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Introduction 
The concept of root-seeking using root-bracketing is not new. What is new in this 

article is combining root-bracketing and quadratic/cubic interpolation to ensure 

that the root-seeking iterations quickly achieve their goal. Simple root-seeking 

methods are guaranteed to work if the basic assumptions hold. By contrast, 

unconstrained interpolation may or may not work depending on the targeted 

function as well as the number and values of the points used in the interpolation. 

The two schemes together produce better result than each one by itself. 

This article presents a new set of root-bracketing algorithms. The new algorithms, 

are named the Interpolative Trisection methods. They compete with and enhance 

the Bisection method which is the slowest root-seeking method. They also compete 

with the Trisection Plus algorithm[6] which I recently developed. I present two 

variants of the Interpolative Trisection algorithms—one that uses quadratic 

interpolation and the other applies cubic interpolation. 

Since the Trisection Plus method[6] is based on the Bisection method, I will present 

a brief discussion for the Bisection method. In addition, since I am comparing the 

new algorithms with Newton’s method and the Trisection Plus[6] algorithm, I will 

also discuss these two methods. If you are familiar with any or all of these 

algorithms, you can skip over the related sections. 

The Bisection Algorithm 
There are numerous algorithms that calculate the roots of single-variable nonlinear 

functions. The most popular of such algorithms is Newton’s method. The slowest 

and simplest root seeking algorithm is the Bisection method. This method has the 

user select an interval that contains the sought root. The method iteratively shrinks 

the root-bracketing interval to zoom in on the sought root. Here is the pseudo-code 

for the Bisection algorithm: 
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Given f(x)=0, the root-bracketing interval [A,B], and the tolerance, Toler, 

for the root of f(x): 

 Calculate Fa = f(A) and Fb = f(B). 

 Exit if Fa*Fb > 0. 

 Repeat  

o X =(A+B)/2 

o Fx = f(X) 

o If Fx*Fa > 0 then 

 A = X 

 Fa = Fx 

o Else 

 B = X 

 Fb = Fx 

o End 

 Until |A-B| < Toler 

 Return root as (A+B)/2 

The above pseudo-code shows how the algorithm iteratively halves the root-

bracketing until it zooms on the root. The Bisection method is the slowest 

converging method. It’s main virtue is that it is guaranteed to work if f(x) is 

continuous in the interval [A, B] and f(A)×f(B) is negative. 

Newton’s Method 
I will also compare the new algorithms with Newton’s method. This comparison 

serves as an upper limit test. I am implementing Newton’s method based on the 

following pseudo-code: 

Given f(x)=0, the root-bracketing interval [A,B], and the tolerance, Toler, 

for the root of f(x): 

 Calculate X = (A+B)/2 

 Repeat  

o h = 0.001 * (|X| + 1) 

o Fx = f(X) 

o Diff = h * Fx / (f(X+h) – Fx) 

o X = X – Diff 

 Until |Diff| < Toler 

 Return root as X 

The above code shows that the implementation of Newton’s method starts with the 

same interval [A, B] that is already available for the root-bracketing methods. 

Thus, the algorithm derives its single initial guess as the midpoint of that interval. 

The Trisection Algorithm 
The Trisection algorithm has each iteration divide the root-bracketing interval [A, 

B] into three parts, instead of two as does the Bisection. The algorithm chooses the 

first point X1 within the interval [A, B] closest to the end point A, or B, that has 

the smallest absolute function value (call this point Z). This strategy hopes that 
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f(X1) would have a sign opposite that of f(Z). If this condition is true, then the 

iteration has finished its task. If not, the algorithm calculates X2 which lies closer 

to the other interval end point (call it Y). The algorithm then determines whether 

the interval [X1, X2] or [X2, Y] is the new root-bracketing interval. The values of 

the interval [A. B] are then updated accordingly. Here is the pseudo-code for the 

Trisection algorithm: 

Given f(x)=0, the root-bracketing interval [A,B], and the tolerance, Toler, 

for the root of f(x): 

 Calculate Fa = f(A) and Fb = f(B). 

 Exit if Fa*Fb > 0. 

 Repeat  

o If |Fa| < |Fb| then 

 X1 = A + (B-A)/3 

 Fx1 = f(X1) 

 If Fa*Fx1 < 0 then 

 B = X1 

 Fb = Fx1 

 Else 

 X2 = B – (B-A)/3 

 Fx2 = f(X2) 

 If Fx1*Fx2 < 0 then 

o A = X1 

o Fa = Fx1 

o B = X2 

o Fb = Fx2 

 Else 

o A = X2 

o Fa = Fx2 

 End  

 End 

o Else 

 X1 = B - (B-A)/3 

 Fx1 = f(X1) 

 If Fb*Fx1 < 0 then 

 A = X1 

 Fa = Fx1 

 Else 

 X2 = A + (B-A)/3 

 Fx2 = f(X2) 

 If Fx1*Fx2 < 0 then 

o A = X2 

o Fa = Fx2 

o B = X1 

o Fb = Fx1 

 Else 

o B = X2 

o Fb = Fx2 

 End  

 End 
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 Until |A-B| < Toler 

 Return root as (A+B)/2 

The Trisection Plus Algorithm 
I have used the same approach in my previous efforts[4][5] to enhance the Bisection 

method, with the Trisection Plus algorithm. This variant of the Trisection 

algorithm carries out the same basic steps with the added step of performing an 

inverse linear interpolation within the new root-bracketing interval. This additional 

step enhances significantly the convergence to the root. 

Let me present the pseudo-code for the Trisection Plus method: 

Given f(x)=0, the root-bracketing interval [A,B], the tolerance Toler for the 

root of f(x), and the function tolerance value FxToler: 

 Calculate Fa = f(A) and Fb = f(B). 

