
The Interpolative Trisection Algorithms 1

Copyright © 2014 by Namir Clement Shammas

The New Interpolative Trisection Root-
Seeking Algorithms

by
Namir Shammas

Introduction
The concept of root-seeking using root-bracketing is not new. What is new in this

article is combining root-bracketing and quadratic/cubic interpolation to ensure

that the root-seeking iterations quickly achieve their goal. Simple root-seeking

methods are guaranteed to work if the basic assumptions hold. By contrast,

unconstrained interpolation may or may not work depending on the targeted

function as well as the number and values of the points used in the interpolation.

The two schemes together produce better result than each one by itself.

This article presents a new set of root-bracketing algorithms. The new algorithms,

are named the Interpolative Trisection methods. They compete with and enhance

the Bisection method which is the slowest root-seeking method. They also compete

with the Trisection Plus algorithm[6] which I recently developed. I present two

variants of the Interpolative Trisection algorithms—one that uses quadratic

interpolation and the other applies cubic interpolation.

Since the Trisection Plus method[6] is based on the Bisection method, I will present

a brief discussion for the Bisection method. In addition, since I am comparing the

new algorithms with Newton’s method and the Trisection Plus[6] algorithm, I will

also discuss these two methods. If you are familiar with any or all of these

algorithms, you can skip over the related sections.

The Bisection Algorithm
There are numerous algorithms that calculate the roots of single-variable nonlinear

functions. The most popular of such algorithms is Newton’s method. The slowest

and simplest root seeking algorithm is the Bisection method. This method has the

user select an interval that contains the sought root. The method iteratively shrinks

the root-bracketing interval to zoom in on the sought root. Here is the pseudo-code

for the Bisection algorithm:

The Interpolative Trisection Algorithms 2

Copyright © 2014 by Namir Clement Shammas

Given f(x)=0, the root-bracketing interval [A,B], and the tolerance, Toler,

for the root of f(x):

 Calculate Fa = f(A) and Fb = f(B).

 Exit if Fa*Fb > 0.

 Repeat

o X =(A+B)/2

o Fx = f(X)

o If Fx*Fa > 0 then

 A = X

 Fa = Fx

o Else

 B = X

 Fb = Fx

o End

 Until |A-B| < Toler

 Return root as (A+B)/2

The above pseudo-code shows how the algorithm iteratively halves the root-

bracketing until it zooms on the root. The Bisection method is the slowest

converging method. It’s main virtue is that it is guaranteed to work if f(x) is

continuous in the interval [A, B] and f(A)×f(B) is negative.

Newton’s Method
I will also compare the new algorithms with Newton’s method. This comparison

serves as an upper limit test. I am implementing Newton’s method based on the

following pseudo-code:

Given f(x)=0, the root-bracketing interval [A,B], and the tolerance, Toler,

for the root of f(x):

 Calculate X = (A+B)/2

 Repeat

o h = 0.001 * (|X| + 1)

o Fx = f(X)

o Diff = h * Fx / (f(X+h) – Fx)

o X = X – Diff

 Until |Diff| < Toler

 Return root as X

The above code shows that the implementation of Newton’s method starts with the

same interval [A, B] that is already available for the root-bracketing methods.

Thus, the algorithm derives its single initial guess as the midpoint of that interval.

The Trisection Algorithm
The Trisection algorithm has each iteration divide the root-bracketing interval [A,

B] into three parts, instead of two as does the Bisection. The algorithm chooses the

first point X1 within the interval [A, B] closest to the end point A, or B, that has

the smallest absolute function value (call this point Z). This strategy hopes that

The Interpolative Trisection Algorithms 3

Copyright © 2014 by Namir Clement Shammas

f(X1) would have a sign opposite that of f(Z). If this condition is true, then the

iteration has finished its task. If not, the algorithm calculates X2 which lies closer

to the other interval end point (call it Y). The algorithm then determines whether

the interval [X1, X2] or [X2, Y] is the new root-bracketing interval. The values of

the interval [A. B] are then updated accordingly. Here is the pseudo-code for the

Trisection algorithm:

Given f(x)=0, the root-bracketing interval [A,B], and the tolerance, Toler,

for the root of f(x):

 Calculate Fa = f(A) and Fb = f(B).

 Exit if Fa*Fb > 0.

 Repeat

o If |Fa| < |Fb| then

 X1 = A + (B-A)/3

 Fx1 = f(X1)

 If Fa*Fx1 < 0 then

 B = X1

 Fb = Fx1

 Else

 X2 = B – (B-A)/3

 Fx2 = f(X2)

 If Fx1*Fx2 < 0 then

o A = X1

o Fa = Fx1

o B = X2

o Fb = Fx2

 Else

o A = X2

o Fa = Fx2

 End

 End

o Else

 X1 = B - (B-A)/3

 Fx1 = f(X1)

 If Fb*Fx1 < 0 then

 A = X1

 Fa = Fx1

 Else

 X2 = A + (B-A)/3

 Fx2 = f(X2)

 If Fx1*Fx2 < 0 then

o A = X2

o Fa = Fx2

o B = X1

o Fb = Fx1

 Else

o B = X2

o Fb = Fx2

 End

 End

The Interpolative Trisection Algorithms 4

Copyright © 2014 by Namir Clement Shammas

 Until |A-B| < Toler

 Return root as (A+B)/2

The Trisection Plus Algorithm
I have used the same approach in my previous efforts[4][5] to enhance the Bisection

method, with the Trisection Plus algorithm. This variant of the Trisection

algorithm carries out the same basic steps with the added step of performing an

inverse linear interpolation within the new root-bracketing interval. This additional

step enhances significantly the convergence to the root.

Let me present the pseudo-code for the Trisection Plus method:

Given f(x)=0, the root-bracketing interval [A,B], the tolerance Toler for the

root of f(x), and the function tolerance value FxToler:

 Calculate Fa = f(A) and Fb = f(B).

