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Abstract

This paper shows the analyticity of semigroups generated by higher
order divergence type elliptic operators in L>° spaces when the domain has
only C! regularity. The domain can be unbounded. For this purpose we
establish resolvent estimates in L°° spaces by a contradiction argument
based on a blow up argument. Our results yield the L analyticity of
solutions of parabolic equations for C' domains.

Keywards: Higher order elliptic operator, Analytic semigroup, L™
estimate, C* domain, Blow up argument.
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1 Introduction

1.1 Main purpose of our study

The goal of this paper is to establish the analyticity of semigroups generated
by divergence type elliptic operators of order 2m with the Dirichlet condition
in L™ spaces on a domain with C' boundary. The analyticity results in L
type spaces are often proved in a domain with C?™ regularity. The point of
this paper is that we only assume that the domain has C! boundary no matter
how the order of operator is high. Moreover, we give a proof of the resolvent
estimates in L spaces without appealing to results in LP spaces. Our argument
is based on a blow up argument. Instead of stating results for general operators
we first discuss the bi-Laplace operator A2 as a simplest example. Let Q be a
C' domain in R"®. We consider the resolvent equations

A+ AHu = f in Q
u=0nu=0 on 0.
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Let us state the main results on this operator. We define M (u, A) by

M (u, A) = igg(\Allu(z)l + N1 Vu(@))).

Theorem 1.1 (L apriori estimates for A% on uniformly C! domains). Let
Q C R” be a domain with uniformly C* boundary 0. (We allow Q to be
unbounded.) Then, there exist € >0, C > 0, M > 0 such that

M (u, A) < C|lfllLe (o) (1)

forall N € Sp—cn{lz] > M} ={\ € C: |arg\ < 7 —e}N{|z| > M}
and f € L*°(Q) and weak solution uy € Wgﬁc(ﬁ) NWL2(Q) (p > n) of the
resolvent equation.

Let us illustrate our proof to establish a priori estimate. Our method is a
contradiction argument based on a blow up argument. We have four steps to
show a priori estimates. The crucial steps are (i) the compactness of a blow up
sequence constructed by normalization and rescaling and (ii) the uniqueness of
the blow up limit. We shall briefly explain each step.

Outline of the proof of Theorem1.1. We show L apriori estimates by a blow
up argument which was first introduced to analyze non-linear partial differencial
equations by E. De Giorgi. Let us explain how this method works.

Stepl(Normalization)

First of all, we argue by contradiction, then we can take blow up sequence of
weak solutions. In particular, there would exist ¢ > 0 such that for all k € N
INe € Sae N{[2] > K}, fr € L), up € Wb () NL>(Q)(p > n) which is
a weak solution of the resolvent equation

{()\k: + AQ)uk = fi in Q (2)

up = Oyug =0 on 0

with L estimates M (ug, Ar) > k|| fr|lco- We set vy, = |Ag|ug with
A = |)\k|629k and we normalize the resolvent equation as

Jk
M(uk, )\k) '

Uk

M(’U/k,)\k>7 fk =

Ui, =

Then, we get normalized resolvent equations in the weak sence

, A? ~
ek + — ) = fr in
L 3)
v, = OnUp =0 on 0f)

with the estimates ¢ > | Fxlloos |1Ak| > K, |arg 6| < 7 — &, and M(lizl,)\k) =1.




Step2(Rescaling)

Secondly, we take a sequence of a point at which each solution takes a value
close to its maximum. Note that vy is included in some Holder space by the
sobolev embedding theorem. Thus, there exists xj € Q) such that

N 1, 1
[0k (z1) | + [ Ak ™% [VOR (k)| > 3

Set the rescaled functions as

), i = fr(zr + L)-

Wy = V(T +
( | A |4

x
Rk
Then the rescaled domain €y, of W and ¢, is represented as |)\k|i(Q —x). By
changing the variables, we can show that wj is a weak solution of the rescaled
resolvent equation

efr + A2 W = gk in Qy
{< ) @

u?k = aN’lﬁk =0 on 8Qk

with |’lI}k(0)| + |VU~)/€(O)‘ > %, M(ﬁ)k,)\k) = Squer(Iwk(xH + |VU~}]€($)|) =1.
Finally, we need compactness step and uniqueness step to get a contradiction.

Step3(Compactness)

This step needs local LP a priori estimates up to boundary for the problem. The
actual proof is very involved. We use C' regularity to derive such an estimates.
In the compactness step, we show equicontinuity of {wy}reny on some open
neighborhood near the origin. Take a smooth cut off function p € C§°(R™)
and localize w0y as wi” = pwy. Then, wi” is a weak solution of the localized
resolvent equation

W = Onw” =0 on 99y and near 9B(0)

()

In order to apply W?2? estimates, we modify the lower order term by Leibnitz’s

rule so that the lower order term is included in W0_2’p(Qk N B2(0)), and we

have to mollify 9(£2x N B2(0)) on some open neighborhood of 9(€2;) N d(B2(0))

so that the boundary become uniformly C'. By local W?2P estimate obtained

by general results of W™P estimate such as results of Y. Miyazaki [18], S-S.

Byun[6], we can show that {w”} C WP (Q N By(0)) is uniformly bounded.

By the zero extension from Qj N By(0) to B2(0) and a compact embedding to

some Holder space, there exists a subsequence {wy,”} of {w”} such that

{(ewk + A%y, = gp + (some lower order terms of ) in € N By(0)

wy,” = Jw  in By(0) (I = o) for some w.

