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Cyanobacteria have dominated marine environments and have been reef builders on Earth for more than three million years (myr).
Cyanobacteria still play an essential role in modern coral reef ecosystems by forming a major component of epiphytic, epilithic, and
endolithic communities as well as of microbial mats. Cyanobacteria are grazed by reef organisms and also provide nitrogen to the
coral reef ecosystems through nitrogen fixation. Recently, new unicellular cyanobacteria that express nitrogenase were found in the
open ocean and in coral reef lagoons. Furthermore, cyanobacteria are important in calcification and decalcification. All limestone
surfaces have a layer of boring algae in which cyanobacteria often play a dominant role. Cyanobacterial symbioses are abundant
in coral reefs; the most common hosts are sponges and ascidians. Cyanobacteria use tactics beyond space occupation to inhibit
coral recruitment. Cyanobacteria can also form pathogenic microbial consortia in association with other microbes on living coral
tissues, causing coral tissue lysis and death, and considerable declines in coral reefs. In deep lagoons, coccoid cyanobacteria are
abundant and are grazed by ciliates, heteroflagellates, and the benthic coral reef community. Cyanobacteria produce metabolites
that act as attractants for some species and deterrents for some grazers of the reef communities.

1. Cyanobacteria

Cyanobacteria are oxy-photosynthetic bacteria. One of the
characteristics of cyanobacteria is their thylakoids, the seats
of photosynthesis, respiration, and in some species, molec-
ular nitrogen fixation. One of the earliest signs of life on
Earth was the formation of stromatolite reefs, which exist
now as fossil structures in the oldest rocks known [1].
This cyanobacterial fossil record is among the oldest of any
group of organism, possibly reaching back to 3500 million
years (myr) ago. Throughout the succeeding 3000 myr, many
shallow reefs arose and provided a habitat for cyanobacteria.
Modern corals are a relatively recent phenomenon; indeed,
scleractinian corals first appeared 230 myr ago in the Triassic
[2]. Although cyanobacteria have been supplanted to an
extent by eukaryotic algae on modern coral reefs, especially
by the dinoflagellate Symbiodinium sp. (zooxanthellae) and
coralline red and green algae, they play an essential role in
the ecology of modern reefs. Nowadays, cyanobacteria are
present in the benthos and plankton compartments of coral
reef ecosystems. In this paper, we discuss the contribution
of cyanobacteria to photosynthetic biomass and their role in
coral reef ecosystems.

2. Benthic Cyanobacteria

2.1. Microbialites. Microbialites are organosedimentary de-
posits of trapped benthic microbes and detrital sediment
and/or mineral precipitation [3]. Thus, microbialites may
display various degrees of mineral induration. Based on their
internal structure, Burne and Moore [4] divided microbia-
lites into stromatolites characterized as sedimentary struc-
tures containing lithified laminae [5], thrombolites (clotted
texture), cryptic microbialites (vague, mottled or patchy
texture), oncolites (concentric lamination), and spherulitic
microbialites (spherular aggregates).

Microbialites may represent a major structural com-
ponent of the reef. Microbialites consist exclusively of
millimetre- to centimetre-thick thrombolite crusts. In the
barrier reef-edge of Tahiti, they may form 80% of the rock
by volume and reflect at least 13,500 years of continuous reef
formation. However, the development of microbialites in the
cryptic niches of the reef framework ceased about 6000 years
ago when the sea level approached its present level [6].

Soft, biscuit-shaped, internally finely laminated stroma-
tolitic structures, with substantial quantities of fine grain
(micritic) carbonate, have been discovered in a lagoon on
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Figure 1: Stromatolitic structures built by filamentous, sheathed,
non-heterocystous cyanobacteria recognized as two new species of
Phormidium. Ahe lagoon, 25 m depth (Tuamotu Archipelago).

Tikehau atoll (Tuamotu Archipelago, French Polynesia) at
depths of 15–23 m [7]. These modern stromatolites cover
large areas of the lagoon floor and are especially numerous
around patch reefs (Figure 1). They consist of filamentous,
sheathed, non-heterocystous cyanobacteria recognized as
two new species of Phormidium [3]. The constructional ele-
ments of carbonate precipitates fall into two categories char-
acterized by distinctive forms and size ranges: micrometre-
sized (0.5–2.0 µm) mineral fibres, rounded (0.1–0.2 µm)
bodies, and grape-like clusters [3]. The growth of modern
marine stromatolites represents a dynamic balance between
sedimentation and intermittent lithification of cyanobacte-
rial mats [8].

