NASA Airborne Infrared Remote Sensing Systems Thermal Imaging Workshop Naval Postgraduate School, Monterey, CA September 14, 2009

Jeff Myers UCSC NASA Ames UARC

Airborne Sensor Facility Ames Research Center

Outline

- The NASA Airborne Science Program and Airborne Sensor Facility
- NASA IR Facility Sensor Overview
- Instrument Characteristics and example Data
- Instrument Calibration
- Data and Instrument Access

The NASA Airborne Science Program

- Supports the Earth Science Division, Research and Analysis Program at NASA H.Q.
- Conducts Remote Sensing and In Situ Airborne Missions for Satellite Cal/Val & Process Studies
- Provides "Flying Laboratories" to Host NASA, Univ. & Other Govt. Agency Experiment Packages
- Maintains a Suite of Calibrated Remote Sensing Devices for Community Use.

Airborne Science Program International Deployment Sites

Airborne Sensor Facility

- Resides at the University-Affiliated Research Center under the NASA Ames Earth Science Division
- Staffed by Univ. of California, Santa Cruz
- Joint funding from the Airborne Science and EOS Programs
- Provides Earth science mission support through:
 - Instrumentation Development and Operations
 - Sensor Maintenance and Calibration
 - Enabling technologies for UAS Programs
 - Data Processing and Software Development

ASF: Recent and Ongoing Projects

Global Hawk Payload Data System

Network Server

Telemetry and Payload Computer

Payload Power Controller

NASA Core Science Platforms

NASA UAS Platforms for Airborne Science

Global Hawk (operational 2010)

Ikhana Predator-B UAS (operational)

SIERRA UAS (operational 2009)

NASA Facility Instrumentation at the Ames Airborne Sensor Facility

- •MODIS and ASTER Airborne Simulators (MAS & MASTER)
- •UAS AMS (Autonomous Modular Sensor System)
- Precision Geo-Positioning Hardware
 (Applanix POS-AV 510 & 610)
- Electro-Optic and Film Cameras

NASA Ames Research Center

MODIS Airborne Simulator

Simulates the EOS Moderate Resolution Imaging Spectrometer (Terra & Aqua)

Supports the MODIS Science Team and other multi-disciplinary investigations

• Flown on ER-2 aircraft

Spectral Range µm	Number of Bands	Nominal Bandwidth µn
0.445 - 0.967	9	0.040
1.620 - 2.420	16	0.050
3.040 - 5.440	16	0.150
8.340 - 14.430	9	0.500
	Spectral Range µm 0.445 - 0.967 1.620 - 2.420 3.040 - 5.440 8.340 - 14.430	Spectral Range µm Number of Bands 0.445 - 0.967 9 1.620 - 2.420 16 3.040 - 5.440 16 8.340 - 14.430 9

MAS & MASTER Spectral Band Positions (Vis-MWIR)

Atmospheric Transmission from 0.0 to 6.0

WAVELENGTH (µm)

MAS & MASTER Spectral Band Positions (Thermal IR)

WAVELENGTH (µm)

August 26, 2004: AVIRIS & MAS acquisitions

(Courtesy J. Ryan)

TC4 MAS + MASTER Coverage (ER-2) July – Aug. 2007

MAS & MASTER Data Collections: Costa Rica TC4

TC4

MASTER (ASTER) Airborne Simulator 03 August 2007 Flight # 07926 Track #11 (TC4 Preliminary Retrievals - Pre-deployment Calibration)

MAS Data Collections: CCVEX

- 18:45 UTC

Data Collections: MAS CCVEX (w/ CRS)

MASTER: The MODIS-ASTER Airborne Simulator

- Simulates both the EOS Advanced Spaceborne Thermal Emission Reflection Radiometer and MODIS
- Automated Geo-Location/Rectification
- Flown on B-200, ER-2, Caravan, WB-57, DC-8 aircraft

