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The currently popular distributed, n-tiered, object-oriented application architecture provokes many design debates. Designs of such applications are often 
divided into logical ‘tiers’ – usually user interface, business logic and domain object, or data, tiers, each with their own design issues. In particular, the  
latter contains data that needs to be stored and retrieved from permanent storage. Decisions need to be made as to the most appropriate way of doing this 
– the choices are usually whether to use an object database, to communicate directly with a relational database, or to use object-relational mapping 
(ORM) tools to allow objects to be translated to and from relational form.
Most  often,  depending on the  perceived profile  of  the application,  architects  make these decisions using rules  of  thumb derived from particular 
experience or the design patterns literature. Examples include: object-oriented databases ease programming, relational databases ease report generation 
and data mining; object-oriented databases are good for navigation around an object model, relational databases are good for sequential processing and 
complex queries; if you are writing an application from scratch, use an object database, if you need to integrate to various sources of legacy data, use an 
ORM tool. Although helpful, these rules are often highly context-dependent and are often misapplied.
Research into the nature and magnitude of ‘design forces’ in this area has resulted in a series of benchmarks, intended to allow architects to more clearly 
understand the implications of design decisions concerning object persistence. In this paper, the performance of selected open source object persistence 
tools  is  investigated,  to  attempt to  clarify the  myths surrounding the  performance of  the different  options.  In  particular,  we compare Hibernate, 
representative of the ORM stable, and db4o, representative of object-oriented databases. The OO7 benchmark is used to compare the speed of execution  
of a suite of typical persistence-related operations in both candidates. We then propose some preliminary explanations of the sometimes surprising 
results.

Categories and Subject Descriptors: D.2.8 [Software Engineering]: Metrics–performance measures; H.2.4 [Database Management]: Systems –Object-
oriented databases ; K. 6.2 [Management of Computing and Information Systems]: Installation Management— benchmarks, performance and usage 
measurement; H.2.3 [Database Management]: Languages (D.3.2) –Database (persistent) programming languages ;Query languages   
General Terms: Design, Experimentation, Performance, Languages
Additional Key Words and Phrases: Persistence, Performance, Benchmark, Object Oriented Database Management Systems (ODBMS) ,  Object  – 
Relation mapping (O-R or ORM) , Hibernate, db4o.
________________________________________________________________________________________________

1. INTRODUCTION

Many contemporary applications use data that needs to be stored and retrieved. In the object oriented environment, 
objects are usually used to represent data, and in this context, it is therefore objects that need to be persisted. Persistence 
implies a 'process of how to store the objects' [Ambler 1998] as well as a persistence mechanism. There are three well-
known  classes  of  object  persistence  mechanism:  Object  Oriented  Database  Management  Systems  (ODBMS's)  , 
Relational  Database  Management  Systems  (RDBMS's)  and  Object-Relational  Database  Management  Systems. 
(Another of course, is the simpler mechanism of writing serialized object representations to a file.) Cattell et al [2000] 
define an ODBMS to be a DBMS that integrates database capabilities with object-oriented programming language 
capabilities. In such an ODBMS, both object attributes and object methods are stored in the database.  

A well-known problem in persisting objects to a relational database is the so-called impedance mismatch that arises 
between  both  the  object  model  and  the  relational  model  and  between  the  object  programming language  and  the 
relational query language [Cattell 1991]. To resolve the impedance mismatch problem, various hybrid solutions have 
been proposed. Thus, object-relational databases have been developed, and traditional RDBMS vendors have included 
object persistence capabilities into their products. Object Relational Mapping (ORM or also known as O-R) tools have 
also been developed in an attempt to bridge this mismatch and to make persistence of objects easier for the developer. 
These tools provide a mapping between the object model and the relational model, acting as an intermediary between an 
object oriented code base, and a relational database.

Author Addresses:
P. van Zyl,  ESPRESSO Research Group (http://espresso.cs.up.ac.za) , Department of Computer Science, University of Pretoria, Pretoria, 0002, South 
Africa; pvzyl@csir.co.za.
A. Boake, Espresso Research Group (http://espresso.cs.up.ac.za) , Systemic Logic; andrew@systemiclogic.com
D. Kourie, Espresso Research Group (http://espresso.cs.up.ac.za) ,  Department of Computer Science, University of Pretoria,  Pretoria,  0002, South 
Africa; dkourie@cs.up.ac.za
Permission to make digital or hard copies of all or part of this work for personal or classroom use  is granted without fee provided that the copies are not  
made or distributed for profit or commercial advantage, that the copies bear this notice and the full citation on the first page. Copyrights for components  
of this work owned by others than SAICSIT or the ACM must be honoured. Abstracting with credit is permitted. To copy otherwise, to republish, to post 
on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
© 2005 SAICSIT

Proceedings of SAICSIT 2006, Pages 111 –113



112      •      P van Zyl et al.

