Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review article
  • Published:

Adaptive and maladaptive myelination in health and disease

Abstract

Within the past decade, multiple lines of evidence have converged to identify a critical role for activity-regulated myelination in tuning the function of neural networks. In this Review, we provide an overview of accumulating evidence that activity-regulated myelination is required for brain adaptation and learning across multiple domains. We then discuss dysregulation of activity-dependent myelination in the context of neurological disease, a novel frontier with the potential to uncover new mechanisms of disease pathogenesis and to develop new therapeutic strategies. Alterations in myelination and neural network function can result from deficient myelin plasticity that impairs neurological function or from maladaptive myelination, in which intact activity-dependent myelination contributes to the disease process by promoting pathological patterns of neuronal activity. These emerging mechanisms suggest new avenues for therapeutic intervention that could more fully address the complex interactions between neurons and oligodendroglia.

Key points

  • Activity-regulated myelin plasticity is a process in which myelin structure can change in response to neuronal activity, and can involve de novo myelination, remodelling of existing myelin, and both increases and decreases in myelination.

  • In the healthy brain, myelin plasticity is adaptive and supports brain function and cognition across multiple domains; adaptive changes in myelin are thought to tune neural circuit dynamics to promote coordinated circuit function.

  • Mechanisms of neuron-to-oligodendrocyte progenitor cell communication include bona fide synapses, non-synaptic vesicle exocytosis, and paracrine signalling involving factors secreted by neurons; the key mechanisms underlying myelin plasticity are a topic of intense research.

  • In some diseases, neurological function is impaired by loss of activity-dependent myelination; a prominent example is cancer therapy-related cognitive impairment.

  • Maladaptive myelination is a distinct mechanism in which activity-dependent myelination is driven by, and subsequently promotes, pathological patterns of neuronal activity, such as seizures in generalized epilepsy.

  • Novel therapeutic strategies could address dysregulated neuron–oligodendroglial interactions in disease states by restoring deficient activity-dependent myelination or by modulating maladaptive myelination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Activity-regulated myelination.
Fig. 2: Activity-regulated myelination in health and disease.

Similar content being viewed by others

References

  1. Huxley, A. F. & Stampfli, R. Evidence for saltatory conduction in peripheral myelinated nerve fibres. J. Physiol. 108, 315–339 (1949).

    PubMed  PubMed Central  Google Scholar 

  2. Funfschilling, U. et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485, 517–521 (2012).

    PubMed  PubMed Central  Google Scholar 

  3. Bergles, D. E. & Richardson, W. D. Oligodendrocyte development and plasticity. Cold Spring Harb. Perspect. Biol. 8, a020453 (2015).

    PubMed  Google Scholar 

  4. Hughes, E. G., Orthmann-Murphy, J. L., Langseth, A. J. & Bergles, D. E. Myelin remodeling through experience-dependent oligodendrogenesis in the adult somatosensory cortex. Nat. Neurosci. 21, 696–706 (2018). This study demonstrated that sensory stimulation can increase oligodendrogenesis and myelin internode formation in the superficial somatosensory cortex.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Czopka, T., Ffrench-Constant, C. & Lyons, D. A. Individual oligodendrocytes have only a few hours in which to generate new myelin sheaths in vivo. Dev. Cell 25, 599–609 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Yalcin, B. & Monje, M. Microenvironmental interactions of oligodendroglial cells. Dev. Cell 56, 1821–1832 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zuchero, J. B. & Barres, B. A. Intrinsic and extrinsic control of oligodendrocyte development. Curr. Opin. Neurobiol. 23, 914–920 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Pajevic, S., Basser, P. J. & Fields, R. D. Role of myelin plasticity in oscillations and synchrony of neuronal activity. Neuroscience 276, 135–147 (2014).