2.2. Endolithic Cyanobacteria. Carbonate skeletons of her-
matypic corals harbour diverse populations of microboring
organisms. Skeletons of live colonies are bored from the
inside outward by Chlorophyta, while dead and denuded
parts of coral skeletons are colonized at the surface and
bored inward by a succession of euendoliths, starting with
Chlorophyta and followed by cyanobacteria, to establish a
stable Chlorophyta-dominated endolith community within
2 years [9].

The distribution of boring cyanobacteria generally
depends on light level and depth; however some other
factors may also influence their distribution. In Jamaica, in
clear water, the boring cyanobacteria community structure
changes below 20–30 m [10]. Boring cyanobacteria can also
infest shells. In French Polynesia, infestations of cyanobac-
teria identified as Hyella, Mastigocoleus, and Plectonema
destroy the commercially valuable shells of the black oyster
Pinctada margaritifera [11].

In the carbonate cycle, cyanobacteria play an important
and sometimes decisive role. Cycling of carbon and carbon-
ate is linked to biological processes: some build up specific
carbonate structures, some destroy carbonate substrates,
and others do both simultaneously [12]. The photosyn-
thetic activity of cyanobacteria, their extracellular polymeric
substances, and possibly also their adherent heterotrophic
bacteria are responsible for the construction of various
carbonate structures and the ability to penetrate carbonate

material [13]. The boring activity of euendoliths results in
biological corrosion and disintegration of carbonate surfaces.
Grazing organisms on carbonate surfaces colonized by epi-
and endolithic cyanobacteria produce specific biokarst forms
and specific grains that can contribute to near-shore sedi-
mentation [14]. Biological corrosion and abrasion together
constitute bioerosion.

Endolithic phototrophs (cyanobacteria and Chloro-
phytes) are one of the major primary producers in dead coral
substrates in a wide range of coral reef environments [15].
In an investigation of the photosynthetic activity and N2

fixation rates of coral rubble endoliths in fringing reefs
at La Reunion Island (France) and Sesoko Island (Oki-
nawa, Japan), the main endolith flora was composed of
the cyanobacteria Hyella (cf.) caespitosa, Plectonema (cf.)
terabrans, Mastigocoelus testarumin, and Scytonema (cf.)
conchophyllum (the last two species with heterocysts). Their
primary production rate varied seasonally between 1.6 and
4.8 µg C µg chl−1 day−1 and were comparable to those of
scleractinian corals [16].

2.3. Symbiotic Cyanobacteria. Marine sponges can host a
variety of cyanobacterial and bacterial symbionts. For exam-
ple, the filamentous cyanobacterium Oscillatoria spongeliae
is found in the sponge Dysidea on the Great Barrier Reef
(Australia) and also in three species of Dysidea found around
Guam [17]. In the Western Central Pacific reefs from Taiwan
to the Ryukyu Archipelago, the encrusting sponge Terpios
hoshinata is associated with unicellular cyanobacteria first
described as Aphanocapsa raspaigellae [18, 19] and later
reclassified using molecular tools as closely related to Pro-
choron sp. [20]. In the shallow waters of the Caribbean Sea,
the encrusting sponges Terpios manglaris and T. belindae are
associated with the cyanobacterium Hypheothrix sp. (Oscil-
latoriales, Schizotrichaceae) [18, 19]. The sponge Terpios sp.
aggressively competes for space by killing and overgrowing
live corals and is responsible for devastating wide areas of
coral reef. Phylogenetic analyses of 16S rRNA sequences
of sponge-associated cyanobacteria have shown them to be
polyphyletic. Many sequences are affiliated with Synechococ-
cus and Prochlorococcus species [21, 22]. Cyanobacteria fill
the cortical region of the sponge and penetrate inward into
the choanosomal region [23]. Microbial symbionts may
produce many of the pharmaceutically active compounds
isolated from marine sponges [24, 25]. These compounds
can serve a variety of ecological functions, from predator and
competitor deterrence and resistance to malignant microbial
infections. Because cyanobacterial symbionts can also over-
grow and kill their host sponge, it is not known whether
sponges can actively regulate their symbiont populations
[26].