 Exit if Fa*Fb > 0 

 Repeat 

o LastA = A 

o LastB = B 

o If |Fa| < |Fb)| then 

 X1 = A + (B - A) / 3 

 Fx1 = f(X1) 

 Comment-- case 1: [A,X1] has the root 

 If Fx1 * Fa < 0 then 

 X3 = Interpolate2(A, X1, Fa, Fx1) 

 Fx3 = f(X3) 

 If Fa * Fx3 < 0 then  

o B = X3 

o Fb = Fx3 

 Else 

o A = X3 

o Fa = Fx3 

o B = X1 

o Fb = Fx1 

 End  

 Else 

 X2 = A + 2 * (B - A) / 3 

 Fx2 = f(X2) 

 Comment-- case 2: [X1,X2] has root 

 If Fx1 * Fx2 < 0 then 

o X3 = Interpolate2(X1, X2, Fx1, Fx2) 

o Fx3 = f(X3) 

o If Fx1 * Fx3 < 0 then 

 A = X1 

 Fa = Fx1 

 B = X3 

 Fb = Fx3 

o Else 
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 A = X3 

 Fa = Fx3 

 B = X2 

 Fb = Fx2 

o End 

 Else 

o Comment := case 2: [X2,B] has root 

o X3 = Interpolate2(X2, B, Fx2, Fb) 

o Fx3 = f(X3) 

o If Fx2 * Fx3 < 0 then 

 A = X2 

 Fa = Fx2 

 B = X3 

 Fb = Fx3 

o Else 

 A = X3 

 Fa = Fx3 

o End 

 End 

 End 

o Else 

 X1 = A + 2 * (B - A) / 3 

 Fx1 = f(X1) 

 Comment-- case 4: [X1,B] has the root 

 If Fx1 * Fb < 0 then 

 X3 = Interpolate2(X1, B, Fx1, Fb) 

 Fx3 = f(X3) 

 If Fx1 * Fx3 < 0 then 

o A = X1 

o Fa = Fx1 

o B = X3 

o Fb = Fx3 

 Else 

o A = X3 

o Fa = Fx3 

 End 

 Else 

 X2 = A + (B - A) / 3 

 Fx2 = f(X2) 

 Comment-- case 5: [X1,X2] has root 

 If Fx1 * Fx2 < 0 then 
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o X3 = Interpolate2(X1, X2, Fx1, Fx2) 

o Fx3 = f(X3) 

o If Fx1 * Fx3 < 0 then 

 A = X1 

 Fa = Fx1 

 B = X3 

 Fb = Fx3 

o Else 

 A = X3 

 Fa = Fx3 

 B = X2 

 Fb = Fx2 

o End 

 Else 

o Comment-- case 6: [A,X2] has root 

o X3 = Interpolate2(A, X2, Fa, Fx2) 

o Fx3 = f(X3) 

o If Fa * Fx3 < 0 then 

 B = X3 

 Fb = Fx3 

o Else 

 A = X3 

 Fa = X3 

 B = X2 

 Fb = Fx2 

o End 

 End 

 End 

o End 

o If A > B then 

 Swap A, B 

 Swap Fa, Fb 

 Swap LastA, LastB 

o End 

o If LastA <> A And |A – LastA| < Toler then exit loop  

o If LastB <> B And |B – LastB| < Toler then exit loop 

 Until |A – B| < Toler Or |Fa| < FxToler Or |Fb| < FxToler 

 If |Fa| < |Fb| Then 

o Return A 

 Else 

o Return B 

 End 
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Despite the length of the pseudo-code, it is not really complicated.  When the code 

is executed in an implementation, only a fraction of the statements are executed in 

each iteration. It’s just there are many alternate sets of statements (or execution 

flow paths, if you prefer) to execute. The various segments of the pseudo-code 

perform basically the same tasks on different combinations of X values. The 

function Interpolate2 in the above pseudo-code performs an inverse linear 

interpolation to calculate the value of X for f(X)=0. Here is the simple pseudo-code 

for function Interpolate2: 

 Function Interpolate2(X1, X2, Fx1, Fx2) 

   Return(X1 * (Fx2 - 0) - X2 * (Fx1 - 0)) / (Fx2 - Fx1) 

 End Function 

The iterations in the main loop first test if f(A) is smaller than f(B) in magnitude. 

The code contains two sets symmetrical statements. In each set, the code 

determines which of the three sub-intervals contain the root. The algorithm then 

performs an inverse linear interpolation to calculate a refined guess for the root 

within the new (and smaller) root-bracketing interval. The last step is to further 

shrink the root-bracketing interval. The interpolation step significantly accelerates 

the convergence to the root. 

The Interpolative Trisection Algorithms 
The basic idea of the Interpolative Trisection algorithms is to: 

 Divide the root-bracketing interval into three equal parts. One of these three 

sub-intervals contains the root. 

 Perform inverse interpolation to calculate a value for X as the root of the 

function. 

 Determine if the interpolated value of X falls inside the root-bracketing sub-

interval. If this condition is true, the method further narrows the sub-interval 

using the interpolated value, and uses the shrunk sub-interval for the next 

iteration. If not, the new root-bracketing sub-interval becomes the root-

bracketing interval for the next iteration. 

In the case of the Cubic Interpolative Trisection, each iteration has four points to 

work with. The inverse cubic interpolation uses all four points. In the case of the 

Quadratic Interpolative Trisection, the algorithm has to choose three out of the four 

points to use in an inverse quadratic interpolation. The algorithm selects certain 

points that have smaller absolute function values. 
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The next two sections present the pseudo-ode for the two new algorithms. 

The Quadratic Interpolative Trisection Algorithm 
Here is the pseudo-code for the Quadratic Interpolative Trisection algorithm: 

Given f(x)=0, the root-bracketing interval [A,B], the tolerance Toler for the 

root of f(x), and the function tolerance value FxToler: 

 If A > B then Swap A, B 

 Calculate Fa = f(A) and Fb = f(B). 

