
Linear-Time Algorithm for Morphic Imprimitivity
Testing

Tomasz Kociumaka1 Jakub Radoszewski1

Wojciech Rytter 1,2 Tomasz Waleń3,1

1Faculty of Mathematics, Informatics and Mechanics, University of Warsaw
{kociumaka,jrad,rytter,walen}@mimuw.edu.pl

2Faculty of Mathematics and Computer Science, Nicolaus Copernicus University,
Toruń

3International Institute of Molecular and Cell Biology in Warsaw

LATA 2013, 2013–04–05

1/24

Outline

1. Problem definition

2. Short introduction to existing solutions

3. Description of the new linear time solution

2/24

Problem definition

Morphic Imprimitivity Testing

For a input word w ∈ Σn, is there a non-trivial morphism h such
that:

h(w) = w

Non-trivial means that h should not be an identity function.
The word w is non-primitive if such morphism exists,
otherwise it is primitive.

Previous results

I it can be solved in O((|Σ|+ log n) · n) time (S. Holub 2009),
I slightly improved to O(|Σ| · n) time (S. Holub, V. Matocha,

arXiv 2012).

3/24

Problem definition

Morphic Imprimitivity Testing

For a input word w ∈ Σn, is there a non-trivial morphism h such
that:

h(w) = w

Non-trivial means that h should not be an identity function.
The word w is non-primitive if such morphism exists,
otherwise it is primitive.

Previous results

I it can be solved in O((|Σ|+ log n) · n) time (S. Holub 2009),
I slightly improved to O(|Σ| · n) time (S. Holub, V. Matocha,

arXiv 2012).

3/24

Example

Simple case

Let
w = abaacaca

Letter b appears only once, so we can take:

h(a) = ε (empty word) h(b) = abaacaca h(c) = ε

More complicated case

Let we can take:

h(a) = ε h(b) = abaa h(c) = aac

4/24

Example

Simple case

Let
w = abaacaca

Letter b appears only once, so we can take:

h(a) = ε (empty word) h(b) = abaacaca h(c) = ε

More complicated case

Let we can take:

h(a) = ε h(b) = abaa h(c) = aac

4/24

Example

Simple case

Let
w = abaacaca

Letter b appears only once, so we can take:

h(a) = ε (empty word) h(b) = abaacaca h(c) = ε

More complicated case

Let
w = aacabaaaacaacabaa

we can take:

h(a) = ε h(b) = abaa h(c) = aac

4/24

Example

Simple case

Let
w = abaacaca

Letter b appears only once, so we can take:

h(a) = ε (empty word) h(b) = abaacaca h(c) = ε

More complicated case

Let
w = aac abaa aac aac abaa

we can take:

h(a) = ε h(b) = abaa h(c) = aac

4/24

Problem applications

Closely connected to several topics in formal language theory, and
combinatorics on words:

I fixed points of morphisms,
I pattern languages,
I ambiguity of the morphisms.

Reviewer’s opinion

Although I cannot think of any actual applications, I find this
question to be very natural

5/24

Problem applications

Closely connected to several topics in formal language theory, and
combinatorics on words:

I fixed points of morphisms,
I pattern languages,
I ambiguity of the morphisms.

Reviewer’s opinion

Although I cannot think of any actual applications, I find this
question to be very natural

5/24

How to solve it? - Intuition

Theorem
For a word w , if there exists non-trivial morphism h, such that
h(w) = w , then there exists non-trivial morphism h′ such that:

I h′(w) = w

I for all immortal letters x ∈ E : h′(x) = lx x rx
(i.e. h′(b) = abaa)

I for all mortal letters x 6∈ E : h′(x) = ε

a b b ac d c d c d c c d c

a b b ac d c d c d c c d c

h(a) = cdac
h(b) = dbc
h(c) = ε

h(d) = ε

w =

h(w) =

a,b – immortal letters, c,d – mortal letters.

6/24

How to solve it? - Intuition

Theorem
For a word w , if there exists non-trivial morphism h, such that
h(w) = w , then there exists non-trivial morphism h′ such that:

I h′(w) = w

I for all immortal letters x ∈ E : h′(x) = lx x rx
(i.e. h′(b) = abaa)

I for all mortal letters x 6∈ E : h′(x) = ε

a b b ac d c d c d c c d c

a b b ac d c d c d c c d c

h(a) = cdac
h(b) = dbc
h(c) = ε

h(d) = ε

w =

h(w) =

a,b – immortal letters, c,d – mortal letters. 6/24

Holub’s algorithm

The algorithm maintains three sets:
I E – set of candidates for immortal letters,
I L and R – sets of interpositions.

Algorithm:
I start with empty sets E = L = R = ∅,
I apply rules (a)-(e) (in any order), to obtain fixed-point.

From triple (E , L,R) the actual morphism can be obtained:
I if the set E 6= Σ, then the morphism is non-trivial,
I from L, R we can deduce a way to divide input word to obtain

morphism.

7/24

Holub’s algorithm

The algorithm maintains three sets:
I E – set of candidates for immortal letters,
I L and R – sets of interpositions.