In choosing between these options for a particular application, one needs to consider various ‘forces’. Chief among 
these are ease of development, performance and access to different sources of data, perhaps by more than just the 
application being developed. The different solutions resolve these forces differently. For instance, object databases ease 
development considerably by automating virtually all aspects of persistence, thus freeing the developer to concentrate 
on more pressing business modelling aspects. However, object databases generally hide their contents behind object 
oriented programming environments, which considerably complicates extraction of the data by popular reporting and 
data mining tools.

Another example concerns performance. Popular rules of thumb assert that an application that navigates the data 
(following links) will  be more suited to object  database use,  while one that processes data items sequentially (for 
example, adding interest to clients’ account balances), or one that performs complex queries (“Show me this client’s 
total credit exposure”) are more suited to relational databases. Popular belief also asserts that object-relational tools add 
translation overhead to all persistence operations, and so are proportionally slower that either of the other two solutions. 
But, they do allow developers to use more powerful object oriented domain modelling techniques, whose constructs are 
then translated to relational equivalents by the tool. But, specifying these translation rules again adds time and energy to 
the development process.

We have seen that the correct decision for a particular application is both context dependent and requires a good 
understanding of the relative importance, and of the actual magnitude, of the forces in the chosen solution. In our 
research, we are delving into more objective clarification of these forces. Essentially, we are asking the same questions 
that have been asked by countless software architects: Which is “better”: the hybrid solutions or the pure solutions? 
Why are the pure solutions not more extensively used? What does “better” mean? And how do we know what is better 
for this application? But, going further, we intend to measure the contending forces and understand them.

In this paper, we report on a particular piece of research into the performance aspects of these choices. We use a 
benchmark to compare ODBMS's to  ORM tools,  with particular  emphasis  on the performance aspects.  An object 
persistence benchmark compares solutions by subjecting them to a suite of representative operations. The particular 
benchmark we have chosen is OO7, widely used to comprehensively test object persistence performance. We have used 
its measurements to compare typical  solutions that are available today in the pure and in the hybrid world: db4o, 
representative of object databases, and Hibernate, representative of the ORM stable. Both of these are popular Open 
Source products.

Because of its general popularity,  reflected by the fact  that most of the large persistence mechanism providers 
provide persistence for Java objects, it was decided to use Java objects for our studies. A consequence of this decision is 
that the OO7 Benchmark, currently available in C++, has had to be re-implemented in Java. The results reported here 
are  based  on  a  partial  re-implementation  of  the  benchmark.  Work  is  currently  underway  to  develop  a  fuller 
implementation,  but  the  results  reported  here  are  necessarily  limited  in  scope  to  re-implemented  portions  of  the 
benchmark. This work is therefore a first step in investigating object persistence performance. Nonetheless, we believe 
it has yielded information of interest.

In the nineties, when ODBMSs were still rather new, there were a variety of studies to assess their performance. For 
example, Cattell and Skeen [1992] investigated the performance of various RDBMSs against ODBMSs, while Carey et 
al [1993] compared the performance of various ODBMSs. More recently, Jordan [2004] has made a study of all of 
Sun's persistence mechanisms. It was this latter study that inspired the idea of comparing ORM tools against ODBMS’s.

In the next section, the OO7 Benchmark and the reasons for selecting it will be discussed. Section 3 explains the 
design constraints in implementing the Java version of the benchmark. Section 4 discusses the Java version in more 
detail. Our measurements are assessed in Section 5. Section 6 offers our conclusions and perceptions of future work to 
be done.

2. BENCHMARKS

Questions about the performance of ODBMS’s arose during the late 80's and early 90’s, soon after academic and 
commercial ODBMSs were becoming available. It was at this time that several benchmarks were created to measure 
their performance. Well  known benchmarks included HyperModel [Anderson et al 1990], OO1 [Cattell and Skeen 
1992] and OO7 [Carey et  al.  1993a].  The OO1 benchmark was intended to study the performance of engineering 
applications. The HyperModel approach was based on earlier versions of the OO1 benchmark. It incorporated a more 
complex model  with more  complex  relationships  and a  wider  variety  of  operations.  The HyperModel  benchmark 
focused on the hypertext model. The OO7 benchmark was based on both of these benchmarking efforts.

The next section will provide an overview of the OO7 benchmark and also discuss why this benchmark was selected 
for our benchmarking and comparison investigation.

