
Chapter 9

1/f Noise and Random Telegraph
Signals

In practically all electronic and optical devices, the excess noise obeying the inverse fre-
quency power law exists in addition to intrinsic thermal noise and quantum noise. An
enormous amount of experimental data has been accumulated on 1/f noise in various ma-
terials and systems. However, a physical mechanism for 1/f noise has not been completely
identified yet. We have one physical model that lead to the 1/f power law but it is not
necessarily a unique physical mechanism for the 1/f noise.

In very small electronic devices the alternate capture and emission of carriers at an
individual defect site generates discrete switching in the device resistance—referred to
as a random telegraph signal (RTS). The study of RTS has demonstrated the possible
microscopic origin of low-frequency (1/f) noise in these devices, and has provided new
insight into the nature of defects at an interface.

As a consequence of recent advances in processing technology, it has now become pos-
sible to produce devices in which the active volume is so small that it contains only a small
number of charge carriers. The examples are small-area silicon metal-oxide-semiconductor
field-effect transistors (MOSFETs) and metal-insulator-metal (MIM) tunnel junctions.
Figure 9.1 shows an example of the random telegraph signal (RTS) measured in the drain
current of a MOSFET as a function of time; the times in the high- and low-current states
correspond to carrier capture and emission times, respectively.

The bias-voltage dependence of the capture and emission times allows one to determine
the location of the defects from the channel of conduction. In MOSFETs they are found to
reside in the oxide up to a few nanometers from the interface and hence within tunnelling
distance of the inversion layer. For the MIM tunnel junctions, the traps are also located
in the insulator. Through the study of the temperature and bias-voltage dependence of
these capture and emission times for a single defect, one can extract parameters such as
capture cross-section, activation energy for capture and emission, and the temperature
dependence of the trap energy level.

A principal theme of this chapter is the relationship between the RTS associated with
these defects in small devices and the 1/f noise found in large devices. During the past
two decades the origin of 1/f noise has been the subject of extensive investigation[1]-
[6]. Despite this intensive effort, the subject of 1/f noise has been notorious for several
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reasons: first, there has been a lack of data open to unambiguous interpretation; secondly,
there has been a long-running and rather sterile debate over ‘mobility-fluctuation’ versus
‘number-fluctuation’ models. The basic reason why no consensus has emerged is that little
detailed information comes from the conventional ensemble-averaged power spectrum. We
shall discuss the recent results on the noise properties of microstructures in which the
averaging process is incomplete and individual fluctuators can be resolved. In the case
of MOSFETs and MIM diodes, it will be shown conclusively that the 1/f noise in large
devices is caused by the summation of many RTSs due to the defects in the insulator.
In addition, the distribution of physical characteristics measured for the defects accounts
easily for the wide range of time constants necessary to generate 1/f noise.

Figure 9.1: Random telegraph signal. Change in current against time. Active
area of MOSFET is 0.4 µm2. VD = 10 mV, VG = 0.94 V, ID = 6.4 nA, T =
293 K.

The electrical activity of defects at the Si/SiO2 interface is normally studied using
capacitance-voltage or conductance-voltage techniques. Recent experiments that have
used the conductance technique show that there are two classes of interface defect: the
first includes those defects normally seen, and which presumably reside at the interface,
and are characterized by a single time constant; the second class incorporates defects
residing in the oxide, which have a wide range of time constants and are responsible for
the 1/f noise.

9.1 Characteristics of 1/f Noise

9.1.1 Scale invariance

A 1/f noise is characterized by a power spectral density function:

Sx(ω) = C/ω , (9.1)

where C is a constant. The integrated power in the spectrum between ω1 and ω2 is given
by

Px(ω1, ω2) =
1
2π

∫ ω2

ω2

Sx(ω)dω
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=
C

2π
ln

(
ω2

ω1

)
, (9.2)

This result shows that for a fixed frequency ratio ω2/ω1, the integrated noise power is
constant. Thus the total noise powers in between any decade of frequency, say 0.1 Hz to
1 Hz or 1 Hz to 10 Hz or 10 Hz to 100 Hz, are all identical. This property of 1/f noise is
known as scale invariance.

9.1.2 Stationarity

Consider a 1/f noise, for which a noisy waveform x(t) has the band-pass filtered power
spectral density,

Sx(ω) =

{
C/ω for ω1 ≤ ω ≤ ω2

0 otherwise
. (9.3)

The autocorrelation function of x(t) is obtained by using the Wiener-Khintchine theorem,

φx(τ) =
C

2π

∫ ω2

ω1

cosωτ

ω
dω

=
C

2π
[Ci(ω2τ)− Ci(ω1τ)] , (9.4)

where
Ci(z) =

∫ z

−∞
cos y

y
dy , (9.5)

is the cosine integral. The series expansion of Ci(z) is

Ci(z) = γ + ln(z) +
∞∑

k=1

(−1)kz2k

(2k)!2k
, (9.6)

where γ = 0.5772 · · · is Euler’s constant. Thus, in the limit of z → 0, the cosine integral
reduces to Ci(z) ' ln z. The mean-square of x(t) is thus given by

φx(τ = 0) =
C

2π
ln

(
ω2

ω1

)
. (9.7)

It is evident from the above argument that the band-pass filtered 1/f noise is statistically
stationary because it has the second-order quantities depend only on the delay time τ and
not on the absolute time at which the ensemble average is performed.

