induction onterm" for inductive datatypes.3.5.4 The CasesEach antecedent of the inductive schema generates one new branch of the proof. Ateach branch of the proof the user must specify either a proof, or a set of purportedhypotheses and a proof.� If no purported hypotheses are given, then the actual hypotheses (i.e. thosespeci�ed in the schema) are made available implicitly, but may not be referredto by name: they become \automatic" unlabelled facts.

3.5. SECOND ORDER SCHEMA APPLICATION 59� If purported hypotheses are given, then a syntactic check is made to ensurethey correspond to the actual hypotheses. This check is quite liberal: boththe purported and actual hypotheses are normalized with respect to variousequations (including beta reduction, local constant elimination and NNF), andthen must be equal up to alpha conversion. Thus the user gains control overthe naming of introduced constants and facts, and may also simultaneouslyintroduce local abbreviations: these may be convenient in the remainder ofthat branch of the proof. Hypotheses must be listed in the order they appearin the schema, but this is generally the most appropriate order in any case.The semantics for the construct can be characterized as follows:8P: (8~v:ihyps1 ! P (~v)): : :(8~v:ihypsn ! P (~v))! (8~v:R(~v)! P (~v)) 2ax �R(~t) 2ax �P = �~v:8~V :V(~v = ~t)! �=~VV(~v = ~t) ^ ihypsi ! 9ci;1 : : : ci;ki :pi;1 ^ : : : ^ pi;mi (8i:1 � i � n)��sig c1;1 : : : c1;k1 �ax p1;1; : : : ; p1;m1 ` F: : :��sig cn;1 : : : cn;kn �ax pn;1; : : : ; pn;mn ` F� ` F (3.1)The conditions specify that:� The schema is indeed a fact in the current logical context;� The inductive relation is satis�ed for some terms ~t;� In the generated hypotheses, P is replaced by the induction hypotheses;� The matching criteria: the generated hypotheses must (as a minimum) implythe purported hypotheses. In the generated hypotheses equational constraintsbetween ~v and ~t are also available: these are always eliminated in the normal-ization that precedes matching.� Each actual subcase must be provable.Here c1;1; : : : ; cn;mn are the new local constants and the pi;j are the new purportedhypotheses for each case. ~V is the variance speci�ed in the induction step, and �=~Vrepresents the conjunction of all axioms in � involving any of the local constants in~V .99Note type constants may not vary: this could be supported if we admitted quanti�cation overtype variables [Mel92] in the underlying logic.

60 CHAPTER 3. DECLARATIVE PROOF DESCRIPTION3.5.5 Strong InductionStrong induction is a simple modi�cation to the above mechanism where the induc-tion predicate is automatically augmented with membership of the inductive set:: : :R(~t) 2ax �P = �~v: 8~V : (V(~v = ~t))! �=~V ^ R(~v): : :Strong induction is the default in the Declare proof language: weak induction mustbe speci�ed using the keyword weak and is useful only when the added informationis useless and confusing for the automated proof engine.3.5.6 Co-induction and StrengtheningTo illustrate the use of co-induction in the proof language, consider the de�nition ofdivergence for a transition relation:gfp Divergent =<Step> 9b. R a b ^ Divergent R b-------------------------------Divergent R aAssume that R = ; and W1 ; W2 and W2 ; W1. If we want to prove that W1 isdivergent, we use co-induction over an appropriately strengthened goal:10thm <example>if "W1 --> W2""W2 --> W1"then "Divergent(-->)(W1)" <g1>proof// Strengthen the goal a little...consider x st+ "x = W1 _ x = W2"- "Divergent(-->)(x)" <g2>// Co-induct and the rest is easy...proceed by rule induction on <g2> with x variable discarding <g1>case Step- "9b. x --> b ^ (b = W1 _ b = W2)"; // (could be left implict)qed;endend10Note we use co-induction to demonstrate membership of the set, and rules to prove non-membership. This is the opposite way around to the inductive case, as expected!

3.5. SECOND ORDER SCHEMA APPLICATION 61We explain the discarding construct below. Not surprisingly, the proof is verysimilar to an inductive proof, though we quote a goal rather than a fact as thesupport for the co-induction.3.5.7 ihyp macrosWriting out induction hypotheses in detail can be informative, but also time-consumingand error-prone. Two mechanisms are available to help with this. First, the cases ofthe induction can be generated automatically by Declare, though typically the userstill copies the hypotheses in order to record choices for new constants and names forfacts. We consider this in detail in Chapter 5. Secondly, the shorthand ihyp(...)can be used within the scope of a proceed by ... construct as a macro for the im-plicit induction predicate. Without this mechanism our example would have been:thm <subst_aux_safe>...proceed by weak rule induction on <typing> with n,TE,ty,e variable;case Con; qed by ...case Var; qed by ...case Lam"e = Lam dty bod""ty = dty --> rty""8TE'. TE'#!xty = dty#(TE#!xty) ^[] |- v hastype xty ^len TE' = n! (TE' #! xty) |- e hastype ty" <ihyp>;qed by ...case App ...end;ihyp provides a robust and succinct mechanism for quoting induction conditions,at the risk of some obscurity. The expanded version could be recorded in the proofscript, but with a little practice it is easy to syntactically predict the available hy-potheses, just as in hand proofs. The successful use of ihyp clearly relies on theuser having a strong intuitive understanding of induction (i.e. there is no substitutefor mathematical training!) Note the interactive environment for Declare displaysthe induction predicate as it is generated, and also unwinds the use of ihyp whendisplaying formulae (i.e. ihyp is regarded as a macro rather than a local constant).It may be possible to extend the labelling mechanism of Section 2.3 to enablelabels on the top lines of rules (i.e. in inductive schemas) to be used to access elementsof the inductive hypotheses without re-quoting the terms involved | we leave thisfor future research.

62 CHAPTER 3. DECLARATIVE PROOF DESCRIPTION3.5.8 Discarding FactsThe coinductive example above demonstrates a common pattern in inductive proofs:the goal must be strengthened, or the assumptions weakened, before an induction iscommenced. This is done in two steps: we prove that a stronger goal is su�cient (thisis usually trivial), and before we perform an induction we purge the environment ofall irrelevant facts, to avoid unnecessary antecedents being added to the inductionhypothesis. Unless we force the user to resort to a lemma, this last step requires a\discarding" construct to be added to the proof language. Discarding facts destroysthe monotonicity property of the proof language, so to minimize its use we havechosen to make it part of the induction construct. Our case studies suggest it isonly required when signi�cant reasoning is performed before the induction step of aproof, which is rare.The semantics of the operator is trivial:� n ax ` F� ` F3.5.9 Mutually Recursive Inductive ProofsThe �nal twist on the schema-application construct comes when we considermutuallyrecursive inductive proofs. This occurs in operational semantics when, for example,we are proving facts about a functional language containing both expressions anddeclarations. We can use odd and even numbers as a prototypical instance of thisproblem, when characterized inductively byeven(0) even(m)odd(m+ 1) odd(m)even(m+ 1)Typically we want to prove two facts \simultaneously" over the two inductive sets,using the induction theorem for the inductive relation8P even P odd.(8n. n=0 ! P even n) ^(8n. (9m. n=m+1 ^ P even m) ! P odd n) ^(8n. (9m. n=m+1 ^ P odd m) ! P even n)! (8n. even(n) ! P even n) ^(8n. odd(n) ! P odd n)For example, assume we are trying to show that if a number is odd, then it isn'teven, and vice-versa. Unfortunately if we are to maintain the style of the prooflanguage, it is inevitable that the proof system be adapted to accommodate multiple(conjoined) goals. In Declare we show that a number can't be both odd and even asfollows:thms

3.6. RELATED WORK 63<odd_implies_not_even> if "odd n" <a> then ":even(n)"<even_implies_not_odd> if "even n" then ":odd(n)";proofproceed by rule induction on <a>, with n variable;case zero: ...case even: ...case odd: ...end;end;This is does not present any great logical problems, since logically sequents in higherorder logic correspond to implicative formulae.11 In a sense it just demonstrateshow formal proof systems must adapt when being used to assign meaning to moredeclarative proof description styles. Formally, primitive judgments become�1 ` F; : : : ;�n ` Fwhere n is the number of mutually recursive goals. Multiple goals are only useful forsolving mutual recursion, and so the only proof rule we admit for the case n > 1 isschema application. Modifying the semantic rule 3.1 for this case is straightforward.3.6 Related Work3.6.1 TacticsTactics, �rst used in LCF[GMW77], are the traditional mechanism for proof descrip-tion in LCF-style systems. In principle tactics simply decompose a problem andreturn a justi�cation which proves that the decomposition is logically sound:type tactic = sequent ! sequent list � justificationtype justification = thm list ! thmIsabelle tactics return not just one but a stream of possible decompositions andbacktracking may be used over this search space.In practice tactic collections embody an interactive style of proof that proceedsby syntactic manipulation of the sequent and existing top level theorems, and tacticproofs are often examples of arcane adhoc programming in the extreme. The advan-tage of tactic based proving is the programmability it a�ords, and common patternsof manipulation can in theory be automated. A major disadvantage is that the se-quent quickly becomes unwieldy, and the style discourages the use of abbreviationsand complex case decompositions.We give one example from each of HOL and Isabelle. We make no attempt toexplain the proofs, precisely because it is so just hard to know what's going on. Thefollowing is the proof of a lemma taken from Norrish's analysis of the semantics ofC:11Again, the question of where type variables are quanti�ed must be considered: in this contextthey are considered global to the proof, not to each sequent.

64 CHAPTER 3. DECLARATIVE PROOF DESCRIPTIONval wf_type_offset = store_thm("wf_type_offset",``!smap sn. well_formed_type smap (Struct sn) ==>!fld t. lookup_field_info (smap sn) fld t ==>?n. offset smap sn fld n``,SIMP_TAC (hol_ss ++ impnorm_set) [offset,definition "choltype" "lookup_field_info",definition "choltype" "struct_info"] THENREPEAT STRIP_TAC THENIMP_RES_TAC (theorem "choltype" "well_formed_structs") THENFULL_SIMP_TAC hol_ss [well_formed_type_THM] THENFIRST_X_ASSUM SUBST_ALL_TAC THENFULL_SIMP_TAC hol_ss [definition "choltype" "struct_info"] THENPOP_ASSUM_LIST (MAP_EVERY (fn th =>if (free_in ``nodup_flds`` (concl th) orelsefree_in ``[]:(string # CType) list`` (concl th)) thenALL_TACelse MP_TAC th)) THENSPEC_TAC (dub ``l:(string # CType) list``) THENINDUCT_THEN list_INDUCT ASSUME_TAC THEN SIMP_TAC hol_ss THENGEN_TAC THENSTRUCT_CASES_TAC (ISPEC ``h:string # CType`` pair_CASES) THENSIMP_TAC hol_ss [DISJ_IMP_THM, Theorems.RIGHT_IMP_FORALL_THM,FORALL_AND_THM] THENONCE_REWRITE_TAC [offset'_rewrites] THEN REPEAT STRIP_TAC THENASM_MESON_TAC [well_formed_type_sizeof]);Even given all the appropriate de�nitions, we would challenge even an experiencedHOL user to accurately predict the logical context at a given point late in the proof.Note how terms are quoted, but we don't know how they relate to the problem |where did \l" or \h" come from?Isabelle proofs are usually substantially better, in the sense that they utilise fewerprogrammed proof procedures, and make less use of \assumption hacking" devices(e.g. POP ASSUM LIST above, which forces all assumptions through a function). Forexample, the proof of the correctness of the W type inference algorithm in Nipkowand Nazareth's formulation [NN96] begins:(* correctness of W with respect to has_type *)goal W.thy"!A S t m n . new_tv n A --> Some (S,t,m) = W e A n --> $S A |- e :: t";by (expr.induct_tac "e" 1);(* case Var n *)by (asm_full_simp_tac (simpset() addsplits [expand_if]) 1);by (strip_tac 1);by (rtac has_type.VarI 1);by (Simp_tac 1);by (simp_tac (simpset() addsimps [is_bound_typ_instance]) 1);by (rtac exI 1);by (rtac refl 1);(* case Abs e *)by (asm_full_simp_tac (simpset() addsimps [app_subst_list]addsplits [split_option_bind]) 1);by (strip_tac 1);by (eres_inst_tac [("x","(mk_scheme (TVar n)) # A")] allE 1);

3.6. RELATED WORK 65...and continues in the same vein for 200 lines. The same questions can be posedabout this proof: what is the logical environment at each point? What is the resultof the adhoc hacking on the sequent using simpli�cation and resolution? What wouldhappen if I stated the problem in a di�erent (but logically equivalent) way? (e.g.using just one implication symbol).While neither style is declarative, it is worth noting that for experienced users,both are e�ective for \getting the job done" (both veri�cations mentioned aboveare certainly impressive pieces of work.) Ultimately di�erent proof styles may beapplicable in di�erent contexts, depending on the constraints of the project.Some experienced users of tactic collections have successfully adopted a limitedstyle of proof which allows long arguments to be expressed with some accuracy(e.g. see Harrison's construction of the real numbers in HOL-lite). These styleshave not been systematized, and in often resemble aspects of our declarative prooflanguage (e.g. Harrison is often careful to give sensible names when introducinglocal constants). In addition, Bailey [Bai98] has looked closely at the role of literateprogramming in supporting readable proofs for the LEGO [LP92] proof assistant, inthe context of a major proof in algebra. He adopted a limited style of proof in placesin order to maximize readability. His source texts are not themselves particularlyreadable | they �rst require extensive translation to LATEX. However, the end resultis certainly of high quality.3.6.2 A short statistical comparisonSource level statistical analysis of di�erent proof styles can give some indication oftheir di�erences between them. Table 3.3 presents statistics from three developments:the Java case study using Declare described in Chapters 6 and 7, a similar work byvon Oheimb in Isabelle [Nv98] (see also Section 7.5.1), and Norrish's study of theoperational semantics of C [Nor98]).A caveat: The studies are substantially di�erent and the statistics areonly meant to give a rough impression of the nature of the style of proofand speci�cation used!Controlled experiments are possible in such a domain, but require a signi�cant re-sources. Aitken et al. [AGMT98] have used controlled quantitative experiments toinvestigate interaction (but not proof style) in HOL and PVS. Similar experimentsinvestigating proof style would be interesting but are beyond the scope of this thesis.Truly controlled experiments would be very di�cult, after all, these developmentstake years to construct (e.g. Norrish's C development took 3 man-years).With these caveats in mind, we can turn to the �gures. Certainly, for example,one can see that both Isabelle and Declare have solved a chronic problem in the HOLsystem: the need to add type annotations to terms quoted in proofs. This impedi-ment alone is su�cient to deter most HOL users from a \declarative" style, because

66 CHAPTER 3. DECLARATIVE PROOF DESCRIPTIONJava 1 (Declare) Java 2 (Isabelle) C (HOL)Lines 7900 3000 16500Text Size (Kb, no comments) 200 102 702speci�cationa 17% 32% 13%theorem statements 20% 35% 27%proofs 63% 33% 60%outlines 26%justi�cations 36%Top level theoremsb 93/280 c 207/830 700/700Term quotations in proofsd 1050/3150 67/270 300/300Adhoc proof procedurese 0/0 58/230 700/700First order symbolsf 260/780 700/2800 2200/2200Proof steps 1100g/3300 670h/2700 7000i/7000Explicit type annotations (%)j � 1% � 1% � 70%Proof description devices k � 15 � 60 700+Table 3.3: Source Level Statistics for Three Operational Developments. Seecaveats in the text!aThe di�erent components of the texts were separated using a combination of Unix toolsand manual editing. For Declare, the split was between thm declarations, their proofs, andthe remainder. For Isabelle, the speci�cation included all .thy �les, the proof statements allproofs up until the �rst proof command, and proofs were everything else. For HOL, 5 �leswere chosen at random from the 20 that make up the development, and manual editing wasused to select the three types of text. For both Isabelle and HOL \background theories"such as those for partial functions were ignored. It is possible to quibble over what partsof the texts should be included in each category, thus these �gures should only be taken asaccurate to within a few percentage points.bIncludes top level lemmas and theorems.cThe �rst �gure is the approximate total. The second �gure is the �rst adjusted based ona rough estimate of the overall logical complexity of the development. This is clearly di�cultto measure, so we accept that these must be taken with a grain of salt. My assessment isbased on the total text size, but adjusting the Isabelle development because it uses extremelycompact syntax (thus is more complex than the text size reveals, and it would be unfair topenalise it on this basis!). The factors we use are 3.0 for the Declare development, 4.0for Isabelleand 1.0 for HOL (thus I have estimated Norrish's C development to be the mostcomplex). This correlates with my personal estimate of the logical complexity, having viewedthe speci�cations and proofs. Note that \complexity" is sometimes self-induced, e.g. somerepresentation choices I made in the Java case study made things logically more di�cultthan they might have been, and thus complexity is not a direct measure of merit!dWhere two or more quotations appeared on the same line of text, they were counted asone.eApproximate number of val or fun declarations that do not de�ne top level theorems, orsimple handles fetching top level theorems from a database. We have, perhaps, been overlygenerous toward Isabelle and HOL here | many more adhoc combinations of tactics andtactic-functionals are created mid-proof and are not bound to top level identi�ers.fApproximate number of explicit ^ , _ , implications, iterated 9 or 8 or iterated con-junction ([|...|] in Isabelle) symbols occurring within terms, apart from the speci�cation.For HOL the �gure includes the speci�cation but is divided by 1.5 to adjust.gNumber of let, have, consider, induct, qed or sts steps.hNumber of b y or K steps, each representing a tactic application.iApproximate number of THEN, THENL or REPEAT steps.jPercentage of terms in proofs that have at least one explicit type annotationkApproximate number of di�erent proof description devices used, e.g. each di�erent tacticcounts as 1. Again we may have been over-generous | see the note on adhoc proof proceduresabove.

3.6. RELATED WORK 67a declarative style will inevitably require more term quotation. We can see thatthis is indeed the case: Declare proof contain many more terms than correspondingIsabelle and HOL proofs.The �gures give some support for arguing that Declare proofs have better locality.That is, more lemmas are stated and proved in the middle of a proof, rather thanbeing lifted to the top level. This is not surprising, as this is exactly the kind ofreasoning Declare is designed to support.Similarly, the �gures support the view that HOL developments are massivelyoverburdened with adhoc proof procedures, nearly all of which can be subsumedby techniques used in Declare and Isabelle. In addition, Declare developments are\simpler," if simplicity is measured by the number of proof devices and/or adhocproof procedures used. However, the cost of a declarative style is also evident:Declare proofs contain many more term quotations than Isabelle and HOL proofs.This is precisely because terms are needed to \declare" the result of a step in a proof.Finally, the �gures do support the view that Declare proofs are relatively freeof explicit use of �rst order (including propositional) symbols. Traditional writtenmathematics makes little use of �rst order symbols, e.g. I was not able to �nd anyin either General Topology by Willard or Calculus by Spivak [Spi67, Wil70]. In-stead, they prefer to use �rst order terminology (not symbols), usually in the \meta-language" surrounding the terms they are manipulating (i.e. in problem statementsand proof outlines). Much the same thing happens in Declare: most �rst order sym-bols and manipulations are implicit in the statement and structure of a proof. It isonly in the speci�cation that they are widely used.3.6.3 MizarMizar is a well established system for formalizing general mathematics, and a phe-nomenal amount of the mathematical corpus has been covered.Declare has been inspired in part by the Mizar system and Harrison's `MizarMode' work [Har96b, Rud92]. In particular:� The concept of specifying proofs as documents in a palatable proof languageis due to Mizar. The actual proof language we use is substantially di�erent.� The realisation that declarative proof techniques could be used within a higherorder logic based system is due to Harrison.� The use of automated �rst order proof to discharge obligations arising from adeclarative language comes from both Mizar and Harrison.Signi�cantly, the realisation that declarative techniques achieve many of the re-quirements of practical veri�cation in the context of operational semantics (and, ingeneral, for large, evolving models and speci�cations) is our own. Prior to this workit was commonly held that a declarative style would not work for \large" speci�-cations, but only when speci�cations involved the small terms found in traditionalmathematics.

68 CHAPTER 3. DECLARATIVE PROOF DESCRIPTIONMizar is a poorly documented system, so the following comments are observationsbased on some sample Mizar scripts and the execution of the Mizar program. First,there are large di�erences between the Mizar and Declare languages:� Declare supports constructs common in operational semantics directly, whereasMizar supports constructs common in general abstract mathematics. For ex-ample, we provide induction and case analysis constructs suited for reasoningabout inductive types and relations. In Mizar specifying and reasoning aboutthese constructs is possible, but clumsy. These di�erences can, more or less,be explained by considering Declare as a system in a similar spirit to Mizar,but applied to a di�erent domain.� Once the concrete syntax is stripped away, Mizar proofs are mostly speci�ca-tions of �ne-grained syntactic manipulations, e.g. generalization, instantiation,and propositional introduction/elimination. We believe the decomposition con-struct of the Declare language enables the user to specify logical leaps in largersteps. For example, case splits in Mizar are usually small, and facts tend toget introduced one at a time.� The logic underlying Mizar is rich in devices but quite complex and perhapseven adhoc. Many of its features are designed for abstract mathematics, andare of little relevance to practical veri�cation. The key idea (proof outlining)can easily be transferred to a simpler setting and elaborated there,as we havedone in Declare.� Speci�cations in Mizar are highly constructive, and it usually takes a lot oftext to get from an initial de�nition to the axioms that practically characterizethe new construct.The di�erences may also stem from the automated support provided: justi�cationsin Mizar proofs rarely contain more than �ve facts, but in Declare we sometimesprovide 10 or 15 (and even another 10 or 20 \automatic background" facts). Mizarprovides little feedback when a step could not be justi�ed, so perhaps it is di�cultto accurately formulate logical steps that are much larger.These points are illustrated in the following Mizar proof about an operator idseqthat produces the list 0; 1; : : : ; n for a given n. In Declare or Isabelle the theorem(which is "idseq (i+1) = (idseq i) ^ <*i+1*>", where "^" is concatenation and"<*x*>" is a singleton list) would either arise trivially from a recursive de�nition,or would be proven automatically by rewriting and arithmetic from a de�nitionsuch as idseq = mk list (�i. i) (which is roughly the de�nition used in Mizar).Although the Mizar proof comes late in the development of the theory of lists (after2600 lines), the set theoretic constructions underlying the theory still rear their uglyheads. Note also how �ne-grained the reasoning is.theorem Th45: idseq (i+1) = (idseq i) ^ <*i+1*>

3.6. RELATED WORK 69proof set p = idseq (i+1);A1: len p = i + 1 by Th42; thenconsider q being FinSequence , a being Any such thatA2: p = q^<*a*> by Th21;_278_: len p = len q + 1 by A2,Th20; thenA3: len q = i by A1,REAL_1:10;i+1 2 Seg(i + 1) by FINSEQ_1:6;then p.(i+1) = i+1 by Th43; thenA4: a = i+1 by A2,_278_,A1,FINSEQ_1:59;A5: dom q = Seg len q by FINSEQ_1:def 3;for a st a 2 Seg i holds q.a = aproof let a; assumeB1: a 2 Seg i; thenreconsider j = a as Nat;i < i+1 by NAT_1:29;then Seg i c= Seg (i+1) by FINSEQ_1:7;then j 2 Seg(i+1) & p.j = q.j by B1,A2,A3,A5,Th18;hence thesis by Th43;end;then q = id Seg i by FUNCT_1:34,A3,A5;hence thesis by A2,A4,ID;end;On the plus side, Mizar does run extremely quickly (much faster than Declare), andwe must not forget that the system has been used to develop the most impressivecorpus of fully formalized mathematics ever.

70 CHAPTER 3. DECLARATIVE PROOF DESCRIPTION

Chapter 4Automated Reasoning forDeclarative ProofWhen writing a declarative proof, we leave gaps in the reasoning that we believe are\obvious", resulting in a proof obligation. We expect an automated reasoning engineto discharge these obligations.Automated reasoning is the most fundamental technique available to eliminateprocedural dependencies in proofs. Naturally we do not seek to solve the problemof automated reasoning once and for all. Rather we focus on the problem we arefaced with: automated reasoning for declarative proof in the context of operationalsemantics. We �rst set the scene by outlining the functionality we require of theautomated engine. We then describe the techniques that are used in Declare's au-tomated engine, how they are integrated, and discuss how these do and don't meetour requirements. Few of these techniques are novel, rather the challenge is to drawon the wide range of techniques available in automated reasoning, and to composethem in a suitable fashion.4.1 RequirementsNaturally, we require the engine to be sound : it should only discharge an obligation ifa logically valid proof exists. We also require relative completeness: ideally we wouldlike the engine to successfully discharge all obligations for which a proof exists, andto fail otherwise. Realistically, however, completeness will be relative to some classof problems. At the extreme, when developing proofs interactively it is normal toimpose a time constraint whereby the prover must return a result within, say, 10seconds, and so incompleteness is inevitable. Despite this, some notion of relativecompleteness is clearly desirable. If the problem lies outside this class, then the usermust provide a more detailed outline of its proof.11The combination of the declarative proof language and the automated engine is complete(though perhaps tedious to use) if the automated engine at least implements all the basic infer-71

72 CHAPTER 4. AUTOMATED REASONING FOR DECLARATIVE PROOFSection 1.4.1 de�nes declarative proof as a relative absence of procedural detailor procedural dependencies. In Section 3.1 we expanded on this and explained howautomation could help achieve this. For example, automation may e�ectively makea < 2b and 2a � 4b�1 indistinguishable as far as the user is concerned (for a; b 2 Z).By doing so, we may have eliminated the procedural detail required to prove this tothe machine, which could be an advantage. Thus, one requirement of the automatedengine is to return equivalent results on some classes of equivalent problems. Considera �rst order example: if the automated engine can prove obligations likeP ^ (8p: Q1(p) ^Q2(p)$ R(p))! 9c d: R(c; d)(regardless of P;R;Q1 and Q2) then we expect it to be able to prove ones like(8y1y2: R(y1; y2)$ Q2(y1; y2) ^Q1(y1; y2))! (9p: R(p) _ :P)If it can, modi�cations that generate mildly di�erent proof obligations will not breakproofs.Perhaps unexpectedly, failure of the automated proof engine is the norm, in thesense that when interactively developing complex proofs we spend most of our timeon obligations that are \almost" provable. Thus we would like the prover to give usexcellent feedback as to why obligations could not be discharged.Ideally, declarative proof would be best served by black box automated reason-ing, where the user does not have to understand the operation of the prover toany great depth. For example, propositional logic is decidable, and although NP-complete, \broad-spectrum" algorithms (e.g. BDD based) exist that give acceptableperformance on most problems that arise in our domain, and furthermore counterexamples can be generated that can be interpreted without a knowledge of the algo-rithm.The essential challenge of automated reasoning in the declarative settingis to come up with a single general purpose prover that is sound, completefor some classes of problems, produces equivalent results on some classesof equivalent problems, reliable, simple to understand, simple to use andprovides good feedback, yet still works e�ciently on a su�ciently largeproblem domain.This is, needless to say, an extremely di�cult task!Unfortunately most existing work in automating non-propositional reasoning hasproduced provers that are far from \black box". To take one example, the �rstorder prover Otter [MW97] has over 100 di�erent switches and endless potentialcon�gurations and, although each has its purpose, there has been no real attempt tocharacterize which switches are appropriate for which classes of problems, making theence rules of higher order logic e.g. the eight primitive rules of the HOL system, in the sense thatany proof that can be carried out in the HOL deductive system can be carried out in the combinedsystem.

