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Abstract

Land-cover mapping efforts within the USGS Gap Analysis Program have traditionally been state-centered; each state having the responsibility
of implementing a project design for the geographic area within their state boundaries. The Southwest Regional Gap Analysis Project
(SWReGAP) was the first formal GAP project designed at a regional, multi-state scale. The project area comprises the southwestern states of
Arizona, Colorado, Nevada, New Mexico, and Utah. The land-cover map/dataset was generated using regionally consistent geospatial data
(Landsat ETM+ imagery (1999–2001) and DEM derivatives), similar field data collection protocols, a standardized land-cover legend, and a
common modeling approach (decision tree classifier). Partitioning of mapping responsibilities amongst the five collaborating states was organized
around ecoregion-based “mapping zones”. Over the course of 21/2 field seasons approximately 93,000 reference samples were collected directly,
or obtained from other contemporary projects, for the land-cover modeling effort. The final map was made public in 2004 and contains 125 land-
cover classes. An internal validation of 85 of the classes, representing 91% of the land area was performed. Agreement between withheld samples
and the validated dataset was 61% (KHAT=.60, n=17,030). This paper presents an overview of the methodologies used to create the regional
land-cover dataset and highlights issues associated with large-area mapping within a coordinated, multi-institutional management framework.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Mapping the Earth's natural resources is fundamental to the
inventory and subsequent monitoring of the Earth's biota, key
to understanding environmental processes, and critical for
effective natural resource planning and land management
decision-making. The goal of the United States Geological
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Survey (USGS) Biological Resource Discipline (BRD) Gap
Analysis Program (GAP) is to provide geographic information
on biological diversity across large landscapes at moderate
spatial resolutions for use by managers, scientists, planners, and
policy makers to make informed decisions (Scott et al., 1993). A
baseline GAP product is a land-cover map derived from satellite
imagery.

GAP projects in the United States have traditionally operated
within a state-based framework; that is, each state has had the
responsibility of implementing a project design for the
geographic area within their state boundaries. As a result,
there have been considerable differences in mapping method-
ology, data collection efforts, and target land-cover legends
among state-based GAP projects. To address these disconti-
nuities, GAP was encouraged to consider adopting a regional
operating framework for future gap analysis efforts (Eve &
Merchant, 1998). One of the earliest state-based gap analysis
efforts was the Utah project completed in 1995 (Edwards et al.,
1995; Homer et al., 1997). Subsequently, GAP efforts in the
adjoining states of NewMexico, Nevada, Colorado and Arizona
were completed (Halvorson et al., 2001; Homer, 1998; Schrupp
et al., 2000; Thompson et al., 1996). In 1999 representatives
from these five states, and NatureServe (formerly with The
Nature Conservancy) met to determine the feasibility of
implementing a coordinated GAP project for the southwest
region of the United States. Given advances in computing
technologies, mapping methodologies, reduced costs of imag-
ery and ancillary data, and perhaps most importantly—the
perceived need for a regional GAP project, it was determined
that a coordinated effort of this magnitude was possible. USGS
BRD funded the Southwest Regional Gap Analysis Project
(SWReGAP) beginning in 2000.

The primary objective of the SWReGAP effort was to create
a seamless land-cover map approximating, or surpassing, the
thematic level achieved by the earlier state-based gap analysis
efforts for the region. The number of land-cover classes mapped
in the earlier efforts for the five southwestern states ranged from
65 classes in Nevada (Homer, 1998) to 38 classes in Utah
(Edwards et al., 1995). Overall map accuracy for the state maps
ranged from a high of 83% to a low of 15% (Edwards et al.,
1998; Falzarano & Thomas, 2004; Homer, 1998; Schrupp et al.,
2000; Thompson et al., 1996). Given the results of these
previous efforts, we anticipated being able to map roughly 100
land-cover classes with a goal of 80% overall map accuracy.
The five-state region comprises roughly 1.4 million km2

(540,000 sq. miles) representing approximately 1/5th the
conterminous United States. Previous to SWReGAP the only
U.S. land-cover mapping effort comparable to this in geo-
graphic scale was the 1992 National Land-cover Dataset
(NLCD) (Vogelmann et al., 2001).

Utah State University, located in Logan, Utah was
designated as the regional land-cover laboratory with the
responsibility of coordinating the development of protocols for
field data collection, image and ancillary data processing, and
mapping methodologies for the region. Individual state teams
were responsible for applying these protocols to their area of
responsibility. This paper presents an overview of the method-
ologies used to create the regional land-cover dataset and
highlights several of the issues associated with achieving this
product through a regionally coordinated process.

2. Project organization

2.1. Project study area

The study area, lying between 102°–120° W longitude and
31°–42° N latitude, is diverse in its physical, climatic, and
biological characteristics, and includes the states of Arizona,
Colorado, New Mexico, Nevada, and Utah. Elevation ranges
from approximately 22 m (72 ft) to 4405 m (14,500 ft).
Precipitation, falling predominantly in summer or winter
depending on location, ranges from 100 mm (4 in) to 770 mm
(30 in). Vegetation covers the spectrum from sparse, hot desert
scrub and cacti to more temperate shrub-steppe and grasslands,
to montane and sub-alpine forests, meadows and alpine turf
(Bailey, 1995).

2.2. Division of responsibilities

“Spectral-physiographic” mapping areas have proven useful
for satellite-based land-cover mapping by maximizing spectral
differentiation between areas with relatively uniform ecological
characteristics (Bauer et al., 1994; Homer et al., 1997;
Lillesand, 1996; Reese et al., 2002). We developed areas of
responsibility for participating state teams by dividing the study
area into spectral-physiographic “mapping zones”, (in lieu of
political state boundaries) which also leveraged local knowl-
edge of the biota in each sub-region.

Ecoregions defined by Bailey (1995) and Omernik (1987)
provided a starting point for determining mapping zone
boundaries and were refined using heads-up screen digitizing
using a regional mosaic of Landsat TM imagery and a digital
shaded relief map. Initial efforts yielded 73 mapping zones for
the region. Through an iterative and collaborative process
involving all land-cover mapping teams and NatureServe, the
final number of mapping zones was reduced to 25 (Fig. 1). A
more detailed explanation of mapping zone development is
found in Manis et al. (2000).

2.3. Project coordination and timeframe

Each state was responsible for four to six mapping zones
roughly corresponding to state boundaries. Initial field data
collection protocols were established at a workshop in Las
Vegas, Nevada in the spring of 2001. Field data collection
primarily occurred during 2002 and 2003. Land-cover work-
shops dedicated to ensuring regionally consistent mapping
methods were conducted during the winters of 2002 and 2003.
Yearly meetings and monthly teleconferences involving key
land-cover mapping personnel from all five states and
NatureServe ecologists were important to the collaborative
mapping process. Mapping efforts were completed on a
mapping zone by mapping zone basis by individual states,
with the final integration of all mapping zones performed by the



Fig. 1. Spectral-physiographic mapping zones delineated for the SWReGAP.
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regional land-cover lab. The seamless land-cover map was
completed and made available to the public in September 2004.

3. Methods

3.1. Image preparation

Seventy-nine Landsat Enhanced Thematic Mapper Plus
(ETM+) scenes provided complete coverage of the five-state
region, and were acquired from the USGS National Center for
Earth Resources Observation and Science (EROS) through the
Multi-Resolution Land Characteristics Consortium (MRLC)
(Fig. 2). Spring, summer, and fall images were provided for a
total of 237 images. Optimal imagery dates varied across the
region and were selected for peak phenological differences as
well as clarity and low cloud cover. Image acquisition dates
ranged from 1999 to 2001 with the majority of images collected
in 2000. All ETM+ scenes were terrain-corrected and provided
in NLAPS (National Landsat Archive Processing System)
format, projected to an Albers Equal Area projection. All ETM+
scenes are available to the public at http://earth.gis.usu.edu/
archive/.

