Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transcriptomics and the origin of obligate parthenogenesis

Abstract

Despite the presence of obligately parthenogenetic (OP) lineages derived from sexual ancestors in diverse phylogenetic groups, the genetic mechanisms giving rise to the OP lineages remain poorly understood. The freshwater microcrustacean Daphnia pulex typically reproduces via cyclical parthenogenesis. However, some populations of OP D. pulex have emerged due to ancestral hybridization and introgression events between two cyclically parthenogenetic (CP) species D. pulex and D. pulicaria. These OP hybrids produce both subitaneous and resting eggs parthenogenetically, deviating from CP isolates where resting eggs are produced via conventional meiosis and mating. This study examines the genome-wide expression and alternative splicing patterns of early subitaneous versus early resting egg production in OP D. pulex isolates to gain insight into the genes and mechanisms underlying this transition to obligate parthenogenesis. Our differential expression and functional enrichment analyses revealed a downregulation of meiosis and cell cycle genes during early resting egg production, as well as divergent expression patterns of metabolism, biosynthesis, and signaling pathways between the two reproductive modes. These results provide important gene candidates for future experimental verification, including the CDC20 gene that activates the anaphase-promoting complex in meiosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Daphnia life history and reproduction.
Fig. 2: Summary of prior transcriptomic studies and the goal of current study.
Fig. 3: Transcriptomic analysis results.
Fig. 4: KEGG pathway analysis results.
Fig. 5: Alternative splicing analysis results.
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The raw reads for this study are deposited at NCBI SRA PRJNA847604.

References

  • Avise J (2008) Clonality: the genetics, ecology, and evolution of sexual abstinence in vertebrate animals. Oxford University Press, USA

    Google Scholar 

  • Avise JC (2015) Evolutionary perspectives on clonal reproduction in vertebrate animals. Proc Natl Acad Sci USA 112(29):8867–8873

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andrews S (2010) FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

  • Alexa A, Rahnenfuhrer J (2021) topGO: Enrichment Analysis for Gene Ontology. R package version 2.46.0.

  • Bell G (1982) The masterpiece of nature: the evolution and genetics of sexuality. University of California Press, Berkeley, CA

    Google Scholar 

  • Blengini CS, Ibrahimian P, Vaskovicova M, Drutovic D, Solc P, Schindler K (2021) Aurora kinase A is essential for meiosis in mouse oocytes. PLOS Genet 17:e1009327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boopathy GTK, Hong W (2019) Role of Hippo Pathway-YAP/TAZ Signaling in Angiogenesis. Frontiers in Cell and Developmental Biology, 7.

  • Brandlova J, Brandl Z, Fernando CH (1972) The Cladocera of Ontario with remarks on some species and distribution. Can J Zool 50(11):1373–1403

    Google Scholar 

  • Carballo GB, Honorato JR, de Lopes GPF, de Sampaio e Spohr TCL (2018) A highlight on Sonic hedgehog pathway. Cell Commun Signal 16(1):11

    PubMed  PubMed Central  Google Scholar 

  • Colbourne JK, Hebert PDN (1996) The systematics of North American Daphnia (Crustacea: Anomopoda): a molecular phylogenetic approach. Philos Trans R Soc Lond Ser B: Biol Sci 351(1337):349–360

    CAS  Google Scholar 

  • Cristescu ME, Constantin A, Bock DG, Cáceres CE, Crease TJ (2012) Speciation with gene flow and the genetics of habitat transitions. Mol Ecol 21(6):1411–1422

    PubMed  Google Scholar 

  • Cristescu ME, Demiri B, Altshuler I, Crease TJ (2014) Gene expression variation in duplicate lactate dehydrogenase genes: do ecological species show distinct responses? PLoS ONE 9(7):e103964

    PubMed  PubMed Central  Google Scholar 

  • Dawley RM, Bogart JP (1989) Evolution and ecology of unisexual vertebrates. University of the State of New York, State Education Department, New York State Museum