Since |u,”(0)] + [Vay, (0)] > 1 and {w},”} converges locally uniformly, we can
show that the limit function w of the blow up sequence satisfies

lw(0)| + [Vw(0)| > %



Step4(Uniqueness)

By similar arguments in the compactness step, we can show that wy, = w  in QN
M (I — o0) for each compact set M, where Q, is determined by the way that
the subsequence {zy, } tends to 05, i.e.,

R" if lim inf| A, | T d(zp, , 09) = 0o
—00
R’ if d =1lim Sup|)\kl\%d(xkl,8§2) < 00

l—o0

Qoo =

Let ! tend to oo, then the resolvent equation of wyj, tends to the limit equation
(e~ + A%)w =0 in Qo ©)
w=0yw=0 on 0

Then, by integrating by parts, we obtain
/ w(e> + A?)pdx = 0 for all smooth test functions ¢ € C5°(Qso).
Qoo

So, we consider the dual problem of this limit equation, and we can solve the
dual problem by Fourier transformation or partial Fourier transformation. Then
we can substitute ¢ for (e’?~ — A2)¢ in the limit equation, and we get

/ wpdx = 0 for all test function .
Qoo

Therefore, we get the uniqueness result w = 0. This contradicts the result
|w(0)| + |Vw(0)| > % in the compactness step. O

1.2 Literature review of analyticity of semigroups and es-
timates in spaces of bounded functions

In K. Yosida[25], analyticity for second order elliptic operators in Cw, space is
first established when the domain is (—oo,00). K. Masuda[12] considered the
case when the operator is a higher order elliptic operator on uniformly C?™ do-
mains, and H. B. Stewart[20] improved this method. According to E.Davies][7],
Gaussian estimate is valid for any domain when the operator is second order
divergence type elliptic operators with L>° coefficients and the Dirichlet condi-
tion, and M. Hieber[9] established the analyticity in the case when the operator
is an elliptic operator of order 2 and the domain is an arbitrary open set by
means of Gaussian estimates. After these results, many reserchers dealt with
this problem in order to relax the continuity assumption of coefficients. For
example, M. Hieber[8] shows analyticity for higher order elliptic operators with
VMO coefficients in L*°(R™). In addition, some bibliographical remarks are
seen in A. Lunardi[10]. As to other boundary value problems, K. Taira[22] con-
siders boundary value problems of second order elliptic operators with various



boundary conditions. In K. Abe[l], [2], [3], analyticity for Stokes operators
in spaces of bounded functions on several domains is established. When we
consider a higher order elliptic operator, Masuda-Stewart’s method is a well-
known method to show the analyticity of semigroups in L™ type spaces. In
this method, we need W?™Pestimates to obtain the analyticity, so we need the
assumption that the boundary has uniformly C?™~1! regularity. Therefore, the
anlyticity results of semigroups is well-known when the boundary of domains is
uniformly C?™~1L! and we want to know whether we can relax the regularity
assumptions of boundaries. In our study, we apply W™P estimates to get L
estimates by a contradiction argument, and we relax the smoothness assump-
tion of boundaries. For example, we can treat A2 on a domain with uniformly
C" boundary.
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2 Main results

Let the domain 2 C R™ is a domain, L is a divergence type elliptic operator of
order 2m, N is the outward-pointing normal of 2. More precisely, let m be a
positive integer, L = Ly + L1 be a divergence type differential operator of order
2m with the leading term Ly = E|a\,\5\:m(‘UmH@BGa,Baa of L and the lower
order term L; = Z|a\+|5|§2m_1(71)‘ﬁ|+13ﬁaa,a<’9a of L. We mainly consider
L° resolvent a priori estimates and also consider the existence and uniqueness
of the following resolvent equations;

{()\—L)u:f in Q

uzaNu:-n:@ﬁ*lu:O on Of)

where the boundary conditions are of the Dirichlet type. We assume the follow-
ing condition. Let coefficients ao g of L be complex-valued.
Let b(z, &) = 3|0y, 181=m a8 (x)€2T# denote the principal symbol of L.

Wheo(Q) if la =m

El) au €
(E1) Gayp {L“’(Q) if [a] <m—1

(E2) L is uniformly storongly elliptic, i.e., there exists d;, > 0 such that

Re(b(z,€)) > 0p|¢[*™ for z € Q, € € R™.



Now we state resolvent estimates for higher order elliptic operators in L™ spaces.
The definitions of uniformly C'' domains and W'} (Q) are in section 3.1, and
that of a weak solution of the resolvent equationsyis in section 3.3. We define a
sectorial set to state L°° apriori estimates,

So—eN{lz| > M}={\eC:larg\ <m—e}nN{|z| > M},

kr =sup sup |argb(z,&)|.
z€Q £€R™, ££0

N(u,\)=sup( > [A'7==

v€Q |a|=k<m—1

8%u(z)]).

Theorem 2.1. Let Q@ C R™ be an uniformly C' domain, L be a divergence
type elliptic operator of order 2m with complex coefficients aq g. Assume that
L satisfy the condition (E1) of coefficients and the ellipticity condition (E3).
Then, there erist k, <& < 5, C' >0, and M > 0 such that

N(u, A) < Cllf |l (7)

for X € S,_.n{lz| > M}, f € L>®(Q), and uyx € W32 (Q) N Wm—1>(Q)

Jloc
(p > n) which is a weak solution of the resolvent equation.

Remark 2.1. (1) If coefficients aq g of L be real-valued, k7, = 0. Although
the condition of smoothness of coefficients is not optimal in our results, the
condition of smoothness of the boundary can be weakened from C?™ to C?.
Analyticit results in L spaces on non smooth domains, such as a Lipshitz
domain, are still unknown.

(2) In previous works, non divergence type operators can be treated.
Divergence type operator can be treated in our results, and operators of both
types coincide when coefficients have C™ regularity. So, analyticity results of
non divergence type operators in both LP and L°° spaces are known when (a)
coefficients have C™ regularity and boundary has C! regularity or (b) the
boundary has C?™ regularity.

(3) Since we show this estimate by a contradiction argument, we don’t know
what variable a constant C' depend on explicitly. We only know that a
constant C' > 0 is independent of A, f, uy.

Now we state analyticity of semigroups generated by higher order elliptic
operators. The definition of sectoriality is in section 4. In order to state L™
analyticities, we define the following notation.

