
10Binary Stars and Stellar Masses

Quite often, two stars may appear to be close to-

gether in the sky, although they are really at very

different distances. Such chance pairs are called

optical binary stars. However, many close pairs

of stars really are at the same distance and form

a physical system in which two stars are orbit-

ing around each other. Less than half of all stars

are single stars like the Sun. More than 50 % be-

long to systems containing two or more members.

In general, the multiple systems have a hierarchi-

cal structure: a star and a binary orbiting around

each other in triple systems, two binaries orbit-

ing around each other in quadruple systems. Thus

most multiple systems can be described as bina-

ries with several levels.

Binaries are classified on the basis of the

method of their discovery. This classification has

nothing to do with the physical properties of the

stars. Visual binaries can be seen as two sepa-

rate components, i.e. the separation between the

stars is larger than about 0.1 arc seconds. The rel-

ative position of the components changes over the

years as they move in their orbits (Fig. 10.1). In

astrometric binary stars only one component is

seen, but its variable proper motion shows that

a second invisible component must be present.

The spectroscopic binary stars are discovered on

the basis of their spectra. Either two sets of spec-

tral lines are seen or else the Doppler shift of the

observed lines varies periodically, indicating an

invisible companion. The fourth class of bina-

ries are the photometric binary stars or eclips-

ing variables. In these systems the components

of the pair regularly pass in front of each other,

causing a change in the total apparent magni-

tude.

Binary stars can also be classified on the ba-

sis of their mutual separation. In distant binaries

the separation between the components is tens or

hundreds of astronomical units and their orbital

periods are from tens to thousands of years. In

close binaries the separation is from about one

au down to the radius of the stars. The orbital pe-

riod ranges from a few hours to a few years. The

components of contact binaries are so close that

they are touching each other.

The stars in a binary system move in an ellipti-

cal orbit around the centre of mass of the system.

In Chap. 6 it was shown that the relative orbit, too,

is an ellipse, and thus the observations are often

described as if one component remained station-

ary and the other orbited around it.

10.1 Visual Binaries

We consider a visual binary, assuming initially

that the brighter primary component is station-

ary and the fainter secondary component is or-

biting around it. The angular separation of the

stars and the angular direction to the secondary

can be directly observed. Making use of observa-

tions extending over many years or decades, the

relative orbit of the secondary can be determined.

The first binary orbit to be determined was that of

ξ UMa in 1830 (Fig. 10.2).

The observations of visual binaries only give

the projection of the relative orbital ellipse on the

plane of the sky. The shape and position of the
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Fig. 10.1 When a visual

binary is followed for

a long time, the

components can be seen to

move with respect to each

other. Picture of Krüger 60.

(Yerkes Observatory)

Fig. 10.2 In 1830 the orbit of ξ Ursae Majoris was the

first binary orbit determined observationally

true orbit are not known. However, they can be

calculated if one makes use of the fact that the

primary should be located at a focal point of the

relative orbit. The deviation of the projected po-

sition of the primary from the focus of the pro-

jected relative orbit allows one to determine the

orientation of the true orbit.

The absolute size of the orbit can only be

found if the distance of the binary is known.

Knowing this, the total mass of the system can

be calculated from Kepler’s third law.

The masses of the individual components

can be determined by observing the motions of

both components relative to the centre of mass

(Fig. 10.3). Let the semimajor axes of the or-

bital ellipses of the primary and the secondary

be a1 and a2. Then, according to the definition of

the centre of mass,

a1

a2
=

m2

m1
, (10.1)

Fig. 10.3 The components of a binary system move

around their common centre of mass. A1, A2 denote the

positions of the stars at a given time A, and similarly for

B and C

where m1 and m2 are the component masses. The

semimajor axis of the relative orbit is

a = a1 + a2. (10.2)

For example, the masses of the components of

ξ UMa have been found to be 1.3 and 1.0 solar

masses.

10.2 Astrometric Binary Stars

In astrometric binaries, only the orbit of the

brighter component about the centre of mass can

be observed. If the mass of the visible component

is estimated, e.g. from its luminosity, the mass of

the invisible companion can also be estimated.

The first astrometric binary was Sirius, which

in the 1830’s was observed to have an undulat-

ing proper motion. It was concluded that it had

a small companion, which was visually discov-

ered a few decades later (Figs. 10.4 and 15.1).
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The companion, Sirius B, was a completely new

type of object, a white dwarf (Sect. 15.1).

The proper motions of nearby stars have been

carefully studied in the search for planetary sys-

tems. Although e.g. Barnard’s star may have un-

seen companions, the existence of planetary sys-

tems around other stars was not established by

proper motion studies but with spectroscopic ob-

servations (Sect. 21.8).