Land-cover mapping teams created image mosaics for each
mapping zone with a 2-km buffer, resulting in a 4-km overlap
area between mapping zones. To improve image matching,
image standardization for solar angle illumination, instrument
calibration, and atmospheric haze (i.e. path radiance) was
necessary. We used the image-based COST method as described
by Chavez (1996). However, we found that using Chavez's
COST method as published, over-corrected atmospheric
transmittance, particularly for scenes in the arid Southwest.
To address this over-correction, we used COST without TAUz

(approximate atmospheric transmittance component of the
COST equation). We developed web-based scripts to automate
the process of generating corrected images on a scene-by-scene
basis (see http://www.gis.usu.edu/imgstandard.html).

3.2. Predictor layers

Geographic layers used to map land-cover included image-
derived and ancillary datasets. Core image-derived datasets
consisted of individual ETM+ bands, the Normalized
Difference Vegetation Index (NDVI), and brightness, green-
ness and wetness derivatives generated using Landsat ETM+
coefficients from Huang et al. (2002). Ancillary datasets were
derived from 30-m digital elevation models (DEM) obtained
from the USGS National Elevation Dataset and consisted of
elevation, slope (in degrees), a 9-class aspect dataset (eight
cardinal directions plus flat), and a 10-class landform dataset
(see Manis et al. (2001) for a detailed description of landform
dataset).

3.3. Thematic mapping legend

A key factor related to the creation of a seamless land-cover
map generated through a collaborative effort was the need to
establish a single classification legend. Previous state-based
GAP land-cover efforts developed target mapping legends ad
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Fig. 2. Landsat ETM+ scenes (path and row) for the 5-state region.
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hoc or based on a variety of vegetation classification systems.
When SWReGAP began in 1999 our target thematic mapping
unit was the National Vegetation Classification (NVC) alliance.
However, recognizing that over 500 alliances occur in the
project area and that many alliances would be difficult to map,
we recognized the need for a thematic mapping scale between
the alliance and formation levels (Grossman et al., 1998). In
response to this need, NatureServe developed the Terrestrial
Ecological Systems Classification framework (Comer et al.,
2003). Using the “ecological system” as our moderate-scale
thematic mapping unit, SWReGAP became the test-bed for a
classification framework that would eventually be extended to
the conterminous United States (Comer et al., 2003).

The initial SWReGAP target legend developed by NatureServe
and the statemapping teams identified 110 ecological systems from
the 140 that occur in the five-state region. Omitted ecological
systems included those that had predominantly small patch sizes
(<0.50 ha) or were peripheral to the region. The Terrestrial
Ecological Systems Classification focuses on natural and semi-
natural ecological communities. For SWReGAP, altered and
disturbed land-cover and land-use classes were considered
separately. These classes were incorporated into the SWReGAP
legend using descriptions modified from the National Land-Cover
Dataset 2001 legend (Homer et al., 2004) or given special “altered”
or “disturbed” designations within the SWReGAP legend (e.g.
recently burned, recently logged areas, invasive annual grassland,
etc.). The final mapping legend for the region consisted of 125
natural and altered/disturbed land-cover classes.
3.4. Reference data collection

Training and validation data were collected through ground-
based field work supplemented with existing field data from
collaborating federal and state agencies determined to be roughly
contemporary with the time period of our imagery (1999–2001).
Additional data for land-cover classes in hard-to-reach locations
(large wilderness areas, etc.) were obtained through visual
interpretation of aerial photography, digital orthophotoquads, or
other remotely sensed imagery. Samples obtained from these
sources were given only a label identifying the land-cover class.

Ground-based field samples were collected by traversing
navigable roads in a mapping zone and opportunistically
selecting plots that met criteria of appropriate size (1-ha
minimum) and composition (stand homogeneity). Field data
were collected using ocular estimates of biotic and abiotic land-
cover components, including percent cover of dominant species
by life-form (i.e. trees, shrubs, grasses, and forbs) and site
characteristics such as elevation, slope, aspect, and landform.
Laptop computers using ArcView 3.x®, Landsat imagery,
digital orthophotoquads, and other ancillary information were
used for navigation and plot identification whenever possible.
Each plot was identified with a UTM coordinate pair using a
GPS. Sample areas were either digitized in the field as a
polygon, or in the case of point samples, polygonized with an
appropriate buffer distance from the center of the field site. Field
data were recorded onto paper field forms and subsequently
entered into a database. Typically, two digital photographs were
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taken at each plot to record current site conditions and provide a
means for a visual comparison of differences between field
plots. Sufficient data were collected at each plot to assign an
NVC alliance label (Grossman et al., 1998) and/or ecological
system (Comer et al., 2003) label to each plot. Of an
approximate total of 93,000 samples obtained for the project,
roughly 45,000 were collected via ground surveys during the
course of two and a half field seasons. Field data collected via
ground surveys are available to the public at http://earth.gis.usu.
edu/swgap/trainingsites.html.

3.5. Modeling approach

The regional land-cover lab investigated several alternatives
for image classification. In particular we experimented with
methods similar to those used in previous large-area mapping
efforts such as the 1995 Utah GAP land-cover project (Homer
et al., 1997) and the WISCLAND (Wisconsin Initiative for
Statewide Cooperation on Landscape Analysis and Data) project
(Reese et al., 2002). We compared these supervised–unsuper-
vised hybrid approaches to decision tree classifiers and found the
decision tree approach more time-efficient and less unwieldy.

3.5.1. Decision tree classifiers
Early applications of decision trees (Breiman et al., 1984) for

remote sensing-based land-cover classification focused on
continental and global scale mapping using coarse resolution
imagery (DeFries et al., 1998; Hansen et al., 1996, 2000; Friedl
& Brodley, 1997; Friedl et al., 1999; Friedl et al., 2002). More
recently, decision tree classifiers have produced accurate results
in moderate-scale mapping with Landsat Thematic Mapper
imagery (Brown de Colstoun et al., 2003; Lawrence et al., 2004;
Lawrence & Wright, 2001; Pal & Mather, 2003).

As a non-parametric classifier, decision trees require no prior
assumptions of normally distributed training data. Further,
while incorporating ancillary datasets such as digital elevation
model derivatives can improve land-cover class discrimination
(Homer et al., 1997; Treitz & Howarth, 2000), traditional
parametric classifiers have difficulty dealing with differences in
spectral and ancillary measurement scales. Decision trees
readily accept a variety of measurement scales in addition to
categorical variables, and have demonstrated improved accura-
cies over the use of traditional parametric classifiers (Hansen
et al., 1996; Pal & Mather, 2003).

Concurrent with our project, the USGS National Center for
Earth Resources Observation and Science (EROS) developed a
land-cover mapping tool capable of integrating the decision tree
software See5 (RuleQuest Research, 2004) with ERDAS
Imagine®. The tool, developed for the National Land-Cover
Dataset 2001 (Homer et al., 2004) project (hereafter “NLCD
mapping tool”) provides an efficient integration of a decision
tree algorithm within a spatially explicit modeling environment.
While the tool is limited to the See5 decision tree algorithm, a
significant benefit of the tool is the ability to apply boosting
which has been shown to improve map accuracies in several
land-cover mapping efforts (Brown de Colstoun et al., 2003;
Lawrence et al., 2004; Pal & Mather, 2003).
3.5.2. SWReGAP mapping procedures
Our primary objective was to produce the most accurate and

complete map possible. To accomplish this, our mapping
process required two steps which made best use of all available
training samples.