2.4. Epiphytes. Benthic marine species of Phormidium with
narrow trichomes and Plectonema are common epiphytes on
cyanobacteria and algae. These organisms attach externally
onto sheaths of other cyanobacteria, while Spirulina tend to
crawl inside their sheaths. Small coccoid epiphytic cyanobac-
teria (<0.8 µm diameter), which attach to sheaths of large
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Lyngbya majuscula (>80 µm), illustrate the enormous cell
size range of marine cyanobacteria [27].

Cyanobacteria are frequently observed as epiphytes of
seagrass on the Great Astrolabe Reef, Fiji [28], and on the
Great Barrier Reef, Australia [29], as well as epiphytes of algal
turf on Virgin Island [30] in French Polynesia [31].

2.5. Microbial Mats. Microbial mats are associations of
organisms dominated by cyanobacteria in association with
photosynthetic bacteria, sulphur bacteria, and other micro-
organisms. They generally form flat, extensive mats of sev-
eral millimetres in thickness on sand or mud. In coral
reef ecosystems, microbial mats are found in soft muddy
floors of lagoons comprised alternatively by different gliding
filamentous cyanobacteria. The diversity of cyanobacterial
mats inhabiting different environments has been the focus
of several recent studies that applied molecular methods to
natural populations. To explore the identity and distribution
of natural populations of benthic marine cyanobacteria,
polyphasic approaches have been used on Tikehau atoll
(French Polynesia) [32], in New Caledonia [33], in the
western Indian Ocean in Zanzibar (Tanzania) [34], in
La Reunion Island, and in Okinawa [36]. These studies
identified three types of organosedimentary structures that
regularly occur on the lagoon floor: horizontally spreading
mats, cobweb-like soft gelatinous masses, and hemispherical
to spherical domes. These structures differ in appearance,
species composition, mode of growth, and in their relation-
ship to the substrate.

For example, on Tikehau Atoll, mats were dominated
by Hydrocoleum cantharidosmum, H. coccineum, Spirulina
subsalsa, Symploca hydnoides (Figure 2), and various species
of Phormidium [32], whereas those in New Caledonia were
dominated by heterocystous (Nodularia harveyana) and
non-heterocystous (Hydrocoleum cantharidosmum, H. lyn-
gbyaceum) [33]. In Page reef, Zanzibar, mats were dom-
inated by filamentous non-heterocystous genera such as
Lyngbya, Microcoleus, Spirulina, and Oscillatoria as well as by
genera within Pseudanabaenaceae. Unicellular taxa were
also represented, while heterocystous taxa were encountered
only rarely [34]. In Broward County, Florida, USA, the
blooms were dominated by Lyngbya polychroa [35]. Finally,
on La Reunion Island and Sesoko Island, Anabaena sp.
among heterocystous (Figure 3) and Hydrocoleum majus and
Symploca hydnoides among non-heterocystous cyanobacteria
occurred in microbial mats at both sites, whereas Oscillatoria
bonnemaisonii and Leptolyngbya spp. occurred only on La
Reunion Island, and Hydrocoleum coccineum and Phormid-
ium laysanense dominated on Sesoko Island. Mats dominated
by Hydrocoleum lyngbyaceum and Trichocoleus tenerrimus
occurred at lower frequencies [16, 36].

Biological N2 fixation performed by cyanobacteria pro-
vides these organisms and microbial mat communities with
a particular advantage when growing under N-limited con-
ditions, which are most common in marine environments.
Biological N2 fixation by cyanobacteria appears to make a
major contribution to N supply in coral reef ecosystems
[36]. Not all cyanobacteria can fix atmospheric nitrogen.

Figure 2: Tufts dominated by Symploca hydnoides in Mayotte
lagoon at 10 m depth.

Figure 3: Cyanobacteria mats dominated by Anabaena sp. (hetero-
cystous) in Mayotte lagoon at 14 m depth.

The process is oxygen-sensitive and energetically expensive,
which constrains its implementation in oxygenic cyanobac-
teria; these bacteria separate the processes of carbon and ni-
trogen fixation either in space (i.e., heterocyst) or time [37].

The contribution of N2 fixation to that required for
primary production is between 2% and 21% in Tikehau atoll
lagoon [38] and New Caledonia [33]. Casareto et al. [16]
compared N2 fixation rates of three different subenviron-
ments (coral rubbles, microbial mats, and sandy bottoms) on
La Reunion and Sesoko Islands. They found that N2 fixation
rates of microbial mats are one order of magnitude higher
than that of other subenvironments and can contribute up
to 95% of their primary production [16].