    CAS  PubMed  Google Scholar 

  9. Scholz, J., Klein, M. C., Behrens, T. E. & Johansen-Berg, H. Training induces changes in white-matter architecture. Nat. Neurosci. 12, 1370–1371 (2009). This human neuroimaging study demonstrated microstructural changes in white matter regions relevant to hand–eye coordination after learning to juggle, suggesting motor learning-induced myelin plasticity.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bengtsson, S. L. et al. Extensive piano practicing has regionally specific effects on white matter development. Nat. Neurosci. 8, 1148–1150 (2005).

    CAS  PubMed  Google Scholar 

  11. Dziemian, S., Appenzeller, S., von Bastian, C. C., Jancke, L. & Langer, N. Working memory training effects on white matter integrity in young and older adults. Front. Hum. Neurosci. 15, 605213 (2021).

    PubMed  PubMed Central  Google Scholar 

  12. Schiller, R. M. et al. Training-induced white matter microstructure changes in survivors of neonatal critical illness: a randomized controlled trial. Dev. Cogn. Neurosci. 38, 100678 (2019).

    PubMed  PubMed Central  Google Scholar 

  13. Hofstetter, S., Tavor, I., Tzur Moryosef, S. & Assaf, Y. Short-term learning induces white matter plasticity in the fornix. J. Neurosci. 33, 12844–12850 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Alexander, D. C., Dyrby, T. B., Nilsson, M. & Zhang, H. Imaging brain microstructure with diffusion MRI: practicality and applications. NMR Biomed. 32, e3841 (2019).

    PubMed  Google Scholar 

  15. Barres, B. A. & Raff, M. C. Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons. Nature 361, 258–260 (1993).

    CAS  PubMed  Google Scholar 

  16. Demerens, C. et al. Induction of myelination in the central nervous system by electrical activity. Proc. Natl Acad. Sci. USA 93, 9887–9892 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Stevens, B., Porta, S., Haak, L. L., Gallo, V. & Fields, R. D. Adenosine: a neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron 36, 855–868 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gibson, E. M. et al. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344, 1252304 (2014). In this study, in vivo optogenetic studies provided direct evidence that cortical projection neuronal activity promotes circuit-specific OPC proliferation, oligodendrogenesis and myelination, specifically in corticocallosal — but not corticospinal — projections of the premotor circuit; changes in motor behavioural performance depended on these oligodendroglial changes.

    PubMed  PubMed Central  Google Scholar 

  19. Mitew, S. et al. Pharmacogenetic stimulation of neuronal activity increases myelination in an axon-specific manner. Nat. Commun. 9, 306 (2018). Chemogenetic stimulation of somatosensory axons stimulates OPC proliferation, oligodendrogenesis and increased myelination of the stimulated axons, while chemogenetic inhibition of axonal activity exerted opposite effects, demonstrating selective myelination of more active axons and bidirectional myelin plasticity.

    PubMed  PubMed Central  Google Scholar 

  20. Makinodan, M., Rosen, K. M., Ito, S. & Corfas, G. A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science 337, 1357–1360 (2012). This study demonstrated that social isolation decreases prefrontal cortex myelination. If social isolation occurred during a critical period in adolescence, this deficit in prefrontal cortex myelination was irreversible upon social reintegration.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu, J. et al. Impaired adult myelination in the prefrontal cortex of socially isolated mice. Nat. Neurosci. 15, 1621–1623 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mensch, S. et al. Synaptic vesicle release regulates myelin sheath number of individual oligodendrocytes in vivo. Nat. Neurosci. 18, 628–630 (2015). This study showed that synaptic vesicle release modulates axon selection during development in zebrafish.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hines, J., Ravanelli, A., Schwindt, R., Scott, E. & Appel, B. Neuronal activity biases axon selection for myelination in vivo. Nat. Neurosci. 18, 683–689 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. McKenzie, I. A. et al. Motor skill learning requires active central myelination. Science 346, 318–322 (2014). This study demonstrated that new oligodendrocyte generation is required for motor learning.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Xiao, L. et al. Rapid production of new oligodendrocytes is required in the earliest stages of motor-skill learning. Nat. Neurosci. 19, 1210–1217 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sampaio-Baptista, C. et al. Motor skill learning induces changes in white matter microstructure and myelination. J. Neurosci. 33, 19499–19503 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Steadman, P. E. et al. Disruption of oligodendrogenesis impairs memory consolidation in adult mice. Neuron 105, 150–164.e6 (2020). This study demonstrated that generation of new oligodendrocytes is required for spatial and fear memory consolidation, and provided experimental evidence that myelin plasticity promotes oscillatory synchrony between the hippocampus and frontal cortex.