10.3 Spectroscopic Binaries

The spectroscopic binaries (Fig. 10.5) appear as

single stars in even the most powerful telescopes,

but their spectra show a regular variation. The

first spectroscopic binary was discovered in the

1880’s, when it was found that the spectral lines

of ζ UMa or Mizar split into two at regular inter-

vals.

The Doppler shift of a spectral line is directly

proportional to the radial velocity. Thus the sep-

aration of the spectral lines is largest when one

component is directly approaching and the other

is receding from the observer. The period of the

variation is the orbital period of the stars. Unfor-

tunately, there is no general way of determining

the position of the orbit in space. The observed

velocity v is related to the true velocity v0 ac-

cording to

v = v0 sin i, (10.3)

where the inclination i is the angle between the

line of sight and the normal of the orbital plane.

Consider a binary where the components

move in circular orbits about the centre of mass.

Let the radii of the orbits be a1 and a2. From the

definition of the centre of mass m1a1 = m2a2,

and writing a = a1 + a2, one obtains

a1 =
am2

m1 +m2
. (10.4)

Fig. 10.4 The apparent

paths of Sirius and its

companion in the sky

Fig. 10.5 Spectrum of the spectroscopic binary κ Arietis. In the upper spectrum the spectral lines are single, in the

lower one doubled. (Lick Observatory)
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The true orbital velocity is

v0,1 =
2πa1

P
,

where P is the orbital period. The observed or-

bital velocity according to (10.3) is thus

v1 =
2πa1 sin i

P
. (10.5)

Substituting (10.4), one obtains

v1 =
2πa

P

m2 sin i

m1 +m2
.

Solving for a and substituting it in Kepler’s third

law, one obtains the mass function equation:

m3
2 sin3 i

(m1 +m2)2
=

v3
1P

2πG
. (10.6)

If one component in a spectroscopic binary is

so faint that its spectral lines cannot be observed,

only P and v1 are observed. Equation (10.6) then

gives the value of the mass function, which is

the expression on the left-hand side. Neither the

masses of the components nor the total mass can

be determined. If the spectral lines of both com-

ponents can be observed, v2 is also known. Then

(10.5) gives

v1

v2
=

a1

a2

and furthermore the definition of the centre of

mass gives

m1 =
m2v2

v1
.

When this is substituted in (10.6), the value of

m2 sin3 i, and correspondingly, m1 sin3 i, can be

determined. However, the actual masses cannot

be found without knowing the inclination.

The size of the binary orbit (the semimajor

axis a) is obtained from (10.5) apart from a fac-

tor sin i. In general the orbits of binary stars are

not circular and the preceding expressions cannot

be applied as they stand. For an eccentric orbit,

the shape of the velocity variation departs more

and more from a simple sine curve as the ec-

centricity increases. From the shape of the veloc-

ity variation, both the eccentricity and the longi-

tude of the periastron can be determined. Know-

ing these, the mass function or the individual

masses can again be determined to within a fac-

tor sin3 i.

10.4 Photometric Binary Stars

In the photometric binaries, a periodic variation

in the total brightness is caused by the motions

of the components in a double system. Usu-

ally the photometric binaries are eclipsing vari-

ables, where the brightness variations are due to

the components passing in front of each other.

A class of photometric binaries where there are

no actual eclipses are the ellipsoidal variables.

In these systems, at least one of the components

has been distorted into an ellipsoidal shape by the

tidal pull of the other one. At different phases of

the orbit, the projected surface area of the dis-

torted component varies. The surface temperature

will also be lower at the ends of the tidal bulges.

Together these factors cause a small variation in

brightness.

The inclination of the orbit of an eclipsing bi-

nary must be very close to 90◦. These are the only

spectroscopic binaries for which the inclination is

known and thus the masses can be uniquely deter-

mined.

The variation of the magnitude of eclips-

ing variables as a function of time is called

the lightcurve. According to the shape of the

lightcurve, they are grouped into three main

types: Algol, β Lyrae and W Ursae Majoris type

(Fig. 10.6).

Algol Stars The Algol-type eclipsing variables

have been named after β Persei or Algol. During

most of the period, the lightcurve is fairly con-

stant. This corresponds to phases during which

the stars are seen separate from each other and

the total magnitude remains constant. There are

two different minima in the lightcurve, one of

which, the primary minimum, is usually much

deeper than the other one. This is due to the

brightness difference of the stars. When the larger

star, which is usually a cool giant, eclipses the

smaller and hotter component, there is a deep

minimum in the lightcurve. When the small,
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Fig. 10.6 Typical lightcurves and schematic views of Al-

gol, β Lyrae and W Ursae Majoris type binary systems.

The size of the Sun is shown for comparison

bright star passes across the disk of the giant, the

total magnitude of the system does not change

by much.

The shape of the minima depends on whether

the eclipses are partial or total. In a partial eclipse

the lightcurve is smooth, since the brightness

changes smoothly as the depth of the eclipse

varies. In a total eclipse there is an interval dur-

ing which one component is completely invis-

ible. The total brightness is then constant and

the lightcurve has a flat bottomed minimum. The

shape of the minima in Algol variables thus gives

information on the inclination of the orbit.