First, we relied on the decision tree classifier to discriminate
the bulk of the land-cover classes. Land-cover classes such as
lava flows and sand dunes which are relatively rare and/or
isolated on the landscape were typically not modeled with the
decision tree classifier. In addition, land-use classes such as
recently logged areas, agriculture, or developed land-uses were
also excluded from the decision tree modeling process. Our
field data collection protocol focused on natural and semi-
natural classes with the assumption that many anthropogenic
classes could be mapped from existing GIS data, or could be
more easily delineated via screen digitizing.

Second, we conducted our assessment of map quality on an
intermediate land-cover map generated with a subset of samples
rather than the final land-cover map which was generated from
100% of the training samples. We refer to this approach as an
internal validation, which should not be confused with an
accuracy assessment of the final map. The internal validation
involved randomly selecting 20% of available training samples
stratified by land-cover class, and withholding them from the
decision tree model generation. The intermediate map (gener-
ated with 80% of the available samples) was assessed with the
withheld samples to produce an error matrix and kappa statistic
(Congalton & Green, 1999). The land-cover modeling process
concluded with the generation of the final map using 100% of
the available training data. Validation results therefore represent
an assessment of the intermediate map, not the final map.

Fig. 3 provides a flow diagram of the general mapping
process for each mapping zone. Land-cover and land-use
classes not modeled by the decision tree classifier were
delineated using extant GIS data [1]. Predictor layers were
prepared as described previously [2]. Sample data were divided
into a training and validation datasets. For model training,
randomly selected sub-samples (i.e. cluster sampling) within
each polygon were used as separate observations within the
decision tree classifier. Sub-sampling within training polygons
accounted for spectral and environmental variability within the
sample polygon and possible positional miss-alignment of the
imagery and/or GPS location. Specifying a maximum of 20 sub-
samples per training polygon reduced modeling bias towards
larger polygons [3]. Using the NLCD mapping tool, decision
tree models were generated in See5 using 15 boosts (a minimum
of 10 boosts are recommended for most datasets (RuleQuest
Research, 2004)). The selection of predictor datasets varied by
mapping zone depending on the strength of the relationship with
land-cover as determined by the land-cover analyst. Modeling
was iterative (i.e. after a model was created, it was evaluated
(step 5) and revised with different combinations of predictor
datasets or additional samples) [4]. Using the withheld 20%
sample polygons, an error matrix was generated and the KHAT
statistic calculated (Congalton & Green, 1999). A validation
sample polygon was considered correctly mapped when the
modal value of pixels in the land-cover map agreed with the
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Fig. 3. General mapping process for the SWReGAP.
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validation polygon label [5]. The final decision tree model and
map was created using 100% of sample data [6]. The land-cover
map was examined for errors by visually inspecting the map
output and evaluating the error matrix. Known geographic
errors (i.e. pixels known to be mapped incorrectly in a particular
geographic location) were corrected by selective recoding.
Known environmental errors (e.g. mapping on incorrect slope,
elevation or aspect) were corrected using conditional statements
in a post-classification model. Errors associated with cloud
cover were often corrected in the same manner [7]. Non-
modeled classes mapped in step 1 were incorporated into the
final map with a post-classification conditional model [8]. The
land-cover map was generalized to the minimum mapping unit
(MMU) of 0.4 ha (1 acre) by aggregating (clumping) unique
class pixels based on a rooks-move (4 connected neighbors) [9].
Land-cover classes were given identical integer pixel values
across mapping zones to facilitate proper edge-matching and
mosaicked using vector cutlines within the 4-km overlap area
[10].

4. Results

4.1. Land-cover map

The final map product contains 125 land-cover classes, 109
of which are ecological systems (Fig. 4). The land-cover dataset
retains the 30-m pixel resolution of the predictor layers with a
minimum mapping unit of 0.40 ha (1 acre). The final map can
be downloaded from http://earth.gis.usu.edu/swgap/landcover.
html. Included at the website are detailed descriptions of
mapping methods, specifying the suite of predictor datasets and
training samples used for each mapping zone.

4.2. Map/model validation

Map/model validation was performed for each mapping zone
separately. Publishing error matrices for each of the 25 mapping
zones is beyond the scope of this paper. These data, however,
are available to the public at http://earth.gis.usu.edu/swgap/
mapquality.html. Overall validation results (sum of diagonals),
with associated number of modeled classes, validation sample
size, and KHAT statistic for each mapping zone are reported in
Table 1.

To provide a regional validation by land-cover class,
individual mapping zone error matrices were combined and
summarized. Table 2 presents all 125 land-cover classes sorted
into 5 validation groups and organized hierarchically into
NLCD land-cover classes. The first validation group contains
classes that were not assessed regionally because of limited
validation plots (n<20 for the region) or were non-natural
classes and not the primary focus of our mapping effort. These
40 classes comprise approximately 9.5% of the total land area
for the region, with more than half (5.5%) as agriculture.

The second validation group contains land-cover classes
with validation results from a user's perspective less that 30%.
These three classes comprise less than 0.5% of the total land
area for the region. All classes in this group are difficult to
discriminate ecologically and spectrally (i.e. grassland, steppe
and savanna). For example, the error matrices (not shown in
Table 2 (see http://earth.gis.usu.edu/swgap/mapquality.html))
for these classes reveal that the Chihuahuan Sandy Plains Semi-
Desert Grassland was most confused with the Apacherian–
Chihuahuan Semi-Desert Grassland and Steppe class, and the
Inter-Mountain Basins Big Sagebrush Steppe class was most
often confused with the Inter-Mountain Basins Big Sagebrush
class.

The next validation group contains classes where agreement
between the validation samples and the map was between 30
and 49% from a user's perspective. These 17 classes represent
approximately 9.5% of the land area. Most comprise very small
portions of the region (less than 0.5%), with the exception of
three classes. Two scrub/shrub classes (Apacherian–Chihua-
huan Mesquite Upland Scrub, Chihuahuan Mixed Desert and
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Fig. 4. Final SWReGAP land-cover map containing 125 mapped classes for the five-state region. Note only the 15 most abundant land-cover classes are depicted in the
map legend.
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Thorn Scrub) and one grassland/herbaceous class (Inter-
Mountain Basins Semi-Desert Grassland) represent substantial
portions of the land area, covering approximately 30,000 km2

each. The two desert scrub classes are confused with the Apa-
cherian–Chihuahuan Semi-Desert Grassland and Steppe class,
and with each other. The Inter-Mountain Basins Semi-Desert
Grassland is mostly confused with the Inter-Mountain Basins
Semi-Desert Shrub Steppe, and the Inter-Mountain Basins Big
Sagebrush Shrubland class. The obvious trend with these
poorly and very poorly mapped classes is high confusion among
classes that are ecologically very similar, sparsely vegetated, or
both.

The largest number of mapped classes (50) comprising the
greatest proportion of land area (56.5%) are presented in
validation group 4. Here agreement between the validation
samples and the map was between 50 and 70%. The most
notable classes are the Colorado Plateau Pinyon–Juniper
Woodland (7% land area) and Inter-Mountain Basins Big
Basin Sagebrush Shrubland (8% land area) classes, with user
validation rates of 69% and 59% respectively (producer's rates
of 81% and 77%).
Fifteen classes were validated with results greater than 70%
from a user's perspective (group 5). These 15 classes represent
approximately 24% of the total land area. The 85 classes that
were validated (groups 2–5, Table 2) represent 91% of the total
land area. Overall correct classification for these 85 classes was
61% (KHAT statistic=0.60; n=17,030).

