
Comparing the Performance of Object Databases and ORM Tools

PIETER VAN ZYL,
DERRICK G. KOURIE
AND
ANDREW BOAKE
ESPRESSO Research Group
Department of Computer Science
University of Pretoria
__

The currently popular distributed, n-tiered, object-oriented application architecture provokes many design debates. Designs of such applications are often
divided into logical ‘tiers’ – usually user interface, business logic and domain object, or data, tiers, each with their own design issues. In particular, the
latter contains data that needs to be stored and retrieved from permanent storage. Decisions need to be made as to the most appropriate way of doing this
– the choices are usually whether to use an object database, to communicate directly with a relational database, or to use object-relational mapping
(ORM) tools to allow objects to be translated to and from relational form.
Most often, depending on the perceived profile of the application, architects make these decisions using rules of thumb derived from particular
experience or the design patterns literature. Examples include: object-oriented databases ease programming, relational databases ease report generation
and data mining; object-oriented databases are good for navigation around an object model, relational databases are good for sequential processing and
complex queries; if you are writing an application from scratch, use an object database, if you need to integrate to various sources of legacy data, use an
ORM tool. Although helpful, these rules are often highly context-dependent and are often misapplied.
Research into the nature and magnitude of ‘design forces’ in this area has resulted in a series of benchmarks, intended to allow architects to more clearly
understand the implications of design decisions concerning object persistence. In this paper, the performance of selected open source object persistence
tools is investigated, to attempt to clarify the myths surrounding the performance of the different options. In particular, we compare Hibernate,
representative of the ORM stable, and db4o, representative of object-oriented databases. The OO7 benchmark is used to compare the speed of execution
of a suite of typical persistence-related operations in both candidates. We then propose some preliminary explanations of the sometimes surprising
results.

Categories and Subject Descriptors: D.2.8 [Software Engineering]: Metrics–performance measures; H.2.4 [Database Management]: Systems –Object-
oriented databases ; K. 6.2 [Management of Computing and Information Systems]: Installation Management— benchmarks, performance and usage
measurement; H.2.3 [Database Management]: Languages (D.3.2) –Database (persistent) programming languages ;Query languages
General Terms: Design, Experimentation, Performance, Languages
Additional Key Words and Phrases: Persistence, Performance, Benchmark, Object Oriented Database Management Systems (ODBMS) , Object –
Relation mapping (O-R or ORM) , Hibernate, db4o.
__

1. INTRODUCTION

Many contemporary applications use data that needs to be stored and retrieved. In the object oriented environment,
objects are usually used to represent data, and in this context, it is therefore objects that need to be persisted. Persistence
implies a 'process of how to store the objects' [Ambler 1998] as well as a persistence mechanism. There are three well-
known classes of object persistence mechanism: Object Oriented Database Management Systems (ODBMS's) ,
Relational Database Management Systems (RDBMS's) and Object-Relational Database Management Systems.
(Another of course, is the simpler mechanism of writing serialized object representations to a file.) Cattell et al [2000]
define an ODBMS to be a DBMS that integrates database capabilities with object-oriented programming language
capabilities. In such an ODBMS, both object attributes and object methods are stored in the database.

A well-known problem in persisting objects to a relational database is the so-called impedance mismatch that arises
between both the object model and the relational model and between the object programming language and the
relational query language [Cattell 1991]. To resolve the impedance mismatch problem, various hybrid solutions have
been proposed. Thus, object-relational databases have been developed, and traditional RDBMS vendors have included
object persistence capabilities into their products. Object Relational Mapping (ORM or also known as O-R) tools have
also been developed in an attempt to bridge this mismatch and to make persistence of objects easier for the developer.
These tools provide a mapping between the object model and the relational model, acting as an intermediary between an
object oriented code base, and a relational database.

Author Addresses:
P. van Zyl, ESPRESSO Research Group (http://espresso.cs.up.ac.za) , Department of Computer Science, University of Pretoria, Pretoria, 0002, South
Africa; pvzyl@csir.co.za.
A. Boake, Espresso Research Group (http://espresso.cs.up.ac.za) , Systemic Logic; andrew@systemiclogic.com
D. Kourie, Espresso Research Group (http://espresso.cs.up.ac.za) , Department of Computer Science, University of Pretoria, Pretoria, 0002, South
Africa; dkourie@cs.up.ac.za
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that the copies are not
made or distributed for profit or commercial advantage, that the copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than SAICSIT or the ACM must be honoured. Abstracting with credit is permitted. To copy otherwise, to republish, to post
on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
© 2005 SAICSIT

Proceedings of SAICSIT 2006, Pages 111 –113

112 • P van Zyl et al.

In choosing between these options for a particular application, one needs to consider various ‘forces’. Chief among
these are ease of development, performance and access to different sources of data, perhaps by more than just the
application being developed. The different solutions resolve these forces differently. For instance, object databases ease
development considerably by automating virtually all aspects of persistence, thus freeing the developer to concentrate
on more pressing business modelling aspects. However, object databases generally hide their contents behind object
oriented programming environments, which considerably complicates extraction of the data by popular reporting and
data mining tools.