 Exit if Fa*Fb > 0

 Repeat

o LastA = A

o LastB = B

o If |Fa| < |Fb)| then

 X1 = A + (B - A) / 3

 Fx1 = f(X1)

 Comment-- case 1: [A,X1] has the root

 If Fx1 * Fa < 0 then

 X3 = Interpolate2(A, X1, Fa, Fx1)

 Fx3 = f(X3)

 If Fa * Fx3 < 0 then

o B = X3

o Fb = Fx3

 Else

o A = X3

o Fa = Fx3

o B = X1

o Fb = Fx1

 End

 Else

 X2 = A + 2 * (B - A) / 3

 Fx2 = f(X2)

 Comment-- case 2: [X1,X2] has root

 If Fx1 * Fx2 < 0 then

o X3 = Interpolate2(X1, X2, Fx1, Fx2)

o Fx3 = f(X3)

o If Fx1 * Fx3 < 0 then

 A = X1

 Fa = Fx1

 B = X3

 Fb = Fx3

o Else

The Interpolative Trisection Algorithms 5

Copyright © 2014 by Namir Clement Shammas

 A = X3

 Fa = Fx3

 B = X2

 Fb = Fx2

o End

 Else

o Comment := case 2: [X2,B] has root

o X3 = Interpolate2(X2, B, Fx2, Fb)

o Fx3 = f(X3)

o If Fx2 * Fx3 < 0 then

 A = X2

 Fa = Fx2

 B = X3

 Fb = Fx3

o Else

 A = X3

 Fa = Fx3

o End

 End

 End

o Else

 X1 = A + 2 * (B - A) / 3

 Fx1 = f(X1)

 Comment-- case 4: [X1,B] has the root

 If Fx1 * Fb < 0 then

 X3 = Interpolate2(X1, B, Fx1, Fb)

 Fx3 = f(X3)

 If Fx1 * Fx3 < 0 then

o A = X1

o Fa = Fx1

o B = X3

o Fb = Fx3

 Else

o A = X3

o Fa = Fx3

 End

 Else

 X2 = A + (B - A) / 3

 Fx2 = f(X2)

 Comment-- case 5: [X1,X2] has root

 If Fx1 * Fx2 < 0 then

The Interpolative Trisection Algorithms 6

Copyright © 2014 by Namir Clement Shammas

o X3 = Interpolate2(X1, X2, Fx1, Fx2)

o Fx3 = f(X3)

o If Fx1 * Fx3 < 0 then

 A = X1

 Fa = Fx1

 B = X3

 Fb = Fx3

o Else

 A = X3

 Fa = Fx3

 B = X2

 Fb = Fx2

o End

 Else

o Comment-- case 6: [A,X2] has root

o X3 = Interpolate2(A, X2, Fa, Fx2)

o Fx3 = f(X3)

o If Fa * Fx3 < 0 then

 B = X3

 Fb = Fx3

o Else

 A = X3

 Fa = X3

 B = X2

 Fb = Fx2

o End

 End

 End

o End

o If A > B then

 Swap A, B

 Swap Fa, Fb

 Swap LastA, LastB

o End

o If LastA <> A And |A – LastA| < Toler then exit loop

o If LastB <> B And |B – LastB| < Toler then exit loop

 Until |A – B| < Toler Or |Fa| < FxToler Or |Fb| < FxToler

 If |Fa| < |Fb| Then

o Return A

 Else

o Return B

 End

The Interpolative Trisection Algorithms 7

Copyright © 2014 by Namir Clement Shammas

Despite the length of the pseudo-code, it is not really complicated. When the code

is executed in an implementation, only a fraction of the statements are executed in

each iteration. It’s just there are many alternate sets of statements (or execution

flow paths, if you prefer) to execute. The various segments of the pseudo-code

perform basically the same tasks on different combinations of X values. The

function Interpolate2 in the above pseudo-code performs an inverse linear

interpolation to calculate the value of X for f(X)=0. Here is the simple pseudo-code

for function Interpolate2:

 Function Interpolate2(X1, X2, Fx1, Fx2)

 Return(X1 * (Fx2 - 0) - X2 * (Fx1 - 0)) / (Fx2 - Fx1)

 End Function

The iterations in the main loop first test if f(A) is smaller than f(B) in magnitude.

The code contains two sets symmetrical statements. In each set, the code

determines which of the three sub-intervals contain the root. The algorithm then

performs an inverse linear interpolation to calculate a refined guess for the root

within the new (and smaller) root-bracketing interval. The last step is to further

shrink the root-bracketing interval. The interpolation step significantly accelerates

the convergence to the root.

The Interpolative Trisection Algorithms
The basic idea of the Interpolative Trisection algorithms is to:

 Divide the root-bracketing interval into three equal parts. One of these three

sub-intervals contains the root.

 Perform inverse interpolation to calculate a value for X as the root of the

function.

 Determine if the interpolated value of X falls inside the root-bracketing sub-

interval. If this condition is true, the method further narrows the sub-interval

using the interpolated value, and uses the shrunk sub-interval for the next

iteration. If not, the new root-bracketing sub-interval becomes the root-

bracketing interval for the next iteration.

In the case of the Cubic Interpolative Trisection, each iteration has four points to

work with. The inverse cubic interpolation uses all four points. In the case of the

Quadratic Interpolative Trisection, the algorithm has to choose three out of the four

points to use in an inverse quadratic interpolation. The algorithm selects certain

points that have smaller absolute function values.

The Interpolative Trisection Algorithms 8

Copyright © 2014 by Namir Clement Shammas

The next two sections present the pseudo-ode for the two new algorithms.

