Scottish Natural Heritage Commissioned Report No. 503

Infaunal analysis of grab samples collected from the North Minch area, 2011

COMMISSIONED REPORT

Commissioned Report No. 503

Infaunal analysis of grab samples collected from the North Minch area, 2011

For further information on this report please contact:

Laura Clark Scottish Natural Heritage Great Glen House INVERNESS IV3 8NW Telephone: 01463 725237 E-mail: Laura.Clark@snh.gov.uk

This report should be quoted as:

Axelsson, M., Allen, C. & Dewey, S. (2012). Infaunal analysis of grab samples collected from the North Minch area, 2011. *Scottish Natural Heritage Commissioned Report No. 503.*

This report, or any part of it, should not be reproduced without the permission of Scottish Natural Heritage. This permission will not be withheld unreasonably. The views expressed by the author(s) of this report should not be taken as the views and policies of Scottish Natural Heritage.

© Scottish Natural Heritage 2012

COMMISSIONED REPORT 생실해 Summary

Infaunal analysis of grab samples collected from the North Minch area, 2011

Commissioned Report No. 503 (Project No. 13445). Contractor: Seastar Survey Ltd. Year of publication: 2012

Background

During 2011 a survey was undertaken by Scottish Natural Heritage (SNH) in the North Minch area to gather qualitative biological data to help inform our understanding of the importance of large scale features (LSFs) within Scottish waters (specifically Glacially Eroded Deeps and also Banks and Mounds). LSFs represent areas of functional significance for the overall health and diversity of Scottish seas. They are intended to complement Marine Protected Area (MPA) search feature habitats and species which, whilst not necessarily containing these MPA search features, have a benefit by supporting wider ecosystem function. Several survey methods were employed to gather data, including using grabs to collect sediment samples.

Seastar Survey Ltd. was contracted by SNH to undertake the infaunal analysis of the grab samples taken during the survey of the North Minch area, including identifying all the faunal components within the grab samples, sediment particle size analysis (PSA), and assigning a biotope to each sample. This report presents the results from these analyses, and a brief interpretation of the data.

Main findings

- A total of 17 Day grab samples were collected during The Minch 2011 survey.
- The sediment at the majority of the locations were classified as 'sand' with >70 % sand fraction. Only one location (MG13) was classified as 'sandy gravel'.
- The macrofauna was dominated by Annelida (66.8 %) and Mollusca (13.1 %).
- The Cirratulid *Chaetozone gibber* and the Oweniid *Owenia fusiformis* were the most abundant species. Other relatively abundant taxa include *Abra alba, Lumbrineris gracilis, Notomastus latericeus* and *Aonides paucibranchiata.*
- Species diversity was low to medium but equitability was found to be high overall.
- A total of four biotope complexes were identified: SS.SSa.OSa, SS.SMx.OMx, SS.SCS.OCS and SS.SMu.OMu with SS.SSa,OSa.Ofus.Afil also present which is of particular note as this biotope is an offshore PMF and MPA search feature.
- A lancelet (*Branchiostoma lanceolatum*), infrequently recorded in Scottish waters, and an individual within the Pilargidae family (species unknown) were recorded in the study. The latter may be a new species but identification remains unknown.

For further information on this project contact: Laura Clark, Scottish Natural Heritage, Great Glen House, Inverness, IV3 8NW Email: Laura.Clark@snh.gov.uk Tel: 01463 725237 For further information on the SNH Research and Technical Support Programme contact: DSU (Policy and Advice Directorate), Scottish Natural Heritage, Great Glen House, Inverness, IV3 8NW. Tel: 01463 725000 or research@snh.gov.uk

TABLE OF CONTENTS

SUMMARY

1	INTRO	INTRODUCTION										
	1.1	Background and objectives	1									
2	METH	IODS	1									
	2.1	Infaunal sample collection	1									
	2.2	Sediment sample analysis	5									
	2.2.1	Sediment Particle Size Analysis (PSA)	5									
	2.2.2	Macrofaunal processing and analysis	5									
	2.2.3	Assignment of biotopes	6									
3	RESU	LTS	6									
	3.1	Particle size analysis	6									
	3.2	Macrofaunal analysis	11									
	3.2.1	Macrofaunal abundance	11									
	3.2.2	Diversity	13									
	3.2.3	Macrofaunal composition	13									
	3.2.4	Limitations	16									
	3.3	Designation of biotopes	16									
	3.4	Comparisons between macrofaunal trends and the abiotic data	20									
4	DISCI	JSSION	22									
	4.1	Summary of the main habitats	22									
	4.2	Limitations	23									
5	REFE	RENCES	24									

APPENDICES

Appendix 01.	SNH field sample log – The Minch infaunal survey 2011	26
Appendix 02.	Macrofaunal species matrix - The Minch infaunal survey 2011	27
Appendix 03.	Sediment Particle Size Analysis - statistics	30
Appendix 04.	MDS analysis results - abiotic bubble analysis	47

This work was funded by Marine Scotland as part of the Scottish MPA project.

Copyright

Ordnance Survey maps are reproduced by permission of Ordnance Survey on behalf of HMSO © Crown copyright and database right (2012). All rights reserved. Ordnance Survey Licence number 100017908.

1 INTRODUCTION

1.1 Background and objectives

During 2011 a survey was undertaken by Scottish Natural Heritage (SNH) in the North Minch area to gather biological data to help inform our understanding of the importance of large scale features (LSFs) within Scottish waters (specifically Glacially Eroded Deeps and also Banks and Mounds). LSFs represent areas of functional significance for the overall health and diversity of Scottish seas. These are intended to complement Marine Protected Area (MPA) search feature habitats and species which, whilst not necessarily containing these MPA search features, have a benefit by supporting wider ecosystem function. Specific examples of these features may contribute to the MPA network through supporting features at a range of trophic levels; for example, areas of high primary productivity through to possible aggregations of mobile top predators.

A combination of underwater video, grabs and fish traps were used to collect information on the benthos that utilise these features ('Deeps' and 'Banks and Mounds'), whilst also allowing rough comparisons to be made between the communities (epibiota and infauna) found on and off the features. The 2011 survey area encompassed a region from the North Minch, including the East Shiant Bank and Shiant Islands, south to the Little Minch (Figure 2.1). Details of the video analysis can be seen in SNH Commissioned Report No.507 (Moore, 2012).

Seastar Survey Ltd. was contracted by SNH to undertake the infaunal analysis of the grab samples taken during the survey of the North Minch area, including identifying all the faunal components within the grab samples, sediment particle size analysis (PSA), and assigning a biotope to each sample. This report presents the results from these analyses, and a brief interpretation of the data.

2 METHODS

2.1 Infaunal sample collection

The collection of infaunal samples was carried out by SNH in collaboration with Marine Scotland Science and Heriot Watt University using a 0.1 m² Day grab deployed from the *RV Alba na Mara.* A total of 17 grab stations were sampled between 23^{rd} October – 2^{nd} November 2011 in the North Minch area (Table 2.1 and Figures 2.1 to 2.3 with more details in Appendix 01). Single grabs were collected at each station to gain a broad understanding of the biotopes present on the seabed. The samples (see examples in Figure 2.4) each had a 5 cm core subsample retrieved for particle size analysis (PSA), before being sieved by hand through a 1 mm mesh size. Any material retained on the sieve was transferred to a labelled container before being fixed with a buffered 4% formaldehyde solution.

Figure 2.1. Locations of grab sampling stations for The Minch infaunal survey 2011.

Figure 2.2. Locations of grab sampling stations in the North Minch.

Figure 2.3. Locations of grab sampling stations in The Little Minch.

Tabe 2.1. Locations of grab sampling stations for The Minch infaunal survey 2011.

Dete	Station	Location	Time	Posi	Depth	
Date	Station	Location	(GMT)	Lattitude	Longitude	(m)
23/10/2011	MG41	Shiant Bank	10:04	57.9221	-5.9745	110
25/10/2011	MG04	Southern Little Minch	11:41	57.5709	-6.9239	60
25/10/2011	MG37	Southern Little Minch	14:24	57.5586	-6.9659	90
25/10/2011	MG11	Northern Little Minch	18:00	57.6608	-6.7235	152
26/10/2011	MG15	Shiant Bank	10:11	57.9288	-6.1678	54
26/10/2011	MG23	Shiant Bank	11:04	57.9553	-6.1666	60
26/10/2011	MG42	Shiant Bank	16:34	57.8962	-5.9323	153
01/11/2011	MG13	Shiant Islands	08:59	57.9931	-6.3182	152
01/11/2011	MG24	Shiant Islands	09:17	57.9838	-6.3023	200
01/11/2011	MG17	Shiant Bank	10:05	58.0199	-6.1527	64
01/11/2011	MG20	Shiant Bank	10:30	58.0412	-6.0849	75
01/11/2011	MG21	Shiant Bank	11:00	58.0840	-6.0996	98
02/11/2011	MGR01	Shiant Bank	09:55	58.0576	-5.9500	77
02/11/2011	MGR03	Shiant Bank	10:10	58.0762	-5.9752	81
02/11/2011	MGR02	Shiant Bank	10:59	58.0267	-5.8984	94
02/11/2011	MG19	Shiant Bank	11:28	58.0092	-5.9004	85
02/11/2011	MGR09	Shiant Bank	12:06	58.0744	-5.8384	105

Figure 2.4. Examples of sediment grab samples collected by SNH during The Minch infaunal sampling survey 2011 (image A – station MG19; image B – MG24; image C – MG04 with PSA sub-sampling; and D – MG37).

2.2 Sediment sample analysis

2.2.1 Sediment Particle Size Analysis (PSA)

Particle size analysis (PSA) was undertaken at Seastar Survey's laboratory, using a combination of wet and dry sieving techniques at 1 phi intervals as per standard protocols. The PSA followed the sediment grades used by the Marine Nature Conservation Review (MNCR) as described below:

Pebble – medium	(>8 mm)
Pebble – small	(4-8 mm)
Granule	(2-4 mm)
Sand, very coarse	(1000-2000 µm)
Sand, coarse	(500-1000 µm)
Sand, medium	(250-500 µm)
Sand, fine	(125-250 µm)
Sand, very fine	(63-125 µm)
Silt and clay (mud)	(<63 µm)

For each sediment sample, the dry weight of the whole sediment sample was determined and any muddy samples were disaggregated using a suitable method (e.g. sodium hexametaphosphate). The sample was wet sieved on a 63 µm mesh, then dried (at 100 °C) and re-weighed to establish the weight percentage of the <63 µm fraction. The remainder of the sample was dry sieved with a nest of sieves in the range of -4 to 4 phi of mesh sizes to yield weight percentage data for particle size fractions at half phi intervals, with 63 µm being the smallest sieve size and 16 mm the maximum. The sub 63 µm fraction was then measured using a Mastersizer 2000 laser granulometer, which can analyse particles in the size range of 0.04 µm – 2000 µm. Sediment statistics were calculated using Gradistat v.4.0 (Blott and Pye, 2001).

The phi () grain size measure is based on the Wentworth sediment class divisions but using log_2 rather than log_{10} (see Leeder, 1982), thus = $-log_2$ mm. The Wentworth grain size (sieve mesh size) series of 8 mm, 4 mm, 2 mm, 1 mm, 0.5 mm, 0.25 mm and 0.125 mm are therefore calculated as 2^3 , 2^2 , 2^1 , 2^0 , 2^{-1} , 2^{-2} and 2^{-3} ; giving units of -3, -2, -1, 0, 1, 2 and 3.

2.2.2 Macrofaunal processing and analysis

The processing of the macrofaunal sediment samples took place at Seastar Survey's laboratory in Southampton. The sediment samples were gently re-sieved on 1 mm sieves and sorted (using trays and low-magnification microscopes). The fauna were subsequently identified to the lowest practical taxonomic level with reference to WoRMS (Appletans *et al.*, 2011) for species nomenclature, and assigned an MCS biocode according to Howson and Picton (1997) where applicable. A full list of taxa encountered and abundances per sample were recorded on a standard species/ sample matrix (Appendix 02). A reference collection was created and a Quality Control exercise was carried out by Artoo Marine Ecological Consultants to check the identification results. The invertebrate specimens collected were separated by species and station, preserved in alcohol and stored in glass sample vials with polyethylene closures to facilitate their incorporation into the collections of The National Museums of Scotland.

The macrofaunal sediment data are given in number of individuals/0.1 m². The data analyses comprised both univariate and multivariate analyses all of which were calculated using Primer (Plymouth Routines in Multivariate Ecological Research) v 6 (Clarke and Warwick, 2001). The univariate analysis included the total number of individuals (N), total number of species (S), species diversity where the Shannon-Wiener (H'), Pielou's (J), Margalef's (d) diversity and Simpson's Dominance indices (see e.g. Gage and Tyler, 1991; Fowler and Cohen, 1992; Clarke and Warwick, 2001) were used with the natural log (log_e) being the chosen parameter in the case of the Shannon-Wiener diversity index.

The multivariate analysis was carried out using cluster analysis and ordination (non-metric multidimensional scaling, MDS). These data were then transformed to square root to down-weigh the importance of common types of macrofauna in relation to rarer types. The transformed data were then analysed using the Bray-Curtis similarity coefficient (using Primer v.6) followed by a cluster analysis where the sites were group averaged and the resultant dendrogram plotted. Non-metric multi-dimensional scaling (MDS) was then carried out to further assess the presence of any similarities between sites (Clarke and Warwick, 2001). The SIMPER routine in PRIMER was subsequently used to assess the difference in characteristic species/ taxa in the sample clusters. Spearman's rank correlation coefficient (see e.g. Fowler and Cohen, 1992) was then used to assess any correlations with the particle size analysis variables and depth. The BIOENV routine in PRIMER was used to carry out this task on untransformed but normalised abiotic data.

2.2.3 Assignment of biotopes

A biotope complex was assigned to each grab station according to the Marine Biotope Classification for Britain and Ireland (Connor *et al.*, 2004). The sediment type derived from the PSA results and the characteristic species identified from each sample were used to categorize the biotope for each sample. Where insufficient fauna were collected to adequately categorise a biotope, then the sediment type from the PSA analysis was primarily used. It should also be noted that biotopes were attributed based on a single sample collected at each station. Multiple samples would be required to increase confidence of the final assigning of the biotopes.

3 RESULTS

3.1 Particle size analysis

Table 3.1 summarises the PSA results (see further detail (full statistical analyses) in Appendix 03). All the samples had a sand fraction >50%, ranging from ~60 – 91% of the total sediment weight. MG13, located in the North Minch, had the highest component of gravel (30%) in the sediment, and was the only sample to be classified as sandy gravel. The other samples had gravel fractions ranging from 0 – 10% of the sediment weight. Mud fractions ranged from 6 – 40% of the sediment, although only exceeded 17% in two samples (MGR09 and MG21). Seven samples were classified as muddy sand with a component of gravel (MGR09, MG11, MG19, MG24, MG37, MG41 and MG42), and one sample was classified as purely muddy sand (MG21). The other eight samples were all classified as sand with a component of gravel (MGR01, MGR02, MGR03, MG04, MG15, MG17, MG20 and MG23). All of the sediment samples were either very poorly or poorly sorted. Muddy sand (with or without a gravel component) was typically found at depths greater than ~90 m. Gravelly and slightly gravelly sand was found at depths <95 m. The sediment samples have been displayed on a modified Folk triangle (Folk, 1954) in Figure 3.1.