Another example concerns performance. Popular rules of thumb assert that an application that navigates the data
(following links) will be more suited to object database use, while one that processes data items sequentially (for
example, adding interest to clients’ account balances), or one that performs complex queries (“Show me this client’s
total credit exposure”) are more suited to relational databases. Popular belief also asserts that object-relational tools add
translation overhead to all persistence operations, and so are proportionally slower that either of the other two solutions.
But, they do allow developers to use more powerful object oriented domain modelling techniques, whose constructs are
then translated to relational equivalents by the tool. But, specifying these translation rules again adds time and energy to
the development process.

We have seen that the correct decision for a particular application is both context dependent and requires a good
understanding of the relative importance, and of the actual magnitude, of the forces in the chosen solution. In our
research, we are delving into more objective clarification of these forces. Essentially, we are asking the same questions
that have been asked by countless software architects: Which is “better”: the hybrid solutions or the pure solutions?
Why are the pure solutions not more extensively used? What does “better” mean? And how do we know what is better
for this application? But, going further, we intend to measure the contending forces and understand them.

In this paper, we report on a particular piece of research into the performance aspects of these choices. We use a
benchmark to compare ODBMS's to ORM tools, with particular emphasis on the performance aspects. An object
persistence benchmark compares solutions by subjecting them to a suite of representative operations. The particular
benchmark we have chosen is OO7, widely used to comprehensively test object persistence performance. We have used
its measurements to compare typical solutions that are available today in the pure and in the hybrid world: db4o,
representative of object databases, and Hibernate, representative of the ORM stable. Both of these are popular Open
Source products.

Because of its general popularity, reflected by the fact that most of the large persistence mechanism providers
provide persistence for Java objects, it was decided to use Java objects for our studies. A consequence of this decision is
that the OO7 Benchmark, currently available in C++, has had to be re-implemented in Java. The results reported here
are based on a partial re-implementation of the benchmark. Work is currently underway to develop a fuller
implementation, but the results reported here are necessarily limited in scope to re-implemented portions of the
benchmark. This work is therefore a first step in investigating object persistence performance. Nonetheless, we believe
it has yielded information of interest.

In the nineties, when ODBMSs were still rather new, there were a variety of studies to assess their performance. For
example, Cattell and Skeen [1992] investigated the performance of various RDBMSs against ODBMSs, while Carey et
al [1993] compared the performance of various ODBMSs. More recently, Jordan [2004] has made a study of all of
Sun's persistence mechanisms. It was this latter study that inspired the idea of comparing ORM tools against ODBMS’s.

In the next section, the OO7 Benchmark and the reasons for selecting it will be discussed. Section 3 explains the
design constraints in implementing the Java version of the benchmark. Section 4 discusses the Java version in more
detail. Our measurements are assessed in Section 5. Section 6 offers our conclusions and perceptions of future work to
be done.

2. BENCHMARKS

Questions about the performance of ODBMS’s arose during the late 80's and early 90’s, soon after academic and
commercial ODBMSs were becoming available. It was at this time that several benchmarks were created to measure
their performance. Well known benchmarks included HyperModel [Anderson et al 1990], OO1 [Cattell and Skeen
1992] and OO7 [Carey et al. 1993a]. The OO1 benchmark was intended to study the performance of engineering
applications. The HyperModel approach was based on earlier versions of the OO1 benchmark. It incorporated a more
complex model with more complex relationships and a wider variety of operations. The HyperModel benchmark
focused on the hypertext model. The OO7 benchmark was based on both of these benchmarking efforts.

The next section will provide an overview of the OO7 benchmark and also discuss why this benchmark was selected
for our benchmarking and comparison investigation.

2.1 OO7 benchmark overview
OO7 was designed to investigate various features of performance, and it included complex objects which were missing
from the OO1 and HyperModel benchmarks [Carey et al 1993a]. While the earlier benchmarks used single value
results, the OO7 benchmark provided a collection of results. Carey et al [1993a] indicate that the benchmark is intended
to investigate 'associative operations, sparse vs dense traversals, updates to indexed vs. non-indexed object attributes',
etc.

Proceedings of SAICSIT 2006

Preparing Articles for SAICSIT 2006 Proceedings • 113

The benchmark uses a hierarchy of objects, modeling an engineering design library. Each Model contains either
BaseAssembly or ComplexAssembly objects. ComplexAssembly objects contain other BaseAssembly objects.
BaseAssembly objects contain CompositePart objects, that contain AtomicPart objects. AtomicPart objects are
connected with each other through Connection objects. All of these objects have some basic attributes and some
collections representing one-to-one, one-to-many and many-to-many relationships. Most of these relationships are bi-
directional.