Spectrometer	Spectral Range µm	Number of Bands	Nominal Bandwidth µm
1	0.440 - 0.965	11	0.040
2	1.600 - 2.427	14	0.050
3	3.075 - 5.325	15	0.150
4	7.700 - 13.000	10	0.500

Mount St. Helens: 3 meter MASTER Data + 1 meter LIDAR DEM

MASTER Instrument Characteristics

Wavelength range	0.4-13 micrometers
Number of channels	50
Number of pixels	716
Instantaneous Field of	2.5 milliradians
View	
Total Field of View	85.92 degrees
Platforms	D.O.E. Beechcraft B200, Sky
	Research Cessna Caravan,
	NASA ER-2, DC-8, WB-57
Pixel size DC-8	10-30 m
Pixel size ER-2	50 m
Pixel size B200	5-20 m
Pixel size Caravan	3-15 m
ER-2 Range	3000 nautical miles
B200 Range	900 nautical miles
Caravan Range	1000 nautical miles
DC-8 Range	5400 nautical miles
Scan speeds	6.25/12.5/25 rps
Products	Radiance at sensor (Level 1B)
Calibration VIS-SWIR	Laboratory Integrating Sphere
Calibration MIR-TIR	2 On-board Blackbodies
Data Format	Hierarchical Data Format (HDF)
Digitization	16-bit

Mt. St. Helens MASTER + LIDAR

10/14/04 (Bands 44-12-2)

NASA

Ames Research Center Earth Science Division 3 Meter Resolution MASTER 1 Meter resolution Optech LIDAR DEM Automatic Ortho-Rectification Combined LIDAR (topography) and MASTER (temperature) data acquired 10-14-2004 at 12:45 pm over Mount St Helens

10/14/04

Hot Spot

Highest Temp

150-200 °C (highest temp = 330 °C) 105-150 °C 90-105 °C 75-90 °C 60-75 °C 45-60 °C *Courtesy of* 30-45 °C *S. Hook, JPL*

MASTER (WB-57)

Arenal, Costa Rica (bands 42-22-6, March, 2003)

MASTER DATA Collections: Calif. Fault Systems

(Day/Night Repeat-Pass Coverage)

MASTER DATA Collections: Post-Fire Assessment

Acquisition Dates November 5 – 15, 2007

5m Resolution
79 Flight lines
950 Nautical miles
54 Gbytes data

Yellowstone Fire – 1988

ER-2 TM Simulator with LOS Down-Link

AMS: The UAS Autonomous Modular Sensor

- Configurations for Land Surface, Ocean Color, and Atmospheric Mapping
- Embedded precision navigation system
- Onboard data product generation
- Real-Time data telemetry
- Compatible with large UAS (Predator-B, Altair, Global Hawk) or conventional aircraft

Wild Fire Research

Ocean Color / Coral Reef Research

Hurricane and Atmospheric Studies

The Autonomous Modular Sensor (AMS) a test-bed for future sensor web concepts

- Configurations for Land Surface/Fire, Ocean Color, and Atmospheric Mapping
- Onboard data product generation
- Embedded precision navigation system
- Real-time data telemetry interface
- Hardware development funding from the NASA HQ Airborne Science Program

AMS Sensor Components on Pod Tray
ASF

Ames Research Center

Pod Tray Prepared for Upload

UAS - AMS (Wildfire – Land Surface Configuration)

Band	<u>Wavelength μm</u>
1	0.42- 0.45
2	0.45- 0.52 (TM1)
3	0.52- 0.60 (TM2)
4	0.60- 0.62
5	0.63- 0.69 (TM3)
6	0.69- 0.75
7	0.76- 0.90 (TM4)
8	0.91- 1.05
9 *	1.55- 1.75 (TM5) 1.88μm alternate
10*	2.08- 2.35 (TM7)
11*	3.60- 3.79 (VIIRS M12)
12*	10.26-11.26 (VIIRS M15) 6.7μm alternate
*Redund	lant High-Gain Recording (bands 13 - 16)

Total Field of View: 42.5 or 85.9 degrees (selectable)IFOV:1.25 mrad or 2.5mrad (")Spatial Resolution: 3 – 50 meters (variable)