    CAS  PubMed  Google Scholar 

  28. Pan, S., Mayoral, S. R., Choi, H. S., Chan, J. R. & Kheirbek, M. A. Preservation of a remote fear memory requires new myelin formation. Nat. Neurosci. 23, 487–499 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Geraghty, A. C. et al. Loss of adaptive myelination contributes to methotrexate chemotherapy-related cognitive impairment. Neuron 103, 250–265.e8 (2019). This study demonstrated that activity-regulated BDNF signalling to TrkB in OPCs is required for activity-regulated OPC proliferation, oligodendrogenesis and myelination in cortical projection neurons, and that impaired myelin plasticity contributes to CRCI in mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang, S. M., Michel, K., Jokhi, V., Nedivi, E. & Arlotta, P. Neuron class-specific responses govern adaptive myelin remodeling in the neocortex. Science 370, eabd2109 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Tomassy, G. S. et al. Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex. Science 344, 319–324 (2014). This study demonstrated that cortical axons are discontinuously myelinated, illustrating that axonal territory is available for activity-regulated addition of myelin internodes.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Jito, J. et al. Maturational changes in diffusion anisotropy in the rat corpus callosum: comparison with quantitative histological evaluation. J. Magn. Reson. Imaging 28, 847–854 (2008).

    PubMed  Google Scholar 

  33. Hughes, E. G., Kang, S. H., Fukaya, M. & Bergles, D. E. Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat. Neurosci. 16, 668–676 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hill, R. A., Li, A. M. & Grutzendler, J. Lifelong cortical myelin plasticity and age-related degeneration in the live mammalian brain. Nat. Neurosci. 21, 683–695 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Tripathi, R. B. et al. Remarkable stability of myelinating oligodendrocytes in mice. Cell Rep. 21, 316–323 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hughes, A. N. & Appel, B. Microglia phagocytose myelin sheaths to modify developmental myelination. Nat. Neurosci. 23, 1055–1066 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007).

    CAS  PubMed  Google Scholar 

  38. Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Swire, M., Kotelevtsev, Y., Webb, D. J., Lyons, D. A. & Ffrench-Constant, C. Endothelin signalling mediates experience-dependent myelination in the CNS. Elife 8, e49493 (2019). This study demonstrated that social experience-regulated myelination (the number of internodes per oligodendrocyte) is mediated by endothelin signalling from cerebral vessels to oligodendroglial endothelin B receptor in the superficial medial prefrontal cortex.

    PubMed  PubMed Central  Google Scholar 

  40. Osso, L. A., Rankin, K. A. & Chan, J. R. Experience-dependent myelination following stress is mediated by the neuropeptide dynorphin. Neuron 109, 3619–3632.e5 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Bergles, D. E., Roberts, J. D., Somogyi, P. & Jahr, C. E. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405, 187–191 (2000). This study demonstrated that electrophysiologically functional synapses exist between neurons and OPCs.

    CAS  PubMed  Google Scholar 

  42. Karadottir, R., Cavelier, P., Bergersen, L. H. & Attwell, D. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 438, 1162–1166 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. De Biase, L. M., Nishiyama, A. & Bergles, D. E. Excitability and synaptic communication within the oligodendrocyte lineage. J. Neurosci. 30, 3600–3611 (2010).