 Exit if Fa*Fb > 0 

 Repeat 

o LastA = A 

o LastB = B 

 If |Fa| < |Fb| then 

o X1 = A + (B - A) / 3 

o Fx1 = f(X1) 

o Comment-- case 1: [A,X1] has the root 

o If Fx1 * Fa < 0 then 

 X3 = QuadInterp(A, X1, B, Fa, Fx1, Fb) 

 Fx3 = f(X3) 

 If X3 > A And X3 < X1 then  

 Comment-- X3 in [A, X1] 

 If Fa * Fx3 > 0 then 

o A = X3 

o Fa = Fx3 

 Else 

o X1 = X3 

o Fx1 = Fx3 

 End 

 End 

 B = X1 

 Fb = Fx1 

o Else 

 X2 = B - (B - A) / 3 

 Fx2 = f(X2) 

 Comment-- case 2: [X1,X2] has root 

 If Fx1 * Fx2 < 0 then 

 Comment-- select A or B with the smaller 

absolute function value 

 If |Fa| < |Fb| then 

o C = A 

o Fc = Fa 

 Else 

o C = B 

o Fc = Fb 

 End 

 X3 = QuadInterp(X1, X2, C, Fx1, Fx2, Fc) 

 Fx3 = f(X3) 

 If X3 > X1 And X3 < X2 then  

o Comment-- X3 in [X1, X2] 

o If Fx1 * Fx3 > 0 then 

 X1 = X3 
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 Fx1 = Fx3 

o Else 

 X2 = X3 

 Fx2 = Fx3 

o End  

 End  

 Comment-- update A and B 

 A = X1 

 Fa = Fx1 

 B = X2 

 Fb = Fx2 

 Else 

 Comment-- case 2: [X2,B] has root 

 If |Fa| < |Fx1| then 

o C = A 

o Fc = Fa 

 Else 

o C = X1 

o Fc = Fx1 

 End 

 X3 = QuadInterp(C, X2, B, Fc, Fx2, Fb) 

 Fx3 = f(X3) 

 If X3 > X2 And X3 < B then  

o Comment-- X3 in [X2, B] 

o If Fx2 * Fx3 > 0 then 

 A = X3 

 Fa = Fx3 

o Else 

 A = X2 

 Fa = Fx2 

o End 

 Else 

o A = X2 

o Fa = Fx2 

 End 

 End 

o End 

 Else 

o X1 = B - (B - A) / 3 

o Fx1 = f(X1) 

o Comment-- case 4: [X1, B] has the root 

o If Fx1 * Fb < 0 then 

 X3 = QuadInterp(A, X1, B, Fa, Fx1, Fb) 

 Fx3 = f(X3) 

 If X3 > X1 And X3 < B then  

 Comment-- X3 in [X1, B] 

 If Fb * Fx3 > 0 then 

o B = X3 

o Fb = Fx3 

o A = X1 

o Fa = Fx1 

 Else 

o A = X3 
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o Fa = Fx3 

 End 

 Else 

 A = X1 

 Fa = Fx1 

 End 

o Else 

 X2 = A + (B - A) / 3 

 Fx2 = f(X2) 

 Comment-- case 5: [X1,X2] has root 

 If Fx1 * Fx2 < 0 then 

 Comment-- select A or B with the smaller 

absolute function value 

 If |Fa| < |Fb| then 

o C = A 

o Fc = Fa 

 Else 

o C = B 

o Fc = Fb 

 End 

 X3 = QuadInterp(X1, X2, C, Fx1, Fx2, Fc) 

 Fx3 = f(X3) 

 If X3 > X1 And X3 < X2 then  

o Comment-- X3 in [X1, X2] 

o If Fx1 * Fx3 > 0 then 

 X1 = X3 

 Fx1 = Fx3 

o Else 

 X2 = X3 

 Fx2 = Fx3 

o End 

 End 

 Comment-- update A and B 

 B = X1 

 Fb = Fx1 

 A = X2 

 Fa = Fx2 

 Else 

 Comment-- case 6: [A, X2] has root 

 If |Fb| < |Fx1| then 

o C = B 

o Fc = Fb 

 Else 

o C = X1 

o Fc = Fx1 

 End 

 X3 = QuadInterp(C, X2, A, Fc, Fx2, Fa) 

 Fx3 = f(X3) 

 If X3 > A And X3 < X2 then  

o Comment-- X3 in [A, X2] 

o If Fx2 * Fx3 > 0 then 

 B = X3 
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 Fb = Fx3 

o Else 

 B = X2 

 Fb = Fx2 

o End 

 Else 

o B = X2 

o Fb = Fx2 

 End 

 End 

o End 

 End 

 If A <> LastA And |A – LastA| < Toler then Exit loop 

 If B <> LastB And |B – LastB| < Toler then Exit loop 

 Loop Until |A – B| < Toler Or |Fa| < FxToler Or |Fb| < FxToler 

 If |Fa| < |Fb| then 

o Return A 

 Else 

o Return B 

 End 

The above pseudo-code mentions QuadInterp which represents a function that 

performs inverse quadratic interpolation. The VBA code shows you the 

implementation that uses Lagrangian interpolation. 

The above pseudo-code appears long, but keep in mind that steps executed in each 

iteration are but a small fraction. In other words, the pseudo-code shows multiple 

alternate program execution flow paths. The code handles the cases for the left, 

middle, and right sub-intervals. The code also deal with symmetric braches of code 

that are executed depending on which interval endpoint has the smaller absolute 

function value. 

The Cubic Interpolative Trisection Algorithm 
Here is the pseudo-code for the Cubic Interpolative Trisection algorithm: 

Given f(x)=0, the root-bracketing interval [A,B], the tolerance Toler for the 

root of f(x), and the function tolerance value FxToler: 

 If A > B then Swap A, B 

 Calculate Fa = f(A) and Fb = f(B). 