4.1. REQUIREMENTS 73use of such provers somewhat of a black art.2 Proof techniques that require arcaneswitch settings (e.g. weightings) within justi�cations negate the advantages we haveachieved by using declarative proof, e.g. readability of proofs and their robustnessunder changes to the automated prover.MacAllester has considered the question of \obviousness" with regard to auto-mated deduction, and he has implemented some of his ideas in the Ontic system[McA89]. We have not tried to develop \obviousness" as an absolute concept, andare really more concerned with an automated prover that allows us to specify proofoutlines that are, in some limited sense, \natural". In particular, it seems \un-natural" to specify proofs that involve manipulations of propositional or �rst orderconnectives, or tedious equality reasoning, or tedious arithmetic steps, and so ourproof techniques focus on automating these domains.4.1.1 An Example ProblemFigure 4.1 shows a typical proof obligation that arises within the context of opera-tional semantics and which is amenable to automated reasoning. The details of theproblem need not concern us (in particular it is not necessary to understand themeaning of the constructs involved, since we have listed all relevant axioms here),but the style of the problem does. We are trying to prove a property heap conformsabout heap1 and ht1. These objects are modi�ed versions of heap0 and ht0: wehave allocated a new location in heap0, and adjusted ht0 to ht1 to compensate. Thestructural modi�cations boil down to operations on �nite partial functions (tables).We know that heap conforms holds for heap0 and ht0. To prove the goal we mustprove the domains of heap1 and ht1 are equal, and that heapobj conforms holdsfor every object heap1. The latter step is the harder: this requires the use of amonotonicity result for heapobj conforms and a case analysis between whether theheapobj is a newly allocated object, or if it was an object already present.We have shown only the relevant axioms and de�nitions here, though in generalthe prover must also perform adequately in the presence of irrelevant information.Most of the axioms were selected by the user as part of the justi�cation line in thedeclarative proof script, however some (marked !!) are dragged in automatically byreasoning tools from libraries. The automated reasoning engine is essentially free tomake use of any facts available in the current logical context, though it may requireguidance as to how di�erent facts may be used (we discuss this later in this chapter).The problem is shown approximately in �rst-order form, though some featuresmight need to be translated away before the problem would be acceptable to a �rstorder prover, in particular polymorphic equality; the use of conditionals at the levelof terms; and the let ... = ... in ... construct.Although the problem shown is not large by the standards of some �rst orderautomated reasoning tools, it is, perhaps surprisingly, at the upper end of the size of2Recently, an \autonomous" mode has been added to Otter for the purposes of the CADE proverscompetition [SS97]. Clearly it would be desirable to harness the work that has gone into such proverswithin practical veri�cation systems, and we consider this a good avenue for future research.

74 CHAPTER 4. AUTOMATED REASONING FOR DECLARATIVE PROOF// The goal:goal "heap_conforms(te,heap1,ht1)"// Datatypes:datatype 'a option = None | Some('a);datatype vt = VT(simp,nat);datatype simp = A(string) | B(string) | C;datatype heapobj = Object(...) | Array(...)// Facts about local constants:defn "ht1 = fupdate(ht0,addr1,VT(C(c),0))";defn "heapobj = Object(fldvals,c)"defn "(heap1,addr1) = alloc(heap0,heapobj)"fact "ht_leq (te,ht0,ht1)"fact "heap_conforms (te,heap1,ht1)"fact "heapobj_conforms(te,ht0,heapobj,VT(C(c),0)";// From the specification of the operational system:defn "8heap heapobj.alloc(heap,heapobj) =let addr = fresh(fdomain(heap))in (fupdate(heap,addr,heapobj),addr)";defn "8te heap ht.heap_conforms (te,heap,ht) $(fdomain heap = fdomain ht) ^(8x y. flookup(heap)(x) = Some(y) !(9z. flookup(ht)(x) = Some(z) ^ heapobj_conforms (te,ht,z,y)))"fact "8heapobj te ht0 ht1.ht_leq(te,ht0,ht1) ^heapobj_conforms (te,ht0,heapobj,ty) !heapobj_conforms (te,ht1,heapobj,ty)";// From the theory of finite sets:rewrite "8fset1 fset2. (fset1 = fset2) $ (8x. x 2 fset1 $ x 2 fset2)"rewrite "8fset x y. x 2 finsert(y,fset) $ (x = y) _ x 2 fset"; !!// From the theory of finite partial functions:rewrite "8f x y z. flookup(fupdate(f,x,y),z) =if (x = z) then y else flookup(f,z)"; !!rewrite "8f x y. fdomain(fupdate(f,x,y)) = finsert(x,fdomain(x))"; !!fact "8fset. ~(fresh(fset) 2 fset)";Figure 4.1: A typical obligation to be discharged by automated reasoning. Thenames defn, fact and rewrite refer to di�erent categorizations of the availableaxioms given by pragmas.

4.1. REQUIREMENTS 75problems that tend to occur in practice in our domain. This is because it is di�cultto accurately formulate proof steps that embody larger logical leaps, at least whenworking on developing problems. Attempting to do so typically results in littlepayo�, and it tends to be quicker to simply split the proof into two or three stepsrather than try to force things too far with the automated prover.Now, consider the characteristics of this obligation:� The problem involves a mixture of structural and logical reasoning, i.e. equa-tional reasoning about constants and functions, and �rst order reasoning aboutvarious predicates.� The structural reasoning involves a signi�cant amount of fairly naive equa-tional reasoning, best attacked by some kind of rewriting : de�nitions must beunfolded, and obvious reduction must be made.� A degree of �rst order reasoning is clearly required: we must search for the keyinstantiations of facts such as the monotonicity lemma.� Some reasoning about the datatypes (pairs, option and vt) is required, e.g. `Some(x) = Some(y) ! x = y.� If the complexity of the problem is to be controlled, then several functions andpredicates must be treated as uninterpreted, e.g. unwinding the de�nition (notshown here) of heapobj conforms to substantially complicates the �rst ordersearch.� Similarly, some types are better treated as uninterpreted, e.g. we should notspeculatively case split on objects of type heapobj, since the structure of theseobjects is irrelevant to the proof.The obligation is atypical in the following ways:� The predicates or functions are not recursively de�ned: typically some are.� Once de�nitions have been expanded, the �rst order component of the problemis essentially in Horn-clause form: sometimes this is not the case.� Each �rst order formula need only be instantiated once, presuming the proofsearch is organised well. Sometimes a formula needs 2 or 3 di�erent instantia-tions, though rarely more.� No reasoning about arithmetic is required. Often small arithmetic reasoningsteps are required, e.g. proving 1 <= n in a logical context where n > 0 hasbeen asserted.Nearly all problems in our case studies (and, perhaps, in the majority of applicationsof theorem proving) require a mix of structural and �rst order reasoning. This haslong been recognised, though it is rarely made explicit: here we have just tried tomake this clear by an example, and to motivate the choices made in Declare.

76 CHAPTER 4. AUTOMATED REASONING FOR DECLARATIVE PROOF4.2 Techniques used in DeclareWe now describe the techniques used for automated reasoning in Declare, and themethod by which they are integrated to form a single prover. We have tried torestrict ourselves to techniques that are predictable, complete for certain classes ofproblems, simple, incremental and which o�er good feedback for unsolvable problems.However, for general �rst order problems good feedback will always be di�cult,especially when the search space is wide.Some notes on the implementation: the reasoning tools in Declare use data-bases derived from and stored alongside the current logical environment (that is, thecollection of all available facts). Facts are pushed into these databases incrementallyas they become known, e.g. by case splitting or by producing simpli�ed versionsof formulae. The logical environment and databases are stored as applicative datastructures (i.e. with no references), so backtracking is trivial to implement.Each technique described here can be made more powerful and more e�cient,at the expense of greater complexity in behaviour, interface and implementation.The Declare implementation is structured so it is relatively easy to replace a reason-ing component with one that uses more e�cient data structures, by replacing thecorresponding database in the logical environment. Databases can be computed ondemand (lazily), to prevent their creation in instances where they are not used.4.2.1 Ground Reasoning in Equational TheoriesDecision procedures exist to determine the validity of formulae within various groundequational theories. Some basic decidable theories are:� Propositional logic, i.e. �rst order formulae containing only propositional con-nectives and universal quanti�ers at the outermost level, and �nite types;� Linear arithmetic, i.e. propositional logic extended with linear formulae over areal closed �eld (e.g. R, using only <, >, �, �, =, <>, +, �);3� Equational logic in the presence of uninterpreted function symbols, e.g. a =g(b) �! f(a; g(b)) = f(a; a), normally implemented by a congruence closurealgorithm [NO80];Frameworks exist for combining decision procedures for various theories. Nelson andOppen have a quite general scheme that has been successfully re-implemented intheorem proving systems [NO79, Bou95]. Shostak has an alternative scheme thatis less general but reputedly faster, and this is used in the STeP and PVS theoremprovers [Sho84, MBBC95, COR+95].3This subset (Presburger arithmetic) is usually expanded to include rational constants and func-tions that can be encoded in a linear/propositional framework, e.g. abs, max, min etc. An incom-plete but e�ective procedure for Z and N can be achieved by translating to a more general problemover R.

4.2. TECHNIQUES USED IN DECLARE 77Declare implements a Shostak-style integration of decision procedures for unin-terpreted equality and arithmetic. The implementation is very naive (for exampleno term graph is used, but rather we explicitly substitute), but su�cient for ourcase studies. The central database is a sequence of convex sub-databases [NO80],each corresponding to one case of the disjunctive normal form of the propositionalstructure of the logical environment.Each convex database supports assert and satisfy functions. The former isused to add available ground equalities, inequalities and propositional formulae. Thefunction satisfy is used to generate a satisfying instance, i.e. an assignment thatsatis�es the various constraints. This can in turn be used as a counter example inthe context of refutation.We discuss how we integrate the use of ground decision procedures with othertechniques below.4.2.2 RewritingRewriting is the process of repeatedly transforming a term by replacing subtermswith equivalent subterms, as justi�ed by a set of equational rules. For example giventhe axioms a = 1 and 8x y z : x+ (y + z) = (x+ y) + z we may rewrite as follows:(w + x) + (a+ z); ((w + x) + a) + z ; ((w + x) + 1) + zThe axioms available (the rewrite set) and the order and locality of their application(the rewrite strategy) together form the rewrite system. Rewrite systems are oftenused for both systematic and adhoc proof in mechanized reasoning. Properties welook for in rewrite systems are termination (by ensuring that each rewrite axiomreduces some global metric); con
uence (that is, the order of application of rewritesshould not in
uence the �nal result); normalization (does the rewrite system reduceterms to a normal form?); and completeness (does the rewrite systems fully solve aclass of problems?) An excellent introduction to the theory of rewriting can be foundin [BN98] and implementations in HOL and Isabelle are documented in [Bou92] and[Nip89]. Some typical enhancements to basic rewriting described above are:� Conditional rewriting, e.g. i > 0 ^ i � length(t) �! el(i)(h :: t); el(i�1)(t)perhaps using decision procedures to solve conditions.� 2nd order and higher order matching. Equational axioms like a = 1 are gen-erally interpreted as left-to-right rewrites, the left being the pattern. Patternsthat contain free higher order variables can be interpreted as specifying familiesof rewrites, e.g. (:8x: P x) ; (9x: :P x). Other matching enhancementsare also possible, though those guaranteed to produce at most one match arepreferred.� Contextual rewriting, e.g. the fact P is added to the logical environment whenrewriting Q in P ! Q. Second order congruence rules may be speci�ed forderived constructs, as in the Isabelle theorem prover (see Table 4.1).

78 CHAPTER 4. AUTOMATED REASONING FOR DECLARATIVE PROOF� In�nite sets of rewrite axioms, provided by programmed procedures.4Rewriting in Declare implements all of the above features. As Declare is not directlyprogrammable the only rewriting procedures used are built in ones, which are de-scribed below. In a fully developed system it would be appropriate to support userprogrammable rewriting procedures, as many useful rewriting strategies can only bespeci�ed with an in�nite number of axioms.From Facts to RewritesRewrites are speci�ed in Declare by pragmas, usually when a fact is declared |this is discussed in the next section. Many facts (those not speci�ed as left-to-rightrewrites, including contextual assumptions generated by congruence rules) are usedas \safe" rewrites of the form proposition ; true. This ensures that rewriting alwaysterminates, presuming the user has speci�ed other pragmas sensibly.Like most theorem provers, Declare comes with theories of important constructssuch as partial functions, sets, �nite partial functions, �nite sets, �rst order logicand lists. Rewriting gives e�ective (though incomplete) proof procedures in many ofthese domains .Declare does not implement Knuth-Bendix completion [KB70] on its rewrite set.It would be desirable to investigate the costs and bene�ts of this routine in thecontext of this problem domain, since occasionally the user must arti�cially modifythe statement of theorems and proofs to ensure a con
uent and complete rewritestrategy. For example, the user must sometimes ensure that all left-hand-side pat-terns of rewrites are in normal form: completion could alleviate such problems, andmight further increase the declarative nature of proofs. However, most problematicexamples involve ground terms, and perhaps simply further integrating ground de-cision procedures with rewriting (thus using congruence closure as a form of groundcompletion) would be su�cient. Also, full Knuth-Bendix completion requires thespeci�cation of a lexicographic term ordering. This is clearly non-declarative (in thesense of Section 1.4.1) but perhaps a su�ciently general default ordering could bespeci�ed.4.2.3 Inbuilt Rewrite ProceduresGeneralized Beta ConversionSimple beta-conversion (�x:t)s; t[s=x] can be generalized to a procedure that canevaluate most pattern matches against ground values, as in functional programminglanguages5, e.g.4This technique was used by the author in his implementation of the hol90 rewriter system, andhas been adopted in other systems.5This can in turn be generalized whenever patterns are speci�ed by injective functions. Declarecurrently supports the former but not the latter, though there is no real reason (except implemen-tation complexity) not to support both in the context of a theorem proving environment.

4.2. TECHNIQUES USED IN DECLARE 79match (Some(3),0) with (Some(x),0) -> t; t[3=x]Matches can also be resolved in the negative:match Some(u) with None -> t | x -> s; match Some(u) with x -> s; s[Some(u)=x]Generalized beta-conversion can, of course, only resolve matches in certain circum-stances, e.g. when both patterns and arguments are speci�ed by concrete construc-tions (datatype constructors, Z, N, and strings).Resolving Matches by Throwing Side ConditionsGeneralized beta-conversion may not be su�cient to make use of all the facts knownin the current logical environment. For example, the reductionmatch a with 0 -> 0 | x -> x+1; a+1is logically valid when a 2 N and a > 0 is available in the logical context, becausein these circumstances we know the �rst rule does not apply. One solution to sucha problem is to throw o� a side condition which can be solved by other, cooperatingtools, in particular the ground decision procedures.We attempt to resolve matches in the positive whenever a ground pattern is used,that is for an expression match t with p -> ... where p contains no variables wegenerate the condition p = t. We always attempt to resolve them in the negativepresuming no other resolution is possible, so the condition for p containing variables~v is 8~v:p 6= t, presuming ~v are fresh names.Solving for UnknownsDeclare incorporates quite powerful procedures for solving for unknowns in the mid-dle of rewriting. Solving eliminates universal or existential quanti�ers when a de�nitevalue can be determined for the quanti�ed variable. For example:9a. a=b+c ^ p(a,b) ^ q(b,a+2); p(b+c,b) ^ q(b,(b+c)+2)Some of this e�ect can be achieved by higher order rewriting with theorems such as(9a. a=t ^ P a) � P tbut this technique is not su�ciently general when quanti�ers appear in the wrongorder or location. For example, the Declare automatic routine solves for a in thefollowing situation:

80 CHAPTER 4. AUTOMATED REASONING FOR DECLARATIVE PROOF9a b. (p(a) ^ a=t ^ q(b)) _ r(b); 9b. (p(t) ^ q(b)) _ r(b)because a does not occur on the right of the disjunct. The routine also solves for8-bound quanti�ers:8a. a=b+c ^ p(a,b) ! q(b,a+2); p(b+c,b) ! q(b,(b+c)+2)In principle the routine could be extended to solve arithmetic equations and otherequational theories, but this has not yet been done.Implementation IssuesImplementations of rewriting systems can vary greatly in e�ciency and complexity.Important issues to consider include:� Dynamic v. Static? Can new rewrites and congruence rules be speci�ed aspart of the input? Can rewrites arise dynamically, e.g. from contextual as-sumptions?� Compiled? Are rewrite sets compiled to some more e�cient representation?� Term or graph based? Graph-based rewriting algorithms can lead to far bettertime and space complexity, at the expense of greater implementation complex-ity, especially in the implementation of backtracking.The Declare system is dynamic, uses minimal compilation in the form of term-netsand for simplicity is implemented based on terms (i.e. the implementation is alongthe same lines as rewriting in LCF, HOL-lite and Isabelle).4.2.4 GrindingGrinding (the terminology is borrowed from PVS) is essentially the repeated appli-cation of rewriting, \safe" �rst order and splitting steps until no goals remain or nofurther progress can be made. Grinding operates on a sequent (i.e. a list of conjoinedfacts and disjoined goals) and results in several residue sequents each of which mustbe solved by other techniques. The generation of an initial sequent is described inthe discussion of integration issues below: essentially it is made up of a set of factsthat have been selected as \primary." (In Declare this is done by quoting them on ajusti�cation line in the proof language). Grinding in Declare is fully contextual, inthe sense that when a fact is being reduced, all surrounding facts (and the negationof all goals) are pushed into the logical context.66The facts may already appear in the context, but will normally have di�erent pragmas, as dis-cussed in the next section. In addition, their pragmas are maintained even though they dynamicallychange during rewriting, which is a simple way to cross-normalise rewrites.

4.2. TECHNIQUES USED IN DECLARE 81Declare uses two-way, repeated grinding, in the sense that we iterate back andforth across the fact list looking for reductions, and all surrounding facts are availablefor use. Both the Isabelle and HOL simpli�ers start at one end of the assumptionlist and only iterate in one direction. There is no particularly good reason for thisrestriction, and it can make some proofs fail (e.g. (b*a)/a = c ^ a > 0 ! b =c, where the side condition a <> 0 to a cancellation rewrite is only provable if a >0 is available.)Safe StepsSafe �rst order steps include the introduction of witnesses for 9 (8) quanti�ers infacts (goals), splitting conjuncts (disjuncts) in facts (goals). Grinding also eliminateslocal constants de�ned by an equality, so if a = t is a fact then a can be eliminatedin favour of the term t. The set of safe rules could be made extensible by usingmethods from the Isabelle theorem prover [Pau90].Pattern Based Splitting and WeakeningSplitting follows fairly conventional lines, splitting on disjunctive formulae as in PVS,Isabelle and indeed most automated provers. Additional pattern based splitting rulesmay be speci�ed, for example:` (b ! P(t)) ^ (: b ! P(e)) ! P (if b then t else e)Such a rule is interpreted by a procedure that searches for a free subterm thatmatches the pattern in the conclusion. New subgoals are then produced from theappropriately instantiated antecedents of the splitting theorem. The code is an im-proved version of a similar procedure found in Harrison's HOL-lite, in particular thetheorem does not have to be an equality, which allows us to automatically \weaken"the sequent in cases where a certain side condition should always be provable.For example, subtraction over N is often problematic in theorem provers: howshould subtraction be de�ned outside the standard range? Our methodology is toavoid relying on the behaviour of subtraction outside its domain (indeed we do noteven specify it in the de�nition of subtraction). Thus we require that the appropriatebound is always provable in the context in which subtraction is used. We can usepattern based weakening to generate this obligation and eliminate uses of subtractionin favour of an addition over a fresh \di�erence" variable. The weakening rule is:` a >= b ^ (8d. a=b+d ! P(d)) ! P (a-b)The side condition a >= b can be regarded as a condition arising out of an implicitdependent typing scheme for the subtraction operator.Extensible splitting of a similar kind is available in the Isabelle simpli�er, thoughit is not clear if it has been utilised to eliminate dependently typed operators as above.

82 CHAPTER 4. AUTOMATED REASONING FOR DECLARATIVE PROOF4.2.5 First Order ReasoningFirst order reasoning has been the primary problem of interest in automated reason-ing communities. Although we work in higher order logic, the vast majority of proofobligations lie within equational �rst-order logic. The subset is semi-decidable, butalmost invariably requires heuristic proof search.First order reasoning has been largely neglected in interactive higher order logicbased theorem provers (e.g. PVS has no support for uni�cation and HOL existedfor years without it), with Isabelle being the major exception. In his summary of�rst order proof in practice [Har97a] , Harrison describes the situation of interactivetheorem proving with respect to �rst order techniques as follows:There is a trend away from monolithic automated theorem provers to-wards using automation as a tool in support of interactive proof. ... Itraises a number of issues that are often neglected... Is �rst order automa-tion actually useful, and if so, why? How can it be used for richer logics?What are the characteristic examples that require solution in practice?How do the traditional algorithms perform on these `practical' examples| are they de�cient or are they already too powerful?First order systems attempt to �nd a contradiction (refutation) given a set of ax-ioms. Routines often assume the axioms are in some normal form, e.g. clauses and/orprenex. The main task of algorithm is to �nd necessary instantiations (using uni-�cation) and to organise the search for these. Combining �rst order proof withequational reasoning is particularly challenging: although equality may be axioma-tized, this is not terribly e�ective, and special heuristic rules for equality are oftenused.The �rst order technique we use is model elimination [Lov68], which is essentiallythe natural completion of Prolog as a proof technique when negation-as-failure isexcluded. The Horn clause restriction is also lifted by using the \contrapositives" ofa set of formulae as the rule set. Model elimination is a simple and e�ective way toperform goal directed search, and as Harrison has reported [Har97a] in some casesit can even work e�ectively when the equality axioms are used directly.Because we require quick feedback, and only use �rst order proof as a workhorse to �nd relatively simple instantiations, we time-limit the proof search (whichis based on iterative deepening) to 6 seconds in the interactive environment. Thiscan, naturally, be speci�ed by the user.What feedback can be provided by the �rst order engine when the problem isnot solvable? This is a very di�cult issue: �rst order search spaces are large and itis very hard to distinguish promising paths from unpromising. It may be possibleto employ some model generation procedure to give a counter example, but the onlysimple solution appears to allow the user to inspect the internal actions of the prover.Declare provides a trace of the search, though better would be an interactive methodto examine paths in the search, like that provided by Isabelle.

