You can discuss the problems with each other, but you must write up your answers on your own. Feel free to ask for a hint if you get stuck. [The page/equation numbers are from *Nonlinear Programming*, 2nd edition, 1999, 1st printing. They may differ for the 2nd printing.]

The answers to the two * problems are to be turned in jointly with your (randomly chosen) partner.

- #1. [Manifold suboptimization: Exercise 2.5.2] Show by example that, in the manifold suboptimization (active-set) method, if more than one $i \in I^k = \{i \mid a_i^T x^k = b_i\}$ with negative multipliers μ_i are dropped from I^k , then the resulting direction d^k need not be a feasible direction.
- #2. [Computing problem: Exercise 2.5.1] Use the manifold suboptimization method to solve the convex quadratic problem

min
$$f(x) = x_1^2 + 2x_2^2 + 3x_3^2$$

s.t. $x_1 + x_2 + x_3 \ge 1$, $x \ge 0$,

starting from $x^0 = (0,0,1)^T$. Here you can choose $H^k = \nabla^2 f(x^k)$ since it is positive definite and choose α^k by minimization rule, i.e., α^k minimizes $\phi_k(\alpha) = f(x^k + \alpha d^k)$ over $\alpha \in [0,s^k]$, where s^k is the largest feasible stepsize given by $s^k = \min\{(b_i - a_i^T d^k)/a_i^T d^k \mid a_i^T d^k > 0\}$. [If you are coding in Matlab, you can use "A(index,:)" to access particular rows of a matrix A. For example, if index = [2 4], then A(index,:) would be the submatrix of A comprising its rows 2 and 4.]

#3.* [Polynomial-time interior-point method for convex QP.] Consider the convex quadratic program in standard form:

min
$$f(x) = \frac{1}{2}x^TQx + c^Tx$$

s.t. $Ax = b, \quad x \ge 0,$

with $A \in \Re^{m \times n}$ having rank m $(n \ge m)$ and $Q \in \Re^{n \times n}$ symmetric positive semidefinite. Define the wide neighborhood

$$\mathcal{N}(\gamma) = \{(x,y,\lambda,\epsilon) \mid Ax = b, \ y = Qx + c + A^T\lambda, \ x > 0, \ \epsilon > 0, \ \min_j x_j y_j \geq \gamma \epsilon, \ x^Ty = n\epsilon \}.$$

For any $(x, y, \lambda, \epsilon) \in \mathcal{N}(\gamma)$, let (u, v, w) solve the Newton equation

$$Au = 0$$
, $v = Qu + A^T w$, $x_i y_i + u_i y_i + x_i v_i = \sigma \epsilon$ $(0 < \sigma < 1)$.

Prove that $(x[\alpha], y[\alpha], \lambda[\alpha], \epsilon[\alpha]) \in \mathcal{N}(\gamma)$ and $\epsilon[\alpha] \leq (1 - \alpha C_1)\epsilon$ for all $0 < \alpha \leq C_2/n$, where C_1, C_2 are positive constants, $x[\alpha] = x + \alpha u$, $y[\alpha] = y + \alpha v$, $\lambda[\alpha] = \lambda + \alpha w$, $\epsilon[\alpha] = x[\alpha]^T y[\alpha]/n$. This yields a polynomial-time algorithm for solving convex quadratic programs. The proof in fact extends to other convex functions like $f(x) = -\sum_{i=1}^n \ln(x_i)$ and $f(x) = \sum_{i=1}^n x_i \ln(x_i)!$

#4.* [Computing problem.] Below is a table showing the stock price P_{it} of company i in year t years (quoted from Nasdaq website):

Firm	1. Apr04	2. Apr05	3. Apr06	4. Apr07	5. Apr08
1. Amazon	40	34	36	40	75
2. Apple	9	43	60	90	160
3. Google	100	180	350	500	550
4. Microsoft	27	24	24	28	30

The return rate r_{it} at year t is $(P_{i,t+1} - P_{i,t})/P_{i,t}$. Define the sample expectation $\bar{r} = E_t[r_t]$ and covariance matrix $Q = E_t[(r_t - \bar{r})(r_t - \bar{r})^T]$, where $r_t = (r_{1t}, ..., r_{nt})^T$. Q is positive semidefinite and here n = 4. The portfolio selection problem is to choose a mix of the stocks to minimize risk while achieving a desired expected rate of return. This can be formulated as the optimization problem (ignoring transaction costs):

$$\min_{x} \quad x^{T} Q x \quad \text{s.t.} \quad \bar{r}^{T} x \ge \alpha \max_{i} \bar{r}_{i}, \quad \sum_{i=1}^{n} x_{i} = 1, \quad x_{i} \ge 0,$$

where $0 < \alpha < 1$, and x_i is the proportion of stock i in the portfolio. Take $\alpha = .9$. Using Matlab or your favorite computer language, implement an interior-point method to solve this problem. Note that $x_{\bar{i}} = \alpha$, and $x_i = (1-\alpha)/n$ for $i \neq \bar{i}$, where $\bar{r}_{\bar{i}} = \max_i \bar{r}_i$, is a feasible interior point. You need to introduce a variable for the inequality constraint. [Caution: This problem is a bit open-ended, so feel free to ask questions. Given x, λ can be chosen to achieve dual feasibility. Then ϵ and γ can be chosen so the starting point lies in the wide neighborhood $\mathcal{N}(\gamma)$.]

#5. [Extending the quadratic penalty method.] Consider the problem

min
$$f(x)$$

s.t. $x \in X$, $h_1(x) = 0, ..., h_m(x) = 0$,

where X is a nonempty closed set in \Re^n and $f, h_1, ..., h_m$ are continuous functions from \Re^n to \Re . Assume that this problem has a global minimum. Let ψ be any continuous function from \Re to $[0, \infty)$ satisfying $\psi(\xi) = 0$ if and only if $\xi = 0$. For k = 0, 1, 2..., let $\{x^k\}$ be any global minimum of

$$\min \quad f(x) + c^k \sum_{i=1}^m \psi(h_i(x))$$
s.t. $x \in X$, (2.1)

where $c^k > 0$ (assuming a global minimum exists). Show that, if $\{c^k\} \to \infty$, then any cluster point of $\{x^k\}$ is a global minimum.