Table 3.1. Summary of the Particle Size Analysis (sediment weight by percentage) from grab samples collected by SEPA in The Minch Area (mud, sand and gravel refer to all size fractions within each category).

Sample	Gravel (%)	Sand (%)	Mud (%)	Depth	Classification	Sorting Index	
(We		entworth sc	ale)	(11)	(Fork system adapted by BGS)		
MG04	19.74	74.34	6.43	60	Gravelly Sand	Poorly Sorted	
MG11	4.30	85.80	10.38	152	Slightly Gravelly Muddy Sand	Poorly Sorted	
MG13	30.62	63.65	6.23	152	Sandy Gravel	Very Poorly Sorted	
MG15	9.65	83.16	7.05	54	Gravelly Sand	Poorly Sorted	
MG17	6.61	85.76	7.79	64	Gravelly Sand	Poorly Sorted	
MG19	3.08	84.09	12.95	85	Slightly Gravelly Muddy Sand	Poorly Sorted	
MG20	2.76	90.76	6.74	75	Slightly Gravelly Sand	Poorly Sorted	
MG21	0.05	59.46	40.39	98	Muddy Sand	Very Poorly Sorted	
MG23	5.07	88.01	7.49	60	Gravelly Sand	Poorly Sorted	
MG24	9.70	79.72	11.00	200	Gravelly Muddy Sand	Very Poorly Sorted	
MG37	8.75	82.14	9.33	90	Gravelly Muddy Sand	Poorly Sorted	
MG41	0.30	85.49	14.46	110	Muddy Sand	Poorly Sorted	
MG42	0.49	82.67	16.50	153	Muddy Sand	Poorly Sorted	
MGR01	2.86	91.34	5.27	77	Slightly Gravelly Sand	Poorly Sorted	
MGR02	4.58	86.37	8.12	94	Slightly Gravelly Sand	Poorly Sorted	
MGR03	4.29	88.78	6.08	81	Slightly Gravelly Sand	Poorly Sorted	
MGR09	0.07	66.90	32.48	105	Muddy Sand	Poorly Sorted	

Figure 3.1. Modified Folk triangle showing classification of the North Minch sediment samples.

Table 3.3 shows the total percentage weight for each sample for every half phi interval. The sub 63 μ m fraction was further examined by laser granulometry, and the results are summarised in Table 3.2, with the clay and silt values expressed as percentages of total weight of the whole sediment samples. All samples had ~1 % or less clay, with silt representing the majority of the sub 63 μ m fraction.

Table 3	.2. S	Summary	∕ table	of th	ə sub	63	μm	fraction	from	The	Minch	sedimen	t sam	oles	(NB.
values f	or cl	ay and s	silt are	expre	ssed	as a	a pe	rcentage	of the	e tota	al weigl	ht of the	whole	sedir	ment
sample)															

Station	Clay (9/)	Silt (%)						
Station	Ciay (76)	Fine	Medium	Coarse				
MG04	0.16	1.88	2.82	1.57				
MG11	0.28	3.09	4.49	2.52				
MG13	0.17	1.68	2.86	1.52				
MG15	0.12	1.95	3.53	1.46				
MG17	0.12	2.19	3.77	1.70				
MG19	0.35	3.85	5.95	2.80				
MG20	0.27	2.16	2.97	1.35				
MG21	1.02	8.69	17.38	13.29				
MG23	0.00	1.97	3.55	1.97				
MG24	0.19	2.80	4.85	3.17				
MG37	0.17	2.42	3.98	2.77				
MG41	0.14	1.15	1.72	1.00				
MG42	0.17	1.32	2.31	1.32				
MGR01	0.15	1.50	2.41	1.20				
MGR02	0.21	2.50	3.75	1.67				
MGR03	0.23	1.80	2.70	1.35				
MGR09	0.64	7.64	13.38	10.83				

Figure 3.3 shows the cumulative percentage sediment weight for each sample for every half phi interval. In general, the cumulative frequency curves are relatively similar for all the samples. MGR01, MGR02, MGR03, and MG11 are particularly similar to each other, as are MG41 and MG42. The higher percentages of gravel seen in MG13 and MG04 can be seen, as can the higher mud fractions in MGR09 and MG21. Apart from MGR09 and MG21, all the samples were composed of ~80% gravel and sand.

Table 3.3. Total percentage sediment weight of grab samples from The Minch area (grey indicates 'gravel' fraction, light yellow 'sand' fraction, and brown the 'mud' fraction). NB. Processing differential results in the total percentage for each location to be excess of/less than 100%.

	Sieve Size (mm)															
Location	16	8	4	2.8	2	1.4	1	0.71	0.5	0.355	0.25	0.18	0.125	0.09	0.063	< 0.063
MG04	0.00	6.72	6.40	2.52	4.10	8.48	12.01	14.88	16.49	11.22	4.98	2.24	1.73	1.32	0.98	6.43
MG11	0.00	0.45	2.07	0.78	1.01	1.94	3.52	5.47	9.16	13.68	19.25	18.55	9.04	3.21	1.98	10.38
MG13	0.00	14.10	8.21	4.12	4.18	7.13	8.52	10.04	12.77	11.68	6.14	3.25	1.98	1.15	0.99	6.23
MG15	0.00	0.00	2.31	3.10	4.25	9.88	12.75	13.54	14.86	12.45	8.76	6.89	2.21	1.12	0.69	7.05
MG17	0.00	0.00	0.44	2.00	4.16	10.29	17.56	19.43	16.42	9.13	5.11	3.49	1.72	1.50	1.12	7.79
MG19	0.00	1.14	0.73	0.73	0.47	1.00	1.73	2.55	4.20	7.30	13.19	25.65	20.17	5.73	2.57	12.95
MG20	0.00	0.00	0.96	1.07	0.73	1.38	2.42	4.58	7.71	11.38	16.74	22.96	17.08	4.87	1.64	6.74
MG21	0.00	0.00	0.00	0.00	0.05	0.54	1.72	1.92	3.10	5.26	8.30	12.97	10.02	8.65	6.98	40.39
MG23	0.00	0.25	1.42	0.97	2.42	3.02	4.79	5.94	8.59	12.23	17.08	18.98	10.26	5.09	2.02	7.49
MG24	0.00	2.02	1.98	2.80	2.90	5.71	8.03	9.07	11.47	13.67	14.27	9.17	4.47	2.24	1.61	11.00
MG37	0.00	0.00	1.28	2.88	4.59	8.56	12.11	14.79	15.29	10.80	7.09	5.47	3.78	2.66	1.60	9.33
MG41	0.00	0.00	0.00	0.13	0.17	0.27	0.80	0.97	1.32	2.43	5.89	17.35	36.64	15.39	4.43	14.46
MG42	0.00	0.49	0.00	0.00	0.00	0.17	0.49	0.73	1.08	2.03	5.15	17.26	37.58	12.70	5.47	16.50
MGR01	0.00	0.00	0.63	0.99	1.24	2.91	4.56	6.60	10.90	15.48	20.70	21.18	6.92	1.36	0.73	5.27
MGR02	0.00	0.48	2.09	1.49	0.52	1.77	2.21	3.82	6.67	10.53	15.51	23.27	15.92	4.54	2.13	8.12
MGR03	0.00	1.19	1.64	0.60	0.86	0.86	1.66	3.14	6.22	10.29	17.73	28.37	15.73	3.52	1.26	6.08
MGR09	0.00	0.00	0.00	0.07	0.00	0.12	0.49	0.81	1.37	2.85	6.38	14.70	16.78	14.72	8.68	32.48

Figure 3.2. Cumulative percentage sediment weight for grab samples from The Minch survey area.

3.2 Macrofaunal analysis

The macrofaunal analysis revealed a total of 1375 individuals and 197 taxa (see Appendix 02) in The Minch Day grab samples (including meiofauna, epi-fauna and one Cephalochordate individual). Overall the macrofauna was dominated by Annelida (66.8 %) followed by Mollusca (13.1 %) and Crustacea (6.7 %), the latter excluding the Cirripedia. The Echinoderms contributed 4.4 %, Nematoda 4.4 % and Nemertea 1.7 % with the remaining groups (Ascidiacea, Sipuncula, Cirripedia, Phoronida, Anthozoa, Pycnogonida, Cephalocordata and Turbellaria) contributing the final 2.8 %. The meiofauna, epi-fauna and the Cephalochordate were all excluded from the univariate and multivariate analyses.

Of particular note is the presence of *Branchiostoma lanceolatum*, a member of the lancelets, which comprise some 22 species of fish-like marine Cephalochordates (animals without a spinal column). This taxon has a global distribution but in the UK it is generally described as having a south-western distribution (Appeltans *et al.*, 2011; MarLIN, 2012a). There are records from Anglesey, the south-east coasts of Ireland and two sightings off the coasts of East Yorkshire and Northern Ireland but with this survey it has now also been recorded as far north as Scotland (see also The Scottish Government, 2011).

In addition, an individual from the Pilargidae family was present (genus and species unknown). Little is known about this group but the family has been recorded in the United Kingdom, Africa and Asia (Appeltans *et al.*, 2011.). However, this taxon could not be identified and appears not to have previously been recorded in the United Kingdom (Bamber, pers. comm.).

3.2.1 Macrofaunal abundance

The abundance of the identified macrofauna (excluding meiofauna, epifauna and the Cephalochordata) are given in Appendix 02 with a summary of the most abundant taxa overall given in Table 3.4. As with the overall data, Annelida is the most abundant group overall with the Cirratulid *Chaetozone gibber* and the Oweniid *Owenia fusiformis* being most abundant. Other relatively abundant taxa include *Abra prismatica, Lumbrineris gracilis* and *Notomastus latericeus*.

- *Chaetozone gibber* is an opportunistic species typically found in muddy sediments but there are few descriptions of this taxon possibly as a result of past taxonomic difficulties. *C. gibber* has been shown to be tolerant to hydrocarbons and even favour conditions where these compounds are found (Hiscock *et al.*, 2005).
- Owenia fusiformis is found buried in sand or muddy sand. It is a thin, cylindrical, segmented worm, up to 10 cm long, that lives in a tough flexible tube buried in the sand with its anterior end just protruding from the surface.
- Abra prismatica is an inhabitant of a range of substrata including mixed and muddy sands and may be found from the low water-mark offshore to a depth of about 60 m (see Hayward and Ryland, 1990; NHMW, 2012). Abra spp. has been shown to be intolerant to physical disturbance and deoxygenation (Hiscock *et al.*, 2005).
- Lumbrineris gracilis belongs to the Lumbrineris are a free-living burrowing genus that live in mucus-lined burrows in gravel, muddy sand and shelly substrata (Hayward and

Ryland, 1990). *L. gracilis* has been shown to be intolerant to hydrocarbons, synthetic chemicals and substratum loss (Hiscock *et al.*, 2005).

• Notomastus latericeus is a polychaete worm belonging to the Family Capitellidae. *N. latericeus* lives in convoluted burrows in clean or muddy sand (Hayward and Ryland, 1990). It has been shown to be tolerant to hydrocarbons and even favour conditions where compounds are found but this taxon is intolerant to substratum loss (Hiscock *et al.*, 2005).

MCS A	MCS N	Taxon	Species	Abundance
Р	833	Chaetozone	gibber	114
Р	1098	Owenia	fusiformis	80
W	2062	Abra	prismatica	64
Р	1099	TEREBELLIDA	spp.	35
Р	579	Lumbrineris	gracilis	33
Р	921	Notomastus	latericeus	33
Р	723	Aonides	paucibranchiata	27
Р	822	Cirratulidae	sp.	27
Р	906	Capitella	sp.	25
W	1571	Nucula	sulcata	25
G	1	NEMERTEA	spp.	24
ZB	-	Ophiuroidea	sp.	23
Р	255	Glycera	sp.	21
Р	569	Lumbrineridae	sp.	21
S	413	Atylus	vedlomensis	19
W	1627	Yoldiella	philippiana	19
Р	260	Glycera	lapidum	17
Р	271	Goniada	maculata	17
Р	747	Minuspio	cirrifera	17
Р	823	Aphelochaeta	sp.	17
Р	878	Diplocirrus	glaucus	17
Р	824	Aphelochaeta	marioni	16
Р	834	Chaetozone	setosa	15
Р	873	Flabelligeridae	sp.	15
Р	1090	Oweniidae	sp.	15
Р	720	Spionidae	sp.	14
Р	568	Nematonereis	unicornis	13
Р	690	Cirrophorus	branchiatus	13
Р	-	Euclymene	sp. A	13
ZB	154	Amphiura	filiformis	13
Р	-	Glycera	unicornis	11
Р	502	Nephtys	kersivalensis	11
Р	584	Scoletoma	impatiens	11
Р	796	Spiophanes	kroyeri	11
Р	425	Sphaerosyllis	bulbosa	10
Р	783	Scolelepis	squamata	10
W	11	Falcidens	crossotus	10

Table 3.4. Abundance (ind./0.1 m^2) of the main macrofaunal taxa in The Minch 2011 survey.

3.2.2 Diversity

The results for the species diversity analyses are given in Table 3.5. The total number of individuals at each station range from 6 to 120 individuals per sample with the total number of taxa ranging from 4 to 57 taxa per sample indicating that there some differences between the samples, and potentially between the stations.

The species diversity (Shannon-Wiener diversity index) overall is low to medium with diversity being highest at station MG04 but relatively high values are also found at stations MG11, MG15, MG17, MG23 and MG37. The lowest species diversity value is found at station MG21 and it must be noted that the sample was found to have leaked on arrival at the laboratory.

The equitability (J) results suggest an equal distribution between species at most of the stations. Most values are close to 0.9 with the lowest equitability found at station MG01, indicating a relatively higher dominance by a smaller number of different species but even at 0.76 equitability has to be considered medium to high.

Table 3.5. Total number of individuals (N), number of species (S), Margalef's species ricl	ness
(d), Pielou's equitability index (J) and Shannon-Wiener diversity index (H') for all the samp	les in
the 2011 The Minch Day grab survey.	

Station	S	Ν	d	J'	H'(log₀)	1-Lambda
MGR01	34	94	7.26	0.76	2.68	0.87
MGR02	26	48	6.46	0.85	2.78	0.91
MGR03	25	49	6.17	0.87	2.81	0.92
MG04	57	120	11.70	0.93	3.75	0.98
MGR09	8	17	2.47	0.93	1.94	0.89
MG11	47	95	10.10	0.91	3.52	0.97
MG13	32	51	7.88	0.94	3.26	0.97
MG15	51	111	10.62	0.92	3.63	0.97
MG17	45	90	9.78	0.95	3.61	0.98
MG19	33	85	7.20	0.83	2.91	0.92
MG20	38	83	8.37	0.89	3.25	0.95
MG21	4	6	1.67	0.96	1.33	0.87
MG23	40	69	9.21	0.93	3.42	0.97
MG24	36	112	7.42	0.89	3.19	0.95
MG37	49	107	10.27	0.89	3.45	0.96
MG41	40	110	8.30	0.89	3.30	0.95
MG42	20	47	4.93	0.95	2.84	0.95

3.2.3 Macrofaunal composition

The results from the cluster and ordination analyses are given in Figures 3.3 and 3.4. These results exclude station MG21 as the bucket with the sample was found to have leaked on arrival at the laboratory. Considering the low numbers of taxa and species present this sample was considered unrepresentative of the actual community in this location and therefore excluded from detailed analysis.