This object model is used as the target of various navigation and persistence operations. There are configuration
settings that can be changed to influence the number of objects created, the number of models, the number of
connections, etc. The benchmark also has a small, medium and a large database configuration which specifies the
number of objects to be created in the benchmark. For each of these database configurations it is possible to configure
the number of connections between objects. An example of this is where an AtomicPart is connected to other
AtomicParts and with the use of the configuration value we can control the number of these connections [Carey et al
1993a]. Carey et al [1993a] defined 3, 6 and 9 as suggested connection values. In this way, we can have a small
configuration with 3 connections, a small configuration with 6 connections, a medium configuration with 9 connections,
etc.

The benchmark contains operations that operate on the design library and can be grouped into three categories:
traversals, queries and modifications. Although these are well-documented in [Carey et al 1993b], various features of
these operations that are not so obvious will be mentioned below. The modification operations refer to the insertion and
deletion of objects, and to some of the traversal operations that not only traverse the object hierarchy but also modify
the objects by swapping values, renaming them, etc.

Operations are run as cold or hot [Carey et al 1993a]. Cold runs are runs where all the caches should be empty, and
hot runs are where caches are full. There is also the in-between notion of a warm run, which refers to an initial cold run
to fill up the caches, followed by a hot run. Section 6 will provide the measurements in regard to these operations under
both cold and hot running conditions.

One of the early difficulties that arose in attempting to use the OO7 benchmark was the issue of query languages
[Carey et al 1994]. Not all of the systems tested then had query languages, and those that had, had languages that
differed in capabilities. For those that did not have query language capabilities, C++ query methods were written in the
hope of enabling comparison across all of the systems. Carey et al [1994] conceded that this could favour some
implementations with no query language capabilities.

This possible bias is avoided in the present study, since both of the systems that we have chosen to investigate have
their own object query facilities. Db4o uses SODA (Simple Object Database Access) as well as Native queries, and
Hibernate uses HQL (Hibernate Query Language).

In selecting a benchmark for comparing our two chosen target systems, the OO7 was a natural prime candidate.
Because it has a deep object hierarchy with many complex relationships (one-to-many and many-to-many), it is well-
suited to assessing non-trivial object oriented applications. Furthermore, the fact that the code was available in C++
meant that it could be converted to Java with relative ease. Finally, we were influenced by the fact that it had been used
in the recent past for research studies into persisting Java objects, for example [Jordan 2004].

3. JAVA VERSION OF OO7 BENCHMARK

This section discusses the overall approach to producing a Java version of the OO7 Benchmark, the principle utility
classes that were used, and the most important ways in which our version differs from the original C++ version.

3.1 Overall approach
The Java version was written in two basic stages. An initial attempt took the lead from another Java OO7 version that
had been developed and distributed by the Ozone open source ODBMS [Ozone]. On investigation, it became apparent
that Ozone's Java version was very basic. Not only was it not a full equivalent of the original C++ version, but valuable
debugging and configuration settings available in the C++ version had not been incorporated into the Ozone version.

In a second stage, the original C++ code that had been used for the Versant implementation was taken as a starting
point. An equivalent Java class was written for each C++ class. Here all of the language structures that were similar
were copied over to the Java version. An example of this was where similar language structures (such as for-loops)
were merely copied over from the C++ to the Java version. This was done in an effort to stay as close to the original
version as possible. This easily led to a Java code equivalent of OO7, but which did not yet provide any persistence-
related code. However, this was useful in and of itself, as it was deemed desirable to have a pure in-memory
representation of the model. This was to serve as an absolute baseline in comparing cold and hot object operations
across different platforms. The idea for doing this was taken from Jordan [2004]. Once the pure Java OO7 model was in
place, the db4o and Hibernate implementations were produced. These will be discussed in Section 5.

3.2 Utility classes
A Persistence class was designed for use in both the db4o and Hibernate implementations. This class was used at all
points in the benchmark model where persistence was needed. It has methods for saving, deleting, updating, etc, hiding
the specific implementation details.

Proceedings of SAICSIT 2006

114 • P van Zyl et al.

Each implementation then implemented its persistence code in a separate utility class whose methods were called by
methods in the Persistence class. Followers of Design Patterns may recognize this as an example of using the Bridge
pattern. The db4o utility class was called Db4oUtil and Hibernate’s utility class, HibernateUtil. The intention was to
enable us to hide the persistence mechanism used from the model. The idea was to use only one model, and to merely
interchange the correct persistence mechanism classes when testing the different platforms.

This aspiration was not realized, as it was found that Hibernate required that the parent of a hierarchical object had
to be saved before saving the children. This was not true for db4o. Thus, the order of calls to the persistence utility had
to be different in the two implementations. This necessitated two separate implementations for the two platforms. The
original C++ OO7 version also used this approach of writing separate implementations: one for Versant, one for
Objectivity, etc.

3.3 Deviations from the benchmark
The original version of the OO7 Benchmark had configuration options for using one or many database transactions (i.e.
database commit points). It was decided not to investigate the difference in using one or many transactions at this point.
Db4o and Hibernate both provide transaction management. Db4o opens a transaction when the database is opened, so
there will always be a transaction available. Hibernate provides transactions through the use of JTA (Java Transaction
API) or JDBC transactions. No transactions were used in the Hibernate implementation. We mention this here in the
interests of a more complete understanding of the basis for comparison.