 Exit if Fa*Fb > 0 

 Repeat 

o LastA = A 

o LastB = B 

o X1 = A + (B - A) / 3 

o Fx1 = f(X1) 

o X2 = B - (B - A) / 3 

o Fx2 = f(X2) 

o X3 = CubicInterp(A, X1, X2, B, Fa, Fx1, Fx2, B) 

o Fx3 = f(X3)     

o If Fa * Fx1 < 0 then  
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 Comment-- case 1: root in [A, X1] 

 If X3 > A And X3 < X1 then 

 If Fa * Fx3 > 0 then  

o Comment-- root in [X3, X1] 

o A = X3 

o Fa = Fx3 

o B = X1 

o Fb = Fx1                   

 Else  

o Comment-- root in [A, X3] 

o B = X3 

o Fb = Fx3 

 End 

 Else 

 B = X1 

 Fb = Fx1 

 End 

o Else If Fx1 * Fx2 < 0 then  

 Comment-- case 2: root in [X1, X2] 

 If X3 > X1 And X3 < X2 then 

 If Fx1 * Fx3 > 0 then  

o Comment-- root in [X3, X2] 

o A = X3 

o Fa = Fx3 

o B = X2 

o Fb = Fx2 

 Else  

o Comment-- root in [X1, X3] 

o A = X1 

o Fa = Fx1 

o B = X3 

o Fb = Fx3 

 End 

 Else 

 A = X1 

 Fa = Fx1 

 B = X2 

 Fb = Fx2 

 End 

o Else  

 Comment-- root in [X2, B] 

 If X3 > X2 And X3 < B then 

 If Fx2 * Fx3 > 0 then  

o Comment-- root in [X3, B] 

o A = X3 

o Fa = Fx3 

 Else  

o Comment-- root in [X2, X3] 

o A = X2 

o Fa = Fx2 

o B = X3 

o Fb = Fx3 

 End 

 Else 
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 A = X2 

 Fa = Fx2 

 End 

o End 

o If A <> LastA And |A – LastA| < Toler then Exit loop 

o If B <> LastB And |B – LastB| < Toler then Exit loop 

 Loop Until |A - B) < Toler Or |Fa| < FxToler Or |Fb| < FxToler 

 If |Fa| < |Fb| then 

o Return A 

 Else 

o Return B 

 End 

 

The above pseudo-code mentions CubicdInterp which represents a function that 

performs inverse cubic interpolation. The VBA code shows you the 

implementation that uses Lagrangian interpolation. 

The pseudo-code for the Cubic Interpolative Trisection is shorter than its quadratic 

counterpart. This is true, because the cubic version of the Trisection method 

performs fewer choices since it uses all four points in the three sub-intervals. The 

algorithm determines which sub-interval brackets the root. It also determines if the 

interpolated value is inside that sub-interval. If so, the method further shrinks the 

root-bracketing sub-interval and uses it for the next iteration. If the interpolated 

value is outside the root-bracketing sub-interval, it simply uses that sub-interval as 

the root-bracketing interval in the next iteration. 

Testing with Excel VBA Code 
I tested the new algorithms using Excel taking advantage of the application’s 

worksheet for easy input and the display of intermediate calculations. The 

following listing shows the Excel VBA code used for testing. It implements the 

Quadratic Interpolative Trisection, Cubic Interpolative Trisection, Trisection Plus, 

and Newton’s methods: 

Option Explicit 

 

Function MyFx(ByVal sFx As String, ByVal X As Double) As Double 

 

  sFx = UCase(sFx) 

  sFx = Replace(sFx, "EXP(", "!!") 

  sFx = Replace(sFx, "X", "(" & X & ")") 

  sFx = Replace(sFx, "!!", "EXP(") 

  MyFx = Evaluate(sFx) 

End Function 

 

Private Sub Swap(ByRef A As Double, ByRef B As Double) 

  Dim Buff As Double 

   



The Interpolative Trisection Algorithms  14 

 

Copyright © 2014 by Namir Clement Shammas 

  Buff = A 

  A = B 

  B = Buff 

End Sub 

 

Function Interpolate2(ByVal X1 As Double, ByVal X2 As Double, _ 

                      ByVal Fx1 As Double, ByVal Fx2 As Double) As Double 

 

  ' Interpolate2 = X1 * (Fx2 - 0) / (Fx2 - Fx1) + X2 * (Fx1 - 0) / (Fx1 - 

Fx2) 

  Interpolate2 = (X1 * (Fx2 - 0) - X2 * (Fx1 - 0)) / (Fx2 - Fx1) 

   

End Function 

 

 

Function QuadInterp(ByVal X1 As Double, ByVal X2 As Double, _ 

                    ByVal X3 As Double, ByVal Fx1 As Double, _ 

                    ByVal Fx2 As Double, ByVal Fx3 As Double) As Double 

  Dim X(3) As Double, Fx(3) As Double, Sum As Double, Prod As Double 

  Dim I As Integer, J As Integer, N As Integer 

  X(1) = X1 

  X(2) = X2 

  X(3) = X3 

  Fx(1) = Fx1 

  Fx(2) = Fx2 

  Fx(3) = Fx3 

   

  Sum = 0 

  N = 3 

  For I = 1 To N 

    Prod = X(I) 

    For J = 1 To N 

      If I <> J Then 

        Prod = Prod * (0 - Fx(J)) / (Fx(I) - Fx(J)) 

      End If 

    Next J 

    Sum = Sum + Prod 

  Next I 

  QuadInterp = Sum 

End Function 

 