2.1 OO7 benchmark overview
OO7 was designed to investigate various features of performance, and it included complex objects which were missing 
from the OO1 and HyperModel benchmarks [Carey et  al  1993a].  While  the earlier  benchmarks used single value 
results, the OO7 benchmark provided a collection of results. Carey et al [1993a] indicate that the benchmark is intended 
to investigate 'associative operations, sparse vs dense traversals, updates to indexed vs. non-indexed object attributes', 
etc.
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The benchmark uses a hierarchy of objects, modeling an engineering design library. Each Model contains either 
BaseAssembly  or  ComplexAssembly  objects.  ComplexAssembly  objects  contain  other  BaseAssembly  objects. 
BaseAssembly  objects  contain  CompositePart  objects,  that  contain  AtomicPart  objects.  AtomicPart  objects  are 
connected with each other  through Connection objects.  All  of  these objects  have some basic  attributes  and some 
collections representing one-to-one, one-to-many and many-to-many relationships. Most of these relationships are bi-
directional.

This object model is used as the target of various navigation and persistence operations. There are configuration 
settings  that  can  be  changed  to  influence  the  number  of  objects  created,  the  number  of  models,  the  number  of 
connections,  etc. The benchmark also has a small,  medium and a large database configuration which specifies the 
number of objects to be created in the benchmark. For each of these database configurations it is possible to configure 
the  number  of  connections  between  objects.  An  example  of  this  is  where  an  AtomicPart  is  connected  to  other 
AtomicParts and with the use of the configuration value we can control the number of these connections [Carey et al 
1993a].  Carey et al [1993a] defined 3, 6 and 9 as suggested connection values. In this way, we can have a small 
configuration with 3 connections, a small configuration with 6 connections, a medium configuration with 9 connections, 
etc.

The benchmark contains operations that operate on the design library and can be grouped into three categories: 
traversals, queries and modifications. Although these are well-documented in [Carey et al 1993b], various features of 
these operations that are not so obvious will be mentioned below.  The modification operations refer to the insertion and 
deletion of objects, and to some of the traversal operations that not only traverse the object hierarchy but also modify 
the objects by swapping values, renaming them, etc.  

Operations are run as cold or hot [Carey et al 1993a]. Cold runs are runs where all the caches should be empty, and 
hot runs are where caches are full. There is also the in-between notion of a warm run, which refers to an initial cold run 
to fill up the caches, followed by a hot run. Section 6 will provide the measurements in regard to these operations under 
both cold and hot running conditions.

One of the early difficulties that arose in attempting to use the OO7 benchmark was the issue of query languages 
[Carey et al 1994]. Not all of the systems tested then had query languages, and those that had, had languages that 
differed in capabilities. For those that did not have query language capabilities, C++ query methods were written in the 
hope  of  enabling comparison across  all  of  the systems.  Carey et  al  [1994]  conceded that  this  could favour  some 
implementations with no query language capabilities. 

This possible bias is avoided in the present study, since both of the systems that we have chosen to investigate have 
their own object query facilities. Db4o uses SODA (Simple Object Database Access) as well as Native queries, and 
Hibernate uses HQL (Hibernate Query Language).

In selecting a benchmark for comparing our two chosen target systems, the OO7 was a natural prime candidate. 
Because it has a deep object hierarchy with many complex relationships (one-to-many and many-to-many), it is well-
suited to assessing non-trivial object oriented applications. Furthermore, the fact that the code was available in C++ 
meant that it could be converted to Java with relative ease. Finally, we were influenced by the fact that it had been used 
in the recent past for research studies into persisting Java objects, for example [Jordan 2004].

3. JAVA VERSION OF OO7 BENCHMARK

This section discusses the overall approach to producing a Java version of the OO7 Benchmark, the principle utility 
classes that were used, and the most important ways in which our version differs from the original C++ version.

3.1 Overall approach
The Java version was written in two basic stages. An initial attempt took the lead from another Java OO7 version that 
had been developed and distributed by the Ozone open source ODBMS [Ozone]. On investigation, it became apparent 
that Ozone's Java version was very basic. Not only was it not a full equivalent of the original C++ version, but valuable 
debugging and configuration settings available in  the C++ version had not been incorporated into the Ozone version.

In a second stage, the original C++ code that had been used for the Versant implementation was taken as a starting 
point. An equivalent Java class was written for each C++ class. Here all of the language structures that were similar 
were copied over to the Java version. An example of this was where similar language structures (such as for-loops) 
were merely copied over from the C++ to the Java version. This was done in an effort to stay as close to the original 
version as possible. This easily led to a Java code equivalent of OO7, but which did not yet provide any persistence-
related  code.  However,  this  was  useful  in  and  of  itself,  as  it  was  deemed  desirable  to  have  a  pure  in-memory 
representation of the model. This was to serve as an absolute baseline in comparing cold and hot object operations 
across different platforms. The idea for doing this was taken from Jordan [2004]. Once the pure Java OO7 model was in 
place, the db4o and Hibernate implementations were produced. These will be discussed in Section 5.