It was also decided to exclude indexes for searching and queries, as we did not want to use any of the performance
enhancements that are available to users of relational databases.

Additionally, the formula for computing the average hot times was changed by including the time take for the last
run. Carey et al [1993b] had omitted the last run because they did want to include the overhead of commits. We argue
that commits are an inherent part of the operation and they may have quite an important influence on the times. Indeed,
in contrast to the original benchmark, instead of providing one big commit at the end, our version commits each time
that an object is added or updated. Thus, the average hot time calculation has been changed to include all of the iteration
times except for the first, this iteration time being the cold run.

Finally, the original OO7 version included so-called 'null methods' to simulate work external to the database. These
are called doNothing() methods in the code and are implemented as for-loops which simply request the system time.
These were not implemented in the Java version, since there seemed to be no need for them. They are apparently
intended to aid in simulating the overall time that would be taken for an application, and do not relate to the
performance of the respective persistence mechanisms as such.

4. PERSISTENCE MECHANISMS TESTED

This section discusses the two persistence mechanisms for which OO7 implementations were written. It also provides
information about the testing environment.

4.1 TESTING ENVIRONMENT

The benchmark was run on a Fujitsu Siemens laptop with 1G of internal memory. The 80G hard drive has a drive speed
of 4200rpm. The laptop has Mandriva Linux 2006 running with X. Although most applications were shut down while
the benchmark was running, some applications to capture the data had to remain open. Furthermore, the laptop was not
plugged into a network. As a result, there could be a certain amount of overhead in the measured times. However, there
does not appear to be any reason why such overhead would influence one persistence mechanism more or less than the
other. Nevertheless, as part of future work, the benchmark operations will be run on a dedicated machine with no other
applications running.

4.2 OBDMS IMPLEMENTATION: DB4O

As previously pointed out, both the db4o and the Hibernate implementations to persist objects were derived from the
Java OO7 code that simply generated objects in memory.

Often, adding persistence to your Java application requires rather intrusive additions and changes to your code.
There are really three categories of changes required: telling the persistence mechanism what to persist, how to persist,
and when to persist.

Telling the mechanism what to persist generally means marking the target classes and attributes. For example, one
may be required to have your persistent objects implement an interface to mark them as persistent, or be part of a
framework (for instance, be an Enterprise Java Bean). You may also need to code in a certain way so that the
persistence mechanism can recognise patterns (for example getter and setter methods). Telling it how to persist depends
a lot on the how the mechanism maps in-memory object representations to storage representations. For example, you
may need to run the code through a pre-processor for persistence code to be added, or specify persistence-related
information in configuration files. Telling a mechanism when to persist is a more difficult matter. In general, one is
faced with the choice of storing every change to the objects in memory to the store (which is highly inefficient), or
adopting some scheme which marks objects as ‘dirty’, to be stored later, when you tell it to (explicitly in the code).

Proceedings of SAICSIT 2006

Preparing Articles for SAICSIT 2006 Proceedings • 115

Db4o is an open source object oriented database that easily and without extra work to tell it what and how to persist,
stores Plain Old Java Objects (also known as POJOs). Db4o does however require us to tell it when to persist. In
general, code to save or update objects in the persistence store was inserted just after the object had been created or
changed in memory. In this way, producing the db4o implementation from the OO7 Java code was in fact quite
straightforward.

When using db4o, one needs to keep track of the so-called update depth and activation depth [Db4o 2006]. Update
depth has to do with the fact that when an object that has a reference to other objects is updated, db4o will only save the
changes to referenced objects now if the update depth is greater than 1. This is used to control performance. The default
update depth in db4o is 1. Since the benchmark makes use of objects that have sets of references to other objects and we
wanted to save all of the changes immediately, this default parameter was changed.

Activation depth relates to retrieving objects from the database that reference other objects. Db4o can, if needed,
retrieve the whole object graph referenced by the object being retrieved. This can be inefficient, especially if we don’t
need to use the entire object tree right away. So, when we retrieve an object that has references to other objects, we can
defer retrieving the referenced objects until needed. This is done by a technique called lazy loading, where referenced
objects are fetched only when a reference to them is followed. The tree depth at which this occurs is called activation
depth in db4o. By default, db4o specifies activation depth as 5. In running the benchmark, the activation depth was
increased to retrieve the whole referenced object graph.
Db4o can be run as an embedded database, as a local server in the same virtual machine (an embedded server) and as a
remote server. For our implementation Db4o was run as an embedded database.

4.3 ORM TOOL IMPLEMENTATION: HIBERNATE

Hibernate is an ORM tool that stores in-memory objects to, and retrieves in-memory objects from, a relational database.
To test Hibernate, we needed to change the in-memory version of the OO7 Java code to make use of Hibernate.
Hibernate can be used with any relational database – we used Postgres for our implementation.