The Quadratic Interpolative Trisection Algorithm
Here is the pseudo-code for the Quadratic Interpolative Trisection algorithm:

Given f(x)=0, the root-bracketing interval [A,B], the tolerance Toler for the

root of f(x), and the function tolerance value FxToler:

 If A > B then Swap A, B

 Calculate Fa = f(A) and Fb = f(B).

 Exit if Fa*Fb > 0

 Repeat

o LastA = A

o LastB = B

 If |Fa| < |Fb| then

o X1 = A + (B - A) / 3

o Fx1 = f(X1)

o Comment-- case 1: [A,X1] has the root

o If Fx1 * Fa < 0 then

 X3 = QuadInterp(A, X1, B, Fa, Fx1, Fb)

 Fx3 = f(X3)

 If X3 > A And X3 < X1 then

 Comment-- X3 in [A, X1]

 If Fa * Fx3 > 0 then

o A = X3

o Fa = Fx3

 Else

o X1 = X3

o Fx1 = Fx3

 End

 End

 B = X1

 Fb = Fx1

o Else

 X2 = B - (B - A) / 3

 Fx2 = f(X2)

 Comment-- case 2: [X1,X2] has root

 If Fx1 * Fx2 < 0 then

 Comment-- select A or B with the smaller

absolute function value

 If |Fa| < |Fb| then

o C = A

o Fc = Fa

 Else

o C = B

o Fc = Fb

 End

 X3 = QuadInterp(X1, X2, C, Fx1, Fx2, Fc)

 Fx3 = f(X3)

 If X3 > X1 And X3 < X2 then

o Comment-- X3 in [X1, X2]

o If Fx1 * Fx3 > 0 then

 X1 = X3

The Interpolative Trisection Algorithms 9

Copyright © 2014 by Namir Clement Shammas

 Fx1 = Fx3

o Else

 X2 = X3

 Fx2 = Fx3

o End

 End

 Comment-- update A and B

 A = X1

 Fa = Fx1

 B = X2

 Fb = Fx2

 Else

 Comment-- case 2: [X2,B] has root

 If |Fa| < |Fx1| then

o C = A

o Fc = Fa

 Else

o C = X1

o Fc = Fx1

 End

 X3 = QuadInterp(C, X2, B, Fc, Fx2, Fb)

 Fx3 = f(X3)

 If X3 > X2 And X3 < B then

o Comment-- X3 in [X2, B]

o If Fx2 * Fx3 > 0 then

 A = X3

 Fa = Fx3

o Else

 A = X2

 Fa = Fx2

o End

 Else

o A = X2

o Fa = Fx2

 End

 End

o End

 Else

o X1 = B - (B - A) / 3

o Fx1 = f(X1)

o Comment-- case 4: [X1, B] has the root

o If Fx1 * Fb < 0 then

 X3 = QuadInterp(A, X1, B, Fa, Fx1, Fb)

 Fx3 = f(X3)

 If X3 > X1 And X3 < B then

 Comment-- X3 in [X1, B]

 If Fb * Fx3 > 0 then

o B = X3

o Fb = Fx3

o A = X1

o Fa = Fx1

 Else

o A = X3

The Interpolative Trisection Algorithms 10

Copyright © 2014 by Namir Clement Shammas

o Fa = Fx3

 End

 Else

 A = X1

 Fa = Fx1

 End

o Else

 X2 = A + (B - A) / 3

 Fx2 = f(X2)

 Comment-- case 5: [X1,X2] has root

 If Fx1 * Fx2 < 0 then

 Comment-- select A or B with the smaller

absolute function value

 If |Fa| < |Fb| then

o C = A

o Fc = Fa

 Else

o C = B

o Fc = Fb

 End

 X3 = QuadInterp(X1, X2, C, Fx1, Fx2, Fc)

 Fx3 = f(X3)

 If X3 > X1 And X3 < X2 then

o Comment-- X3 in [X1, X2]

o If Fx1 * Fx3 > 0 then

 X1 = X3

 Fx1 = Fx3

o Else

 X2 = X3

 Fx2 = Fx3

o End

 End

 Comment-- update A and B

 B = X1

 Fb = Fx1

 A = X2

 Fa = Fx2

 Else

 Comment-- case 6: [A, X2] has root

 If |Fb| < |Fx1| then

o C = B

o Fc = Fb

 Else

o C = X1

o Fc = Fx1

 End

 X3 = QuadInterp(C, X2, A, Fc, Fx2, Fa)

 Fx3 = f(X3)

 If X3 > A And X3 < X2 then

o Comment-- X3 in [A, X2]

o If Fx2 * Fx3 > 0 then

 B = X3

The Interpolative Trisection Algorithms 11

Copyright © 2014 by Namir Clement Shammas

 Fb = Fx3

o Else

 B = X2

 Fb = Fx2

o End

 Else

o B = X2

o Fb = Fx2

 End

 End

o End

 End

 If A <> LastA And |A – LastA| < Toler then Exit loop

 If B <> LastB And |B – LastB| < Toler then Exit loop

 Loop Until |A – B| < Toler Or |Fa| < FxToler Or |Fb| < FxToler

 If |Fa| < |Fb| then

o Return A

 Else

o Return B

 End

The above pseudo-code mentions QuadInterp which represents a function that

performs inverse quadratic interpolation. The VBA code shows you the

implementation that uses Lagrangian interpolation.

The above pseudo-code appears long, but keep in mind that steps executed in each

iteration are but a small fraction. In other words, the pseudo-code shows multiple

alternate program execution flow paths. The code handles the cases for the left,

middle, and right sub-intervals. The code also deal with symmetric braches of code

that are executed depending on which interval endpoint has the smaller absolute

function value.

The Cubic Interpolative Trisection Algorithm
Here is the pseudo-code for the Cubic Interpolative Trisection algorithm:

Given f(x)=0, the root-bracketing interval [A,B], the tolerance Toler for the

root of f(x), and the function tolerance value FxToler:

 If A > B then Swap A, B

 Calculate Fa = f(A) and Fb = f(B).

