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Mathematics 

The battle of the biquadrates 
Ian Stewart 

ADVANCES in mathematics take many 
forms. Entire new subjects can arise from 
a single brilliant idea. At the other ex
treme, long-standing problems can 
crumble under a sufficiently powerful 
attack. The metaphor is apt: research and 
war have much in common. Some prob
lems are stormed by force of arms and 
superior generalship, some are devastated 
by new weaponry, some exist in a perma
nent state of siege. And some surrender 
only after a lengthy war of attrition. 

Waring's problem (see my News and 
Views article in Nature 323, 674; 1986) 
falls into this last category. In his Medi
tationes Algebraicae of 1770, Edward 
Waring stated without proof that every 
positive integer is a sum of at most 9 cubes, 
19 biquadrates, "and so on". One case of 
Waring's problem, that for biquadrates-
fourth powers -- has finally been resolved 
by the collaborative work of Ramachan
dran Balasubramanian at the Institute of 
Mathematical Sciences, Madras and Jean
Marc Deshouillers and Fran~ois Dress at 
the University of Bordeaux. In two short 
notes (C.r. Acad. hebd. Stanco Sci., Paris 
303,85-88; 1986 and 303,161-163; 1986) 
they show that, for fourth powers, Waring 
was right. 

Waring was presumably led to his con
jectures by numerical experiments. For 
example the number 79 can be written as 
4x2' + 15x 1', involving 19 fourth powers 
in all. Because the only fourth powers less 
than 79 are 1 and 16 it is very easy to see 
that 79 cannot be written using 18 fourth 
powers or fewer. Thus the maximum must 
be at least 19 fourth powers, and it 
remains to show that no number requires 
more than 19. In 1974, H.E. Thomas 
(Trans. Am. math. Soc. 193, 427-430; 
1974) showed that at most 22 fourth 
powers are needed. Thus the correct 
number lies somewhere between 19 and 
22. The new work reduces the upper 
bound from 22 to 19, closing the gap 
completely. 

Proof 
The proof falls into two distinct parts. In 
the first, it is shown that every sufficiently 
large integer is a sum of 19 fourth powers. 
In the second, the remaining cases are dis
posed of. This is often a sound strategy in 
number theory, for reasons that would be 
not unfamiliar to a sociologist: small num
bers often behave in exceptional ways, 
whereas large numbers are usually more 
predictable. (Against this remark we must 
set rhe celebrated proof that all numbers 
are exceptional; if not, there would be a 
smallest unexceptional number, which, by 

its very definition, would be exceptional.) 
Such is the strategy, but it is not always 

easy to carry it out successfully. In the case 
of Waring's problem for biquadrates, suf
ficiently large means "greater than 10367

". 

That is, Balasubramanian and his col
leagues prove by one method that every 
number with 367 digits or more is a sum of 
19 fourth powers, and then deploy new 
forces to mop up the stragglers with a 
mere 366 digits or less. 

The first step may be considered classi
cal: it is the circle method of G.H. Hardy, 
J.E. Littlewood and I.M. Vinogradov. The 
original number-theoretical question is 
turned into one in complex analysis, and 
solved by powerful analytical techniques. 
To understand how the analysis enters, it is 
convenient to start with an easier problem: 
Lagrange's theorem that every positive 
integer is a sum of four squares. This is just 
'Waring's problem' for squares, but La
grange got there first. Consider the gener
ating function (1 +z+ Z4+ z'+ Z16+ Z25+ ... t 
Expand this as a power series in Z. Then a 
little thought shows that the coefficient of 
ZN is precisely the number of different 
ways in which N can be written as a sum of 
four squares. If it were possible to prove, 
analytically, that every such coefficient is 
greater than zero, then we would have an 
analytical proof of Lagrange's four-squares 
theorem. 

Waring's problem for fourth powers can 
be attacked similarly, using the generating 
function (1 + z+ Z16+ z"'+ Z625+ ... )1'. The 
coefficient of ZN now gives the number of 
ways in which N can be written as a sum of 
19 fourth powers, and again we have to 
show it is greater than zero. To pick out a 
single coefficient we effectively apply 
Fourier analysis. Multiply the generating 
function by Z-N; replace the variable z by 
e;u, a general point on the unit circle in the 
complex plane; and integrate round the 
circle with respect to a. All terms vanish 
except one -- this is what makes Fourier 
analysis tick -- and that term is the re
quired coefficient. In brief, there is a 
rather complicated integral whose value is 
the number of ways in which N can be 
represented as a sum of 19 fourth powers, 
and we have to prove that it is greater 
than zero. 

The Hardy-Littlewood-Vinogradov 
circle method tackles this by dividing the 
circle into two subsets, the major and 
minor arcs. On the major arcs, a can be 
well approximated by a rational number 
with small denominator; on the minor arcs 
it cannot. It is then shown that the integral 
over the major arcs is so large that the 
integral over the minor arcs cannot cancel 

it out. Thus the total integral is non-zero. 
The method is not easy to use: the choice 

of major and minor arcs is crucial, and less 
than obvious, and it is not straightforward 
to estimate the sizes of the two integrals. 
In the earlier work of Thomas, the estima
tion of the integral over the major arcs 
took 40 pages and several computer calcu
lations. Balasubramanian et af. use an idea 
from probability theory to obtain, in only 
half a page, an estimate that is almost as 
accurate -- and good enough for the proof 
to be carried through. Their main effort is 
expended on the minor arcs, and while it 
follows the traditional strategy it contains 
several innovations. In particular they use 
an idea of R.c. Vaughan (Camb. Tracts 
Math. 80, 1981), in which the traditional 
choice of major arcs is modified by making 
them slightly larger: this makes the diffi
cult minor arcs smaller and simplifies 
some of the arguments. 

Victory 
This completes step one: every integer 
with more than 367 digits is a sum of 19 
fourth powers. The large number of digits 
may seem surprising, but it is necessary to 
make the estimates valid. Large numbers 
like this are common in analytical number 
theory because it is often 10g(N) or even 
log(log (N)) that must be large rather than 
Nitself. 

Entirely different weaponry is now 
brought to bear to mop up the stragglers. 
In fact the authors give themselves some 
room to manoeuvre by proving that every 
integer with less than 378 digits is a sum of 
19 fourth powers. Of course, in principle 
this could be achieved by trial and error on 
a computer, but the number of digits is so 
great that the battle of the biquadrates 
would be interrupted by Armageddon. 

So something more subtle is needed. 
The main idea is to find a sufficiently big 
set of numbers which, save for rare excep
tions, are sums of a mere five fourth 
powers. These provide a bridgehead from 
which an invasion can be mounted on the 
remaining numbers, by deploying only a 
further 14 fourth powers. Finding this set 
of numbers took 150 hours on a main
frame computer and needed special tricks 
to reduce the demands on memory capac
ity. The invasion on the remaining num
bers uses a variation of the 'greedy algor
ithm': start by subtracting the largest 
fourth power available and work on what 
is left. 

Thus the 216-year war of attrition against 
Waring's problem for fourth powers has 
ended in victory. The battle of the biquad
rates is won, VB Day is declared, math
ematics is triumphant. But what of cubes, 
fifth powers, sixth powers ... , googolplexi
quates? The greater conflict continues. Cry 
'havoc!' and let slip the dogs of Waring. 0 
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