The results from the cluster analysis suggest three main communities among all the Day grab samples from The Minch (Figure 3.3). These communities are also apparent in the ordination analysis but perhaps less certain (Figure 3.4). Station MGR09 appears to be a community different to all the other communities.

Figure 3.3. Cluster analysis of The Minch 2011 macrofaunal sample data (excluding MG21).

Figure 3.4. Ordination analysis of The Minch 2011 macrofaunal sample data (excluding MG21).

A SIMPER analysis was undertaken to assess any similarities between the different clusters (Table 3.6). The characteristic fauna in the three groups are different, suggesting the clusters are related to actual community and abiotic differences.

Cluster MCS code			Taxa/s	Contribution	
Olusici			Τάλά/δ	pecies .	(%)
	Р	833	Chaetozone	gibber	17.3
	Р	1098	Owenia	fusiformis	11.5
	W	2062	Abra	prismatica	6.9
	Р	906	Capitella	sp.	5.0
	Р	579	Lumbrineris	gracilis	4.4
	Р	502	Nephtys	kersivalensis	4.4
Α	Р	1090	Oweniidae	sp.	4.3
	Р	271	Goniada	maculata	4.2
	Р	822	Cirratulidae	sp.	3.4
	Р	1099	TEREBELLIDA	spp.	3.2
	Р	-	Euclymene	sp. A	2.5
	W	1627	Yoldiella	philippiana	2.0
	Р	107	Sthenelais	boa	1.9
	S	413	Atylus	vedlomensis	6.4
	G	1	NEMERTEA	spp.	6.0
	Р	723	Aonides	paucibranchiata	5.6
	Р	747	Minuspio	cirrifera	4.7
	Р	579	Lumbrineris	gracilis	4.7
	Р	1099	TEREBELLIDA	spp.	4.6
	Р	720	Spionidae	sp.	4.5
В	Р	568	Nematonereis	unicornis	4.4
	Р	690	Cirrophorus	branchiatus	4.1
	Р	718	Poecilochaetus	serpens	3.9
	Р	569	Lumbrineridae	sp.	3.9
	W	2104	Timoclea	ovata	3.7
	Р	255	Glycera	sp.	3.5
	P	921	Notomastus	latericeus	3.2
	P	425	Sphaerosyllis	bulbosa	2.9
	VV	2062	Abra	prismatica	12.6
	VV	1571	Nucula	sulcata	10.4
	P	834	Chaetozone	setosa	7.7
	P	569	Lumbrineridae	sp.	7.5
	Р	878	Diplocirrus	glaucus	4.5
	Р	824	Aphelochaeta	marioni	3.9
С	Р	584	Scoletoma	impatiens	3.7
	S	1409	Calocaris	macandreae	3.7
	Р	1099	TEREBELLIDA	spp.	3.4
	Р	-	Glycera	unicornis	3.3
	Р	833	Chaetozone	gibber	3.1
	W	1925	Astarte	sulcata	3.1
	Р	906	Capitella	sp.	2.9

Table 3.6. SIMPER analysis of The Minch 2011 macrofaunal samples.

3.2.4 Limitations

The macrofaunal identification was slightly hampered by the large number of damaged animals making this process challenging. In particular, the Terebellids and many of the polychaete taxa were difficult to identify to a low taxonomic level (see Appendix 02) but overall the results are believed to be representative for the samples taken.

3.3 Designation of biotopes

All the locations sampled during The Minch 2011 survey are from a depth greater than 60 m and therefore fall under offshore sediments. The dominant fauna and the sediment classification of the samples were used to define the most appropriate biotope for each site. The classification process was completed prior to any statistical analyses of the data. Table 3.7 and Figure 3.5 summarises the biotopes assigned to the sites sampled around the Minch and although there were several biotope complexes present, only one biotope (**SS.SSa.OSa.OfusAfil**) was an offshore Priority Marine Features and Marine Protected Area search feature.

Of note are the similarities between biotope classifications (biotope complex level) and the cluster analysis results above despite obvious differences in the positions of the sample locations.

Figure 3.5. Biotope complexes of samples collected during The Minch 2011 survey.

Station	Biotope	Depth (m)	Sediment description	Characterising fauna			
MGR01	SS.SSa.OSa.(Ofus.Afil)	77	(g) S	Chaetozone gibber, Owenia fusiformis			
MGR02	SS.SSa.OSa	94	(g) S	Chaetozone gibber			
MGR03	SS.SSa.OSa	81	(g) S	Chaetozone gibber			
MG04	SS.SMx.OMx.(PoVen)	60	gS	Diverse number of polychaetes, amphipods and bivalves. High numbers of nematodes.			
MGR09	SS.SSa.OSa	105	mS	*			
MG11	SS.SSa.OSa	152	(g) mS	Diverse fauna. Polychaetes present include <i>Chaetozone</i> gibber, <i>Owenia</i> fusiformis, <i>Pholoe</i> synophtalmica			
MG13	SS.SCS.OCS.(GlapThyAmy)	152	sG	Diverse polychaetes incl. <i>Glycera lapidum, Lumbrineris gracilis,</i> cirratulids			
MG15	SS.SMx.OMx	54	gS	Diverse polychaetes incl. <i>Laonice bahusiensis, Aonides paucibranchiata,</i> glycerids, <i>Notomastus</i>			
MG17	SS.SMx.OMx	64	gS	Diverse polychaetes incl. glycerids, <i>Aonides</i> <i>paucibranchiata</i>			
MG19	SS.SSa.OSa	85	(g) mS	Lumbrineris gracils, Chaetozone gibba, Owenia fusiformis, nematods			
MG20	SS.SSa.OSa.(MalEdef)	75	(g) S	<i>Chaetozone gibba, Abra prismatica,</i> terebellid and maldanid polychaetes			
MG21 MG23	SS.SSa.OSa SS.SSa.OSa.OfusAfil	98 60	mS gS	* <i>Amphiura</i> , owenidd polychaetes, <i>Chaetozone</i>			

Table 3.7. Summary of biotopes assigned to samples taken during The Minch survey 2011.

Station	Biotope	Depth (m)	Sediment description	Characterising fauna
MG24	SS.SCS.OCS or SS.SMx.OMx	200	gmS	Nuculoida bivalves, <i>Abra prismatica</i> , <i>Glycera,</i> Lumbrinerid and cirratulid polychaetes
MG37	SS.SMx.OMx.(PoVen)	90	gmS	Diverse infauna incl. polychaetes <i>Chaetozone gibber,</i> <i>Lumbrineris gracilis,</i> <i>Nematonereis unicornis</i> and occasional veneroid bivalves
MG41	SS.SMu.OMu	110	mS	<i>Abra prismatica, Calocaris macandreae,</i> terebellid and flabelligerid polychaetes
MG42	SS.SMu.OMu	153	mS	Abra prismatica, Calocaris macandreae, lumbrinerid polychaetes, Notomastus latericeus

NB. * denotes when a sample has no particular characterising fauna – in these samples the sediment description was used to designate a biotope.

The sediment at MGR01 was characterised by slightly gravelly sand, with the polychaetes *Chaetozone gibber* and *Owenia fusiformis* dominating the infauna. The best fitting biotope for the site was *Owenia fusiformis* and *Amphiura filiformis* in offshore circalittoral sand or muddy sand (**SS.SSa.OSa.OfusAfil**), although the *Amphiura* that characterises this biotope were not found in high numbers. Both MGR02 and MGR03 had high numbers of *C. gibber*, but no significant numbers of other infauna. From the sediment composition of gravelly sand, these sites were best defined by the offshore circalittoral sand biotope complex (**SS.SSA.OSa**). None of the fauna that characterise either of the biotopes were found in high enough numbers to further distinguish the biotopes present at these sites.

MG04 had a mixture of different polychaete, bivalve and amphipod species, with nematode worms and the spionid worm *Aonides paucibranchiata* present in the highest numbers. The sediment at the site was characterised as gravelly sand. The mixture of different fauna present suggested that the biotope complex, offshore circalittoral mixed sediment (SS.SMx.OMx), was the best fit for the sample. The lack of significant numbers of venerid bivalves (only a single specimen of *Timoclea ovata* was present) stopped the biotope polychaete-rich deep *Venus* community in offshore mixed sediments (SS.SMx.OMx.PoVen) from being appropriate for this site.

Site MG11 had a similarly diverse mix of fauna to site MG04, but with fewer amphipods and some holothurians being present. The polychaete *Owenia fusiformis* was present in fairly high numbers. The sediment description for this site was slightly gravelly muddy sand. Overall, the infaunal and sediment composition of the site was somewhere between **SS.SMx.OMx** and **SS.SSa.OSa**. However, the presence of some polychaetes such as *O. fusiformis, Pholoe synophthalmica* and *Chaetozone gibber* and the lack of *Aonides paucibranchiata* suggested that the biotope complex was more likely to be **SS.SSa.OSa**.

Site MGR09 was faunally sparse, with only a few polychaetes and the bivalve *Nucula sulcata* found, all occurring in low numbers. The sample from site MG21 had probably lost most of its contents during transportation, so only a few polychaetes were present. The biotopes for these sites were therefore defined according to their sediment description of muddy sand as the biotope complex **SS.SSa.OSa**.

The sediment at site MG13 was sandy gravel. There was a range of polychaetes present, including more robust species such as *Glycera lapidum, Lumbrineris gracilis* and some cirratulids, along with some ophiuroids. The mix of polychaetes suggested that the site belonged to the offshore circalittoral coarse sediment (**SS.SCS.OCS**) biotope complex, possibly *Glycera lapidum, Thyasira* spp. and *Amythasides macroglossus* in offshore gravelly sand (**SS.SCS.OCS.GlapThyAmy**), although the characterising *Thyasira* and *Amythasides* were not present. MG15 was again dominated by a diverse mix of polychaetes, many of which were similar taxa to those found at site MG13. However, the presence of some of the characterising polychaete species such as *Laonice bahusiensis* and *Aonides paucibranchiata* suggest that the site was probably better described by the **SS.SMx.OMx** biotope complex. MG17 also had a mixture of polychaete species, some of which were present in both MG13 and MG15. The presence of *Aonides paucibranchiata* and the sediment being gravelly sand as opposed to sandy gravel suggested that the biotope complex **SS.SMx.OMx** was the best fit for this site.

High numbers of the polychaete worms *Lumbrineris gracilis, Chaetozone gibba, Owenia fusiformis* and nematode were present in sample MG19. The sediment here was slightly gravelly muddy sand. Some *Nephtys* species were also found, which usually characterise shallower sandy sediments. The best biotope complex fit for the site is **SS.SSa.OSa**. Although high numbers of *O. fusiformis* were found in the sample there was only a single *Amphiura* present, therefore precluding the **SS.SSa.OSa.OfusAfil** biotope. The occasional maldanid polychaete was also present, but no cumaceans were found, precluding the **SS.SSa.OSa.MalEdef** biotope.

The bivalve *Abra* and the polychaete *Chaetozone* were found in high numbers in sample MG20. There were not many oweniid polychaetes in the sample, but some maldanid and terebellids were present. The biotope complex **SS.SSa.OSa** best described the fauna found, with the lack of the cumacean *Eudorellopsis deformis* preventing the biotope **SS.SSa.OSa.MalEdef** from being more appropriate.

The characterising fauna from MG23 comprised some ophiuroids (including *Amphiura*) and relatively high numbers of oweniid polychaetes *Owenia fusiformis* and *Myriochele heeri*. *Chaetozone gibber* was also present. The presence of these species suggested that the biotope **SS.SSa.OSa.OfusAfil** would be appropriate for the site.

MG24 had mixed sediment of gravelly muddy sand. Nuculoida bivalves (*Nucula minuta*, *Yoldiella philippiana* and *Nuculana minuta*) and *Abra prismatica* were all found in high numbers, as were *Glycera*, cirratulid and lumbrinerid polychaetes. This mixture of fauna does not fit into any one biotope complex particularly well. The bivalve *Abra* is usually found in soft sediments, as are the burrowing shrimp *Calocaris macandreae* found in the sample. However, the mixture of robust polychaetes is more typical of coarse sediments. The best biotope complex for this site would be either **SS.SCS.OCS** to reflect the polychaete component of the infauna, or **SS.SMx.OMx** to take into account the presence of the bivalves, burrowing crustaceans and the sediment classification for the sample.

A diverse mix of fauna including several polychaetes, amphipod and bivalve taxa were present in sample MG37. The polychaetes *Lumbrineris gracilis*, *Chaetozone gibber* and *Nematonereis unicornis* were numerically dominant in the sample. Occasional veneroid bivalves (*Timoclea ovata* and *Venus casina*) were also present. Considering the range of fauna present and the sediment classification of gravelly muddy sand, then the biotope complex **SS.SMx.OMx** would be most appropriate for the site, possibly even the biotope **SS.SMx.OMx.PoVen**.

The sample from MG41 had high numbers of the bivalve *Abra prismatica*, flabelligerid and terebellid polychaetes, and the burrowing shrimp *Calocaris macandreae*. MG42 also had high numbers of *C. macandreae*, but with a slightly different polychaete assemblage to MG41, with generally fewer taxa and fewer numbers. The most notable polychaetes from MG42 were lumbrinerids and *Notomastus latericeus*. Similar bivalves were present at both sites, although MG42 had much lower numbers of *A. prismatica*. The fauna from both MG41 and MG42 were characteristic of soft sediments, although did not adequately place the samples within any of the biotopes of the **SS.SMu.OMu** biotope complex.

3.4 Comparisons between macrofaunal trends and the abiotic data

In this study the abiotic parameters available include sediment particle size data and depth records but other parameters are also likely to influence the biological communities in the survey area. The available data were compared to the cluster and ordination analyses results (see Table 3.8 and Figure 3.6 as well as Appendix 04). Table 3.8 illustrates that all the samples in cluster A have been classified as **SS.SSA.OSa**, all samples in cluster B have been classified as **SS.SMx.OMx** whilst the samples in cluster C have been classified as either **SS.SCS.OCS** or **SS.SMu.OMu**. Of interest is also the fact that the samples in cluster C were all from depths of 110 m or more, whilst the cluster B samples were from relatively shallow depths (54 m to 90 m).