D(L) = {u € Nyps s WIYE(Q) : w, Lu € L®(Q)}.

Theorem 2.2. Let Q C R" be a domain with uniformly C* boundary. Then,
The operator L: D(L) — L*°(Q) is sectorial and generates an analytic semi-
group in L*(Q).



3 A priori estimates

3.1 Compactness

We start with the definition of a uniform C! domain and a Raifenberg flat
domain. The definition of a C'! domain is found in Y. Miyazaki[18], Chapter 6,
and that of a Raifenberg flat domain is found in S-S. Byun[6], Chapter2.

Definition 3.1. Let 2 C R™ be a domain.

(i) We say that Q is a uniform C' domain if there exist a family of open sets
{Us}ser with countable index setT', N € Nso, d > 0, Mg > 0, and a non-
decreasing function wgq : [0,00) — [0,2mg] satisfying lim, o wq(z) = 0
such that the following conditions hold:

(a) Any N + 1 distinct sets of {Us}ser have an empty section.

(b) For each x € 0N there exists s € T’ such that
By(z) ={y € R": |z —y|g» < d} C Us.

(c) For each s € T' there exist a transformation Ts : R™ — R™ which is
composed of a rotation and a translation of a coodinate system, and
a uniform C' function ¢, : R*™1 = R such that

10;6s(x")| < Mq for o' € R"' and 1 < j <n,
10;65(2") = 0505 (y')| < walle’~y']) for o’y € R" ™ and 1 < j < n,
and that Ts(U,NQ) = To(U)N{z = (2/,2,) €R™: 2/ € R" 2, > ¢4 (2')}.

(i) We say that Q is a (§, R) Raifenberg flat domain if there exist a family of
open sets {Us}ser with countable index set T', § > 0 and R > 0 such that
the following conditions hold:

(a) Any N + 1 distinct sets of {Us}ser have an empty section.

(b) For each v € 00 and 0 < r < R there exists s € I', a transformation
Ts : R™ — R™ which is composed of a rotation and a translation of a
coodinate system a continuous function ¢ : R"™1 — R such that

B.(z) C U, Ts(z) =0, |¢s(2')] < r for 2/ € R*1,
and that T,(UsNQ) = T, (U )Nz = (2/,2,) € R™ : 2/ € R"™1 2, > (2}
By a straight forward calculation, we get the following lemma.

Lemma 3.1. Let Q be a uniform C* domain. Then, Q is a (wq(R), R) Raifen-
berg flat domain.

Definition 3.2. We say that a function w € W 2P (Q) is in Wy2(Q) if for all

loc

smooth function n € C§°(R™) u satisfies un € Wy (Q).



Remark 3.1. the space WP (Q) can be characterized similarly. A character-
ization of the space W,"P(Q) is as follows: w is in WP (Q) if and only if for

all smooth function n € C§°(Q) u satisfies un € W™P(Q). We need this space
when we show the existence of weak solution.

In the compactness step, we show the equicontinuity of the normalized blow
up sequence {w }ren on some open neighborhood near the origin. In order to
show this, we need local WP estimates:

Definition 3.3. We say that a pair of domain and operator (2, L) have a
W™Pestimate if there exists a constant C' > 0 independent of u such that

[ullwr ) < CU1Lul| e ) + [ullLrq)) for all u € W™ (Q).

Examples of pairs (€2, L) are obtained by the following theorems. More de-
tailed statements are seen in G. Simader[19], Y. Miyazaki[18], S-S. Byun[6]. In
V. Maz’ya[14], the cases of higher order elliptic systems with bounded coeffi-
cients in bounded Lipshitz domains are considerd.

Theorem 3.1. (G. Simader[19]) Let p € (1,00), and Q C R™ be a bounded C™
domain. Then, there exists C > 0 such that if Lu = f, then

[ullwmy < CUIfllLr + [lullze).

Theorem 3.2. (Y. Miyazaki[18]) Let Q C R™ be a uniform C* domain, p €
(1,00), and € € (kr,%5). Then, there exist M > 0, C' > 0 such that for all
NE X _eN{|z| > M} the resolvent (A — L)~1 exists with the estimate

_ _aitkd
1= L) w—sm iy < CIAT 52

Theorem 3.3. (LP version of S-S. Byun[6]) Let ¢ > 0, ¢; > 0, Q C R"
be a bounded domain, L be elliptic operator of order 2m with real coefficients
aa,p. Assume that coefficients {aa g} satisfy maxa, , [|aa,pllcc < co and the
ellipticity constant d;, satisfies 1, < c¢y. Then, there exists a small constant
0 = d(co,c1,m,n,p) > 0 such that if aq p are (0, R)vanishing, and Q is (6, R)
Raifenberg flat domain, then for all f € LP(Q)) there exists the weak solution
ux € Wi"P(Q) of the resolvent equation with the estimate

llullwme) < Cllflle)- (8)

Remark 3.2. In S-S. Byun[6], Estimates in the setting of Orlicz space are
established. This W™P estimates is obtained as a corollary of the results of S-S
Byun[6] together with uniqueness results.

In order to apply W™P estimates to our compactness argument, we need
a Caccioppoli type estimate. Our proof of this lemma is slightly based on
arguments seen in Simader[19]. In A. Lunardi[10], such estimates of strong



solutions are established when the operator is an non divergence type operator.
Define the bilinear form B, ] by

Blu,¢] = Blu, ¢] + Bi[u, ¢]
= Y (ap0°u”,0°0)+ D (00,0 (Upap), 7).
lal,|B|<m la|+|B]<2m—1

For R>1,r <1, zg € R", take p, pap € C5°(R™) which satisfy

= b on Brlao) Pl < 1, lpassllonce < o
PrPef =00 outside of B(ri1yr(z0) Pllee = 5 HlPacpllmoe = T -

Lemma 3.2. Let u € Wiy» (Q), f € L>(Q). Assume that a pair (Lo, By-(z9) N

Q) of the leading order term Lq with its weak form By[u, ] has a W™P estimate
with a constant C. Then, there exists C'(m,p, N,C,aq,p,K) > 0 such that

llullwm.» (B, 0)n0)