2.6. Harmful Effects. Cyanobacteria are becoming increas-
ingly prominent on declining reefs, as these microbes can
tolerate strong solar radiation [39]. Changes in land use
or seabird distribution that lead to alter dissolved organics,
iron, and phosphorus input enhance proliferation of noxious
blooms of cyanobacteria [40]. The production of deterrent
secondary metabolites by benthic cyanobacterial and similar
microbial assemblages facilitates the formation of cyanobac-
terial blooms on coral reefs [41].

Kuffner et al. [42] found evidence that algae and cyan-
obacteria use tactics beyond space occupation to inhibit coral
recruitment. On reefs experiencing phase shifts or temporary
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algal blooms, the restocking of adult coral populations may
be slowed due to recruitment inhibition by cyanobacteria,
thereby perpetuating reduced coral cover and limiting coral
community recovery. Cyanobacterial mats act as a poison for
scleractinian corals and are able to kill live coral tissue [43].
About 30 diseases of corals have been recognised since they
were first discovered more than 30 years ago. Little is known
of the causes and effects of coral disease, although they can
be caused by bacteria, fungi, algae, worms [44], and viruses
[45–47].

Black band disease (BBD) of corals is caused by a
pathogenic microbial consortium that exists as a horizontally
migrating, laminated microbial mat. The consortium is
structurally directly analogous to the cyanobacterial mats
found in many illuminated, sulfide-rich benthic environ-
ments such as hot spring outflows and sediments of
hypersaline lagoons, but is unique in that the entire mat
community migrates across the surface of coral colonies,
completely degrading coral tissue. BBD is one of a number
of coral diseases believed to play an important role in the
observed decline of coral reefs. The black band microbial
consortium is dominated by Phormidium corallyticum [48]
in the Caribbean, but other cyanobacteria species were
described in Palau reefs [49] and in the Red Sea where a new
cyanobacterium species, Pseudoscillatoria coralii gen. nov.,
sp. nov., dominates the BBD consortium on Favia sp. corals
[50]. P. corallyticum can perform oxygenic photosynthesis
in the presence or absence of sulfide but cannot conduct
anoxygenic photosynthesis with sulfide as an electron donor.
This species is not capable of fixing N2 [51]. Recent
discoveries [52, 53] indicate that different species and strains
of BBD cyanobacteria, which can occur in the same BBD
infection, may contribute to BBD pathobiology by producing
different types and amounts of toxins at different stages of
the disease process. Understanding the interactions between
coral larvae and benthic bloom-forming cyanobacteria may
be important in managing coral reef ecosystems [54].

2.7. Benthic Cyanobacteria Grazing. Cyanobacteria are gen-
erally considered to be a poor food source due to toxicity,
low nutritional value, or a morphology that makes ingestion
difficult. Despite these factors, there are grazers that are
adapted to feeding on cyanobacteria [55].

Lyngbya majuscula constitutes a major portion of the diet
of a Pomacentrid damselfish on Davies Reef, Australia [56],
and on Orpheus Island, Australia [57]. Many cyanobacteria,
including species of Calothrix, Lyngbya, Oscillatoria, and
Phormidium, have been found in the plate of fish Hemiglyphi-
dodon plagiometopon [58].

During the life of the coral, the endoliths are protected
from grazers, but in dead coral skeletons endolith cyanobac-
teria are exposed to grazing by molluscs, echinoderms and
scarid fish [9]. The importance of epiphytic cyanobacteria
as a food source for heterotrophs in coral reef ecosystems
was also reported by Yamamuro [28]. Thacker et al. [59]
found that coral reef fishes can learn to avoid defensive
secondary metabolites, but that this learning does not occur
when access to food is limited. This strategy may indicate

that the effectiveness of the chemical defences of an alga or
cyanobacteria is dependent on the state of the consumer and
the defences of other prey in the environment. Thacker et
al. [60] observed selected grazing on the cyanobacteria of
Guam coral reefs, stressing the critical role of herbivory in
determining coral reef community structure.