UAS-AMS Sensor Features

- Pressurized Electronics Packaging
- 16-bit Digitizer w/ Auxiliary CPU
- Customized AADS-1268 Spectrometer
- Sterling & TE-Cooled IR Detectors
- Solid State Storage Media
- Integrated Applanix POV-AV Nav System
- High-speed serial interface for telemetry
- Rapid Portability Between Platforms

Airborne Sensor Facility Ames Research Center

AMS Data System: Telemetry Link Module

- A universal Interface for science payloads to broad band telemetry systems (Ku, S, C, L)
- Inputs for >20 instruments using standard protocols
- 40 Mbs max. throughput (link speed limited)
- Experimenter CPU & mass storage for science data reduction & recording
- Real-time on-board generation of Level-1 & 2 geophysical products
- Interfaces to ground-based IMM & Collaborative Decision Sensor Web Environment
- Packaged in AMS data system enclosure
- Stand-alone version for Global Hawk

Airborne Sensor Facility Ames Research Center

Autonomous Modular Sensor: Western States Fire UAS Missions

Moonlight Fire wsFM #4 (9/8/07)

AMS (yellow) & MODIS (red) Automated Fire Detects on Google Earth (9/7-8/07)

The AMS Ocean Color Imager Configuration

- Includes SeaWiFS Bands + Thermal IR for SST
- Variable Resolution (2 50 meters, altitude dependent)
- Highly Calibrated
- Automated Geo-Location and Data Products

Band	Center WI,	nm
1	412 *	
2	443*	
3	490*	
4	510 *	
5	555*	
6	620	
7	670*	*SeaWiFS Band
8	770*	
9	860 *	
10	1024	
11	11.5um	

IFOV / FOV: 2.5 mrad / 86 degrees

AMS-OCI (San Francisco Bay)

NASA

Aircraft Platforms:

Predator-B or Global Hawk UAS, ER-2, WB-57, Beech B200, Twin Otter

AMS Ocean Color Imager Test Flight Data (4/20/06)

Thermal IR

Natural Color

Airborne Sensor Facility

University Affiliated Research Center

Guadalupe Slough (8 m.)

Stevens Creek Outlet (8 m.)

NASA

AMS Water Surface Thermal Imagery (2 meter res. 4/20/06)

Frank's Tract (above) Liberty Island Levee Breach (below)

NASA

Airborne Sensor Facility Ames Research Center

ASF Sensor Calibration Lab

ASF Spectral and Radiometric Calibration Facility for Airborne Sensors

Spectral Range = 350nm – 14um NIST-Traceable, with NASA EOS Program Oversight

Currently supporting:

AMS, MAS and MASTER SSFR (Solar Flux Radiometer) AATS-14 (Sun Photometer) CAR (Cloud Radiometer) Field Spectro-Radiometers

NIST Ref. Paper:

Radiometric Validation of NASA ARC Calibration Laboratory, S. Brown, C. Johnson, et al. Applied Optics/Vol.44, No. 30, Oct. 2005

Transfer Radiometer Spectral Calibration Configuration

MASTER port 4 Spectral Response Function

Optical Bench & Collimator

AMS High-Temperature Blackbody Experiment (8/09)

4

Deviation from linearity

Radiance (mW/(um*cm^2*sR))

dN vs. Temperature

Sensor Webs for the Next-Generation of Airborne Science: onboard processing and extended networks for real-time science

Monterey Bay Integrated Observing Network

Real-Time Data Synthesis: Satellite, Aircraft and Ground Data KML Overlays (ARCTAS, 2008)

Reference Websites

- > General Information & Flight Requests
 - http://airbornescience.nasa.gov

MASTER web page

http://masterweb.jpl.nasa.gov

MAS web page

- http://mas.arc.nasa.gov
- > Airborne Sensor Facility web page
 - http://asapdata.arc.nasa.gov

Jeffrey.s.myers@nasa.gov 650-604-3598