However, there is no experimental evidence for the existence of the low frequency limit
ω1 for 1/f noise. The reason is that an observation time T is always finite in practice and so
a lower frequency region of the spectrum, ω ≤ 2π

T , cannot be observed. The autocorrelation
function and the mean square value that can be measured in actual experiments are thus
given by replacing the low frequency limit ω1 with 2π/T in Eqs. (9.4) and (9.7).

The Wiener-Levy process, discussed in Chapter 2, is a cumulative process of random
walk. The power spectrum obeys 1/ω2 law. By the very nature of the process, the Wiener-
Levy process is statistically nonstationary and there is no possibility for the low-frequency
limit ω1 to exist. The corner (roll-off) frequency in the calculated spectrum (Chapter 2)
is an artifact associated with the finite gate time T . In the case of 1/f noise, however, a
low-frequency limit ω1 may or may not exist. The stationarity of the process is still open
to question.
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9.2 Physical Model of 1/f Noise

9.2.1 Superposition of relaxation processes

If the noisy wave form z(t) has an exponential relaxation process with a time constant τz,
the power spectral density has the general form:

Sz(ω) =
g(τz)

1 + ω2τ2
z

, (9.8)

where g(τz) depends on the generation mechanism of the random pulse trains. Suppose
an overall noisy waveform x(t) is constructed from linear superposition of such relaxation
processes, whose decay constants are distributed between upper and lower limits τ1 and
τ2 with a probability density p(τz). The overall power spectral density is then

Sx(ω) =
∫ τ2

τ1
Sz(ω)p(τz)dτz =

∫ τ2

τ1

p(τz)g(τz)
(1 + ω2τ2

z )
dτz . (9.9)

If the numerator p(τz)g(τz) is independent of τz and equal to a constant P , the above
integral reduces to

Sx(ω) = P
[
tan−1(ωτ2)− tan−1(ωτ1)

]
/ω . (9.10)

When the two time constants τ2 and τ1 satisfy ωτ2 À 1 and 0 ≤ ωτ1 ¿ 1, respectively, the
two terms in the numerator are approximately equal to π/2 and 0. Thus, a superposition
of exponential relaxation processes can give rise to a spectrum

Sx(ω) =
(

πP

2

)
/ω . (9.11)

If the product p(τz)g(τz) is proportional to τα−1
z , the power spectral density has a more

general form of ω−α.

9.2.2 Distributed trapping model

One physical model of such 1/f noise is the trapping of charged particles with a wide spread
of time constants. If a free carrier in a conducting channel is immobilized by falling into
a trap, it is no longer available for current transport. The modulation of carrier numbers
has the form of random telegraph signal with a Poisson point process as shown in Fig.9.2.
The probability of observing m telegraphic signals in the time interval T is given by

p(m,T ) =
(νT )m

m!
e−νT , (9.12)

where ν is the mean rate of transitions per second. If τ+ and τ− are the average times
spent in the upper and lower states, respectively, the probability distributions of the upper
state time t+ and lower state time t− are

p(t±) = τ−1
± exp

(
− t±

τ±

)
. (9.13)
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Figure 9.2: A random telegraph signal produced by a carrier trap.

The product x(t)x(t + τ) is equal to +a2 if an even number of transitions occur in the
interval (t, t + τ) and to −a2 if an odd number of transitions occur in the same interval.
Therefore, the autocorrelation function is

φτ (x) = a2 [p(0, τ) + p(2, τ) + · · ·]
−a2 [p(1, τ) + p(3, τ) + · · ·]

= a2e−ντ

[
1− ντ +

(ντ)2

2!
− (ντ)3

3!
+ · · ·

]

= a2e−2ντ . (9.14)

The power spectrum is thus calculated by the Wiener-Khintchine theorem,

Sx(ω) = 4
∫ ∞

0
φx(τ) cos(ωτ)dτ

=
2a2/ν

(1 + ω2/4ν2)

= a2 4τz

(1 + ω2τ2
z )

. (9.15)

Here τz = 1/2ν is the time constant of the trap. If τz is distributed according to the
function p(τz), the power spectral density of the total carrier number fluctuation is

Sn(ω) = 4φn(τ = 0)
∫ ∞

0

τzp(τz)
(1 + ω2τ2

z )
dτz . (9.16)

Here it is assumed
∫∞
0 p(τz)dz = 1.

