

Author address:

Mikael Kopteff (miku.kopteff(at)gmail.com), Haaga-Helia University of Applied Sciences, Finland (www.haaga-helia.fi)

*Floobs Ltd. (www.floobs.com) provided funding for this research.

The Usage and Performance of Object Databases compared with ORM tools in a

Java environment

Mikael Kopteff

Information Technology

Haaga-Helia University of Applied Sciences

and

Floobs Ltd.*

ABSTRACT

Object databases have been almost entirely forgotten in the mainstream software development world.

The huge interest in object databases during the 1990’s has changed to ignorance even though object-

oriented programming languages like Java and C# continue to thrive. During the last couple of years

many object-relational mapping tools have emerged to solve the notorious object-relational impedance

mismatch between relational databases and object-oriented languages. The widespread popularity of

object-relational mapping (ORM) tools still raises the question of using an object database instead of a

redundant data mapping tool and persisting data in its natural form – as objects.

The goal of this work is to find out if object databases can be used as persistent storage in applications

instead of ORM tools and relational databases. Two popular tools from both camps were selected as

reference implementations for the study. The features, usage and performance of these tools were then

studied from a software development point of view. Features of both tools were listed and compared.

Usage of the tools was studied by comparing the query languages and the actual code used to access

the database. Performances of the two reference implementations were tested by running a subset of

the de-facto object database benchmark OO7. These three factors provide sufficient information if

object databases can replace ORM tools and relational databases as the persistence layer in modern

software development.

Keywords: object-oriented databases, database (persistent) programming languages, relational databases, performance

evaluation, object-oriented programming

Mikael Kopteff 1

1. INTRODUCTION

Modern day software development, especially in the business sector relies heavily on relational

databases, mostly because of their reliability and standardised query language. Using object-oriented

languages with relational databases to develop applications raises the impedance mismatch (Cattell

1991: 122) between the two models in use. In this type of situation, the designer is forced to

compromise regarding the implementation of the application. The object-relational impedance

mismatch between the object-oriented programming language and the relational database can be

solved by many different ways, for instance converting objects to the relational model, using an object

database or partly converting objects to the relational model (Dietrich & Urban 2005: 104). This study

investigates if object databases can be used as replacements for automated object-relational mapping

tools and relational databases in a Java environment and concentrates heavily on the implementation

details of the two tools used in the comparison. The approach taken is more from the point of view of

the programming language, rather then of databases.

2. REFERENCE IMPLEMENTATIONS

The two implementations selected for closer study were chosen, since they are mature products, they

both support a standardised interface for Java applications and both tools have been benchmarked with

OO7 before.

2.1 Versant ODBMS

Versant is an object database, that has over 50 000 users in different fields, like telecommunications,

finance, defence, government, simulations and medical (Versant 2007b). Versant was also part of the

original OO7 benchmark (Carey et al. 1994).

2.2 Hibernate ORM

Hibernate is a popular open ORM tool, which supports JPA (Java Persistence API) and the JPA

specification is partly based on Hibernate (Bauer & King 2007: 31). Hibernate is always used with a

relational database and in this study it is used with Oracle 10g Enterprise Edition.

3. COMPARISON

This section covers the comparison performed between the two tools. The features selected for this

comparison are persistence-related features often found in Java applications. The comparison of usage

and performance provides a more in-depth look into both implementations.

3.1 Features

A comparison of full features would be pointless between these two tools, since Versant ODBMS is a

full database and Hibernate ORM only provides tools for object-relation mapping and not the actual

database functionalities. These tools can be still compared from a software development point of view

and the investigated features are the services and interfaces provided for applications written in Java

programming language. Table 1 lists the features compared.

Mikael Kopteff 2

Table 1: Comparison of software development related features between Versant and Hibernate

(Hibernate 2007, Versant 2006a, Versant 2006b, Versant 2006c ja Versant 2007a).