 Exit if Fa*Fb > 0

 Repeat

o LastA = A

o LastB = B

o X1 = A + (B - A) / 3

o Fx1 = f(X1)

o X2 = B - (B - A) / 3

o Fx2 = f(X2)

o X3 = CubicInterp(A, X1, X2, B, Fa, Fx1, Fx2, B)

o Fx3 = f(X3)

o If Fa * Fx1 < 0 then

The Interpolative Trisection Algorithms 12

Copyright © 2014 by Namir Clement Shammas

 Comment-- case 1: root in [A, X1]

 If X3 > A And X3 < X1 then

 If Fa * Fx3 > 0 then

o Comment-- root in [X3, X1]

o A = X3

o Fa = Fx3

o B = X1

o Fb = Fx1

 Else

o Comment-- root in [A, X3]

o B = X3

o Fb = Fx3

 End

 Else

 B = X1

 Fb = Fx1

 End

o Else If Fx1 * Fx2 < 0 then

 Comment-- case 2: root in [X1, X2]

 If X3 > X1 And X3 < X2 then

 If Fx1 * Fx3 > 0 then

o Comment-- root in [X3, X2]

o A = X3

o Fa = Fx3

o B = X2

o Fb = Fx2

 Else

o Comment-- root in [X1, X3]

o A = X1

o Fa = Fx1

o B = X3

o Fb = Fx3

 End

 Else

 A = X1

 Fa = Fx1

 B = X2

 Fb = Fx2

 End

o Else

 Comment-- root in [X2, B]

 If X3 > X2 And X3 < B then

 If Fx2 * Fx3 > 0 then

o Comment-- root in [X3, B]

o A = X3

o Fa = Fx3

 Else

o Comment-- root in [X2, X3]

o A = X2

o Fa = Fx2

o B = X3

o Fb = Fx3

 End

 Else

The Interpolative Trisection Algorithms 13

Copyright © 2014 by Namir Clement Shammas

 A = X2

 Fa = Fx2

 End

o End

o If A <> LastA And |A – LastA| < Toler then Exit loop

o If B <> LastB And |B – LastB| < Toler then Exit loop

 Loop Until |A - B) < Toler Or |Fa| < FxToler Or |Fb| < FxToler

 If |Fa| < |Fb| then

o Return A

 Else

o Return B

 End

The above pseudo-code mentions CubicdInterp which represents a function that

performs inverse cubic interpolation. The VBA code shows you the

implementation that uses Lagrangian interpolation.

The pseudo-code for the Cubic Interpolative Trisection is shorter than its quadratic

counterpart. This is true, because the cubic version of the Trisection method

performs fewer choices since it uses all four points in the three sub-intervals. The

algorithm determines which sub-interval brackets the root. It also determines if the

interpolated value is inside that sub-interval. If so, the method further shrinks the

root-bracketing sub-interval and uses it for the next iteration. If the interpolated

value is outside the root-bracketing sub-interval, it simply uses that sub-interval as

the root-bracketing interval in the next iteration.

Testing with Excel VBA Code
I tested the new algorithms using Excel taking advantage of the application’s

worksheet for easy input and the display of intermediate calculations. The

following listing shows the Excel VBA code used for testing. It implements the

Quadratic Interpolative Trisection, Cubic Interpolative Trisection, Trisection Plus,

and Newton’s methods:

Option Explicit

Function MyFx(ByVal sFx As String, ByVal X As Double) As Double

 sFx = UCase(sFx)

 sFx = Replace(sFx, "EXP(", "!!")

 sFx = Replace(sFx, "X", "(" & X & ")")

 sFx = Replace(sFx, "!!", "EXP(")

 MyFx = Evaluate(sFx)

End Function

Private Sub Swap(ByRef A As Double, ByRef B As Double)

 Dim Buff As Double

The Interpolative Trisection Algorithms 14

Copyright © 2014 by Namir Clement Shammas

 Buff = A

 A = B

 B = Buff

End Sub

Function Interpolate2(ByVal X1 As Double, ByVal X2 As Double, _

 ByVal Fx1 As Double, ByVal Fx2 As Double) As Double

 ' Interpolate2 = X1 * (Fx2 - 0) / (Fx2 - Fx1) + X2 * (Fx1 - 0) / (Fx1 -

Fx2)

 Interpolate2 = (X1 * (Fx2 - 0) - X2 * (Fx1 - 0)) / (Fx2 - Fx1)

End Function

Function QuadInterp(ByVal X1 As Double, ByVal X2 As Double, _

 ByVal X3 As Double, ByVal Fx1 As Double, _

 ByVal Fx2 As Double, ByVal Fx3 As Double) As Double

 Dim X(3) As Double, Fx(3) As Double, Sum As Double, Prod As Double

 Dim I As Integer, J As Integer, N As Integer

 X(1) = X1

 X(2) = X2

 X(3) = X3

 Fx(1) = Fx1

 Fx(2) = Fx2

 Fx(3) = Fx3

 Sum = 0

 N = 3

 For I = 1 To N

 Prod = X(I)

 For J = 1 To N

 If I <> J Then

 Prod = Prod * (0 - Fx(J)) / (Fx(I) - Fx(J))

 End If

 Next J

 Sum = Sum + Prod

 Next I

 QuadInterp = Sum

End Function

Function CubicInterp(ByVal X1 As Double, ByVal X2 As Double, _

 ByVal X3 As Double, ByVal X4 As Double, _

 ByVal Fx1 As Double, ByVal Fx2 As Double, _

 ByVal Fx3 As Double, ByVal Fx4 As Double) As Double

 Dim X(4) As Double, Fx(4) As Double, Sum As Double, Prod As Double

 Dim I As Integer, J As Integer, N As Integer

 X(1) = X1

 X(2) = X2

 X(3) = X3

 X(4) = X4

 Fx(1) = Fx1

 Fx(2) = Fx2

 Fx(3) = Fx3

 Fx(4) = Fx4

 Sum = 0

The Interpolative Trisection Algorithms 15

Copyright © 2014 by Namir Clement Shammas

 N = 4

 For I = 1 To N

 Prod = X(I)

