
★ Assembly instructions

★ Assignment #2

System calls

Blobfish

Blobfish: Mr Blobby

uglyanimalsoc.com

http://uglyanimalsoc.com
http://uglyanimalsoc.com

Blobfish at the sea bottom

https://pl.wikipedia.org/wiki/Psychrolutes_marcidus#/media/File:Two_Psychrolutes_marcidus.jpg

1200 m

https://pl.wikipedia.org/wiki/Psychrolutes_marcidus#/media/File:Two_Psychrolutes_marcidus.jpg

Don’t Be a Blobfish!

https://www.urbandictionary.com/define.php?term=blobfish

https://www.urbandictionary.com/define.php?term=blobfish

Be With a Blobfish!

https://www.hashtagcollectibles.com/collections/blobfish/products/bath-time-blobby

https://www.hashtagcollectibles.com/collections/blobfish/products/bath-time-blobby

Be With a Blobfish!

https://www.hashtagcollectibles.com/collections/blobfish/products/blobfish-slippers

https://www.hashtagcollectibles.com/collections/blobfish/products/blobfish-slippers

Typhlonus nasus: faceless fish

https://pl.wikipedia.org/wiki/Psychrolutes_marcidus#/media/File:Two_Psychrolutes_marcidus.jpg

5000 m

https://pl.wikipedia.org/wiki/Psychrolutes_marcidus#/media/File:Two_Psychrolutes_marcidus.jpg

★ Assembly instructions

★ Assignment #2

System calls

Why?

Why?

compatibility

Why?

compatibility users

Why?

compatibility users

Protection rings

ring 3

ring 0

What about rings 1 and 2?

kernel

users

User space

User Space

0x00007fffffffffff

0x0000000000000000

128 TiB

User space

Kernel Space

User Space

0x00007fffffffffff

0x0000000000000000

0xffffffffffffffff

0xffff800000000000

128 TiB

128 TiB

User space

Kernel Space

User Space

0x00007fffffffffff

0x0000000000000000

0xffffffffffffffff

0xffff800000000000

128 TiB

128 TiB

> 16 000 000 TiB

What-and-why?
Operating systems offer processes running in User Mode a set of interfaces to interact
with hardware devices such as the CPU, disks, printers, and so on.

System call

brk()

POSIX APIs (e.g. libc)

What-and-why?
Operating systems offer processes running in User Mode a set of interfaces to interact
with hardware devices such as the CPU, disks, printers, and so on.

malloc() calloc() free()

System call

brk()

What-and-why?

free(a);a user program

What-and-why?

free(a);a user program

int 0x80libc

What-and-why?

free(a);a user program

int 0x80libc

find the correct syscall and prepare for itsystem_call
handler

What-and-why?

free(a);a user program

int 0x80libc

execute the syscalla service
routine

find the correct syscall and prepare for itsystem_call
handler

What-and-why?

free(a);a user program

int 0x80libc

execute the syscalla service
routine

find the correct syscall and prepare for itsystem_call
handler

ret_from_sys_call()
system_call

handler

Efficiency

Results of a syscall are cached, e.g.: getpid()

Operations are vectorized, e.g.: readv()

https://en.wikipedia.org/wiki/Vectored_I/O

https://manybutfinite.com/post/system-calls/

The less switching, the better.

https://en.wikipedia.org/wiki/Vectored_I/O
https://manybutfinite.com/post/system-calls/

Examples
Process Management
fork, waitpid, exit, ptrace…

Signals
sigaction, sigreturn, kill, alarm, pause…

File Management
create, open, seek, read, write, stat, rename…

File System Management
mkdir, link, unlink, mount, chdir, chroot…

Protection
chmod, setuid, chown, umask…

Time Management
time, stime, utime…

Assignment #3

Add a system call to the Process Manager server:

int pstree(pid_t pid, int uid)

It should print a tree of the process <pid> that belongs to a user <uid>:

187

---188

------191

---189

---190

where processes are presented in ascending order.

Assignment #3

Add a system call to the Process Manager server:

int pstree(pid_t pid, int uid)

★ Add a syscall number (and update the total number):
/usr/src/minix/include/minix/callnr.h

Assignment #3
★ Add a library function:

/usr/src/lib/libc/misc/pstree.c

★ Modify the Makefile:
/usr/src/minix/servers/pm/Makefile

/usr/src/minix/servers/pm/proto.h

★ Add the declaration:

usr/src/minix/servers/pm/table.c

★ Bind implementation and declaration:

/usr/src/minix/servers/pm/pstree.c

★ Implement the syscall itself:

Assignment #3

struct mproc *ith_proc =

&mproc[i]

#include

"mproc.h"

/servers/pm/mproc.h

Assignment #3
if uid or pid is invalid then

it is not an error; just print nothing

Assignment #3

What uid should be taken into account:

effective or real?

if uid or pid is invalid then

it is not an error; just print nothing

Assignment #3

What uid should be taken into account:

effective or real?

if uid or pid is invalid then

it is not an error; just print nothing

In what situations should the program return -1?

Assignment #3

What uid should be taken into account:

effective or real?

if uid or pid is invalid then

it is not an error; just print nothing

In what situations should the program return -1?

How to sort the processes?

Assignment #3

What uid should be taken into account:

effective or real?

if uid or pid is invalid then

it is not an error; just print nothing

In what situations should the program return -1?

How to sort the processes?

How to get the user’s group id?

Assignment #3

★ create your solution with the command:

$ diff -rupN <original>/usr/ <modified>/usr/ > ab123456.patch

Assignment #3

★ create your solution with the command:

$ diff -rupN <original>/usr/ <modified>/usr/ > ab123456.patch

★ apply your solution with the command:

cd /; patch -p1 < ab123456.patch

Assignment #3

★ create your solution with the command:

$ diff -rupN <original>/usr/ <modified>/usr/ > ab123456.patch

★ apply your solution with the command:

cd /; patch -p1 < ab123456.patch

★ the patch should be placed in the repository:
studenci/ab123456/zadanie3 by

7th May, 8 p.m.