5. Discussion

While the remote sensing community has been mapping
land-cover from satellite-based sensors for more than 30 years,
it has not been until the last decade and a half that significant
efforts have been made to map large geographic regions. In the
U.S., these efforts are lead by the USGS Gap Analysis Program
and the USGS National Land Cover Database program.
McDermid et al. (2005) identify several unique challenges
faced by large-area mapping efforts. One of the more obvious
challenges is the temporal discontinuity between image dates.
Atmospheric and/or topographic correction must be addressed
for each scene, and phenological differences of just 2 weeks can
sometimes present substantial radiometric differences. Another



Table 1
Overall validation results (sum of diagonals) for each mapping zone, with
associated number of modeled classes, validation sample size, and KHAT
statistic

Mapping
zone

# modeled
classes

# valid.
samples

Overall validation
(%)

KHAT

AZ1 20 471 60 0.51
AZ2 23 734 60 0.50
AZ3 19 264 55 0.47
AZ4 33 1116 59 0.53
AZ5 14 636 70 0.56
CO1 and 2 50 1452 66 0.64
CO3 50 2248 63 0.61
CO4 38 2594 80 0.76
NM1 21 224 52 0.45
NM2 34 104 31 0.22
NM3 26 289 39 0.31
NM4A 41 343 55 0.50
NM4B 46 886 47 0.39
NM5 40 513 51 0.35
NV1 23 127 49 0.39
NV2 31 439 49 0.43
NV3 31 1099 61 0.52
NV4 53 1192 52 0.44
NV5 30 340 65 0.61
NV6 33 185 44 0.37
UT1 21 732 59 0.53
UT2 35 1803 65 0.62
UT3 28 873 60 0.56
UT4 23 483 66 0.62
UT5 13 176 70 0.60

Note mapping zones CO1 and CO2 were combined for modeling and validation
purposes, while mapping zone NM4 was divided.
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challenge is that of “large-area diversity and spatial heteroge-
neity” or the concept of “signature extension” (Jensen, 1996).
This refers to the idea that the extent to which training data in
one location represent similar land-cover classes across space
(Cartesian space and elevation) is finite. As the extent and
spatial detail of the mapping area increase, a proportional
increase in training data are needed. A related challenge is that
of accuracy assessment by independent means (McDermid
et al., 2005). Statistically valid methods for unbiased map
accuracy assessments are well known (Congalton & Green,
1999; Stehman & Czaplewski, 1998) but implementing
logistically feasible and economically viable strategies remains
a challenge.

Throughout SWReGAP we encountered all of these
challenges. Underlying these common challenges to large-area
mapping, SWReGAP experienced the added challenge of
developing a land-cover map through a coordinated process
involving multiple mapping teams. The remainder of this
discussion focuses on three general aspects of our experience
we believe will be of interest to the remote sensing mapping
community.

5.1. Mapping methods

An important goal in developing our mapping methodology
was to develop procedures that could be independently applied
by multiple land-cover mapping teams to yield similar results.
We found the decision tree approach to be time-efficient and
conceptually intuitive, making the methods easily transferable
to multiple mapping teams.

Identifying the optimum combination of predictor layers for
the decision tree classifier was a major focus of our efforts to
develop a regional mapping methodology (see Falzarano et al.,
2005). Initially, we considered establishing a regional set of
standard predictor datasets for all mapping zones in the region.
Our concern was that adjacent land-cover maps would not edge-
match adequately if different sets of predictors were used for
model development. However, due to the wide environmental
gradient across the study area, we decided that each land-cover
analyst should choose the predictor datasets they determined
were best suited for a given mapping zone since a single
prescribed set of predictors would not work in all areas (e.g.
mountains vs. plains).

We found that the choice of identical predictor layers across
mapping zones was not critical to the edge-matching process.
The use of multi-season imagery did appear to improve image
classification as evidenced by their inclusion in most, but not
all models. The suite of core predictor datasets to choose from
was consistent throughout the region; namely three seasons of
ETM+ imagery with the analyst's choice of image transforma-
tions, and any combination of DEM derivatives (slope, aspect,
landform, etc.).

Edge-matching problems between adjacent mapping zones
proved negligible in most instances. In fact, there was a high
level of mapping agreement between several mapping zones,
inferring accurate land-cover mapping since each mapping zone
was modeled with an independent set of training data and
different predictor variables (Fig. 5). In instances of less-than-
favorable edge-matching, the use of a cutline within the 4-km
buffer effectively improved the transition between mapping
zones. The use of spectral-physiographic mapping zones proved
to be effective work units and helped constrain spectrally and
environmentally similar land-cover classes to logical geograph-
ic boundaries. Radiometric standardization through web-based
tools was critical for quality control and efficient project
management.

5.2. Map accuracy

Large geographic areas typically have greater spectral,
environmental, and biological diversity, requiring a large
number of samples to train and validate the map. Dealing
with very large areas (even if subdivided into mapping zones—
each of which may be a mosaic of 2–3 ETM+ scenes) we faced
the challenge of obtaining sufficient training samples to account
for the spectral and environmental variability within and betw-
een land-cover classes. When faced with this challenge, one
must decide to either focus sampling efforts on the variability
and internal heterogeneity of the most abundant land-cover
classes, or to spend time searching for samples of the rarer land-
cover classes. Unless specific attention is given to the rarer
classes, the time and budgetary realities of a project of this
magnitude will likely lead to more focused sampling efforts on
the larger, more abundant land-cover classes.



Table 2
Regional summary of land-cover area and validation results sorted into 5 validation groups (based on user's perspective) and organized by NLCD land-cover class

Mapped land-cover classes (SWReGAP) Land area Validation results

Area (km2) Percent total
area (%)

Number reference
samples

Producer User

GRP 1: VALIDATION NOTASSESSED
Sparsely vegetated/barren classes
Inter-Mountain Basins Volcanic Rock and

Cinder Land
1360 0.10 na na na

Inter-Mountain Basins Wash 46 > 0.01 na na na
Mediterranean California Alpine Bedrock and

Scree
23 > 0.01 na na na

North American Alpine Ice Field 23 > 0.01 na na na
North American Warm Desert Badland 112 0.01 na na na
North American Warm Desert Volcanic

Rockland
992 0.07 na na na

Sierra Nevada Cliff and Canyon 123 0.01 na na na
Western Great Plains Cliff and Outcrop 309 0.02 na na na
Evergreen forest classes
Madrean Upper Montane Conifer–Oak Forest

and Woodland
795 0.06 na na na

Mediterranean California Dry–Mesic Mixed
Conifer Forest and Woodland

2 > 0.01 na na na

Mediterranean California Ponderosa–Jeffrey
Pine Forest and Woodland

209 0.02 na na na

Mediterranean California Red Fir Forest and
Woodland

106 0.01 na na na

Northern Pacific Mesic Subalpine Parkland 42 > 0.01 na na na
Rocky Mountain Foothill Limber

Pine–Juniper Woodland
6 > 0.01 na na na

Rocky Mountain Mesic Montane Mixed
Conifer Forest and Woodland

7295 0.53 na na na

Rocky Mountain Subalpine Mesic Spruce–Fir
Forest and Woodland

10,359 0.75 na na na

Sierra Nevada Subalpine Lodgepole Pine
Forest and Woodland

21 > 0.01 na na na

Shrub/scrub classes
Chihuahuan Succulent Desert Scrub 187 0.01 na na na
Coahuilan Chaparral 94 0.01 na na na
Rocky Mountain Alpine Dwarf-Shrubland 110 0.01 na na na
Sonora–Mojave Semi-Desert Chaparral 89 0.01 na na na
Western Great Plains Mesquite Woodland and