 For J = 1 To N

 If I <> J Then

 Prod = Prod * (0 - Fx(J)) / (Fx(I) - Fx(J))

 End If

 Next J

 Sum = Sum + Prod

 Next I

 CubicInterp = Sum

End Function

Sub Go()

 Dim R As Integer, Col As Integer

 Dim A As Double, B As Double, Fa As Double, Fb As Double

 Dim C As Double, Fc As Double

 Dim X1 As Double, X2 As Double, Fx1 As Double, Fx2 As Double

 Dim X3 As Double, Fx3 As Double, Toler As Double, FxToler As Double

 Dim LastA As Double, LastB As Double, h As Double, Diff As Double

 Dim sFx As String, NumIters As Integer

 Range("B3:Z10000").Value = ""

 Toler = [A6].Value

 FxToler = [A8].Value

 sFx = [A10].Value

 ' Quadratic Trisection

 A = [A2].Value

 B = [A4].Value

 If A > B Then Swap A, B

 Fa = MyFx(sFx, A)

 Fb = MyFx(sFx, B)

 NumIters = 2

 R = 3

 Col = 2

 Do

 LastA = A

 LastB = B

 If Abs(Fa) < Abs(Fb) Then

 X1 = A + (B - A) / 3

 Fx1 = MyFx(sFx, X1)

 NumIters = NumIters + 1

 ' case 1: [A,X1] has the root

 If Fx1 * Fa < 0 Then

 X3 = QuadInterp(A, X1, B, Fa, Fx1, Fb)

 Fx3 = MyFx(sFx, X3)

 NumIters = NumIters + 1

 If X3 > A And X3 < X1 Then ' X3 in [A, X1]

 If Fa * Fx3 > 0 Then

 A = X3

 Fa = Fx3

 Else

 X1 = X3

 Fx1 = Fx3

 End If

The Interpolative Trisection Algorithms 16

Copyright © 2014 by Namir Clement Shammas

 End If

 B = X1

 Fb = Fx1

 Else

 X2 = B - (B - A) / 3

 Fx2 = MyFx(sFx, X2)

 NumIters = NumIters + 1

 ' case 2: [X1,X2] has root

 If Fx1 * Fx2 < 0 Then

 ' select A or B with the smaller absolute funciton value

 If Abs(Fa) < Abs(Fb) Then

 C = A

 Fc = Fa

 Else

 C = B

 Fc = Fb

 End If

 X3 = QuadInterp(X1, X2, C, Fx1, Fx2, Fc)

 Fx3 = MyFx(sFx, X3)

 NumIters = NumIters + 1

 If X3 > X1 And X3 < X2 Then ' X3 in [X1, X2]

 If Fx1 * Fx3 > 0 Then

 X1 = X3

 Fx1 = Fx3

 Else

 X2 = X3

 Fx2 = Fx3

 End If

 End If

 ' update A and B

 A = X1

 Fa = Fx1

 B = X2

 Fb = Fx2

 Else

 ' case 2: [X2,B] has root

 If Abs(Fa) < Abs(Fx1) Then

 C = A

 Fc = Fa

 Else

 C = X1

 Fc = Fx1

 End If

 X3 = QuadInterp(C, X2, B, Fc, Fx2, Fb)

 Fx3 = MyFx(sFx, X3)

 NumIters = NumIters + 1

 If X3 > X2 And X3 < B Then ' X3 in [X2, B]

 If Fx2 * Fx3 > 0 Then

 A = X3

 Fa = Fx3

 Else

 A = X2

 Fa = Fx2

 End If

 Else

 A = X2

 Fa = Fx2

The Interpolative Trisection Algorithms 17

Copyright © 2014 by Namir Clement Shammas

 End If

 End If

 End If

 Else

 X1 = B - (B - A) / 3

 Fx1 = MyFx(sFx, X1)

 NumIters = NumIters + 1

 ' case 4: [X1, B] has the root

 If Fx1 * Fb < 0 Then

 X3 = QuadInterp(A, X1, B, Fa, Fx1, Fb)

 Fx3 = MyFx(sFx, X3)

 NumIters = NumIters + 1

 If X3 > X1 And X3 < B Then ' X3 in [X1, B]

 If Fb * Fx3 > 0 Then

 B = X3

 Fb = Fx3

 A = X1

 Fa = Fx1

 Else

 A = X3

 Fa = Fx3

 End If

 Else

 A = X1

 Fa = Fx1

 End If

 Else

 X2 = A + (B - A) / 3

 Fx2 = MyFx(sFx, X2)

 NumIters = NumIters + 1

 ' case 5: [X1,X2] has root

 If Fx1 * Fx2 < 0 Then

 ' select A or B with the smaller absolute funciton value

 If Abs(Fa) < Abs(Fb) Then

 C = A

 Fc = Fa

 Else

 C = B

 Fc = Fb

 End If

 X3 = QuadInterp(X1, X2, C, Fx1, Fx2, Fc)

 Fx3 = MyFx(sFx, X3)

 NumIters = NumIters + 1

 If X3 > X1 And X3 < X2 Then ' X3 in [X1, X2]

 If Fx1 * Fx3 > 0 Then

 X1 = X3

 Fx1 = Fx3

 Else

 X2 = X3

 Fx2 = Fx3

 End If

 End If

 ' update A and B

 B = X1

 Fb = Fx1

 A = X2

 Fa = Fx2

The Interpolative Trisection Algorithms 18

Copyright © 2014 by Namir Clement Shammas

 Else

 ' case 6: [A, X2] has root

 If Abs(Fb) < Abs(Fx1) Then

 C = B

 Fc = Fb

 Else

 C = X1

 Fc = Fx1

 End If

 X3 = QuadInterp(C, X2, A, Fc, Fx2, Fa)