    Google Scholar 

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S et al. (2013) STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21

    CAS  PubMed  Google Scholar 

  • Ferree PM, McDonald K, Fasulo B, Sullivan W (2006) The origin of centrosomes in parthenogenetic hymenopteran insects. Curr Biol: CB 16(8):801–807

    CAS  PubMed  Google Scholar 

  • Fink P, Pflitsch C, Marin K (2011) Dietary Essential Amino Acids Affect the Reproduction of the Keystone Herbivore Daphnia pulex. PLOS ONE 6(12):e28498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerrish GA, Cáceres CE (2003) Genetic versus environmental influence on pigment variation in the ephippia of Daphnia pulicaria. Freshw Biol 48(11):1971–1982

    Google Scholar 

  • Giardini JL, Yan ND, Heyland A (2015) Consequences of calcium decline on the embryogenesis and life history of Daphnia magna. J Exp Biol 218(Pt 13):2005–2014.

    PubMed  Google Scholar 

  • Gorr TA, Rider CV, Wang HY, Olmstead AW, LeBlanc GA (2006) A candidate juvenoid hormone receptor cis-element in the Daphnia magna hb2 hemoglobin gene promoter. Mol Cell Endocrinol 247(1–2):91–102

    CAS  PubMed  Google Scholar 

  • Goh PY, Surana U (1999) Cdc4, a protein required for the onset of S phase, serves an essential function during G(2)/M transition in Saccharomyces cerevisiae. Mol Cell Biol 19(8):5512–5522

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haisenleder DJ, Ferris HA, Shupnik MA (2003) The calcium component of gonadotropin-releasing hormone-stimulated luteinizing hormone subunit gene transcription is mediated by calcium/calmodulin-dependent protein kinase type II. Endocrinology 144(6):2409–2416

    CAS  PubMed  Google Scholar 

  • Hannun YA, Obeid LM (2002) The Ceramide-centric universe of lipid-mediated cell regulation: Stress encounters of the lipid kind. J Biol Chem 277(29):25847–25850

    CAS  PubMed  Google Scholar 

  • Heier CR, Dudycha JL (2009) Ecological speciation in a cyclic parthenogen: Sexual capability of experimental hybrids between Daphnia pulex and Daphnia pulicaria. Limnol Oceanogr 54(2):492–502

    CAS  Google Scholar 

  • Hiruta C, Nishida C, Tochinai S (2010) Abortive meiosis in the oogenesis of parthenogenetic Daphnia pulex. Chromosome Res 18(7):833–840

    CAS  PubMed  Google Scholar 

  • Hong G, Zhang W, Li H, Shen X, Guo Z (2014) Separate enrichment analysis of pathways for up- and downregulated genes. J R Soc Interface 11(92):20130950

    PubMed  PubMed Central  Google Scholar 

  • Huynh TV, Hall AS, Xu S (2021) The transcriptomic signature of cyclical parthenogenesis (p. 2021.09.27.461985). bioRxiv.

  • Huynh T, Xu S (2019) Gene annotation easy viewer (GAEV): integrating KEGG’s gene function annotations and associated molecular pathways. F1000Research 7:416

    PubMed Central  Google Scholar 

  • Ihara M, Stein P, Schultz RM (2008) UBE2I (UBC9), a SUMO-conjugating enzyme, localizes to nuclear speckles and stimulates transcription in mouse oocytes. Biol Reprod 79(5):906–913

    CAS  PubMed  PubMed Central  Google Scholar 

  • Innes DJ, Hebert PDN (1988) The origin and genetic basis of obligate parthenogenesis in daphnia pulex. Evolution 42(5):1024–1035

    PubMed  Google Scholar 

  • Jaquiéry J, Stoeckel S, Larose C, Nouhaud P, Rispe C, Mieuzet L et al. (2014) Genetic control of contagious asexuality in the pea aphid. PLOS Genet 10(12):e1004838

    PubMed  PubMed Central  Google Scholar 

  • Jin F, Hamada M, Malureanu L, Jeganathan KB, Zhou W, Morbeck DE et al. (2010) Cdc20 is critical for meiosis I and fertility of female mice. PLOS Genet 6(9):e1001147

    PubMed  PubMed Central  Google Scholar 

  • Johnson SG, Bragg E (1999) Age and polyphyletic origins of hybrid and spontaneous parthenogenetic campeloma (gastropoda: viviparidae) from the southeastern United States. Evolution 53(6):1769–1781

    CAS  PubMed  Google Scholar 

  • Kilham SS, Kreeger DA, Lynn SG, Goulden CE, Herrera L (1998) COMBO: A defined freshwater culture medium for algae and zooplankton. Hydrobiologia 377(1):147–159

    CAS  Google Scholar 

  • King KC, Hurst GD (2010) Losing the desire: Selection can promote obligate asexuality. BMC Biol 8(1):101

    PubMed  PubMed Central  Google Scholar 

  • Koch U, Martin-Creuzburg D, Grossart HP, Straile D (2011) Single dietary amino acids control resting egg production and affect population growth of a key freshwater herbivore. Oecologia 167(4):981–989

    PubMed  Google Scholar 

  • Kojima H, Tohsato Y, Kabayama K, Itonori S, Ito M (2013) Biochemical studies on sphingolipids of Artemia franciscana: Complex neutral glycosphingolipids. Glycoconj J 30(3):257–268

    CAS  PubMed  Google Scholar 

  • Kraus S, Naor Z, Seger R (2001) Intracellular signaling pathways mediated by the gonadotropin-releasing hormone (GnRH) receptor. Arch Med Res 32(6):499–509

    CAS  PubMed  Google Scholar 

  • Lafont R, Mathieu M (2007) Steroids in aquatic invertebrates. Ecotoxicol (Lond, Engl) 16:109–130

    CAS  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al. (2009) The sequence alignment/map format and SAMtools. Bioinforma (Oxf, Engl) 25(16):2078–2079

    Google Scholar 

  • Li M, York JP, Zhang P (2007) Loss of Cdc20 causes a securin-dependent metaphase arrest in two-cell mouse embryos. Mol Cell Biol 27(9):3481–3488

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liao Y, Smyth GK, Shi W (2014) featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinforma (Oxf, Engl) 30(7):923–930

    CAS  Google Scholar 

  • Lim HH, Goh PY, Surana U (1998) Cdc20 is essential for the cyclosome-mediated proteolysis of both Pds1 and Clb2 during M phase in budding yeast. Curr Biol 8(4):231–237

    CAS  PubMed  Google Scholar 

  • Liu M, Pan J, Dong Z, Cheng Y, Gong J, Wu X (2019) Comparative transcriptome reveals the potential modulation mechanisms of estradiol affecting ovarian development of female Portunus trituberculatus. PLoS ONE 14(12):e0226698

    CAS  PubMed  PubMed Central  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550

    PubMed  PubMed Central  Google Scholar 

  • Marques P, Skorupskaite K, Rozario KS, Anderson RA, George JT (2022) Physiology of GnRH and Gonadotropin Secretion. In K. R. Feingold et al., (Eds) Endotext. MDText.com, Inc

  • Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: An automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182–W185.

    PubMed  PubMed Central  Google Scholar 

  • Murray TM, Rao LG, Divieti P, Bringhurst FR (2005) Parathyroid hormone secretion and action: evidence for discrete receptors for the carboxyl-terminal region and related biological actions of carboxyl-terminal ligands. Endocr Rev 26(1):78–113

    CAS  PubMed  Google Scholar 

  • Nakagawa Y, Henrich VC (2009) Arthropod nuclear receptors and their role in molting. FEBS J 276(21):6128–6157

    CAS  PubMed  Google Scholar 

  • Nambu Z, Tanaka S, Nambu F (2004) Influence of photoperiod and temperature on reproductive mode in the Brine shrimp, Artemia franciscana. J Exp Zool Part A, Comp Exp Biol 301(6):542–546

    Google Scholar 

  • Neaves WB, Baumann P (2011) Unisexual reproduction among vertebrates. Trends Genet 27(3):81–88

    CAS  PubMed  Google Scholar 

  • Neiman M, Sharbel TF, Schwander T (2014) Genetic causes of transitions from sexual reproduction to asexuality in plants and animals. J Evolut Biol 27(7):1346–1359

    CAS  Google Scholar 

  • Niyaz M, Khan MS, Mudassar S (2019) Hedgehog signaling: an achilles’ heel in cancer. Transl Oncol 12(10):1334–1344

    PubMed  PubMed Central  Google Scholar 

  • Omilian AR, Cristescu MEA, Dudycha JL, Lynch M (2006) Ameiotic recombination in asexual lineages of Daphnia. Proc Natl Acad Sci USA 103(49):18638–18643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Omilian AR, Lynch M (2009) Patterns of Intraspecific DNA Variation in the Daphnia Nuclear Genome. Genetics 182(1):325–336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ojima Y (1958) A cytological study on the development and maturation of the parthenogenetic and sexual eggs of Daphnia pulex. Kwansei Gakuin Univ Ann Stud 6:123–171

    Google Scholar 

  • Pohl M, Bortfeldt RH, Grützmann K, Schuster S (2013) Alternative splicing of mutually exclusive exons—A review. Biosystems 114(1):31–38

    CAS  PubMed  Google Scholar 

  • Riparbelli MG, Tagu D, Bonhomme J, Callaini G (2005) Aster self-organization at meiosis: A conserved mechanism in insect parthenogenesis? Developmental Biol 278(1):220–230

    CAS  Google Scholar 

  • RStudio Team (2020) RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/

  • Schwander T, Henry L, Crespi BJ (2011) Molecular evidence for ancient asexuality in timema stick insects. Curr Biol 21(13):1129–1134

    CAS  PubMed  Google Scholar 

  • Serra M, Snell TW (2009) Sex loss in monogonont rotifers. In: I Schön, K Martens, P van Dijk, editors. Lost Sex. Dordrecht: Springer. p. 281-294

  • Shen S, Park JW, Lu Z, Lin L, Henry MD, Wu YN et al. (2014) rMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc Natl Acad Sci USA 111(51):E5593–E5601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sherbet GV (2017) Chapter 7—Hippo Signalling in Cell Proliferation, Migration and Angiogenesis. In G. V. Sherbet (Ed.), Molecular Approach to Cancer Management (pp. 65–80). Academic Press

  • Simon JC, Delmotte F, Rispe C, Crease T (2003) Phylogenetic relationships between parthenogens and their sexual relatives: The possible routes to parthenogenesis in animals. Biol J Linn Soc 79(1):151–163

    Google Scholar 

  • Stenberg P, Lundmark M (2004) Distribution, mechanisms and evolutionary significance of clonality and polyploidy in weevils. Agric For Entomol 6(4):259–266

    Google Scholar 

  • Stenberg P, Saura A (2009) Cytology of Asexual Animals. In I. Schön, K. Martens, & P. Dijk (Eds.), Lost Sex: The Evolutionary Biology of Parthenogenesis (pp. 63–74). Springer Netherlands

  • Suomalainen E, Saura A, Lokki J (1987) Cytology and evolution in parthenogenesis. CRC Press

  • Suresh S, Crease TJ, Cristescu ME, Chain FJJ (2020) Alternative splicing is highly variable among Daphnia pulex lineages in response to acute copper exposure. BMC Genomics 21(1):433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tatarazako N, Oda S, Watanabe H, Morita M, Iguchi T (2003) Juvenile hormone agonists affect the occurrence of male. Daphnia Chemosphere 53(8):827–833

    CAS  PubMed  Google Scholar 

  • Tucker AE, Ackerman MS, Eads BD, Xu S, Lynch M (2013) Population-genomic insights into the evolutionary origin and fate of obligately asexual Daphnia pulex. Proc Natl Acad Sci USA 110(39):15740–15745

    CAS  PubMed  PubMed Central  Google Scholar 

  • Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M et al. (2015) Essentials of Glycobiology (3rd ed.). Cold Spring Harbor Laboratory Press.