4.3. INTERFACE AND INTEGRATION 834.3 Interface and Integration4.3.1 Quoting and PragmasIn the previous chapter we delayed discussing certain aspects of the proof language,because their semantics are interpreted by the automated proof engine. These con-structs e�ectively form the interface to the automated engine. We are now in aposition to complete these details.The �rst question is the semantics of \quoting a theorem in a justi�cation", or,equivalently, leaving a local fact inside a proof unnamed (these are implicitly includedin all future justi�cations).The second is related: we must describe the pragmas (\hints") that the auto-mated engine understands. Table 4.1 de�nes the relevant pragmas and de�nes theirmeaning in terms of the proof procedures from the previous section.Now, quoting a fact has the following e�ects. Most importantly, the fact is addedto a set of \primary" facts that will form the initial sequent for grinding (see below).Before this is done, the pragmas of the fact may be slightly modi�ed:� If the fact has a non-auto pragma such as defn or rw, then this is promotedto the corresponding auto-pragma. The fact will be added to the appropriatedatabases during grinding. Thus quotation means \use it like I said it couldbe used."� If the fact already had an auto pragma, the pragma is stripped from the copyof the fact that is added to the \primary" set (the fact remains in the automaticdatabase). The assumption is that quoting the fact means the user is providingit for some special purpose (e.g. is instantiating it). Thus the quotation means\in addition to using it like I said, use it as an ordinary primary fact."This combination has been su�cient for the case studies, and in combination withlocal pragmas allows any combination of pragmas to be speci�ed. However, notethat once facts are placed in a database using an auto pragma they may not beremoved.All facts implicitly have the saferw and meson pragmas, so quoting any factpromotes these to auto, and thus all quoted facts get used as safe rewrites and for�rst order proof.4.3.2 IntegrationThe Declare automated prover uses grinding as the initial phase of the proof, beforecalling the decision procedures and model elimination. The starting sequent is theset of \primary" facts as de�ned above. This is thoroughly reduced and then modelelimination is applied on the residue sequents.Measures must be taken to ensure the use of rewriting is not problematic: withoutcare rewriting can turn a problem otherwise be solvable by �rst order reasoning intoone that isn't. Two typical problems arise:

84 CHAPTER 4. AUTOMATED REASONING FOR DECLARATIVE PROOFpragma defn thmpragma autodefn thm The fact speci�es a set of (possibly recursive)de�nitions that should be used as left-to-rightrewrites. Recursive de�nitions will be acceptablebecause rewriting does not occur inside � terms,the branches of conditionals or pattern matches.The de�nitions may, in principle, be used by otherproof procedures such as congruence closure or�rst order provers, but this does not occur in thecurrent implementation. autodefn adds the def-initions to a database of automatically appliedde�nitions.pragma elim thmpragma autoelim thm The fact speci�es a set of non-recursive equationsthat completely eliminate constants in favour oftheir representations. Again these may, in princi-ple, be used by other proof procedures. autoelimadds the equations to an automatic database.pragma rw thmpragma autorw thm The fact speci�es a set of (conditional) equationsthat should be used as a left-to-right (conditional)rewrite rules. autorw adds these to the databaseof automatic rewrite rules.pragma saferw thmpragma autosaferw thm The fact speci�es a set of safe \boolean" rewrites(see Section 4.2.2). All facts are implicitly taggedwith saferw.pragma cong thmpragma autocong thm The fact speci�es a congruence rule in the styleof the Isabelle simpli�er (see Section 4.2.2), e.g.` P=P 0 ^ (P 0 ! Q=Q0) ! (P^Q) =(P 0^Q0)pragma split thmpragma autosplit thm The fact speci�es a pattern based splitting rule(see Section 4.2.4).pragma ground thmpragma autoground thm The fact speci�es a ground fact and can be addedto the ground equational database. All facts with-out outermost universal quanti�ers are implicitlytagged with ground.pragma meson thmpragma automeson thm The fact speci�es a set of �rst order reasoningrules, to be used by the model elimination proce-dure. All facts are implicitly tagged with meson.Table 4.1: Pragmas recognised by the automated reasoning engine

4.3. INTERFACE AND INTEGRATION 85� Rewriting can simplify away an instantiation of a fact that has been especiallyprovided as a \hint" to help the �rst order prover.This is prevented by not applying rules that rewrite to \true"/"false" when ina positive/negative logical polarity.7 This is rather adhoc, but it works wellenough.� Rewriting normalizes expressions so that uni�cation is no longer possible, e.g.c+b might be AC-normalized to b+c which no longer uni�es with c+x withoutincreasing the power of the uni�cation algorithm.We treat this problem by avoiding automatic rewrites that disturb the structureof terms in this way.The lesson is that when using rewriting as a preprocessor, the rewrite system must\respect" the behaviour of other automated routines.We use the ground decision procedures to:� Attempt to decide side conditions to conditional rewrites, after recursivelygrinding the condition, as in the Boyer-Moore prover [BM81];� Attempt to decide the problem itself, again after grinding, but before modelelimination.Other theorem provers do better: ideally, asserting an equality between ground termsinto should make those terms indistinguishable for nearly all purposes (this appearsto be an unstated aim of the PVS prover). For example, the uni�cation algorithmshould be able to unify f(a,x) and f(g(b),c) when the equality a=g(b) is presentin the logical environment (i.e. ground E-uni�cation). We do not take things so far,though instances did arise in our cases studies where this would have led to shorterproofs.4.3.3 FeedbackThe following feedback is available from a failed proof attempt:� The sequent as it appeared before grinding began.� The sequent of the �rst case not solved by grinding, decision procedures ormodel elimination. The sequent is shown as it appears after grinding.� Constraints that indicate how eliminated constants relate to constants in thesequents, e.g. "p = (p.1, p.2)".7As in Section 2.2.2, the logical polarity is positive/negative when reducing a redex within thepropositional structure of a fact that is e�ectively under an even/odd number of negations. So weare ensuring, in limited circumstances, that rewriting progresses in the correct direction throughthe boolean lattice.

86 CHAPTER 4. AUTOMATED REASONING FOR DECLARATIVE PROOF� A counter example for the unsolvable case as generated by the ground decisionprocedures.� A list of the unsolved side conditions to rewrite rules, along with a counterexample for each.In the interactive environment, much of this information is elided (in particular thecounter examples) and computed on demand, so the information is presented quicklyand compactly. Also, tracing may be applied to show the internal actions of grindingand the model elimination prover.4.4 AppraisalThe last three sections have described the requirements for an automated proverin our problem domain, and the actual prover we have used in our case studies.This begs the question: does the prover meet the requirements? To recap, therequirements were:� Relative completeness;� Equivalent results on equivalent problems;� Simple to understand;� Simple to use;� One top level prover;� Excellent feedback;� Works e�ciently on a su�ciently large problem domain.Certainly our prover provides a degree of relative completeness: one could identifymany sets of problems that it will accurately and consistently check (e.g. proposi-tional logic, ground arithmetic, �rst order problems that require no more than 5-10instantiations).The second requirement is harder to meet: there are a substantial number of\equivalent forms" for solvable problems that will not be solved by our prover. How-ever, di�erent but equivalent forms of� Propositional structure;� Ground terms in decidable theories;� Local solvable constants (i.e. 9x: x = t ^ P [x] v. P [t]);� First order structure (e.g. 8xy: Px ^Qy v. (8x: Px) ^ (8y: Qy)

4.5. RELATED WORK 87� Product-based structure (e.g. Q(a) ^R(b)! P (a; b) v. Q(fst p) ^R(snd p)!P (p)nearly always produce identical results. However, di�erences in instantiatedness,pragmas or speci�cations of rewrite axioms often produce di�erent results.The prover is simple to use, once its powers are understood. Understanding theprover would require a course in rewriting and �rst order proof, and training on aselection of appropriate problems. This is similar to provers such as Isabelle.The feedback provided is good when simpli�cation is the main proof techniquebeing used, but is poor for �rst order proof. We have discussed this issue in Sec-tion 4.2.5. The scope of the prover was adequate for our case study, but any im-provement in scope could dramatically simplify many proofs.4.5 Related WorkThis chapter builds on many techniques developed in other theorem proving systems.Most notably, the Boyer-Moore prover [BM81] pioneered the use of rewriting, thedecision procedures to solve conditions, and a tagging/pragma mechanism to identifysuitable rewrites. We have chosen not to adopt many of the heuristic aspects of Boyerand Moore's techniques in this work: for example we do not speculatively generateinstantiations of �rst order formulae within decision procedures, or speculativelyperform inductions. In the context of declarative proof the need for heuristics isnot so great: the user can either specify the hints when required, or decompose theproblem further. Indeed, heuristics go against the grain of many of our requirements.Rewriting and grinding are used extensively for proof in PVS, again based mainlyon techniques from Boyer-Moore. PVS, STeP and other systems implement variousmixtures of ground decision procedures, and integrate them into the rewriting pro-cess.The elimination of existential and universal quanti�ers by automatic solving isa generalisation of the manual \unwinding" techniques from HOL [MTDR88], andrelates to many adhoc (and often manual) techniques developed in other theoremprovers. To the author's knowledge, no other interactive prover uses automaticsolving techniques during rewriting to the same extent as Declare: searching forsuch solutions is quite computationally expensive but exceptionally useful.Model elimination was �rst used in interactive higher order logic based theoremproving by Paulson and then Harrison [Har97a], and in general we owe much toHarrison's excellent implementations of model elimination and other procedures inHOL-lite.

88 CHAPTER 4. AUTOMATED REASONING FOR DECLARATIVE PROOF

Chapter 5Interaction for Declarative ProofIn the previous three chapters we have considered the central logical issues relatingto theorem proving for operational semantics: speci�cation, proof description andautomated reasoning. The solution we have adopted for proof description is declar-ative proof, as realised in the Declare system. In this chapter we turn to an issuethat is considerably di�erent in nature: the design of an interactive developmentenvironment (IDE) for Declare. This rounds out our treatment of tools for declar-ative proof, and the principles should be applicable to declarative proof systems ingeneral.\IDE" is jargon borrowed from the world of programming language implementa-tions, particularly PC development suites such as Visual or Borland C++. IDEs areessentially document preparation systems combining powerful text editing facilitieswith tools to interpret and debug the programs developed (the documents beingprogram texts in a range of languages).The topic of interactive environments is di�erent in nature from the precedingchapters because it is far more intimately concerned with human requirements, ratherthan machine or mathematical limitations. Human requirements are, of course, dif-�cult to pin down precisely, but we endeavour to follow a fairly analytical approachin this chapter nevertheless, concentrating �rst on measurements of success for in-teractive systems.5.1 Metrics for Interactive SystemsBefore discussing IDEs for declarative proof, we consider the following question:what metrics should be applied to determine if an interactive system is a success?Firstly, let's make sure of our terminology: we call systems S1 and S2 interfacesif they support roughly the same fundamental task, though the means by whichthey support it may be di�erent. Thus the Microsoft Windows File Manager and asubset of the Unix command line tools both support the tasks of moving, copyingand searching �le structures. Emacs and vi both support the task of editing textdocuments (amongst other things). A system is interactive if it has been designed89

90 CHAPTER 5. INTERACTION FOR DECLARATIVE PROOFprimarily for use by humans.1 Thus an IDE like Visual C++ is an interactiveinterface to the underlying compilers.One rather fundamental metric of success we can apply when comparing inter-active interfaces is productivity, which is approximated by mean time to task com-pletion.2 So, all else being equal, one interface to a theorem prover is better thananother if it lets us get the same work done faster.3This, of course, begs the obvious question: how do we measure mean time tocompletion? Controlled experiments to determine task completion times for com-plex tasks such as theorem proving are expensive and di�cult (cf. Section 3.6.2).However, this does not make the metric useless: it is possible to assess relative taskcompletion times using informal analyses of possible scenarios. Even better, manyinterface devices are \clear winners" on this score: for example, a device that high-lights errors in an original source text as they are detected is clearly going to improveproductivity over a system that simply prints a line number which the user must lookup manually. It is often surprisingly easy to argue the relative merits of individualinteractive devices in such a way.However, it is di�cult to assess the di�erential merits of two quite disparateinteractive methods. For example, we might like to be able to demonstrate that theinterface IDeclare (presented in this chapter) always improves productivity over, say,the user's favourite text editor combined with the Declare command line tools. Thisis clearly di�cult to demonstrate conclusively, and indeed is simply not the case: forsome tasks one method is superior and for others the converse. Fortunately it is notan either-or situation, as we discuss later in this chapter.5.2 IDeclareOur IDE for Declare is called IDeclare, and a screen shot of the program in use isshown in Figure 5.1. It is being used to correct the error from Section 1.4.4. Theprinciple features of IDeclare are:� Editing. A standard text editor is provided for writing Declare articles in theusual fashion.� Logical Navigation and Debugging. The state of the interface includes a logicalcursor, that is a location within the logical structure of an article. The cursoracts much like the \program location" in a traditional program debuggingsystem. The cursor may be moved by executing declarations and stepping1Not all interactive systems are simply interfaces: for example Microsoft Word provides substan-tial functionality that can not realistically be accessed via any underlying mechanism.2When an interactive system is not simply an interface, we cannot use such simple productiv-ity metrics: we also have to measure the relative values of the di�erent functionality provided.Comparing two systems that support the same overall tasks is considerably simpler.3There are, of course, many other issues involved in overall usability. See Chapter 1 of [NL95]for an excellent informal description.

5.2. IDECLARE 91

Figure 5.1: IDeclare: The Interactive Development Environment for Declare

92 CHAPTER 5. INTERACTION FOR DECLARATIVE PROOFinside constructs such as case-splits. This is discussed further in the nextsection.� Visualisation. The location of logical cursor gives rise to a \current logicalenvironment", in the sense of Section 3.1. The structures available in this areaccessible through a window on the right of the application. They are displayedin hypertext form, i.e. with collapsible/expandable nodes for each article thathas been imported.� Feedback. Errors that arise during attempted manipulations of the logicalcursor are displayed in the bottom left window. Some elements of the feedbackare again displayed in hypertext form, e.g. counter examples can be accessedby clicking on a highlighted region. This means large amounts of feedback canbe displayed quickly and compactly.IDeclare is implemented in O'Caml-Tk [PR98] in 2000 lines of code, plus 10,000 linesshared with the batch-mode Declare implementation. Declare typically utilises 6-10MB of memory, and IDeclare does not add signi�cantly to this total.5.2.1 Logical Navigation and DebuggingLogical navigation is the process of moving the logical cursor to a desired locationwithin a Declare article. In IDeclare, the user controls the logical cursor with thefollowing commands:� Declare. That is, \step over" a construct (e.g. a have, consider or qed as-sertion, or a declaration in the speci�cation language. Do not attempt todischarge proof obligations that arise from it.� Check. That is, \step over" a construct, but attempt to discharge proof obli-gations.� Step into. Move into a construct (e.g. a decomposition step). This will, forexample, move the logical cursor into the �rst branch of a case split.4� Undo. Retract the last movement made with the logical cursor.� Reset. Set the logical cursor back to the \empty" environment, that is, theenvironment containing just the Declare standard basis.One primary purpose of IDeclare is to allow the user to debug problematic justi-�cation steps within proofs, without repeatedly checking the entire script. This isachieved as follows:4Other cases may currently be selected by \declaring" the qed step that ends each branch, untilthe desired case is reached. As in HOL IDeclare maintains a stack of pending cases. It would befairly straightforward to allow the user to select the desired case immediately.

5.2. IDECLARE 931. The user steps through the article, using a sequence of \Declare" and \Stepinto" commands, moving the logical cursor to the problematic area of theproof (for example, a qed step). Keyboard shortcuts are available for this, sonavigation becomes quite quick for the experienced user. No justi�cations needbe executed during this phase.2. The user checks the justi�cation with a \Check" command.3. The user assesses the feedback, determines the adjustments that need to bemade to the proof, and edits the document accordingly.4. The user tries the \Check" command again, and repeats steps 2-3 until thestep is accepted.The \Declare" and \Step into" commands are only made possible by the use ofdeclarative proof. In particular, declarative proof allows logical navigation withouthaving to discharge obligations or execute user-de�ned tactics along the way. This isprecisely because a declarative description of a proof step tells us \what" is proved,and not \how."Interactive logical navigation and debugging for tactic proofs was �rst developedin TkHol [Sym95] (the author's interface for the HOL theorem prover), where it ispossible to interactively move through the THEN/THENL structure of a HOL proof.Each such navigation step requires the execution of a tactic (and thus, in the ter-minology used above, we have a \Check" operation, and a \Step into" that requirestactic-execution). The user could make incremental adjustments to the proof scriptalong the way, thus achieving a form of proof debugging. However, when navigatingtypical tactic proof languages, the only feasible operation is to actually execute atactic, since we have no other way of knowing what its e�ects will be.The navigation and debugging scheme we have described is primitive, but e�ec-tive (we shall analyse why in the next section). Enhancements are certainly possible:� The process of navigating to a problematic justi�cation step could be easierthan at present. Ideally, the user would place the textual cursor at a locationand say \move the logical cursor here" or \show me the logical environment atthis location." This would not be overly di�cult to implement in the currentsetting.� The current system allows only one active logical cursor. Experience withTkHol [Sym95] indicates that multiple active proofs are sometimes useful.Finally, we emphasise that IDeclare does not maintain an exact correspondencebetween the logical cursor and the text of the document. For example, if a de�nitionhas been established (e.g. by a \Declare" step), and the user subsequently modi�esthe de�nition (textually), then the user must undo the old de�nition and reassert thenew one to maintain the correspondence. That is, IDeclare is not a structure editor,and the cursor of the text editor is not the same as the the logical cursor. Like many

94 CHAPTER 5. INTERACTION FOR DECLARATIVE PROOFTask Typical (sec.)Start up the interactive environmenta 5 (5)Navigate to the location in the proof 10-60b (30)Attempt to check the proof. 6-10c (10)Interpret the feedback variable (30)Determine the appropriate �x variable (30)Textually make the �x variable (30)Additional repetitions of last 4 steps (100)Total (235)aPresuming it is not already runningbDepending on the size and complexity of the proof, the location of the mistakeand the experience of the usercThe automated prover has a default timeout of 6 secondsTable 5.1: Approximate time analysis for IDeclare. The \typical" times indicate arange of typical possibilities, and the example times in parentheses represent onehypothetical situation. Our analysis is deliberately informal: we are simply tryingto indicate the order of magnitude of the major contributing delays.Emacs based environments [Sta95], IDeclare does have some understanding of thesyntactic structure of a Declare article | for example, it can syntactically detect thetextual bounds on the next declaration when executing a \Declare" step. It will thenmove the textual cursor to the start of the next declaration, provided the previousdeclaration was accepted.5.3 AppraisalIn this section we perform an informal analysis on the costs and bene�ts of usingIDeclare for a particular task, using \mean time to task completion" as our metricof success. The times used are not meant to be de�nitive, and do not represent theoutcome of a controlled experiment. They are merely indicative, and based on theauthor's experience. This method of analysis is adapted from the analysis techniquesin Chapter 8 of Newman and Lamming's Interactive System Design [NL95].The task we shall analyse is that described in the previous section: correctingan error in a justi�cation in a proof. We have already outlined the steps requiredto do this in IDeclare. Without IDeclare, the user must correct the mistake in astandard text editor and then recheck the entire script. This must be repeated untilthe mistake is �xed. Approximate analyses of completion times for the task in thetwo systems are shown in Tables 5.1 and 5.2.Although such an informal analysis does not establish conclusive results, it doessupport our intuitions, and certainly helps guide the design of the interface. Thetimes for the hypothetical example indicate that, for a proof of medium complexity

5.3. APPRAISAL 95Task Typical (sec.)Start up the batch processor 5 (5)Attempt to check all steps of the proof 10-180a (100)Interpret the feedback variable (30)Determine the appropriate �x variable (30)Textually make the �x variable (30)Additional repetitions of these steps (295)Total (390)aDepending on the size and complexity of the entire proof script. The delay can,of course, be arbitrary large, but even long articles containing errors usually check inunder 3 minutes.Table 5.2: Approximate time analysis for batch-mode Declare. See notes for Ta-ble 5.1.where two iterations are required to make the correction, IDeclare will indeed providea faster solution. This is not surprising: we have eliminated the repetition of a timeconsuming step (the checking of other steps in a proof). The overheads required todo this (such as navigating to the location) are not overly burdensome.5We have chosen the task above in order to demonstrate a situation where IDeclareis particularly useful. IDeclare is not always superior: for example, its text editor is alittle clunky and the user will normally prefer his/her own for large scale text editingoperations. Similarly, the visualisation tools are not always the quickest way to �ndinformation: sometimes they are, but sometimes it is preferable to look through theoriginal source �les. IDeclare is just a support tool, and its use is not mandated,and so the user is free to select the approach that will be quickest depending onthe particular task. However, ideally further development could make IDeclare thepreferred tool for the majority of Declare related activities.To summarize, what results have been established by developing IDeclare? Pri-marily our aim has been to demonstrate that the proof debugging paradigm cancarry over to declarative proof systems. Furthermore, declarative structure is pre-cisely what is required to support certain debugging actions (in particular \Declare"and \Step into"). This indicates that a declarative proof style may allow for bettertheorem prover interfaces, and this appears a promising direction for future research.
5As an aside, the analysis also indicates why the proposal to automate the navigation process(see the end of Section 5.2.1) would provide a signi�cant bene�t, as it would cut 20-30 seconds o�the task completion time.

96 CHAPTER 5. INTERACTION FOR DECLARATIVE PROOF

Part IICase Study

97

Chapter 6JavaSThe previous chapters have described a set of tools and techniques for conduct-ing \declarative" theorem proving in the context of operational semantics. In thefollowing two chapters we describe a major case study in the application of thesetechniques: a proof of the type soundness of a subset of Java (JavaS) using Declare.The case study is signi�cant in its own right, so for the most part we concentrateon the substance of the case study rather than the role that declarative proof playedin its execution, which we summarize and discuss in Chapter 8.Drossopoulou and Eisenbach have presented a formal semantics for approximatelythe same subset of Java that we treat here [DE97a]. Our work is based on theirsand improves it by correcting and clarifying many details.Our main aim has not been to �nd errors. However, some signi�cant mistakes inthe original formulation adopted by Drossopoulou and Eisenbach were discovered,and we were able to provide feedback and suggestions to the authors. We alsoindependently rediscovered a signi�cant error in the Java Language Speci�cation[GJS96]. Our methodology and tools enabled us to �nd the error relatively quickly,and this demonstrates the positive role that machine checking can play when usedin conjunction with existing techniques.In this chapter we brie
y introduce Java and describe our formal model of JavaS ,including our models of type checking and execution. We also brie
y describe therepresentation of the model in Declare, and asses the use of Declare for this purpose.The proof of type soundness itself is described in the next chapter.6.1 JavaJava [GJS96] is a programming language developed by Sun Microsystems, and hasexploded in popularity over the last 3 years. Although sometimes over-hyped asheralding a new age of computing, the language design itself is highly competent,incorporating many ideas into a framework palatable for the existing base of C++programmers. It can be executed fairly e�ciently with just-in-time compilers, andcomes equipped with a well-designed set of portable basis libraries. Perhaps most99

100 CHAPTER 6. JAVASimportantly, it is suitable for programming mobile code on the WWW, much moreso than C++ or other procedural languages.Java's suitability for WWW programming rests largely on its type system, which,in principle, allows for e�cient execution of code in a \sand-box." Studies haveuncovered
aws in the security of Java and its implementations, including its typesystem, and have pointed out the need for a formal semantics to complement theexisting language de�nition [DFW96, GJS96]. A full formal treatment of manyimportant aspects of the language (e.g. dynamic linking) has yet to be performed.Because of these things, type soundness is clearly a property we are interested in forthis language.The Java source language is compiled to a closely related bytecode format forthe Java Virtual Machine (JVM). Although the languages are di�erent, their typesystems are quite similar. Java is de�ned by several standards, including those forthe source language [GJS96] and the Java Virtual Machine [LY97].6.2 Our Model of JavaSThe aim of a type correctness proof is to bridge the gap between:� A model of the static checks performed on JavaS programs; and� A model of the runtime execution of the same.The remainder of this chapter is devoted to describing these two models. We haveinherited much from Drossopoulou and Eisenbach's work, so we concentrate on theareas where our model di�ers. The material is rather technical and there are many\building-blocks" to describe: the reader is encouraged to refer back to this sectionas needed.A picture of the components of the semantics is shown in Figure 6.1. We make useof several intermediate languages along the way. The \annotated" language JavaAis the result of the static checking process and the \runtime" language JavaR is thecode executed at runtime. We assign typing semantics to each of these componentsand show how these relate. We shall leave the description of the typing semantics ofJavaR until the next chapter as it is an artifact of the type-soundness proof.16.2.1 The Java Subset ConsideredThe Java subset we consider includes primitive types, classes with inheritance, in-stance variables and instance methods, interfaces, dynamic method binding, stati-cally resolvable overloading of methods and instance variables, object creation, nullpointers, arrays, return statements, while loops, methods for the class Object anda minimal treatment of exceptions. The subset excludes initializers, constructors,1The same is true of the static semantics for JavaA, but it is su�ciently close to those for JavaSthat we describe them in this chapter.

6.2. OUR MODEL OF JAVAS 101staticchecking compilation executionJava � JavaS ;ann JavaA ;comp JavaR � state ;(�;p) JavaR � state# # # #type = type = type �wdn typeFigure 6.1: Components of the Semantics and their Relationships�nalizers, class variables and class methods, switch statements, local variables, classmodi�ers, �nal/abstract classes and methods, super, strings, numeric promotionsand widening, concurrency, the handling of exceptions, dynamic linking, �nalizers,packages, binary compatibility and separate compilation.In this study we are concerned with the Java language itself, rather than theJava Virtual Machine (JVM). The two are closely related but the di�erence is non-trivial: for example there are JVM bytecodes that do not correspond to any Javatext. Thus it remains a challenge to formalize and verify the corresponding typesoundness property for the JVM (for an attempt see [Qia97]). However, unlike manyhigh-level/low-level language combinations (e.g. C++/assembler) the type systemsof Java and the JVM are closely related, and a comprehensive study of the former isa useful precursor to the study of the latter. Of course, even if we prove propertiesof an abstract model of Java and/or the JVM, this does not guarantee the soundnessof a particular implementation.6.2.2 Comparison with Drossopoulou and EisenbachOur model was originally based on that developed by Drossopoulou and Eisenbach inversion 2.01 of their paper [DE97b, DE97a].2 The di�erences in the subset consideredare:3� Object has Methods. We allow the primitive class Object to have methods.It was when considering this extension that one mistake in the Java LanguageSpeci�cation was discovered (see Section 7.4).� Methods for Arrays. Arrays in Java support all methods supported by the classObject (e.g. hashValue()). We include this in our model (with non-trivialconsequences). However our model of arrays is still incomplete, as Java arrayssupport certain array-speci�c methods and �elds, whereas in our treatmentthey do not.2This version was distributed only on the WWW, and is no longer directly available. If a versionis needed for reference please contact the authors.3Note that Drossopoulou and Eisenbach have since progressed to model other aspects of thelanguage such as exceptions and binary compatibility [DE98].