Station	Biotope	Depth (m)	Sediment description	Gravel (%)	Sand (%)	Mud (%)
MGR01	SS.SSa.OSa.(OfusAfil)	77	(g) S	2.86	91.34	5.27
MGR02	SS.SSa.OSa	94	(g) S	4.58	86.37	8.12
MGR03	SS.SSa.OSa	81	(g) S	4.29	88.78	6.08
MGR09	SS.SSa.OSa	105	mS	0.07	66.9	32.48
MG11	SS.SSa.OSa	152	(g) mS	4.3	85.8	10.38
MG19	SS.SSa.OSa	85	(g) mS	3.08	84.09	12.95
MG20	SS.SSa.OSa.(MalEdef)	75	(g) S	2.76	90.76	6.74
MG21	SS.SSa.OSa	98	mS	0.05	59.46	40.39
MG23	SS.SSa.OSa.OfusAfil	60	gS	5.07	88.01	7.49
MG04	SS.SMx.OMx.(PoVen)	60	gS	19.74	74.34	6.43
MG15	SS.SMx.OMx	54	gS	9.65	83.16	7.05
MG17	SS.SMx.OMx	64	gS	6.61	85.76	7.79
MG37	SS.SMx.OMx.(PoVen)	90	gmS	8.75	82.14	9.33
MG13	SS.SCS.OCS.(GlapThyAmy)	152	sG	30.62	63.65	6.23
MG24	SS.SCS.OCS or	200	gmS	9.7	79.72	11
	SS.SMx.OMx					
MG41	SS.SMu.OMu	110	mS	0.3	85.49	14.46
MG42	SS.SMu.OMu	153	mS	0.49	82.67	16.5

Table 3.8. Summary of results for each sample and cluster group (colours as Figure 3.4).

Further analyses of the data using the ordination data suggest a correlation between macrofaunal community and both sediment grain size and depth. The visual analysis of the MDS plots (abiotic bubble plots) suggest that the strongest correlations between the macrofaunal ordination results and abiotic parameters are with the finer sediment size fractions the 0.063 mm and <0.063 mm sediment grain size fractions in particular (see vectors in Figure 3.5). Depth also has some influence but appears to be less important than sediment grain size. There are no apparent trends with latitude or longitude (in terms of the MDS data).

Figure 3.6. Macrofaunal community MDS plot with abiotic bubble analysis.

In an attempt to assess these results further the Spearman rank correlation coefficient (r_s) was used and the strongest correlation was with a combination of the 0.063 mm and 1.4 mm size fractions ($r_s = 0.73$). As individual parameters the largest correlations were (in order) 0.5 mm ($r_s = 0.585$), 0.71 mm ($r_s = 0.525$), 2 mm ($r_s = 0.509$). The correlation with depth was low ($r_s = 0.25$). With the abiotic data available it therefore appears as if sediment grain size is the primarily controller of the distributions of the faunal communities seen. However, there are many other potential parameters that are likely to influence these distributions and compositions.

4 **DISCUSSION**

The 2011 benthic survey in The Minch encompassed a region from the North Minch, including the East Shiant Bank and Shiant Islands, south to the Little Minch (Figures 2.1 to 2.3). The aims included the collection of qualitative biological data to help inform SNH's understanding of the importance of large scale features (LSFs) within Scottish waters. The 2011 survey included a combination of sampling equipment but the current analysis only refers to the Day grab sample data, hence any reference to the LSFs or any other large features has not been possible.

4.1 Summary of the main habitats

The four main biotope complexes found in this study are SS.SSa.OSa, SS.SMx.OMx, SS.SCS.OCS and SS.SMu.OMu.

The offshore (deep) circalittoral biotope complex SS.SSa.OSa consists of habitats with fine sands but very little data are available for these habitats (see Connor et al., 2004). However, the biotopes included in this complex are dominated by a diverse range of polychaetes (e.g. Goniada maculata, Pholoe inornata, Diplocirrus glaucus, Chaetozone setosa and Spiophanes kroveri), amphipods, bivalves and echinoderms. The majority of samples from The Minch were classified in this group and most of them are found close together in the northern part of the study area. The habitat is typified by slightly gravelly muddy sand, with polychaetes such as Chaetozone spp. and Owenia fusiformis dominating the infauna. Some samples could have been classified SS.SSa.OSa.OfusAfil but the Amphiura that characterises this biotope were not found in high numbers. It is possible that this genus was present in higher numbers at these locations but additional sampling effort and perhaps replicate sampling would be required to assess further. Another option was to classify this this group as either SS.SCS.CCS.MedLumVen or SS.SSa.CMuSa but the depth range is right at the limit (or beyond) of these biotopes and the relative contribution of Chaetozone spp. and Owenia fusiformis is not sufficiently significant.

The **SS.SMx.OMx** biotope complex is described as offshore (deep) circalittoral habitats with slightly muddy mixed gravelly sand (see Connor *et al.*, 2004). This habitat may cover large areas of the offshore continental shelf although, as with the **SS.SSa.OSa** complex, there are relatively few data available. The **SS.SMx.OMx** habitats are often highly diverse with a high number of infaunal polychaete and bivalve species illustrated by for example sample MG04 which had a mixture of different polychaete, bivalve and amphipod species, with nematode worms and the spionid worm *Aonides paucibranchiata* present at the highest numbers. However, there was a lack of significant numbers of venerid bivalves (only a single specimen of *Timoclea ovata* was present) which prevented a more detailed classification.

The final two biotope complexes (**SS.SCS.OCS** and **SS.SMu.OMu**) are both present in the third cluster (cluster C). Although the fauna from both MG41 and MG42 were characteristic of soft sediments, a classification into biotopes within the **SS.SMu.OMu** biotope complex was not possible. These samples initially appear different to the fauna within MG13 and MG24 but there are similarities. Both samples contain robust fauna such as *Glycera lapidum, Lumbrineris gracilis* and some cirratulids but there are differences including the sediment grain size distribution. The sampling locations are furthermore on opposite sides of the North Minch with potential differences in several abiotic parameters. Another potential biotope for this group was **SS.SSA.CMuSa** but as with many current biotopes The Minch stations were too deep to allow such a classification.

Of note is the presence of **SS.SSa,OSa.OfusAfil**, an offshore PMF and MPA search feature. This biotope was found at station MG23 and therefore needs particular attention during the reporting as part of the LSF survey.

4.2 Limitations

The seabed environment in The Minch is complex with several banks, channels and deeper areas making any analysis of the relatively low number of sediment samples challenging. In addition, the epifaunal results together with any acoustic data would greatly aid any detailed analysis of the infaunal data to allow large-scale features to be identified.

A final consideration is the lack of detail in the biotope classification system in terms of the biological communities found in the deeper and offshore areas around the United Kingdom (Connor *et al.*, 2004). It has therefore been challenging to classify the samples at a high level (5 or 6). The remit for this brief study does not include a detailed analysis in terms of the broader biological communities present in The Minch but the data should aid any reviews or broad-scale studies in the area.

There were only 17 samples included in study. Additional sampling with more sample locations and replicates may have allowed for a more detailed assessment of biotopes in The Minch area. The presence of a lancelet is of particular interest as this taxon is a new record in the area. The presence of an individual of the Pilargidae family is also of interest but it was not possible to identify this individual to genus or species level so whether this is a new species remains unknown.

5 **REFERENCES**

Appeltans, W., Bouchet, P., Boxshall, G.A., Fauchald, K., Gordon, D.P., Hoeksema, B.W., Poore, G.C.B., van Soest, R.W.M., Stöhr, S., Walter, T.C. and Costello, M.J. (eds) (2011). World Register of Marine Species. Available online at www.marinespecies.org (accessed in December 2011 to February 2012).

Blott, S.J., and Pye, K. (2001). Gradistat: a grain size distribution and statistics package for the analysis of unconsolidated sediments. *Earth Surface Processes and Landforms*, **26**, 1237–1248

Clarke, K.R. and Warwick, R.M. (2001). Change in marine communities: an approach to statistical analysis and interpretation, 2nd edition. PRIMER –E, Plymouth.

Connor, D.W., Allen, J. H., Golding, N., Howell, K. L., Lieberknecht, L. M., Northen, K. O. and Reker, J. B. (2004). *The National Marine Habitat Classification for Britain and Ireland. Version 04.05.* Joint Nature Conservation Committee, Peterborough. ISBN: 1 861 07561 8 (internet version).

Folk, R.L. (1954). The distinction between grain size and mineral composition in sedimentary-rock nomenclature. *Journal of Geology*, **62**, 344-359.

Fowler, J. and Cohen, J. (1992). *Practical Statistics for Field Biology*. John Wiley & Sons, Chichester, England, 227 pages.

Gage, J.D. and Tyler, P.A. (1991). *Deep-Sea Biology: A natural history of organisms at the deep-sea floor*. Cambridge University Press, 504 pages.

Hayward, P.J. and Ryland, J.S. (1990). The marine fauna of the British Isles and North-west Europe. Volume I: Introduction and Protozoans to Arthropods. Clarendon Press, Oxford, 627 pages.

Hiscock, K., Langmead, O., Warwick, R. & Smith, A., (2005). Identification of seabed indicator species to support implementation of the EU Habitats and Water Framework Directives. Second edition. *Report to the Joint Nature Conservation Committee and the Environment Agency from the Marine Biological Association*. Plymouth : Marine Biological Association. JNCC Contract F90-01-705. 77 pp.

Howson, C.M. and Picton, B.E. (1997). *The species directory of the marine fauna and flora of the British Isles and surrounding seas.* Ulster Museum Publication, 276. The Ulster Museum: Belfast, UK.

Leeder, M.R. (1982). Sedimentology: process and product. Chapman and Hall, 344 pages.

MarLIN (2012). Lancelet – Branchistoma lanceeolatum. Biodiversity and Conservation. Available online: http://www.marlin.ac.uk/speciesinformation.php?speciesID=4815 (retrieved in February 2012).

MES (2008). Marine Macrofauna Genus Trait Handbook. Marine Ecological Surveys Ltd.,174 pages.

Moore, C. G. (2012). An assessment of the conservation importance of benthic epifaunal species and habitats identified during a series of research cruises around Scotland in 2011. *Scottish Natural Heritage Commissioned Report No. 507 (Project no. 13058).*

NHMW (2012). Marine bivalve shells of the British Isles - *Abra prismatica*. Available online: http://naturalhistory.museumwales.ac.uk/britishbivalves/browserecord.php?-recid=4 (retrieved in February 2012).

The Scottish Government (2011). Year of discovery – news release by the Scottish Government. Available online: http://www.scotland.gov.uk/News/Releases/2011/12/22105642 (retrieved in February 2012).

APPENDIX 01.	SNH field	sample log –	The Minch	infaunal	survey 2011
--------------	-----------	--------------	-----------	----------	-------------

			Start Time	Latitude	Longitude	Start Depth
Date	Station	Location	(GMT)	(SOL)	(SOL)	(m)
23/10/2011	MG40 - Attempt 1. No sample	Shiant Bank	09:05	57.949495	-5.940923	68
23/10/2011	MG40 - Attempt 2. No sample	Shiant Bank	09:07	57.949972	-5.940772	69
23/10/2011	MG40 - Misfire	Shiant Bank	09:10	57.950655	-5.940580	72
23/10/2011	MG40 - Attempt 3. No sample	Shiant Bank	09:14	57.951337	-5.940623	75
23/10/2011	MG41	Shiant Bank	10:04	57.922087	-5.974517	110
25/10/2011	MG4	Southern Little Minch	11:41	57.570882	-6.923937	60
25/10/2011	MG37 - Attempt 1 - no sample	Southern Little Minch	14:19	57.557102	-6.964813	90
25/10/2011	MG37	Southern Little Minch	14:24	57.558647	-6.965892	90
25/10/2011	MG11 - Attempt 1. Poor sample	Northern Little Minch	17:55	57.658363	-6.726778	153
25/10/2011	MG11	Northern Little Minch	18:00	57.660778	-6.723457	152
26/10/2011	MG15 - Misfire	Shiant Bank	10:09	57.928805	-6.167832	54
26/10/2011	MG15	Shiant Bank	10:11	57.928815	-6.167828	54
26/10/2011	MG23	Shiant Bank	11:04	57.955300	-6.166595	60
26/10/2011	MG42 - Missfire	Shiant Bank	16:30	57.895162	-5.934772	150
26/10/2011	MG42	Shiant Bank	16:34	57.896227	-5.932297	153
28/10/2011	MG23 - Missfire	Shiant Bank	11:38	57.990805	-6.041957	34
28/10/2011	MG23 - Missfire	Shiant Bank	11:40	57.991122	-6.041462	34
28/10/2011	MG23 - Missfire	Shiant Bank	11:42	57.991638	-6.041043	35
28/10/2011	MG23 - Empty	Shiant Bank	11:47	57.992453	-6.043935	40
01/11/2011	MG13 - Rocks only	Shiant Islands	08:53	57.993073	-6.318163	155
01/11/2011	MG13 - Poor sample, but best available	Shiant Islands	08:59	57.993073	-6.318163	152
01/11/2011	MG24	Shiant Islands	09:17	57.983773	-6.302300	200
01/11/2011	MG17	Shiant Bank	10:05	58.019925	-6.152653	64
01/11/2011	MG20	Shiant Bank	10:30	58.041150	-6.084868	75
01/11/2011	MG21 - Missfire	Shiant Bank	10:57	58.082788	-6.101750	97
01/11/2011	MG21	Shiant Bank	11:00	58.083977	-6.099558	98
02/11/2011	MGR01 - Rock only	Shiant Bank	09:50	58.056627	-5.950300	77
02/11/2011	MGR01	Shiant Bank	09:55	58.057550	-5.949988	77
02/11/2011	MGR03	Shiant Bank	10:10	58.076177	-5.975215	81
02/11/2011	MGR02 - No sample	Shiant Bank	10:50	58.023680	-5.899935	92
02/11/2011	MGR02 - No sample	Shiant Bank	10:55	58.025143	-5.899170	94
02/11/2011	MGR02	Shiant Bank	10:59	58.026743	-5.898387	94
02/11/2011	MG19 - Shells only	Shiant Bank	11:20	58.006893	-5.901920	89
02/11/2011	MG19 - Missfire	Shiant Bank	11:24	58.007985	-5.901200	85
02/11/2011	MG19	Shiant Bank	11:28	58.009182	-5.900373	85
02/11/2011	MGR09	Shiant Bank	12:06	58.074378	-5.838372	105

APPENDIX 02.	Macrofaunal	species matrix -	The Minch	infaunal survey	2011.