  • Vrijenhoek R (1998) Animal Clones and Diversity. Bioscience 48:617–628

    Google Scholar 

  • Wang Y, Liu J, Huang B, Xu YM, Li J, Huang LF et al. (2015) Mechanism of alternative splicing and its regulation (Review). Biomed Rep. 3(2):152–158

    CAS  PubMed  Google Scholar 

  • Ward A, Hopkins J, Mckay M, Murray S, Jordan PW (2016) Genetic Interactions Between the Meiosis-Specific Cohesin Components, STAG3, REC8, and RAD21L. G3 Genes|Genomes|Genetics, 6(6):1713–1724

  • White MJ, Contreras N, Chency J, Webb GC (1977) Cytogenetics of the parthenogenetic grasshopper Warramaba (formerly Moraba) virgo and its bisexual relatives. II. Hybridization studies. Chromosoma 61(2):127–148

    CAS  PubMed  Google Scholar 

  • Xu S, Huynh TV, Snyman M (2022) The transcriptomic signature of obligate parthenogenesis. Heredity 128(2):132–138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu S, Innes DJ, Lynch M, Cristescu ME (2013) The role of hybridization in the origin and spread of asexuality in Daphnia. Mol Ecol 22(17):4549–4561

    PubMed  PubMed Central  Google Scholar 

  • Xu S, Omilian AR, Cristescu ME (2011) High rate of large-scale hemizygous deletions in asexually propagating Daphnia: omplications for the evolution of sex. Mol Biol Evolution 28:335–342

    CAS  Google Scholar 

  • Xu S, Spitze K, Ackerman MS, Ye Z, Bright L, Keith N et al. (2015) Hybridization and the origin of contagious asexuality in Daphnia pulex. Mol Biol Evolution 32(12):3215–3225

    CAS  Google Scholar 

  • Yang WL, Li J, An P, Lei AM (2014) CDC20 downregulation impairs spindle morphology and causes reduced first polar body emission during bovine oocyte maturation. Theriogenology 81(4):535–544

    CAS  PubMed  Google Scholar 

  • Ye Z, Xu S, Spitze K, Asselman J, Jiang X, Ackerman MS et al. (2017) A new reference genome assembly for the microcrustacean Daphnia pulex. G3: Genes, Genomes, Genet 7(5):1405–1416

    CAS  Google Scholar 

  • Yuan YF, Zhai R, Liu XM, Khan HA, Zhen YH, Huo LJ (2014) SUMO-1 plays crucial roles for spindle organization, chromosome congression, and chromosome segregation during mouse oocyte meiotic maturation. Mol Reprod Dev 81(8):712–724

    CAS  PubMed  Google Scholar 

  • Zaffagnini F, Sabelli B (1972) Karyologic observations on the maturation of the summer and winter eggs of Daphnia pulex and Daphnia middendorffiana. Chromosoma 36(2):193–203

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by NIH grant R35GM133730 to SX. We would like to thank two anonymous reviewers for their constructive suggestions and the Xu lab members for their helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

SX designed the study. MS performed the tissue collection, molecular work, and data analyses. SX and MS wrote the manuscript.

Corresponding author

Correspondence to Sen Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate editor: Louise Johnson.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snyman, M., Xu, S. Transcriptomics and the origin of obligate parthenogenesis. Heredity 131, 119–129 (2023). https://doi.org/10.1038/s41437-023-00628-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41437-023-00628-3

Search

Quick links