FUNCTIONALITY VERSANT ODBMS 7.0.1.3 HIBERNATE 3.2.5

Java interfaces JDO 2.0, Java Versant Interface

(JVI Transparent and JVI

Fundamental)

JPA 1.0, Hibernate API

Bi-directional relationships Yes Yes

POJO persistence Yes Yes

Transitive persistence between

objects

Yes (JVI Transparent, JDO) Yes

Support for classes in Java

Collections -framework

Yes, also for ODMG (Object Data

Management Group) 2.0 collections

Yes, supports other collections, like Bag

Locking mechanisms Optimistic and pessimistic locking Optimistic and pessimistic locking

Database access control JTA, JNDI JTA, JDBC and JNDI

Connection to EIS JCA JCA (experimental)

JTA support Yes Yes

Automatic session control Yes Yes

Optimization Caching, fetching strategies Caching, fetching strategies

Distribution Yes Yes, (with Hibernate shards)

Dirty checking Yes Yes

Automatic generation of schema Yes Yes

Query mechanisms JDOQL, SQL, VQL HQL (JPA QL), Criteria API, database

specific SQL

XML support VXML for converting objects to

XML and back

Yes (experimental)

Both tools provide more than one interface to access the database from the Java programming

language. Versant supports the newest version of the domain model persistence specification JDO

API, while Hibernate supports the object-relational mapping specification JPA. Both of these

specifications are products of the Java community process. Versant also provides a Java Versant

Interface (JVI) API, which also supports the ODMG 2.0 standard. JVI has two sections, the

Fundamental API, which is a straight wrapper to the Versant C API and a higher level Transparent

API, which provides transparent persistence, ODMG support and automatic binding of database

objects to Java objects. Hibernate also provides a non-standardized, Hibernate specific API. In both

Versant and Hibernate the non-standardized API provides more functionalities than the standardised

API.

In general both tools have very similar features and they provide similar services for applications to

use. Both tools provide services like JCA (Java EE Connector Architecture), JTA (Java Transaction

API) and automatic session control, which all can be considered vital in modern day Java

development. Both tools even provide advanced features like “dirty checking” (Bauer & King 2007:

49), where the already stored objects are automatically updated into the database after modification.

3.2 Usage

One of the main differences between developing software with an ORM tool and developing software

with an object database, is that ORM tool converts the data into relational form, while object databases

store the data usually as it exists in the object in the programming language (of course there is mapping

to a certain degree in object databases too). While working with Hibernate, all design and

implementation decisions should be done with this fact kept firmly in mind, since a large portion of

work persisting objects is done by the underlying database engine. The designer should have a very

deep understanding about object-orientation, the relational model and the database engine used. When

running an application using an ORM tool, part of the errors come from the underlying database

engine and this is why Hibernate is not a fully independent middleware tool. Different database

Mikael Kopteff 3

engines can control integrity differently or they can store data types differently and hence the

functionalities of Hibernate become database dependent.

Another big difference between Hibernate and Versant is object identity and the way it is dealt with. In

the relational world object identity is dealt with primary keys and in the object world by object

identifiers (OID) (Cattell & Barry 2000: 17). Bauer and King (2007: 16) suggest using surrogate keys

with Hibernate, which creates an artificial object identifier (similar to an OID), which is not used in the

applications, but still exists as a property of a class.

3.2.1 Schema

When creating a persistable class for Hibernate, the creator has to consider the inheritance strategy, bi-

directional relationships, the object/table identity and the way the properties of a class will be mapped

to the tables and columns. A good example arises, when storing a Java String property of a class to a

relational database varchar data type, which has a length of 256 characters. While the usage of the

property works in the application if the length of the property is longer than 256, the database engine

will throw an exception when trying to commit the data to the database, since the data length is too

long for it. When creating a persistable class in Versant the creator only has to consider the actual

object model. Of course, extra features like cascade rules or the bi-directional relationships can be also

defined. Versant automatically converts Java data types to Versant supported data types according to

either JDO or ODMG specifications depending on the interface in use. Versant can create the database

schema from the JDO XML metadata file, programmatically from the application or using Java classes

depending on the interface in use. When using JVI interface, the class definition is created in the

schema, when the class is persisted for the first time. In Hibernate the database schema is created

either from the XML metadata files, Java annotations or by using DDL.

The following simple example demonstrates the usage of Hibernate XML mapping files for an

Employee class that has a many-to-many relationship with a Project class, an indexed “name” property

and some other properties.

<hibernate-mapping>

 <class name="example.model.Employee" table="EMPLOYEE">

 <id name="id" column="EMPLOYEE_ID">

 <generator class="native"/>

 </id>

 <property name="name" index="name_idx"/>

 <property name="salary"/>

 <property name="title"/>

 <set name="projects" inverse="true" table="PROJECT">

 <key column="EMPLOYEE_ID"/>

 <many-to-many column="PROJECT_ID"

 class=" example.model.Project"/>

 </set>

 </class>

</hibernate-mapping>

Mikael Kopteff 4

The example that follows is the exact same class defined with Versant’s JDO XML metadata file.