Function CubicInterp(ByVal X1 As Double, ByVal X2 As Double, _ 

                      ByVal X3 As Double, ByVal X4 As Double, _ 

                      ByVal Fx1 As Double, ByVal Fx2 As Double, _ 

                      ByVal Fx3 As Double, ByVal Fx4 As Double) As Double 

  Dim X(4) As Double, Fx(4) As Double, Sum As Double, Prod As Double 

  Dim I As Integer, J As Integer, N As Integer 

  X(1) = X1 

  X(2) = X2 

  X(3) = X3 

  X(4) = X4 

  Fx(1) = Fx1 

  Fx(2) = Fx2 

  Fx(3) = Fx3 

  Fx(4) = Fx4 

   

  Sum = 0 
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  N = 4 

  For I = 1 To N 

    Prod = X(I) 

    For J = 1 To N 

      If I <> J Then 

        Prod = Prod * (0 - Fx(J)) / (Fx(I) - Fx(J)) 

      End If 

    Next J 

    Sum = Sum + Prod 

  Next I 

  CubicInterp = Sum 

End Function 

 

 

Sub Go() 

  Dim R As Integer, Col As Integer 

  Dim A As Double, B As Double, Fa As Double, Fb As Double 

  Dim C As Double, Fc As Double 

  Dim X1 As Double, X2 As Double, Fx1 As Double, Fx2 As Double 

  Dim X3 As Double, Fx3 As Double, Toler As Double, FxToler As Double 

  Dim LastA As Double, LastB As Double, h As Double, Diff As Double 

  Dim sFx As String, NumIters As Integer 

   

  Range("B3:Z10000").Value = "" 

  Toler = [A6].Value 

  FxToler = [A8].Value 

  sFx = [A10].Value 

   

  ' Quadratic Trisection 

  A = [A2].Value 

  B = [A4].Value 

  If A > B Then Swap A, B 

  Fa = MyFx(sFx, A) 

  Fb = MyFx(sFx, B) 

  NumIters = 2 

  R = 3 

  Col = 2 

  Do 

    LastA = A 

    LastB = B 

    If Abs(Fa) < Abs(Fb) Then 

      X1 = A + (B - A) / 3 

      Fx1 = MyFx(sFx, X1) 

      NumIters = NumIters + 1 

      ' case 1: [A,X1] has the root 

      If Fx1 * Fa < 0 Then 

        X3 = QuadInterp(A, X1, B, Fa, Fx1, Fb) 

        Fx3 = MyFx(sFx, X3) 

        NumIters = NumIters + 1 

        If X3 > A And X3 < X1 Then ' X3 in [A, X1] 

          If Fa * Fx3 > 0 Then 

            A = X3 

            Fa = Fx3 

          Else 

            X1 = X3 

            Fx1 = Fx3 

          End If 
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        End If 

        B = X1 

        Fb = Fx1 

      Else 

        X2 = B - (B - A) / 3 

        Fx2 = MyFx(sFx, X2) 

        NumIters = NumIters + 1 

        ' case 2: [X1,X2] has root 

        If Fx1 * Fx2 < 0 Then 

          ' select A or B with the smaller absolute funciton value 

          If Abs(Fa) < Abs(Fb) Then 

            C = A 

            Fc = Fa 

          Else 

            C = B 

            Fc = Fb 

          End If 

          X3 = QuadInterp(X1, X2, C, Fx1, Fx2, Fc) 

          Fx3 = MyFx(sFx, X3) 

          NumIters = NumIters + 1 

          If X3 > X1 And X3 < X2 Then ' X3 in [X1, X2] 

            If Fx1 * Fx3 > 0 Then 

              X1 = X3 

              Fx1 = Fx3 

            Else 

              X2 = X3 

              Fx2 = Fx3 

            End If 

          End If 

          ' update A and B 

          A = X1 

          Fa = Fx1 

          B = X2 

          Fb = Fx2 

        Else 

          ' case 2: [X2,B] has root 

          If Abs(Fa) < Abs(Fx1) Then 

            C = A 

            Fc = Fa 

          Else 

            C = X1 

            Fc = Fx1 

          End If 

          X3 = QuadInterp(C, X2, B, Fc, Fx2, Fb) 

          Fx3 = MyFx(sFx, X3) 

          NumIters = NumIters + 1 

          If X3 > X2 And X3 < B Then ' X3 in [X2, B] 

            If Fx2 * Fx3 > 0 Then 

              A = X3 

              Fa = Fx3 

            Else 

              A = X2 

              Fa = Fx2 

            End If 

          Else 

            A = X2 

            Fa = Fx2 
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          End If 

        End If 

      End If 

    Else 

      X1 = B - (B - A) / 3 

      Fx1 = MyFx(sFx, X1) 

      NumIters = NumIters + 1 

      ' case 4: [X1, B] has the root 

      If Fx1 * Fb < 0 Then 

        X3 = QuadInterp(A, X1, B, Fa, Fx1, Fb) 

        Fx3 = MyFx(sFx, X3) 

        NumIters = NumIters + 1 

        If X3 > X1 And X3 < B Then ' X3 in [X1, B] 

          If Fb * Fx3 > 0 Then 

            B = X3 

            Fb = Fx3 

            A = X1 

            Fa = Fx1 

          Else 

            A = X3 

            Fa = Fx3 

          End If 

        Else 

          A = X1 

          Fa = Fx1 

        End If 

      Else 

        X2 = A + (B - A) / 3 

        Fx2 = MyFx(sFx, X2) 

        NumIters = NumIters + 1 

        ' case 5: [X1,X2] has root 

        If Fx1 * Fx2 < 0 Then 

          ' select A or B with the smaller absolute funciton value 

          If Abs(Fa) < Abs(Fb) Then 

            C = A 

            Fc = Fa 

          Else 

            C = B 

            Fc = Fb 

          End If 

          X3 = QuadInterp(X1, X2, C, Fx1, Fx2, Fc) 

          Fx3 = MyFx(sFx, X3) 