														Site								
MCS A	MCS N	Taxon	Species	Authority	Qualifier	MGR01	MGR02	MGR03	MG04	MGR09	MG11	MG13	MG15	MG17	MG19	MG20	MG21	MG23	MG24	MG37	MG41	MG42
D	583	ANTHOZOA	spp.		Dam.														1	1		
F	2	TURBELLARIA	SD.				1															
G	1	NEMERTEA	snn		Dam /Indet		1		5			1	1	5				1	2	7	1	
0		NEWLEKTEA	spp.		Dam./muet.				5				1	5	10	-		<u> </u>	2	7	<u> </u>	-
HD	1	NEMATODA	sp.		indet.	1		4	14				5	10	12	5		'	4	5		
N	1	SIPUNCULA	sp.		Dam.			1	1	1									1		1	
N	12	Golfingia	sp.	Lankester, 1885				1													i I	
N	17	Golfingia	vulgaris	(de Blainville, 1827)											1							1
N	47	Asnidosinhon	muelleri	Diesing 1851								2						+ · · · ·	1		I	
	47	Aspidosipilon	muenen	Lissan 4750								2		4				ļ/	<u> </u>			
P	19	Aprilouna	aculeata	Linnaeus, 1756	-													/				,
Р	25	Polynoidae	spp.		Dam.								1							1		
Р	50	Harmothoe	spp.		Dam.		1		2		1	1	2								2	1
Р	59	Harmothoe	fragilis	Moore, 1910					1									-				
Р	68	Malmgreniella	marphysae	(Saint-Joseph, 1888)		1												· · · ·				
D.	04	Pholoo	synonhtalmica	Claparède 1969			1				2	2							2	1	I	
F	34	P NOIDE	synophiannica	Ciapareue, 1000							5	2						ļ/	2		I	
Р	96	Sigalionidae	sp.		Dam.															1		
P	107	Sthenelais	boa	(Johnston, 1839)		1	1	1							1						1	
Р	114	Phyllodocidae	sp.		Dam./juv.								2	1								
Р	118	Eteone	longa	(Fabricius, 1780)									2					1		1		
P	136	Pseudomystides	limbata	(Saint-Joseph 1888)		1			1				1					I	1	<u> </u>	l	
	100	Applitidos	00	Czorniovsky 1992	Dom /ium								1		4			<u>⊢−−−−</u> ′	<u> </u>	<u> </u>		ł
<u>Р</u>	139	Ananues	əh.	Ozenniavsky, 1882	Dam./juv.	I									1			↓ ′	───	ļ'		I
Р	150	Eulalia	sp.	Savigny, 1817	juv.									1				<u> </u>				
Р	155	Eulalia	mustela	Pleijel, 1987					2									I –			, T	, T
Р	169	Nereiphylla	lutea	(Malmoren, 1865)		1			1						1			,		2		
P	254	Glyceridae	sn	(····									1					1	1		I	
	255	Chrom	-r.	Sovieny 1919	Dom /iun/				2			1	6	7	1	1		ل		<u> </u>		
	200	Giyceia	sh.		Dam./juv.	I	<u> </u>		3			1	ა					ļ!	- 3	<u> </u>		
P	-	Glycera	unicornis	Lamarck, 1818			1	1		1					1			!	4		2	1
Р	257	Glycera	celtica	OConnor, 1987										3							1 1	1
Р	260	Glvcera	lapidum	Quatrefages, 1866					4		1	4		2						2	4	
P	266	Goniadidae	sn	5	Juv								1					H		2	I	
<u> </u>	200	Obminula	op.	(Malazara 4000)	0uv.						4							<i>_</i>		2	I	
F	200	Giycinde	norumanni	(Mainglen, 1866)														<u> </u>				·
Р	271	Goniada	maculata	Oersted, 1843		3	1	2	3		1		1			1		1	3	1		
Р	300	Gyptis	propinqua	Marion & Bobretzky, 1875					2					2							1 1	1
P	319	Podarkeopsis	capensis	(Day, 1963)														1				
Р	346	Syllidae	SD.		Dam.			1			1							-		1		
P	349	Syllis	comuta	(Rathke 1843)					1		2				1	1		1			I	
-	070	Oymis Oymis	- itteta	(Carba 4040)					-		2		0								I	
P	372	Syllis	Villala	(Glube, 1840)					2				2					/	L		└──── ┤	· · · · · ·
Р	380	Eusyllis	blomstrandi	Malmgren, 1867								2										
Р	418	Exogone	sp.	Oersted, 1845					1												1 1	1
Р	421	Exogone	hebes	(Webster & Benedict, 1884	4)		1											,				
Р	422	Exogone	naidina	Oersted, 1845														· · · · ·			1	
D.	424	Sphaorosyllis	60	Claparède 1963					1					1						⁻		
F	424	Spriderosynis	sp.	Ciaparede, 1005										1				ļ/			I	
P	425	Spnaerosyllis	bulbosa	Southern, 1914					4	-			4	2				/			L	
Р	427	Sphaerosyllis	hystrix	Claparède, 1863										1								
Р	458	Nereididae	sp.		juv.								2		1 -			ر ا	1 -		ר ו	ר ו
Р	494	Nephtys	spp.		Dam.										3			l	1		1	
Р	498	Nephtys	cirrosa	Ehlers, 1868	1	1		1						1				1			l	
P	501	Nenhtus	incisa	Malmaren 1865	1	1		· · · ·		1				<u> </u>			2	<u> </u>	t		1	
-	507	Nonhtio	komiunlanaia	Malatash 1008		1	4	4							2	2	-	<u> </u>	H	H	1	
P	502	wepntys	k ersivalerisis	WGINOSH, 1908			1	1							3	3			L	ļ'	1	
P	539	Aponuphis	bilineata	(Baird, 1870)									2					<u> </u>	L	ļ']	
Р	564	Marphysa	bellii	(Audouin & Milne-Edwards,	, 1833)														1			
Р	568	Nematonereis	unicornis	(Grube, 1840)					2				2	1						8	i	
Р	569	Lumbrineridae	sp.	de Blainville, 1828	Dam.				2	4	2	1	1	2			2	1 1	2	1	2	2
n	570	Lumbringrig	aracilic	(Eblore 1969)		4	0	4	4		4	4	2	2	ō	Ó.	-	ł'	-	10	-	
- r	5/9	Carloter	yidullis	(Classical 4000)			2		1			1	3	2	3	۷		└─── ′	<u> </u>	13		
Р	584	Scoletoma	impatiens	(Ciaparede, 1868)														Ļ'	6	1	1	3
P	591	Drilonereis	filum	(Claparède, 1868)							1							'	I	L '	I	
Р	597	Notocirrus	scoticus	McIntosh, 1869		1												1		1	, <u> </u>	
Р	672	Scoloplos	armiger	(O F Müller, 1776)		1										1					t	
P	674	Paraonidae	sn	1	Dam / juv	1									1			I	1	1	ł	ł
	675	Ariaidaa	op.	Webster 1970	Dom	<u> </u>		4		<u> </u>						1		<u> </u>	───	<u> </u>		
P	0/5	Alicidea	sp.	webster, 1879	Dam.			1								1			I	<u> </u>		I
P	684	Aricidea (Acmira)	catherinae	Laubier, 1967		1									l			1	L			
Р	690	Cirrophorus	branchiatus	Ehlers, 1908					3		2		1	1	1			1		4		
Р	693	Levinsenia	gracilis	(Tauber, 1879)													1					
			lvra	(Southern 1914)	1	1			1	1								l	1	1	I	
P	600	Paradoneis																/		I'		,
P	699	Paradoneis	aamana	Allen 1004					4				4 1	2								
P P	699 718	Paradoneis Poecilochaetus	serpens	Allen, 1904	_				1				1	2				<u> </u>		2		
P P P	699 718 720	Paradoneis Poecilochaetus Spionidae	serpens sp.	Allen, 1904	Dam.	2			1			1	1 4	2		1		1		2		

					Site																	
MCS A	MCS N	Taxon	Species	Authority	Qualifier	MGR01	MGR02	MGR03	MG04	MGR09	MG11	MG13	MG15	MG17	MG19	MG20	MG21	MG23	MG24	MG37	MG41	MG42
Р	725	Genus A	(spionidae) sp.	Mackie, in prep										2								
Р	731	Laonice	sp.	Malmgren, 1867									3									
Р	733	Laonice	bahusiensis	Soderstrom, 1920									4									
Р	735	Laonice	sarsi	Soderstrom, 1920		1			2					2				3				
Р	738	Malacoceros	tetracerus	(Schmarda, 1861)									1							1		
Р	747	Minuspio	cirrifera	(Wiren, 1883)					1		2	1	4	3	1			2		2	1	
Р	765	Prionospio	fallax	Soderstrom, 1920							1										1	
P	774	Pseudopolydora	pulchra	(Carazzi, 1895)									1									
P	783	Scolelepis	squamata	(Abildgaard, 1806)	-	1			1				2	5				1				L
Р	787	Spio	sp.	Fabricius, 1785	Dam.																1	ļ
Р	793	Spiophanes	sp.	Grube, 1860	Dam.													1				
Р	794	Spiophanes	bombyx	(Claparede, 1870)														1		1		
P	795	Spiophanes	ct. wigleyi	Pettibone, 1962			1													1		ļ
P	796	Spiopnanes	k royeri	Grube, 1860				1			2		2	2		2					2	ļ
P	804	Magelona	alleni	Wilson, 1958		1										1		1				ļ
P	806	Magelona	minuta	Eliason, 1962	Dava /ladat			0			0	4			4				0	0	2	<u> </u>
P 	822	Cirratulidae	sp.	Bloke 1001	Dam./Indet.	1		3	1		2	4	4	1	4	3			6	2		ł
P	023	Aphelochaeta	sp. morioni	Diake, 1991 (Soint Joseph 1904)		3		2			0	1	1	2		0			11			2
P	024	Chaotozono	rilanoni	(Saint-Juseph, 1894)	04	2	14	10	1		2	1		3	17	2		F	4	10	4	2
P	924	Chaetozono	gibbei	Molmaron 1967	94	23	14	13	1	2	2	2		1	17	14		5	2	15	4	2
P	873	Flabelligeridag	en	manigren, 1007	Dam		2				4										12	
P	879	Diplocime	alaucus	(Malmaren 1867)	Dam.				- '	2	2								2		8	3
P	0/0	Capitellidae	sn	(mainigien, 1007)	Dam.					-	4			1					-		υ	5
P	906	Capitella	sp. sn	de Blainville, 1828	Dam.	1	2	2			1		3	1	7	4			2		1	1
P	914	Dasybranchus	sp. caducus	(Grube 1846)			1	2		2			<u> </u>		3				~ ~			<u> </u>
P.	919	Mediomastus	fragilis	Rasmussen 1973					5	-			2	2	Ŭ							
Р	921	Notomastus	latericeus	M Sars 1851		2			3		6		12	-	1			1		4		4
P	938	Maldanidae	SDD.		Dam.	-	1		2		1				2	1						· · ·
P	963	Fuclymene	lumbricoides	(Quatrefages, 1866)			1		_						_							
P	964	Euclymene	oerstedii	(Claparède, 1863)																1		
Р	-	Euclymene	sp. A	(Claparède, 1863)			1				2			1	1	1		1		2	4	
Р	971	Praxillella	affinis	(M Sars, 1872)							1					1						4
Р	997	Ophelia	sp.	Savigny, 1818	Dam.								1									
Р	1012	Ophelina	sp.	Oersted, 1843	Dam.	1										1						
Р	1027	Scalibregma	inflatum	Rathke, 1843		1										1					1	
Р	1090	Oweniidae	sp.		Dam./Indet.	2	1	1			1		1	3		3		2		1		
Р	1093	Galathowenia	oculata	Zaks, 1922		1							1							1		
Р	1096	Myriochele	heeri	Malmgren, 1867							1				1			5				
Р	1098	Owenia	fusiformis	Chiaje, 1842		25	3	5			13		5	3	16	1		9				
Р	1099	TEREBELLIDA	spp.		Dam./Indet.			2	2		4		9	1	2	3		1	1	3	5	2
Р	1102	Amphictene	auricoma	(O F Müller, 1776)							1					1			1			
Р	1107	Lagis	koreni	(Malmgren, 1866)					1		1											
Р	1125	Ampharetinae	spp.		Dam./Indet.		1					1	1	2				3	1			
P	1133	Ampharete	sp.	Malmgren, 1866	Dam.	4	1				1							1				I
P	1175	I erebellides	stroemi	M Sars, 1835		1	ļ	1	ļ				1			1		2		L	3	L
<u>Р</u>	1190	Eupolymnia	nesidensis	(Chiaje, 1828)																1		
<u>Р</u>	1217	rista Datusias	cristata	(U F Muller, 1776)		L					1	l						4				l
<u>Р</u>	1235	PolyCITUS	sp.	Grube, 1850					1				1					1				
Р	1256	Sabellidà	sp.	(Bruquioro, 1790)	-				3	<u> </u>												I
_ г 	1310	r seudopotamilia Dilargidag	renii UIIIIIS	(Drugulele, 1709)			-			-		-									1	+
_ г 	1402	Oligochaota	ap.											1							1	<u> </u>
	1402	Anonlodactulura	ap.	(Krövor 1944)												1		1				<u> </u>
R	22	Scalpellum	scalpellum	(Linnaeus 1767)												1		1				
R	340	Acartia	sn	Dana 1846	Dam	1							1	2		1						
R	2710	Propontocypris	sp. trigonella	(G O Sars 1870)	Daill.								-	-								1
9	0.8	Gammeridea	sn	0 0 0 0 0 0 0 0 0 0	Dam /Indet							1										
s	109	Fusirus	lonaines	Boeck, 1861	Dam.				1													
S	125	Monoculades	carinatus	(Bate 1856)	Poill.			+	<u> </u>					1								
S	133	Pontocrates	altamarinus	(Bate & Westwood 1862)										1								
s	140	Westwoodilla	caecula	(Bate, 1856)										<u> </u>							2	1
s	176	Leucothoe	SD.	Leach, 1814	Dam./Indet.				1												2	
s	213	Stenothoe	marina	(Bate, 1856)			1		<u> </u>							1				1		
s	248	Urothoe	elegans	(Bate, 1856)	1	1			l							1		1			1	
S	254	Harpinia	antennaria	Meinert, 1890							2											1