    PubMed  PubMed Central  Google Scholar 

  44. Spitzer, S. O. et al. Oligodendrocyte progenitor cells become regionally diverse and heterogeneous with age. Neuron 101, 459–471.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Marques, S. et al. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352, 1326–1329 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Mount, C. W., Yalcin, B., Cunliffe-Koehler, K., Sundaresh, S. & Monje, M. Monosynaptic tracing maps brain-wide afferent oligodendrocyte precursor cell connectivity. eLife 8, 49291 (2019).

    Google Scholar 

  47. De Biase, L. M. et al. NMDA receptor signaling in oligodendrocyte progenitors is not required for oligodendrogenesis and myelination. J. Neurosci. 31, 12650–12662 (2011).

    PubMed  PubMed Central  Google Scholar 

  48. Chen, T. J. et al. In vivo regulation of oligodendrocyte precursor cell proliferation and differentiation by the AMPA-receptor subunit GluA2. Cell Rep. 25, 852–861.e7 (2018).

    CAS  PubMed  Google Scholar 

  49. Kougioumtzidou, E. et al. Signalling through AMPA receptors on oligodendrocyte precursors promotes myelination by enhancing oligodendrocyte survival. Elife 6, e28080 (2017).

    PubMed  PubMed Central  Google Scholar 

  50. Lundgaard, I. et al. Neuregulin and BDNF induce a switch to NMDA receptor-dependent myelination by oligodendrocytes. PLoS Biol. 11, e1001743 (2013).

    PubMed  PubMed Central  Google Scholar 

  51. Kukley, M., Capetillo-Zarate, E. & Dietrich, D. Vesicular glutamate release from axons in white matter. Nat. Neurosci. 10, 311–320 (2007).

    CAS  PubMed  Google Scholar 

  52. Ziskin, J. L., Nishiyama, A., Rubio, M., Fukaya, M. & Bergles, D. E. Vesicular release of glutamate from unmyelinated axons in white matter. Nat. Neurosci. 10, 321–330 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lin, S. C. & Bergles, D. E. Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus. Nat. Neurosci. 7, 24–32 (2004).

    CAS  PubMed  Google Scholar 

  54. Zonouzi, M. et al. GABAergic regulation of cerebellar NG2 cell development is altered in perinatal white matter injury. Nat. Neurosci. 18, 674–682 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Benamer, N., Vidal, M., Balia, M. & Angulo, M. C. Myelination of parvalbumin interneurons shapes the function of cortical sensory inhibitory circuits. Nat. Commun. 11, 5151 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Xiao, Y., Petrucco, L., Hoodless, L. J., Portugues, R. & Czopka, T. Oligodendrocyte precursor cells sculpt the visual system by regulating axonal remodeling. Nat. Neurosci. 25, 280–284 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Auguste, Y. S. S. et al. Oligodendrocyte precursor cells engulf synapses during circuit remodeling in mice. Nat. Neurosci. 25, 1273–1278 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Battefeld, A., Klooster, J. & Kole, M. H. Myelinating satellite oligodendrocytes are integrated in a glial syncytium constraining neuronal high-frequency activity. Nat. Commun. 7, 11298 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kirby, L. et al. Oligodendrocyte precursor cells present antigen and are cytotoxic targets in inflammatory demyelination. Nat. Commun. 10, 3887 (2019).

    PubMed  PubMed Central  Google Scholar 

  60. Waxman, S. G. Determinants of conduction velocity in myelinated nerve fibers. Muscle Nerve 3, 141–150 (1980).

    CAS  PubMed  Google Scholar 

  61. Helfrich, R. F. & Knight, R. T. Oscillatory dynamics of prefrontal cognitive control. Trends Cogn. Sci. 20, 916–930 (2016).