          NumIters = NumIters + 1 

          If X3 > X1 And X3 < X2 Then ' X3 in [X1, X2] 

            If Fx1 * Fx3 > 0 Then 

              X1 = X3 

              Fx1 = Fx3 

            Else 

              X2 = X3 

              Fx2 = Fx3 

            End If 

          End If 

          ' update A and B 

          B = X1 

          Fb = Fx1 

          A = X2 

          Fa = Fx2 
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        Else 

          ' case 6: [A, X2] has root 

          If Abs(Fb) < Abs(Fx1) Then 

            C = B 

            Fc = Fb 

          Else 

            C = X1 

            Fc = Fx1 

          End If 

          X3 = QuadInterp(C, X2, A, Fc, Fx2, Fa) 

          Fx3 = MyFx(sFx, X3) 

          NumIters = NumIters + 1 

          If X3 > A And X3 < X2 Then ' X3 in [A, X2] 

            If Fx2 * Fx3 > 0 Then 

              B = X3 

              Fb = Fx3 

            Else 

              B = X2 

              Fb = Fx2 

            End If 

          Else 

            B = X2 

            Fb = Fx2 

          End If 

        End If 

      End If 

    End If 

    Cells(R, Col) = A 

    Cells(R, Col + 1) = B 

    R = R + 1 

 

    If A <> LastA And Abs(A - LastA) < Toler Then Exit Do 

    If B <> LastB And Abs(B - LastB) < Toler Then Exit Do 

     

  Loop Until Abs(A - B) < Toler Or Abs(Fa) < FxToler Or Abs(Fb) < FxToler 

   

  If Abs(Fa) < Abs(Fb) Then 

    Cells(R, Col) = A 

  Else 

    Cells(R, Col) = B 

  End If 

  Cells(R, Col + 1) = "Fx Calls=" & NumIters 

    

   

 ' Cubic Trisection 

  A = [A2].Value 

  B = [A4].Value 

  If A > B Then Swap A, B 

  Fa = MyFx(sFx, A) 

  Fb = MyFx(sFx, B) 

  NumIters = 2 

  R = 3 

  Col = Col + 2 

  Do 

    LastA = A 

    LastB = B 
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    X1 = A + (B - A) / 3 

    Fx1 = MyFx(sFx, X1) 

    X2 = B - (B - A) / 3 

    Fx2 = MyFx(sFx, X2) 

    X3 = CubicInterp(A, X1, X2, B, Fa, Fx1, Fx2, B) 

    Fx3 = MyFx(sFx, X3) 

    NumIters = NumIters + 3 

     

    If Fa * Fx1 < 0 Then ' case 1: root in [A, X1] 

      If X3 > A And X3 < X1 Then 

        If Fa * Fx3 > 0 Then ' root in [X3, X1] 

          A = X3 

          Fa = Fx3 

          B = X1 

          Fb = Fx1 

        Else ' root in [A, X3] 

          B = X3 

          Fb = Fx3 

        End If 

      Else 

        B = X1 

        Fb = Fx1 

      End If 

    ElseIf Fx1 * Fx2 < 0 Then ' case 2: root in [X1, X2] 

      If X3 > X1 And X3 < X2 Then 

        If Fx1 * Fx3 > 0 Then ' root in [X3, X2] 

          A = X3 

          Fa = Fx3 

          B = X2 

          Fb = Fx2 

        Else ' root in [X1, X3] 

          A = X1 

          Fa = Fx1 

          B = X3 

          Fb = Fx3 

        End If 

      Else 

        A = X1 

        Fa = Fx1 

        B = X2 

        Fb = Fx2 

      End If 

    Else ' root in [X2, B] 

      If X3 > X2 And X3 < B Then 

        If Fx2 * Fx3 > 0 Then ' root in [X3, B] 

          A = X3 

          Fa = Fx3 

        Else ' root in [X2, X3] 

          A = X2 

          Fa = Fx2 

          B = X3 

          Fb = Fx3 

        End If 

      Else 

        A = X2 

        Fa = Fx2 

      End If 



The Interpolative Trisection Algorithms  20 

 

Copyright © 2014 by Namir Clement Shammas 

    End If 

    

    Cells(R, Col) = A 

    Cells(R, Col + 1) = B 

    R = R + 1 

 

    If A <> LastA And Abs(A - LastA) < Toler Then Exit Do 

    If B <> LastB And Abs(B - LastB) < Toler Then Exit Do 

 

 

  Loop Until Abs(A - B) < Toler Or Abs(Fa) < FxToler Or Abs(Fb) < FxToler 

   

  If Abs(Fa) < Abs(Fb) Then 

    Cells(R, Col) = A 

  Else 

    Cells(R, Col) = B 

  End If 

  Cells(R, Col + 1) = "Fx Calls=" & NumIters 

   

  ' Trisection Plus 

  A = [A2].Value 

  B = [A4].Value 

  If A > B Then Swap A, B 

  Fa = MyFx(sFx, A) 

  Fb = MyFx(sFx, B) 

  NumIters = 2 

  R = 3 

  Col = Col + 2 

  Do 

    LastA = A 

    LastB = B 

     

    If Abs(Fa) < Abs(Fb) Then 

      X1 = A + (B - A) / 3 

      Fx1 = MyFx(sFx, X1) 

      NumIters = NumIters + 1 

      ' case 1: [A,X1] has the root 

      If Fx1 * Fa < 0 Then 

        X3 = Interpolate2(A, X1, Fa, Fx1) 

        Fx3 = MyFx(sFx, X3) 

        NumIters = NumIters + 1 

        If Fa * Fx3 < 0 Then 

          B = X3 

          Fb = Fx3 

        Else 

          A = X3 

          Fa = Fx3 

          B = X1 

          Fb = Fx1 

        End If 

      Else 

        X2 = A + 2 * (B - A) / 3 

        Fx2 = MyFx(sFx, X2) 