														Site								
MCS A	MCS N	Taxon	Species	Authority	Qualifier	MGR01	MGR02	MGR03	MG04	MGR09	MG11	MG13	MG15	MG17	MG19	MG20	MG21	MG23	MG24	MG37	MG41	MG42
S	274	Acidostoma	nodiferum	Stephensen, 1923											1							
S	296	Hippomedon	denticulatus	(Bate, 1857)										2								
S	413	Atvlus	vedlomensis	(Bate & Westwood 1862)					8				2	5						4		
°	422	Ampolisco	co	Krövor 1942	Dom /Indat				•				~							1		
	423	Ampeliaca	sp.	Rioyer, 1042	Dam./Indet.			-	1	-	1			1	1	4				1		
3	430	Ampelisca	spinipes	DUECK, 1001							1				1	4				1		
S	442	Ampelisca	typica	(Bate, 1856)		1							1							1		
S	502	Animoceradocus	semiserratus	(Bate, 1862)																1		
S	503	Cheirocratus	sp.	Norman, 1867	Dam./Indet.									1								
S	506	Cheirocratus	sundevalli	(Rathke, 1843)					1		1											
S	519	Othomaera	othonis	(H Milne-Edwards, 1830)					1							1						
S	541	Gammaropsis	maculata	(Johnston, 1828)											1							
	599	Lontochoirus	hireutimonue	(Boto 1962)			-		4				2									
0	500	Deticioo	morino	Clobbor 1760	Dom				4				2							1		
3	657	Philisica	manna	Slabbel, 1769	Dam.																	
5	955	Astacilla	iongicornis	(Sowerby, 1806)														1			1	
S	1194	Bodotria	arenosa	(Goodsir, 1842)									1	1								
S	1202	Iphinoe	tenella	G O Sars, 1878												1					1	1
S	1339	Caridion	steveni	Lebour, 1930	Dam.																4	
S	1409	Calocaris	macandreae	Bell, 1846							1								1		3	3
S	1445	Paguridae	sn		Dam /Indet				2						1							
S	1461	Paqunus	forhesii	Bell 1845					-				1									
~ ~	1472	Galathoa	intormodia	Lilioborg 1951	Dom				1		\vdash		<u> </u>							1		
	1472	Gaidliled	niter/fieula	LIJEDULY, 1031	Daill.				1											1		
5	1508	Eballa	tuperosa	(Pennant, 1777)	-								1									
W	3	Chaeteodermatida	sp.		Dam.														1			
W	9	Chaetoderma	nitidulum	Lovén, 1844													1					7
W	11	Falcidens	crossotus	Salvini-Plawen, 1968							1	1						3	1		4	
W	54	Leptochiton	cancellatus	(G B Sowerby II, 1840)					2			1	1							1		
W	223	Testudinalia	testudinalis	(O E Müller, 1776)					1													
W	490	Lunatia	montaqui	(Eorbes 1838)															1	1		
VV 14/	430	Lunaua	moinagui	(1 01063, 1000)							4											
VV	121	Neptunea	antiqua	(Linnaeus, 1758)							1											
W	908	Evalea	sp.	A. Adams, 1860																		2
W	1320	Onchidoris	cf. muricata						1		1	1										
W	1519	Antalis	entalis	(Linnaeus, 1758)								1										
W	1571	Nucula	sulcata	Bronn, 1831						4		2	1		2	1			6		6	3
W	1595	Nuculana	minuta	(O F Müller, 1776)															6			
Ŵ	1627	Yoldiella	nhilinniana	(Nyst 1844)		3		2								3		1	5			5
W	1709	Modiolulo	phasoolina	(Philippi 1944)		Ū		-			1					0			Ű			ů.
VV	1706	Nouioiula	phaseolina	(F1iiippi, 1844)							1	-										
VV	1814	Monia	squama	(Linnaeus, 1761)								/										
W	1906	Kurtiella	bidentata	(Montagu, 1803)																2		
W	1925	Astarte	sulcata	(da Costa, 1778)					1			1						1	2		3	
W	1950	Parvicardium	minimum	(Philippi, 1836)												2						
W	1975	Spisula	elliptica	(Brown, 1827)									1									
W	2006	Phaxas	pellucidus	(Pennant, 1777)											1							
W	2062	Abra	prismatica	(Montagu, 1808)		1	5	1	-		6	2		1	2	9	-	1	16		15	5
W	2002	Vonue	opeino	(Lippaque 1759)		1	5					4			-	5			1	1	10	
VV	2091	Timester	casild	(Desset 4777)					4					-		0			1	1		
VV	2104	i imociea	ovatā	(Pennant, 1777)		2			1				1	1		2		1		2		
W	2157	Corbula	gibba	(Они, 1792)			l												2			1
W	2166	Hiatella	arctica	(Linnaeus, 1767)			1															
ZA	5	Phoronis	cf. muelleri	Selys-Longchamps, 1903							1		1		1	1					7	1
ZB	102	Leptasterias	muelleri	(M Sars, 1846)					2													
ZB	124	Ophiothrix	fragilis	(Abildgaard, 1789)	Dam.							1			1							
ZB	143	Onhiactis	halli	(Thompson 1840)								1										
70	152	Amphium	chiaiai	Earbox 1942			1	1							1							
2D 7D	102	Amphium	criiajei	1 010CS, 1043	Deer	-		1			-	0						0				
ZB	154	Ampniura	tilitormis	(O F Muller, 1776)	Dam.	1					3	2				4		2	1			
ZB	-	Ophiuroidea	sp.		Indet. Juv			1	6			1			1	1		3	9		1	
ZB	167	Ophiocten	affinis	(Lütken, 1858)					1											1		
ZB	193	Psammechinus	miliaris	(Gmelin, 1778)	Juv.							1										
ZB	212	Echinocvamus	pusillus	(O F Müller, 1776)		1																
ZB	222	Echinocardium	SD.	J E Grav. 1825	Dam/ indet. Juv				2			1						1			1	
7B	223	Echinocardium	cordatum	(Pennant 1777)	Dam				-		2											
70	220	Briagonaia	hriforo	(Forboo 1941)	Dom						4	4							L			
2B	228	DIISSOPSIS	iyinefa	(FOIDES, 1841)	Dam.							1										
ZB	229	Holothurioidea	sp.		Dam.						1									1		
ZB	261	Thyone	sp.	Jaeger, 1833							2											
ZB	275	Ocnus	lacteus	(Forbes & Goodsir, 1839)							1											Г
ZD	122	Distomus	variolosus	Gaertner in Pallas, 1774			1							1				12				
		Branchiostoma	lanceolatum	(Pallas, 1774)									1									
				1. 1. 1		-																

APPENDIX 03. SEDIMENT SAMPLE STATISTICS

NB. See Blott and Pye (2001) for details on statistical formulae used in the calculation of grain size parameters

SAMPLE: MG04	SIEVING ERROR:	-0.5%
	SAMPLE TYPE:	Trimodal, Poorly Sorted
	TEXTURAL GROUP:	Gravelly Sand
	SEDIMENT NAME:	Medium Gravelly Coarse Sand
METHOD OF	MEAN:	1717.3
MOMENTS	SORTING:	2410.7
Arithmetic (mm)	SKEWNESS:	2.388
	KURTOSIS:	7.867
METHOD OF	MEAN:	725.5
MOMENTS	SORTING:	4.763
Geometric (mm)	SKEWNESS:	-1.192
	KURTOSIS:	5.302
METHOD OF	MEAN:	0.463
MOMENTS	SORTING:	2.252
Logarithmic (φ)	SKEWNESS:	1.192
	KURTOSIS:	5.302
FOLK AND	MEAN:	879.2
WARD METHOD	SORTING:	3.952
(mm)	SKEWNESS:	0.004
	KURTOSIS:	1.780
FOLK AND	MEAN:	0.186
WARD METHOD	SORTING:	1.983
(φ)	SKEWNESS:	-0.004
	KURTOSIS:	1.780
FOLK AND	MEAN:	Coarse Sand
WARD METHOD	SORTING:	Poorly Sorted
(Description)	SKEWNESS:	Symmetrical
	KURTOSIS:	Very Leptokurtic
	MODE 1 (mm):	605.0
	MODE 2 (mm):	9600.0
	MODE 3 (mm):	4800.0
	MODE 1 (φ):	0.747
	MODE 2 (φ):	-3.243
	MODE 3 (φ):	-2.243
	D ₁₀ (mm):	164.9
	D ₅₀ (mm):	793.9
	D ₉₀ (mm):	4699.3
	(D ₉₀ / D ₁₀) (mm):	28.49
	(D ₉₀ - D ₁₀) (mm):	4534.3
	(D ₇₅ / D ₂₅) (mm):	3.579
	(D ₇₅ - D ₂₅) (mm):	1148.8
	D ₁₀ (φ):	-2.232
	D ₅₀ (φ):	0.333
	D ₉₀ (φ):	2.600
	(D ₉₀ / D ₁₀) (φ):	-1.165
	(D ₉₀ - D ₁₀) (φ):	4.833
	(D ₇₅ / D ₂₅) (φ):	-1.734
	$(D_{75} - D_{25}) (0)$	1,839

SAMPLE: MG11	SIEVING ERROR:	-0.5%					
	SAMPLE TYPE:	Unimodal, Poorly Sorted					
	TEXTURAL GROUP:	Slightly Gravelly Muddy Sand					
	SEDIMENT NAME:	Slightly Fine Gravelly Very Coarse Silty Medium Sand					
METHOD OF	MEAN:	546.7					
MOMENTS	SORTING:	984.5					
Arithmetic (mm)	SKEWNESS:	5.413					
	KURTOSIS:	40.01					
METHOD OF	MEAN:	244.0					
MOMENTS	SORTING:	4.119					
Geometric (mm)	SKEWNESS:	-0.978					
	KURTOSIS:	4.528					
METHOD OF	MEAN:	2.035					
MOMENTS	SORTING:	2.042					
Logarithmic (φ)	SKEWNESS:	0.978					
	KURTOSIS:	4.528					
FOLK AND	MEAN:	292.2					
WARD METHOD	SORTING:	3.134					
(mm)	SKEWNESS:	-0.094					
	KURTOSIS:	1.962					
FOLK AND	MEAN:	1.775					
WARD METHOD	SORTING:	1.648					
(φ)	SKEWNESS:	0.094					
	KURTOSIS:	1.962					
FOLK AND	MEAN:	Medium Sand					
WARD METHOD	SORTING:	Poorly Sorted					
(Description)	SKEWNESS:	Symmetrical					
	KURTOSIS:	Very Leptokurtic					
	MODE 1 (mm):	215.0					
	MODE 2 (mm):						
	MODE 3 (mm):						
	MODE 1 (φ):	2.237					
	MODE 2 (φ):						
	MODE 3 (φ):						
	D ₁₀ (mm):	57.67					
	D ₅₀ (mm):	284.4					
	D ₉₀ (mm):	982.8					
	(D ₉₀ / D ₁₀) (mm):	17.04					
	(D ₉₀ - D ₁₀) (mm):	925.1					
	(D ₇₅ / D ₂₅) (mm):	2.704					
	(D ₇₅ - D ₂₅) (mm):	309.4					
	D ₁₀ (φ):	0.025					
	D ₅₀ (φ):	1.814					
	D ₉₀ (φ):	4.116					
	(D ₉₀ / D ₁₀) (φ):	164.0					
	(D ₉₀ - D ₁₀) (φ):	4.091					
	(D ₇₅ / D ₂₅) (φ):	2.398					
	(D ₇₅ - D ₂₅) (φ):	1.435					

SAMPLE: MG13	SIEVING ERROR:	-0.5%					
	SAMPLE TYPE:	Trimodal, Very Poorly Sorted					
	TEXTURAL GROUP:	Sandy Gravel					
	SEDIMENT NAME:	Sandy Medium Gravel					
METHOD OF	MEAN:	2445.2					
MOMENTS	SORTING:	3166.0					
Arithmetic (mm)	SKEWNESS:	1.506					
· · · · · ·	KURTOSIS:	3.781					
METHOD OF	MEAN:	888.7					
MOMENTS	SORTING:	5.566					
Geometric (mm)	SKEWNESS:	-0.942					
	KURTOSIS:	4.295					
METHOD OF	MEAN:	0.170					
MOMENTS	SORTING:	2.477					
Logarithmic (φ)	SKEWNESS:	0.942					
• • • • • • • • • • • • • • • • • • • •	KURTOSIS:	4.295					
FOLK AND	MEAN:	1090.9					
WARD METHOD	SORTING:	4.806					
(mm)	SKEWNESS:	0.050					
	KURTOSIS:	1.135					
FOLK AND	MEAN:	-0.126					
WARD METHOD	SORTING:	2.265					
(φ)	SKEWNESS:	-0.050					
	KURTOSIS:	1.135					
FOLK AND	MEAN:	Very Coarse Sand					
WARD METHOD	SORTING:	Very Poorly Sorted					
(Description)	SKEWNESS:	Symmetrical					
	KURTOSIS:	Leptokurtic					
	MODE 1 (mm):	9600.0					
	MODE 2 (mm):	605.0					
	MODE 3 (mm):	4800.0					
	MODE 1 (φ):	-3.243					
	MODE 2 (φ):	0.747					
	MODE 3 (φ):	-2.243					
	D ₁₀ (mm):	170.3					
	D ₅₀ (mm):	873.0					
	D ₉₀ (mm):	8811.8					
	(D ₉₀ / D ₁₀) (mm):	51.74					
	(D ₉₀ - D ₁₀) (mm):	8641.5					
	(D ₇₅ / D ₂₅) (mm):	7.544					
	(D ₇₅ - D ₂₅) (mm):	2720.2					
	D ₁₀ (φ):	-3.139					
	D ₅₀ (φ):	0.196					
	D ₉₀ (φ):	2.554					
	(D ₉₀ / D ₁₀) (φ):	-0.813					
	$(D_{90} - D_{10})(\phi)$:	5.693					
	(D ₇₅ / D ₂₅) (φ):	-0.768					
	$(D_{75} - D_{25}) (\Phi)$:	2.915					

SAMPLE: MG15	SIEVING ERROR:	-0.2%
	SAMPLE TYPE:	Unimodal, Poorly Sorted
	TEXTURAL GROUP:	Gravelly Sand
	SEDIMENT NAME:	Very Fine Gravelly Coarse Sand
METHOD OF	MEAN:	947.9
MOMENTS	SORTING:	946.3
Arithmetic (mm)	SKEWNESS:	2.125
	KURTOSIS:	8.159
METHOD OF	MEAN:	513.7
MOMENTS	SORTING:	4.102
Geometric (mm)	SKEWNESS:	-1.600
	KURTOSIS:	5.870
METHOD OF	MEAN:	0.961
MOMENTS	SORTING:	2.036
Logarithmic (φ)	SKEWNESS:	1.600
	KURTOSIS:	5.870
FOLK AND	MEAN:	615.7
WARD METHOD	SORTING:	3.292
(mm)	SKEWNESS:	-0.209
	KURTOSIS:	1.468
FOLK AND	MEAN:	0.700
WARD METHOD	SORTING:	1.719
(φ)	SKEWNESS:	0.209
	KURTOSIS:	1.468
FOLK AND	MEAN:	Coarse Sand
WARD METHOD	SORTING:	Poorly Sorted
(Description)	SKEWNESS:	Fine Skewed
	KURTOSIS:	Leptokurtic
	MODE 1 (mm):	605.0
	MODE 2 (mm):	
	MODE 3 (mm):	
	MODE 1 (φ):	0.747
	MODE 2 (φ):	
	MODE 3 (φ):	
	D ₁₀ (mm):	150.5
	D ₅₀ (mm):	644.5
	D ₉₀ (mm):	1976.1
	(D ₉₀ / D ₁₀) (mm):	13.13
	(D ₉₀ - D ₁₀) (mm):	1825.6
	(D ₇₅ / D ₂₅) (mm):	3.666
	(D ₇₅ - D ₂₅) (mm):	882.2
	$D_{10}(\phi)$:	-0.983
	$D_{50}(\phi)$:	0.634
	$D_{90}(\Psi)$:	2./32
	$(D_{90} / D_{10}) (\Psi)$:	-2.780
	$(D_{90} - D_{10})(\Psi)$:	3./15
	$(D_{75} / D_{25}) (\Psi)$:	-5.723
	$(U_{75} - U_{25}) (\Psi).$	1.0/4