Suppose the carrier trap occurs by the tunneling of charged carriers from a conducting
layer to traps inside the oxide layer at depth w, the time constant obeys

τz = τ0 exp(γw) , (9.17)

where τ0 and γ are constants. If the traps are uniformly distributed between the depth
w1 and w2, corresponding to the time constants τ1 and τ2, we obtain

p(τz)dτz =

{
dτz/τz

ln(τ2/τ1) (τ1 ≤ τz ≤ τ2)
0 (otherwise)

. (9.18)
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Using Eq. (9.18) in Eq. (9.16), the power spectral density of the total number fluctuation
is given by

Sn(ω) =
4φn(0)

ln(τ2/τ1)

∫ τ2

τ1

dτz

(1 + ω2τ2
z )

=
4φn(0)

ln(τ2/τ1)
× tan−1(ωτ2)− tan−1(ωτ1)

ω
. (9.19)

As we discussed before, Eq. (9.19) shows 1/f power law in the frequency range of ωτ2 À 1
and 0 ≤ ωτ1 ¿ 1.

The above argument applies also for the intrinsic bulk transport property of the hop-
ping conduction. The essential requirement to obtain the 1/f power law is the Poissonian
telegraphic event with a distributed time constant which obeys 1/τz distribution function,
as shown in Eq.(9.18).

9.3 Random Telegraph Signals

The main purpose of the following subsections is to provide a detailed analysis of random
telegraph signals (RTSs) and the capture and emission kinetics of individual defects.

9.3.1 Probability distribution of RTS

Referring back to Fig. 9.1, we shall take the high-current state of the RTS to be state 1
and the low-current state to be state 0. We shall assume that the probability (per unit
time) of a transition from state 1 to state 0 (i.e. from up to down) is given by 1/τ̄1, with
1/τ̄0 being the corresponding probability from 0 to 1 (i.e. from down to up). We also
assume the transitions are instantaneous. We now intend to show that these assumptions
imply that the times in states 0 and 1 are exponentially distributed, that is, the switching
is a Poisson process.

Let p1(t)dt be the probability that state 1 will not make a transition betweens times o
and t, then will make a transition between times t and t + dt. Thus

p1(t) = A(t)/τ̄1 , (9.20)

where A(t) is the probability that after time t state 1 will not have made a transition and
1/τ̄1 is the probability (per unit time) of making a transition to state 0 at time t. However,

A(t + dt) = A(t)(1− dt/τ̄1); (9.21)

that is, the probability of not making a transition betweens times o and t + dt is equal
to the product of the probability of not having made a transition betweens times o and t
and the probability of not making a transition during the interval from t to t + dt. We
can rearrange Eq. (9.21) to give

dA(t)
dt

= −A(t)
τ̄1

. (9.22)

Integrating both sides of Eq. (9.22), we find

A(t) = exp(−t/τ̄1) , (9.23)
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such that A(0) = 1. Thus

p1(t) =
1
τ̄1

exp
(
− t

τ̄1

)
. (9.24)

p1(t) is correctly normalized such that
∫ ∞

0
p1(t)dt = 1 .

The corresponding expression for p0(t) is

p0(t) =
1
τ̄0

exp
(
− t

τ̄0

)
. (9.25)

Hence, on the assumption that the up and down times are characterized by single attempt
rates, we expect the times to be exponentially distributed. The mean time spent in state
1 is given by ∫ ∞

0
tp1(t)dt = τ̄1 , (9.26)

and the standard deviation is
[∫ ∞

0
t2p1(t)dt− τ̄2

1

]1/2

= τ̄1 . (9.27)

Equivalent expressions hold for the down state. Thus the standard deviation is equal
to the mean time spent in the state. Equation (9.27) can be used as a simple test for
exponential behavior.

9.3.2 Power spectrum of RTS: Lorentzian spectrum

Here we shall outline the derivation of the power spectrum of an asymmetric RTS. Initially,
we need to evaluate the autocorrelation function of the RTS. It is convenient to choose
the origin of the coordinate system such that state 0 has amplitude x0 = 0, and state
1 has amplitude x1 = ∆I. In addition, all statistical properties will be taken to be
independent of the time origin. The probability that at any given time the RTS is in state
1 is τ̄1/(τ̄0 + τ̄1), and similarly for state 0 it is τ̄0/(τ̄0 + τ̄1). Then we have

c(t) =
∑

i

∑

j

xixj × {Prob. thatx(s) = xi}

×{Prob. that x(s + t) = xj , given x(s) = xi} . (9.28)

Since x0 = 0 and x1 = ∆I, we obtain

c(t) = (∆I)2
τ̄1

τ̄0 + τ̄1
P11(t)