1
< C/(MSUP 1|B[U, Sl + ollull w1085 40y, @o)n0) T [1UllLr(Bn i, o0
m,q—

Proof. Set )
BO[“7¢] = Z (G,a,/gaaup’6ﬁ¢)’

lo=[B]=m

Bifu,¢l= Y (aa,80%(ulp+ pas)) 0”9).

laf+|B]<2m—1

We estimate |Bi[u, ¢]|. If || = m, we can take 0 # ¢; < a for some 1 < i < n.
Since aq 5 € W (Q) for |a| = m,

o, 50 {u(p+pa,p)} = 0% (40,50 {ulptpa,p)}) = (0 aa,) (0" {u(p+pa,p)})-

By Holder inequality,
|Bl [ua ¢] ‘
< S 10 (aas0 )07 (wlpass + 9))lp

lo|=m,|B|<m—1

+ Z ||aa,58ﬁ¢||q”aa(u(pozﬁ+p))”p

lal<m—1

SCm,NrgaﬁxHaa,alll,oo( S lwpasllm—1p + 16 lm=1,)|@llm.q-
' oo +]8]<2m—1

So we obtain

sup | Bo[u, ¢
6lm.q=1

< sup |Blu, 9]l + Cm,NmabXHaa,BHl,oo( > lwpasllm-1p + 16 llm-1,)-
¢llm,q=1 “ | +|8|<2m—1
(9)



Since supp p C B(p41)r(7o) is compact, without loss of generality, we may
modify O(B(r41)r(20) N Q) and can apply WP estimate to u’.

Applying Hahn-Banach extension theorem to Bo[u, /], and an embedding
it W™4(B(ginyr(z0) N Q) = @D LUB(g+1)r(w0) N Q) where i(u) = {0%u}q

lo|<m

and [[{ua}all = (Q_luallfs)7,

3f e ( @ LI(B(ry1yr(20) NQ))* s.t. flwma (v) = Bolu, v,

la|<m

where ||f||(®|ﬂ\§m L4(B(ry1yr(z0)NQ))* = H¢‘|Sup71‘30[u, ]l

Since || flwgallw—mr < 1Fl(,. <, L9(Birs1yr(@o)ns))+» @PPlyIng local WP
estimates for By,

[u?|[wmr < C( sup | Bolu, @]| + [[u|r)-

lpllm,q=1
Thus, we obtain
[l wm.»
<C( sup |Blu, @]+ [[u"[|Lr) (10)
llpllm,qg=1
+ Comamax|aa slliool > lupasllm-1p + [0 m-1,)
o,

laf+8]|<2m—1

By the interpolation inequality on order of smoothness, for small 0 < s,

1
< CnpNCuaas( sup |Blu, @]l + —Zl[ullwm—10(B 1, (20)00)
6]l ,q=1 r

+ 8]l + 57 [ l).
Therefore, take s so that Cy, p N.CLa0 55 < %, we get results of our lemma
[ullwm.s (B, ©0)n) < [W”llwms
<O sup_ 1Bl 61+ oo, oy + 1550, o)
(11)
O

Now we state the equicontinuity in the compactness step. Assume that a
rescaled uniformly C'' domain Q, rescaled sequences {\; }ren = {| Ak |€?* }ren,
{Wg }ren, and {gr }ren C L°(2) satisty the following properties:

10



(i) For each k € N wy, € WP (Q) N W™m=12°(Q;) is a weak solution of the

Jloc
normalized resolvent equation

(e"% — Li)uwy = gk in Q
Wy = ONW =+ - = 8;,”‘11516 =0 on 00y,
that is, for all ¢ € C5°(Q2) Wy, satisfies
0 s ~ ol +18] _ o - -
"% (Wi, @) 12 () + Z Ael 2m " (ba,g0%Wk, 0° @) 1200y = (Gis B)12(020)»
|D¢‘,|,B|§m

where Ly is a uniformly elliptic operator.

(i) {wk}ren € WE(Qx) and {gk}ren C L®(Q%) are uniformly bounded:
that is, there exists K > 0 such that ||wk|lm—1,00 + ||gk]lecc < K.

(iii) As k tends to oo, {|Ak|}ren tends to co.

Proposition 3.1. Let {A\;}ren, {Wk}ren, and {di}ren satisfy the properties
(i), (ii), (iii). Then, there exists a sub sequence {wg, hien of {Wk}ren which
converges to some function w uniformly on some open meighborhood near the
origin. Particulary, if {1 }ren satisfies the following additional condition:

(i) |w,(0)| + [V (0)| > %
Then, we get |@W(0)| + [V@(0)] > L.
Proof. Take a smooth cut off function p € C§°(R™) st. for R > 1, r < 1,

xg € R™,

{1 on B,.(x)

K
, o <1, [0%|lm.ce < — for 1 < |af.
0 outside of B(gy1),(0) IPlloc < L, 110%llm, Rr o]

Localize wj, by setting wr” = pwy. Then, w” is a weak solution of the localized

resolvent equation

(€% — Lp)w” + I = gip in Qp N B(gy1)r(70)
W’ = oyuwg’ =--- = 8}1}_1ka = on 98 and near B (g1, (o)
(12)

where I is lower order terms of w,. Now, we calculate the weak form of I more
precisely. By Leibnitz’s rule

la|+16] _ _
Z Ael 2 (ba, 0%k’ 0°$) 120y

leel,|B]<m

lol+18] _ - aa—
= > o T (ba,s0"5k0 7 p, 07) L2(qy)

lal,|Bl<m v<a

lo|+18] _ o ~
+ Z Mkl (ba,s (0% ) p, 07 0) 12 (0

lal,| B[ <m

11



where C = (af;!)w. Similarly, we get

lo|+18] ~
Z e T (ba,p0 ik, 0°(6p)) L2(02p)

lal+18] . - s
= 3 Y T T (ba s 0%, (87 6) (077 0)) 12

|al,|B|<m o<pB

lef 1] _ .
+ Y T T (ba,s0% Gk, (0°0)p) L2y

la],|B]<m.