SAMPLE: MG17	SIEVING ERROR:	-0.2%
	SAMPLE TYPE:	Unimodal. Poorly Sorted
	TEXTURAL GROUP:	Gravelly Sand
	SEDIMENT NAME:	Verv Fine Gravelly Coarse Sand
METHOD OF	MEAN:	908.5
MOMENTS	SORTING:	722.5
Arithmetic (mm)	SKEWNESS:	1.728
, , , , , , , , , , , , , , , , , , ,	KURTOSIS:	7.769
METHOD OF	MEAN:	529.7
MOMENTS	SORTING:	4.134
Geometric (mm)	SKEWNESS:	-1.906
	KURTOSIS:	6.314
METHOD OF	MEAN:	0.917
MOMENTS	SORTING:	2.048
Logarithmic (φ)	SKEWNESS:	1.906
• • • • • • • • • • • • • • • • • • • •	KURTOSIS:	6.314
FOLK AND	MEAN:	655.7
WARD METHOD	SORTING:	3.080
(mm)	SKEWNESS:	-0.388
	KURTOSIS:	1.780
FOLK AND	MEAN:	0.609
WARD METHOD	SORTING:	1.623
(φ)	SKEWNESS:	0.388
	KURTOSIS:	1.780
FOLK AND	MEAN:	Coarse Sand
WARD METHOD	SORTING:	Poorly Sorted
(Description)	SKEWNESS:	Very Fine Skewed
	KURTOSIS:	Very Leptokurtic
	MODE 1 (mm):	855.0
	MODE 2 (mm):	
	MODE 3 (mm):	
	MODE 1 (φ):	0.247
	MODE 2 (φ):	
	MODE 3 (φ):	
	D ₁₀ (mm):	114.8
	D ₅₀ (mm):	759.3
	D ₉₀ (mm):	1777.4
	(D ₉₀ / D ₁₀) (mm):	15.49
	(D ₉₀ - D ₁₀) (mm):	1662.6
	(D ₇₅ / D ₂₅) (mm):	2.869
	(D ₇₅ - D ₂₅) (mm):	780.4
	D ₁₀ (φ):	-0.830
	D ₅₀ (φ):	0.397
	D ₉₀ (φ):	3.123
	(D ₉₀ / D ₁₀) (φ):	-3.764
	$(D_{90} - D_{10})(\phi)$:	3.953
	(D ₇₅ / D ₂₅) (φ):	-4.839
	(D ₇₅ - D ₂₅) (φ):	1.521

SAMPLE: MG19	SIEVING ERROR:	-0.1%
	SAMPLE TYPE:	Unimodal, Poorly Sorted
	TEXTURAL GROUP:	Slightly Gravelly Muddy Sand
		Slightly Very Fine Gravelly Very
	SEDIMENT NAME.	Coarse Silty Fine Sand
METHOD OF	MEAN:	434.8
MOMENTS	SORTING:	1128.4
Arithmetic (mm)	SKEWNESS:	6.701
	KURTOSIS:	51.70
METHOD OF	MEAN:	166.6
MOMENTS	SORTING:	4.087
Geometric (mm)	SKEWNESS:	-0.668
	KURTOSIS:	4.321
METHOD OF	MEAN:	2.585
MOMENTS	SORTING:	2.031
Logarithmic (φ)	SKEWNESS:	0.668
	KURTOSIS:	4.321
FOLK AND	MEAN:	199.3
WARD METHOD	SORTING:	2.950
(mm)	SKEWNESS:	-0.128
	KURTOSIS:	2.263
FOLK AND	MEAN:	2.327
WARD METHOD	SORTING:	1.561
(φ)	SKEWNESS:	0.128
	KURTOSIS:	2.263
FOLK AND	MEAN:	Fine Sand
WARD METHOD	SORTING:	Poorly Sorted
(Description)	SKEWNESS:	Fine Skewed
	KURTOSIS:	Very Leptokurtic
	MODE 1 (mm):	215.0
	MODE 2 (mm):	
	MODE 3 (mm):	
	MODE 1 (φ):	2.237
	MODE 2 (φ):	
	MODE 3 (φ):	
	D ₁₀ (mm):	33.53
	D ₅₀ (mm):	201.1
	D ₉₀ (mm):	618.6
	(D ₉₀ / D ₁₀) (mm):	18.45
	(D ₉₀ - D ₁₀) (mm):	585.0
	(D ₇₅ / D ₂₅) (mm):	2.312
	(D ₇₅ - D ₂₅) (mm):	175.6
	D ₁₀ (φ):	0.693
	D ₅₀ (φ):	2.314
	D ₉₀ (φ):	4.898
	(D ₉₀ / D ₁₀) (φ):	7.068
	(D ₉₀ - D ₁₀) (φ):	4.205
	(D ₇₅ / D ₂₅) (φ):	1.714
	(D ₇₅ - D ₂₅) (φ):	1.209

SAMPLE: MG20	SIEVING ERROR:	-0.3%
	SAMPLE TYPE:	Unimodal. Poorly Sorted
	TEXTURAL GROUP:	Slightly Gravelly Sand
		Slightly Very Fine Gravelly Fine
	SEDIMENT NAME:	Sand
METHOD OF	MEAN:	420.6
MOMENTS	SORTING:	629.9
Arithmetic (mm)	SKEWNESS:	4.712
	KURTOSIS:	28.81
METHOD OF	MEAN:	232.6
MOMENTS	SORTING:	3.226
Geometric (mm)	SKEWNESS:	-1.076
	KURTOSIS:	5.872
METHOD OF	MEAN:	2.104
MOMENTS	SORTING:	1.690
Logarithmic (φ)	SKEWNESS:	1.076
	KURTOSIS:	5.872
FOLK AND	MEAN:	262.1
WARD METHOD	SORTING:	2.517
(mm)	SKEWNESS:	0.041
	KURTOSIS:	1.598
FOLK AND	MEAN:	1.932
WARD METHOD	SORTING:	1.332
(φ)	SKEWNESS:	-0.041
	KURTOSIS:	1.598
FOLK AND	MEAN:	Medium Sand
WARD METHOD	SORTING:	Poorly Sorted
(Description)	SKEWNESS:	Symmetrical
	KURTOSIS:	Very Leptokurtic
	MODE 1 (mm):	215.0
	MODE 2 (mm):	
	MODE 3 (mm):	
	MODE 1 (φ):	2.237
	MODE 2 (φ):	
	MODE 3 (φ):	
	D ₁₀ (mm):	100.6
	D ₅₀ (mm):	238.9
	D ₉₀ (mm):	771.8
	(D ₉₀ / D ₁₀) (mm):	7.676
	(D ₉₀ - D ₁₀) (mm):	671.3
	(D ₇₅ / D ₂₅) (mm):	2.578
	(D ₇₅ - D ₂₅) (mm):	253.8
	D ₁₀ (φ):	0.374
	D ₅₀ (φ):	2.065
	D ₉₀ (φ):	3.314
	(D ₉₀ / D ₁₀) (φ):	8.869
	(D ₉₀ - D ₁₀) (φ):	2.940
	(D ₇₅ / D ₂₅) (φ):	2.076
	(D ₇₅ - D ₂₅) (φ):	1.366

SAMPLE: MG21	SIEVING ERROR:	0.1%
	SAMPLE TYPE:	Unimodal, Very Poorly Sorted
	TEXTURAL GROUP:	Slightly Gravelly Muddy Sand
	SEDIMENT NAME:	Slightly Very Fine Gravelly Fine Silty Fine Sand
METHOD OF	MEAN:	184.6
MOMENTS	SORTING:	248.8
Arithmetic (mm)	SKEWNESS:	3.219
	KURTOSIS:	16.68
METHOD OF	MEAN:	55.79
MOMENTS	SORTING:	5.525
Geometric (mm)	SKEWNESS:	-0.054
	KURTOSIS:	1.451
METHOD OF	MEAN:	4.164
MOMENTS	SORTING:	2.466
Logarithmic (φ)	SKEWNESS:	0.054
0 (1)	KURTOSIS:	1.451
FOLK AND	MEAN:	71.02
WARD METHOD	SORTING:	4.662
(mm)	SKEWNESS:	-0.260
、 ,	KURTOSIS:	0.837
FOLK AND	MEAN:	3.816
WARD METHOD	SORTING:	2.221
(φ)	SKEWNESS:	0.260
	KURTOSIS:	0.837
FOLK AND	MEAN:	Very Fine Sand
WARD METHOD	SORTING:	Very Poorly Sorted
(Description)	SKEWNESS:	Fine Skewed
	KURTOSIS:	Platykurtic
	MODE 1 (mm):	215.0
	MODE 2 (mm):	
	MODE 3 (mm):	
	MODE 1 (φ):	2.237
	MODE 2 (φ):	
	MODE 3 (φ):	
	D ₁₀ (mm):	7.770
	D ₅₀ (mm):	99.27
	D ₉₀ (mm):	420.2
	(D ₉₀ / D ₁₀) (mm):	54.08
	(D ₉₀ - D ₁₀) (mm):	412.5
	(D ₇₅ / D ₂₅) (mm):	10.34
	(D ₇₅ - D ₂₅) (mm):	203.6
	D ₁₀ (φ):	1.251
	D ₅₀ (φ):	3.333
	D ₉₀ (φ):	7.008
	(D ₉₀ / D ₁₀) (φ):	5.603
	(D ₉₀ - D ₁₀) (φ):	5.757
	(D ₇₅ / D ₂₅) (φ):	2.568
	(D ₇₅ - D ₂₅) (φ):	3.370

SAMPLE: MG23	SIEVING ERROR:	-0.6%
	SAMPLE TYPE:	Unimodal, Poorly Sorted
	TEXTURAL GROUP:	Gravelly Sand
	SEDIMENT NAME:	Very Fine Gravelly Medium Sand
METHOD OF	MEAN:	561.8
MOMENTS	SORTING:	877.2
Arithmetic (mm)	SKEWNESS:	4.894
	KURTOSIS:	37.35
METHOD OF	MEAN:	274.0
MOMENTS	SORTING:	3.737
Geometric (mm)	SKEWNESS:	-0.944
	KURTOSIS:	4.928
METHOD OF	MEAN:	1.868
MOMENTS	SORTING:	1.902
Logarithmic (φ)	SKEWNESS:	0.944
	KURTOSIS:	4.928
FOLK AND	MEAN:	315.0
WARD METHOD	SORTING:	3.076
(mm)	SKEWNESS:	0.027
	KURTOSIS:	1.617
FOLK AND	MEAN:	1.667
WARD METHOD	SORTING:	1.621
(φ)	SKEWNESS:	-0.027
	KURTOSIS:	1.617
FOLK AND	MEAN:	Medium Sand
WARD METHOD	SORTING:	Poorly Sorted
(Description)	SKEWNESS:	Symmetrical
	KURTOSIS:	Very Leptokurtic
	MODE 1 (mm):	215.0
	MODE 2 (mm):	
	MODE 3 (mm):	
	MODE 1 (φ):	2.237
	MODE 2 (φ):	
	MODE 3 (φ):	
	D ₁₀ (mm):	93.22
	D ₅₀ (mm):	285.4
	D ₉₀ (mm):	1219.4
	(D ₉₀ / D ₁₀) (mm):	13.08
	(D ₉₀ - D ₁₀) (mm):	1126.2
	(D ₇₅ / D ₂₅) (mm):	3.033
	(D ₇₅ - D ₂₅) (mm):	367.7
	D ₁₀ (φ):	-0.286
	D ₅₀ (φ):	1.809
	D ₉₀ (φ):	3.423
	(D ₉₀ / D ₁₀) (φ):	-11.961
	$(D_{90} - D_{10})(\phi)$:	3.709
	(D ₇₅ / D ₂₅) (φ):	2.848
	(D ₇₅ - D ₂₅) (φ):	1.601

SAMPLE: MG24	SIEVING ERROR:	-0.4%
	SAMPLE TYPE:	Unimodal, Very Poorly Sorted
	TEXTURAL GROUP:	Gravelly Muddy Sand
		Very Fine Gravelly Very Coarse
	SEDIMENT NAME.	Silty Medium Sand
METHOD OF	MEAN:	925.7
MOMENTS	SORTING:	1539.2
Arithmetic (mm)	SKEWNESS:	4.001
	KURTOSIS:	21.29
METHOD OF	MEAN:	355.0
MOMENTS	SORTING:	5.128
Geometric (mm)	SKEWNESS:	-0.965
	KURTOSIS:	3.944
METHOD OF	MEAN:	1.494
MOMENTS	SORTING:	2.358
Logarithmic (φ)	SKEWNESS:	0.965
	KURTOSIS:	3.944
FOLK AND	MEAN:	431.8
WARD METHOD	SORTING:	4.097
(mm)	SKEWNESS:	-0.113
	KURTOSIS:	1.569
FOLK AND	MEAN:	1.211
WARD METHOD	SORTING:	2.035
(φ)	SKEWNESS:	0.113
	KURTOSIS:	1.569
FOLK AND	MEAN:	Medium Sand
WARD METHOD	SORTING:	Very Poorly Sorted
(Description)	SKEWNESS:	Fine Skewed
	KURTOSIS:	Very Leptokurtic
	MODE 1 (mm):	302.5
	MODE 2 (mm):	
	MODE 3 (mm):	
	MODE 1 (φ):	1.747
	MODE 2 (φ):	
	MODE 3 (φ):	
	D ₁₀ (mm):	49.50
	D ₅₀ (mm):	427.9
	D ₉₀ (mm):	1958.2
	(D ₉₀ / D ₁₀) (mm):	39.56
	(D ₉₀ - D ₁₀) (mm):	1908.7
	(D ₇₅ / D ₂₅) (mm):	4.241
	(D ₇₅ - D ₂₅) (mm):	717.9
	$D_{10}(\phi)$:	-0.970
	$D_{50}(\phi)$:	1.225
	$D_{90}(\phi)$:	4.336
	$(D_{90} / D_{10}) (\phi)$:	-4.4/3
	$(D_{90} - D_{10})(\Psi)$:	5.306
	$(D_{75} / D_{25}) (\Psi)$:	24.13
	(D ₇₅ - D ₂₅) (Φ):	2.084

SAMPLE: MG37	SIEVING ERROR:	-0.2%
	SAMPLE TYPE:	Unimodal. Poorly Sorted
	TEXTURAL GROUP:	Gravelly Muddy Sand
		Very Fine Gravelly Coarse Silty
	SEDIMENT NAME.	Coarse Sand
METHOD OF	MEAN:	869.4
MOMENTS	SORTING:	865.0
Arithmetic (mm)	SKEWNESS:	2.052
	KURTOSIS:	8.227
METHOD OF	MEAN:	434.6
MOMENTS	SORTING:	4.653
Geometric (mm)	SKEWNESS:	-1.441
	KURTOSIS:	4.695
METHOD OF	MEAN:	1.202
MOMENTS	SORTING:	2.218
Logarithmic (φ)	SKEWNESS:	1.441
	KURTOSIS:	4.695
FOLK AND	MEAN:	525.1
WARD METHOD	SORTING:	3.739
(mm)	SKEWNESS:	-0.324
	KURTOSIS:	1.471
FOLK AND	MEAN:	0.929
WARD METHOD	SORTING:	1.903
(φ)	SKEWNESS:	0.324
	KURTOSIS:	1.471
FOLK AND	MEAN:	Coarse Sand
WARD METHOD	SORTING:	Poorly Sorted
(Description)	SKEWNESS:	Very Fine Skewed
	KURTOSIS:	Leptokurtic
	MODE 1 (mm):	605.0
	MODE 2 (mm):	
	MODE 3 (mm):	
	MODE 1 (φ):	0.747
	MODE 2 (φ):	
	MODE 3 (φ):	
	D ₁₀ (mm):	73.42
	D ₅₀ (mm):	620.0
	D ₉₀ (mm):	1896.5
	(D ₉₀ / D ₁₀) (mm):	25.83
	(D ₉₀ - D ₁₀) (mm):	1823.1
	(D ₇₅ / D ₂₅) (mm):	4.047
	(D ₇₅ - D ₂₅) (mm):	849.9
	D ₁₀ (φ):	-0.923
	D ₅₀ (φ):	0.690
	D ₉₀ (φ):	3.768
	(D ₉₀ / D ₁₀) (φ):	-4.081
	$(D_{90} - D_{10})(\phi)$:	4.691
	(D ₇₅ / D ₂₅) (φ):	-10.540
	(D ₇₅ - D ₂₅) (φ):	2.017