To more clearly understand the explanation of how this was done, we need to define some of the concepts. Ambler
[2006] provides the following definitions:
¾ “Mapping: The act of determining how objects and their relationships are persisted in permanent data storage, in

this case a relational database.
¾ Property: A data attribute, either implemented as a physical attribute, such as String firstName, or as a virtual

attribute implemented via an operation, such as Currency getTotal ().
¾ Property mapping: A mapping that describes how to persist an objects property.
¾ Relationship mapping: A mapping that describes how to persist a relationship between two or more objects

(generally, association, aggregation, or composition).
¾ Inheritance mapping: Mapping the inheritance hierarchy to relational database tables.”

In using Hibernate, these mappings can be specified in xml mapping files or they can be defined in the Java code by
using Xdoclet tags or annotations. We used Hibernate Xdoclet tags in the code, and extracted the tags from the Java
files, using an ant task, to create the xml mapping files.

The mapping of the properties was relatively straightforward. Most of the time was spent on getting the relationship
and inheritance mappings to work correctly. These are discussed in the following sections.

In the previous section it was mentioned that, when using db4o, one can set the activation depth of the objects
retrieved. It is interesting to note that Hibernate also provides lazy loading, where it is possible to limit the number of
objects returned.

4.3.1 Relationship mappings
Recall that relationship mapping is the mapping of one-to-one, one-to-many and many-to-many relationships between
objects to their chosen relational database representations. Most of the types of object oriented relationship, including
aggregation (is-part-of), are found in the OO7 benchmark. It was therefore necessary to specify how to handle these in
our Hibernate implementation. This was found to be one of the most difficult parts of the implementation.

All the associations in the OO7 model are bi-directional, and so one has to consider how to specify relational queries
to follow relationship navigation from both ends.

The one-to-many relationships were implemented as ordinary relational database primary key / foreign key entity
relationships. To elaborate: having a class A and a class B in the object model meant having TableA and TableB in the
relational model, with each row in the tables storing the corresponding objects’ attributes. If there is a one-to-many
relationship between class A and class B, we represent that relationship as a column in TableB which keeps primary
keys from TableA. To access the B objects from an A object, we select all of the rows in TableB that reference the A
object’s primary key as a foreign key. Going the other way, to access the A object from any B object, we select the row
in TableA that has the stored foreign key as its primary key.

For many-to-many bi-directional associations, we used join tables. A join table stores, separately from the
referenced tables, the primary keys of the related entities. Extending the example above to a many-to-many relationship
between A objects and B objects, this means an additional table, say TableAB, with columns A and B storing the list of
keys of related A’s and B’s. To access the related B objects from an A object would mean executing a query that found

Proceedings of SAICSIT 2006

116 • P van Zyl et al.

all of the related B objects’ keys from TableAB, and then retrieved those rows in B that had those as primary key.
Navigating the relationship from B’s to A’s is done similarly.

4.3.2 Inheritance mappings
According to [Ambler 2006], four basic approaches can be used to map object oriented inheritance structures to a
relational model:
¾ Map the whole class hierarchy structure to one table, i.e. one table containing all of the combined attributes.
¾ Map each concrete class to its own table: ie all of the subclasses that inherit from an abstract class get their own

table.
¾ Map each class to its own table.
¾ Map the classes into a generic table structure.

The Hibernate supporting literature provides strategies to enable one to use any of the approaches mentioned above
[Hibernate 2006]. In the OO7 Java Hibernate code, in general, each class was mapped to its own table. This 'table per
class' strategy [Hibernate 2006] was selected because it is a straight forward one-to-one mapping. The strategy of
mapping concrete classes to their own tables was used only in one place, namely to map the OO7 abstract class called
DesignObject and its subclasses: Module, Assembly, CompositePart and AtomicPart.

The mapping of concrete classes approach generally decreases the number of tables that are needed, compared to the
table per class strategy. However, this approach results in duplicated information, since the properties of the parent class
have to be included in each child class’s table [Ambler 2006]. If properties are added later to the parent class, then they
must be inserted into each child class’s table.

One should keep this complexity in mind when choosing mapping strategies [Ambler 2006]. As the benchmark
scenario did not include the addition of properties, this complexity was not an issue. Furthermore, the properties in child
classes were quite simple: a build date, a string type and an id. (Note: it was necessary to rename the original ‘id’ field
to ‘design_id’ as there were some conflicts in Hibernate with the name ‘id’.)

4.3.3 Impedence mismatch difficulties
These mapping complexities are necessary to overcome the impedance mismatch between the object and relational

models. In general, it is not trivial to map one-to-many relationships, many-to-many relationships, and inheritance
structures, especially when the application is large and changing, and the mapping is manual. Special cases also
complicate the mapping. For example, mapping a class that has more than one association to the same class is not
handled by the simple scheme explained above. For example, in the benchmark model, BaseAssembly has two many-
to-many mappings with CompositePart, called componentsPrivate and componentsShared It was decided to map these
by using a separate join table for each relationship. Two join tables were therefore created, called components_private
and components_shared, each containing the primary keys of the related BaseAssembly and CompositePart objects.

It is clear that this kind of manual mapping requires fairly intimate knowledge of both the object and relational
models, and the mechanics of the chosen mappings. For example, when mapping AtomicParts and their Connections, a
problem was encountered that related to order in which the objects had to be saved. This was manifested as a referential
integrity constraint in the database. (Elmasri and Navathe [1994] describe a referential integrity constraint as the
requirement that a tuple in one relation may not refer to a tuple in another relation unless the latter tuple already exists.)
This meant that an AtomicPart object had to be saved first before saving a Connection object that is linked to it.

4.4 Overall observation
When creating an implementation of OO7 for a specific persistence mechanism, there is bound to be uncertainty about
the correctness of the model that is saved. There is, of course, no magic bullet – no automatic way to check the
correctness - one has to rely on testing. Thus, when the Module (the parent class in the OO7 benchmark) and its entire
hierarchy tree are saved, the ideal would be that there should be certainty that the whole tree is correctly saved and
retrieved. Unit tests for all of the operations that modify the model are required to enhance confidence that these
individual parts are working correctly. Although this is envisaged at a later stage, for the interim we inserted counters to
both implementations to count the number of objects created. We then opened each database and checked to see if the
same number of objects existed.

5. RESULTS AND OBSERVATIONS

The results of running the small configuration of the OO7 benchmark with three connections will be provided and
discussed in the following sections. We also included in-memory implementation times to create and traverse objects, to
give an indication of the times taken for non-persistence-related operations. However, the operations for queries and
modifications were not implemented for the in-memory version as yet. This will be added in later versions if found to
be relevant. The results for the implementations are grouped and reported below by the type of operation performed.

5.1 Creation
The time taken by each implementation to create and store the OO7 model is given in Figure 1. It was found that
Hibernate took almost 2.5 times longer to create and store the model than did db4o. This is a significant difference.

Proceedings of SAICSIT 2006

Preparing Articles for SAICSIT 2006 Proceedings • 117

Because object-relational mapping has quite a significant overhead, if you choose it as your persistence mechanism, you
need to be sure that benefits you will enjoy because the data is now in relational form and therefor open to reporting and
data mining tools, should be far greater than the overhead you will incur. Although a preliminary and plausible
explanation is that this difference represents the object-relational creation and translation overhead (Hibernate needs
time to create the tables, and map between the newly created objects and the tables), more detailed underlying reasons
have not yet been established, and require further investigation.

Figure. 1. OO7 Model creation times

5.2 Traversals
Traversal times are a measure of the time that it takes to navigate around the entire object model. As previously
mentioned, some of the traversals also modify the model by calling methods on the objects. Figure 2 displays the results
for certain traversals, labeled T1, T2a, T2b, T2c, T3a, T3b, T3c, T6, T8 and T9. T4, T5 and T7 were not included as
they were also not included in [Carey et al 1993a]. Carey et al [1993b] found that these did not provide any further
insight into the performance of traversals and were left out of the original results. These missing traversals will be
investigated in future work to see if they might provide interesting results on these new implementations.

Figure. 2. Average hot traversal times

It is clear from Figure 2 that, except for the cases of T8 and T9, db4o performs traversals through the object
hierarchy more efficiently than Hibernate. T8 and T9 are traversal operations to find the Module and its associated
Manual, respectively. These are very short operations, as there is only one Module in the small database with 3
connections. Thus these two traversals do not traverse the tree, but merely scan the Manual text string. This suggests
that traversing the model is the significant difference between the two.

Singling out a couple of results for comment, Hibernate is approximately 100 seconds slower than db4o for
traversals T3C and T6. Traversal T3C is based on T2C. It involves four traversals through all the atomic parts as well as

Proceedings of SAICSIT 2006

T1 T2
a

T2
b

T2
c

T3
a

T3
b

T3
c

T6 T8 T9

0.000

25.000

50.000

75.000

100.000

125.000

150.000

175.000

200.000

225.000

250.000

275.000

300.000

325.000

All the Hot Traversal times

In Memory

Db40

Hibernate/Postgres

traversals

re
sp

on
se

 ti
m

e(
se

co
nd

s)

Cold

0

20

40

60

80

100

120

140

160

180

200

Creation times

In Memory

Db40

Hibernate/Postgres

creation

re
sp

on
se

 ti
m

e
 (

se
co

n
ds

)

118 • P van Zyl et al.

method calls to modify the date, either by incrementing or by decrementing its value. T3C in the original OO7 version
tested indexing, which was included on the date objects. Recall that the Java version excluded indexing as a
performance enhancement mechanism. T3C thus basically traversed 40 000 objects, calling methods on them. Again, it
would seem, therefore, that Hibernate’s slower overall time in this traversal test relates specifically to accessing the
objects in a traversal operation.