Thus, we get

la|+1B8]
@, 0+ S AT T (ba g0, 07 ) 12y

lal,|B]<m

. lal 18] _ o
= (@ ¢) - > S Co I T (ba s 0% p, 079) 1200

lal,|Bl<m y<a

lal+18] _ o -
+ Z A" " (ba, 50"k, 0° (69)) L2 (02

lal,|B|<m

la|+18] _ ~ o —0
— Y YOl T (ba 50, (079) (077 ) 2

lal,|B|<m o<

L+ 15] e
Grpr®)+ D> Y CUN 2 T (ba g0 k0™ 7, 0°0) 120,

lal,|B]<m y<a

PPy

Zm ‘1(ba,58“u}k, (8a¢)(aﬂ_0p))L2(Qk).
lal,|B|<m o<p

= (gkp, @) + 11 — I (13)

In order to apply W™ P estimates, we have to modify the lower order term I; — I
by Leibnitz’s rule so that the lower order term is in W~=""?(Q, N B(r41),(0)).
By Leibnitz’s rule, for functions u,v we get u(é’v) = 97 (uv) — (0u)v and

inductively,
ch s tat (as—tu)v).

t<s

So, we get

lo|+18] _ I
L= > 3 Coor(=1) TNl T T ba p07 (W (07 p)), 07 0) L2y

lal,|Bl<m T<y<a

Lol I8l ~ le% —L—0 lea
SN S (1) AL T T (b 50 (1 (00 0), (876)) 2

laf,]B]<m o<B t<a

Thus we get the weak form —I; +1I5. We also have to mollify 9(2, N B(r41),(0))
on some open neighborhood of () N d(B(r+1),(0)) so that the boundary

12



become uniformly C'. By local W™ P estimates and the previous lemma, there
exists C” > 0 such that

@[ wm.n (B, (2o)n02)

1
< C"(HMSUP_JB[U’ ol + E||u||WW*LP(B(RH)T(xO)ﬂQk) + 1wl e (B g1y (z0)n02))

< C/”(||f||LP(B(R+1)r($O)) F [0kl wm=10(B g 41y, (20))
: . 1
< C/”|B(R+1)r‘p (||f||oo + ||wk||m_1,oo) < C”/|B(R+1)T|pK.

Therefore, the sequence {wy”} C WP (B, (x¢) N ) is uniformly bounded for
r <1, zp € R". By the zero extension from Qi N B,(0) to B, (0), we get the
uniformly boundedness of {w”} C W™P(B;(0)). By the Rellich’s compactness
theorem, there exists a subsequence {wy,”} of {w;”} s.t.

w’}clﬂ — Jw uniformly on Bl (O> (l - OO)

Since (w,”)(0) > 1, we get w(0) > 1. Thus we complete the Compactness

step. O

3.2 Uniqueness of limit problem

In this chapter, we consider the uniqueness problem in the uniqueness step. Let
Gq, € C, and we consider the limit resolvent equation of the following uniformly
elliptic operator with constant coefficients:

Lo= Y (=1)™"ae 30"t

], |B]=m
We assume that Lg satisfy the ellipticity condition (E2). We have to consider
the cases when Q. = R™ or 2o, = R’. In the uniqueness step, we have to
consider the following dual problem: We can solve this dual problem by the
general facts written in such as H. Tanabe[24], but, in our case, we can solve
our dual problem concretely.

Lemma 3.3 (Dual problem when ., is the whole space R™). Let ¢ be in
C§°(R™). Then there exists a solution ¢ in S(R™) such that

(€% —Lo)p=1 nR" (14)

Proof. Let ¢ denote the fourier transformation of ¢. By Fourier transformation,
we get

(¥ — (=1 3" Gap(i€)°T)p =4 i R" (15)

leel,|B]=m

Since Ly is uniformly elliptic,

e+ D" aa ™ £ 0.
lal,|8l=m

13



Thus, we get

~ 1 N
¢=— ¢ e S(R")- S(R") = S(R").
61900 + Z aa’ﬁgoﬁ-ﬁ
laul,|B]l=m
Since ¢ € S(R™), we get ¢ € S(R™). O

Lemma 3.4 (Dual problem when Q. is the half space R}). Let v be in
CS°(R™). Then there exists a solution ¢ in S(R"~1) x C2™(R,) such that

(¢ — Lo)g = 1 in R
p=0ny¢p=---=0y '¢=0  on IR,
Proof. By the partial Fourier transformation with respect to the variable 2’ =
Ti1,  ,Tp_1) 1N —*, we get the following ordinary differencial equation
(z1,--, ) in R"~1 get the following ordinary diff ial equati
(eiGOo m+1 Z ba.5(0)(i€) (a1+,317 Q1B — 170)8an+ﬂn¢ 1!} in R”?
A . ], B]=n
gzs:aNqs:--.:a;g*l(z):o on R*! x {0}.
(16)

First of all, let 9y be the zero extention of 9 from R’} to R™, and consider the
whole space case. This case is already solved in the previous lemma and we get
a solution

do=FY(

) %1 € S(R™).

1
0o 4 Z ba75(0)5a+6

lal,| B|=m

Secondly, let h(z') = ¢o(z’,0) € S(R™~1), define n = ¢ — ¢o, then we consider
the following boundary value problem:

{(e“’oc —Lo)p=0 iR

n(z’,0) = —h(z") on OR?,

We want to determine the characteristic roots of this ODE. The characteristic
equation is

e _ (71)m+1 Z bawﬂ(o)(ig)(al“rﬁlg'”ﬁan71+5n—1,0)tan+3n —0.
], | Bl=m
Since Ly is strongly uniformly elliptic,
elfoe —(—1)m+1 Z ba,3(0 Y(ig)(atBan—1+Bn—1,0) (j)ontBn L () for s € R,
lee],|8]=

t = is are not characteristic roots for s € R. Thus, we get the characteristic
roots
t; =+p; +ig; for 1 <j <m, and p; >0, ¢; € R.