        NumIters = NumIters + 1 

        ' case 2: [X1,X2] has root 

        If Fx1 * Fx2 < 0 Then 

          X3 = Interpolate2(X1, X2, Fx1, Fx2) 
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          Fx3 = MyFx(sFx, X3) 

          NumIters = NumIters + 1 

          If Fx1 * Fx3 < 0 Then 

            A = X1 

            Fa = Fx1 

            B = X3 

            Fb = Fx3 

          Else 

            A = X3 

            Fa = Fx3 

            B = X2 

            Fb = Fx2 

          End If 

        Else 

          ' case 2: [X2,B] has root 

          X3 = Interpolate2(X2, B, Fx2, Fb) 

          Fx3 = MyFx(sFx, X3) 

          NumIters = NumIters + 1 

          If Fx2 * Fx3 < 0 Then 

            A = X2 

            Fa = Fx2 

            B = X3 

            Fb = Fx3 

          Else 

            A = X3 

            Fa = Fx3 

          End If 

        End If 

      End If 

    Else 

      X1 = A + 2 * (B - A) / 3 

      Fx1 = MyFx(sFx, X1) 

      NumIters = NumIters + 1 

      ' case 4: [X1,B] has the root 

      If Fx1 * Fb < 0 Then 

        X3 = Interpolate2(X1, B, Fx1, Fb) 

        Fx3 = MyFx(sFx, X3) 

        NumIters = NumIters + 1 

        If Fx1 * Fx3 < 0 Then 

          A = X1 

          Fa = Fx1 

          B = X3 

          Fb = Fx3 

        Else 

          A = X3 

          Fa = Fx3 

        End If 

      Else 

        X2 = A + (B - A) / 3 

        Fx2 = MyFx(sFx, X2) 

        NumIters = NumIters + 1 

        ' case 5: [X1,X2] has root 

        If Fx1 * Fx2 < 0 Then 

          X3 = Interpolate2(X1, X2, Fx1, Fx2) 

          Fx3 = MyFx(sFx, X3) 

          NumIters = NumIters + 1 

          If Fx1 * Fx3 < 0 Then 
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            A = X1 

            Fa = Fx1 

            B = X3 

            Fb = Fx3 

          Else 

            A = X3 

            Fa = Fx3 

            B = X2 

            Fb = Fx2 

          End If 

        Else 

          ' case 6: [A,X2] has root 

          X3 = Interpolate2(A, X2, Fa, Fx2) 

          Fx3 = MyFx(sFx, X3) 

          NumIters = NumIters + 1 

          If Fa * Fx3 < 0 Then 

            B = X3 

            Fb = Fx3 

          Else 

            A = X3 

            Fa = X3 

            B = X2 

            Fb = Fx2 

          End If 

        End If 

      End If 

    End If 

    

    If A > B Then 

      Swap A, B 

      Swap Fa, Fb 

      Swap LastA, LastB 

    End If 

    Cells(R, Col) = A 

    Cells(R, Col + 1) = B 

    R = R + 1 

    If LastA <> A And Abs(A - LastA) < Toler Then Exit Do 

    If LastB <> B And Abs(B - LastB) < Toler Then Exit Do 

  Loop Until Abs(A - B) < Toler Or Abs(Fa) < FxToler Or Abs(Fb) < FxToler 

   

  If Abs(Fa) < Abs(Fb) Then 

    Cells(R, Col) = A 

  Else 

    Cells(R, Col) = B 

  End If 

  Cells(R, Col + 1) = "Fx Calls=" & NumIters 

 

 

  ' Newton's method 

  A = [A2].Value 

  B = [A4].Value 

  X1 = (A + B) / 2 

  NumIters = 0 

  R = 3 

  Col = Col + 2 

  Do 

    h = 0.001 * (1 + Abs(X1)) 
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    Fx1 = MyFx(sFx, X1) 

    NumIters = NumIters + 2 

    Diff = h * Fx1 / (MyFx(sFx, X1 + h) - Fx1) 

    X1 = X1 - Diff 

    Cells(R, Col) = X1 

    Cells(R, Col + 1) = Fx1 

    R = R + 1 

  Loop Until Abs(Diff) < Toler 

  Cells(R, Col) = X1 

  Cells(R, Col + 1) = "Fx Calls=" & NumIters 

End Sub 
 

The VBA function MyFX calculates the function value based on a string that 

contains the function’s expression. This expression must use X as the variable 

name. Note that the implementation of MyFX differs from previous ones (the 

Bisection Plus and Bisection++ methods) in that the name of the variable is X and 

not $X. Using function MyFX allows you to specify the function f(X)=0 in the 

spreadsheet and not hard code it in the VBA program. Granted that this approach 

trades speed of execution for flexibility. However, with most of today’s PCs you 

will hardly notice the difference in execution times. 

The subroutine Go performs the root-seeking calculations that compare the 

Quadratic Interpolative Trisection method, Cubic Interpolative Trisection method, 

Trisection Plus method, and Newton’s method. Figure 1 shows a snapshot of the 

Excel spreadsheet used in the calculations for the methods mentioned above. 

 

Figure 1. The Excel spreadsheet used to compare the quadratic Trisection, Cubic 

Trisection, Trisection Plus, and Newton’s methods. 

The Input Cells 

The VBA code relies on the following cells to obtain data: 

 Cells A2 and A4 supply the values for the root-bracketing interval [A, B]. 

 Cell A6 contains the tolerance value. 

 Cells A8 contains the function tolerance value. 

 Cell A10 contains the expression for f(X)=0. Notice that the expression in 

cell A10 use X as the variable name. The expression is case insensitive. 