Traversal T6 traverses the assemblies of the object model that are private and then traverses their root atomic parts.
In total, 493 root atomic parts are traversed. This is considerably lower than the number of objects traversed in T3C, yet
the time difference between the two persistence mechanisms is about the same. This suggests that Hibernate traversals
are specifically slowed down when accessing lower levels of the object’s model.

5.3 Queries
Queries were used to find objects in the model that matched certain criteria. The queries can be classified as follows:

● Queries on one table/class type using id's to match: Q1.
● Queries with ranges: Q2, Q3, Q5.
● Queries that find all the objects of one type of class: Q7.
● Queries that find objects of type A and then traverse their one-to-many associations: Q4, Q5.
● Queries that find objects of type A and do a “join” with another object B using id's to do the matching: Q8.

All of the queries involve iterating through the results returned and sending back a number of objects found. Q6 was
not in the original OO7 results as it also did not provide any insight into the performance. For this reason Q6 was also
not included in our results. Future work might include it.

As can be seen from Figure 3, Hibernate performs well for Q1 and performs the worst for Q8 (in fact, Hibernate’s
time for Q8 has been omitted from the graph because it is right off the scale: 5747.6 seconds). Q1 generates 10 random
id's and then tries to find the atomic parts that match those id's. It thus appears that Hibernate performs well in finding
random objects of the same type using an id for doing the matching. It is reasonable to assume that this is due to the
efficiency of simple queries in the relational database more than compensating for the object-relational translation, as
compared to the navigation required by the object database in performing the same query.

Figure. 3. Average hot traversal times

Q8 iterates through 10000 atomic parts and then finds the current atomic part's associated document. Q7 finds all
10000 atomic parts. Q3 is a query where the 10 000 atomic parts are found and only those that are in the range are
returned. It would therefore seem from Q3, Q7 and Q8 that Hibernate performs badly when it needs to iterate through a
large number of objects, retrieving and translating each one to its object form.

The slow performance of Hibernate for Q5 is strange as there aren't many objects involved. Q5 does however
involve finding objects on lower levels and this could be the reason why it is slow.

The general picture conveyed by Figure 3 is that db4o queries are fast and that Hibernate is competitive only in
isolated cases, where perhaps the performance of relational database part more than compensates for the object-
relational overhead. Hibernate seems generally inefficient in performing queries that require joins.

5.4 Modifications
Section 2 mentioned that one of the types of OO7 operations is called a modification. The modifications in OO7 are
known as structural modifications [Carey et all 1993] and consist primarily of inserting and deleting objects in the
model. The results for our two implementations are displayed in Tables 1 and 2 below. The insertion and deletion times

Proceedings of SAICSIT 2006

Q1 Q2 Q3 Q4 Q5 Q7 Q8

0.000

25.000

50.000

75.000

100.000

125.000

150.000

175.000

200.000

225.000

250.000

275.000

300.000

All the hot query times

In Memory
Db40
Hibernate/Postgr
es

queries

re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

Preparing Articles for SAICSIT 2006 Proceedings • 119

for db4o are clearly better than those for Hibernate. Such differences are not as dramatic as those encountered in the
traversal and queries tests.

Db4o Hibernate

Type of Runs:

Cold Run 6.310 sec 11.291 sec

Avg of Hot Runs 12.020sec 23.4 sec

Table. 1. Insert times

Db4o Hibernate

Type of Runs:

Cold Run 6.831 sec 7.686 sec

Avg of Hot Runs 13.355 18.711 sec

Table. 2. Delete times

6. CONCLUSIONS AND FUTURE WORK

By using a benchmark, it has been possible to compare and gain insight into the performance aspects of two object
persistence mechanisms (object databases vs object-relational mapping to relational databases), as represented by two
popular Open Source implementations (db4o and Hibernate).

It was found that db4o’s overall performance was better than that of Hibernate. Many of the test results seem to
confirm our rules of thumb (here, that the overhead of object-relational translation causes ORM-based implementations
to be consistently slower than staying in object form with an object database). However, a few need deeper
investigation (for example when the object-relational overhead is insignificant compared to the efficiency of relational
query handling). When is this the case, and how can we design applications to take advantage of this?

During our investigation, it came to light that one needs in depth knowledge about these mechanisms to use them
correctly and efficiently, with continued reliance on vendor input.

Creating the implementations of OO7 for each of these persistence mechanisms, it was found that it was possible to
get the mappings and the storing of the object model wrong, and that this incorrect behaviour is difficult to identify with
a cursory check of the code and data. An example of where this happened in our testing was with the mapping of a
particular many-to-many relationship, where the combination of incorrect creation of objects and incorrect mappings
caused corruption of the relational model. While this perhaps points more to the difficulties of implementing persistence
correctly due to the complexity involved, in the case of a benchmark, the fact that implementations can be wrong means
that wrong conclusions can be drawn. This indicates the absolute necessity for an auditing process to check the results
of implementation creators and vendors.

Interestingly, object-relational mapping wasn’t the only one at fault. The nuances of lazy loading and setting
activation depth also caused some incorrect retrieval of objects until the mechanics were well understood.