 Fx3 = MyFx(sFx, X3)

 NumIters = NumIters + 1

 If X3 > A And X3 < X2 Then ' X3 in [A, X2]

 If Fx2 * Fx3 > 0 Then

 B = X3

 Fb = Fx3

 Else

 B = X2

 Fb = Fx2

 End If

 Else

 B = X2

 Fb = Fx2

 End If

 End If

 End If

 End If

 Cells(R, Col) = A

 Cells(R, Col + 1) = B

 R = R + 1

 If A <> LastA And Abs(A - LastA) < Toler Then Exit Do

 If B <> LastB And Abs(B - LastB) < Toler Then Exit Do

 Loop Until Abs(A - B) < Toler Or Abs(Fa) < FxToler Or Abs(Fb) < FxToler

 If Abs(Fa) < Abs(Fb) Then

 Cells(R, Col) = A

 Else

 Cells(R, Col) = B

 End If

 Cells(R, Col + 1) = "Fx Calls=" & NumIters

 ' Cubic Trisection

 A = [A2].Value

 B = [A4].Value

 If A > B Then Swap A, B

 Fa = MyFx(sFx, A)

 Fb = MyFx(sFx, B)

 NumIters = 2

 R = 3

 Col = Col + 2

 Do

 LastA = A

 LastB = B

The Interpolative Trisection Algorithms 19

Copyright © 2014 by Namir Clement Shammas

 X1 = A + (B - A) / 3

 Fx1 = MyFx(sFx, X1)

 X2 = B - (B - A) / 3

 Fx2 = MyFx(sFx, X2)

 X3 = CubicInterp(A, X1, X2, B, Fa, Fx1, Fx2, B)

 Fx3 = MyFx(sFx, X3)

 NumIters = NumIters + 3

 If Fa * Fx1 < 0 Then ' case 1: root in [A, X1]

 If X3 > A And X3 < X1 Then

 If Fa * Fx3 > 0 Then ' root in [X3, X1]

 A = X3

 Fa = Fx3

 B = X1

 Fb = Fx1

 Else ' root in [A, X3]

 B = X3

 Fb = Fx3

 End If

 Else

 B = X1

 Fb = Fx1

 End If

 ElseIf Fx1 * Fx2 < 0 Then ' case 2: root in [X1, X2]

 If X3 > X1 And X3 < X2 Then

 If Fx1 * Fx3 > 0 Then ' root in [X3, X2]

 A = X3

 Fa = Fx3

 B = X2

 Fb = Fx2

 Else ' root in [X1, X3]

 A = X1

 Fa = Fx1

 B = X3

 Fb = Fx3

 End If

 Else

 A = X1

 Fa = Fx1

 B = X2

 Fb = Fx2

 End If

 Else ' root in [X2, B]

 If X3 > X2 And X3 < B Then

 If Fx2 * Fx3 > 0 Then ' root in [X3, B]

 A = X3

 Fa = Fx3

 Else ' root in [X2, X3]

 A = X2

 Fa = Fx2

 B = X3

 Fb = Fx3

 End If

 Else

 A = X2

 Fa = Fx2

 End If

The Interpolative Trisection Algorithms 20

Copyright © 2014 by Namir Clement Shammas

 End If

 Cells(R, Col) = A

 Cells(R, Col + 1) = B

 R = R + 1

 If A <> LastA And Abs(A - LastA) < Toler Then Exit Do

 If B <> LastB And Abs(B - LastB) < Toler Then Exit Do

 Loop Until Abs(A - B) < Toler Or Abs(Fa) < FxToler Or Abs(Fb) < FxToler

 If Abs(Fa) < Abs(Fb) Then

 Cells(R, Col) = A

 Else

 Cells(R, Col) = B

 End If

 Cells(R, Col + 1) = "Fx Calls=" & NumIters

 ' Trisection Plus

 A = [A2].Value

 B = [A4].Value

 If A > B Then Swap A, B

 Fa = MyFx(sFx, A)

 Fb = MyFx(sFx, B)

 NumIters = 2

 R = 3

 Col = Col + 2

 Do

 LastA = A

 LastB = B

 If Abs(Fa) < Abs(Fb) Then

 X1 = A + (B - A) / 3

 Fx1 = MyFx(sFx, X1)

 NumIters = NumIters + 1

 ' case 1: [A,X1] has the root

 If Fx1 * Fa < 0 Then

 X3 = Interpolate2(A, X1, Fa, Fx1)

 Fx3 = MyFx(sFx, X3)

 NumIters = NumIters + 1

 If Fa * Fx3 < 0 Then

 B = X3

 Fb = Fx3

 Else

 A = X3

 Fa = Fx3

 B = X1

 Fb = Fx1

 End If

 Else

 X2 = A + 2 * (B - A) / 3

 Fx2 = MyFx(sFx, X2)

 NumIters = NumIters + 1

 ' case 2: [X1,X2] has root

 If Fx1 * Fx2 < 0 Then

 X3 = Interpolate2(X1, X2, Fx1, Fx2)

The Interpolative Trisection Algorithms 21

Copyright © 2014 by Namir Clement Shammas

 Fx3 = MyFx(sFx, X3)

 NumIters = NumIters + 1

 If Fx1 * Fx3 < 0 Then

 A = X1

 Fa = Fx1

 B = X3

 Fb = Fx3

 Else

 A = X3

 Fa = Fx3

 B = X2

 Fb = Fx2

 End If

 Else

 ' case 2: [X2,B] has root

 X3 = Interpolate2(X2, B, Fx2, Fb)

 Fx3 = MyFx(sFx, X3)