3.2 Utility classes
A Persistence class was designed for use in both the db4o and Hibernate implementations. This class was used at all 
points in the benchmark model where persistence was needed. It has methods for saving, deleting, updating, etc, hiding 
the specific implementation details. 
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Each implementation then implemented its persistence code in a separate utility class whose methods were called by 
methods in the Persistence class. Followers of Design Patterns may recognize this as an example of using the Bridge 
pattern. The db4o utility class was called Db4oUtil and Hibernate’s utility class,  HibernateUtil. The intention was to 
enable us to hide the persistence mechanism used from the model. The idea was to use only one model, and to merely 
interchange the correct persistence mechanism classes when testing the different platforms. 

This aspiration was not realized, as it was found that Hibernate required that the parent of a hierarchical object had 
to be saved before saving the children. This was not true for db4o. Thus, the order of calls to the persistence utility had 
to be different in the two implementations. This necessitated two separate implementations for the two platforms. The 
original  C++ OO7 version also used this approach of  writing separate  implementations:  one  for  Versant,  one for 
Objectivity, etc.

3.3 Deviations from the benchmark
The original version of the OO7 Benchmark had configuration options for using one or many database transactions (i.e. 
database commit points). It was decided not to investigate the difference in using one or many transactions at this point.  
Db4o and Hibernate both provide transaction management. Db4o opens a transaction when the database is opened, so 
there will always be a transaction available. Hibernate provides transactions through the use of JTA (Java Transaction 
API) or JDBC transactions. No transactions were used in the Hibernate implementation. We mention this here in the 
interests of a more complete understanding of the basis for comparison.

It was also decided to exclude indexes for searching and queries, as we did not want to use any of the performance 
enhancements that are available to users of relational databases. 

Additionally, the formula for computing the average hot times was changed by including the time take for the last 
run. Carey et al [1993b] had omitted the last run because they did want to include the overhead of commits. We argue 
that commits are an inherent part of the operation and they may have quite an important influence on the times. Indeed, 
in contrast to the original benchmark, instead of providing one big commit at the end, our version commits each time 
that an object is added or updated. Thus, the average hot time calculation has been changed to include all of the iteration 
times except for the first, this iteration time being the cold run.

Finally, the original OO7 version included so-called 'null methods' to simulate work external to the database. These 
are called doNothing() methods in the code and are implemented as for-loops which simply request the system time. 
These were not implemented in the Java version, since there seemed to be no need for them. They are apparently 
intended  to  aid  in  simulating  the  overall  time  that  would  be  taken  for  an  application,  and  do  not  relate  to  the 
performance of the respective persistence mechanisms as such. 

4. PERSISTENCE MECHANISMS TESTED

This section discusses the two persistence mechanisms for which OO7 implementations were written. It also provides 
information about the testing environment.

4.1 TESTING ENVIRONMENT

The benchmark was run on a Fujitsu Siemens laptop with 1G of internal memory. The 80G hard drive has a drive speed 
of 4200rpm. The laptop has Mandriva Linux 2006 running with X. Although most applications were shut down while 
the benchmark was running, some applications to capture the data had to remain open. Furthermore, the laptop was not 
plugged into a network. As a result, there could be a certain amount of overhead in the measured times. However, there 
does not appear to be any reason why such overhead would influence one persistence mechanism more or less than the 
other. Nevertheless, as part of future work, the benchmark operations will be run on a dedicated machine with no other 
applications running. 

4.2 OBDMS IMPLEMENTATION: DB4O

As previously pointed out, both the db4o and the Hibernate implementations to persist objects were derived from the 
Java OO7 code that simply generated objects in memory.

Often, adding persistence to your Java application requires rather intrusive additions and changes to your code. 
There are really three categories of changes required: telling the persistence mechanism what to persist, how to persist, 
and when to persist.

Telling the mechanism what to persist generally means marking the target classes and attributes. For example, one 
may be required to have your persistent objects implement an interface to mark them as persistent, or be part of a 
framework  (for  instance,  be  an  Enterprise  Java  Bean).  You may also  need  to  code  in  a  certain  way so  that  the 
persistence mechanism can recognise patterns (for example getter and setter methods). Telling it how to persist depends 
a lot on the how the mechanism maps in-memory object representations to storage representations. For example, you 
may need to run the code through a pre-processor for persistence code to be added, or specify persistence-related 
information in configuration files. Telling a mechanism when to persist is a more difficult matter. In general, one is 
faced with the choice of storing every change to the objects in memory to the store (which is highly inefficient), or 
adopting some scheme which marks objects as ‘dirty’, to be stored later, when you tell it to (explicitly in the code).
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Db4o is an open source object oriented database that easily and without extra work to tell it what and how to persist, 
stores Plain Old Java Objects (also known as POJOs). Db4o does however require us to tell it when to persist. In 
general, code to save or update objects in the persistence store was inserted just after the object had been created or 
changed in  memory.  In this  way,  producing  the db4o implementation from the OO7 Java code was in  fact  quite 
straightforward. 

When using db4o, one needs to keep track of the so-called update depth and activation depth [Db4o 2006]. Update 
depth has to do with the fact that when an object that has a reference to other objects is updated, db4o will only save the 
changes to referenced objects now if the update depth is greater than 1. This is used to control performance. The default 
update depth in db4o is 1. Since the benchmark makes use of objects that have sets of references to other objects and we 
wanted to save all of the changes immediately, this default parameter was changed. 

Activation depth relates to retrieving objects from the database that reference other objects. Db4o can, if needed, 
retrieve the whole object graph referenced by the object being retrieved. This can be inefficient, especially if we don’t 
need to use the entire object tree right away. So, when we retrieve an object that has references to other objects, we can 
defer retrieving the referenced objects until needed. This is done by a technique called lazy loading, where referenced 
objects are fetched only when a reference to them is followed. The tree depth at which this occurs is called activation 
depth in db4o. By default, db4o specifies activation depth as 5. In running the benchmark, the activation depth was 
increased to retrieve the whole referenced object graph. 
Db4o can be run as an embedded database, as a local server in the same virtual machine (an embedded server) and as a 
remote server. For our implementation Db4o was run as an embedded database. 

4.3 ORM TOOL IMPLEMENTATION: HIBERNATE

Hibernate is an ORM tool that stores in-memory objects to, and retrieves in-memory objects from, a relational database. 
To test  Hibernate,  we needed to change the in-memory version of the OO7 Java code to make use of Hibernate. 
Hibernate can be used with any relational database – we used Postgres for our implementation. 

To more clearly understand the explanation of how this was done, we need to define some of the concepts. Ambler 
[2006] provides the following definitions:
¾  “Mapping: The act of determining how objects and their relationships are persisted in permanent data storage, in 

this case a relational database. 
¾ Property: A data attribute, either implemented as a physical attribute, such as  String firstName, or as a virtual 

attribute implemented via an operation, such as Currency getTotal ().
¾ Property mapping: A mapping that describes how to persist an objects property.
¾ Relationship  mapping:  A mapping  that  describes  how to  persist  a  relationship  between  two  or  more  objects 

(generally, association, aggregation, or composition).
¾ Inheritance mapping: Mapping the inheritance hierarchy to relational database tables.”

In using Hibernate, these mappings can be specified in xml mapping files or they can be defined in the Java code by 
using Xdoclet tags or annotations. We used Hibernate Xdoclet tags in the code, and extracted the tags from the Java 
files, using an ant task, to create the xml mapping files.

The mapping of the properties was relatively straightforward. Most of the time was spent on getting the relationship 
and inheritance mappings to work correctly. These are discussed in the following sections.

In the previous section it was mentioned that, when using db4o, one can set the activation depth of the objects 
retrieved. It is interesting to note that Hibernate also provides lazy loading, where it is possible to limit the number of 
objects returned.

4.3.1 Relationship mappings
Recall that relationship mapping is the mapping of one-to-one, one-to-many and many-to-many relationships between 
objects to their chosen relational database representations. Most of the types of object oriented relationship, including 
aggregation (is-part-of), are found in the OO7 benchmark. It was therefore necessary to specify how to handle these in 
our Hibernate implementation. This was found to be one of the most difficult parts of the implementation.

All the associations in the OO7 model are bi-directional, and so one has to consider how to specify relational queries 
to follow relationship navigation from both ends. 

The one-to-many relationships were implemented as ordinary relational database primary key / foreign key entity 
relationships. To elaborate: having a class A and a class B in the object model meant having TableA and TableB in the 
relational model, with each row in the tables storing the corresponding objects’ attributes. If there is a one-to-many 
relationship between class A and class B, we represent that relationship as a column in TableB which keeps primary 
keys from TableA. To access the B objects from an A object, we select all of the rows in TableB that reference the A 
object’s primary key as a foreign key. Going the other way, to access the A object from any B object, we select the row 
in TableA that has the stored foreign key as its primary key.

For  many-to-many  bi-directional  associations,  we  used  join  tables.  A  join  table  stores,  separately  from  the 
referenced tables, the primary keys of the related entities. Extending the example above to a many-to-many relationship 
between A objects and B objects, this means an additional table, say TableAB, with columns A and B storing the list of 
keys of related A’s and B’s. To access the related B objects from an A object would mean executing a query that found 
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all of the related B objects’ keys from TableAB, and then retrieved those rows in B that had those as primary key. 
Navigating the relationship from B’s to A’s is done similarly. 

4.3.2 Inheritance mappings
According to [Ambler 2006], four basic approaches can be used to map object oriented inheritance structures to a 
relational model:
¾ Map the whole class hierarchy structure to one table, i.e. one table containing all of the combined attributes.
¾ Map each concrete class to its own table: ie all of the subclasses that inherit from an abstract class get their own 

table.
¾ Map each class to its own table.
¾ Map the classes into a generic table structure.

The Hibernate supporting literature provides strategies to enable one to use any of the approaches mentioned above 
[Hibernate 2006]. In the OO7 Java Hibernate code, in general, each class was mapped to its own table. This 'table per 
class' strategy [Hibernate 2006] was selected because it  is  a straight forward one-to-one mapping. The strategy of 
mapping concrete classes to their own tables was used only in one place, namely to map the OO7 abstract class called 
DesignObject and its subclasses: Module, Assembly, CompositePart and AtomicPart.

The mapping of concrete classes approach generally decreases the number of tables that are needed, compared to the 
table per class strategy. However, this approach results in duplicated information, since the properties of the parent class 
have to be included in each child class’s table [Ambler 2006]. If properties are added later to the parent class, then they 
must be inserted into each child class’s table.

One should keep this complexity in mind when choosing mapping strategies [Ambler 2006]. As the benchmark 
scenario did not include the addition of properties, this complexity was not an issue. Furthermore, the properties in child 
classes were quite simple: a build date, a string type and an id. (Note: it was necessary to rename the original ‘id’ field 
to ‘design_id’ as there were some conflicts in Hibernate with the name  ‘id’.)

4.3.3 Impedence mismatch difficulties
These mapping complexities are necessary to overcome the impedance mismatch between the object and relational 

models.  In general,  it  is  not  trivial  to map one-to-many relationships,  many-to-many relationships,  and inheritance 
structures,  especially  when the  application  is  large  and changing,  and the  mapping  is  manual.  Special  cases  also 
complicate the mapping. For example, mapping a class that has more than one association to the same class is not 
handled by the simple scheme explained above. For example, in the benchmark model, BaseAssembly has two many-
to-many mappings with CompositePart, called componentsPrivate and componentsShared It was decided to map these 
by using a separate join table for each relationship. Two join tables were therefore created, called components_private 
and components_shared, each containing the primary keys of the related BaseAssembly and CompositePart objects.

It is clear that this kind of manual mapping requires fairly intimate knowledge of both the object and relational 
models, and the mechanics of the chosen mappings.  For example, when mapping AtomicParts and their Connections, a 
problem was encountered that related to order in which the objects had to be saved. This was manifested as a referential 
integrity  constraint  in  the  database.  (Elmasri  and Navathe  [1994]  describe  a  referential  integrity  constraint  as  the 
requirement that a tuple in one relation may not refer to a tuple in another relation unless the latter tuple already exists.) 
This meant that an AtomicPart object had to be saved first before saving a Connection object that is linked to it. 

4.4 Overall observation
When creating an implementation of OO7 for a specific persistence mechanism, there is bound to be uncertainty about 
the correctness of  the model that  is  saved. There is,  of course,  no magic bullet  – no automatic way to check the 
correctness - one has to rely on testing. Thus, when the Module (the parent class in the OO7 benchmark) and its entire 
hierarchy tree are saved, the ideal would be that there should be certainty that the whole tree is correctly saved and 
retrieved. Unit tests for all  of the operations that  modify the model are required to enhance confidence that these 
individual parts are working correctly. Although this is envisaged at a later stage, for the interim we inserted counters to 
both implementations to count the number of objects created. We then opened each database and checked to see if the 
same number of objects existed.

5. RESULTS AND OBSERVATIONS

The results of running  the small configuration of the OO7 benchmark with  three connections will be provided and 
discussed in the following sections. We also included in-memory implementation times to create and traverse objects, to 
give an indication of the times taken for non-persistence-related operations. However, the operations for queries and 
modifications were not implemented for the in-memory version as yet. This will be added in later versions if found to 
be relevant. The results for the implementations are grouped and reported below by the type of operation performed.

5.1 Creation
The time taken by each implementation to create and store the OO7 model is given in Figure 1. It was found that 
Hibernate took almost 2.5 times longer to create and store the model than did db4o. This is a significant difference. 
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Because object-relational mapping has quite a significant overhead, if you choose it as your persistence mechanism, you 
need to be sure that benefits you will enjoy because the data is now in relational form and therefor open to reporting and 
data  mining tools,  should  be  far  greater  than  the  overhead  you  will  incur.  Although a  preliminary  and  plausible 
explanation is that this difference represents the object-relational creation and translation overhead (Hibernate needs 
time to create the tables, and map between the newly created objects and the tables), more detailed underlying reasons 
have not yet been established, and require further investigation.

Figure. 1. OO7 Model creation times

5.2 Traversals
Traversal times are a measure of the time that it  takes to navigate around the entire object model.  As previously 
mentioned, some of the traversals also modify the model by calling methods on the objects. Figure 2 displays the results 
for certain traversals, labeled T1, T2a, T2b, T2c, T3a, T3b, T3c, T6, T8 and T9. T4, T5 and T7 were not included as 
they were also not included in [Carey et al 1993a].  Carey et al [1993b] found that these did not provide any further 
insight into the performance of traversals and were left out of the original results. These missing traversals will be 
investigated in future work to see if they might provide interesting results on these new implementations.   

Figure. 2. Average hot traversal times

It is  clear from Figure 2 that,  except for the cases of  T8 and T9, db4o performs traversals through the object 
hierarchy more efficiently than Hibernate. T8 and T9 are traversal operations to find the Module and its associated 
Manual,  respectively.  These are  very short  operations,  as  there  is  only one Module  in  the  small  database  with 3 
connections. Thus these two traversals do not traverse the tree, but merely scan the Manual text string. This suggests 
that traversing the model is the significant difference between the two.

Singling  out  a  couple  of  results  for  comment,  Hibernate  is  approximately  100  seconds  slower  than  db4o  for 
traversals T3C and T6. Traversal T3C is based on T2C. It involves four traversals through all the atomic parts as well as 
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method calls to modify the date, either by incrementing or by decrementing its value. T3C in the original OO7 version 
tested  indexing,  which  was  included  on  the  date  objects.  Recall  that  the  Java  version  excluded  indexing  as  a 
performance enhancement mechanism. T3C thus basically traversed 40 000 objects, calling methods on them. Again, it 
would seem, therefore, that Hibernate’s slower overall time in this traversal test relates specifically to accessing the 
objects in a traversal operation. 

Traversal T6 traverses the assemblies of the object model that are private and then traverses their root atomic parts. 
In total, 493 root atomic parts are traversed. This is considerably lower than the number of objects traversed in T3C, yet 
the time difference between the two persistence mechanisms is about the same. This suggests that Hibernate traversals 
are specifically slowed down when accessing lower levels of the object’s model. 

5.3 Queries
Queries were used to find objects in the model that matched certain criteria. The queries can be classified as follows:

● Queries on one table/class type using id's to match: Q1.
● Queries with ranges: Q2, Q3, Q5.
● Queries that find all the objects of one type of class: Q7.
● Queries that find objects of type A and then traverse their one-to-many associations: Q4, Q5.
● Queries that find objects of type A and do a “join” with another object B using id's  to do the matching: Q8.

All of the queries involve iterating through the results returned and sending back a number of objects found. Q6 was 
not in the original OO7 results as it also did not provide any insight into the performance. For this reason Q6 was also 
not included in our results. Future work might include it.

As can be seen from Figure 3, Hibernate performs well for Q1 and performs the worst for Q8 (in fact, Hibernate’s 
time for Q8 has been omitted from the graph because it is right off the scale: 5747.6 seconds). Q1 generates 10 random 
id's and then tries to find the atomic parts that match those id's. It thus appears that Hibernate performs well in finding 
random objects of the same type using an id for doing the matching. It is reasonable to assume that this is due to the 
efficiency of simple queries in the relational database more than compensating for the object-relational translation, as 
compared to the navigation required by the object database in performing the same query.

Figure. 3. Average hot traversal times

Q8 iterates through 10000 atomic parts and then finds the current atomic part's associated document. Q7 finds all 
10000 atomic parts. Q3 is a query where the 10 000 atomic parts are found and only those that are in the range are 
returned. It would therefore seem from Q3, Q7 and Q8 that Hibernate performs badly when it needs to iterate through a 
large number of objects, retrieving and translating each one to its object form. 

The slow performance of Hibernate for Q5 is strange as there aren't  many objects involved. Q5 does however 
involve finding objects on lower levels and this could be the reason why it is slow.  

The general picture conveyed by Figure 3 is that db4o queries are fast and that Hibernate is competitive only in 
isolated  cases,  where  perhaps  the  performance  of  relational  database  part  more  than  compensates  for  the  object-
relational overhead. Hibernate seems generally inefficient in performing queries that require joins.

5.4 Modifications
Section 2 mentioned that one of the types of OO7 operations is called a modification. The modifications in OO7 are 
known as structural modifications [Carey et all 1993] and consist primarily of inserting and deleting objects in the 
model. The results for our two implementations are displayed in Tables 1 and 2 below.  The insertion and deletion times 
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for db4o are clearly better than those for Hibernate.  Such differences are not as dramatic as those encountered in the 
traversal and queries tests.

Db4o Hibernate

Type of Runs:

Cold Run 6.310 sec 11.291 sec

Avg of Hot Runs 12.020sec 23.4 sec

Table. 1. Insert times

Db4o Hibernate

Type of Runs:

Cold Run 6.831 sec 7.686 sec

Avg of Hot Runs 13.355 18.711 sec

Table. 2. Delete times

6. CONCLUSIONS AND FUTURE WORK

By using a benchmark, it has been  possible to compare and gain insight into the performance aspects of two object 
persistence mechanisms (object databases vs object-relational mapping to relational databases), as represented by two 
popular Open Source implementations (db4o and Hibernate).

It was found that db4o’s overall performance was better than that of Hibernate. Many of the test results seem to 
confirm our rules of thumb (here, that the overhead of object-relational translation causes ORM-based implementations 
to  be  consistently  slower  than  staying  in  object  form  with  an  object  database).  However,  a  few  need  deeper 
investigation (for example when the object-relational overhead is insignificant compared to the efficiency of relational 
query handling). When is this the case, and how can we design applications to take advantage of this?

During our investigation, it came to light that one needs in depth knowledge about these mechanisms to use them 
correctly and efficiently, with continued reliance on vendor input. 

Creating the implementations of OO7 for each of these persistence mechanisms, it was found that it was possible to 
get the mappings and the storing of the object model wrong, and that this incorrect behaviour is difficult to identify with 
a cursory check of the code and data. An example of where this happened in our testing was with the mapping of a 
particular many-to-many relationship, where the combination of incorrect creation of objects and incorrect mappings 
caused corruption of the relational model. While this perhaps points more to the difficulties of implementing persistence 
correctly due to the complexity involved, in the case of a benchmark, the fact that implementations can be wrong means 
that wrong conclusions can be drawn. This indicates the absolute necessity for an auditing process to check the results 
of implementation creators and vendors.

Interestingly,  object-relational  mapping  wasn’t  the  only  one  at  fault.  The  nuances  of  lazy  loading  and  setting 
activation depth also caused some incorrect retrieval of objects until the mechanics were well understood. 

Thus, each technology had its unique issues. Some common issues also surfaced, for instance it was not clear when 
to use cascade on update, when to use lazy loading, and when to store the objects in the database. An interesting issue 
was also found with Hibernate needing to re-associate an object that was returned from a query with a new session if 
the session was closed after the query run. Db4o did not run into this issue. Perhaps the answer is to be found in the 
depths of the age-old impedance mismatch, here extending to the differing ideas of sessions in the two worlds.

One of the original guidelines that had been decided upon as a basis of our investigation was to use the features of 
db4o and Hibernate in their basic, out of the box state, and not to use any optimizations. This was primarily to avoid 
optimization wars and specific tweaks that would not be obvious to the beginner user. However, some optimizations 
needed to be made, and parameter settings recommended, to make the comparisons meaningful. For example, using the 
current db4o version the authors did try the cascading functions and found that using too many cascades degraded 
performance, while  using well  selected cascades improved performance. We do intend to extend the scope of our 
research to more advanced features and optimizations, for example indexes and caches, in the future. 

This paper reports on the first findings of our investigation into the performance of object persistence technologies. 
Future work will included comparing other technologies, like the persistence aspects of the new JDO 2.0 and EJB 3.0 
specifications. We also intend to provide a test framework for OO7 to verify that it has been correctly implemented and 
that the correct operations are performed in all steps.

The random connection of  AtomicParts,  BaseAssembly and Composite  parts  needs some investigation,  for  the 
simple reason that the same object model should be used in each case for fair comparisons.

Further, the authors would like to investigate and compare the findings in using some of the other benchmarks, 
especially the new PolePosition [PolePosition] benchmark. Investigation into issues at more of an architectural level 
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should  also  be  investigated,  for  instance  a  comparison  between  distributed  (client-server)  and  single  machine 
implementations, and a multi-user benchmark [Carey et al 1994]. 

We need to update our version of the OO7 Benchmark to create larger databases, as hardware has improved and the 
database  sizes  in  the  original  benchmark  are  small  compared  to  database  sizes  of  today.  Future  work  will  also 
investigate the scalability of these implementations.
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