14



So, we take t; = —p; +ig; for 1 < j < N and let m; > 1 be the multiplicity of
N my
. Then, 7(¢ Z ZC’W (zn k Leti(€en ig g general solution which
j=1 k=1
belongs to C2™(R, ), and by the boundary condition we get

N m;
=D > (€)= - h)(E) e SR,
j=1k=1
Thus, we get
~ ~ N M
¢) — d)o + Z chd(gl)(xn)kfletj(g ):En
j=1k=1
We can show that the term Zj LT e (€) ()P et €D s in SR
and we get a desired solution. O

Now we consider the uniqueness step.

Lemma 3.5. Let [0o| <7 —¢, w € W7 (R") N L>(R") is a weak solution of

the normalized resolvent limit equation
(e~ —Lo)w =0 in R"
that is, for all ¢ € C§°(R™) @ satisfies

e’ (1w, ¢) 2(n) + Z Ga,p(0%W, 0° §) 2pny = 0.
lal,|B|=m

Then, w = 0.

Proof. Integrating by parts, we obtain
/ (e — Lo)gdr = 0 for all smooth test functions ¢ € C5°(R™).

Since C§°(R™) is dence in S(R™), we can take ¢ in S(R™) as a test function.
So, we consider the dual problem of the limit equation. For all smooth % in
C§°(R™) we want to find a solution ¢ in S(R™) s.t.

(€< —Lo)¢p =1 inR" (17)

Since we already solve this problem by previous lemmas, for all test function v
in C§°(R™) we can choose ¢ in S(R™) s.t.

(e —Lo)p =1 inR" (18)

and substitute ¢ for (e?>= — Ly)¢ in the limit equation, then we get

/ wipdz = 0 for all test function ¢ € C3°(R™).

15



Finally, we approximate w by convoluting with Friedrich’s smooth mollifier p.,
then the approximate sequence 1w, is equal to be [,, wWp.dr = 0 because we can
take 1 = p. as a test function. As 0 = w, tends to @ in L'(R™) space, we get
w = 0 a.e. R™. Therefore, we get the uniqueness result @w = 0 by continuity. [

Lemma 3.6. Let |0 <7 —¢, w € WL (RY) N L>(RY) is a weak solution

of the normalized resolvent limit equation
(et — Lo)iw =0 in R}
W=0Nw ==y =0 on JR?,

that is, for all ¢ € C3°(R'}) 0 satisfies

0= (0, ¢)rawy) + D dap(0%®,87¢) L2my) = 0.

la,|Bl=m
Then, w = 0.

Proof. Integrating by parts, we obtain

/ W (e — Lo)pdz = 0 for all smooth test functions ¢ € C5°(R").
R:

Since C§°(R") is dence in S(R"™!) x C2™(R,), we can take ¢ in S(R") as a
test function. So, we consider the dual problem of the limit equation. For all
smooth 1 in C§°(R™) we want to find a solution ¢ in S(R"™1) x C§°(R;)s.t.

(€= — Lo)p =0 in R?
p=0np=-=03""9=0 on JRT,

Since we already solve this problem by previous lemmas, for all test function v
in C§°(R") we can choose ¢ in S(R"™1) x CZ™(R}) s.t.

(e~ — Lo)¢ = in R

and substitute ¢ for (e?>= — Ly)¢ in the limit equation, then we get

/ wipdr = 0 for all test function ¢ € C§°(RY).
RY

Finally, take a arbitrary cut off function v € C§°(R}) and set @ = @v in
L'(R"). Similarly in the proof of the previous lemma, we approximate " by
convoluting with Friedrich’s smooth mollifier p., then the approximate sequence

w! is equal to be [p, W(vp.)dr = 0 because we can take 1) = vp, as a test
+

function. As 0 = w” tends to w” in L!(R™) space, we get wv = 0 a.e. R™. Since
v is arbitrary, we get w = 0 a.e. R’}. Therefore, we get the uniqueness result
w = 0 in R?} by continuity. O

16



3.3 Proof of resolvent estimates in spaces of bounded func-
tions

In order to prove resolvent estimates precisely, we define a weak solution of
resolvent equation.

Definition 3.4. Let m be a positive integer, 0 < e < 5, M >0, f € L>(%Q),
and A € T N{|z| > M} where . ={A € C: |arg\| <7 —¢e}. Then, we
say that uy € Wi'y» (Q) N L>*(Q) is a weak solution of the resolvent equation

A—Lu=f in O
uzaNu:u-:aﬁ*lu:O on 0f)

if uy satisfies

Aux, @) 2 )+ Z (0a,50%ux, 0°P) 12(q) = (f. @) 12 for all ¢ € C5°(9).

lal,|B]<m

Remark 3.3. By Holder inequality, Our definition of a weak solution is wellde-
fined.

proof of resolvent estimates. We argue by contradiction. Let us deny the L>°estimates.
Then we particularly obtain Je > 0 s.t.