 NumIters = NumIters + 1

 If Fx2 * Fx3 < 0 Then

 A = X2

 Fa = Fx2

 B = X3

 Fb = Fx3

 Else

 A = X3

 Fa = Fx3

 End If

 End If

 End If

 Else

 X1 = A + 2 * (B - A) / 3

 Fx1 = MyFx(sFx, X1)

 NumIters = NumIters + 1

 ' case 4: [X1,B] has the root

 If Fx1 * Fb < 0 Then

 X3 = Interpolate2(X1, B, Fx1, Fb)

 Fx3 = MyFx(sFx, X3)

 NumIters = NumIters + 1

 If Fx1 * Fx3 < 0 Then

 A = X1

 Fa = Fx1

 B = X3

 Fb = Fx3

 Else

 A = X3

 Fa = Fx3

 End If

 Else

 X2 = A + (B - A) / 3

 Fx2 = MyFx(sFx, X2)

 NumIters = NumIters + 1

 ' case 5: [X1,X2] has root

 If Fx1 * Fx2 < 0 Then

 X3 = Interpolate2(X1, X2, Fx1, Fx2)

 Fx3 = MyFx(sFx, X3)

 NumIters = NumIters + 1

 If Fx1 * Fx3 < 0 Then

The Interpolative Trisection Algorithms 22

Copyright © 2014 by Namir Clement Shammas

 A = X1

 Fa = Fx1

 B = X3

 Fb = Fx3

 Else

 A = X3

 Fa = Fx3

 B = X2

 Fb = Fx2

 End If

 Else

 ' case 6: [A,X2] has root

 X3 = Interpolate2(A, X2, Fa, Fx2)

 Fx3 = MyFx(sFx, X3)

 NumIters = NumIters + 1

 If Fa * Fx3 < 0 Then

 B = X3

 Fb = Fx3

 Else

 A = X3

 Fa = X3

 B = X2

 Fb = Fx2

 End If

 End If

 End If

 End If

 If A > B Then

 Swap A, B

 Swap Fa, Fb

 Swap LastA, LastB

 End If

 Cells(R, Col) = A

 Cells(R, Col + 1) = B

 R = R + 1

 If LastA <> A And Abs(A - LastA) < Toler Then Exit Do

 If LastB <> B And Abs(B - LastB) < Toler Then Exit Do

 Loop Until Abs(A - B) < Toler Or Abs(Fa) < FxToler Or Abs(Fb) < FxToler

 If Abs(Fa) < Abs(Fb) Then

 Cells(R, Col) = A

 Else

 Cells(R, Col) = B

 End If

 Cells(R, Col + 1) = "Fx Calls=" & NumIters

 ' Newton's method

 A = [A2].Value

 B = [A4].Value

 X1 = (A + B) / 2

 NumIters = 0

 R = 3

 Col = Col + 2

 Do

 h = 0.001 * (1 + Abs(X1))

The Interpolative Trisection Algorithms 23

Copyright © 2014 by Namir Clement Shammas

 Fx1 = MyFx(sFx, X1)

 NumIters = NumIters + 2

 Diff = h * Fx1 / (MyFx(sFx, X1 + h) - Fx1)

 X1 = X1 - Diff

 Cells(R, Col) = X1

 Cells(R, Col + 1) = Fx1

 R = R + 1

 Loop Until Abs(Diff) < Toler

 Cells(R, Col) = X1

 Cells(R, Col + 1) = "Fx Calls=" & NumIters

End Sub

The VBA function MyFX calculates the function value based on a string that

contains the function’s expression. This expression must use X as the variable

name. Note that the implementation of MyFX differs from previous ones (the

Bisection Plus and Bisection++ methods) in that the name of the variable is X and

not $X. Using function MyFX allows you to specify the function f(X)=0 in the

spreadsheet and not hard code it in the VBA program. Granted that this approach

trades speed of execution for flexibility. However, with most of today’s PCs you

will hardly notice the difference in execution times.

The subroutine Go performs the root-seeking calculations that compare the

Quadratic Interpolative Trisection method, Cubic Interpolative Trisection method,

Trisection Plus method, and Newton’s method. Figure 1 shows a snapshot of the

Excel spreadsheet used in the calculations for the methods mentioned above.

Figure 1. The Excel spreadsheet used to compare the quadratic Trisection, Cubic

Trisection, Trisection Plus, and Newton’s methods.

The Input Cells

The VBA code relies on the following cells to obtain data:

 Cells A2 and A4 supply the values for the root-bracketing interval [A, B].

 Cell A6 contains the tolerance value.

 Cells A8 contains the function tolerance value.

 Cell A10 contains the expression for f(X)=0. Notice that the expression in

cell A10 use X as the variable name. The expression is case insensitive.

A

1 A B A B A B X

B 1.666666667 1.905177377 1.666666667 2 1.840376801 2 1.986679131 1.10668907

2 1.825673807 1.85743265 1.777777778 1.862098591 1.856820732 1.893584534 1.865982452 -0.54993176

Toler 1.846846369 1.857183922 1.856377262 1.862098591 1.857181284 1.869075332 1.857244749 -0.03486494

1.00E-10 1.853738071 1.85718386 1.857183843 1.858284372 1.857183854 1.861145967 1.857183967 -0.00024001

FxToler 1.85718386 Fx Calls=10 1.857183843 Fx Calls=14 1.857183854 Fx Calls=10 1.85718386 -4.2009E-07

1.00E-07 1.85718386 -7.1997E-10

Function 1.85718386 -1.2399E-12

EXP(X)-X^3 1.85718386 Fx Calls=14

Quadratic Trisetion Cubic Trisection Trisection Plus Newton

The Interpolative Trisection Algorithms 24

Copyright © 2014 by Namir Clement Shammas

Output

The spreadsheet displays output in the following four sets of columns:

 Columns B and C display the updated values for the root-bracketing interval

[A, B] for the Quadratic Interpolative Trisection method. This interval

shrinks with each iteration until the method zooms on the root. The bottom

most value, in column B, is the best estimate for the root. To its right is the

total number of function calls made during the iterations.