= (∆I)2 × {Prob. that x(s) = ∆I}
×{Prob. of even no. of transitions in time t, starting in state1} . (9.29)

If we define P10(t) as the probability of an odd number of transitions in time t, starting
in state 1 then we have

P11(t) + P10(t) = 1 . (9.30)
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In addition,

P11(t + dt) = P10(t)
dt

τ̄0
+ P11(t)

(
1− dt

τ̄1

)
; (9.31)

that is, the probability of an even number of transitions in time t+ dt is given by the sum
of two mutually exclusive events: first, the probability of an odd number of transitions in
time t and one transition in time dt; and secondly, the probability of an even number of
transitions in time t and no transitions in time dt. We can make dt small enough that the
probability of more than one transition is vanishingly small. Substituting from Eq. (9.30)
into Eq. (9.31), we obtain the following differential equation for P11(t):

dP11(t)
dt

+ P11(t)
(

1
τ̄0

+
1
τ̄1

)
=

1
τ̄0

. (9.32)

This equation can be solved by using exp [
∫
(1/τ̄0 + 1/τ̄1)dt] as an integrating factor:

P11(t) =
τ̄1

τ̄0 + τ̄1
+

τ̄0

τ̄0 + τ̄1
exp

[
−

(
1
τ̄0

+
1
τ̄1

)
t

]
, (9.33)

where P11(t) has been normalized such that P11(0) = 1. Equations (9.33) and (9.29) can
now be used to evaluate the power spectral density S(f):

S(f) = 4
∫ ∞

0
c(t) cos(2πfτ)dτ =

4(∆I)2

(τ̄0 + τ̄1)[(1/τ̄0 + 1/τ̄1)2 + (2πf)2]
. (9.34)

Here we have used the Wiener-Khintchine theorem. (The d.c. term, which contributes
a delta function at f = 0, has been ignored.) For the case of a symmetric RTS, that is,
τ̄0 = τ̄1 = τ̄ for example, this equation simplifies to

S(f) =
2(∆I)2τ̄

4 + (2πfτ̄)2
. (9.35)

The total power P in the RTS can be obtained by integrating Eq. (9.34) over all frequencies:

P =
(∆I)2

(τ̄0 + τ̄1)(1/τ̄0 + 1/τ̄1)
. (9.36)

As one would expect, P = (1
2∆I)2 when τ̄0 = τ̄1; P is a maximum under these conditions.

9.3.3 Occupancy levels and grand partition function

In order to be precise in our meaning, we shall introduce the nomenclature ‘occupancy
level’ E(n + 1/n) to describe the energy level of a defect: E(n + 1/n) marks the Fermi
level EF at which the defect’s occupancy changes from n electrons to n + 1 electrons. We
can determine the occupancy of the defect using the grand partition function, ZG. This
is written as

ZG =
∑

ASN

exp
(
−ES −NEF

kT

)
, (9.37)

where ASN implies that the summation is to be carried out over all states S of the
system for all numbers of particles N . We have adopted the convention of semiconductor
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physics and set EF to be equivalent to the temperature-dependent chemical potential. The
absolute probability that the system will be found in a state (N1, E1) is given by

p(N1, E1) =
γ exp[−(E1 −N1EF)/kT ]

ZG
, (9.38)

where the state is orbitally (and perhaps also spin) degenerate with degeneracy γ.
Consider a defect system that has only two states of charge, n and n + 1, available.

Let the energy zero of the system correspond to the defect occupied by n electrons. Then

ZG = γ(n) exp
(

nEF

kT

)
+ γ(n + 1) exp

[
−E(n + 1/n)− (n + 1)EF

kT

]
, (9.39)

where γ(n) and γ(n + 1) are the degeneracies of the n- and (n + 1)-electron states. Then
the probability of finding the defect in the (n + 1)-electron state is

f = p(n + 1) =
{

1 + g exp
[
E(n + 1/n)− EF

kT

]}−1

, (9.40)

where
g = γ(n)/γ(n + 1) . (9.41)

This looks like a Fermi-Dirac distribution with a degeneracy factor g. In addition, we can
write

p(n + 1)
p(n)

=
γ(n + 1)

γ(n)
exp

[
−E(n + 1/n)− EF

kT

]
. (9.42)

That is, when the Fermi level crosses the level E(n + 1/n), the (n + 1)-electron state
dominates over the n-electron state.

For an individual RTS generated by a trap with occupancy level E(n + 1/n) and with
mean capture and emission times τ̄c and τ̄e, we have

f =
τ̄e

τ̄c + τ̄e
=

{
1 + g exp

[
E(n + 1/n)− EF

kT

]}−1

, (9.43)

τ̄e =
τ̄c

g
exp

[
−E(n + 1/n)− EF

kT

]
, (9.44)

where g is given by Eq. (9.41).
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