102 CHAPTER 6. JAVAS� Return Statements. These were added as an exercise in extending the seman-tics. They are non-trivial as static checks must ensure all computation pathsterminate with a return.The main di�erences in the model itself are:� Corrections. We correct minor mistakes, such as missing rules for null pointers,some de�nitions that were not well-founded, some typing mistakes and somemisleading/ambiguous de�nitions (e.g. the de�nition of MethBody, and theincorrect assertion that any primitive type widens to the null type).� Representation. We choose di�erent representations for some constructs, e.g.type checking environments are represented by tables (�nite partial functions)rather than lists of declarations.� Separate Languages. We di�erentiate between the source language JavaS , theannotated language JavaA and the `runtime terms` JavaR. JavaR is used tomodel terms arising during execution and enjoy subtly di�erent typing rules.Drossopoulou and Eisenbach have since reported that the language JavaA isuseful for modelling binary compatibility [DE98], because it allows us to modelprecisely both compile-time and runtime analyses� Simpler Well-formedness. We adopt a suggestion by von Oheimb that well-formedness for environments be speci�ed without reference to a declarationorder.� No Static Substitution. We do not use substitution during typing, as it turnsout to be unnecessary given our representation of environments.� No Dynamic Substitution. We do not use substitution during evaluation, butuse a model of stack frames instead. This seems simpler and is closer to a realimplementation.The di�erences in our approach to the type soundness proof are detailed in the nextchapter.6.2.3 SyntaxFigure 6.2 presents the abstract syntax of JavaS programs, along with the changesfor the abstract syntax of the annotated language JavaA.� Variables are terms that evaluate to storage locations and play the role oflvalues in C.� In JavaA variables are annotated with the actual class referred to by the access,and method calls are annotated by the argument signature resolved by static-overloading.

6.2. OUR MODEL OF JAVAS 103prim-type = bool | char | byte | short| int | long | float | doublesimple-type = primitive-type | class-id | interface-idvar-type = simple-type[]n (n � 0)expr-type = var-type | voidliteral = bool | uchar | int8| int16 | int32 | int64 | ieee32 | ieee64var = id (local variable)| expr.�eld-name (object �eld)expr.�eld-nameclass-name (annotated object �eld)| expr[expr] (array element)expr = literal (literal value)| var (dereferencing)| null (null literal)| expr.method-name(expr*) (method call)expr.method-namevar-type list(expr*) (annotated method call)| new C (object creation)| new comptype[expr]*[]* (array creation)stmt = if expr then stmt else stmt (conditional)| while expr do stmt (while loop)| var := expr (assignment)| f stmt1; . . . ; stmtn; g (block)| expr (evaluation)| return expr? (method return)method = expr-type method-name(var-type x1, . . . , var-type xn) (method declaration)f stmt g�eld = var-type �eld-name (�eld declaration)class = C extends Csup implements I1, . . . , In f�eld1; . . . ; �eldn;method1; . . . ; methodm;g (class declaration)prog = class1; . . . ; classn; (programs)Figure 6.2: The Abstract Syntax of JavaS and JavaAprim-type = void | bool | char | byte | short| int | long | float | doubleref-type = type[] | class-id | interface-id | nulltype = primitive-type | ref-typeFigure 6.3: von Oheimb's Extended Range of Types

104 CHAPTER 6. JAVAS� Formal parameters are represented by a list of identi�ers and a table assigningtypes to these identi�ers.The types that appear in the concrete syntax of JavaS expressions are also shown inFigure 6.2. Following von Oheimb's treatment [Nv98] we extend the domain of typesto include a primitive void type, a null type to assign to the null literal duringtypechecking, and syntactically di�erentiate between reference and plain types.45We use � and � to range over types, the latter used for method return types.6.3 PreliminariesIn the next two sections we shall present the static semantics for JavaA and JavaS .The complicating factors common to both are:� Subtyping. Java allows subtyping in a typical object-oriented fashion, whichleads to a widening (�) relation.� Forward Use. Java allows the use of classes before they are de�ned. Thuswe de�ne type environments, extracted from all the classes and interfaces thatmake up a program.� Complex Well-formedness. The constraints on valid type environments arenon-trivial, e.g. non-circular class and interface hierarchy must result, classesmust implement interfaces and so on. One of the main challenges of this casestudy is to identify precisely the well-formedness criteria required.� Visibility. Aspects of the semantics depend on name-visibility properties, e.g.to de�ne �elds and methods are visible from subclasses. Visibility is de�nedby relations for traversing the class and interface hierarchies.In this section we de�ne the preliminaries that are required to deal with these prob-lems.6.3.1 The Structure of Type EnvironmentsConstructs are given typing semantics with respect to type environments, whichcontain several components (Figure 6.4). Always present are tables of class andinterface declarations. When typechecking variables and expressions we add a tableof local variable declarations, and for statements we also add the declared return type4Unlike Standard ML, void is not a �rst-class type in Java, e.g. an array of voids is not possible.We treat void as a �rst-class type in our models of JavaA and JavaR, but exclude it at the sourcelanguage JavaS .5Our original model [Sym97b] used an overly complicated model of types, with multiple wideningand well-formedness relations for these. When we modi�ed the proof to take advantage of vonOheimb's simpler formulation, the textual size of our formulation was reduced by around 15% | auseful saving.

6.3. PRELIMINARIES 105env = class-env� interface-env (�variable-env?) (�expr-type?)class-env = class-ids table7�! class-decinterface-env = interface-ids table7�! interface-decvariable-env = variable-ids table7�! typeclass-dec = h superclass: class-id;interfaces: set of interface-ids ;�elds: �eld-ids table7�! type;methods: meth-ids� arg-types table7�! expr-typeiinterface-dec = h superinterfaces: set of interface-ids ;methods: meth-ids� arg-types table7�! typeiFigure 6.4: Type checking environmentsof the method in order to check return statements. We often write environments asrecords (h : : : i), and omit record tag names when it is obvious which record �eld isbeing referred to.6We use � for a composite environment, �V , �C and �I its respective components,and �(x) for the lookup of x in the appropriate table. We also use x 2 � to indicatethat x has an entry in the relevant table in �.6.3.2 Well-formed TypesTypes and other simple semantic objects are said to be well-formed, (e.g. � ` C 3class ,or TE |- C wf_class in the Declare speci�cation) if all classes and interfaces are inscope. For example: � ` C3class � C 2 �C� ` I 3intf � I 2 �I� ` C3class� ` C3refty � ` I 3intf� ` I 3refty � ` � 3ty� ` �[]3refty � ` � 3refty� ` � 3ty pt 2 prim-types� ` pt 3tyAn Aside: Well-formedness predicates can be thought of as dependent predicatesubtypes (dependent because they are parameterized by, for example, �). As suchthey are not representable as types in simple h.o.l. (though would be in, say, PVS),but in practice we treat them much like types.Each relation we de�ne has implicit side conditions, i.e. that each argument satis-�es the appropriate well-formedness condition. For example, the relation � ` C vclass C 0has the implicit side conditions ` �3tyenv, � ` C 3class and � ` C 03class . Using therelation in Declare without being able to prove these side-conditions is a violation6In the machine acceptable model we do not use such conveniences: the records are representedas tuples.

106 CHAPTER 6. JAVASof our methodology, but correct usage is not proved automatically by typecheck-ing. Note we may leave relations underspeci�ed (see Section 2.2.6) where the sideconditions do not hold.This matter is of some importance: for example, a typical type soundness the-orem states that for each reduction to a new con�guration cfg 0 there exists some� 0 such that the cfg 0 conforms to � 0. (We de�ne these terms in Chapter 7 | whatis important here is that � is existentially quanti�ed.) If we don't explicitly provethat � 0 is well-formed, then we have hardly guaranteed the correct operation of thesystem. So, we explicitly add the assertion � ` � 03 to the statement of the theo-rem, and with such assertions, we can see by inspection that our �nal theorems treatwell-formedness correctly.76.3.3 The vclass , vintf and :imp RelationsWe de�ne the subclass (vclass , or subclass_of in Declare), subinterface (vintf , orsubinterface_of) and implements (:imp, or implements) relations as shown below.All classes are a subclass of the special class Object, though we do not have tomention this explicitly as the well-formedness conditions for environments ensure it.� ` C vclass C (re
C) C has super Csup � ` Csupvclass C 0� ` C vclass C 0 (stepC)� ` I vintf I (re
I) I has Ik amongst its superinterfaces � ` Ik vintf I 0� ` I vintf I 0 (stepI)C has Ik amongst its implemented interfaces� ` C :imp Ik (implements)6.3.4 WideningSubtyping in Java is the combination of the subclass, subinterface and implementsrelations, and is called widening (widens_to in Declare) and also for vectors of types�vartys (tys_widen_to). The rules for widening in JavaA are:
� ` C vclass C 0� ` C �C 0 � ` I vintf I 0� ` I � I 0 I 2 �� ` I �Object

� ` C vclass C 0� ` C 03class� ` C 0 :imp I� ` I 3intf� ` I vintf I 0� ` C � I 0 pt 2 prim-types� ` pt� pt� ` � 3ty� ` �[]�Object � ` � � � 0� ` �[]� � 0[]An example graph that covers all possible connection paths is shown in Figure 6.5.7Thus it is insu�cient to say \we assume all types are well-formed," since well-formedness some-times involves proof obligations.

6.3. PRELIMINARIES 107void Object bool, int etc:I0 C0I1 C1 �0[]I2 C2 �1[]null

vclassvclass
vclass

vintf
vintf :imp �
Figure 6.5: Connections in the Subtype (Widening) Graph.6.3.5 VisibilityThe relations ^
d and ^meth (sees field and sees meth in Declare) tell us what�elds and methods are visible from a given class or interface.� ^meth : Finds the `nearest' version of a method starting at a particular referencetype (i.e. an array, interface or class type).For example, � ` �0^meth (m;AT); � holds whenever the method m with ar-gument signature AT is visible from type �0 (in the type environment �) andthe `nearest' version of the method has return type �.8Methods may be overloaded, so, after static resolution, method call state-ments are annotated with argument descriptors. Consequently we often write(m;AT) as mdesc because the pair acts as a descriptor indexing into themethod tables. Methods with identical argument descriptors hide methodsfurther up the hierarchy, though their return types di�er.9The relation may be used with a de�nite argument descriptor, when it e�ec-tively �nds the return type for the visible version of that method. Constraintson well-formed type environments ensure that this result is unique.8It turns out not to matter exactly \where" the method was found.9This is not the case in Java, but is dealt with by Drossopoulou and Eisenbach. One musttake more care with this extension than originally thought by Drossopoulou and Eisenbach| seeSection 7.4.

108 CHAPTER 6. JAVAS� ^
d : Finds the `�rst visible' de�nition of a �eld starting at a particular class.For example, � ` C0 ^
d (
d ; C); � holds whenever the �eld
d is visible fromC0 at class C in the type environment � and is declared to be of type � .In Drossopoulou and Eisenbach's original formulation these de�nitions were given asrecursive functions (FDec and MSigs). They only make sense for well-formed envi-ronments, as the search may not terminate for circular class and interface hierarchies.To avoid this problem we de�ne the constructs as inductively de�ned sets. Methodvisibility ^meth is de�ned via ^C ^I and ^A for the the three di�erent referencetypes. All methods found in the type Object are visible from array and interfacetypes (see also Section 7.4.1):�(C0):methods(mdesc) = �� ` C0^C mdesc; � (BaseC) �(C0):methods(mdesc) = ?C0 has superclass Csup� ` Csup ^C mdesc; �� ` C0^C mdesc; � (StepC)
�(I0):methods(mdesc) = �� ` I0^I mdesc; � (BaseI) �(I0):methods(mdesc) = ?Isup is a superinterface of I0� ` Isup ^I mdesc; �� ` I0 ^I mdesc; � (StepI)
n > 0 � ` Object^C mdesc; �� ` �0[]n^Amdesc; � (Array) � ` �0 ^C mdesc; � or� ` �0 ^I mdesc; � or� ` �0 ^Amdesc; � or� ` �0 ^meth mdesc; � (Any)Field visibility is simpler:�(C0):�elds(
d) = �� ` C0^
d (
d ; C0); � �(C0):�elds(
d) = ?C0 has superclass Csup� ` Csup ^
d (
d ; C); �� ` C0^
d (
d ; C); �This relation is only employed during type checking and annotation of JavaS , inparticular to determine the class where a �eld is declared. Once �eld names areresolved we require a relation ^all�elds (has field in Declare) that �nds all �eldsincluding hidden ones:C0 has superclass Csup � ` Csup ^all�elds
dspec� ` C0 ^all�elds
dspec (Super) �(C0):�elds(
d) = �� ` C0 ^all�elds ((
d ; C0); �) (Hit)If � is well-formed (see the next section) then � ` C0^all�elds (
d ; C); � holds for atmost one � (given all other arguments).

6.3. PRELIMINARIES 1096.3.6 Well-formedness for Type EnvironmentsWell-formedness for a type checking environment (` � 3tyenv � wf_tyenv) en-sures crucial properties such as subclasses providing methods compatible with theirsuperclasses, and classes providing methods that implement their declared inter-faces. Drossopoulou and Eisenbach originally formulated this by an incrementalprocess, where the environment is constructed from a sequence of de�nitions. Wehave adopted a suggestion from von Oheimb who has pointed out that this is notnecessary, since the de�nition is independent of any ordering constraints. A �nite-ness constraint is needed to ensure no in�nite chains of classes exist that do notterminate in `Object'.The criteria for each class in an environment are: 10� Its superclass (if it has one) and its implemented interfaces must be well-formedand no circularities can occur in the hierarchy;� If the class has no superclass it must be the special class Object.� All the methods declared for the class must have well-formed types.� All declared �elds must have well-formed types.� Any declared method that overrides an inherited method (by having the samename and argument types) must have a narrower return type;� All methods accessible via each implemented interface must be matched bya method in this class or some superclass. The method is allowed to have anarrower return type.These constraints are written formally as:if �(C) = hCsup; Is ;�elds ;methodsi then� ` Csup3class (A:1)and :(� ` Csup vclass C) (A:2)and 8I 2 Is: � ` I 3intf (A:3)and 8
d ; �: if �elds(
d) = � then � ` � 3ty (A:4)and 8m;AT ; �: if methods(m;AT) = � then � ` AT 3tys and � ` �3ty (A:5)and 8mdesc; �1; �2:if methods(mdesc) = �1 and � ` ; Csup ^meth mdesc; �2then � ` �1� �2 (A:6)and 8I 2 Is;mdesc; �1; �2:if � ` ; I ^I mdesc; �1then 9�2:� ` C ^C mdesc; �2 and � ` �2� �1 (A:7)A similar set of constraints must hold for each interface declaration:10There are other criteria that are implicit in the structures we have used for environments, e.g.that no two methods have the same method descriptor.

110 CHAPTER 6. JAVAS� Its superinterfaces must be well-formed and no circularities can occur in thehierarchy;� All the methods declared for the class must have well-formed types.� All declared �elds must have well-formed types.� Any declared method that overrides an inherited method (by having the samename and argument types) must have a narrower return type;� Any declared method that overrides an Object method must have a narrowerreturn type;These constraints are written formally as:if �(I) = hIs ;methodsi then8Isup 2 Is : � ` Isup3intf (B:1)and 8Isup 2 Is : :(� ` Isup vintf I) (B:2)and 8m;AT ; �: if methods(m;AT) = � then � ` AT 3tys and � ` �3ty (B:3)and 8Isup 2 Is ;mdesc; �1; �2:if methods(mdesc) = �1 and � ` Isup ^meth mdesc; �2then � ` �1� �2 (B:4)and 8Isup 2 Is ;mdesc; �1; �2:if methods(mdesc) = �1 and � ` Object^meth mdesc; �2then � ` �1� �2 (B:5)In addition the class Object must be de�ned and have no superclass, superinterfacesor �elds. 9methods : �(Object) = hNone; fg;methods ; fgiWell-formedness of a type environment is su�cient to guarantee many importantproperties including:� Re
exivity and transitivity of vclass , vintf , �.� Monotonicity of ^meth up to �, with possibly narrower return types.� Monotonicity of ^all�elds up to � (^
d is not monotonic because �elds may behidden).� Uniqueness of �elds when quali�ed by class names.We state these formally in the next chapter.

6.4. STATIC SEMANTICS FOR JAVAA 1116.4 Static Semantics for JavaAIn this section we present the static semantics for the annotated language JavaA.We present this language �rst because its static semantics are considerably simplerthan those for JavaS , and because they take us considerably closer to the heart ofthe soundness proof presented in the next chapter. The types assigned to JavaAfragments are the same as the types that appear in the JavaS source language. Therules give rise to a series of relations (avar_hastype through to aprog_hastypedenoted here by � ` : and � ` XXX | we use subscripts when the exact relation isambiguous). The rules for variables are:�V (id) = �� ` id : � (Var) � ` arr : �[]� ` idx :int� ` arr[idx] : � (Access) � ` obj :C0� ` C0 ^all�elds (
d ; (C; �))� ` obj .
dC : � (Field)The rules for expressions are:� is the primitive type for pval� ` pval : � (Prim) � ` null :null (Null)� ` var :var �� ` var :exp � (Deref) � ` di : int (1 � i � n)� ` new �[d1] : : : [dn][]m : �[]m+n (NewArray)
� ` C3class� ` new C :C (NewClass)

� ` � 3ty� ` obj : �� ` argi : tys i (1 � i � n)� ` � ^meth (meth ;AT); �� ` tys �vartys AT� ` obj.methAT(arg1, : : : , argn) : � (Call)Statements are checked against a given return type, and are not themselves assignedtypes. � ` var : �� ` exp : � 0� ` � 0� ��; � ` (var := exp)XXX (Assign) � ` b :bool�; � ` tXXX�; � ` eXXX�; � ` (if b then t else e)XXX (If)�; � ` stmt iXXX (1 � i � n)�; � ` fstmt1; : : :;stmtngXXX (Block) � ` e : ��; � ` eXXX (Expr)� ` exp : �� 6= void� ` � � ��; � ` (return exp)XXX (Return) � = void�; � ` returnXXX (Return 0)

112 CHAPTER 6. JAVAS� ` b : bool�; � ` stmtXXX�; � ` (while b do stmt)XXX (While)When checking statements used as method bodies with non-void return types, weensure that a return is always executed:11always returns(stmt) =match stmt withBlock(stmts) -> existsl always returns stmts| If(e,stmt1,stmt2) -> always returns(stmt1) & always returns(stmt2)| Return(ropt) -> true| _ -> falseThis leads to the following rule for methods in class C. Method bodies are writtenhere in lambda notation, and are typechecked with reference to C as C provides thetype for the this variable:VE = fthis 7! Cg �AT��VE ; � ` bodyXXXif rt 6= void then always returns(body)�; C; �;AT ` bodyXXXFinally, the rules for classes and programs are:�(C) = hCsup; Is ;�elds ;methodsifor each m,ATmethods(m;AT) = �^methbods(m;AT) = bod !�; C; �;AT ` bodXXX� ` class C extends Csup implements Is f�elds; methbodsgXXX� ` class iXXX (1 � i � n)� ` class1; : : : ; classnXXX6.5 Static Semantics for JavaSThe type-checking rules for the source language JavaS are close to those for JavaA.The additional complicating factors are:11The function existsl checks that a predicate is satis�ed for some element of a list.

6.6. THE RUNTIME SEMANTICS 113� Deterministic Algorithm. The JavaS typechecking rules must represent a prac-tical type-checking algorithm, while the rules for JavaA simply check the va-lidity of a type-assignment that can be derived from a successful applicationof the JavaS rules.� Static Resolution. Java implementations disambiguate �eld and method refer-ences at compile-time. Method calls may be statically overloaded (not to beconfused with the object oriented late-binding mechanism), and �elds may behidden by superclasses.Constraints are placed on types appearing in the source to accurately re
ect theJava language. We omit the typing rules for JavaS , though they are formalised inDeclare. The rules to annotate JavaS (;ann) to produce JavaA are similar to theJavaS type-checking rules and again we omit them here (see also Drossopoulou andEisenbach's work [DE97a]).6.6 The Runtime SemanticsWe follow Drossopoulou and Eisenbach and model execution by a transition seman-tics, i.e. a \small step" rewrite system [Plo91]. A small step system is chosen over a\big step" (evaluation semantics) because it enables us to state substantially strongerresults about the runtime machine | in particular we can prove that the abstractmachine does not \get stuck" (see the liveness result in Chapter 7). This cannotbe done with a big step semantics. Small step systems also give meaning to non-terminating and non-deterministic programs, and clearly we would like our modelto be extendable to non-deterministic Java constructs such as threads. However us-ing a small step system does impose signi�cant overheads in the safety portion ofthe type soundness proof, precisely because certain intermediary con�gurations arisethat need not be considered in a big step system.6.6.1 Con�gurationsA con�guration (t; s) of the runtime system has a term t and a state s. The termrepresents both expressions yet to be evaluated and the partial results of termsevaluated so far. Because of this, the term language must be extended to includeaddresses, void values and incomplete method invocations. We merge variables intothe term structure and deal with three kinds of terms: an expression, a list ofexpressions, and a statement.12 The syntax for runtime terms is shown in Figure 6.7.The program state s = (�; }) consists of a frame � of local variables and a heap} containing objects and arrays. In Java, local variables are mutable, but only oneframe of variables is active at any one time, hence we cannot access locations furtherup the stack.12In principle the \top level" con�guration always contains an expression since Java begins exe-cution with the main method from a given class.

114 CHAPTER 6. JAVAS
con�guration = (rexp | rexp list | rstmt)� state| (exn-name� state)exn!| (value� state)return!state = hframe: (id table7�! val);heap: addr table7�! heap-objectiheap-object = � (C1; f ld1) 7! val 1; : : : ; (Cn;
dn) 7! valn �C (object)| [[val0; : : : ; valn�1]]� (array)Figure 6.6: The Runtime Machine: Con�gurations and State
rval = literal (literal value)| addr (pointers)| null (null pointer)rexp = rval (simple value)| id (local variable lookup)| rexpC.
d (�eld lookup)| rexp[rexp] (array lookup)| rexp.MAT(rexp*) (method call)| new C (object creation)| new type[rexp]+[]* (array creation)| frstmtgframe (active method invocations)rstmt = if rexp then rstmt else rstmt (conditional)| while rexp do rstmt (while)| return rexp (return)| id := rexp (local variable assignment)| rexp.[C]
d := rexp (�eld assignment)| rexp[rexp] := rexp (array assignment)| frstmt1; : : : ; rstmtn; g (block)| rexpFigure 6.7: The syntax of runtime terms

6.6. THE RUNTIME SEMANTICS 115Heap objects are annotated with types for runtime typechecking (in the case ofarrays this is the type of values stored in the array). The symbol � denotes replacingthe active frame, while s(id) and s(addr) are the obvious lookups.Global parameters to the rewrite system include an environment � (containingthe class and interface hierarchies, needed for runtime typechecking) and the programp being executed. The latter contains JavaA terms: each time a method is executedwe create a JavaR term for the body of that method.6.6.2 The Term Rewrite SystemA con�guration is progressively modi�ed by making reductions. The rewrite systemthus speci�es an abstract machine, which is an ine�cient but simple interpreter forour subset of Java. The reduction of terms ;(�;p) is speci�ed by three relations,one for each kind of con�guration (exp_reduces, exps_reduce, stmt_reduces inDeclare). We typically omit the parameters � and p.Ground TermsA term is ground if it is in normal form, i.e. when no further reduction can be made.� An expression e is ground i� it is a value, which we denote by k, b or v for aninteger, boolean or arbitrary value;� A list of expressions is ground i� all the expressions are ground;� A statement is ground i� it is an empty block of statements or a groundexpression.Transfer of ControlThe right-hand-side of a reduction may be either a regular con�guration, or a con-�guration that represents a transfer of control because of an exception or a returnstatement (marked with exn! or return!). We do not list all the rules for propagatingexceptions or return statements here | examples of each are:arr ; s; (exn; s0)exn!arr[idx]; s; (exn; s0)exn! stmt ; s; (rval ; s0)return!fstmt;stmtsg; s; (rval ; s0)return!Note that transfer of control happens in a \bigstep" fashion, i.e. it takes only onereduction to transfer control to the handling location. This is because no particularlyinteresting intermediary con�gurations arise during transfer of control.

116 CHAPTER 6. JAVASRedex Rules\Redex" rules serve to navigate to the location where we next reduce a term, andthus de�ne evaluation order. For example, the redex rules for array access are:arr ; s; arr 0; s0arr[idx]; s; arr 0[idx]; s0 idx ; s; idx 0; s0v[idx]; s; v[idx 0]; s0For brevity we omit redex rules from here on, except where they relate to catchinga transfer of control.Array AccessOnce the component expressions of an array access have been fully reduced we resolvethe access as follows:null[v]; s; (NullExc; s)exn! k < 0addr[k]; s; (IndOutBndExc; s)exn!s(addr) = [[val0; : : : ; valn�1]]� k � naddr[k]; s; (IndOutBndExc; s)exn! s(addr) = [[val0; : : : ; valn�1]]� 0 � k < naddr[k]; s; vk; sField and Local Variable Accessnull.
dC ; s; (NullExc; s)exn! s(addr) =� vals �C0vals(C;
d) = vaddr.
dC ; s; v ; s s(id) = vid ; s; v ; sObject and Array Creationaddr is fresh in s
ds = f
dspec j �; C ^all�elds
dspecgobj =� initial values for
dsC �s0 = s (addr ; obj)new C; s; addr ; s0 0 � i < len(~k) ~ki < 0new ���![k][]m; s; (BadSizeExc; s)exn!80 � i < len(~k): ~ki � 0(s0; addr) = Alloc(s; �;~k;m)new ���![k][]m; s; addr ; s0

6.6. THE RUNTIME SEMANTICS 117Here Alloc recursively allocates k1� : : : kn�1 arrays that contain initial values appro-priate for the type �[]m. This process is described in detail in [GJS96].13The heap is not garbage collected. A garbage collection rule allowing the collec-tion of inaccessible items could be added. Note garbage collection is semanticallyvisible in Java because of the presence of finally methods.Method Call
null.methAT (~v); s; (NullExc; s)exn! Tag(s; addr) = �MethBody(meth ;AT ; �; p) = �~x:body� = f~x 7! ~v; this 7! addrgaddr.methAT (~v); s; fbodyg�; sTag �nds the type tag for the array or object at the given address. MethBody(meth ;AT ; �; p) implements dynamic dispatch: it �nds the method body with name methand type signature AT relative to the type � .The result of calling a method is a method invocation record. These may benested, and thus the term structure e�ectively records the stack of invocations.Active Method InvocationsInside active method invocation blocks we replace the frame of local variables. Trans-fers of control due to a return are also handled here.body ; (�; }); body ; (�0; }0)fbodyg�; (�0; }); fbody 0g�0 ; (�0; }0) body ; (�; }); (rval ; (�0; }0))return!fbodyg�; (�0; }); rval ; (�0; }0)Lists of ExpressionsVectors of expressions are reduced to values prior to method call and array creation,using just one redex rule: ei; s; e0i; s0(v1; : : : ; vi�1; ei; : : : ; en); s; (v1; : : : ; vi�1; e0i : : : ; en); s013This model of array creation should be modi�ed if threads or constructors are considered. Arraycreation is not atomic with respect to thread execution, may execute constructors (and thus maynot even terminate), and may raise an out-of-memory exception.