Shrubland
1797 0.13 na na na

Wyoming Basins Low Sagebrush Shrubland 47 > 0.01 na na na
Grassland/herbaceous classes
Central Mixedgrass Prairie 120 0.01 na na na
North Pacific Montane Grassland 27 > 0.01 na na na
Western Great Plains Sand Prairie 18 > 0.01 na na na
Western Great Plains Tallgrass Prairie 1 > 0.01 na na na
Woody wetland classes
North American Warm Desert Riparian

Mesquite Bosque
832 0.06 na na na

Emergent wetland classes
Mediterranean California Subalpine-Montane

Fen
2 > 0.01 na na na

Temperate Pacific Subalpine-Montane Wet
Meadow

2 > 0.01 na na na

Western Great Plains Saline Depression
Wetland

41 > 0.01 na na na

Altered or disturbed classes
Disturbed, non-specific 93 0.01 na na na
Disturbed, oil well 46 > 0.01 na na na
Invasive perennial forbland 1 > 0.01 na na na
Recently burned 2033 0.15 na na na
Recently chained pinyon–juniper areas 689 0.05 na na na

(continued on next page)
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Table 2 (continued )

Mapped land-cover classes (SWReGAP) Land area Validation results

Area (km2) Percent total
area (%)

Number reference
samples

Producer User

Other classes
Agriculture 75,981 5.48 na na na
Developed, medium–high intensity 7539 0.54 na na na
Developed, open space–low intensity 7425 0.54 na na na
Open water 11,023 0.80 na na na
Total area not assessed 130,020 9.39

GRP 2: VALIDATION RESULTS WITH <30% AGREEMENT
Grassland/herbaceous classes
Chihuahuan Sandy Plains Semi-Desert
Grassland

986 0.07 28 11% 21%

Inter-Mountain Basins Big Sagebrush Steppe 1798 0.13 82 12% 26%
Madrean Juniper Savanna 994 0.07 32 6% 25%
Total area <30% agreement 3778 0.27

GRP 3: VALIDATION WITH 30–49% AGREEMENT
Sparsely vegetated/barren classes
North American Warm Desert Pavement 393 0.03 21 14% 33%
Evergreen forest classes
Madrean Encinal 4358 0.31 45 51% 44%
Madrean Pine–Oak Forest and Woodland 5733 0.41 104 42% 46%
Rocky Mountain Subalpine–Montane Limber–
Bristlecone Pine Woodland

801 0.06 31 13% 44%

Mixed forest class
Inter-Mountain Basins Aspen-Mixed Conifer
Forest and Woodland

3439 0.25 159 30% 49%

Shrub/scrub classes
Apacherian–Chihuahuan Mesquite Upland
Scrub

31,683 2.29 215 41% 41%

Chihuahuan Mixed Desert and Thorn Scrub 27,407 1.98 174 45% 45%
Chihuahuan Mixed Salt Desert Scrub 4413 0.32 45 22% 33%
Chihuahuan Stabilized Coppice Dune and Sand
Flat Scrub

5725 0.41 59 49% 48%

Sonora–Mojave Mixed Salt Desert Scrub 2549 0.18 23 26% 30%
Grassland/herbaceous classes
Chihuahuan–Sonoran Desert Bottomland and
Swale Grassland

>1 >0.01 104 32% 41%

Inter-Mountain Basins Semi-Desert Grassland 33,640 2.43 392 32% 41%
Woody wetland classes
North American Warm Desert Lower Montane
Riparian Woodland and Shrub

426 0.03 43 19% 32%

North American Warm Desert Riparian
Woodland and Shrubland

422 0.03 45 18% 35%

North American Warm Desert Wash 652 0.05 50 24% 34%
Emergent Wetland Classes
Rocky Mountain Alpine-Montane Wet
Meadow

1956 0.14 118 35% 48%

Altered or disturbed classes
Invasive Annual Grassland 8291 0.60 174 22% 42%
Total area 30–49% agreement 131,888 9.52

GRP 4: VALIDATION WITH 50–70% AGREEMENT
Sparsely vegetated/barren classes
Barren lands, non-specific 1421 0.10 54 19% 56%
Inter-mountain basins cliff and canyon 2873 0.21 83 43% 64%
Inter-mountain basins shale badland 3297 0.24 59 37% 50%
North American Warm Desert Active and
Stabilized Dune

2728 0.20 37 43% 67%

North American Warm Desert Bedrock Cliff
and Outcrop

3568 0.26 38 53% 67%

North American Warm Desert Playa 1115 0.08 20 70% 64%
Rocky Mountain Alpine Fell-Field 761 0.05 27 48% 59%
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Rocky Mountain Cliff, Canyon and Massive
Bedrock

2965 0.21 143 56% 67%

Evergreen forest classes
Colorado Plateau Pinyon–Juniper Woodland 97,855 7.06 972 81% 69%
Great Basin Pinyon–Juniper Woodland 50,776 3.66 441 84% 65%
Inter-Mountain Basins Subalpine Limber–

Bristlecone Pine Woodland
666 0.05 21 38% 50%

Madrean Pinyon–Juniper Woodland 21,917 1.58 233 71% 54%
Rocky Mountain Dry–Mesic Montane Mixed

Conifer Forest and Woodland
8953 0.65 458 52% 57%

Rocky Mountain Lodgepole Pine Forest 8764 0.63 199 60% 60%
Rocky Mountain Subalpine Dry–Mesic

Spruce–Fir Forest and Woodland
14,814 1.07 466 76% 66%

Southern Rocky Mountain Pinyon–Juniper
Woodland

15,305 1.10 172 64% 63%

Southern Rocky Mountain Ponderosa Pine
Woodland

50,221 3.62 785 77% 66%

Shrub/scrub classes
Colorado Plateau Blackbrush–Mormon-tea

Shrubland
13,310 0.96 106 73% 54%

Colorado Plateau Mixed Low Sagebrush
Shrubland

2401 0.17 50 28% 50%

Colorado Plateau Pinyon–Juniper Shrubland 11,535 0.83 149 61% 57%
Great Basin Semi-Desert Chaparral 163 0.01 21 43% 50%
Great Basin Xeric Mixed Sagebrush Shrubland 35,434 2.56 417 47% 55%
Inter-Mountain Basins Big Sagebrush

Shrubland
108,480 7.83 1394 77% 59%

Inter-Mountain Basins Mat Saltbush Shrubland 4130 0.30 64 55% 51%
Inter-Mountain Basins Mixed Salt Desert Scrub 79,294 5.72 826 59% 53%
Inter-Mountain Basins Mountain Mahogany

Woodland and Shrubland
2550 0.18 81 27% 55%

Mogollon Chaparral 11,515 0.83 169 49% 52%
Rocky Mountain Lower Montane–Foothill

Shrubland
2823 0.20 102 44% 68%

Sonoran Mid-Elevation Desert Scrub 5393 0.39 36 36% 50%
Southern Colorado Plateau Sand Shrubland 7021 0.51 81 56% 56%
Apacher ian–Chihuahuan Semi-Deser t

Grassland and Steppe
45,711 3.30 343 63% 51%

Chihuahuan Gypsophilous Grassland and
Steppe

804 0.06 25 56% 56%

Inter-Mountain Basins Juniper Savanna 5590 0.40 89 36% 51%
Inter-Mountain Basins Montane Sagebrush

Steppe
40,654 2.93 781 72% 63%

Inter-Mountain Basins Semi-Desert Shrub-
Steppe

47,618 3.44 699 38% 52%

Rocky Mountain Subalpine Mesic Meadow 2177 0.16 120 48% 56%
Southern Rocky Mountain Juniper Woodland

and Savanna
11,956 0.86 59 53% 53%

Southern RockyMountain Montane–Subalpine
Grassland

10,294 0.74 292 58% 64%

Western Great Plains Foothill and Piedmont
Grassland

5066 0.37 135 65% 63%

Woody wetland classes
Great Basin Foothill and Lower Montane

Riparian Woodland and Shrub
1360 0.10 102 60% 68%

Inter-Mountain Basins Greasewood Flat 23,770 1.71 405 46% 52%
Rocky Mountain Lower Montane Riparian