VEk € N3N € Sp_c N {Jz| 2k}, fi € L), up € WE(Q) N L®(Q)(p > n)

which is a weak solution of the resolvent equation

{()\k — L)uk = fk in Q (19)

uk:(‘?Nuk:-~-:8X}”*1uk:0 on 0N

with N(ug, A\x) > k|| fellco where N(u,\) = sup( Z |)\|17%|8au(1‘)|).
€
la|=k<m-—1
We set vy, = |)\k|u;C with \p = |)\k|e“’k and normalize the resolvent equation by
setting vy, = m and fp = m Then, we get the following normalized
resolvent equations

. L ~
e — ), = in Q
’lszaN’Jk:-“:aﬁil’Jk:O on 89

more precisely, for all ¢ € C5°(Q2) v}, satisfies
1

&' (T, ¢) 12(02) + el > (00,500, 0°0) 12(0) = (fr, &) L2(),
lal,|B]<m

17



with the estimates 1 > [ frlloos [A&| > K, |arg 8| < 7 — &, and N(l)\ Ak) = 1.
Secondly, we want to take a sequence of a point at which each solution takes a
value close to its maximum. Since N(ﬁ, Ar) =1,

e 1
Az, € O s.t.l _Ig 71|>\| 2 [0 0 (21| > 5 (21)

Set the rescaled function as

. . x - x
Wy = Uk (xr + ——) and gr = fr(xp + ——).
‘)\k|2m | k|2m

Then the rescaled domain Q of wy and g is represented as |/\k|ﬁ(§2 — X).
By changing the variables @ € Q for y = |\g|2m (z — x), for all ¢ € C°(Q)

> (0,800, 0°0) 120

laf,|B]<m
= Y [ as@p i@ s
lal,|B]<m
_ Y s 5 1
= Y [ taston+ )@ )+ )@+ )
laf,| 8] <m * b | Ak |2 | Ak |z |)\k|2m | k|'"
Lol o/ o 18] 1
= > b . ()| Mk 27 0% (G (k + ———)) [k | 77 0% (d(k + ——)) —=dy
ol [Bl<m O |Ak|2m \/\k|2m s
lal+18l _ n a ~ 8
= D Il T (ba s k0, 9°n) L2y
‘alvlﬁlgm
where bq g 1(y) = aap(zr + 3"%), and n(x) = ¢(ag + —) € C§°(Q).

I/\k m ‘)\k | Zm
Similarly,

1

(frs®)12(0) =

TWELLLUEIOSE % (Ui, @) 12(02) = 619’“ (W, M) L2(021)-

Thus, wy is a weak solution of the following rescaled resolvent equation

. \HISI ~ ~ .
(€ = 3 GO T )™ 00 k0 = G in

o], B]<m
Wy = ONU = - = O "y, = 0 on 90
(22)
more precisely, for all n € C§°(§;) Wy, satisfies
¥ lel+18] o~ -
O ma@n T D, el 7 T (e k0 6k, 0°) 120y = (Gkem) L2 (20

lal,[B]<m

with L estimates + > ||k ||oo, | N () ()] oo = 1, and N (14)(0) > 1 where

N (1) (z) = Z |0%wy(x)]. Appling the proposition in the compactness
la|=k<m-—1
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step to our case, there exists a sub sequence {wy, };en of {uW }ren which con-
verges to some function @ uniformly on some open neighborhood near the origin.
Particulary, we get N(w)(0) > 1. Finally, we need the uniqueness result w = 0
to get a contradiction. Set dj = dg, (0,004) = |/\k|ﬁdg(xk,89). In order to
apply the results in the uniqueness step, we have to show the convergence of
each term of resolvent equations and the rescaled domain.

Case(i) d = liminf dj, = liminf|)\k|ﬁd(:ﬁk, 00N) = occ.
k—oo k—o0

First of all, we show j tends to R™. For r > 0, there exists kg € N s.t.
B,.(0) C Q,. So, for each smooth test function n € C§°(R™), there exists
k, € Ns.t. supp  C £, for k,, < k. Secondly, we show the convergence of each
rescaled terms. Since supp 7 is compact, we substitute a larger sub domain with
C'boundary for supp 7. Then we apply similar argument in the compactness
step to this case, there exists a subsequence {wy, } of {w} s.t.

Wy, — Jw  on W™P(supp 1) (I = o0).

Now we have to consider the convergence of the terms

lo|+18] _ lal+18]
k| 2m 1ba,ﬁ,k(x) = |Ag| 2 1aa’l3(m;€ + 7|)\ ‘;) on supp 7.
k‘ 2m

For |a| + |B] < 2m — 1,

al+[8]

|
|)\k| 2m

_ | +18]
Hbagklloo = Akl 7 Hlaa,sllee = 0 (k — o0).

For |a] = |B| = m, since aq,g are uniformly continuous, for € > 0 there exists
0> 0st. if |z + —E— — x| = | —E| < 0 then by g.k(%) — bagk(0)] < e

1
[Ag|2m [Ak|2m

Since x € supp 1 and |A\;| — oo, there exists kg s.t. | —2—| < § for ko < k.

[Ak|2m
Since |aq g(zr)| < ||a,8llco, there e%ist a constant a, s and a subsequence
{ba,g k. } 8t ba,gk,(0) = aa,g(Tr,) = Ga,p (I = 00). Then, for ky < k

|ba,l3,kz (z) — &a,ﬂ‘ < |b0z,/3,kz (z) — ba, 8,k (0)] + |ba,5,kz (0) - &a,6|
<e+ |ba,,8,lcl(0) - &a’5| — € (l — OO)

Since € and = € supp 7 are arbitrary, we get ||ba,g.1, () — Ga,8lloc = 0 (I = 00).
As [ tends to oo, the rescaled equation

0 - lal 4181 _ o - .
"% (W, M) r2(0) + Z Xel 2 H(ba, g0 Wk, 0°0) 12000y = (Gs M) 12 (020)
lal,|B]|<m

tends to

e’ (w, 1) 2(rn) + Z Ga,p(0%w, 0°n) [2mn) =0,

lo|=[B]=m
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where 0| < 7 — e. Therefore, w is a weak solution of the limit resolvent
equation _ ~
(e~ —Lo)w =0 inR",

where Ly = Z (—1)m+1&a,580‘+5. So, we can apply the uniqueness step
la]=]8l=m

and we get w = 0.