118 CHAPTER 6. JAVASBlock, If, While and Return StatementsThe non-redex rules are:stmt ground(stmt)fstmt;stmtsg; s; fstmtsg; s if b then stmt = stmt1 else stmt = stmt2(if b then stmt1 else stmt2); s; stmt ; s(while e do stmt); s; (if e then fstmt;while e do stmtg else fg); sreturn v; s; (v ; s)return! return; s; (void; s)return!Assign to ArraysThe rules for assigning to arrays are similar to the rules for resolving array accesses,except, of course, when the action is resolved. For brevity we omit the rules thatdetect null pointers and array bounds errors.Java performs runtime typechecks at just two places: during array assignment,and when casting reference values. Runtime typechecking is needed for array assign-ment because the type available on the left may become arbitrarily narrower. Castsare not covered in this case study: they are a trivial extension once runtime checkingfor arrays is in place. The partial function Typecheck checks that an address valueaddr to be stored is compatible with the type tag attached to a target array � , i.e.that � ` Tag(}; addr)� �14s(addr) = [[val 0; : : : ; valn�1]]�0 � k < nTypecheck(�; s; v; �)s0 = \replace valk with v in s"(addr[k] := v); s; void; s0 s(addr) = [[val 0; : : : ; valn�1]]�0 � k < n:Typecheck(�; s; v; �)(addr[k] := v); s; (ArrayStoreExc; s)exn!Assign to Fields and Local VariablesNo runtime typechecking is required when assigning to �elds or local variables, be-cause, as we shall prove in the next chapter, the static checks are adequate.s(addr) =� vals �C0s0 = \replace
dC with v in vals"(addr.
dC := v); s; void; s0 s0 = \replace s(id) with v in s"(id := v); s; void; s014This notion of runtime type checking comes from Drossopoulou and Eisenbach's original work(weak conformance) and is really a little too strong: it allows the runtime machine to check theconformance of primitive values to primitive types. No realistic implementation of Java checks atruntime that a primitive type such as int �ts in a given array slot.

6.7. THE MODEL AS A DECLARE SPECIFICATION 119psyntaxsyntax csyntax rsyntaxstatics runtime
Figure 6.8: Organisation of the Model in Declare6.7 The Model as a Declare Speci�cationSo far we have described our model of JavaS in the traditional manner | however,the model has, of course, been realised as Declare speci�cations. The model runsto around 2000 lines, and we have shown an extended excerpt in Appendix A. Thedependency graph between �les in the model is shown in Figure 6.8. The use of threesimilar versions of the language results in some duplication. However, the need forclarity was perceived to be greater than the need for brevity. Importantly, theDeclare model could be easily read and understood by Drossopoulou and Eisenbachwhen shown to them.We have discussed the use of code generation to validate the correctness of aDeclare model against our informal expectations in Section 2.4. Declare producesa Mercury module for each article we have written. Test programs are expressedas higher order logic expressions.15 Many errors were discovered by using thesetechniques (more than 15). The breakdown of these was roughly as follows:� Around 5 variables that were only used once, because of some kind of typingmistake.� Around 5 Mercury mode violations, because of typing mistakes and some log-ical errors.� Around 5 logical mistakes in the typing and runtime rules, detected whenactually executing expressions.It is clear that validation of this kind plays an essential role in stress-testing theintegrity of such a development. Further, the same tests can be used as the semantics15Better would be the ability to parse, compile and run programs directly from concrete syntax.Such a facility could be added, perhaps by using Boulton's Claret tools [Bou97].

120 CHAPTER 6. JAVASis extended and modi�ed. After making some modi�cations to the semantics wedetected several new mistakes by re-running earlier test cases.

Chapter 7Type Soundness for JavaSIn this chapter we describe the type soundness properties we proved for JavaS andstate the major lemmas used in their proof. We also present extracts from theDeclare proofs, and discuss the errors found while performing these proofs.7.1 ConformanceInformally, type soundness states that a well-typed Java program does not \gowrong" at runtime, in the sense that it never reaches a state that violates condi-tions implied by the typing rules. One aspect of type soundness is captured in thefollowing statement from the Java Language Speci�cation [GJS96]:The type [of a variable or expression] limits the possible values that thevariable can hold or the expression can produce at runtime. If a runtimevalue is a reference that is not null, it refers to an object or array thathas a class ... that will necessarily be compatible with the compile-timetype.The task of this chapter is to de�ne what is meant here by \limits" and \compatible,"a notion we call conformance (�:). We then show that conformance is an invariant ofthe abstract runtime machine described in the previous chapter. Like all invariants,it is a two-edged sword:� Conformance must be strong enough to ensure the machine can always makea transition from a conforming con�guration;� Conformance must be liberal enough to ensure that every such transition re-sults in another conforming con�guration.Conformance is de�ned for all major artifacts of the runtime machine, beginning withJavaR values, expressions and statements. The rules for conformance naturally beara similarity to the typing rules for JavaA: e.g. conformance does not assign types,but rather checks conformance given a particular type. However, unlike JavaA:121

122 CHAPTER 7. TYPE SOUNDNESS FOR JAVAS� Conformance is also de�ned for frames, heaps, states and con�gurations, rela-tive to type assignments for these constructs;� We de�ne conformance \up to widening," so that, for example, any runtimereference object conforms with the type Object, and runtime objects of actualclass A are compatible with type B if � ` Avclass B.� In a few places (especially assignment), the rules for conformance must beweaker than one might think. This accounts for certain intermediary statesthat arise during computation but are not acceptable as inputs.Without further ado, we proceed to the necessary de�nitions.Frame, Heap and State TypingsA frame typing �� is a partial function that assigns a typing upper bound to eachstorage location in a frame �. Similarly a heap typing }� assigns a type to eachstorage location in a heap }.1 A state typing s� is a frame typing and a heap typing.Well-formedness (� ` 3) extends to frame, heap and state typings in the naturalway. For heap typings we impose the constraint that all types in the assignmentmust be reference types.Value ConformanceA value v conforms to a type � with respect to a type environment � and heap typing}� according to the rules:�; }� ` void�:val void pt is the type for literal pval�; }� ` pval �:val pt � is any reference type�; }� ` null�:val �}� (addr) = ��; }� ` addr �:val � �; }� ` v�:val � 0� ` � 0� ��; }� ` v�:val �Note the last rule gives value conformance up to widening.1As it happens the types in a heap typing are exact rather than upper bounds. Drossopoulouand Eisenbach preferred not to use a heap typing and instead recovered the heap type informationfrom the runtime type tags stored alongside objects in the heap. We used a heap typing in laterversions of our work for consistency and to preserve the separation of concerns between runtime andstatic type information. That heap static types can be fully reverse engineered from the runtimetags in Java is somewhat unusual, and we have chosen an approach that works when this is notpossible.

7.1. CONFORMANCE 123Frame and Heap ConformanceAn object conforms to a class type C if its type tag is C and each expected �eldvalue is present and conforms to the appropriate type. Similarly, an array conformsto a type if its type tag matches and its values all conform:dom(vals) = f�dx j � ` C ^all�elds (�dx ; �)g8�dx ; �: � ` C ^all�elds (�dx ; �)! �; }� ` vals(�dx)�:val ��; }� ` � vals �C �:heapobj C8i: 0 � i < n! �; }� ` val i�:val ��; }� ` [[val0; : : : ; valn�1]]� �:heapobj �[]A heap } conforms to a heap typing }� if each has the same domain and eachheap object (either an array or object) conforms. Similarly, a frame � conforms to�� (relative to a heap typing }�) if each has the same domain and their contentsconform point-wise.dom(}) = dom(}�)8addr 2 }: �; }� ` }(addr)�:heapobj }� (addr)� ` }�:heap }� dom(�) = dom(��)8id 2 �: �; }� ` �(id)�:val �� (id)�; }� ` ��:frame ��Finally, a state conforms to a state typing if its components conform:� ` }�:heap }��; }� ` ��:frame ��� ` (�; })�: (�� ; }�)Term ConformanceConformance of expressions and statements is measured relative to a state typing.While most the rules ensure essentially the same typing conditions as JavaA, wehave added rules for incomplete method invocations and to ensure the relation ismonotonic up to widening. Finally the rules for assignment are subtly di�erent,something which is essential as we shall see.The rules for runtime expressions are:�� (id) = ��; (�� ; }�) ` id �:exp � (LocalAccess) �; s� ` arr �:exp �[]�; s� ` idx �:exp int�; s� ` arr[idx]�:exp � (ArrayAccess)�; s� ` obj �:exp C0� ` C0 ^all�elds ((
d ; C); �)�; s� ` obj.
dC �:exp � (FieldAccess) �; }� ` v �:val ��; (�� ; }�) ` v �:exp � (Value)

124 CHAPTER 7. TYPE SOUNDNESS FOR JAVAS� ` � 3ty�; s� ` di�:exp int (1 � i � n)�; s� ` new �[d1] : : : [dn]�:exp �[]n (NewArray) � ` C3class�; s� ` new C �:exp C (NewClass)� ` � 3ty�; s� ` obj �:exp ��; s� ` argi�:exp AT i (1 � i � n)� ` � ^meth (meth ;AT); ��; s� ` obj.meth(arg1, : : : , argn)�:exp � (Call)The new rules for expressions are:� ` �0� 3frame-type�; }� ` �0�:frame �0��; (�0� ; }�); � ` bodyXXXif � 6= void then always returns(body)�; (�� ; }�) ` fbodyg�0 �:exp � (ActiveCall) �; s� ` e�:exp � 0� ` � 0� ��; s� ` e�:exp � (Mono)Note that checking conformance for an incomplete method call requires a �0� for theframe �0.The rules for runtime statements are as follows. We omit the rules for while, ifand block statements for brevity.�� (id) = ��; (�� ; }�) ` exp�:exp � 0� ` � 0� ��; (�� ; }�); � ` (id := exp)XXX (Local) �; s� ` obj �:exp C0� ` C0^all�elds ((
d ; C); �)�; s� ` exp�:exp � 0� ` � 0� ��; s� ; � ` (obj.
dC := exp)XXX (Field)�; s� ` arr �:exp �[]�; s� ` idx �:exp int�; s� ` exp�:exp � 0�; s� ; � ` (arr[idx] := exp)XXX (Array) �; s� ` e �:exp ��; s� ; � ` eXXX (Expr)�; s� ` exp�:exp ��; s� ; � ` (return exp)XXX (Return)

7.2. SAFETY, LIVENESS AND ANNOTATION 125Con�guration ConformanceA con�guration of the runtime machine (e; s) conforms to a con�guration typing(�; s�) if and only if both the state and the expression conform. An exceptionalcon�guration conforms if the state conforms (exceptions do not carry values in ourmodel), and a return con�guration conforms if the return value conforms to theexpected return type:� ` s�: s��; s� ` e�:exp �� ` (e; s)�: (�; s�) � ` s�: s�� ` (e; s)exn!�: (�; s�) � ` s�: s��; s� ` rval �:val ��; � ` (rval ; s)return!�: s�We omit similar de�nitions for exceptional con�gurations and con�gurations wherethe term is a statement or a vector of expressions.Finally, we say that }� is smaller than }0� (}�Eheap}0�) if and only if }� is a sub-function of }0� , i.e. its domain is no greater and within its domain the functions agree.The intuition is that }0� is the typing assigned after we allocate new elements in theheap. Similarly one state typing s� (= (�� ; }�)) is smaller than another s0� = (�0� ; }0�)(s�Estates0�) if �� = �0� and (}�Eheap}0�), and similarly for con�guration types. Notethese relations are simple concepts, unrelated to widening, and x E y simply mean\x has less cells allocated than y, but is otherwise identical."7.2 Safety, Liveness and AnnotationWe are now in a position to state the type soundness results. As mentioned before,we distinguish between a safety property (subject reduction) and a liveness property:Theorem 3 Safety For a well-formed type environment �, an annotated, typechecked pro-gram p and a con�guration C that conforms to C� , then if C can make a transition to someC 0 there exists a larger C 0� such that C 0 conforms to C 0� . That is, if ` � 3tyenv, � ` p3 ,� ` C� 3ty , � ` C �C� and C ;(�;p) C 0 then there exists C 0� such that� � ` C 0� 3� C� Ecfg C 0� .� � ` C 0�:C 0�Note we assume a reduction is made, rather than proving that one exists. Thisdistinguishes the safety property from the liveness property. In the presence of non-determinism it is not su�cient to prove that a safe transition exists: we want toshow that all possible transitions are safe.Theorem 4 Liveness For a well-formed type environment �, an annotated, typecheckedprogram p and a C that conforms to C� , then if the term in C is not ground then C canmake a transition to some C 0.

126 CHAPTER 7. TYPE SOUNDNESS FOR JAVASTo complement the type soundness proof, we prove that the process of annotationpreserves types:Theorem 5 Annotation For a well-formed type environment � and a typechecked JavaSprogram p then there exists a unique p0 such that � ` p;ann p0. Furthermore p0 typechecksas a JavaA program.7.2.1 Key LemmasThe following is a selective list of the lemmas that form the basis for the typesoundness results. These have, naturally, been checked using Declare.All declared classes and interfaces are well-foundedThat is, if � ` C3class then � ` C vclass Object, and similarly each declaredinterface has a chain of superinterfaces that ultimately terminates with aninterface with no parents.Object is the least classIf � ` Objectvclass C then C = Object.Widening is transitive and re
exiveThe vclass , vintf and � relations are all transitive and re
exive forwell-formed environments and types.Narrower types have matching structureIf � ` � 0� � then� If � is an array type �[]n then � 0 is an array type �0[]n where� ` �0��.� Similarly, only primitive types are narrower than themselves, and onlysubclasses are narrower than class types that are not Object.Conforming values have matching structureIf �; }� ` v�:val � then� If � is a primitive type then v is a matching primitive value.� If � is an array type �[]n then v is either null or an address addr with}� (addr) = �0[]n and � ` ���0.� Similarly, if � is a non-Object class type C then v is either null or anaddress addr with }� (addr) = C 0 and � ` C vclass C 0, and so on.Field indexes are uniqueThat is, the relation ^all�elds �nds at most one �eld for each �eld index.

7.2. SAFETY, LIVENESS AND ANNOTATION 127Compatible �elds and methods exist at subtypesMethods and �elds visible at one type must still be visible at narrower types,though with possibly narrower return types. That is, if� ` C1vclass C0 and� ` C0^all�elds (�dx ; tyfld)then � ` C1 ^all�elds (�dx ; tyfld).Similarly if � ` � ^meth (m;AT); � and � ` � 0� � then there exists some �0with � ` � 0^meth (m;AT); �0 and� ` �0� �.Method lookup behaves correctlyFetching the annotated body of a method using dynamic dispatch from �results in a method of the type we expect, and furthermore the method wastypechecked with reference to a this-variable type that is compatible with � ,i.e. if � ` � ^meth (m;AT); � andMethBody(m;AT ; �; p) = meth bodythen there exists C 0 such that� ` � �C 0 and�; C 0 ` meth bodyXXX .Compilation behaves correctlyIf � ` mbody : tyret and � ` mbody;comp rmbody then � ` rmbody : tyret,where ;comp is the process of turning a JavaA term into a JavaR term. Notecompilation is an almost trivial process in the current system, so this lemma isnot di�cult.Relations are preserved under narrowing of heaps.This holds for the value, frame, expression and statement conformancerelations.Atomic state manipulations create conforming statesWe prove this for all primitive state manipulations, including object and arrayallocation, �eld, array and local variable assignment. The case for arrayallocation involves a double induction because of the nested loop used toallocate multi-dimensional arrays.Method call creates a conforming stateThat is, the frame allocated for a method call conforms.Runtime typechecking is adequateThat is, typecheck guarantees that a value conforms to the given type.

128 CHAPTER 7. TYPE SOUNDNESS FOR JAVAS7.3 Example Proofs in DeclareWe now outline the Declare proofs of some of the theorems from in the previoussection. The reader should keep in mind that when these proofs were begun, theonly guide available was the rough outline in [DE97b], and this was based on aformulation of the problem that was subsequently found to contain errors. Thusthe process was one of proof discovery rather than proof transcription. For eachproof we shall a short outline in vernacular mathematics, followed by the Declareproof script, to demonstrate how proof outlines are transcribed. Although a verypowerful automated routine may be able to do away with most of our proof scriptsafter the fact, the very process of writing them typically corrected signi�cant errorsthat would confound even the best prover.7.3.1 Example 1: Inherited Fields ExistInherited Fields ExistGiven well-formed � , C0, C1, � and a �eld descriptor �dx where� ` C1vclass C0� ` C0 ^all�elds (�dx ; v�)then � ` C1 ^all�elds (�dx ; v�). That is, �eld existence is preserved atsubclasses.The proof is by induction over the derivation of the vclass judgment: in each casethe result follows using the rules (Hit) and (Step) from page 108.Now, the proof in Declare is:thm <inherited-fields-exist>if "TE wf_tyenv" <TE_wf>"TE |- C0 wf_class""TE |- C1 wf_class""TE |- C1 subclass_of C0" <subclass>"TE |- C0 has_field fspec"then "TE |- C1 has_field fspec"proofproceed by rule induction on <subclass> with C1 variable;case BaseC: qed by <has_field.Hit>;case StepC: qed by <has_field.Step>,<wf_tyenv.class_superclass_declared> [<TE_wf>];end;end;In the step case of the induction we invoke a well-formedness condition (correspond-ing to (A.1) on page 109) in order to prove the intermediary class in the subclassrelation is well-formed.

7.3. EXAMPLE PROOFS IN DECLARE 1297.3.2 Example 2: Field AssignmentField assignment preserves conformance.Given well-formed � , C, C 0, �, }0, }1, s0, s1, �� , }� , s� , v, v� and a �elddescriptor �dx wheres0 = (�; }0) and s1 = (�; }1)� ` s0�: s�}� (addr) = C 0� ` C 0^all�elds (�dx ; v�)�; }� ` v�:val v�}0(addr) =� �dx1 7! val1; : : : ;�dxn 7! valn �C}1 = }0 with �dx 7! v at addrthen � ` s1�: s� . That is, if s1 is the result of a �eld assignment operation ons0, then s1 conforms to the same type bound as s0.Proof: Let obj 0 =� (C1; f ld1) 7! val 1; : : : ; (Cn;
dn) 7! valn �C and obj 1 be the resultof replacing the value of �eld �dx by v in obj 0. We have �; }� ` obj 0�:heapobj C 0 becauses0 conforms at addr . This in turn means the type tags match, that is C = C 0. The valuesinside obj 0 conform to the types as found by ^all�elds , as do the values inside obj 1 becausethe new value v conforms. Thus �; }� ` obj 1�:heapobj C 0 and � ` }1�:heap }� bystraightforward application of the rules to derive these judgments and the result follows.Now, the proof in Declare is:thm <field-assign-conforms-lemma>if "TE wf_tyenv" <TE_wf>"TE |- C wf_class" <C_wf>"s0 = (frame0,heap0)""s1 = (frame0,heap1)""ST = (FT,HT)""TE |- s0 state_conforms_to ST""flookup HT taddr = Some(VT(ClassTy(C),0))" [autorw]"TE |- C has_field (fidx,vty)""(TE,HT) |- sval rval_conforms_to Some(vty)""flookup heap0 taddr = Some(OBJECT(fldvals0,C'))""fldvals1 = fupdate fldvals0 (fidx,sval)""heap1 = heap0 <?++ (taddr,OBJECT(fldvals1, C'))"then "TE |- s1 state_conforms_to ST";prooflet "obj0 = OBJECT(fldvals0,C')""obj1 = OBJECT(fldvals1,C')";have "(TE,HT) |- obj0 heapobj_conforms_to VT(ClassTy(C),0)" <heapobj_conforms>by <state_conforms_to.heap>, <heap_conforms_to.rool>;

130 CHAPTER 7. TYPE SOUNDNESS FOR JAVAShave "C = C'"by <heapobj_conforms_to.object-tag-matches> [<heapobj_conforms>,"fldvals0","C'"];have "8vty'. TE |- C has_field (fidx,vty') $ vty' = vty" [rw] <x>by <object-fields-form-graph> [<TE_wf>,<C_wf>],<frel_is_graph_rool> ["�fspec. TE |- C has_field fspec"/R,"fidx"/x,"vty"/y];have "(TE,HT) |- fldvals1 fldvals_conform_to C"by <heapobj_conforms_to.object-fields-conform> [<heapobj_conforms>,"fldvals0"],<fldvals_conform_to.rool> ["fldvals0","TE","HT","C"],<fldvals_conform_to.derive> ["fldvals1","TE","HT","C"], <x>;have "(TE,HT) |- obj1 heapobj_conforms_to VT(ClassTy(C),0)"by <heapobj_conforms_to>;have "TE |- heap1 heap_conforms_to HT"by <heap_conforms_to>,<eq_fsets>,<state_conforms_to>,<in_fdomain>;qed by <state_conforms_to>;end;The proof has clearly required extra detail: but although we have had to reasonabout the uniqueness of �eld descriptors, otherwise the proof follows essentially thesame outline. Note that many of the explicit instantiations are not required postfacto (we leave them in after completing the proof simply because there is littlepoint in taking them out).Note also that we have survived without naming many local facts. This is becausethe proof obligations happen to be simple enough, so that implicitly including mostfacts at each justi�cation does not signi�cantly confuse the automated engine.7.3.3 Example 3: Monotonicity of Value Conformance Under Allo-cationRemember }� Eheap }0� simply means }0� records types for some locations not men-tioned in }� . Clearly the conformance relations for values and other terms aremonotonic under this relation:Value conformance is monotonic under Eheap.Given well-formed � , }� , }0� , v and � , where �; }� ` v�:val � and }� Eheap }0�then �; }0� ` v�:val � .The proof is by induction over the derivation of �; }� ` v�:val � , and the only non-trivial case is typing for addresses, when we must use the appropriate property ofEheap . The proof in Declare is:thm <val_conforms_to-mono-lemma>

7.4. ERRORS DISCOVERED 131if "TE wf_tyenv""HT0 htyping_leq HT1""(TE,HT0) |- val rval_conforms_to ty" <conforms>then "(TE,HT1) |- val rval_conforms_to ty";proofproceed by rule induction on <conforms> with val,ty variable;case Prim: qed;case Null: qed;case Addr: qed by <htyping_leq.rool>, <in_fdomain>,<rval_conforms_to.Addr>;case Trans: qed by <rval_conforms_to.Trans>;case Void: qed;end;end;7.4 Errors DiscoveredIn this section we describe an error in the Java language speci�cation that we inde-pendently rediscovered during the course of this work. We also describe one majorerror and a noteworthy omission in Drossopoulou and Eisenbach's original presenta-tion of the type soundness proof.7.4.1 An Error in the Java Language Speci�cationIn the process of �nishing the proofs of the lemmas described in Section 7.2.1 weindependently rediscovered a signi�cant
aw in the Java language speci�cation thathad recently been found by developers of a Java implementation [PB97]. In theorythe
aw does not break type soundness, but the authors of the language speci�cationhave con�rmed that the speci�cation needs alteration.The problem is this: in Java, all interfaces and arrays are considered subtypesof the type Object, in the sense that a cast from an interface or array type toObject is permitted. The type Object supports several \primitive" methods, suchas hashValue() and getClass() (there are 11 in total). The question is whetherexpressions whose static type is an interface support these methods.By rights, interfaces should indeed support the Objectmethods | any class thatactually implements the interface will support these methods by virtue of being asubclass of Object, or an array. Indeed, the Sun JDK toolkit allows calling thesemethods from static interface types, as indicated by the successful compilation (butnot execution) of the code:public interface I f gpublic class Itest fpublic static void main(String args[]) fI a[] = f null, null g;a[0].hashCode();

132 CHAPTER 7. TYPE SOUNDNESS FOR JAVASa[0].getClass();a[0].equals(a[1]);ggHowever, the existing language speci�cation states explicitly that interfaces onlysupport those methods listed in the interface or its superinterfaces, and that thereis no `implicit' superinterface (i.e. there is no analogue to the `mother-of-all-classes'Object for interfaces). To quote:The members of an interface are all of the following:� Members declared from any direct superinterfaces� Members declared in the body of the interface.. . .There is no analogue of the class Object for interfaces; that is, whileevery class is an extension of class Object, there is no single interface ofwhich all interfaces are extensions. [GJS96], pages 87 and 185The error was detected when trying to prove the existence of compatible methodsand �elds as we move from a type to a subtype, in particular from the type Objectto an interface type.7.4.2 Runtime Typechecking, Array Assignments, and ExceptionsIn Drossopoulou and Eisenbach's original formulation the type soundness propertywas stated along the following lines (emphasis added):Theorem 6 If a well-typed term t is not ground, then it rewrites to some t0 (and a newstate s and environment �). Furthermore, either t0 eventually rewrites to an exception,or t0 has some narrower type than t, in the new state and environment.The iterated rewriting was an attempted �x for a problem demonstrated by thefollowing program:void silly(C arr[], C s) farr[1] = s;gAt runtime, arr may actually be an array of some narrower type, say C' where C' isa subclass of C. Then the array assignment appears to become badly typed before theexception is detected, because during the rewriting the left side becomes a narrowertype than the right. Thus they allow the exception to appear after a number ofadditional steps.However, arr can become narrower, and then subsequently fail to terminate!Then an exception is never raised, e.g.