Woodland and Shrubland
2226 0.16 177 45% 67%

Rocky Mountain Subalpine–Montane Riparian
Shrubland

3224 0.23 135 49% 62%

(continued on next page)

Table 2 (continued )

Mapped land-cover classes (SWReGAP) Land area Validation results

Area (km2) Percent total
area (%)

Number reference
samples

Producer User

69J. Lowry et al. / Remote Sensing of Environment 108 (2007) 59–73



Table 2 (continued )

Mapped land-cover classes (SWReGAP) Land area Validation results

Area (km2) Percent total
area (%)

Number reference
samples

Producer User

Rocky Mountain Subalpine–Montane Riparian
Woodland

292 0.02 46 7% 50%

Western Great Plains Floodplain 836 0.06 66 67% 70%
Emergent wetland classes
North American Arid West Emergent Marsh 1053 0.08 64 38% 65%
Altered or disturbed classes
Invasive annual and biennial forbland 2638 0.19 138 17% 52%
Invasive perennial grassland 2839 0.20 136 38% 67%
Invasive southwest riparian woodland and
shrubland

1609 0.12 116 59% 66%

Recently mined or quarried 1240 0.09 23 61% 67%
Total area 50–70% agreement 783,005 56.48

GRP 5: VALIDATION WITH >70% AGREEMENT
Sparsely vegetated/barren classes
Colorado Plateau Mixed Bedrock Canyon and
Tableland

24,313 1.75 248 75% 72%

Inter-Mountain Basins Active and Stabilized
Dune

3103 0.22 39 44% 71%

Inter-Mountain Basins Playa 17,581 1.27 81 68% 77%
Rocky Mountain Alpine Bedrock and Scree 3863 0.28 100 81% 84%
Deciduous forest classes
Rocky Mountain Aspen Forest and Woodland 20,986 1.51 582 81% 74%
Rocky Mountain Bigtooth Maple Ravine
Woodland

888 0.06 34 68% 74%

Shrub/scrub classes
Mojave Mid-Elevation Mixed Desert Scrub 16,762 1.21 168 71% 75%
Rocky Mountain Gambel Oak–Mixed
Montane Shrubland

18,950 1.37 524 69% 71%

Sonora–Mojave Creosotebush–White Bursage
Desert Scrub

58,760 4.24 292 68% 76%

Sonoran Paloverde–Mixed Cacti Desert Scrub 39,791 2.87 280 83% 74%
Western Great Plains Sandhill Shrubland 13,894 1.00 159 72% 74%
Grassland/herbaceous classes
Rocky Mountain Dry Tundra 2779 0.20 68 76% 78%
Western Great Plains Shortgrass Prairie 113,162 8.16 668 88% 72%
Woody wetland classes
Western Great Plains Riparian Woodland and
Shrubland

1714 0.12 153 75% 80%

Altered or Disturbed Classes
Recently Logged Areas 836 0.06 35 37% 93%
TOTAL AREA >70% AGREEMENT 337,382 24.32
TOTALS FOR 5-STATE REGION 1,386,073 100 17,030

The first validation group contains classes that were not assessed regionally because of limited validation plots (n<20) or were non-natural classes and not the focus of
the mapping effort.
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Although we consider our assessment of map quality a
validation rather than true accuracy assessment, the results
reveal our sampling (and validation) bias toward the more
abundant land-cover classes. Many of the rarer classes were
either not validated (due to limited samples) or were validated
with low results. Few samples in the rarer classes could explain
low accuracies for these classes as decision tree classifiers are
notably sensitive to under-represented classes (Weiss, 1995).
Limiting our sample collection to the road network also biased
the sample pool (training and validation) toward land-cover
classes in proximity to roads. Because we used the same sample
pool for both training and validation, this bias is likely
undetected, and our validation results should be considered
higher than would be expected from an independent dataset.
The task of collecting unbiased training samples and
independent accuracy assessment data for most land-cover
mapping efforts is a considerable challenge, and particularly so
in a project of this size and scope. In retrospect, we believe
improvements could be made to develop a more robust
sampling design balancing the need for samples in both rare
and abundant land-cover classes. This could be accomplished
with reasonable cost-effectiveness by investing more project
resources (time, effort and financial resources) in obtaining
samples through air photo interpretation for training, and
creating an independent validation dataset for accuracy
assessment.

As a final note, our approach used sample polygons as the
sample unit for error assessment. Using a cluster of pixels in this



Fig. 5. Example of edge-matching between UT-4 and CO-1.
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manner is a common choice for the sample unit and has the
advantage of minimizing error attributed to miss-registration of
the GPS sample site and/or the imagery (Congalton & Green,
1999). A disadvantage of this approach however, is that because
the size of the sample unit dictates the level of detail of the
accuracy assessment, this approach does not address the
accuracy of individual pixels, nor larger homogenous patches
of land-cover classes (Congalton & Green, 1999).

5.3. Project coordination

Project coordination relied heavily on frequent communica-
tion between the regional land-cover lab, the four other land-
cover mapping teams, and NatureServe. Correspondence via
email–especially a project listserve–was critical for dissemina-
tion of information related to mapping methodologies and
protocols. Also invaluable were monthly teleconferences
involving all land-cover mapping personnel and NatureServe.
Face-to-face meetings (yearly) and hands-on workshops (3 over
5 years) throughout the course of the project were essential not
only for conveying important methodological techniques, but
also as a means of fostering interpersonal relationships among
team members. While the focus of this paper has been primarily
on technical and methodological aspects of the land-cover
mapping effort, the importance of interpersonal relationships in
a project of this nature should not be underestimated. Differing
opinions regarding methodological and philosophical ap-
proaches to the effort were not uncommon. However, there
was also a spirit of dedication to the work, and ultimately an
understanding that in order to successfully complete the project,
teamwork was essential.

From a project coordination standpoint, an important
consideration was the recurring theme of how much autonomy
each state would have in making decisions for their mapping area.
Perhaps the most difficult decision land-cover analysts faced was
deciding if a specific land-cover class should be mapped.
Decisions to model a specific land-cover class were primarily
driven by adequate representation within the training samples of
that class for a given mapping zone. Thus, the adequacy of the
sample training set was a deciding factor for the land-cover
analyst. State analysts decided which classes to map based on
their knowledge of the landscape or the perceived importance of
the land-cover class in the mapping zone. For example, riparian
areas and invasive annual grasses, though difficult to map, may
have been included if the analyst felt they were important features
on the landscape. Also, when compiling the regional map, some
classes determined to be mappable in one state may have been
aggregated or eliminated in the regional product to maintain
regional consistency (though this rarely occurred).

In hindsight, the project would have benefited by establish-
ing more objective procedures to determine land-cover class
mappability. The ecological system classification as a regional
target legend was developed by NatureServe during the course
of the project, and was therefore recognized as a “working
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classification” (Comer et al., 2003). As such, the mappability of
ecological systems using moderate-scale satellite imagery and
ancillary data was to some degree determined through this
project. Developing better methods to determine land-cover
class mappability over large geographic areas is an area for
future work.