 Columns D, and E display the updated values for the root-bracketing interval

[A, B] for the Cubic Interpolative Trisection method. The bottom most

value, in column D, is the best estimate for the root. To its right is the total

number of function calls made during the iterations.

 Columns F, and G display the updated values for the root-bracketing interval

[A, B] for the Trisection Plus method. The bottom most value, in column F,

is the best estimate for the root. To its right is the total number of function

calls made during the iterations.

 Columns H and I display the refined guess for the root and the refinement

value, respectively, using Newton’s method. The bottom most value, in

column H, is the best estimate for the root. To its right is the total number of

function calls made during the iterations.

The Results
I really had no preconceived expectations as to how the Interpolative Trisection

algorithms stack up against the Trisection Plus algorithm and Newton’s method.

The results surprised me. Table 1 shows a summary of the results. The metrics for

comparing the algorithms include the number of iterations and, perhaps more

importantly, the number of function calls. I consider the number of function calls

as the underlying cost of doing business, so to speak. I have come across new root-

seeking algorithms that require fewer iterations than popular algorithms like

Newton’s method and Halley’s method. However, these new algorithms require

more function calls to zoom in on the root in fewer iterations. The best results in

Table 1 appear in red.

Function [A, B] Toler /

FxToler

Root Iterations Num Fx Calls

Exp(X) –

X^3

[1, 2] 1E–10

1E–7

1.857183 QuadTri= 4

CubTri= 4

Trisec+ = 4

QuadTri= 10

CubTri = 14

Trisec+= 10

The Interpolative Trisection Algorithms 25

Copyright © 2014 by Namir Clement Shammas

Function [A, B] Toler /

FxToler

Root Iterations Num Fx Calls

Newton= 7 Newton= 14

Exp(X) –

3*X^2

[3, 4] 1E–10

1E–7

3.73307 QuadTri= 3

CubTri = 5

Trisec+ = 5

Newton= 7

QuadTri= 8

CubTri = 17

Trisec+ = 12

Newton= 14

Cos(X) – X [0, 1] 1E–10

1E–7

0.73908 QuadTri= 3

CubTri = 4

Trisec+ = 4

Newton= 5

QuadTri= 8

CubTri = 14

Trisec+ = 10

Newton= 10

(X–1.234) *

(X–5.678) *

(X+12.345)

[5, 6] 1E–10

1E–7

5.678 QuadTri= 3

CubTri = 3

Trisec+ = 4

Newton=6

QuadTri= 8

CubTri = 11

Trisec+ = 10

Newton=12

(X–1.234) *

(X–5.678) *

(X+12.345)

[1, 2] 1E–10

1E–7

1.234 QuadTri= 3

CubTri = 7

Trisec+ = 4

Newton= 5

QuadTri= 8

CubTri = 23

Trisec+ = 10

Newton= 10

(X–1.234) *

(X–5.678) *

(X+12.345)

[5,11] 1E–10

1E–7

5.678 QuadTri= 5

CubTri = 6

Trisec+ = 6

Newton= 7

QuadTri= 12

CubTri = 20

Trisec+ = 14

Newton= 14

(X–1.234) *

(X–5.678) *

(X+12.345)

[–8,

–15]

1E–10

1E–7

–12.345 QuadTri= 5

CubTri = 8

Trisec+ = 5

Newton= 5

QuadTri= 14

CubTri = 26

Trisec+ = 13

Newton= 10

Table 1. Summary of the results comparing the Quadratic Trisection, Cubic

Trisection, Trisection Plus, and Newton’s methods.

The above table shows that the Quadratic Interpolative Trisection method performs

better in most test cases than the other algorithms. The Cubic Interpolative

Trisection did fine in most cases, and faltered in a few. Of course there is a huge

number of test cases that vary the tested function and root-bracketing range. Due to

time limitation, I have chosen the above few test cases which succeeded in proving

my goals.

The Interpolative Trisection Algorithms 26

Copyright © 2014 by Namir Clement Shammas

Conclusion
The Quadratic Interpolative Trisection algorithm offers improvement over the

Trisection Plus and Newton’s method. The new algorithm has an efficiency that

competes with Newton’s method.

The Trisection Plus, Quadratic Interpolative Trisection, and Cubic Interpolative

Trisection algorithms, use inverse linear interpolation, inverse quadratic

interpolation, and inverse cubic interpolation, respectively. This small study shows

that the inverse quadratic interpolation to be optimum. The inverse quadratic

interpolation is best, followed by the inverse linear interpolation.

References
1. William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P.

Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd edition,

Cambridge University Press; 3rd edition, September 10, 2007.

2. Richard L. Burden, J. Douglas Faires, Numerical Analysis, Cengage

Learning, 9th edition, August 9, 2010.

3. Namir Shammas, Root-Bracketing Quartile Algorithm,

http://www.namirshammas.com/NEW/quartile.htm.

4. Namir Shammas, The New Bisection Plus root-seeking algorithm,

http://www.namirshammas.com/NEW/BisPls.pdf

5. Namir Shammas, The New Bisection++ root-seeking algorithm,

http://www.namirshammas.com/NEW/BisPls2.pdf

6. Namir Shammas, The New Trisection and Trisection Plus root-seeking

algorithm, http://www.namirshammas.com/NEW/Tri1.pdf

Document Information
Version Date Comments

1.0.0 3/8/2014 Initial release.

http://www.namirshammas.com/NEW/quartile.htm
http://www.namirshammas.com/NEW/BisPls.pdf
http://www.namirshammas.com/NEW/BisPls2.pdf
http://www.namirshammas.com/NEW/Tri1.pdf