Some tropical benthic cyanobacteria are preferred foods
for specialized consumers in the size range of mesograzers.
Therefore, a diverse fauna may depend on cyanobacterial
mats. Tropical mesograzers exploit considerably different
food resources, with some species adapted to consume
cyanobacterial mats. Benthic cyanobacteria may play impor-
tant roles as food and shelter for marine consumers and may
indirectly influence local biodiversity through their asso-
ciated fauna [61, 62]. The cyanobacterial genus Lyngbya
includes free-living, benthic, filamentous cyanobacteria that
form periodic nuisance blooms in lagoons, reefs, and
estuaries. Lyngbya spp. are prolific producers of biologically
active compounds (metabolites). Lyngbya majuscule pro-
duces a wide variety of secondary metabolites, as well as
lyngbyatoxin A (LTA). LTA production varies in different
locations worldwide [63]. Specific metabolites produced by
Lyngbya majuscula act as both feeding attractants to the
specialist herbivore Stylocheilus longicauda, and as effective
feeding deterrents to the generalist fishes [64]. One species,
identified as Lyngbya cf. confervoides, produces a diverse array
of bioactive peptides and depsipeptides [65].

Opisthobranchs may also play a role in top-down control
of toxic cyanobacterial blooms, as was demonstrated for toxic
Lyngbya by Capper and Paul [66].

Microbial mats can also be ingested by filter feeders.
Identification of homoanatoxin-a from benthic marine
cyanobacteria (Hydrocoleum lyngbyaceum) samples collected
in Lifou (Loyalty Islands, New Caledonia) was recently
reported [67]. This cyanobacterium was suspected to cause
giant clam (Tridacna maxima) intoxications.

3. Planktonic Cyanobacteria

Planktonic cyanobacteria found in coral reef plankton are
mainly filamentous and unicellular.

3.1. Planktonic Filamentous Cyanobacteria. Large blooms
of Trichodesmium, a filamentous nitrogen-fixing cyanobac-
terium, are observed frequently in coral reef ecosystems [68].
They have been documented in the eastern Indian Ocean and
western Pacific [69], in the central region of the Great Barrier
Reef [70–73], in the Gulf of Thailand [74], and in the south-
western Tropical Pacific [75]. Trichodesmium spp. have been
described to be nontoxic, sometimes toxic, or always toxic to
a range of organisms [76–81]. Recent studies have provided
unprecedented evidence of the toxicity of Trichodesmium
spp. from the New Caledonia lagoon [82], demonstrating
the possible role of these cyanobacteria in ciguatera fish
poisoning.

Trichodesmium is the most well-studied marine N2-fixing
organism and perhaps one of the most important. The rate
of nitrogen fixation by Trichodesmium species in surface
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waters is close to 2 pmol N trichome−1 h−1 [83]. It is difficult
to quantify the importance of Trichodesmium diazotrophy
because of the stochastic nature of the blooms. However,
it is estimated that Trichodesmium contributes about 0.03–
20% of the total CO2 fixation in the coastal surface waters of
Tanzania [84].

The pelagic harpacticoid copepod Macrosetella gracilis is
usually found in association with blooms of Trichodesmium
in tropical and subtropical waters. This copepod is one of the
few direct grazers of these often toxic cyanobacteria [79, 85].

The study of Villareal [86] in the Belizean barrier reef
showed significant grazing of Trichodesmium by the coral reef
community.

3.2. Planktonic Unicellular Cyanobacteria. Oligotrophic
waters surrounding coral reef ecosystems and lagoons are
dominated by the small coccoid unicellular cyanobacteria
Synechococcus and Prochlorococcus [87–95]. In coral reef
waters, Synechococcus has a size of 1 µm and an abundance
ranging from 10 × 103 to 500 × 103 cells mL−1, while Pro-
chlorococcus has a size of 0.6 µm and an abundance ranging
from 10 × 103 to 400 × 103 cells mL−1.

The contribution of unicellular cyanobacteria to phyto-
plankton biomass and production varies according to the
ecosystem. In Tuamotu lagoon (French Polynesia), Syne-
chococcus is the predominant group in terms of abundance
and carbon biomass and has the highest planktonic primary
production among lagoons. As it is generally scarce in deep
water with limited light availability, its biomass contribution
is reduced in deep lagoons. In very shallow lagoons, no
general trend has been observed, as the dominant group
appears to depend on the water residence time within the
lagoon [89–96]. In Tuamotu lagoon and Miyako Island
(Okinawa) picoplankton primary production represents 65–
80% of total phytoplankton production [97, 98].

In the Great Astrolabe Reef lagoon (Fiji), Synechococ-
cus is the most abundant group (85–95%), followed by
picoeukaryotes (5–10%) and Prochlorococcus (<4%) [90].
Picoplankton primary production makes up 53.2% of the
total phytoplankton production [90].