<jdo>

 <package name=" example.model">

 <class name="Employee">

 <field name="name" indexed="true"/>

 <field name="salary">

 <field name="title">

 <field name="projects">

 <collection element-type="Project">

 <extension vendor-name="versant" key="inverse"

value="employees"/>

 </collection>

 </field>

 </class>

 </package>

</jdo>

When comparing these two simple examples, they seem to be very close to each other. The notation is

similar and the JDO version merely lacks the relational database mapping options and the rest of the

differences are mainly semantic. For example, the property keyword is replaced with the field

keyword and the mapping of an inverse relationship in Hibernate requires the foreign key column

name. When defining a schema with Hibernate, the identity of an object should be declared. In this

example the database engine handles it by declaring the generator class="native" definition for

the id column. Of course, in Hibernate one could also add maximum lengths of columns and other

types of object-relational mapping information to the XML mapping file.

Hibernate can also define the database schema using Java annotations and this type of definition can be

compared with Versants way of defining the schema using the structure of a Java class. In both ways,

the class structure itself is the definition for the class in the database. In this situation, Hibernate uses

annotations to provide the information for the object-relational mapping.

When altering the schema, Versant uses a schema generation strategy and a tool (Versant 2006a). In

Hibernate, the schema can be updated using hbm2ddl tool (Bauer & King 2007: 40), which can be also

used in the schema generation. It is important to notice, that both Versant and Hibernate provide tools

for automatically generating or updating the schema and the use of DDLs is beginning to seem out of

date, even though still possible.

Even though the basic definitions are very similar in both tools, Hibernates definitions provide more

options, partly because of the relational database engine, that needs additional information. In

Hibernate API, users can more accurately define fetching strategies and cascade rules. One big

difference in the logic of the tools is, that when using Versant JDO, the properties of classes, that are

not defined in the metadata file are also persisted by default, while in Hibernate only properties found

in the XML mapping file are persisted. This is inconsistent however when using Hibernate

annotations, since properties, which do not have any definition, are persisted by default.

3.2.2 Connections and Transactions

Hibernate and Versant both use session as a unit of work and all events, which handle persistent

objects are performed through sessions. In both tools a single session can also include several

transactions. The following section takes a deeper look into the code of transaction management.

Mikael Kopteff 5

The following example shows how to create a session using the Hibernate API. As seen from the code,

the session is created first and the transaction is requested from the session. A new session is acquired

from the SessionFactory class.

Hibernate API
SessionFactory sessionFactory;

try {

 sessionFactory = new Configuration().configure().buildSessionFactory();

 session = sessionFactory.getCurrentSession();

 session.beginTransaction();

 session.getTransaction().commit();

 sessionFactory.close();

} catch (Throwable ex) {

 //Error handling

}

As mentioned earlier, JVI has two different types to access the database. The following example shows

how to access the database using the Transparent API. Transactions are accessed through sessions and

no directions are given straight to the transaction object.

Versant Transparent API
Properties prop = new Properties();

try {

 in = VersantManager.class.getResourceAsStream("/versant.properties");

 prop.load(in);

 TransSession session = new TransSession(prop);

 session.commit();

 session.endSession();

} catch (IOException e) {

 //Error handling

}

When using the standard JDO and JPA interfaces, the transaction management is handled almost

similarly in both tools. Using the ODMG interface in Versant is much more straightforward, but the

basic concepts do not differ much. The following examples show the basic opening of a session and a

transaction in Hibernate JPA and Versant JDO. As seen, the differences between tools are mainly

semantic.

Hibernate JPA
EntityManagerFactory emf =

 Persistence.createEntityManagerFactory(“example”);

EntityManager em = emf.createEntityManager();

em.getTransaction().begin();

em.getTransaction().commit();

em.close();

Versant JDO
PersistanceManagerFactory pmf =

 JDOHelper.getPersistenceManagerFactory(“example”);

PersistanceManager pm = pmf.getPersistenceManager();

pm.currentTransaction().begin();

pm.currentTransaction().commit();

pm.close();

Saving objects is very similar in both tools since it is done by calling a single method (save(Object)

in Hibernate API and makePersistent(Object) in Versant Transparent API). Transitive

Mikael Kopteff 6

persistence can be achieved with the same operation in both Versant and Hibernate. One major

difference is that Hibernate can set an association to be bidirectional automatically (since relationships

are bidirectional in the relational model), while in Versant the other endpoint of an association must be

set manually to make traversing the relationship from both directions possible.