SAMPLE: MG41	SIEVING ERROR:	-0.2%
	SAMPLE TYPE:	Unimodal. Poorly Sorted
	TEXTURAL GROUP:	Slightly Gravelly Muddy Sand
		Slightly Very Fine Gravelly Very
	SEDIMENT NAME:	Coarse Silty Fine Sand
METHOD OF	MEAN:	184.5
MOMENTS	SORTING:	224.5
Arithmetic (mm)	SKEWNESS:	7.321
	KURTOSIS:	80.29
METHOD OF	MEAN:	109.2
MOMENTS	SORTING:	3.262
Geometric (mm)	SKEWNESS:	-1.237
	KURTOSIS:	4.160
METHOD OF	MEAN:	3.195
MOMENTS	SORTING:	1.706
Logarithmic (φ)	SKEWNESS:	1.237
	KURTOSIS:	4.160
FOLK AND	MEAN:	134.3
WARD METHOD	SORTING:	2.349
(mm)	SKEWNESS:	-0.329
	KURTOSIS:	2.360
FOLK AND	MEAN:	2.896
WARD METHOD	SORTING:	1.232
(φ)	SKEWNESS:	0.329
	KURTOSIS:	2.360
FOLK AND	MEAN:	Fine Sand
WARD METHOD	SORTING:	Poorly Sorted
(Description)	SKEWNESS:	Very Fine Skewed
	KURTOSIS:	Very Leptokurtic
	MODE 1 (mm):	152.5
	MODE 2 (mm):	
	MODE 3 (mm):	
	MODE 1 (φ):	2.737
	MODE 2 (φ):	
	MODE 3 (φ):	
	D ₁₀ (mm):	26.86
	D ₅₀ (mm):	146.4
	D ₉₀ (mm):	280.9
	(D ₉₀ / D ₁₀) (mm):	10.46
	(D ₉₀ - D ₁₀) (mm):	254.1
	(D ₇₅ / D ₂₅) (mm):	1.901
	(D ₇₅ - D ₂₅) (mm):	92.48
	D ₁₀ (φ):	1.832
	D ₅₀ (φ):	2.772
	D ₉₀ (φ):	5.219
	(D ₉₀ / D ₁₀) (φ):	2.849
	(D ₉₀ - D ₁₀) (φ):	3.387
	(D ₇₅ / D ₂₅) (φ):	1.393
	(D ₇₅ - D ₂₅) (φ):	0.927

SAMPLE: MG42	SIEVING ERROR:	0.3%
	SAMPLE TYPE:	Unimodal. Poorly Sorted
	TEXTURAL GROUP:	Slightly Gravelly Muddy Sand
		Slightly Medium Gravelly Very
	SEDIMENT NAME.	Coarse Silty Fine Sand
METHOD OF	MEAN:	211.1
MOMENTS	SORTING:	676.1
Arithmetic (mm)	SKEWNESS:	13.20
	KURTOSIS:	182.9
METHOD OF	MEAN:	101.4
MOMENTS	SORTING:	3.479
Geometric (mm)	SKEWNESS:	-0.960
	KURTOSIS:	4.113
METHOD OF	MEAN:	3.302
MOMENTS	SORTING:	1.799
Logarithmic (φ)	SKEWNESS:	0.960
	KURTOSIS:	4.113
FOLK AND	MEAN:	123.0
WARD METHOD	SORTING:	2.451
(mm)	SKEWNESS:	-0.436
	KURTOSIS:	2.264
FOLK AND	MEAN:	3.024
WARD METHOD	SORTING:	1.293
(φ)	SKEWNESS:	0.436
	KURTOSIS:	2.264
FOLK AND	MEAN:	Very Fine Sand
WARD METHOD	SORTING:	Poorly Sorted
(Description)	SKEWNESS:	Very Fine Skewed
	KURTOSIS:	Very Leptokurtic
	MODE 1 (mm):	152.5
	MODE 2 (mm):	
	MODE 3 (mm):	
	MODE 1 (φ):	2.737
	MODE 2 (φ):	
	MODE 3 (φ):	
	D ₁₀ (mm):	20.94
	D ₅₀ (mm):	144.8
	D ₉₀ (mm):	252.9
	(D ₉₀ / D ₁₀) (mm):	12.08
	(D ₉₀ - D ₁₀) (mm):	232.0
	(D ₇₅ / D ₂₅) (mm):	1.943
	(D ₇₅ - D ₂₅) (mm):	91.61
	D ₁₀ (φ):	1.983
	D ₅₀ (φ):	2.788
	D ₉₀ (φ):	5.577
	(D ₉₀ / D ₁₀) (φ):	2.812
	$(D_{90} - D_{10})(\phi)$:	3.594
	(D ₇₅ / D ₂₅) (φ):	1.398
	(D ₇₅ - D ₂₅) (φ):	0.959

SAMPLE: MGR01	SIEVING ERROR:	0.5%
	SAMPLE TYPE:	Unimodal, Poorly Sorted
	TEXTURAL GROUP:	Slightly Gravelly Sand
	SEDIMENT NAME:	Slightly Very Fine Gravelly Medium Sand
METHOD OF	MEAN:	511.7
MOMENTS	SORTING:	608.3
Arithmetic (mm)	SKEWNESS:	3.882
· · · · · · · · · · · · · · · · · · ·	KURTOSIS:	22.46
METHOD OF	MEAN:	311.1
MOMENTS	SORTING:	3.075
Geometric (mm)	SKEWNESS:	-1.412
	KURTOSIS:	6.988
METHOD OF	MEAN:	1.684
MOMENTS	SORTING:	1.621
Logarithmic (φ)	SKEWNESS:	1.412
0 (1)	KURTOSIS:	6.988
FOLK AND	MEAN:	353.1
WARD METHOD	SORTING:	2.359
(mm)	SKEWNESS:	0.082
	KURTOSIS:	1.443
FOLK AND	MEAN:	1.502
WARD METHOD	SORTING:	1.238
(φ)	SKEWNESS:	-0.082
	KURTOSIS:	1.443
FOLK AND	MEAN:	Medium Sand
WARD METHOD	SORTING:	Poorly Sorted
(Description)	SKEWNESS:	Symmetrical
х I ,	KURTOSIS:	Leptokurtic
	MODE 1 (mm):	215.0
	MODE 2 (mm):	
	MODE 3 (mm):	
	MODE 1 (φ):	2.237
	MODE 2 (φ):	
	MODE 3 (φ):	
	D ₁₀ (mm):	143.3
	D ₅₀ (mm):	318.4
	D ₉₀ (mm):	1029.2
	(D ₉₀ / D ₁₀) (mm):	7.181
	(D ₉₀ - D ₁₀) (mm):	885.9
	(D ₇₅ / D ₂₅) (mm):	2.593
	(D ₇₅ - D ₂₅) (mm):	337.9
	D ₁₀ (φ):	-0.042
	D ₅₀ (φ):	1.651
	D ₉₀ (φ):	2.803
	(D ₉₀ / D ₁₀) (φ):	-67.419
	(D ₉₀ - D ₁₀) (φ):	2.844
	(D ₇₅ / D ₂₅) (φ):	2.594
	(D ₇₅ - D ₂₅) (φ):	1.375

SAMPLE: MGR02	SIEVING ERROR:	0.9%
	SAMPLE TYPE:	Unimodal, Poorly Sorted
	TEXTURAL GROUP:	Slightly Gravelly Sand
	SEDIMENT NAME:	Slightly Fine Gravelly Fine Sand
METHOD OF	MEAN:	519.5
MOMENTS	SORTING:	1026.8
Arithmetic (mm)	SKEWNESS:	5.266
	KURTOSIS:	37.18
METHOD OF	MEAN:	230.3
MOMENTS	SORTING:	3.715
Geometric (mm)	SKEWNESS:	-0.724
(, , , , , , , , , , , , , , , , , , ,	KURTOSIS:	5.048
METHOD OF	MEAN:	2.118
MOMENTS	SORTING:	1.893
Logarithmic (0)	SKEWNESS:	0.724
	KURTOSIS:	5.048
FOLK AND	MEAN:	261.1
WARD METHOD	SORTING:	2.884
(mm)	SKEWNESS:	0.067
· · ·	KURTOSIS:	1.884
FOLK AND	MEAN:	1.938
WARD METHOD	SORTING:	1.528
(φ)	SKEWNESS:	-0.067
	KURTOSIS:	1.884
FOLK AND	MEAN:	Medium Sand
WARD METHOD	SORTING:	Poorly Sorted
(Description)	SKEWNESS:	Symmetrical
· · · /	KURTOSIS:	Very Leptokurtic
	MODE 1 (mm):	215.0
	MODE 2 (mm):	
	MODE 3 (mm):	
	MODE 1 (φ):	2.237
	MODE 2 (φ):	
	MODE 3 (φ):	
	D ₁₀ (mm):	85.00
	D ₅₀ (mm):	234.8
	D ₉₀ (mm):	886.2
	(D ₉₀ / D ₁₀) (mm):	10.43
	(D ₉₀ - D ₁₀) (mm):	801.2
	(D ₇₅ / D ₂₅) (mm):	2.643
	(D ₇₅ - D ₂₅) (mm):	258.1
	D ₁₀ (φ):	0.174
	D ₅₀ (φ):	2.090
	D ₉₀ (φ):	3.556
	(D ₉₀ / D ₁₀) (φ):	20.41
	(D ₉₀ - D ₁₀) (φ):	3.382
	(D ₇₅ / D ₂₅) (φ):	2.105
	(D ₇₅ - D ₂₅) (φ):	1.402

SAMPLE: MGR03	SIEVING ERROR:	0.9%
	SAMPLE TYPE:	Unimodal, Poorly Sorted
	TEXTURAL GROUP:	Slightly Gravelly Sand
	SEDIMENT NAME:	Slightly Fine Gravelly Fine Sand
METHOD OF	MEAN:	526.5
MOMENTS	SORTING:	1214.4
Arithmetic (mm)	SKEWNESS:	5.817
	KURTOSIS:	40.07
METHOD OF	MEAN:	240.8
MOMENTS	SORTING:	3.281
Geometric (mm)	SKEWNESS:	-0.605
	KURTOSIS:	6.440
METHOD OF	MEAN:	2.054
MOMENTS	SORTING:	1.714
Logarithmic (φ)	SKEWNESS:	0.605
	KURTOSIS:	6.440
FOLK AND	MEAN:	256.0
WARD METHOD	SORTING:	2.413
(mm)	SKEWNESS:	0.105
	KURTOSIS:	1.948
FOLK AND	MEAN:	1.966
WARD METHOD	SORTING:	1.271
(φ)	SKEWNESS:	-0.105
	KURTOSIS:	1.948
FOLK AND	MEAN:	Medium Sand
WARD METHOD	SORTING:	Poorly Sorted
(Description)	SKEWNESS:	Coarse Skewed
	KURTOSIS:	Very Leptokurtic
	MODE 1 (mm):	215.0
	MODE 2 (mm):	
	MODE 3 (mm):	
	MODE 1 (φ):	2.237
	MODE 2 (φ):	
	MODE 3 (φ):	
	D ₁₀ (mm):	114.5
	D ₅₀ (mm):	234.9
	D ₉₀ (mm):	712.3
	(D ₉₀ / D ₁₀) (mm):	6.221
	(D ₉₀ - D ₁₀) (mm):	597.8
	(D ₇₅ / D ₂₅) (mm):	2.174
	(D ₇₅ - D ₂₅) (mm):	202.6
	D ₁₀ (φ):	0.490
	D ₅₀ (φ):	2.090
	D ₉₀ (φ):	3.127
	$(D_{90} / D_{10}) (\phi)$:	6.387
	$(D_{90} - D_{10})(\phi)$:	2.637
	(D ₇₅ / D ₂₅) (φ):	1.792
	(D ₇₅ - D ₂₅) (Φ):	1.120

SAMPLE: MGR09	SIEVING ERROR:	0.5%
	SAMPLE TYPE:	Unimodal, Poorly Sorted
	TEXTURAL GROUP:	Slightly Gravelly Muddy Sand
	SEDIMENT NAME:	Slightly Very Fine Gravelly Very Coarse Silty Fine Sand
METHOD OF	MEAN:	148.0
MOMENTS	SORTING:	180.9
Arithmetic (mm)	SKEWNESS:	6.815
	KURTOSIS:	92.31
METHOD OF	MEAN:	60.87
MOMENTS	SORTING:	4.488
Geometric (mm)	SKEWNESS:	-0.406
	KURTOSIS:	1.680
METHOD OF	MEAN:	4.038
MOMENTS	SORTING:	2.166
Logarithmic (φ)	SKEWNESS:	0.406
	KURTOSIS:	1.680
FOLK AND	MEAN:	72.52
WARD METHOD	SORTING:	3.707
(mm)	SKEWNESS:	-0.421
	KURTOSIS:	0.980
FOLK AND	MEAN:	3.785
WARD METHOD	SORTING:	1.890
(φ)	SKEWNESS:	0.421
	KURTOSIS:	0.980
FOLK AND	MEAN:	Very Fine Sand
WARD METHOD	SORTING:	Poorly Sorted
(Description)	SKEWNESS:	Very Fine Skewed
	KURTOSIS:	Mesokurtic
	MODE 1 (mm):	152.5
	MODE 2 (mm):	
	MODE 3 (mm):	
	MODE 1 (φ):	2.737
	MODE 2 (φ):	
	MODE 3 (φ):	
	D ₁₀ (mm):	9.152
	D ₅₀ (mm):	109.0
	D ₉₀ (mm):	281.4
	(D ₉₀ / D ₁₀) (mm):	30.74
	(D ₉₀ - D ₁₀) (mm):	272.2
	(D ₇₅ / D ₂₅) (mm):	5.726
	$(D_{75} - D_{25})$ (mm):	155.1
	$D_{10}(\phi)$:	1.830
	$D_{50}(\phi)$:	3.198
	$D_{90}(\varphi)$:	6.//2
	$(D_{90} / D_{10}) (\phi)$:	3.701
	$(D_{90} - D_{10})(\psi)$	4.942
	$(D_{75} / D_{25}) (\psi)$:	2.044
	(D ₇₅ - D ₂₅) (Ψ):	2.517

APPENDIX 04. MDS analysis results - abiotic bubble analysis

Normalised PSA data

Depth (m)

www.snh.gov.uk

© Scottish Natural Heritage 2012 ISBN: 978-1-85397-848-7

Policy and Advice Directorate, Great Glen House, Leachkin Road, Inverness IV3 8NW T: 01463 725000

You can download a copy of this publication from the SNH website.

All of nature for all of Scotland Nàdar air fad airson Alba air fad