    PubMed  PubMed Central  Google Scholar 

  62. Noori, R. et al. Activity-dependent myelination: a glial mechanism of oscillatory self-organization in large-scale brain networks. Proc. Natl Acad. Sci. USA 117, 13227–13237 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Seidl, A. H. & Rubel, E. W. Systematic and differential myelination of axon collaterals in the mammalian auditory brainstem. Glia 64, 487–494 (2016).

    PubMed  Google Scholar 

  64. Salami, M., Itami, C., Tsumoto, T. & Kimura, F. Change of conduction velocity by regional myelination yields constant latency irrespective of distance between thalamus and cortex. Proc. Natl Acad. Sci. USA 100, 6174–6179 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kato, D. et al. Motor learning requires myelination to reduce asynchrony and spontaneity in neural activity. Glia 68, 193–210 (2020).

    PubMed  Google Scholar 

  66. Dubey, M. et al. Myelination synchronizes cortical oscillations by consolidating parvalbumin-mediated phasic inhibition. eLife 11, e73827 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Menning, S. et al. Changes in brain white matter integrity after systemic treatment for breast cancer: a prospective longitudinal study. Brain Imaging Behav. 12, 324–334 (2018).

    PubMed  Google Scholar 

  68. Gibson, E. M. & Monje, M. Microglia in cancer therapy-related cognitive impairment. Trends Neurosci. 44, 441–451 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Gibson, E. M. et al. Methotrexate chemotherapy induces persistent tri-glial dysregulation that underlies chemotherapy-related cognitive impairment. Cell 176, 43–55.e13 (2019).

    CAS  PubMed  Google Scholar 

  70. Fernandez-Castaneda, A. et al. Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation. Cell 185, 2452–2468.e16 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Douaud, G. et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature 604, 697–707 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Cecchetti, G. et al. Cognitive, EEG, and MRI features of COVID-19 survivors: a 10-month study. J. Neurol. 269, 3400–3412 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen, J. F. et al. Enhancing myelin renewal reverses cognitive dysfunction in a murine model of Alzheimer’s disease. Neuron 109, 2292–2307 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 332–337 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang, F. et al. Myelin degeneration and diminished myelin renewal contribute to age-related deficits in memory. Nat. Neurosci. 23, 481–486 (2020).

    PubMed  PubMed Central  Google Scholar 

  76. Liu, J., Likhtik, E., Shereen, A. D., Dennis-Tiwary, T. A. & Casaccia, P. White matter plasticity in anxiety: disruption of neural network synchronization during threat-safety discrimination. Front. Cell Neurosci. 14, 587053 (2020).

    PubMed  PubMed Central  Google Scholar 

  77. Hsiao, E. Y. et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155, 1451–1463 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Needham, B. D. et al. A gut-derived metabolite alters brain activity and anxiety behaviour in mice. Nature 602, 647–653 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Knowles, J. K. et al. Maladaptive myelination promotes generalized epilepsy progression. Nat. Neurosci. 25, 596–606 (2022). This study demonstrated that activity-regulated myelination within the seizure network in rodent models of generalized epilepsy promotes synchrony between nodes in the seizure network and contributes to the progressive increase in seizure burden that occurs in untreated epilepsy, illustrating the concept of maladaptive myelination.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Sharma, P. et al. Differences in white matter structure between seizure prone (FAST) and seizure resistant (SLOW) rat strains. Neurobiol. Dis. 104, 33–40 (2017).

    PubMed  Google Scholar 

  81. Alam, M. M. et al. Deficiency of microglial autophagy increases the density of oligodendrocytes and susceptibility to severe forms of seizures. eNeuro 8, ENEURO.0183-20.2021 (2021).

    PubMed  PubMed Central  Google Scholar 

  82. Goldsberry, G., Mitra, D., MacDonald, D. & Patay, Z. Accelerated myelination with motor system involvement in a neonate with immediate postnatal onset of seizures and hemimegalencephaly. Epilepsy Behav. 22, 391–394 (2011).

    PubMed  Google Scholar 

  83. Duprez, T. et al. Focal seizure-induced premature myelination: speculation from serial MRI. Neuroradiology 40, 580–582 (1998).