7.5. APPRAISAL 133arr[loop()] = s;The problem occurs in even simpler cases, e.g. when both arr and s have some nar-rower types C'[] and C'. Then, after the left side is evaluated, the array assignmentappears badly typed, but will again be well typed after the right side is evaluated.Fixing this problem requires a di�erent understanding of the role of the types weassign to terms. Types for intermediary terms only exist to help express the typesoundness invariant of the abstract machine, i.e. to de�ne the allowable states thata well-typed execution can reach. In particular, the array assignment rule must berelaxed to allow what appear to be badly typed assignments, but which later getcaught by the runtime typechecking mechanism.This problem is an interesting case where the attempted re-use of typing rules ina di�erent setting (i.e. the runtime setting rather than the typechecking setting) ledto a subtle error, and one which we believe would only have been detected with thekind of detailed analysis that machine formalization demands. The mistake couldnot be missed in that setting! The di�erence between the JavaS and JavaR rules isclearly necessary in retrospect, but failure to grasp this can lead to subtle errors.For example, see the discussion on the types mailing list, where researchers wereconcerned that subject reduction does not hold for the Java source language [Typ98].7.4.3 Side-e�ects on TypesA signi�cant omission in Drossopoulou and Eisenbach's original proof was as follows:when a term has two or more subterms, e.g. arr[idx] := e, and arr makes areduction to arr ', then the types of idx and e may change (become narrower) dueto side-e�ects on the state. This possibility had not originally been considered byDrossopoulou and Eisenbach, and requires a proof that heap locations do not changetype (our notion of heap conformity su�ces). The foremost of these lemmas has beenmentioned in Section 7.2.1. This problem was only discovered while doing detailedmachine checking of the rough proof outline.7.5 AppraisalThe previous section has given several examples of Declare proofs from our casestudy. We now address the following rather important question: what e�ect didadopting declarative proof techniques have on the execution of the case study?We have already described many of the small-scale contributions of declarativeproof in Chapter 3. The same pros and cons we have described there were playedOtt again and again in small ways throughout the development of the proofs. Forexample, the
exibility in decomposition provided by Declare was used many timesthroughout the case study, but similarly the number of terms quoted in Declareproofs was always relatively high.We can now step back to look at methodological issues:

134 CHAPTER 7. TYPE SOUNDNESS FOR JAVAS� Proof Re�nement. The declarative proof style meant we could repeatedly re�neapproximate proof scripts, starting with notes and �nishing with a machine-checkable script.� Maintainability. The declarative proof style meant that it was often simple tochase through the exact rami�cations of a small change to the model. Primarilythis is because so much information is explicit in a declarative proof, and thee�ects of a change could often be predicted even before checking a single stepof a proof, either by searching or typechecking proofs.� Robustness. The declarative style meant that proofs rarely broke because ofmodi�cations to Declare's automated prover.� Clarity. The disciplined approach enforced when mechanizing a proof ensureserrors like those described in Section 7.4 are detected. The declarative prooflanguage allowed the author to think clearly about the language while prepar-ing the proof outlines. The error described in Section 7.4.1 was found when sim-ply preparing the proof outline, rather than when checking it in detail. Whendrafting a Declare proof the question \will a machine accept this proof?" isalways in mind, and this ensures that unwarranted logical leaps are not made.We discuss these further in the next chapter.7.5.1 Related WorkAs mentioned at the start of Chapter 6, our model and proofs for JavaS were basedon a paper version of similar proofs developed by Drossopoulou and Eisenbach. Oursoundness results, while similar in many respects, di�er from Drossopoulou andEisenbach's in detail. The main di�erences are:� Heap Typing. We use a heap typing, which we believe makes de�nitions morecoherent and leads to a simpler problem statement.� Safety and Liveness. We prove two complementary results, rather than at-tempting to combine safety and liveness in one property. Drossopoulou andEisenbach's property does not prove that all transitions result in conformingcon�gurations, just that there always exists at least one such transition. Inthe presence of non-determinism this could mean that extra transitions arepossible to non-conforming states.� Conformance includes Widening. The statement and proof of subject reduc-tion is substantially simpli�ed by using conformance over con�gurations, up towidening.� Conformance over Exceptional Con�gurations. Exceptions are not mentionedin the statement of subject reduction, since conformance is also de�ned forexceptional con�gurations.

7.5. APPRAISAL 135� No Reasoning about Multiple Steps. The statement of subject reduction doesWright and Felleisen [WF94] have studied type soundness proof techniques for a widerange of language constructs, though not for Java itself. They have not mechanizedtheir proofs.Tobias Nipkow and David von Oheimb [Nv98] have developed a proof of the typesoundness property for a similar subset of Java in the Isabelle theorem prover. The�rst version of their proof was developed at roughly the same time as our own, andthey have since continued to extend the subset covered and re�ne their formalization.I am extremely grateful for the chance to meet with Nipkow and von Oheimb andhave adopted some suggestions they have made (indeed this has been mutual). Thesetwo works are valuable \modern" case studies of theorem proving methods appliedthis kind of problem. Isabelle is a mature system and has complementary strengthsto Declare, notably strong generic automation and manifest soundness. A tool whichunites these strengths with Declare's would be an exciting prospect.Several groups are working on type soundness properties for aspects of the JVM[SA98, Qia97]. These proofs have not yet been mechanized, and thus are somewhatremoved from the concerns of this thesis.

136 CHAPTER 7. TYPE SOUNDNESS FOR JAVAS

Chapter 8SummaryThe aim of this dissertation has been to describe the use of a technique called \declar-ative theorem proving" to fully formalise reasoning about operational semantics.Part I concentrated on the technique itself, and at the heart of the technique liesour method of proof description, based around three simple constructs, as describedin Chapter 3. We explained the impact of this and other techniques with respect tofour aspects of theorem proving tools: speci�cation, proof description, automatedreasoning and interaction. We also proposed techniques for simplifying the extrac-tion of results from theorems (Section 2.3), a method for validating speci�cationsby translation to Mercury (Section 2.4) and a language for providing justi�cationsand hints for the automated prover. Throughout we used the system Declare as anexample implementation of these techniques.This has, in many ways, been the description of a long experiment in attemptingto conduct signi�cant proofs while sticking to the \declarative ideal." The resultingtechniques are, we claim, relatively faithful to this ideal, particularly in contrast totactic based provers. When considered as a package, the approach we have proposedis quite novel, though it clearly draws from a range of ideas across the spectrum oftheorem proving. However, novelty aside, we must now address the more importantquestion: do declarative techniques make for better theorem proving? This is, ofcourse, di�cult to answer de�nitively, as it requires a balanced assessment in thecontext of a particular project. However, we can �rst consider the somewhat sim-pler question: is declarative proof a suitable mechanism for proof description? Thearguments in favour are documented in Chapter 3 and Chapter 5. They include:� A declarative style is more readable, uses far fewer proof description constructs,and encourages good mathematical style.� A declarative style allows considerable
exibility when decomposing a problem.� A declarative style is pragmatically useful, as it allows proofs to be typecheckedwithout discharging obligations, error recovery is easy to implement, and it ispossible to implement a relatively simple and coherent interactive developmentenvironment for developing such proofs.137

138 CHAPTER 8. SUMMARYOne drawback is that declarative proofs require extensive term quotation in orderto specify logical steps. We have presented a range of mechanisms to alleviate thisproblem without compromising the declarative ideal, but it remains a challenge forfuture work.Looking beyond the simple issue of describing proofs, we turn to the method-ological issues described at the end of the previous chapter: proof re�nement, main-tainability, robustness and clarity. In many ways, these issues form the heart of thematter. Proof is, after all, a social process as well as a formal one, as argued byDe Millo, Lipton and Perlis [MLP79]. Presuming declarative proof description canbe made at least as e�cient as existing proof description techniques \in the small",then the bene�ts \in the large" may well tip the balance in its favour.Part II has described a lengthy case study in the application of these techniques,and indeed this study has considerable interest in its own right. Aside from issues ofdeclarative proof, it demonstrates how formal techniques can be used to help specifya major language. Java itself is far more complicated than JavaS , but we have stillcovered a non-trivial subset. Drossopoulou and Eisenbach's formalization was theoriginal inspiration for this work. We suggest that in the long run theorem proverspeci�cations may provide a better format for such formalizations, especially when
exible tools are provided to read, execute and reason about them. In addition, theindependent rediscovery of the mistake in the Java language speci�cation described inSection 7.4.1 indicates that errors in language speci�cations can indeed be discoveredby the process of formal proof.8.1 Future WorkThroughout this thesis we have hinted at places where future work looks particularlypromising. The following summarizes these, with the addition of some topics we havenot yet considered:� Generalization of techniques? Isabelle has demonstrated how techniques intheorem proving can be made generic across a range of theorem provers. Manyof the techniques presented here have been crafted for �rst order logic: it shouldbe possible to generalise these via the typical parameterization mechanismsused in Isabelle.� Declarative proofs in other logics? It may be useful to apply declarative prooflanguages to other logics. How must the proof language change in this case?� Automated Reasoning? Chapter 4 has described the requirements for an au-tomated engine in our problem domain, and indicated how our current enginefails to meet these requirements in some ways. Clearly further work is possiblehere, especially to utilise techniques from other theorem provers in our context.� Interfaces for declarative proof? Chapter 5 has presented a prototype interfacefor Declare that takes advantage of some of the features of our declarative proof

8.1. FUTURE WORK 139language, e.g. the small number of constructs to provide debugging supportfor each. A lot of scope remains for �nding and inventing the interactivemechanisms to best support declarative proof.In addition, the case study of Part II could be greatly extended in scope, simplyby increasing the range of language constructs considered. Similar techniques couldbe applied to a study of the Java Virtual Machine and other interesting operationalsystems.

140 CHAPTER 8. SUMMARY

Appendix AAn Extract from the DeclareModelThis appendix contains an extended extract from the Declare sources for the casestudy described in Chapters 6 and 7. This covers the model as far as the well-formedness constraints on environments, and the de�nition of conformance. We havealso included the statements of many theorems up to this point, plus a selection ofproofs. We have used �rst order symbols rather than their ASCII equivalents.A.1 psyntax.art - Primitives and typesdatatype prim =Void | Bool ":bool" | Char ":uchar" | Byte ":int8" | Short ":int16"| Int ":int32" | Long ":int64" | Float ":ieee32" | Double ":ieee64";datatype primTy =VoidTy | BoolTy | CharTy | ByteTy | ShortTy| IntTy | LongTy | FloatTy | DoubleTy;datatype refTy = ClassRefTy ":id" | InterfaceRefTy ":id" | ArrayRefTy ":typ" | AnyRefTyand typ = RefTy ":refTy" | PrimTy ":primTy";def [autodefn] "ClassTy C = RefTy(ClassRefTy(C))";def [autodefn] "InterfaceTy i = RefTy(InterfaceRefTy(i))";def [autodefn] "ArrayTy i = RefTy(ArrayRefTy(i))";def [autodefn] "intTy = PrimTy(IntTy)";def [autodefn] "boolTy = PrimTy(BoolTy)";def [autodefn] "voidTy = PrimTy(VoidTy)";def [autodefn] "ObjectTy = RefTy(ClassTy `Object`)";def "mk_array_ty n aty = repeatn n aty (fun ty -> ArrayTy(ty))";type argTy = ":typ list";//--// Assign types to primitive values 141

142 APPENDIX A. AN EXTRACT FROM THE DECLARE MODELdef "prim_type pval =match pval withBool(b) -> BoolTy| Byte(byte) -> ByteTy| Char(c) -> CharTy| Short(sh) -> ShortTy| Long(lng) -> LongTy| Int(i) -> IntTy| Float(fl) -> FloatTy| Double(db) -> DoubleTy| Void -> VoidTy";A.2 widens.art - Environments, Widening and Visibil-ityimport psyntax;notation rels;//--// Type environments.//// These contain// -- class and interface declarations// -- local variable declarations// The class and interface hierarchies are derivable from these, at// least for well-formed environments.datatype classDecl =CLASS ": id option �id fset �(id |-?> typ) �((id � typ list) |-?> typ)";datatype interfaceDecl =INTERFACE ":(id fset) �((id � typ list) |-?> typ)";type classenv = ":id |-?> classDecl";type interfaceenv = ":id |-?> interfaceDecl";type tyenv = ":(id |-?> classDecl) �(id |-?> interfaceDecl)";type varenv = ":id |-?> typ";reserve TE for ":tyenv"and CE for ":classenv"and IE for ":interfaceenv"and VE for ":varenv"and C for ":id"and i for ":id";//--// Now derive the class and interface hierarchies from the

A.2. WIDENS.ART - ENVIRONMENTS, WIDENING AND VISIBILITY 143// declarations in the environment.//// First well-formed types.def "TE |- C wf_class $ (9CE IE cdec. TE = (CE,IE) ^ flookup CE C = Some cdec)";mode "inp1 |- inp2 wf_class";def "TE |- i wf_interface $ (9CE IE idec. TE = (CE,IE) ^ flookup IE i = Some idec)";mode "inp1 |- inp2 wf_interface";constant wf_reftype ":tyenv -> refTy -> bool";constant wf_type ":tyenv -> typ -> bool";thm <wf_type> [defn,code]"TE |- ty wf_type $match ty withRefTy rt -> TE |- rt wf_reftype| PrimTy(pt) -> true";thm <wf_reftype> [defn,code]"TE |- rty wf_reftype $match rty withClassRefTy C -> TE |- C wf_class| InterfaceRefTy i -> TE |- i wf_interface| ArrayRefTy(ty) -> TE |- ty wf_type| AnyRefTy -> false";mode "inp1 |- inp2 wf_reftype";mode "inp1 |- inp2 wf_type";// Hmmm.. can we extend labelling so we don't have to restate these??thm <prim-wf_type> [autorw,automeson] "TE |- PrimTy(pt) wf_type";proof qed by <wf_type>; end;thm <class-wf> [autorw]"TE |- ClassTy(C) wf_type $ TE |- C wf_class";proof qed by <wf_type>,<wf_reftype>; end;thm <interface-wf> [autorw]"TE |- InterfaceTy(i) wf_type $ TE |- i wf_interface";proof qed by <wf_type>,<wf_reftype>; end;thm <array-wf> [autorw]"TE |- ArrayTy(ty) wf_type $ TE |- ty wf_type";proof qed by <wf_type>,<wf_reftype>; end;def "TE |- AT wf_types $ all (�vt. TE |- vt wf_type) AT";mode "inp1 |- inp2 wf_types";def "TE |- VE wf_varenv $8id vt. flookup(VE)(id) = Some(vt) !(TE |- vt wf_type [<rool>])";mode "inp1 |- inp2 wf_varenv";//--// The subclass relationship, derived from the declarations in TE.//

144 APPENDIX A. AN EXTRACT FROM THE DECLARE MODEL// nb. executable version does not terminate for circular class// structures.//// Both arguments should be provably well-formed in the context// where this predicate is used.lfp subclass_of =<Refl> // ------------------------------------"TE |- C subclass_of C"<Step> "TE = (CE,IE) ^ flookup CE C = Some (CLASS(Some(Csup),_x1,_x2,_x3)) ^TE |- Csup subclass_of C''"// ---"TE |- C subclass_of C''";mode "inp1 |- inp2 subclass_of inp3";mode "inp1 |- inp2 subclass_of out3";//--// The implements relationship, derived from the declarations in TE.def "TE |- C implements i $9CE IE dec _x1 _x2 _x3 Is.TE = (CE,IE) ^ flookup CE C = Some (CLASS(_x1,Is,_x2,_x3)) ^ i 2 Is";mode "inp1 |- inp2 implements inp3";mode "inp1 |- inp2 implements out3";//--// The subinterface relationshiplfp subinterface_of =<Refl> // ------------------------------------"TE |- i subinterface_of i"<Step> []"TE = (CE,IE) ^ flookup IE i = Some (INTERFACE(Is,methods)) ^i' 2 Is ^TE |- i' subinterface_of i''"// ---"TE |- i subinterface_of i''";mode "inp1 |- inp2 subinterface_of inp3";mode "inp1 |- inp2 subinterface_of out3";//--// Widening/Narrowing, derived from the declarations in the environment.//lfp widens_to =<Prim> [automeson,autorw]

A.2. WIDENS.ART - ENVIRONMENTS, WIDENING AND VISIBILITY 145// ------------------------------------"TE |- PrimTy(pt) widens_to PrimTy(pt)"<ClassToClass> [automeson,autorw]"TE |- C subclass_of C'"// ---"TE |- ClassTy(C) widens_to ClassTy(C')"<InterfaceToInterface> [automeson,autorw]"TE |- i subinterface_of i'"// ---"TE |- InterfaceTy(i) widens_to InterfaceTy(i')"<InterfaceToObject> [automeson,autorw]// ---"TE |- InterfaceTy(i) widens_to ObjectTy"<ClassToInterface> [automeson]"TE |- C subclass_of C' ^TE |- C' wf_class ^TE |- C' implements i ^TE |- i wf_interface ^TE |- i subinterface_of i'"// ---"TE |- ClassTy(C) widens_to InterfaceTy(i')"<ArrayToObject> [automeson,autorw]"TE |- ty wf_type"// --------------------------------------"TE |- ArrayTy(ty) widens_to ObjectTy"<Array> [automeson,autorw]"TE |- ty widens_to ty'"// --------------------------------------"TE |- ArrayTy(ty) widens_to ArrayTy(ty')";mode "inp1 |- inp2 widens_to inp3";def "TE |- tys tys_widen_to tys' $len tys = len tys' ^(8j. j < len(tys) ! TE |- el(j)(tys) widens_to el(j)(tys'))";mode "inp1 |- inp2 tys_widen_to inp3";//--// Search for field declarations, based off the declarations in TE.// Sensibly defined for well formed hierarchies of interfaces and classes.lfp VisField =<Hit> "TE = (CE,IE) ^ flookup CE C = Some (CLASS(Csupo,Is,fields,methods)) ^flookup(fields)(v) = Some(vt)"// ------------------------------------"VisField(TE,C,v)(C,vt)"<Miss> "TE = (CE,IE) ^ flookup CE C = Some (CLASS(Some(Csup),Is,fields,methods)) ^flookup(fields)(v) = None ^VisField(TE,Csup,v)(res)"

146 APPENDIX A. AN EXTRACT FROM THE DECLARE MODEL// ------------------------------------"VisField(TE,C,v)(res)";mode "VisField(inp)(out)";//--// Return all field declarations for a class, based off the declarations in// TE. [FDecs(TE,C)] indicates all the fields in [C] ^ all the superclasses// of [C], including hidden fields.//// For well-formed TE, vt is unique for a given (f,C).lfp FieldExists =<Hit> "TE = (CE,IE) ^ flookup CE C = Some (CLASS(Csupo,Is,fields,methods)) ^f 2 fdomain(fields) ^flookup(fields)(f) = Some(vt)"// ------------------------------------"((C,f),vt) 2 FieldExists(TE,C)"<Super> "TE = (CE,IE) ^ flookup CE C = Some (CLASS(Some(Csup),Is,fields,methods)) ^(fidx,vt) 2 FieldExists(TE,Csup)"// ------------------------------------"(fidx,vt) 2 FieldExists(TE,C)";mode "FieldExists(inp1)(out2)";def "AllFields (TE,C) = fset_of_set (FieldExists(TE,C))";//--// Return all versions of a method, based off the declarations in// TE. MSigs(TE,C,m) indicates all the method declarations (i.e. both the class of// the declaration and the signature) for method m in class C, or inherited// from one of its superclasses, and not hidden by any of its superclasses.lfp MSigsC =<Hit> "TE = (CE,IE) ^ flookup CE C = Some (CLASS(Csupo,Is,fields,methods)) ^flookup methods midx = Some(rt)"// ------------------------------------"MSigsC(TE,C)(midx,rt)"<Miss> "TE = (CE,IE) ^ flookup CE C = Some (CLASS(Some(Csup),Is,fields,methods)) ^MSigsC(TE,Csup)(midx,rt) ^flookup methods midx = None"// ------------------------------------"MSigsC(TE,C)(midx,rt)";mode "MSigsC(inp1)(out2)";lfp MSigsI =<Hit> "TE = (CE,IE) ^ flookup IE i = Some (INTERFACE(Is,methods)) ^flookup methods midx = Some(rt)"// ------------------------------------"MSigsI(TE,i)(midx,rt)"<Miss> "TE = (CE,IE) ^ flookup IE i = Some (INTERFACE(Is,methods)) ^

A.3. WFENV.ART - CONSTRAINTS ON ENVIRONMENTS 147flookup methods midx = None ^(i' 2 Is ^ MSigsI(TE,i')(midx,rt) _(Is = fempty ^ MSigsC(TE,`Object`)(midx,rt)))"// --"MSigsI(TE,i)(midx,rt)";mode "MSigsI(inp1)(out2)";// Arrays always support all methods found in `Object`, unless they// are overridden. I haven't yet got arrays supporting methods and// fields generic to all arrays, i.e. "size" and "clone".def "MSigsA(TE)(midx,mt) $ MSigsC(TE,`Object`)(midx,mt)";mode "MSigsA(inp1)(out2)";def "MSigs(TE,refty)(midx,mt) $match refty withInterfaceTy(i) -> MSigsI(TE,i)(midx,mt)| ClassTy(C) -> MSigsC(TE,C)(midx,mt)| ArrayTy(ty') -> MSigsA(TE)(midx,mt)";mode "MSigs(inp1)(out2)";A.3 wfenv.art - Constraints on EnvironmentsThe proofs have been omitted from this �le for brevity.import psyntax widens;notation rels;reserve TE for ":tyenv"and CE for ":classenv"and IE for ":interfaceenv"and C for ":id"and i for ":id";//==// PART 1. Define well-formed type environments//// At the roots of the tree we check that interfaces do not mess around// with the return types of Object methods...def "TE wf_tyenv $(9dec methods. ((9CE IE. TE = (CE,IE) ^ flookup CE `Object` = Some(dec)) ^dec = CLASS(None,fempty,fpempty,methods)) [<Object_declared> [rw]]) ^(8C Csupo Is fields methods.(9CE IE. TE = (CE,IE) ^ flookup CE C = Some(CLASS(Csupo,Is,fields,methods))) !(match Csupo withSome(Csup) ->(TE |- Csup wf_class) [<class_superclass_declared>] ^(:(TE |- Csup subclass_of C)) [<no_circular_classes>] ^

148 APPENDIX A. AN EXTRACT FROM THE DECLARE MODEL(8midx rt1. MSigsC(TE,Csup)(midx,rt1) !8rt2. flookup methods midx = Some rt2 !(TE |- rt2 widens_to rt1) [<class_return_types_wider>])| None ->(C = `Object`) [<only_Object_has_no_superclass> [rw]] ^(fields = fpempty) [<Object_has_no_fields> [rw]] ^(Is = fempty) [<Object_implements_no_interfaces> [rw]]) ^(8midx rt. flookup methods midx = Some rt !(8m AT. midx = (m,AT) ! (TE |- AT wf_types ^ TE |- rt wf_type) [<class-methtypes-wf>])) ^(8fld ty. flookup fields fld = Some(ty) !(TE |- ty wf_type) [<field-types-wf>]) ^(8i. i 2 Is !(TE |- i wf_interface) [<class_superinterfaces_declared>] ^(8midx rt1. MSigsI(TE,i)(midx,rt1) !(9rt2. MSigsC(TE,C)(midx,rt2) ^TE |- rt2 widens_to rt1) [<interfaces_implemented>])))^ (8i Is methods.(9CE IE. TE = (CE,IE) ^ flookup IE i = Some(INTERFACE(Is,methods))) !(8i'. i' 2 Is !(:(TE |- i' subinterface_of i)) [<no_circular_interfaces>] ^(TE |- i' wf_interface) [<interface_superinterfaces_declared>]) ^(8midx rt. flookup methods midx = Some rt !(8m AT. midx = (m,AT) ! (TE |- AT wf_types ^ TE |- rt wf_type) [<interface-methtypes-wf>])) ^(8i'. i' 2 Is !8midx rt1 rt2.MSigsI(TE,i')(midx,rt1) ^flookup methods midx = Some(rt2) !(TE |- rt2 widens_to rt1) [<interface_return_types_wider>]) ^(8midx rt1. flookup methods midx = Some(rt1) !8rt2. MSigsC(TE,`Object`)(midx,rt2) !(TE |- rt1 widens_to rt2) [<interface_return_types_wider_than_Object>]))";mode "inp wf_tyenv";//==// PART 2. Transitivity and Reflexivity for Wideningthm <widens_to-refl> [autorw]if "TE |- ty wf_type"then "TE |- ty widens_to ty";//--// Object is always a well-formed class, type, implements no interfaces// and has no superclasses.thm <wf_class-Object> [autorw]if "TE wf_tyenv" <TE_wf>then "TE |- `Object` wf_class";

