Real-Time Operating Systems (RTOS) 101

Real-Time System Characteristics RTOS Architecture Rate Monotonic
® A real-time system is a computer system which is required by Sched u I i ng (RM S)

its specification to adhere to:
® A priority is assigned based on the inverse of its pe-
riod

C++
Application

C
Application

Ada
Application

Other
Application

— functional requirements (behavior)

— temporal requirements (timing constraints, deadlines)

® Specific deterministic timing (temporal) requirements — Shorter execution periods = higher priority

— “Deterministic" timing means that RTOS services consume only
known and expected amounts of time.

— Longer execution periods = lower priority

RTOS

. - S
e —— Common way to assign fixed priorities

® Small size (footprint)

— If there is a fixed-priority schedule that meets all dead-

Hardware lines, then RMS will produce a feasible schedule
Types of Real-Time SVStems ® Simple to understand and implement
- A generic real-time system requires that results be produced RTOS TaSk Se r\[ices ® P, is assigned a higher priority than P,.
within a specified deadline period.
- An embedded system is a computing device that is part of a ¥ SCh EdUIing and DiSpatChing peadines T P1lP2 Fr Pfg
R OB * Inter-task Communication 305 o e 70 59 50 700115 180 140 140 0 e 0 153 T o

- A safety-critical system is a real-time system with catastro-

phic results in case of failure. e Mem ory SyStem Man agem ent
- A hard real-time system guarantees that real-time tasks be o [nput / Output System Management

Earliest Deadline First (EDF)

completed within their required deadlines. Failure to meet] : -
a single deadline may lead to a critical catastrophic system ° Tlme Man agem ent & Tlm ers SCh ed u I I ng
failure such as physical damage or loss of life. .. : : : .
. . y * Error Management ®* Priorities are assigned according to deadlines:
- A firm real-time system tolerates a low occurrence of missing . . _ .
a deadline. A few missed deadlines will not lead to total o Message Management B = line, the higtier the priority
failure, but missing more than a few may lead to complete — the later the deadline, the lower the priority

and catastrophic system failure.

- A soft real-time system provides priority of real-time tasks Task CO nt I'O| BIOCk (TCB) ® Priorities are dynamically chosen

over non real-time tasks. Performance degradation is toler-

.)) . Deadlines P4 Po P4 Py Po
ated by failure to meet several deadline time constraints | | | [
with decreased service quality but no critical consequences. - * Task uses T{ZB to P, e P, e & e |,

- remember its context 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

* RTOS updates TCB
when task is

Disciplines that Impact e switched Priority Inversion

o * RTOS TCBs t
Real-Time Systems — control tasks

task namme

® Lower-priority task effectively blocks a higher-

* Real-time systems engineering is so multidisciplinary, it task_stack pomder priority task
stands out as a highly specialized area.

tack _program_cowmder

® Lower-priority task’s ownership of lock prevents
higher-priority task from running

Control
Theory

Programming

Languages ® Nasty: makes high-priority task runtime unpredict-

Controlling a Task able]

Operations

Research
Data Structures (Scheduling e ot
Theory) / | \ ° ° °
/ =) Priority Inheritance
. / 1 ' l")
Real-time Fmm e o -ndeel® Y N : . . :
Systems ’ -' o « Solution to priority inversion
Computer g [ol ettty o) (T
Architecture -y N P /\E"‘;) o « Temporarily increase task’s priority when it acquires
W S\ a lock
\. I resche dule - -__\-(e \/ _\
\ O]) - Level to increase: highest priority of any task that
\ deindrvsome stk)/ might want to acquire same lock
Queuin
Ensgci)::;v;ﬁg Operating Theoryg — High enough to prevent it from being preempted
Systems ® dormant (idle): task has no need for computer time » Danger: Low-priority task acquires lock, gets high
® ready: task is ready to go active, but waiting for processor time priority and hogs the processor
® active (running): task is executing associated activities — So much for RMS
What IS d RTOS? ® waiting (blocked): task put on temporary hold to allow lower priority task * Basic rule: Iow-priority tasks should acquire high—
chance to execute priority locks only briefly!

® An RTOS is a preemptive multitasking operating system intended
for real-time applications. ® suspended: task is waiting for resource

* It must support a scheduling method that guarantees re- . N waorks ArCh ite Ctu re
sponse time Priority-Based

— Especially to critical tasks

* Tasks must be able to be given a priority Preem ptive SChEd u I i ng

embedded real-time application

— Static or dynamic POSIX library Java library
* An RTOS has to support predictable task synchronization ® Problem: Multiple tasks at the same priority level?
mechanisms
— Shared memory mutexes / semaphores, etc. ®* Solutions:
* A system of priority inheritance has to exist — Give each task a unique priority :
virtual memory graphics
®* Manages hardware and software resources. — Time-slice tasks at the same priority VxVMI library
* Deterministic: guarantees task completion at a set deadline. * Extra context-switch overhead
— A system is deterministic if, for each possible state and each set of in- * No starvation dangers at that level : _
puts, a unique set of outputs and next state of the system can be de- e
termined.

— Tasks at the same priority never preempt the other

* Behavior time constraints should be known and minimized * More efficient
— Interrupt latency (i.e., time from interrupt to task run)
— Minimal task-switching time (context switching)

hardware level
e Still meets deadlines if possible (Pentium, Power PC, MIPS, customized, etc.)

NASA Independent .
Verification and N

Validation Facility N -

NASA POC: Frank Huy, Frank.A.Huy@nasa.gov Fairmont, West

Virginia

Richard E. Kowalski, richard.e.kowalski@ivv.nasa.gov, TASC Inc.