    CAS  PubMed  Google Scholar 

  84. Sandoval Karamian, A. G., Wusthoff, C. J., Boothroyd, D., Yeom, K. W. & Knowles, J. K. Neonatal genetic epilepsies display convergent white matter microstructural abnormalities. Epilepsia 61, e192–e197 (2020).

    CAS  PubMed  Google Scholar 

  85. Bonilha, L. et al. Structural white matter abnormalities in patients with idiopathic dystonia. Mov. Disord. 22, 1110–1116 (2007).

    PubMed  Google Scholar 

  86. Kim, J. H., Kim, D. W., Kim, J. B., Suh, S. I. & Koh, S. B. Thalamic involvement in paroxysmal kinesigenic dyskinesia: a combined structural and diffusion tensor MRI analysis. Hum. Brain Mapp. 36, 1429–1441 (2015).

    PubMed  Google Scholar 

  87. Atkinson-Clement, C. et al. Structural and functional abnormalities within sensori-motor and limbic networks underpin intermittent explosive symptoms in Tourette disorder. J. Psychiatr. Res. 125, 1–6 (2020).

    PubMed  Google Scholar 

  88. Bacmeister, C. M. et al. Motor learning promotes remyelination via new and surviving oligodendrocytes. Nat. Neurosci. 23, 819–831 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Gautier, H. O. et al. Neuronal activity regulates remyelination via glutamate signalling to oligodendrocyte progenitors. Nat. Commun. 6, 8518 (2015).

    CAS  PubMed  Google Scholar 

  90. Ortiz, F. C. et al. Neuronal activity in vivo enhances functional myelin repair. JCI Insight 4, e123434 (2019).

    PubMed Central  Google Scholar 

  91. Li, C. et al. A functional role of NMDA receptor in regulating the differentiation of oligodendrocyte precursor cells and remyelination. Glia 61, 732–749 (2013).

    PubMed  Google Scholar 

  92. Azoulay, D., Vachapova, V., Shihman, B., Miler, A. & Karni, A. Lower brain-derived neurotrophic factor in serum of relapsing remitting MS: reversal by glatiramer acetate. J. Neuroimmunol. 167, 215–218 (2005).

    CAS  PubMed  Google Scholar 

  93. Frota, E. R. et al. Increased plasma levels of brain derived neurotrophic factor (BDNF) after multiple sclerosis relapse. Neurosci. Lett. 460, 130–132 (2009).

    CAS  PubMed  Google Scholar 

  94. Naegelin, Y. et al. Levels of brain-derived neurotrophic factor in patients with multiple sclerosis. Ann. Clin. Transl. Neurol. 7, 2251–2261 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Tsiperson, V. et al. Brain-derived neurotrophic factor deficiency restricts proliferation of oligodendrocyte progenitors following cuprizone-induced demyelination. ASN Neuro 7, 1759091414566878 (2015).

    PubMed  PubMed Central  Google Scholar 

  96. Huang, Y. et al. Tropomyosin receptor kinase B expressed in oligodendrocyte lineage cells functions to promote myelin following a demyelinating lesion. ASN Neuro 12, 1759091420957464 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Makar, T. K. et al. Brain-derived neurotrophic factor gene delivery in an animal model of multiple sclerosis using bone marrow stem cells as a vehicle. J. Neuroimmunol. 210, 40–51 (2009).

    CAS  PubMed  Google Scholar 

  98. Mei, F. et al. Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis. Nat. Med. 20, 954–960 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Liu, J. et al. Clemastine enhances myelination in the prefrontal cortex and rescues behavioral changes in socially isolated mice. J. Neurosci. 36, 957–962 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Marin-Husstege, M., Muggironi, M., Liu, A. & Casaccia-Bonnefil, P. Histone deacetylase activity is necessary for oligodendrocyte lineage progression. J. Neurosci. 22, 10333–10345 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Citraro, R. et al. Effects of histone deacetylase inhibitors on the development of epilepsy and psychiatric comorbidity in WAG/Rij rats. Mol. Neurobiol. 57, 408–421 (2020).