A.3. WFENV.ART - CONSTRAINTS ON ENVIRONMENTS 149thm <wf_type-Object> [autorw]if "TE wf_tyenv"then "TE |- ObjectTy wf_type";thm <Object-implements-nothing> [autorw]if "TE wf_tyenv" <TE_wf>"TE |- i wf_interface"then ":(TE |- `Object` implements i)";thm <Object-subclass>[rw]if "TE wf_tyenv" <TE_wf>"TE |- C wf_class"then "TE |- `Object` subclass_of C $ C = `Object`";thm <Object-widens> [rw]if "TE wf_tyenv" <TE_wf>"TE |- rt wf_type"then "TE |- ObjectTy widens_to rt $ rt = ObjectTy";//--// widens_to is transitive. Non-trivial as we must// ensure confluence of the subtype graph.thm <widens_to-trans>if "TE wf_tyenv" <TE_wf>"TE |- ty1 wf_type""TE |- ty2 wf_type""TE |- ty3 wf_type""TE |- ty1 widens_to ty2" <a1>"TE |- ty2 widens_to ty3" <a2>then "TE |- ty1 widens_to ty3";//==// PART 3. Decomposition results for widening for types of particular forms//// e.g. The only subtypes of an array type are covariant array// types of the same dimension.thm <array-widens-lemma>"ty0 = ArrayTy(aty0) ^TE |- ty0 wf_type ^TE |- ty1 wf_type ^TE |- ty1 widens_to ty0! 9aty1.ty1 = ArrayTy(aty1) ^TE |- aty1 wf_type ^TE |- aty1 widens_to aty0";thm <prim-widens-lemma>"TE |- ty wf_type ^TE |- ty widens_to PrimTy(pty)! ty = PrimTy(pty)";thm <class-widens-lemma>if "TE wf_tyenv"

150 APPENDIX A. AN EXTRACT FROM THE DECLARE MODEL"TE |- ty wf_type""TE |- C wf_class""TE |- ty widens_to ClassTy(C)""C <> `Object`"then "9C'. TE |- C' subclass_of C ^TE |- C' wf_class ^ty = ClassTy(C')";thm <reference-widens-lemma>if "TE wf_tyenv""TE |- ty wf_type""TE |- ty widens_to RefTy(rt)"then "9rt'. ty = RefTy(rt')";//==// PART 4. Preservation of Visibility//--// Dependent typing of AllFields, MSigs etc.//// -- AllFields only finds wf. classes and wf. field types...// -- MSigs only finds well-formed method types...thm <FieldExists-wf>if "TE wf_tyenv" <TE_wf>"TE |- C wf_class""((C',f),ty) 2 FieldExists(TE,C)" <a>then "TE |- C' wf_class ^ TE |- ty wf_type";thm <FieldExists-finite>if "TE wf_tyenv" <TE_wf>"TE |- C wf_class" <x>then "finite (FieldExists(TE,C))";thm <AllFields-wf>if "TE wf_tyenv""TE |- C wf_class""((C',f),ty) 2 AllFields(TE,C)"then "TE |- C' wf_class ^ TE |- ty wf_type";thm <MSigsC-wf>if "TE wf_tyenv" <TE_wf>"TE |- C wf_class""MSigsC(TE,C)(midx,rt)" <a>"midx = (m,AT)"then "TE |- AT wf_types ^ TE |- rt wf_type";thm <MSigsI-wf>if "TE wf_tyenv" <TE_wf>"TE |- i wf_interface""MSigsI(TE,i)(midx,rt)" <a>"midx = (m,AT)"then "TE |- AT wf_types ^ TE |- rt wf_type";thm <MSigs-wf>if "TE wf_tyenv" <TE_wf>

A.3. WFENV.ART - CONSTRAINTS ON ENVIRONMENTS 151"ty = RefTy(refty)""TE |- ty wf_type""MSigs(TE,refty)((m,AT),rt)"then "TE |- AT wf_types ^ TE |- rt wf_type";//--// subclass_of preserves field existence (thoug not necessarily visibility)thm <inherited-fields-exist>if "TE |- C0 wf_class" <a>"TE |- C1 wf_class" "TE wf_tyenv" <TE_wf>"TE |- C1 subclass_of C0" <subclass>"fspec 2 AllFields(TE,C0)" <x>then "fspec 2 AllFields(TE,C1)" <y>;//--// subtyping preserves method visibility up to narrowing of return type.thm <class-inherited-class-methods-are-narrower>if "TE wf_tyenv" <TE_wf>"TE |- C0 wf_class""TE |- C1 wf_class""TE |- C1 subclass_of C0" <C1_subclass>"MSigsC(TE,C0)(midx,rt0)" <search>then "9rt1. MSigsC(TE,C1)(midx,rt1) ^TE |- rt1 wf_type ^TE |- rt1 widens_to rt0";thm <interface-inherited-interface-methods-are-narrower>if "TE wf_tyenv" <TE_wf>"TE |- i0 wf_interface""TE |- i1 wf_interface""TE |- i1 subinterface_of i0" <i1_subclass>"MSigsI(TE,i0)(midx,rt0)" <search>then "9rt1. MSigsI(TE,i1)(midx,rt1) ^TE |- rt1 wf_type ^TE |- rt1 widens_to rt0";thm <class-inherited-interface-methods-are-narrower>if "TE = (CE,IE)""TE wf_tyenv" <TE_wf>"TE |- C wf_class""TE |- i wf_interface""TE |- C implements i" <imp>"MSigsI(TE,i)(midx,rt0)" <search>then "9rt1. MSigsC(TE,C)(midx,rt1) ^TE |- rt1 wf_type ^TE |- rt1 widens_to rt0";thm <interface-inherited-Object-methods-are-narrower>if "TE wf_tyenv" <TE_wf>"TE |- i wf_interface""MSigsC(TE,`Object`)(midx,rt0)" <base>then "9rt1. MSigsI(TE,i)(midx,rt1) ^TE |- rt1 wf_type ^

152 APPENDIX A. AN EXTRACT FROM THE DECLARE MODELTE |- rt1 widens_to rt0";thm <array-inherited-Object-methods-are-identical>"TE wf_tyenv ^MSigsC(TE,`Object`)(m,mt)! MSigsA(TE)(m,mt)";thm <inherited-methods-exist>if "TE wf_tyenv""ty0 = RefTy(refty0)""ty1 = RefTy(refty1)""TE |- ty0 wf_type""TE |- ty1 wf_type""MSigs(TE,refty0)(midx,rt0)""TE |- ty1 widens_to ty0" <a>then "9rt1. MSigs(TE,refty1)(midx,rt1) ^TE |- rt1 wf_type ^TE |- rt1 widens_to rt0";//--// FieldExists only searches super classes.//thm <FieldExists-finds-subclasses>if "TE wf_tyenv""TE |- C wf_class""((Cf,f),ty) 2 FieldExists(TE,C)" <deriv>then "TE |- C subclass_of Cf";//--// AllFields does not find more than one field type// for a given field/class pair.thm <object-fields-unique-lemma>if "TE wf_tyenv" <TE_wf>"TE |- C wf_class""((Cf,f),ty1) 2 FieldExists(TE,C)" <deriv1>"((Cf,f),ty2) 2 FieldExists(TE,C)" <deriv2>then "ty1 = ty2";//--// And thus the graph found by AllFields form a partial function.thm <object-fields-form-graph>if "TE wf_tyenv" <TE_wf>"TE |- C wf_class"then "frel_is_graph (AllFields(TE,C))";//--// Object has no visible fields...thm <AllFields-Object>if "TE wf_tyenv" <TE_wf> then ":(x 2 AllFields(TE,`Object`))";

A.4. RSYNTAX.ART - SYNTAX OF JAVAR 153A.4 rsyntax.art - Syntax of JavaR//--// Syntax of JavaR - configurations of the abstract machine,// and structural operations on them.import psyntax widens;notation rels runtime;datatype rval =RPrim ":prim"| RAddr ":int option";type frame = ":(id |-?> rval)";datatype rexp =RValue ":rval"| RStackVar ":id"| RAccess ":rexp � rexp"| RField ":rexp � id � id"| RNewClass ":id � ((id � id) |-?> typ)"| RNewArray ":typ � rexp list"| RCall ":rexp � (id � argTy) � rexp list"| RBody ":rstmt � frame"and rstmt =RBlock ":rstmt list"| RIf ":rexp � rstmt � rstmt"| RWhile ":rexp � rstmt"| RReturn ":rexp"| RAssignToStackVar ":id � rexp"| RAssignToArray ":(rexp � rexp) � rexp"| RAssignToField ":(rexp � id � id) � rexp"| RExpr ":rexp";reserve C for ":id"and id for ":id"and prog for ":cprog"and mbody for ":cmethodbody"and stmts for ":rstmt list"and addr for ":int"and val for ":rval"and ty for ":typ";//--// Heap Objects, Heaps, State and Configurations//// The type stored in an array indicates the type of elements// stored in the array, not the type of the array itselfdatatype heapobj =OBJECT ":((id � id) |-?> rval) � id"| ARRAY ":typ�rval list";type heap = ":(int,heapobj)fpfun";type state = ":frame � heap";type 'a cfg = ":'a � state"

154 APPENDIX A. AN EXTRACT FROM THE DECLARE MODELreserve heap for ":heap";//--// Heap operationsdef "hoType(heapobj) =match heapobj withOBJECT(fldvals,C) -> ClassRefTy(C)| ARRAY(aty,vec) -> ArrayRefTy(aty)";def "sAlloc(heap,heapobj) =let addr = freshi(fdomain(heap))in (heap <?++ (addr,heapobj),addr)";//--// initial values during allocationdef "initial ty =match ty withRefTy rty -> RAddr(None)| PrimTy(pt) ->match pt withBoolTy -> RPrim(Bool(false))| CharTy -> RPrim(Char(mk_uchar(32I)))| ByteTy -> RPrim(Byte(mk_int8(0I)))| ShortTy -> RPrim(Short(mk_int16(0I)))| IntTy -> RPrim(Int(mk_int32(0I)))| VoidTy -> RPrim(Void)| LongTy -> RPrim(Long(mk_int64(0I)))| FloatTy -> RPrim(Float(mk_ieee32(0I)))| DoubleTy -> RPrim(Double(mk_ieee64(0I)))";// --// Define ground expressions, values etc.// What all good expressions aspire to be.//def "exp_ground exp = (9v. exp = RValue(v))";mode "exp_ground inp";def "exps_ground exps = all exp_ground exps";mode "exps_ground inp";def "stmts_ground(stmts) = null(stmts)";mode "stmts_ground inp";def "stmt_ground(stmt) = (9v. stmt = RExpr(RValue(v)))";mode "stmt_ground inp";// ---// Runtime type checking. This must be executable.// In principle we can return None for illegal typechecks,// thus allowing us to reason that these never happen.def "typecheck((TE,heap),sval,cell_ty) =

A.5. RSTATICS.ART - CONFORMANCE AND SOME PROOFS 155match sval withRPrim(pval) -> Some (9pt. cell_ty = PrimTy(pt) ^ prim_type(pval) = pt)| RAddr(None) -> Some (9rt. cell_ty = RefTy(rt))| RAddr(Some(addr)) ->match flookup(heap)(addr) withSome(heapobj) ->Some(TE |- RefTy(hoType(heapobj)) widens_to cell_ty)| None -> Some false";A.5 rstatics.art - Conformance and some proofs//---// Conformance for runtime structures,// and preservation of this under various operations.import psyntax rsyntax widens wfenv;notation rels rstatics;// A frame typing is the typing for local variables on the stack.type ftyping = ":id |-?> typ";// A heap typing is the typing for things in the heaptype htyping = ":int |-?> refTy";reserve TE for ":tyenv"and FT,FT0,FT1 for ":ftyping"and HT,HT0,HT1 for ":htyping"and frame for ":frame"and heap for ":heap"and C,id for ":id"and ty for ":typ"and refty for ":refTy"and stmts for ":rstmt list"and ST for ":ftyping ## htyping";def "TE |- FT wf_ftyping $8id ty. flookup(FT)(id) = Some(ty) !(TE |- ty wf_type [<rool>])";def "TE |- HT wf_htyping $(8addr refty. flookup(HT)(addr) = Some(refty) !(TE |- RefTy(refty) wf_type) [<rool>])";def "TE |- (FT,HT) wf_styping $(TE |- FT wf_ftyping [<frame>] ^TE |- HT wf_htyping [<heap>])";//---//lfp rval_conforms_to =<NullToRef> [autorw,automeson]// ---"(TE,HT) |- RAddr(None) rval_conforms_to RefTy(refty)"

156 APPENDIX A. AN EXTRACT FROM THE DECLARE MODEL<Addr> [autorw]"flookup(HT)(addr) = Some refty"// ---"(TE,HT) |- RAddr(Some(addr)) rval_conforms_to RefTy(refty)"<Prim> [autorw,automeson]"prim_type(p) = pt"// --"(TE,HT) |- RPrim(p) rval_conforms_to PrimTy(pt)"<Trans> []"(TE,HT) |- val rval_conforms_to ty' ^TE |- ty' wf_type ^TE |- ty' widens_to ty"// --"(TE,HT) |- val rval_conforms_to ty";//--// A heap conforms to a heap typing if:// -- All the objects in the heap have precisely the structure expected for// the type, including the correct runtime type tag.// -- All the values in the objects in heap conform w.r.t. the heap typing.// They may be narrower than their expected slots.def "((TE,HT) |- fldvals fldvals_conform_to C) [<derive>] $(8idx ty'. (idx,ty') 2 AllFields(TE,C) !(9val. flookup(fldvals)(idx) = Some(val) ^(TE,HT) |- val rval_conforms_to ty') [<rool>])";def "(E |- vec els_conform_to ty) [<derive>] $(8j. j < len(vec) !(E |- el(j)(vec) rval_conforms_to ty) [<rool>])";def "(E |- heapobj heapobj_conforms_to refty) [<derive>] $match heapobj withOBJECT(fldvals,C) ->(refty = ClassTy(C)) [<object-tag-matches>] ^(E |- fldvals fldvals_conform_to C) [<object-fields-conform>]| ARRAY(aty,vec) ->(refty = ArrayTy(aty)) [<array-tag-matches>] ^(E |- vec els_conform_to aty) [<array-elements-conform>]";def "(TE |- heap heap_conforms_to HT) [<derive>] $((fdomain heap = fdomain HT) [<domains-eq>] ^(8addr heapobj. flookup(heap)(addr) = Some(heapobj) !(9refty. flookup(HT)(addr) = Some(refty) ^((TE,HT) |- heapobj heapobj_conforms_to refty)) [<rool>]))";//--// Frame conformance -- all the values in the frame conform to// the given types w.r.t. the given heap typing (they may also be narrower).def "(E |- frame frame_conforms_to FT) [<derive>] $(fdomain FT = fdomain frame) [<frame-domains-eq> [rw]] ^(8id ty. flookup(FT)(id) = Some(ty) !(9val. flookup(frame)(id) = Some(val) ^

A.5. RSTATICS.ART - CONFORMANCE AND SOME PROOFS 157E |- val rval_conforms_to ty) [<stackvar-conforms>])";//--// Rules for expressions, statements, variables//// For various resons these relations are non-executable, e.g. we// cannot guess the return type of the body of an expression// (it changes during execution, and maybe indeterminate, e.g. if// the return value has been reduced to null).def rec "ralways_returns(stmt) =match stmt withRBlock(stmts) -> existsl ralways_returns stmts| RIf(e,stmt1,stmt2) -> ralways_returns(stmt1) ^ ralways_returns(stmt2)| RReturn(e) -> true| _ -> false";lfp rexp_conforms_to =<StackVar> "flookup(FT)(x) = Some(ty)"// ---"(TE,(FT,HT)) |- RStackVar(x) rexp_conforms_to ty"<Access> "(TE,ST) |- arr rexp_conforms_to ArrayTy(arrty) ^(TE,ST) |- idx rexp_conforms_to intTy"// --"(TE,ST) |- RAccess(arr,idx) rexp_conforms_to arrty"<Field> "(TE,ST) |- obj rexp_conforms_to ClassTy(C) ^TE |- C wf_class ^((C',f),ty) 2 AllFields(TE,C)"// --"(TE,ST) |- RField(obj,C',f) rexp_conforms_to ty"<Value> "(TE,HT) |- v rval_conforms_to et"// ---"(TE,(FT,HT)) |- RValue(v) rexp_conforms_to et"<NewClass> "TE |- C wf_class ^flds = fpfun_of_frel (AllFields(TE,C))"// ---"(TE,ST) |- RNewClass(C,flds) rexp_conforms_to ClassTy(C)"<NewArray>"TE |- aty wf_type ^(TE,ST) |- dims rexps_conform_to (replicate (len dims) intTy)"// ---"(TE,ST) |- RNewArray(aty,dims) rexp_conforms_to (mk_array_ty (len dims) aty)"<Call> "TE |- ty wf_type ^(TE,ST) |- e rexp_conforms_to ty ^MSigs(TE,ty)((m,AT),rt) ^(TE,ST) |- args rexps_conform_to AT"// --"(TE,ST) |- RCall(e,(m,AT),args) rexp_conforms_to rt"

158 APPENDIX A. AN EXTRACT FROM THE DECLARE MODEL<Body> "TE |- FT' wf_ftyping ^(TE,HT) |- frame frame_conforms_to FT' ^ST' = (FT',HT) ^(TE,ST',rt) |- stmt rstmt_conforms ^(rt <> voidTy ! ralways_returns(stmt))"// ---"(TE,(FT,HT)) |- RBody(stmt,frame) rexp_conforms_to rt"<Trans> "(TE,ST) |- exp rexp_conforms_to ty' ^TE |- ty' wf_type ^TE |- ty' widens_to ty"// --"(TE,ST) |- exp rexp_conforms_to ty"and rexps_conform_to =<Exps> "len(exps) = len(etys) ^(8j. j < len(exps) ! (TE,ST) |- el(j)(exps) rexp_conforms_to el(j)(etys))"// --"(TE,ST) |- exps rexps_conform_to etys"and rstmt_conforms =<AssignToStackVar> []"TE |- ty' wf_type ^(TE,ST) |- e rexp_conforms_to ty' ^ST = (FT,HT) ^flookup(FT)(id) = Some(ty) ^TE |- ty' widens_to ty"// ---"(TE,ST,rt) |- RAssignToStackVar(id,e) rstmt_conforms"<AssignToField> [automeson]"TE |- ty' wf_type ^(TE,ST) |- rexp rexp_conforms_to ty' ^TE |- C' wf_class ^(TE,ST) |- obj rexp_conforms_to ClassTy(C') ^((C,f),ty) 2 AllFields(TE,C') ^TE |- ty' widens_to ty"// ---"(TE,ST,rt) |- RAssignToField((obj,C,f),rexp) rstmt_conforms"<AssignToArray> [automeson]"TE |- ty wf_type ^(TE,ST) |- e rexp_conforms_to ty ^TE |- simpty wf_type ^(TE,ST) |- arr rexp_conforms_to ArrayTy(aty) ^(TE,ST) |- idx rexp_conforms_to intTy"// ---"(TE,ST,rt) |- RAssignToArray((arr,idx),e) rstmt_conforms"<If> [autorw,automeson]"(TE,ST,rt) |- tstmt rstmt_conforms ^

A.5. RSTATICS.ART - CONFORMANCE AND SOME PROOFS 159(TE,ST,rt) |- estmt rstmt_conforms ^(TE,ST) |- e rexp_conforms_to boolTy"// --"(TE,ST,rt) |- RIf(e,tstmt,estmt) rstmt_conforms"<Expr> [autorw,automeson]"TE |- ty wf_type ^(TE,ST) |- e rexp_conforms_to ty"// --"(TE,ST,rt) |- RExpr(e) rstmt_conforms"<Block> [autorw,automeson]"all (�stmt. (TE,ST,rt) |- stmt rstmt_conforms) stmts"// --"(TE,ST,rt) |- RBlock(stmts) rstmt_conforms"<Return> "(TE,VE) |- e rexp_conforms_to rt"// --"(TE,VE,rt) |- RReturn(e) rstmt_conforms"<While> "(TE,VE) |- exp rexp_conforms_to boolTy ^(TE,VE,rt) |- bod rstmt_conforms"// ---"(TE,VE,rt) |- RWhile(exp,bod) rstmt_conforms";thm <rexp_conforms_to-trans> []if "TE wf_tyenv" <TE_wf>"TE |- ST wf_styping" <ST_wf>"TE |- ty' wf_type""TE |- ty wf_type""(TE,ST) |- exp rexp_conforms_to ty'""TE |- ty' widens_to ty"then "(TE,ST) |- exp rexp_conforms_to ty";proof qed by <rexp_conforms_to.Trans>; end;thm <rexps_conform_to-trans> []if "TE wf_tyenv" <TE_wf>"TE |- ST wf_styping" <ST_wf>"ST = (FT,HT)""(TE,ST) |- exps rexps_conform_to tys'""TE |- tys' wf_types""TE |- tys wf_types""TE |- tys' tys_widen_to tys"then "(TE,ST) |- exps rexps_conform_to tys";proofconsider j st+ "len exps = len tys'" [autorw]+ "j < len exps"+ "(TE,ST) |- (el j exps) rexp_conforms_to (el j tys')" <a>- "(TE,ST) |- (el j exps) rexp_conforms_to (el j tys)"by <tys_widen_to>,<rexps_conform_to>,<goal>;qed by <rexp_conforms_to.Trans> [<a>,"(el j tys)"/ty],<wf_types>,<tys_widen_to>,<all>;end;

160 APPENDIX A. AN EXTRACT FROM THE DECLARE MODEL//--// Conformancs of configurationsdef "(TE |- (frame,heap) state_conforms_to (FT,HT)) [<derive>] $(TE |- heap heap_conforms_to HT) [<heap>] ^((TE,HT) |- frame frame_conforms_to FT) [<frame>]";def "(TE |- (exp,s) ecfg_conforms_to (ty,ST)) [<derive>] $(TE |- s state_conforms_to ST) [<state>] ^((TE,ST) |- exp rexp_conforms_to ty) [<term>] ";def "(TE |- (exps,s) escfg_conforms_to (tys,ST)) [<derive>] $(TE |- s state_conforms_to ST) [<state>] ^((TE,ST) |- exps rexps_conform_to tys) [<term>]";def "((TE,rt) |- (stmt,s) scfg_conforms_to ST) [<derive>] $(TE |- s state_conforms_to ST) [<state>] ^((TE,ST,rt) |- stmt rstmt_conforms) [<term>]";//--// Narrowing/enlarging between heap typingsdef "HT0 htyping_leq HT1 $(8addr. addr 2 fdomain HT0 !(flookup HT1 addr = flookup HT0 addr) [<rool> [rw]])";thm <htyping_leq-refl> [autorw,automeson] "HT htyping_leq HT";proof qed by <htyping_leq>; end;//---// State typingsdef "(FT0,HT0) styping_leq (FT1,HT1) $ FT0 = FT1 ^ HT0 htyping_leq HT1";thm <styping_leq-refl> [autorw,automeson] "ST styping_leq ST";proof qed by <styping_leq>; end;//--// Lemmas: as heap and frame typings get narrower, typing judgemsnts// remain identical.thm <val_conforms_to-mono-lemma>if "TE wf_tyenv""HT0 htyping_leq HT1""(TE,HT0) |- val rval_conforms_to val_ty" <hastype_in_HT0>then "(TE,HT1) |- val rval_conforms_to val_ty";proofproceed by rule induction on <hastype_in_HT0> with val,val_ty variable;case Prim: qed;case NullToRef: qed;case Addr: qed by <htyping_leq.rool>,<in_fdomain>,<rval_conforms_to.Addr>;case Trans: qed by <rval_conforms_to.Trans>;end;end;

A.5. RSTATICS.ART - CONFORMANCE AND SOME PROOFS 161thm <frame-mono-lemma>if "TE wf_tyenv""HT0 htyping_leq HT1""(TE,HT0) |- frame frame_conforms_to FT"then "(TE,HT1) |- frame frame_conforms_to FT";proofqed by <frame_conforms_to.derive> [<oblig>],<frame_conforms_to.stackvar-conforms>,<frame_conforms_to.frame-domains-eq>,<val_conforms_to-mono-lemma>;end;thm <heapobj-mono-lemma>if "TE wf_tyenv""HT0 htyping_leq HT1""(TE,HT0) |- heapobj heapobj_conforms_to refty"then "(TE,HT1) |- heapobj heapobj_conforms_to refty";proofqed by structcases("heapobj"),<heapobj_conforms_to>,<fldvals_conform_to>,<els_conform_to>,<val_conforms_to-mono-lemma>;end;thmif "TE wf_tyenv""ST0 styping_leq ST1"then <exp-mono-lemma>if "(TE,ST0) |- exp rexp_conforms_to ty" <exp_conforms_to>then "(TE,ST1) |- exp rexp_conforms_to ty"and <exps-mono-lemma>if "(TE,ST0) |- exps rexps_conform_to tys" <exps_conform_to>then "(TE,ST1) |- exps rexps_conform_to tys"and <stmt-mono-lemma>if "(TE,ST0,rt) |- stmt rstmt_conforms" <stmt_conforms>then "(TE,ST1,rt) |- stmt rstmt_conforms";proofproceed by weak rule induction on<exp_conforms_to> with exp,ty,ST0,ST1 variable,<exps_conform_to> with exps,tys,ST0,ST1 variable,<stmt_conforms> with stmt,ST0,ST1,rt variable;case StackVar: qed by <styping_leq>, <rexp_conforms_to.StackVar>;case Access: qed by <rexp_conforms_to.Access> ;case Field: qed by <rexp_conforms_to.Field>;case Value: qed by <val_conforms_to-mono-lemma>, <styping_leq>;case NewClass: qed;case NewArray: qed by <rexp_conforms_to.NewArray>;case Call: qed by <rexp_conforms_to.Call>;case Trans: qed by <rexp_conforms_to.Trans>;case Exps: qed by <rexps_conform_to.Exps>;case Body:qed by structcases("ty"),<rexp_conforms_to.Body> ["TE","ty"],<frame-mono-lemma>, <styping_leq>,<pair_forall_elim>;

162 APPENDIX A. AN EXTRACT FROM THE DECLARE MODELcase AssignToStackVar:qed by <rstmt_conforms.AssignToStackVar>,<styping_leq>,<pair_forall_elim>;case AssignToField: qed by <rstmt_conforms.AssignToField>;case AssignToArray: qed by <rstmt_conforms.AssignToArray>;case If: qed by <rstmt_conforms.If>;case While: qed by <rstmt_conforms.While>;case Expr: qed by <rstmt_conforms.Expr>;case Return: qed by <rstmt_conforms.Return>;case Block: qed by <rstmt_conforms.Block>, <all>;end;end;//--// Various operations on the state produce a narrower, conformant state.// Allocation first.//// First prove "initial" creates values that conformthm <initial-values-conform>if "TE |- ty wf_type"then "(TE,HT) |- initial(ty) rval_conforms_to ty";proofconsider pt st "ty = PrimTy(pt)"by <initial>,<goal>,structcases("ty"),<rval_conforms_to.NullToRef> ["TE","HT"];qed by structcases("pt"),<initial>,<rval_conforms_to> ["initial(ty)","ty"],<prim_type>;end;//--// Simple allocation preserves conformance, if all the conditions are right.//thm <object-alloc-conforms-lemma>if "TE wf_tyenv""TE |- ST0 wf_styping""TE |- C wf_class""flds = fpfun_of_frel (AllFields(TE,C))""fldvals = initial o_f flds""heapobj = OBJECT(fldvals,C)""sAlloc(heap0,heapobj) = (heap1,addr1)""TE |- s0 state_conforms_to ST0""s0 = (frame0,heap0)""s1 = (frame0,heap1)"then "9ST1. TE |- ST1 wf_styping ^TE |- s1 state_conforms_to ST1 ^flookup(snd(ST1))(addr1) = Some(ClassTy(C)) ^ST0 styping_leq ST1" <oblig>;proofhave "8fld ty. (fld,ty) 2 AllFields(TE,C) ! TE |- ty wf_type" <fields_wf>by <AllFields-wf>;

A.5. RSTATICS.ART - CONFORMANCE AND SOME PROOFS 163let "ST0 = (FT0,HT0)";let "HT1 = HT0 <?++ (addr1,ClassTy(C))";have "HT0 htyping_leq HT1" // <HT0_leq>by <htyping_leq>,<sAlloc>,<freshi> ["fdomain heap0"],<state_conforms_to>,<heap_conforms_to>;have "(TE,HT1) |- fldvals fldvals_conform_to C"by <fields_wf>,<object-fields-form-graph> ["TE","C"],<initial-values-conform> ["TE","HT1"],<fldvals_conform_to>,<frel_is_graph_rool> ["AllFields(TE,C)"/R];have "TE |- heap1 heap_conforms_to HT1"by <heap_conforms_to>,<sAlloc>, <freshi> ["fdomain heap0"],<eq_fsets>,<state_conforms_to>,<heapobj-mono-lemma>,<heapobj_conforms_to>;have "TE |- HT1 wf_htyping" by <wf_styping>,<wf_htyping>;qed by <wf_styping>, <state_conforms_to>,<oblig> ["(FT0,HT1)"], <frame-mono-lemma>, <styping_leq>;end;

164 APPENDIX A. AN EXTRACT FROM THE DECLARE MODEL

Bibliography[AGMT98] J. S. Aitken, P. Gray, T. Melham, and M. Thomas. Interactive theo-rem proving: An empirical study of user activity. Journal of SymbolicComputation, 25(2):263{284, February 1998.[And97] James H. Andrews. Executing formal speci�cations by translation tohigher order logic programming. In Elsa L. Gunter and Amy Felty, ed-itors, Theorem Proving in Higher Order Logics, Lecture Notes in Com-puter Science, pages 17{32. Springer-Verlag, 1997.[Bai98] Anthony Bailey. The Machine-checked literate formalisation of algebrain type theory. PhD thesis, Department of Computer Science, Universityof Manchester, 1998.[BM81] R. S. Boyer and J Strother Moore. Integrating decision procedures intoheuristic theorem provers. Technical report, Univ. of Texas, 1981.[BN98] F. Baader and T. Nipkow. Term Rewriting and all that. CambridgeUniversity Press, Cambridge, 1998.[Bou92] R. Boulton. Boyer-Moore automation for the HOL system. In L.J.M.Claesen and M.J.C. Gordon, editors, International Workshop on HigherOrder Logic Theorem Proving and its Applications, pages 133{145, Leu-ven, Belgium, September 1992. IFIP TC10/WG10.2, North-Holland.IFIP Transactions.[Bou95] R. J. Boulton. Combining decision procedures in the HOL system. Lec-ture Notes in Computer Science, 971:75{??, 1995.[Bou97] R. J. Boulton. A tool to support formal reasoning about computerlanguages. Lecture Notes in Computer Science, 1217:81, 1997.[CM92] J. Camilleri and T.F. Melham. Reasoning with inductively de�ned re-lations in the HOL theorem prover. Technical Report 265, University ofCambridge Computer Laboratory, August 1992.[COR+95] Judy Crow, Sam Owre, John Rushby, Natarajan Shankar, and Man-dayam Srivas. A tutorial introduction to PVS. In Proceedings of the165

166 BIBLIOGRAPHYWorkshop on Industrial-Strength Formal Speci�cation Techniques, BacoRaton, Florida, 1995.[DE97a] S. Drossopoulou and S. Eisenbach. Java is type safe | probably. LectureNotes in Computer Science, 1241:389�, 1997.[DE97b] Sophia Drossopoulou and Susan Eisenbach. Is the Java type systemsound? (version 2.01). Technical report, Imperial College, Universityof London, Cambridge, CB2 3QG, U.K., January 1997. This versionwas distributed on the Internet. Please contact the authors if a copy isrequired for reference.[DE98] Sophia Drossopoulou and Susan Eisenbach. What is Java binary com-patibility? Accepted for publication at Object Oriented Programming,Systems, Languages and Applications, Vancouver, Canada, 1998.[DFW96] Drew Dean, Edward W. Felten, and Dan S. Wallach. Java security:from HotJava to Netscape and beyond. In IEEE, editor, 1996 IEEESymposium on Security and Privacy: May 6{8, 1996, Oakland, Califor-nia, pages 190{200, 1109 Spring Street, Suite 300, Silver Spring, MD20910, USA, 1996. IEEE Computer Society Press.[FGMP90] Amy Felty, Elsa Gunter, Dale Miller, and Frank Pfenning. �prolog. InM. E. Stickel, editor, Proceedings of the 10th International Conferenceon Automated Deduction, volume 449 of LNAI, pages 682{681, Kaiser-slautern, FRG, July 1990. Springer Verlag.[Fro93] Jacob Frost. A Case Study of Co-induction in Isabelle HOL. TechnicalReport 308, University of Cambridge, Computer Laboratory, August1993.[GJS96] James Gosling, Bill Joy, and Guy Steele. The Java Language Speci�ca-tion. Addison-Wesley, 1996.[GM93] M.J.C Gordon and T.F Melham. Introduction to HOL: A TheoremProving Assistant for Higher Order Logic. Cambridge University Press,1993.[GM95] E. Gunter and S. Maharaj. Studying the ML module system in HOL.The Computer Journal, 38(2):142{151, 1995.[GMW77] Michael Gordon, R. Milner, and Christopher Wadsworth. EdinburghLCF. Internal Report CSR-11-77, University of Edinburgh, Departmentof Computer Science, September 1977.[Gun94] Elsa L. Gunter. A broader class of trees for recursive type de�nitionsfor HOL. In Je�ery Joyce and Carl Seger, editors, Higher Order LogicTheorem Proving and Its Applications, volume 780 of Lecture Notes inComputer Science, pages 141{154. Springer-Verlag, February 1994.

BIBLIOGRAPHY 167[Har95] J. Harrison. Inductive De�nitions: Automation and Application. In E.T.Schubert, P.J. Windley, and J. Alves-Foss, editors, 8th InternationalWorkshop on Higher Order Logic Theorem Proving and its Applications,volume 971 of Lecture Notes in Computer Science, pages 200{213, AspenGrove, Utah, USA, September 1995. Springer-Verlag.[Har96a] J. Harrison. HOL light: A tutorial introduction. In M. Srivas andA. Camilleri, editors, First international conference on formal methodsin computer-aided design, volume 1166 of Lecture Notes in ComputerScience, pages 265{269, Palo Alto, CA, USA, November 1996. SpringerVerlag.[Har96b] J. Harrison. A Mizar Mode for HOL. In J. Von Wright, J. Grundy, and J.Harrison, editors, Ninth international Conference on Theorem Provingin Higher Order Logics TPHOL, volume 1125 of Lecture Notes in Com-puter Science, pages 203{220, Turku, Finland, August 1996. SpringerVerlag.[Har97a] John Harrison. First order logic in practice. In Maria Paola Bonacinaand Ulrich Furbach, editors, Int. Workshop on First-Order TheoremProving (FTP'97), RISC-Linz Report Series No. 97-50, pages 86{90.Johannes Kepler Universit�at, Linz (Austria), 1997.[Har97b] John R. Harrison. Proof style. Technical Report 410, University ofCambridge Computer Laboratory, Cambridge, CB2 3QG, U.K., January1997.[HJ89] Ian J. Hayes and Cli� B. Jones. Speci�cations are not (necessarily) ex-ecutable. Technical Report UMCS-90-12-1, Department of ComputerScience, University of Manchester, Manchester M13 9PL, England, De-cember 1989.[Hut90] Matthew Hutchins. Machine assisted reasoning about Standard MLusing HOL, November 1990. Australian National University HonoursThesis.[Inw96] Myra Van Inwegen. The machine-assisted proof of programming lan-guage properties. PhD thesis, University of Pennsylvania, December1996.[Jac88] M. I. Jackson. An overview of VDM. SafetyNet, 2, September 1988.[JDD94] J. Joyce, N. Day, and M. Donat. S: A machine readable speci�cationnotation based on higher order logic. Lecture Notes in Computer Science,859:285�, 1994.

168 BIBLIOGRAPHY[JH94] Sverker Janson and Seif Haridi. An introduction to AKL, A multi-paradigm programming language. In B. Mayoh, E. Tyugu, and J. Pen-jaam, editors, Constraint Programming: Proceedings 1993 NATO ASIParnu, Estonia, NATO Advanced Science Institute Series, pages 411{443. Springer, 1994.[JJM+95] J. Gulmann, J. Jensen, M. J�rgensen, N. Klarlund, T. Rauhe, and A.Sandholm. Mona: Monadic second-order logic in practice. In U.H. Eng-berg, K.G. Larsen, and A. Skou, editors, TACAS, pages 58{73. SpringerVerlag, LNCS, 1995.[KB70] D. E. Knuth and P. B. Bendix. Simple word problems in universalalgebra. In J. Leech, editor, Computational problems in abstract algebra,pages 263{297. Pergamon Press, Elmsford, N.Y, 1970.[KM96a] Matt Kaufmann and J. Strother Moore. ACL2: An industrial strengthversion of Nqthm. COMPASS | Proceedings of the Annual Confer-ence on Computer Assurance, pages 23{34, 1996. IEEE catalog number96CH35960.[KM96b] Matt Kaufmann and J Strother Moore. ACL2: An industrial strengthversion of nqthm. In Compass'96: Eleventh Annual Conference on Com-puter Assurance, page 23, Gaithersburg, Maryland, 1996. National In-stitute of Standards and Technology.[Lov68] D. W. Loveland. Mechanical Theorem Proving by Model Elimination.Journal of the ACM, 15:236{251, 1968.[LP92] Zhaohui Luo and Robert Pollack. The LEGO proof development system:A user's manual. Technical Report ECS-LFCS-92-211, University ofEdinburgh, May 1992.[LY97] Tim Lindholm and Frank Yellin. The Java Virtual Machine Speci�ca-tion. The Java Series. Addison-Wesley, Reading, MA, USA, January1997.[Mau91] M. Mauny. Functional programming using CAML. Technical ReportRT-0129, National Institute for Research in Computer and Control Sci-ences (INRIA), 1991.[MBBC95] Z. Manna, N. Bjoerner, A. Browne, and E. Chang. STeP: The StanfordTemporal Prover. Lecture Notes in Computer Science, 915:793�, 1995.[McA89] David McAllester. Ontic. The MIT Press, Cambridge, MA, 1989.[ME93] M. van Inwegen and E.L. Gunter. HOL-ML. In J.J. Joyce and C.-J.H.Seger, editors, International Workshop on Higher Order Logic TheoremProving and its Applications, volume 780 of Lecture Notes in Computer

BIBLIOGRAPHY 169Science, pages 59{73, Vancouver, Canada, August 1993. University ofBritish Columbia, Springer-Verlag, published 1994.[Mel88] Thomas F. Melham. Automating recursive type de�nitions in higherorder logic. Technical Report 146, University of Cambridge ComputerLaboratory, Cambridge CB2 3QG, England, September 1988.[Mel91] T. F. Melham. A mechanized theory of the �-calculus in HOL. InInformal Proceedings of the Second Logical Framework Workshop, May1991.[Mel92] Thomas F. Melham. The HOL logic extended with quanti�cation overtype variables. In L.J.M. Claesen and M.J.C. Gordon, editors, In-ternational Workshop on Higher Order Logic Theorem Proving andits Applications, pages 3{18, Leuven, Belgium, September 1992. IFIPTC10/WG10.2, North-Holland. IFIP Transactions.[Mil80] Robin Milner. A Calculus for Communicating Systems, volume 92 ofLecture Notes in Computer Science. Springer-Verlag, Berlin, 1980.[MLP79] Richard A. De Millo, Richard J. Lipton, and Alan J. Perlis. Socialprocesses and proofs of theorems and programs. Communications of theACM, 22(5):271{280, May 1979.[MS97] Muller and Slind. Treating partiality in logic of total functions. COMPJ:The Computer Journal, 40, 1997.[MTDR88] M.J.C. Gordon, T.F. Melham, D. Sheperd, and R. Boulton. The UN-WIND Library. Manual part of the HOL system, 1988.[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. TheDe�nition of Standard ML (Revised). The MIT Press, 1997.[MW97] William McCune and Larry Wos. Otter|the CADE-13 competitionincarnations. Journal of Automated Reasoning, 18(2):211{220, April1997.[Nes92] M. Nesi. Formalizing a modal logic for CSS in the HOL theorem prover.In L.J.M. Claesen and M.J.C. Gordon, editors, International Workshopon Higher Order Logic Theorem Proving and its Applications, pages 279{294, Leuven, Belgium, September 1992. IFIP TC10/WG10.2, North-Holland. IFIP Transactions.[Nip89] Tobias Nipkow. Equational reasoning in Isabelle. Science of ComputerProgramming, 12(2):123{149, July 1989.[Nip96] T. Nipkow. More Church-Rosser proofs (in Isabelle/HOL). LectureNotes in Computer Science, 1104:733�, 1996.

170 BIBLIOGRAPHY[NL95] William Newman and Mik Lamming. Interactive Systems Design.Addison-Wesley, December 1995.[NN96] D. Nazareth and T. Nipkow. Formal veri�cation of algorithm W: Themonomorphic case. In J. Von Wright, J. Grundy, and J. Harrison, edi-tors, Ninth international Conference on Theorem Proving in Higher Or-der Logics TPHOL, volume 1125 of Lecture Notes in Computer Science,pages 331{346, Turku, Finland, August 1996. Springer Verlag.[NO79] C. G. Nelson and D. C. Oppen. Simpli�cations by cooperating deci-sion procedures. ACM Transactions on Programming Languages andSystems, 1(2), 1979.[NO80] Greg Nelson and Derek C. Oppen. Fast decision procedures based oncongruence closure. Journal of the ACM, 27(2):356{364, April 1980.[Nor98] Michael Norrish. C Formalized in HOL. PhD thesis, University of Cam-bridge, August 1998. Submitted for examination.[Nv98] T. Nipkow and D. von Oheimb. Java`ight is type-safe | de�nitely. In25th ACM Symp. Principles of Programming Languages. ACM Press,1998.[Pau90] L. C. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi,editor, Logic and Computer Science, pages 361{385. Academic Press,1990.[Pau94] L.C. Paulson. A �xedpoint approach to implementing (co)inductivede�nitions. In Alan Bundy, editor, Proceedings of the 12th InternationalConference on Automated Deduction, volume 814 of LNAI, pages 148{161, Berlin, June/July 1994. Springer.[Pau97] L.C. Paulson. Proving properties of security protocols by induction.In PCSFW: Proceedings of The 10th Computer Security FoundationsWorkshop. IEEE Computer Society Press, 1997.[PB97] Roly Perera and Peter Bertelsen. The uno�cial javabug report, June 1997. Published on the WWW athttp://www2.vo.lu/homepages/gmid/java.htm.[Plo91] Gordon D. Plotkin. A structural approach to operational semantics.Technical report, Computer Science Department, Aarhus University,DK-8000 Aarhus C. Denmark, September 1991.[PM93] Chr. Paulin-Mohring. Inductive de�nitions in the system Coq; rules andproperties. Lecture Notes in Computer Science, 664:328�, 1993.

BIBLIOGRAPHY 171[PR98] F. Pessaux and F. Rouaix. The O'Caml-Tk implementation,1998. From the O'Caml system distribution., available athttp://pauillac.inria.fr/caml.[Qia97] Zhenyu Qian. A Formal Speci�cation of Java Virtual Machine Instruc-tions. Technical report, Universit�at Bremen, FB3 Informatik, D-28334Bremen, Germany, November 1997.[Ras95] Ole Rasmussen. The Church-Rosser theorem in Isabelle: A proof portingexperiment. Technical Report 364, University of Cambridge, ComputerLaboratory, March 1995.[Rud92] P. Rudnicki. An overview of the MIZAR project, 1992. Unpub-lished; available by anonymous FTP from menaik.cs.ualberta.ca aspub/Mizar/Mizar Over.tar.Z.[Rus93] John Rushby. Formal methods and the certi�cation of critical systems.Technical Report SRI-CSL-93-7, Computer Science Laboratory, SRI In-ternational, Menlo Park, CA, December 1993. Also issued under the titleFormal Methods and Digital Systems Validation for Airborne Systems asNASA Contractor Report 4551, December 1993. A book based on thismaterial will be published by Cambridge University Press in 1998/9.[SA98] R. Stata and M. Abadi. A type system for Java bytecode subroutines. In25th Annual ACM Symposium on Principles of Programming Languages,pages 149{160, January 1998.[SHC96] Zoltan Somogyi, Fergus Henderson, and Thomas Conway. The execu-tion algorithm of Mercury, an e�cient purely declarative logic program-ming language. Journal of Logic Programming, 29(1{3):17{64, October{November 1996.[Sho84] R.E. Shostak. Deciding Combinations of Theories. Journal of the ACM,31(1):1{12, January 1984.[Sli96] K. Slind. Function de�nition in higher order logic. In J. Von Wright,J. Grundy, and J. Harrison, editors, Ninth international Conferenceon Theorem Proving in Higher Order Logics TPHOL, volume 1125 ofLecture Notes in Computer Science, pages 381{398, Turku, Finland,August 1996. Springer Verlag.[Spi67] Michael Spivak. Calculus. W. A. Benjamin, Inc., New York, 1967.[Spi88] J. M. Spivey. Understanding Z. Cambridge Tracts in Theoretical Com-puter Science 3. Cambridge University Press, 1988. ISBN 0-521-33429-2.[SS97] Geo� Sutcli�e and Christian B. Suttner. The CADE-13 ATP systemcompetition. Journal of Automated Reasoning, 18(2):137{138, April1997.

172 BIBLIOGRAPHY[Sta95] Richard Stallman. GNU Emacs manual. Free Software Foundation, 675Mass Ave, Cambridge, MA 02139, USA, Tel: (617) 876-3296, USA, 11th,Emacs version 19.29 edition, June 1995. Includes GNU Emacs referencecard.[Sym93] D. Syme. Reasoning with the Formal De�nition of Standard ML in HOL.In J.J. Joyce and C.-J.H. Seger, editors, International Workshop onHigher Order Logic Theorem Proving and its Applications, volume 780of Lecture Notes in Computer Science, pages 43{59, Vancouver, Canada,August 1993. University of British Columbia, Springer-Verlag, published1994. ftp://ftp.cl.cam.ac.uk/hvg/papers/MLinHOL.hug93.ps.gz.[Sym95] D. Syme. A new interface for HOL | ideas, issues and implementation.Lecture Notes in Computer Science, 971:324{??, 1995.[Sym97a] Don Syme. DECLARE: A prototype declarative proof system for higherorder logic. Technical Report 416, University of Cambridge ComputerLaboratory, Cambridge, CB2 3QG, U.K., March 1997.[Sym97b] Don Syme. Proving Java type soundness. Technical Report 427, Com-puter Laboratory, Univeristy of Cambridge, June 1997.[Tar55] A. Tarski. A �xed point theorem and its applications. Paci�c J. Math.,pages 285{309, 1955.[Typ98] Types mailing list archive, 1998. Available athttp://www.cs.indiana.edu/types on the WWW.[WF94] Andrew K. Wright and Matthias Felleisen. A syntactic approach totype soundness. Information and Computation, 115(1):38{94, November1994.[Wil70] Stephen Willard. General Topology. Addison-Wesley, New York, 1970.[WLB98] Tim Wahls, Gary T. Leavens, and Albert L. Baker. Executing formalspeci�cations with constraint programming. Technical Report 97-12a,Department of Computer Science, Iowa State University, 226 Atanaso�Hall, Ames, Iowa 50011, August 1998. Available by anonymous ftp fromftp.cs.iastate.edu or by e-mail from almanac@cs.iastate.edu.

Index:imp, 106vclass , 106vintf , 106�, 106ACL2, 2, 7active method invocations, 117AKL, 39automated reasoning, 2, 71{87feedback, 85integration, 83interface, 83requirements, 71{73backward reasoning, 46big step rewrite system, 113Boyer-Moore prover, 42, 85, 87brevity, 8, 42CaML-light, 38cases by ..., 47clarity, 134co-induction, 60con�gurations, 113, 113, 125conformance, 121, 126, 134for con�gurations, 125for frames, 123for heaps, 123for terms, 123for values, 122consider ... by ..., 47constraint based programming, 39datatypes, 25decision procedures, 76declarative proof, 41{69, 133, 137constructs, 44{63

decomposition and enrichment, 42,46{49induction, 53{63justi�cations, 49{53principles, 41{44role in case study, 133simplicity, 8declarative speci�cation, 29declarative theorem proving, 1, 2, 7, 8case study, 99{135costs and bene�ts, 8{10tools and techniques, 21{95Declare, 1, 2, 7, 8, 9, 23, 24, 26{29,34, 41, 44, 76{83, 90, 99, 105{108, 113, 115, 119, 121, 126,129, 130case study, 99{135code generation, 38example Java proofs, 128induction, 55standard basis, 29tutorial introduction, 10{18decomposition, 42, 46de�nitions, 25discarding facts, 62enrichment, 42, 46explicit resolutions, 51feedback, 52, 56, 68, 72from automated engine, 18, 50, 85�xed points, 26{28formal checking, 1, 4forward reasoning, 46frame typing, 122frames, 113173

174 INDEXfuture work, 138generic theorem proving, see Isabellegrinding, 80ground reasoning, 76ground terms, 115have ... by ..., 47heap typing, 122heaps, 113higher order logic, 22HOL, 2, 5, 6, 8, 21, 23, 28, 29, 42, 43,45, 49, 54, 58, 63{67, 72, 77,81, 82, 87, 92, 93HOL-lite, 29, 45, 65, 80, 81, 87IDE, 89ihyp macros, 42ihyp macros, 61implements relation, 106induction, 53{63by decomposition, 55{56example in Declare, 15in Declare, 57{58in tactic proof, 54mutual recursion, 62inductive relations, see �xed pointsinstantiations, 50interactive development environment,89Isabelle, 2, 5, 8, 21, 23, 26{28, 32, 42,43, 58, 63{68, 77, 80{82, 84,87, 135, 138Javaarrays, 116, 118con�gurations, 113conformance, 121example lemmas, 128example proofs, 128�elds, 116, 118, 128implements relation, 106liveness, 125method call, 117, 127method lookup, 127

model in Declare, 119redex rules, 116runtime semantics, 113runtime typechecking, 118, 118, 127safety, 125side e�ects, 127, 133statements, 118subclass relation, 106subinterface relation, 106term rewrite system, 115type environments, 104type soundness, 125well-formed types, 105widening, 106, see wideningJava Virtual Machine, 135, 139JavaA, 100, 102, 104, 113, 126, 127JavaR, 100, 102, 115, 121, 127, 133JavaS , 99, 102, 104, 108, 111, 113, 119,121, 126, 133, 138static semantics, 112justi�cations, 49{53labelling, 29{33Lambda Prolog, 39LCF, 6, 6, 11, 23, 26, 50, 63, 80let ... = ..., 47liveness, 125logical environment, 42logical foundations, 21{23logic of description, 23logic of implementation, 23maintainability, 134Mercury, 34example translations, 35expressions, 35modes, 34predicates, 34static analyses, 34types, 34method call, 117minimal support, 30Mizar, 67{69model elimination, 82

INDEX 175obviousness, 73Ontic, 73operational semantics, 3Otter, 72partial functions, 28pattern matching, 24pragmas, 24for automated engine, 84for code generation, 35for induction, 53for justi�cations, 53proof description, 2, 41proof re�nement, 134PVS, 2, 8, 22, 23, 26, 28, 29, 42, 43,65, 80{82, 85, 87, 105re-usability, 9readability, 9recursive functions, 28redex rules, 116resolutions, 51rewriting, 77robustness, 9, 134S, 39safety, 125second order logic, 22second order schemas, 53{63small step rewrite system, 113solving, 79speci�cation, 2, 21{29state typing, 122strong induction, 60structured operational semantics, 1, 3sts ... by ..., 47subclass relation, 106subinterface relation, 106subtyping, see wideningtactic proof, 63{67induction in, 54sensitivity to orderings, 8term rewrite system, 115type directed instantiations, 50

type environments, 104type soundness, 4, 99, 100, 106, 121,125validation, 2, 12, 33{39weak induction, 60well-formed types, 105widening, 104, 106, 126Z, 38