6. Conclusion

The objective of this project was to produce a land-cover
map that would meet the needs for the GAP, and be an
improvement over the 5 existing state land-cover maps in the
region. The quantifiable objective of achieving a map product
with an overall accuracy of 80% was not tested because a
formal accuracy assessment was not performed. While the
validation approach we used cannot be considered a true
accuracy assessment, it does provide a quantifiable estimate of
map quality. Assuming the validation results approximate
what would be achieved with a formal accuracy assessment,
we did not achieve the map accuracy goal. However we
believe that the resulting “accuracy” of the land-cover map is
not entirely an artifact of failures in the methodological
procedures of our approach, but rather a manifestation of the
challenges inherent in large-area land-cover mapping. In
hindsight we recognize that more attention could have been
placed on the decision to map or not map some of the rarer
land-classes. Given that gap analysis in GAP is considered a
“coarse filter” approach to biodiversity assessment, we may
have attempted to map a number of rare classes that could
have been grouped with other more widespread land-cover
types, while still meeting the biodiversity assessment require-
ments of gap analysis.

In general, however, the results from this project are not
inconsistent with other large-area mapping efforts. We concur
with Laba et al. (2002) who suggest that user's and producer's
accuracies for several recent large-area mapping projects
(Edwards et al., 1998; Ma et al., 2001; Zhu et al., 2000) are
“stabilizing in the 50–70% range” and that “artificial targets of
85% overall percent correct should not be used to measure the
success or failure of a land-cover project”.

Large-area mapping projects face challenges not found in
smaller projects focusing on a single scene or within a limited
geographic area. In this paper we presented a number of
methodological approaches for dealing with some of these
challenges. Unique to SWReGAP was our attempt to implement
these approaches within a collaborative project management
framework.

Acknowledgements

Many individuals and organizations contributed to the
SWReGAP project. Foremost we thank Collin Homer, Bruce
Wylie, Mike Coan and Jon Dewitz at USGS EROS for their help
with decision tree classifiers and the NLCD mapping tool. We
would like to recognize both monetary and in-kind support
provided by the Bureau of Land Management and in particular
thank Diane Osborne formerly with the BLM National Science
and Technology Center (NSTC) in Denver, CO for her
contributions to the project. Other agencies and people we
would like to recognize for their support include: Utah Division
of Wildlife, U.S. Forest Service Region 4 (Ogden, UT) and
Region 2 (Denver, CO), U.S. Bureau of Land Management
(BLM) Salt Lake Field Office, BLM Nevada State Office
(Reno, NV), BLM Ely Field Office (Ely, NV), BLM Colorado
State Office and BLM-NSTC (Denver, CO), Steve Knick and
the SageMap Program at the USGS Forest and Rangeland
Ecosystem Science Center, Snake River Field Station (Boise,
ID), the Colorado Natural Heritage Program, and Northern
Arizona University.

We gratefully acknowledge the financial support of the USGS
BRD, Gap Analysis Program, without which completion of this
project could not have been possible. And finally, we would like
to recognize that where we are today is due in large part to the
vision of J. Michael Scott whose leadership in the early days of
GAP fostered an intellectual climate still being realized.

The authors thank the three anonymous reviewers for their
time and comments that helped improve the final manuscript.

The U.S. Environmental Protection Agency, through its
Office of Research and Development, collaborated in, and
partially funded, the research described herein and has approved
this manuscript for publication.
References

Bailey, R. G. (1995). Descriptions of the ecoregions of the United States,
Second edition Miscellaneous Publication, Vol. 1391: USDA, Forest
Service. 108 pp.

Bauer, M. E., Burk, T. E., Ek, A. R., Coppin, P. R., Lime, S. D., Walsh, T. A.,
et al. (1994). Satellite inventory of Minnesota forest resources. Photo-
grammetric Engineering and Remote Sensing, 60(3), 287−298.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classifi-
cation and regression trees. Belmont, CA: Wadsworth, Inc.

Brown de Colstoun, E. C., Story, M. H., Thompson, C., Commisso, K., Smith,
T. G., & Irons, J. R. (2003). National Park vegetation mapping using
multitemporal Landsat 7 data and a decision tree classifier. Remote Sensing
of Environment, 85, 316−327.

Chavez, P. S., Jr. (1996). Image-based atmospheric corrections—Revisited and
improved. Photogrammetric Engineering and Remote Sensing, 62(9),
1025−1036.

Comer, P., Faber-Langendoen, D., Evans, R., Gawler, S., Josse, C., Kittel, G.,
et al. (2003). Ecological systems of the United States: A working classi-
fication of U.S. Terrestrial systems.Arlington, VA: NatureServe http://www.
natureserve.org/library/usEcologicalsystems.pdf

Congalton, R. G., & Green, K. (1999). Assessing the accuracy of remotely
sensed data: Principles and practices. Boca Raton: Lewis Publishers.

DeFries, R. S., Hansen, M., Townshend, J. R. G., & Sohlberg, R. (1998). Global
land-cover classifications at 8 km spatial resolution: The use of training data
derived from Landsat imagery in decision tree classifiers. International
Journal of Remote Sensing, 19, 3141−3168.

Edwards T. C. Jr., Homer, C. G., Bassett, S. D., Falconer, A., Ramsey, R. D., &
Wight, D. W. (1995). Utah Gap Analysis: An environmental information
system, Final Project Report 95-1, Utah Cooperative Fish and Wildlife
Research Unit, Utah State University.

Edwards, T. C., Jr., Moisen, G. G., & Cutler, D. R. (1998). Assessing map
accuracy in a remotely sensed ecoregion-scale cover map. Remote Sensing
of Environment, 63, 73−83.

Eve, M. & Merchant, J. (1998). A national survey of land-cover mapping
protocols used in the gap analysis program. Final Report. Internet WWW
page, at URL: http://www.calmit.unl.edu/gapmap/report.html

http://www.natureserve.org/library/usEcologicalsystems.pdf
http://www.natureserve.org/library/usEcologicalsystems.pdf
http://www.calmit.unl.edu/gapmap/report.html


73J. Lowry et al. / Remote Sensing of Environment 108 (2007) 59–73
Falzarano, S., Thomas, K., & Lowry, J. (2005). Using decision tree modeling in
GAP analysis land-cover mapping: Preliminary results for northeastern
Arizona. In C. van Riper III, & D. J. Mattson (Eds.), The Colorado Plateau
II: Biophysical, socioeconomic, and cultural research (pp. 87−99). Tucson,
AZ: The University of Arizona Press.

Falzarano, S. R., & Thomas, K. A. (2004). Fuzzy set and spatial analyses of
thematic accuracy of a land-cover map. In R. Lunnetta, & J. G. Lyon (Eds.),
Remote sensing and GIS accuracy assessment (pp. 189−207). Boca Raton,
FL: CRC Press.

Friedl, M. A., & Brodley, C. E. (1997). Decision tree classification of land-cover
from remotely sensed data. Remote Sensing of Environment, 61, 399−409.

Friedl, M. A., Brodley, C. E., & Strahler, A. H. (1999). Maximizing land-cover
classification accuracies produced by decision trees at continental to global
scales. IEEE Transactions on Geoscience and Remote Sensing, 37(2),
969−977.

Friedl, M. A., McIver, D. K., Hodges, J. C. F., Zhang, X. Y., Muchoney, D.,
Strahler, A. H., et al. (2002). Global land-cover mapping from MODIS:
Algorithms and early results. Remote Sensing of Environment, 83, 287−302.

Grossman, D. H., Faber-Langendoen, D., Weakley, A. S., Anderson, M.,
Bourgeron, P., Crawford, R., et al. (1998). International classification of
ecological communities: Terrestrial vegetation of the United States.The
National Vegetation Classification System: Development, status, and
applications, Vol. I. (pp. )Arlington, VA, USA: The Nature Conservancy
http://www.natureserve.org/library/vol1.pdf

Halvorson, W., Thomas, K., & Graham, L. (2001). The Arizona Gap Project
Final Report. Special Technical Report, USGS Sonoran Desert Field Station,
University of Arizona, Tucson.