    CAS  PubMed  Google Scholar 

  102. Ceolin, L. et al. A novel anti-epileptic agent, perampanel, selectively inhibits AMPA receptor-mediated synaptic transmission in the hippocampus. Neurochem. Int. 61, 517–522 (2012).

    CAS  PubMed  Google Scholar 

  103. Cullen, C. L. et al. Low-intensity transcranial magnetic stimulation promotes the survival and maturation of newborn oligodendrocytes in the adult mouse brain. Glia 67, 1462–1477 (2019).

    PubMed  PubMed Central  Google Scholar 

  104. Cullen, C. L. et al. Periaxonal and nodal plasticities modulate action potential conduction in the adult mouse brain. Cell Rep. 34, 108641 (2021).

    CAS  PubMed  Google Scholar 

  105. Gross, D. W., Concha, L. & Beaulieu, C. Extratemporal white matter abnormalities in mesial temporal lobe epilepsy demonstrated with diffusion tensor imaging. Epilepsia 47, 1360–1363 (2006).

    PubMed  Google Scholar 

  106. Rodriguez-Cruces, R. & Concha, L. White matter in temporal lobe epilepsy: clinico-pathological correlates of water diffusion abnormalities. Quant. Imaging Med. Surg. 5, 264–278 (2015).

    PubMed  PubMed Central  Google Scholar 

  107. Luo, Y. et al. Alterations in hippocampal myelin and oligodendrocyte precursor cells during epileptogenesis. Brain Res. 1627, 154–164 (2015).

    CAS  PubMed  Google Scholar 

  108. Vezzani, A., Balosso, S. & Ravizza, T. Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat. Rev. Neurol. 15, 459–472 (2019).

    CAS  PubMed  Google Scholar 

  109. Larson, V. A. et al. Oligodendrocytes control potassium accumulation in white matter and seizure susceptibility. Elife 7, e34829 (2018).

    PubMed  PubMed Central  Google Scholar 

  110. Nagy, B., Hovhannisyan, A., Barzan, R., Chen, T. J. & Kukley, M. Different patterns of neuronal activity trigger distinct responses of oligodendrocyte precursor cells in the corpus callosum. PLoS Biol. 15, e2001993 (2017).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.K.K. and M.M. researched the literature for the article, contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission. All authors wrote the article.

Corresponding authors

Correspondence to Juliet K. Knowles or Michelle Monje.

Ethics declarations

Competing interests

M.M. holds equity in MapLight Therapeutics and Syncopation Life Sciences. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks B. Emery and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Fractional anisotropy

A measure that reflects the relative constraint (anisotropy) of water diffusion in specific directions or eigenvectors; in brain tissue, it is thought to correlate with myelin integrity as well as myelin-independent axonal factors, such as axon size, number and orientation.

g-ratio

The ratio of the axon diameter to the total diameter of the axon and its myelin sheath; a lower g-ratio indicates a thicker myelin sheath relative to the axon diameter. The g-ratio is a major determinant of conduction velocity, in addition to axon diameter.

Mean diffusivity

A measure that indicates the overall degree of water diffusion, independent of the direction of diffusion; it is thought to be inversely proportional to myelin integrity.

Ocular dominance column

A stripe-like group of neurons across multiple cortical layers in the primary visual cortex that responds preferentially to thalamic input originating from one eye or the other.

Optomotor responses

A reflexive motor response in zebrafish that stabilizes body position after perceived motion and that can be induced by videos of moving gratings.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knowles, J.K., Batra, A., Xu, H. et al. Adaptive and maladaptive myelination in health and disease. Nat Rev Neurol 18, 735–746 (2022). https://doi.org/10.1038/s41582-022-00737-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-022-00737-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing