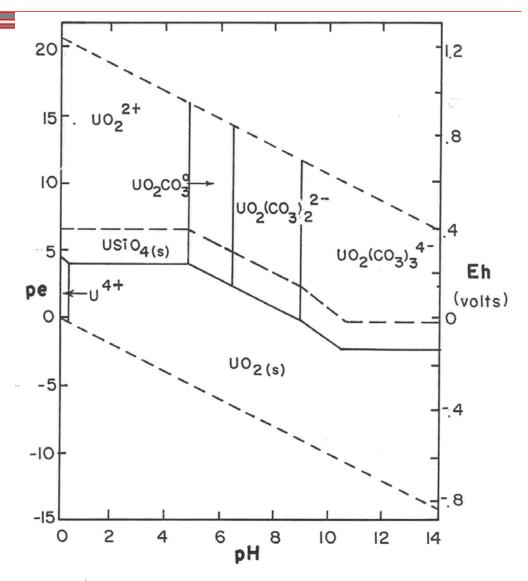
Uranium Mining & Milling in New Mexico: Past Activities & Environmental Challenges

Bruce Thomson Civil Engineering & Water Resources (bthomson@unm.edu)

Introduction

- Historically NM produced ~50% of U.S. domestic production
- There is value in understanding past successes and challenges to establish basis for evaluating future development
- Objective:
 - Summarize history of U mining & milling in NM
 - Discuss mining & milling technologies used in the past
 - Consider environmental challenges



World U Resources

U Mineralogy

- Two oxidation states
 - U(VI)
 - U(IV)
- Common U minerals
 - UO_{2(s)} Uraninite
 - USiO_{4(s)} Coffinite

U Minerals (Devoto, 1978)

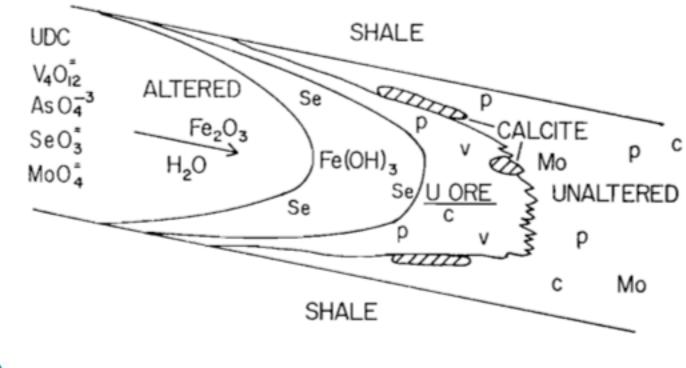
- There're a LOT!!
- Often associated with other metals

OXIDES Becquerelite, 7UO2:11H2O Billietite, BaO-6UO3-11H-0 Cerianite, CeO₂ Clarkeite, (Na,K,Ca,Pb) U207*#H20 Curite, PhO-8U03-4H20 Epi-ianthinite, hydrated uranyl oxide Fourmarierite, PbO-4UO3-5H2O Ianthinite, 2UO2-7H2O(?) Masuyite, UO₃·2H₂O Richetite, hydrated oxide of U and Ph (?) Schoepite, 2UO3-5H2O Thorianite, ThO₂ Uraninite, UO₂ Uranospherite, (BiO) (UO₂) (OH)₀(?) Vandenbrandeite, Cu (UO2) O2:2H2O Vandendriesscheite, PbO-7UO3-12H2O FLUORIDES Schroeckingerite, NaCa₃(UO₂)(CO₃)₃(SO₄)F·10H₂O CARBONATES Andersonite, Na₂Ca (UO₂) (CO₃) 26H₂O Bayleyite, Mg2(UO2) (CO3) 218H2O Liebigite, Ca2 (UO2) (CO2)2-10H2O Rabbittite, Ca3Mg3(UO2)2(CO3)6(OII)418H2O Rutherfordine, (UO2) (CO2) Schroeckingerite, NaCa₂(UO₂)(CO₂)₃(SO₄)F·10H-O Sharpite, (UO2) (CO3) H2O(?) Studtite, hydrated carbonate of U(?) Swartzite, CaMg (UO2) (CO3) 3/12H2O Unnamed mineral of Bignand (1954), Ca, U, hydrated carbonate Voglite, Ca₂Cu(UO₂)(CO₂)₄·6H₂O(?) SULFATES Johannite, Cu(UO2)2(SO1)2(OH)2-6H2O Uranopilite, (UO2)c(SO4) (OH)10-12H2O Zippelte, 2UO₃-SO₂-5H₂O Peligotite (-iohannite?) MOLYBDATES Umohoite, (UO2) (MoO4)-4H2O ARSENATES Abernathyite, K₂(UO₂)(AsO₄)₂/8H₂O Kahlerite, Fe (UO2)2(AsO1)28H2O Metazeunerite, Cu (UO2)2(AsO4)2/8H2O Novacekite, Mg (UO2)2 (AsO1)28-10H20 Troegerite, H2(UO2)2(AsO4)2.8H2O Uranospathite, Cu (UO2)2 (AsO1, PO4)2.16H2O(?) Uranospinite, Ca(UO2)2(AsO4)2-102HO Walpurgite, Bis (UO2) (AsO1)2O4-3H2O

(PO₄)₂·10-12H₂O (PO₁)₂·8H₂O U.Pb.) (PO.,SiO.) 2)6(PO4)1(OH)a10H2O(?) 2) 2(PO1)2(OH)4.3H2O)2)2(PO4,VO4)2.8H2O(?) (O2)2(PO4)28H2O UO2)=(PO4)=8H20 la(U()2)2(PO4)28H2O 0(204) (P0₄): H₂O (UO2)4(PO1)2(OH)5-7H2O 1(PO1)2(OH)1-7H2O -);(PO₄)·16H₂O (PO₄)₂·8-10ff₂O)2(PO₁)2·10-H=O 102); (PO4,A204); 16H20(?) VANADATES (VO₁)=1-3H₂O (VO₁)=6H₂O(?) a(UO;)2(VO4)2'3-5H2O 5V=0;+16H=0 2 (VO1)2.8-10H2O(?) 02)2(VO1)2-5-8H2O $H_{-}O$ SILICATES (UO2)2(SiO3)2(OH)2.5H2O (PO1,SiO4) (0II)₁₅ Cu(UO2)2(SiO3)2(OH)2-5H2O myl silicate SiO₃) (OH)₂ ·U0::2SiC::4H:0 02)2(SiO3)2(OH)2-6H2O O1)2(OH)-5H-O e.etc.) (SiO;) U,Ce.etc.) (SiO1)1 x(OH)4x 2)2(SiO2)(OII)25H2O NTALATES TITANATES (MULTIPLE OXIDES)

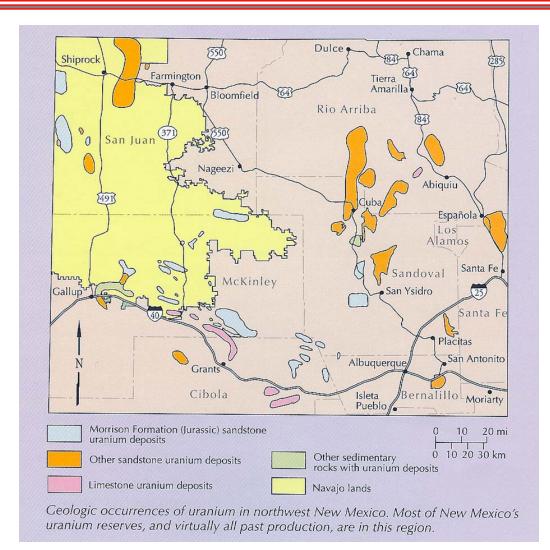
PHOSPHATES

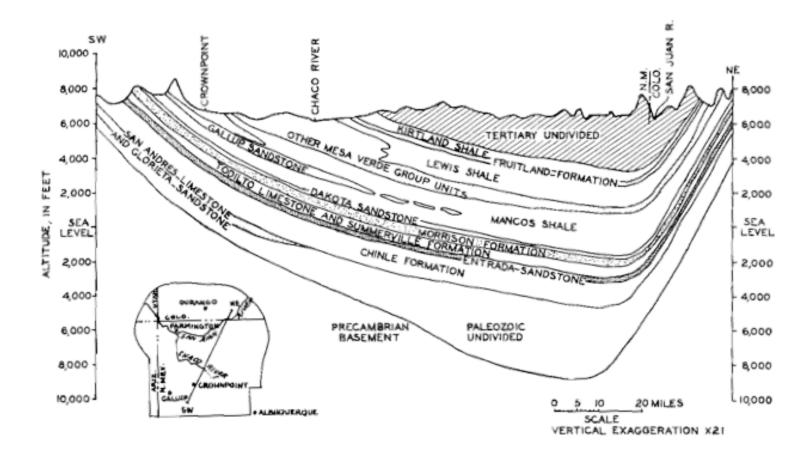
 $Ta,Ti)_{3}O_{0}H_{2}O$ $e,Th,Y)_{3}Ti_{2}O_{16}$ $Y,U,Ca,Zr,Th) (Ti,Fe,V,Cr)_{3}(O,OH)_{7}$ $b_{2}c^{2}FeO-24T(O_{2}(7))$ $a,Ca)_{2}Ta_{2}O_{3}(O,OH,F)$ $_{3}Sn,rare carths,U,Nb,Ta,Ti$ $IaCaNb_{2}O_{6}F$


Zeunerite, Cu(UO2)2(AsO4)2.10-16H2O

Types of U Ore Deposits (Devoto, 1978)

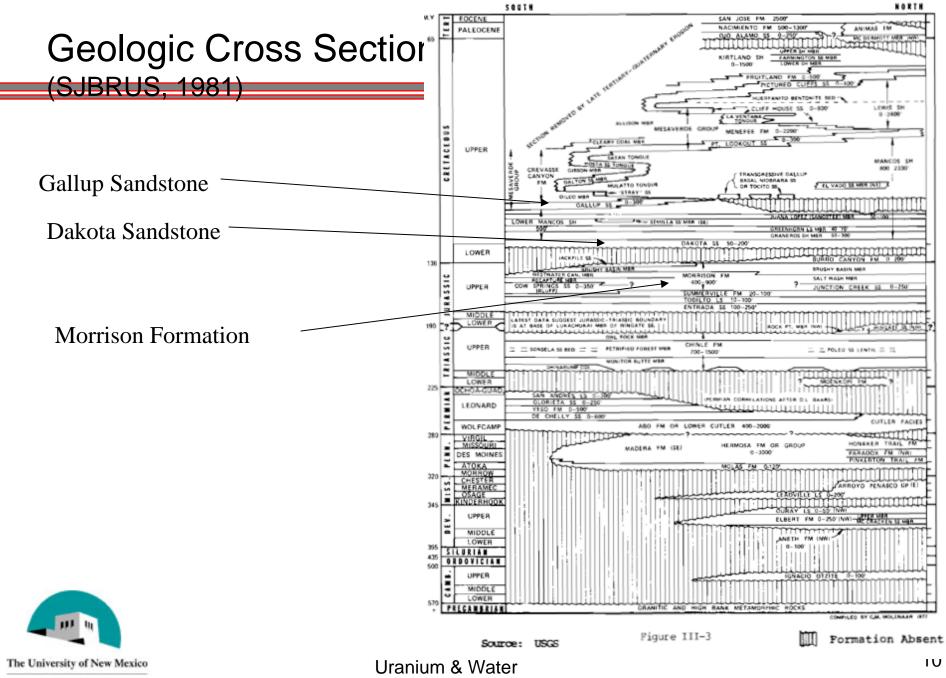
- Magmatic & igneous rocks
 - Crustal abundance ~2 ppm
 - Associated with granites & similar rocks
 - Some vein formation felsic igneous & metamorphic rocks (Schwartzwalder Mine)
- Sedimentary environments
 - Depositional (syngenetic) placer & marine deposits
 - Diagenetic (epigenetic) ground water transport & deposition
 - Weathering & transport as U-carbonate
 - Deposition in reducing zone Roll front deposits
 - With Organic C, Mo, V, S,e As, S, CaCO₃, feldspars, Fe-Mg Silicates

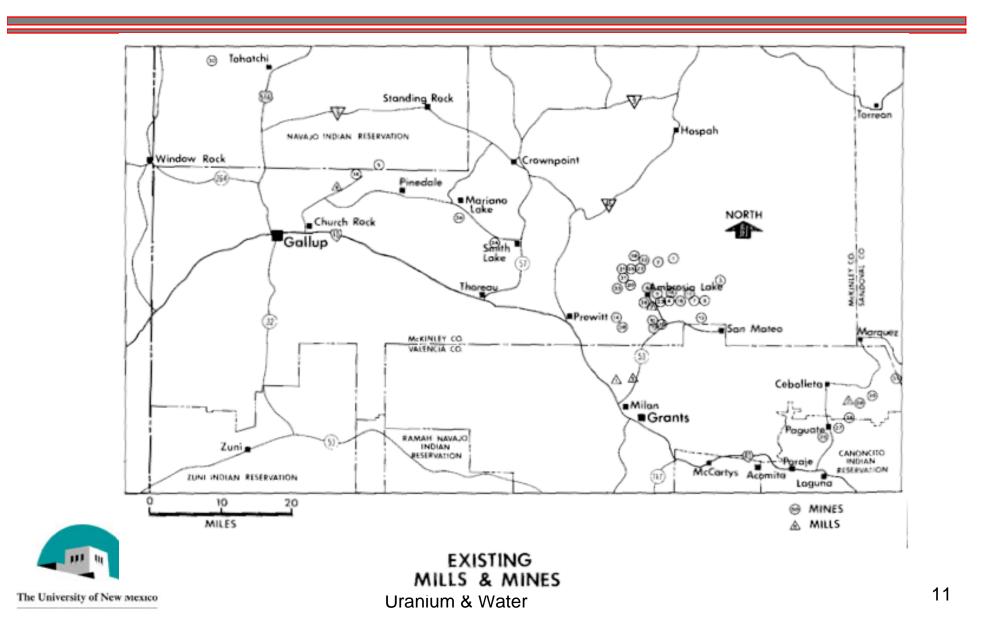

Diagram of Roll Front Deposit


U Resources in Grants Mineral Belt

(McLemore, 2007)

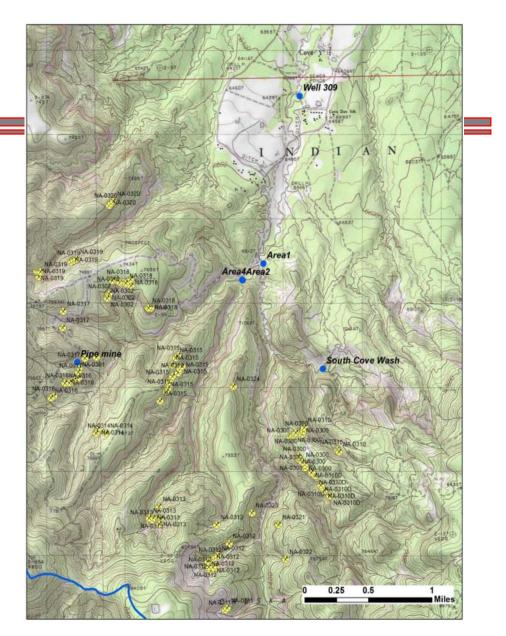
General Cross Section of San Juan Basin




GENERALIZED GEOLOGIC SECTION SHOWING MAJOR AQUIFERS

The University of New Mexico

Uranium & Water


SAN JUAN BASIN TIME-STRATIGRAPHIC NOMENCLATURE CHART

U Legacy in Navajo Nation

- Summarized in "Health and Environmental Impacts of Uranium Contamination in the Navajo Nation", DOI, EPA, NRC, DOE, IHS (2008)
- >500 mine sites, 4 mill sites
- Widespread contamination of soil & water

Mines near Cove, AZ (Lameman-Austin)

- Discovered in 1950 by Navajo sheepherder Paddy Martinez
- In 1979 NM produced ~50% of nation's supply of U
 - 38 mines
 - 6 mills
 - ~7,000 employees
 - Then:
 - Three Mile Island (3/28/79)
 - Churchrock tailings dam failure (8/16/79)
 - 370,000 m³ of tailings solution
 - 1,000 tonnes of tailings
 - Contaminated 110 km of Rio Puerco of the west
 - Now:
 - No mines or mills operating in NM

Major Proposed U Mine Projects in NM

(http://www.wise-uranium.org/uousanm.html)

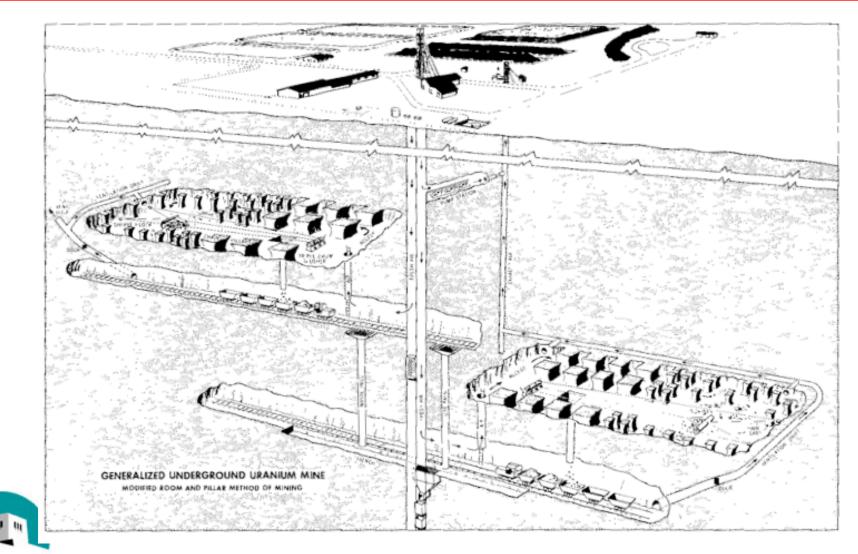
Name	Principal Company	Resources
		(tones U ₃ O ₈)
Cebolleta Project	Neutron Energy, Inc.	8,023 ^b
Churchrock – Strathmore	Strathmore Minerals Corp.	3,313 ^a
Churchrock – HRI	Hydro Resources, Inc.	7,154 ^b
Crownpoint – ISL	Hydro Resources, Inc.	5,885 ^a
Crownpoint Section 19/29	Tigris U Corp	4,373 ^a
Hosta Butte	Tigris U Corp	4,030 ^a
La Jara Mesa	Laramide Resources Ltd.	2,791 ^a
Marquez Project	Strathmore Minerals Corp	2,545 ^a
Mt. Taylor Mine	Rio Grande Resources	38,500 ^c
Roca Honda	Strathmore Minerals Corp.	5,591 ^a

Notes:

a - Indicated reserves

b - Probable reserves

c - Not specified



U Mining

- Conventional mining
 - Open pit mine Laguna Jackpile Paguate Mine
 - Underground mining
- Requires mine dewatering up to 3,000 gal/min
- Large power requirements for ventilation (Palo Verde nuclear generating station)
- In situ leach (ISL) mining
 - Practiced in So. TX, & WY
 - Little impact on ground water resources
 - Little surface disturbance
 - Difficult to restore aquifer quality

Method of Underground Mining (SJBRUS, 1981)

The University of New Mexico

Underground Images

Average Water Quality of the Puerco River

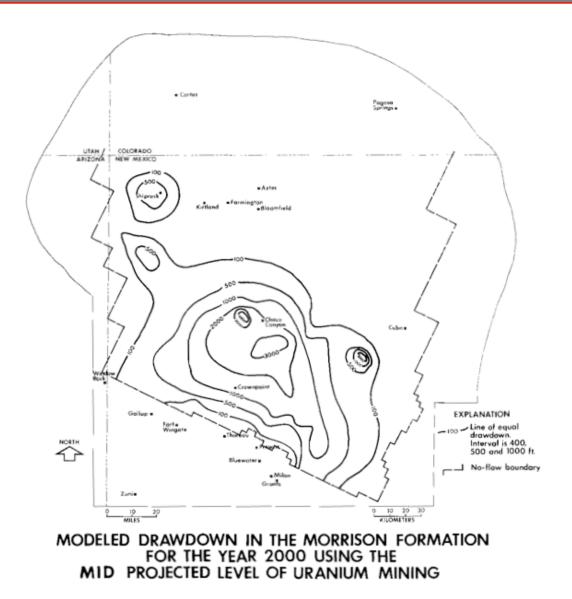
	Concentration (mg/L)		
Constituent	1978	1979	SDWA
			Std
Ba	.016	0.125	2.
$NO_2^- \& NO_3^-$	2.0	6.6	10.0
Se	.025	.010	0.05
SO_4^{2-}	204.	201.5	250*
TDS	627.	609	500*
U	0.63	0.40	0.03

* - Recommended maximum concentration

Average Weighted Concentration of Mine Water Discharges

Constituent	1975	1978
Flow	9.27 Mgal/d	13.5 Mgal/d
TDS	-	911
Se	0.059	.088
U	9.83	0.694
V	0.73	0.033
Ra-226	92.8 pCi/L	

Mine Water Treatment



The University of New Mexico

Aquifer	Thickness (ft)	TDS (mg/L)
Alluvium	0-100	200-9,200
Kirtland Shale	0-1,500	700-4,000
Gallup Sandstone	0-500	300-4,000
Dakota Sandstone	0-250	300-59,000
Morrison	50-800	170-5,600
Formation		

Impact on Ground Water Resources (SJBRUS, 1981)

Uranium Ore **U** Milling Ore Crushing & Water Grinding HSO₄ -Acid (or alkaline) leach process Oxidation & Leaching • Oxidize U(IV) to U(VI) Raffinate Recycle • Dissolve in acid (or base) Countercurrent Decantation Recover by solvent extraction **Tailings Slurry** (Sand, Slime & Liquids or IX Solvent Extraction Amine & Kerosene Solvent Recycle • Precipitate as U_3O_8 Feed Acid leach - low Ca in ore (pH > ulletStripping 10) Alkalinie leach - high Ca in ore lacksquareUO Precipitation Ammonia (pH < 2)Filtration, Drying & Packaging Yellowcake $(U_{i}O)$ 23 The University of New Mexico **Uranium & Water**

Kerr McGee U Mill Tailings (1980)

Uraniı

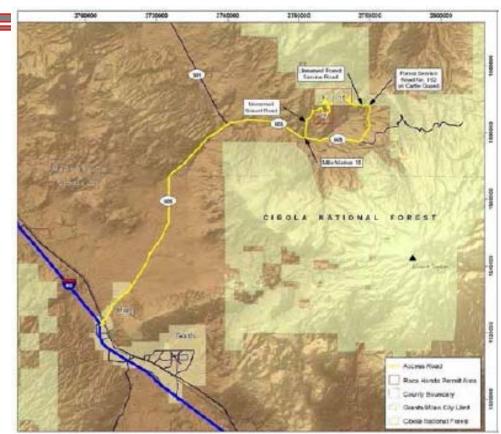
Kerr McGee/Quivira

(Oct.2012)

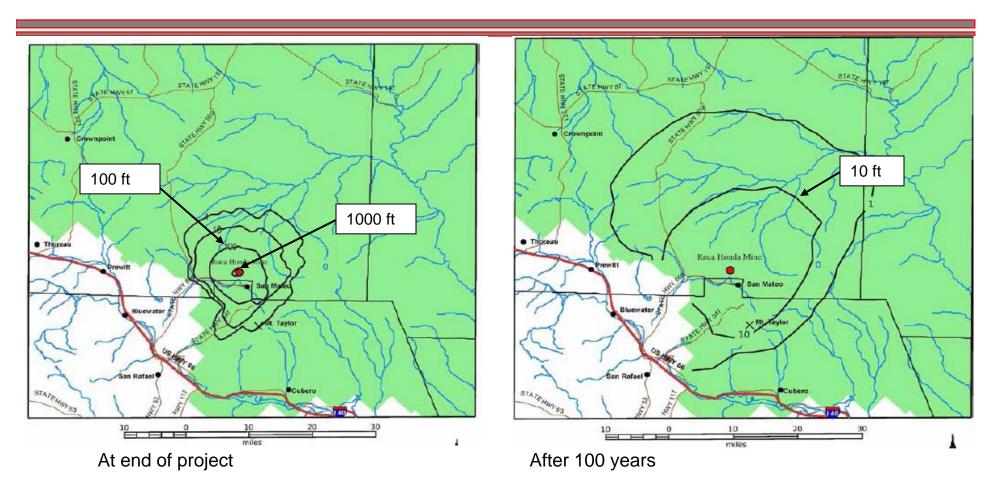
Uranium & Water

U Mill Tailings – Homestake

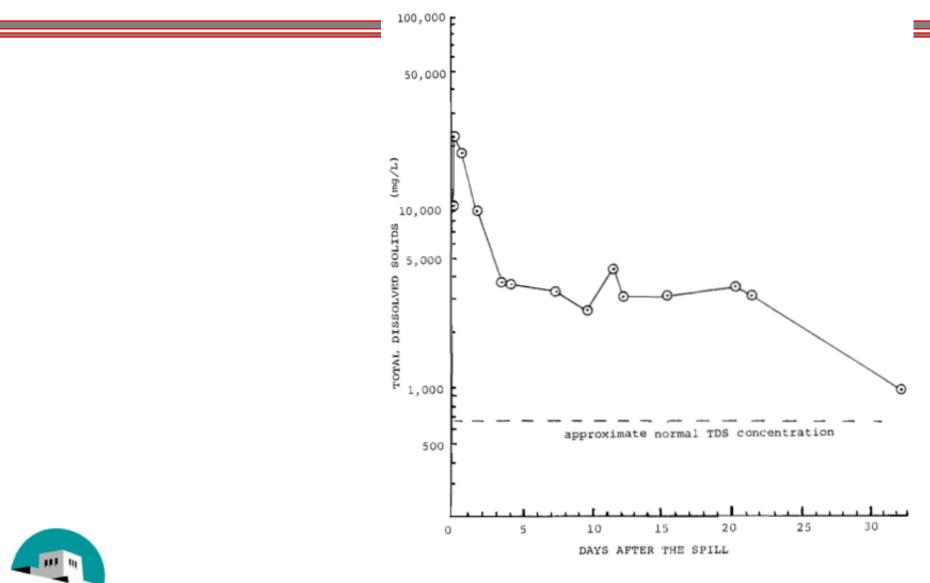
Homestake Mill Tailings Pile (Oct. 2012)


Constituent	SDWA MCL (mg/L)	4 Acid Mills in NM	1 Alkaline Mill in NM
As	.010	1.3	5.0
Мо		0.9	98.0
NH ₃ (as N)		400.0	16.0
Se	.050	29,700.	8,400.
U	.030	74.0	14.0
TDS	500.	39,800.	25,400.
pН		1.05	10.1
Ra-226	5.	70.0	58.0
(pCi/L)			
Gross-α	15.0	38,000.	6,700.
(pCi/L)			

Roca Honda Mine


(Draft EIS - http://www.fs.fed.us/nepa/nepa_project_exp.php?project=18431)

- Proposed underground mine on Forest Service property
 - Ore depth 1,650 2,650 ft
- Mining period of 18-19 yrs
- ~25 dewatering wells to produce 4,000 gal/min (6,400 AF/yr)
 - Possible reuse for pastures
 - Discharge to arroyo
- Issues: Water, vegetation, wildlife, culture, socioeconomic, health, safety, environmental justice, etc.

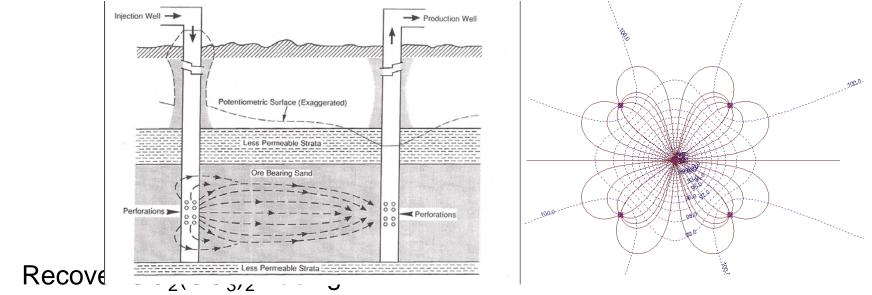


Roca Honda Mine Dewatering Impacts

Churchrock Tailings Dam Failure

The University of New Mexico

Uranium & Water


In Situ Leach/Recovery Mining of U (ISL/ISR)

- ISR began in 1974 in TX.
- Typical ISR mines are relatively small (< 1000 ton/yr)
- 26% of world U production
- Criteria for ISR
 - Confined aquifer
 - Sandstone
- May do alkaline (pH > 8) or acid (2.5 < pH < 3) leach depending on Ca content
 - High Ca content (calcite) suggests alkaline leach

ISL/ISR Technology

• Circulate oxidizing solution through ore deposit

• Recycle leachate

•

ISR Technology (Pelizza, 2007)

- ~30 licensed facilities in US NB, WY, TX,
- Pelizza claims that pre-mining ground water quality at ISR sites do not meet SDWA criteria due to U, Ra, Rn & gross alpha. Data for Duval County, TX

Parameter	Avg. Conc.	EPA MCL
U (ug/L)	488	30
²²⁶ Ra (pCi/L)	215	5.0
²²² Rn (pCi/L)	207,133	300
Gross Alpha (pCi/L)	865	15

- Oxidation by O_2 from U(IV) to U(VI): $UO_2 + 2H^+ + 1/2 O_2 = UO_2^{2+} + H_2O$ $UO_2^{2+} + 2HCO_3^- = UO_2(CO_3)_2^{2-}$
- Lixiviant = leaching solution
- Raffinate = leaching solution containing dissolved U
- U(VI) recovered by ion exchange (R = resin sites) 2R-CI + UO₂(CO₃)₂²⁻ = R₂-UO₂(CO₃)₂ + 2CI⁻

- U is eluted from loaded resins with salt (NaCl) to provide concentrate
- HCl is added to destroy carbonate complex $UO_2(CO_3)_2^{2-} + 4H^+ = UO_2^{2+} + 2H_2CO_3$
- UO_2^{2+} (uranyl ions) oxidized with H_2O_2 $UO_2^{2+} + H_2O_2 + xH_2O = UO_4 xH_2O$
 - Most commonly written as U₃O₈ yellowcake
- Yellowcake is washed, filtered & dried.
- Can also recover U via NH₃ precipitation

1980 NM Mine Dewatering Act

(New Mexico Statutes 72-12A)

- Assigns jurisdiction to State Engineer Mines must obtain permit to dewater
 - Must show non impairment to existing water rights
- Right of replacement If mining impairs water resource, mine can replace the water right ("cure the impairment")
 - Deepen existing wells or drill new wells
 - Provide alternate source of supply
 - Applicant has right of condemnation, subject to OSE jurisdiction, in order to cure impairment
- No water rights may be established solely by mine dewatering

- Replacement may use reclaimed mine water, but must posses a water right for this water.
- Responsibility extends beyond life of mine for as long as impairment exists

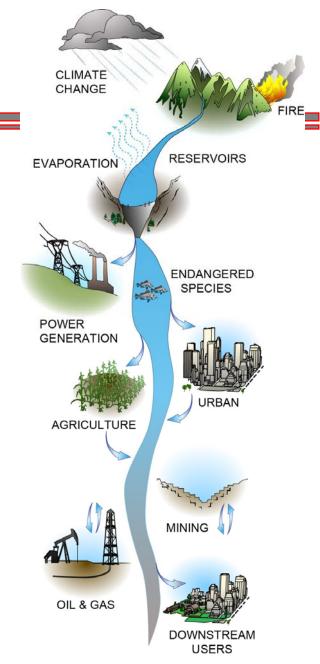
- Generally goal is to meet pre-mining water quality criteria. In south TX water does not meet SDWA, hence relaxed pressure to achieve SDWA criteria
- Restoration involves circulating clean water through formation. May use RO treated water.
- In NM the U bearing formations have high quality water. State is requiring restoration to background. Not clear that it can be achieved.

Research Opportunities in U Development

- ISL
 - Geochemistry of U ores & development of better extractants
 - Subsurface characterization & ore delineation
 - Subsurface hydraulics & modeling
 - Aquifer restoration technologies
- Conventional mining & milling
 - Management of mine water supplies
 - Development of environmentally friendly milling process
 - Liquid & solid waste management technologies

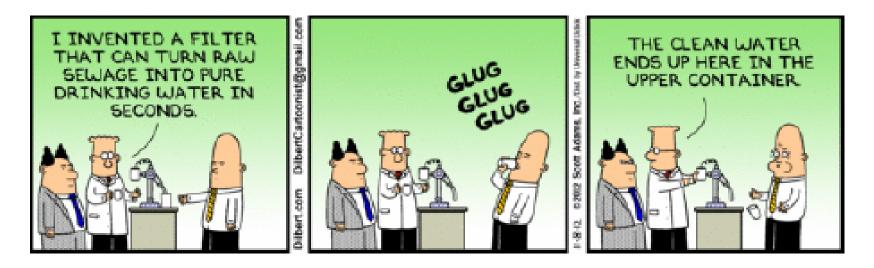
Thoughts

- Enormous U reserves in NM
- Historic mining caused major health problems and significant environmental impacts
 - Legacy impacts
 - Most of mill tailings piles have been stabilized
- Future U development must be safe and with little/no threat to health or the environment:
 - Health issues
 - Water quantity impacts
 - Water quality impacts
 - (And soil & air quality)
- New knowledge & technology can support responsible mining



- Update 1980 San Juan Basin Regional Uranium Study
 - Impacts to environment, economy & socio-cultural values
- Understand legacy contamination
 - Nature of contaminants, extent of contamination, fate & transport of contaminants
 - Impacts on human health & the environment
- Waste management
 - Impact on water resources
 - Identify remediation strategies
- Research new mining & milling technologies
 - Minimize impacts of future projects

UNM & State University Activities


- UNM Center for Water & the Environment
 - Interdisciplinary center focused on NM water issues
 - Major emphasis on water-energy-arid environments
- NM EPSCoR "Energize NM"
 - NSF funded project
 - \$4M/yr for 5 years
 - Uranium development & challenges
 - Osmotic power from produced water
 - Geothermal resources
 - Photovoltaic development
 - Algal biofuels development
 - Economic & Socio-Cultural interactions

Questions?

Bruce Thomson – bthomson@unm.edu