Hansen, M., Dubayah, R., & DeFries, R. (1996). Classification trees: An
alternative to traditional land-cover classifiers. International Journal of
Remote Sensing, 17(5), 1075−1081.

Hansen, M. C., DeFries, R. S., Townsend, J. R. G., & Sohlberg, R. (2000).
Global land-cover classification at 1 km spatial resolution using a
classification tree approach. International Journal of Remote Sensing,
21(6&7), 1331−1364.

Homer, C., Huang, C., Yang, L., Wylie, B., & Coan, M. (2004). Development of
a 2001 national land-cover database for the United States. Photogrammetric
Engineering and Remote Sensing, 70(7), 829−840.

Homer, C. G. (1998). Nevada land-cover classification metadata. Unpublished
document. Dept. of Geography and Earth Resources, Utah State University.

Homer, C. G., Ramsey, R. D., Edwards, T. C., Jr., & Falconer, A. (1997).
Landscape cover-type modeling using a multi-scene Thematic Mapper
mosaic. Photogrammetric Engineering and Remote Sensing, 63(1), 59−67.

Huang, C., Wylie, B., Homer, C., Yang, L., & Zylstra, G. (2002). Derivation of a
Tasseled cap transformation based on Landsat 7 at-satellite reflectance. In-
ternational Journal of Remote Sensing, 23(8), 1741−1748.

Jensen, J. R. (1996). Introductory digital image processing: A remote sensing
perspective (pp. 526). New Jersey: Upper Saddle River.

Laba, M., Gregory, S. K., Braden, J., Oguracak, D., Hill, E., Fegraus, E., et al.
(2002). Conventional and fuzzy accuracy assessment of the New York Gap
Analysis Project land cover map. Remote Sensing of Environment, 81,
443−455.

Lawrence, R., Bunn, A., Powell, S., & Zambon, M. (2004). Classification of
remotely sensed imagery using stochastic gradient boosting as a refinement of
classification tree analysis. Remote Sensing of Environment, 90, 331−336.

Lawrence, R. L., & Wright, A. (2001). Rule-based classification systems using
classification and regression trees (CART) analysis. Photogrammetric
Engineering and Remote Sensing, 67(10), 1137−1142.

Lillesand, T. M. (1996). A protocol for satellite-based land-cover classification in
the Upper Midwest. In J. M. Scott, T. H. Tear, & F. W. Davis (Eds.), Gap
analysis: A landscape approach to biodiversity planning (pp. 103−118).
Bethsheda, MD: American Society for Photogrammetry and Remote Sensing.
Ma, Z., Hart, M. M., & Redmond, R. L. (2001). Mapping vegetation across large
geographic areas: Integration of remote sensing and GIS to classify multi-
source data. Photogrammetric Engineering and Remote Sensing, 67(3),
295−307.

Manis, G., Homer, C., Ramsey, R. D., Lowry, J., Sajwaj, T., & Graves, S.
(2000). The development of mapping zones to assist in land-cover mapping
over large geographic areas: A case study of the Southwest ReGAP project.
GAPAnalysis Bulletin, Vol. 9: U.S. Geological Survey, Biological Resources
Division http://www.gap.uidaho.edu/Bulletins/9/bulletin9/default.html

Manis, G., Lowry, J., & Ramsey, R. D. (2001). Pre-classification: An
ecologically predictive landform model. GAP Analysis Bulletin, Vol. 10:
U.S. Geological Survey, Biological Resources Division. http://www.gap.
uidaho.edu/Bulletins/10/preclassification.htm.

McDermid, G. J., Franklin, S. E., & LeDrew, E. F. (2005). Remote sensing for
large-area habitat mapping. Progress in Physical Geography, 29(4),
449−474.

Omernik, J.M. (1987). Ecoregions of the conterminous United States. Map
(scale 1:7,500,000). Annals of the Association of American Geographers,
77(1):118–125.

Pal, M., & Mather, P. M. (2003). An assessment of the effectiveness of decision
tree methods for land-cover classification. Remote Sensing of Environment,
86, 554−565.

Reese, H. M., Lillesand, T. M., Nagel, D. E., Stewart, J. S., Goldmann, R. A.,
Simmons, T. E., et al. (2002). Statewide land-cover derived from
multiseasonal Landsat TM data: A retrospective of the WISCLAND project.
Remote Sensing of Environment, 82, 224−237.

RuleQuest Research. (2004). WWW URL: http://www.rulequest.com/index.
html (accessed November 8, 2005).

Schrupp, D. L., Reiners, W. A., Thompson, T., D'Erschia, F., Owens, T., Driese,
K., et al. (2000). Colorado gap analysis project: A geographic approach to
planning for biological diversity. Final Report. Colorado Division of
Wildlife.

Scott, J. M., Davis, F., Csuti, B., Noss, R. F., Butterfield, B., Groves, C., et al.
(1993). Gap analysis: A geographic approach to protection of biological
diversity. Wildlife Monographs, Vol. 123. (pp. 1−41)Bethsheda, MD:
Wildlife Society.

Stehman, S. V., & Czaplewski, R. L. (1998). Design and analysis for thematic
map accuracy assessment: Fundamental principles. Remote Sensing of
Environment, 64, 331−344.

Thompson, B. C., Crist, P. J., Prior-Magee, J. S., Dietner, R. A., Garber, D. L., &
Hughes, M. A. (1996). Gap analysis of biological diversity conservation in
New Mexico using geographic information systems. Research Final Report.
New Mexico Cooperative Fish and Wildlife Research Unit, New Mexico
State University.

Treitz, P., & Howarth, P. (2000). Integrating spectral, spatial, and terrain
variables for forest ecosystem classification. Photogrammetric Engineering
and Remote Sensing, 66(3), 305−317.

Vogelmann, J. E., Howard, S. M., Yang, L., Larson, C. R., Wylie, B. K., & Van
Driel, N. (2001). Completion of the 1990s National Land-cover Dataset for
the conterminous United States from Landsat Thematic Mapper Data and
ancillary data sources. Photogrammetric Engineering and Remote Sensing,
67, 650−652.

Weiss, G. M. (1995). Learning with rare cases and small disjuncts. Ma-
chine learning: Proceedings of the Twelfth International Conference
(pp. 558−565). San Francisco: Morgan Kaufmann.

Zhu, Z., Yang, L., Stehman, S. V., & Czaplewski, R. L. (2000). Accuracy
assessment for the U.S. Geological Survey regional land-cover mapping
program: New York and New Jersey region. Photogrammetric Engineering
and Remote Sensing, 66, 1425−1435.

http://www.natureserve.org/library/vol1.pdf
http://www.gap.uidaho.edu/Bulletins/9/bulletin9/default.html
http://www.gap.uidaho.edu/Bulletins/10/preclassification.htm
http://www.gap.uidaho.edu/Bulletins/10/preclassification.htm
http://www.rulequest.com/index.html
http://www.rulequest.com/index.html

	Mapping moderate-scale land-cover over very large geographic areas within a collaborative frame.....
	Introduction
	Project organization
	Project study area
	Division of responsibilities
	Project coordination and timeframe

	Methods
	Image preparation
	Predictor layers
	Thematic mapping legend
	Reference data collection
	Modeling approach
	Decision tree classifiers
	SWReGAP mapping procedures


	Results
	Land-cover map
	Map/model validation

	Discussion
	Mapping methods
	Map accuracy
	Project coordination

	Conclusion
	Acknowledgements
	References