Ayukai [99] reported that on the Great Barrier Reef, the
average abundance of cyanobacteria (Synechococcus) is 0.16–
2.41× 104 cells mL−1. Later, Crosbie and Furnas [92], using a
flow cytometer, observed that Synechococcus was more abun-
dant and had a greater biomass than Prochlorococcus at most
inshore and mid-shelf sites in central regions (17◦S) and at
all shelf sites in southern areas (20◦S) of Great Barrier Reef.
Moreover, Synechococcus and Prochlorococcus abundance was
better correlated with salinity, shelf depth, and chlorophyll a
concentration than with nutrient concentrations.

At Sesoko Island (Okinawa), Tada et al. [100] found
that picoplankton dominated the phytoplankton community
with an average contribution to the total chlorophyll-a
biomass of 52%. At Miyako Island (Okinawa, Japan), the
contribution of picophytoplankton to total phytoplankton
biomass is 45–100% [101]. In another study, Ferrier-Pagès
and Furla [96] found that the picophytoplankton contri-
bution to total chlorophyll was 32–73%. Prochlorococcus,

Synechococcus, and picoeukaryote abundance was on average
64 ± 11, 12 ± 2, and 4 ± 0.7 × 103 cells mL−1, respectively.
Their contribution to picoplankton biomass was 10, 49,
and 41%, respectively, and the contribution of picoplankton
primary production to total phytoplankton production is
65%. On Miyako Island, Okinawa (Japan), Synechococcus
spp. represented 65% of the chlorophyll (<3 µm), 53% of
autotrophic carbon, and 67% of the nitrogen [101]. In
Mayotte (south-western Indian Ocean), particles <10 µm
accounted for 74% of the chlorophyll-a concentration and
for 47% of the total living carbon [102].

In one study in New Caledonia’s coral lagoon, unicellular
diazotrophic cyanobacteria of 1–1.5 µm were found along
a nutrient gradient using whole-cell hybridization with
specific Nitro 821 probes [103]. Their abundance ranged
from 3 to 140 cells mL−1. These cells may contribute to N2

fixation (from the <10 µm size fraction) which was estimated
to be 4.4–8 nmol N−1 d−1.

Very few studies have investigated grazing of unicel-
lular cyanobacteria in coral reef waters [101, 102]. In
Tikehau lagoon (Tuamotu),González et al. [104] showed
that phagotrophic nanoflagellates were the major grazers of
picocyanobacteria. Ciliates and heterotrophic dinoflagellates
appeared to be grazing mostly on nanoplankton, both
autotrophic and heterotrophic cells, showing the important
contribution of coccoid cyanobacteria to the microbial food
web.

In Takapoto (Tuamotu), the grazing rates of <200 µm
protozoa on cyanobacteria represented 74% of their growth
rates [105]. In the lagoonal waters of the two largest
atolls of French Polynesia (Rangiroa and Fakarava), 75%
of the cyanobacteria production was consumed by <10 µm
fractions, equal to 0.05–0.5 × 104 cyanobacteria mL−1 h−1

[96]. In the water over a fringing coral reef at Miyako
Island (Japan), 30–50% of picocyanobacteria production
was grazed by heterotrophic flagellates and ciliates, which
themselves were grazed (50–70% of the production) by
higher trophic levels [101].

On Conch Reef, Florida Keys, sponges are a net sink
for picocyanobacteria [106]. In the Gulf of Aqaba, Red
Sea, measurements of depletion of phytoplankton cells and
pigments over coral reefs have revealed that Synechococcus
contributes >70% of the total depleted carbon in summer.
The grazing of cyanobacteria appears to be an important
component of benthic-pelagic coupling in coral reefs [102,
107]. Another study by Yahel et al. [108] demonstrated that
sponges removed significant amounts of picocyanobacteria
but suggested that DOC may play a major role in the trophic
dynamics of coral reefs. In Caribbean coral reef communities,
gorgonian corals do not appear to graze significantly on
picocyanobacteria [109].

4. Conclusions

Cyanobacteria are ubiquitous in coral reef ecosystems:

(i) as a part of the reef (Microbialites),

(ii) inside (endoliths) and above (epiliths and epiphytes)
the coral reef,
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(iii) as symbionts of sponges,

(iv) covering soft bottoms as microbial mats,

(v) in the water column.

In addition, they have the following.

(i) They help build and erode the reef.

(ii) They are important primary producers.

(iii) They represent an organic source for planktonic and
benthic heterotrophic organisms.

(iv) They enrich the ecosystem with nitrogen.
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