Algorithm:
I start with empty sets E = L = R = ∅,
I apply rules (a)-(e) (in any order), to obtain fixed-point.

From triple (E , L,R) the actual morphism can be obtained:
I if the set E 6= Σ, then the morphism is non-trivial,
I from L, R we can deduce a way to divide input word to obtain

morphism.

7/24

Holub’s algorithm

The algorithm maintains three sets:
I E – set of candidates for immortal letters,
I L and R – sets of interpositions.

Algorithm:
I start with empty sets E = L = R = ∅,
I apply rules (a)-(e) (in any order), to obtain fixed-point.

From triple (E , L,R) the actual morphism can be obtained:
I if the set E 6= Σ, then the morphism is non-trivial,
I from L, R we can deduce a way to divide input word to obtain

morphism.

7/24

Holub’s rule (a) – initialization of the algorithm

L := L ∪ {0, n}, R := R ∪ {0, n}

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20c c a a b a a c a a a c a a b a a c a c

L,R L,R

8/24

Holub’s rule (b) – initialization of immortal letters

if w [i] ∈ E then
L := L ∪ {i − 1} and R := R ∪ {i},

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20c c a a b a a c a a a c a a b a a c a cb

i

L R

9/24

Holub’s rule (c) – neighborhood marking

The neighborhood of letter x – nx is the maximum factor that
surrounds each occurrence of letter x in w .

if w [i ..j] = nx for some x ∈ E then
R := R ∪ {i − 1} and L := L ∪ {j},

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20c c a a b a a c a a a c a a b a a c a cb b

i j

LR

nb nb

10/24

Holub’s rule (d) – copying rules

if w [i ..j] = w [i ′..j ′] = na for some a ∈ E and i − 1 ≤ k ≤ j then
if w [k] ∈ L then L := L ∪ {i ′ + (k − i)}
if w [k] ∈ R then R := R ∪ {i ′ + (k − i)}

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20c c a a b a a c a a a c a a b a a c a cb b

i j i ′ j ′

LL RR LL RR

nb nb

Problem
This rule is hard to implement efficiently!

11/24

Holub’s rule (d) – copying rules

if w [i ..j] = w [i ′..j ′] = na for some a ∈ E and i − 1 ≤ k ≤ j then
if w [k] ∈ L then L := L ∪ {i ′ + (k − i)}
if w [k] ∈ R then R := R ∪ {i ′ + (k − i)}

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20c c a a b a a c a a a c a a b a a c a cb b

i j i ′ j ′

LL RR LL RR

nb nb

Problem
This rule is hard to implement efficiently!

11/24

Holub’s rule (e) – new immortals letters

if i < j , i ∈ L, j ∈ R then
add α(w [(i + 1)..j]) to E — letter c ∈ w [(i + 1)..j]
that has smallest number of occurrences in word w .

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20c c a a b a a c a a a c a a b a a c a cb

i j

L R

12/24

Holub’s algorithm summary

Theorem
Extending a correct triple (E , L,R) using any of the rules (a)-(e)
leads to a correct triple. In particular, if any sequence of actions
corresponding to (a)-(e) leads to E = Σ then w is morphically
primitive.

This is quite suprising that this set of simple rules, provides the
solution for the problem.

13/24

Holub’s algorithm summary

Theorem
Extending a correct triple (E , L,R) using any of the rules (a)-(e)
leads to a correct triple. In particular, if any sequence of actions
corresponding to (a)-(e) leads to E = Σ then w is morphically
primitive.

This is quite suprising that this set of simple rules, provides the
solution for the problem.

13/24

Holub’s algorithm summary

I simple implementation requires O(n2) time,
I this time complexity can be slightly improved using some

preprocessing and data structures,
I unfortunately the obtaining linear time seems to be difficult

task:
I the non-determinism in rules choice is problematic,
I rule (d) is the main bottleneck (it operates globally on the

word).

14/24

What we have done? Outline

I modified set of rules (a),(b’)–(e’), that are equivalent to
Holub’s rules but are easier to implement,

I strict ordering of rules application,
I new data structures to speed up the processing time.

Result
As a consequence we obtained O(n) running time algorithm.

15/24

What we have done? Outline

I modified set of rules (a),(b’)–(e’), that are equivalent to
Holub’s rules but are easier to implement,

I strict ordering of rules application,
I new data structures to speed up the processing time.

Result
As a consequence we obtained O(n) running time algorithm.

15/24

New neighborhood definitions

We introduced new definitions of neighborhood, to capture
essential local neighborhood of the characters/word positions.