Thus, each technology had its unique issues. Some common issues also surfaced, for instance it was not clear when
to use cascade on update, when to use lazy loading, and when to store the objects in the database. An interesting issue
was also found with Hibernate needing to re-associate an object that was returned from a query with a new session if
the session was closed after the query run. Db4o did not run into this issue. Perhaps the answer is to be found in the
depths of the age-old impedance mismatch, here extending to the differing ideas of sessions in the two worlds.

One of the original guidelines that had been decided upon as a basis of our investigation was to use the features of
db4o and Hibernate in their basic, out of the box state, and not to use any optimizations. This was primarily to avoid
optimization wars and specific tweaks that would not be obvious to the beginner user. However, some optimizations
needed to be made, and parameter settings recommended, to make the comparisons meaningful. For example, using the
current db4o version the authors did try the cascading functions and found that using too many cascades degraded
performance, while using well selected cascades improved performance. We do intend to extend the scope of our
research to more advanced features and optimizations, for example indexes and caches, in the future.

This paper reports on the first findings of our investigation into the performance of object persistence technologies.
Future work will included comparing other technologies, like the persistence aspects of the new JDO 2.0 and EJB 3.0
specifications. We also intend to provide a test framework for OO7 to verify that it has been correctly implemented and
that the correct operations are performed in all steps.

The random connection of AtomicParts, BaseAssembly and Composite parts needs some investigation, for the
simple reason that the same object model should be used in each case for fair comparisons.

Further, the authors would like to investigate and compare the findings in using some of the other benchmarks,
especially the new PolePosition [PolePosition] benchmark. Investigation into issues at more of an architectural level

Proceedings of SAICSIT 2006

120 • P van Zyl et al.

should also be investigated, for instance a comparison between distributed (client-server) and single machine
implementations, and a multi-user benchmark [Carey et al 1994].

We need to update our version of the OO7 Benchmark to create larger databases, as hardware has improved and the
database sizes in the original benchmark are small compared to database sizes of today. Future work will also
investigate the scalability of these implementations.

7. REFERENCES

AMBLER, S.W. 1998. Building Object Applications That Work Your Step-by-Step Handbook for Developing Robust Systems With Object Technology.
SIGS Books/Cambridge University Press, New York.

AMBLER, S.W. 2006. Mapping Objects to Relational Databases: O/R Mapping In Detail. www.ambysoft.com/mappingObjectsTut.html
ANDERSON, T., BERRE, A., MALLISON, M., PORTER, H., AND SCHNEIDER, B. 1990. The HyperModel benchmark, In Proceedings Conference

on Extending Database Technology, Venice, Italy, March 1990, F. BANCILHON, C. THANOS AND D. TSICHRITZIS, Eds. Springer-Verlag
Lecture Notes 416, 317-331.

CAREY, M. J., DEWITT, D.J, NAUGHTON, J. F. 1993a. The OO7 Benchmark. In Proceedings of the 1993 ACM SIGMOD International Conference
on Management of Data, Washington, D.C, United States, May 1993, PETER BUNEMAN AND SUSHIL JAJODIA, Eds. ACM Press, New York,
NY, USA, 12-21.

CAREY, M. J., DEWITT, D.J, NAUGHTON, J. F. 1993b. The OO7 Benchmark. CS Tech Report, University of Wisconsin-Madison, April 1993.
CAREY, M. J., DEWITT, D.J, NAUGHTON, J. F. 1994. A Status Report on the OO7 OODBMS Benchmarking Effort. In Proceedings of the Ninth
Annual Conference on Object-Oriented Programming Systems, Language, and Applications, Portland, Oregon, United States, 1994, ACM Press, New
York, NY, USA, 414-426.
CATTELL, R.G.G, BARRY, D., BERLER, M., EASTMAN, J., JORDAN, D., RUSSELL, C., SCHADOW, O., STANIENDA, T., VELEZ, F., 2000.

The Object Data Standard: ODMG 3.0. Morgan Kaufmann Publishers, San Francisco.
CATTELL, R.G.G, 1991. Object Data Management: object-oriented and extended relational database systems, Addison-Wesley Publishing Company.
CATTELL, R.G.G, SKEEN, J., 1992. Object Operations Benchmark, ACM Transactions on Database Systems, Vol. 17, No. 1, 1-31.
DB4O. 2006. Db4o Tutorial, http://www.db4o.com
ELMASRI R., AND NAVATHE S.B. 1994. Fundamentals of Database Systems. The Benjamin/Cummings Publishing Company Inc, Second Edition.
HIBERNATE. 2006. Hibernate Reference Manual. http://hibernate.org
JORDAN, M 2004. A Comparative Study of Persistence Mechanisms for the Java™ Platform, September 2004. http://research.sun.com/techrep/2004.
OZONE, http://www.ozone-db.org
POLEPOSITION, http://www.polepos.org

Proceedings of SAICSIT 2006

http://www.ozone-db.org/
http://www.polepos.org/
http://research.sun.com/techrep/