Case(ii) d = liminf dj, = lim inf| A |27 d(z, Q) < oco.
k—o0 k—o00

In this case, we show Qj tends to R’'. There exists a subsequence {dy,} of
{di} s.t. llim dy, = d. Since rotations and translations preserve the ellipticity
— 00

and  is uniformly C*, without loss of generality, we may assume that the
perpendicular from zy, to 92 coincides with the z,,-axis and d=0,ie., we may
assume (), tends to R as [ — oco. Let y; be the point of this intersection.
For each smooth test function n € Cg°(R"), d(supp 7,0R") = dy, > 0. Since
yi — 0, we can take large R, > 0 so that for all large | € N Bg, (1) Dsupp 7.
By Lemma 2.1., Q is a (wo(R,), R;) Reifenberg flat domain where wq is the
nondecreasing function in Definition 2.1.. Since @ = |\;|zm (z; — Q), € is a
(wal( IAAI‘{; ), Ry) Reifenberg frat domain. By the Reifenberg frat condition,
Lz

R
Br, (y1) " D Br, (y1) N {zn > wQ(M |T2L )Ry}
|2

Since wq(|h]) — 0 as |h| — 0, we can take large Iy so that for [ > Iy
D) BRn(yl) N{x, > dn}
> B, (i) Nsupp 1.

As a consequence, for Iy < [ supp 7 is included in €;. So, we can apply the
similar argument in case (i), there exists [y s.t. for Iy < I supp nn C €, and
furthermore w is a weak solution of the limit resolvent equation

(€' — Lo)iw =0 in R}
=0y =--=0y"'w=0  ondRY,
that is, for all ¢ € C§°(R"}) W satisfies
pifoo (W, @) L2(ry) + Z daﬁ(aaw,a%)m(m) = 0.
la,|Bl=m
Then, by the uniqueness step, we get w = 0. O

Remark 3.4. If Q is unbounded, we need Q) to be uniformly C* when €, tends
to oo
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4 Construction of weak solutions

The definition of sectorial is as follows:

Definition 4.1. Let X be a complex Banach space, with norm || - ||, and
L:D(L) C X — X be a linear operator, with not necessarily dence domain.
Then, we say L is sectorial if there exist constants w € R,0 <e < 5, C >0
such that

(i) The resolvent set p(L) of L contains

Snocw ={AEC: A w, |argA—w)l <7},

(i)
C
||()\ — L)HL(X) S m fOT’ all A € Sﬂ_67w.

Now we prove the sectoriality of semigroups. In order to show the sectoriality
of L, we have to get uniqueness and existence of the resolvent equation. Our
construction of weak solutions is based on an approximation method seen in
A. Lunardi[10]. In A. Lunardi[10], strong solutions of resolvent equations are
constructed when the operator is a non divergence type operator.

proof of the existence and uniqueness of weak solution. First of all, we use a ap-
proximation method to get a weak solution of the resolvent equation. For k € N,
let ¢, € C§°(R™) be a cut off function s.t.

0<g<t, go=qt B0
0 outside of Bay(0)
For arbitrary f € L*°(Q), we define
fe=¢rf € LP(Q2) (1 <p < o0).

By W™? estimates, we get a weak solution u, € Wy"?(Q) of

{()‘_L)Uk:fk in Q

uk:(?Nuk:~o~:8Jr\'}_1uk:0 on 0f2

with the estimate |Jugllwmr) < CpllfellLr(). Since WP — W™= by
Sobolev embedding type theorems, uy, is in W32 (Q)NW™~12°(Q). So, we can
apply L™ estimates to

(A — L)uy = fr in Q
uk:ﬁNuk:-~-:8;'}_1uk:0 on 0N
We obtain
N(ur, A) < Cllfelle < CllfllLe- (23)
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Therefore, {u} C W™~1:°°(Q) is uniformly bounded. Furthermore, we also can
show that {ux} C W™P(M) is uniformly bounded for each compact set M C
by almost same way as in the compactness step. So, there exists a subsequence
{ug,} in Wm—tee q bR TH(Q) st

uy, = Ju € WmH(Q) N C™~ 1= %+ M) uniformly on each compact set M.

with the estimates N(u,A) < C| f|lL~. We are going to show that w is in
WP (Q) and is a weak solution of

A=Lu=f in
uzaNu:-~-:3X}”1u:O on Of).
Fix any closed ball Br(0) with R > 4|)\|’%. Apply the previous lemma in
Bgr(0) N, {uy, } € W™P(Bg(0) N Q) is uniformly bounded, so that
u € W™P(Bgr(0) N Q). Since R is arbitrary, u is in W,)>?(Q). Furthermore,
for each smooth function ¢ € C§°(R™) ¢uy, € WiP(£2). Since ¢ has compact
support, guy converges to ¢u in W™ (Q). So u € W7 (). Take large j,1 € N,
then we get
{()\—L)(ukj —ug,) =0 in BR(0)NQ

Up; — up, = Oy (up, —ug,) = -+ = 8ﬁ_1(ukj —ug,) =0 on O(Bgr(0) N Q).

J

By the local W™ estimates as in the compactness step we get for 29 € Bz (0),
Hukj —Uk, ||W""’P(B‘ ‘7% (z0)N) < C()‘)Hukg —Uk, Hmfl’oc —0 (.771 — OQ) (24)
A

Covering B (0) by a finite number of balls B\/\I’% (x0), we get

up; > u in W™P(Bg(0)NQ) (25)
As j tends to oo, the resolvent equation tends to
A=Lu=f in Bg(O)ﬂQ.
Since R is arbitrary,
A=Lju=f inQ, andue WP (Q).

Thus, we get a weak solution of resolvent equation. We get uniqueness by
linearity of resolvent equation and L° apriori estimates. So, L is sectorial. [J

Proof of analyticity. Let us define e** as follows;

ey =x for all z € L™>(Q)

1
etly = — / A\ — L) tzd\ for all t > 0 and = € L>=(Q),
v

211
where 7 > M > 0, 6 < ¢, and 7 is the curve
EreoN{IA>rPHU{NeC:|arg\| >0, |\ =1},

oriented counter clockwise. Since L is sectorial, e'* is an analytic semigroup in
L>(Q) by applying abstruct semigroup theories. O
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