· · · · · ·
i

R R R R R

ee1 e2

re

right(i)

γright(i)

γright(e)

le

left(i)

γleft(i)

γleft(e)

16/24

New neighborhood definitions

le – the length of the longest common suffix of all prefixes ending
with e (minus 1) in word w .
re – the length of the longest common prefix of all suffixes starting
with e (minus 1) in word w ,

· · · · · ·
i

R R R R R

ee1 e2

re

right(i)

γright(i)

γright(e)

le

left(i)

γleft(i)

γleft(e)

16/24

New neighborhood definitions

left(i) = min(lw [i], i − predE (i)− 1)
right(i) = min(rw [i], succE (i)− i − 1)

· · · · · ·
i

R R R R R

ee1 e2

re

right(i)

γright(i)

γright(e)

le

left(i)

γleft(i)

γleft(e)

16/24

New neighborhood definitions

γleft(i) = i − predR(i)− 1
γright(i) = predR(i + right(i) + 1)− i

· · · · · ·
i

R R R R R

ee1 e2

re

right(i)

γright(i)

γright(e)

le

left(i)

γleft(i)

γleft(e)

16/24

New neighborhood definitions

γleft(e) = min{γleft(i) : i ∈ Occ(e)}
γright(e) = max{γright(i) : i ∈ Occ(e)}

· · · · · ·
i

R R R R R

ee1 e2

re

right(i)

γright(i)

γright(e)

le

left(i)

γleft(i)

γleft(e)

16/24

New rule (b’)

Old: if w [i] ∈ E then
L := L ∪ {i − 1} and R := R ∪ {i},

New: if w [i] ∈ E then
R := R ∪ {i},

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20c c a a b a a c a a a c a a b a a c a cb

i

R

17/24

New rule (c’)

Old: if w [i ..j] = nx for some x ∈ E then
R := R ∪ {i − 1} and L := L ∪ {j},

New: if w [i] ∈ E then
R := R ∪ {i − 1− left(i)} and L := L ∪ {i + right(i)},

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20c c a a b a a c a a a c a a b a a c a cb

i

R L

left(i) right(i)

18/24

New rule (d’)

Old: if w [i ..j] = w [i ′..j ′] = na for some a ∈ E and i − 1 ≤ k ≤ j
then

if w [k] ∈ L then L := L ∪ {i ′ + (k − i)}
if w [k] ∈ R then R := R ∪ {i ′ + (k − i)}

New: if w [i] ∈ E then
R := R ∪ {i − 1− γleft(w [i]), i + γright(w [i])}

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20c c a a b a a c a a a c a a b a a c a cb b

i

R R R RRR RR

γleft(b) γright(b) γleft(b) γright(b)

19/24

New rule (e’)

Old: if i < j , i ∈ L, j ∈ R then
add α(w [(i + 1)..j]) to E

New:
if i < j , succR(i) = j , predL(j) = i , {w [k] : i + 1 ≤ k ≤ j} ∩ E = ∅
then

add α(w [(i + 1)..j]) to E — letter c ∈ w [(i + 1)..j]
that has smallest number of occurrences in word w .

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20c c a a b a a c a a a c a a b a a c a cb

i j

L R

20/24

New rules correctness

Theorem
Extending a correct triple (E , L,R) using any of the rules
(a),(b’)-(e’) leads to a correct triple. In particular, if any sequence
of actions corresponding to (a),(b’)-(e’) leads to E = Σ then w is
morphically primitive.

Proof outline
We can show that using new rules we can simulate essential
behavior of Holub’s algorithm.

21/24

New rules correctness

Theorem
Extending a correct triple (E , L,R) using any of the rules
(a),(b’)-(e’) leads to a correct triple. In particular, if any sequence
of actions corresponding to (a),(b’)-(e’) leads to E = Σ then w is
morphically primitive.

Proof outline
We can show that using new rules we can simulate essential
behavior of Holub’s algorithm.

21/24

Efficient implementation

Unfortunately that’s not over, we have to deal with:

Non-determinism:
I This is resolved with events queues that handle the order of

application of the rules. Especially we have to be careful to
apply rules only when they add new elements to E , L,R .

Data structures:
I For answering α(i , j) queries in O(1) time we use

Range-Minimum-Queries (RMQ) data structure,
I For efficient computing the neighborhoods we use Suffix

Arrays combined with Longest Common Prefix table.

22/24

Efficient implementation

Unfortunately that’s not over, we have to deal with:

Non-determinism:
I This is resolved with events queues that handle the order of

application of the rules. Especially we have to be careful to
apply rules only when they add new elements to E , L,R .

Data structures:
I For answering α(i , j) queries in O(1) time we use

Range-Minimum-Queries (RMQ) data structure,
I For efficient computing the neighborhoods we use Suffix

Arrays combined with Longest Common Prefix table.

22/24

Efficient implementation

Unfortunately that’s not over, we have to deal with:

Non-determinism:
I This is resolved with events queues that handle the order of

application of the rules. Especially we have to be careful to
apply rules only when they add new elements to E , L,R .

Data structures:
I For answering α(i , j) queries in O(1) time we use

Range-Minimum-Queries (RMQ) data structure,
I For efficient computing the neighborhoods we use Suffix

Arrays combined with Longest Common Prefix table.

22/24

Summary

I we presented a linear time algorithm for deciding if a word is
morphically imprimitive,

I we started from the original quadratic algorithm by Holub, and
transformed it by reducing the set of rules used by the
algorithm,

I finally we proposed several efficient data structures that
enabled linear-time implementation.

23/24

Thank you for your attention!

24/24

	Problem definition
	Algorithms
	Summary
	Thanks