The duration of the minima depends on the ra-

tio of the stellar radii to the size of the orbit. If the

star is also a spectroscopic binary, the true dimen-

sions of the orbit can be obtained. In that case the

masses and the size of the orbit, and thus also the

radii can be determined without having to know

the distance of the system.

β Lyrae Stars In the β Lyrae-type binaries, the

total magnitude varies continuously. The stars are

so close to each other that one of them has been

pulled into ellipsoidal shape. Thus the brightness

varies also outside the eclipses. The β Lyrae vari-

ables can be described as eclipsing ellipsoidal

variables. In the β Lyrae system itself, one star

has overfilled its Roche lobe (see Sect. 12.6) and

is steadily losing mass to its companion. The

mass transfer causes additional features in the

lightcurve.

W UMa Stars In W UMa stars, the lightcurve

minima are almost identical, very round and

broad. These are close binary systems where both

components overfill their Roche lobes, forming

a contact binary system.

The observed lightcurves of photometric bi-

naries may contain many additional features that

confuse the preceding classification.

– The shape of the star may be distorted by the

tidal force of the companion. The star may be

ellipsoidal or fill its Roche surface, in which

case it becomes drop-like in shape.

– The limb darkening (Sects. 9.6 and 13.2) of the

star may be considerable. If the radiation from

the edges of the stellar disk is fainter than that

from the centre, it will tend to round off the

lightcurve.

– In elongated stars there is gravity darkening:

the parts most distant from the centre are cooler

and radiate less energy.

– There are also reflection phenomena in stars. If

the stars are close together, they will heat the

sides facing each other. The heated part of the

surface will then be brighter.

– In systems with mass transfer, the material

falling onto one of the components will change

the surface temperature.
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All these additional effects cause difficulties

in interpreting the lightcurve. Usually one com-

putes a theoretical model and the corresponding

lightcurve, which is then compared with the ob-

servations. The model is varied until a satisfac-

tory fit is obtained.

So far we have been concerned solely with the

properties of binary systems in the optical do-

main. Recently many double systems that radiate

strongly at other wavelengths have been discov-

ered. Particularly interesting are the binary pul-

sars, where the velocity variation can be deter-

mined from radio observations. Many different

types of binaries have also been discovered at

X-ray wavelengths. These systems will be dis-

cussed in Chap. 15.

The binary stars are the only stars with ac-

curately known masses. The masses for other

stars are estimated from the mass-luminosity re-

lation (Sect. 9.7), but that is valid only for main-

sequence stars and has to be calibrated by means

of binary observations.

10.5 Examples

Example 10.1 (The Mass of a Binary Star) The

distance of a binary star is 10 pc and the largest

angular separation of the components is 7′′ and

the smallest is 1′′. The orbital period is 100 years.

The mass of the binary is to be determined, as-

suming that the orbital plane is normal to the line

of sight.

From the angular separation and the distance,

the semimajor axis is

a = 4′′
× 10 pc = 40 au.

According to Kepler’s third law

m1 +m2 =
a3

P 2
=

403

1002
M⊙ = 6.4 M⊙.

Let the semimajor axis of one component be a1 =

3′′ and for the other a2 = 1′′. Now the masses of

the components can be determined separately:

m1a1 = m2a2 ⇒ m1 =
a2

a1
m2 =

m2

3
,

m1 +m2 = 6.4 ⇒ m1 = 1.6, m2 = 4.8.

Example 10.2 (The Lightcurve of a Binary) Let

us suppose that the line of sight lies in the orbital

plane of an Algol type binary, where both com-

ponents have the same radius. The lightcurve is

essentially as shown in the figure. The primary

minimum occurs when the brighter component is

eclipsed. The depth of the minima will be calcu-

lated.

If the effective temperatures of the stars are TA
and TB and their radius is R, their luminosities

are given by

LA = 4πR2σT 4
A, LB = 4πR2σT 4

B .

The flat part of the curve corresponds to the total

luminosity

Ltot = LA +LB .

The luminosities may be expressed as absolute

bolometric magnitudes by means of (4.13). Since

the distance moduli of the components are the

same, the apparent bolometric magnitude at the

primary minimum will be

mA −mtot = MA −Mtot

= −2.5 lg
LA

Ltot
= +2.5 lg

Ltot

LA

= 2.5 lg
4πR2σT 4

A + 4πR2σT 4
B

4πR2σT 4
A

= 2.5 lg

(

1 +

(

TB

TA

)4)

.

Similarly the depth of the secondary minimum is

mB −mtot = 2.5 lg

(

1 +

(

TA

TB

)4)

.

Let the effective temperatures of the stars be

TA = 5000 K and TB = 12,000 K. The depth of