A

1 A B A B A B X

B 1.666666667 1.905177377 1.666666667 2 1.840376801 2 1.986679131 1.10668907

2 1.825673807 1.85743265 1.777777778 1.862098591 1.856820732 1.893584534 1.865982452 -0.54993176

Toler 1.846846369 1.857183922 1.856377262 1.862098591 1.857181284 1.869075332 1.857244749 -0.03486494

1.00E-10 1.853738071 1.85718386 1.857183843 1.858284372 1.857183854 1.861145967 1.857183967 -0.00024001

FxToler 1.85718386 Fx Calls=10 1.857183843 Fx Calls=14 1.857183854 Fx Calls=10 1.85718386 -4.2009E-07

1.00E-07 1.85718386 -7.1997E-10

Function 1.85718386 -1.2399E-12

EXP(X)-X^3 1.85718386 Fx Calls=14

Quadratic Trisetion Cubic Trisection Trisection Plus Newton
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Output 

The spreadsheet displays output in the following four sets of columns: 

 Columns B and C display the updated values for the root-bracketing interval 

[A, B] for the Quadratic Interpolative Trisection method. This interval 

shrinks with each iteration until the method zooms on the root. The bottom 

most value, in column B, is the best estimate for the root. To its right is the 

total number of function calls made during the iterations. 

 Columns D, and E display the updated values for the root-bracketing interval 

[A, B] for the Cubic Interpolative Trisection method. The bottom most 

value, in column D, is the best estimate for the root. To its right is the total 

number of function calls made during the iterations. 

 Columns F, and G display the updated values for the root-bracketing interval 

[A, B] for the Trisection Plus method. The bottom most value, in column F, 

is the best estimate for the root. To its right is the total number of function 

calls made during the iterations. 

 Columns H and I display the refined guess for the root and the refinement 

value, respectively, using Newton’s method. The bottom most value, in 

column H, is the best estimate for the root. To its right is the total number of 

function calls made during the iterations. 

The Results 
I really had no preconceived expectations as to how the Interpolative Trisection 

algorithms stack up against the Trisection Plus algorithm and Newton’s method. 

The results surprised me. Table 1 shows a summary of the results. The metrics for 

comparing the algorithms include the number of iterations and, perhaps more 

importantly, the number of function calls. I consider the number of function calls 

as the underlying cost of doing business, so to speak. I have come across new root-

seeking algorithms that require fewer iterations than popular algorithms like 

Newton’s method and Halley’s method. However, these new algorithms require 

more function calls to zoom in on the root in fewer iterations.  The best results in 

Table 1 appear in red. 

Function [A, B] Toler / 

FxToler 

Root Iterations Num Fx Calls 

Exp(X) – 

X^3 

[1, 2] 1E–10 

1E–7 

1.857183 QuadTri= 4 

CubTri= 4 

Trisec+ = 4 

QuadTri= 10 

CubTri = 14 

Trisec+= 10 
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Function [A, B] Toler / 

FxToler 

Root Iterations Num Fx Calls 

Newton= 7 Newton= 14 

Exp(X) –

3*X^2 

[3, 4] 1E–10 

1E–7 

3.73307 QuadTri= 3 

CubTri = 5 

Trisec+ = 5 

Newton= 7 

QuadTri= 8 

CubTri = 17 

Trisec+ = 12 

Newton= 14 

Cos(X) – X [0, 1] 1E–10 

1E–7 

0.73908 QuadTri= 3  

CubTri = 4 

Trisec+ = 4 

Newton= 5 

QuadTri= 8 

CubTri = 14 

Trisec+ = 10 

Newton= 10 

(X–1.234) * 

(X–5.678) * 

(X+12.345) 

[5, 6] 1E–10 

1E–7 

5.678 QuadTri= 3 

CubTri = 3 

Trisec+ = 4 

Newton=6 

QuadTri= 8 

CubTri = 11 

Trisec+ = 10 

Newton=12 

(X–1.234) * 

(X–5.678) * 

(X+12.345) 

[1, 2] 1E–10 

1E–7 

1.234 QuadTri= 3 

CubTri = 7 

Trisec+ = 4 

Newton= 5 

QuadTri= 8 

CubTri = 23 

Trisec+ = 10 

Newton= 10 

(X–1.234) * 

(X–5.678) * 

(X+12.345) 

[5,11] 1E–10 

1E–7 

5.678 QuadTri= 5 

CubTri = 6 

Trisec+ = 6 

Newton= 7 

QuadTri= 12 

CubTri = 20 

Trisec+ = 14 

Newton= 14 

(X–1.234) * 

(X–5.678) * 

(X+12.345) 

[–8,     

–15] 

1E–10 

1E–7 

–12.345 QuadTri= 5 

CubTri = 8 

Trisec+ = 5 

Newton= 5 

QuadTri= 14 

CubTri = 26 

Trisec+ = 13 

Newton= 10 

Table 1. Summary of the results comparing the Quadratic Trisection, Cubic 

Trisection, Trisection Plus, and Newton’s methods. 

The above table shows that the Quadratic Interpolative Trisection method performs 

better in most test cases than the other algorithms. The Cubic Interpolative 

Trisection did fine in most cases, and faltered in a few. Of course there is a huge 

number of test cases that vary the tested function and root-bracketing range. Due to 

time limitation, I have chosen the above few test cases which succeeded in proving 

my goals. 
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Conclusion 
The Quadratic Interpolative Trisection algorithm offers improvement over the 

Trisection Plus and Newton’s method. The new algorithm has an efficiency that 

competes with Newton’s method. 

The Trisection Plus, Quadratic Interpolative Trisection, and Cubic Interpolative 

Trisection algorithms, use inverse linear interpolation, inverse quadratic 

interpolation, and inverse cubic interpolation, respectively. This small study shows 

that the inverse quadratic interpolation to be optimum. The inverse quadratic 

interpolation is best, followed by the inverse linear interpolation.  
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