The basic concepts in both tools are similar regardless of the interface in use. Both tools use some type

of setting file, which is loaded and used as a base for the database connection. The fact that both tools

use sessions as units of work, makes the using of the APIs very similar.

3.2.3 Queries

Both tools have several query languages partly depending on the interface in use. Hibernate has HQL,

that is similar to SQL (Bauer & King 2007: 533), but supports object features. Hibernate also has the

Criteria API, that provide advanced query capabilities. Versant has a Query API that includes VQL

and predicate queries for the JVI interface. VQL is a subset of OQL (Versant 2006a). For the JDO

interface the JDOQL (JDO Query Language) is provided for querying.

In HQL, referring to child objects is done by using dot notation, same as in OQL. Hibernate also

includes the Criteria API that lets you create queries using Java classes and methods. This is partly

similar to JDOQL or the predicate queries used in Versant.

The following examples compare the creation of a simple query with a single restriction. The query is

created using the session and the query text is given as a parameter to the executing method.

Parameters can be used in the query string and than bound to the query.

HQL
String nimi = "Foo";

Query query = session.createQuery("from thesis.model.Employee where name =

:name");

query.setParameter("name", name);

List<Object> objects = query.list();

for (Object object : objects) {

 //handle object

}

VQL
String name = "Foo";

Query query = new Query(session, "select selfoid from thesis.model.Employee where

name = $name");

query.bind("name", name));

QueryResult result = query.execute();

Object obj;

while ((obj = result.next()) != null) {

 // handle object

}

query.close();

Again both tools perform the tasks very similarly and the classes representing a query have the same

name. In Hibernate the session creates the query, but in Versant it is passed as a parameter to the

constructor of the Query object. The query result in Hibernate is a List object, but in Versant is a

special QueryResult object. Both tools provide similar ways of binding parameters to the query. The

actual query languages have some differences, like the selfoid keyword in VQL, which in is used

when accessing the whole object while in HQL no select clause is needed. HQL uses dot notation

when referring child objects, while VQL uses the arrow notation.

Mikael Kopteff 7

Criteria API and JDOQL have more differences, since Criteria API uses actual Java classes and

methods to set restrictions for the query and JDOQL uses Java syntax inside a string variable. Even

though the basic idea is the same, the implementations differ quite a lot. One of the most important

features in Hibernate and Versant is the possibility to use SQL in the queries. This extends the

possibilities of both tools, since SQL can be used to improve efficiency, for instance.

Table 2: Query methods in Versant and Hibernate.

FEATURES: HQL VQL Criteria API JDOQL

Syntax SQL and OQL

based

SQL and OQL

based

Pure Java Java syntax in a string variable

Navigation to

attributes

Dot notation Arrow notation Java Using variables

Use of variables Yes Yes Yes Yes

Navigation Yes Yes Yes Yes

Aggregtion (sum,

average, etc.)

Yes No Yes Yes

Table 2 lists the main functionalities of the query languages and their usage. HQL and VQL are very

similar in syntax and in functionality. Criteria API and JDQL have similar uses and the basic

principles are the same, but they still have lot of differences. Hibernate and Versant can both fulfil the

needs for querying especially since both tools have support for traditional SQL.

3.3 The OO7 Benchmark

One of the most significant benchmarks concentrating on object databases is the OO7, which was first

published in 1993. The OO7 benchmark doesn’t produce a single interpretable number, but several

sets of results. The actual tests can be divided into three categories, which are traversals, queries and

structural modifications (consisting of inserts and deletes) (Carey et al. 1994). The original benchmark

was implemented using C++ and it was performed on four different object databases. The OO7 has

also been used to compare object databases and ORM tools by Van Zyl et al. (2006). In the study

Db4Objects, a lightweight database was compared with PostgreSQL and Hibernate.

The OO7 benchmark is very complex and the data model itself has a lot of inheritance and complex

objects, because of its roots in CAD/CAM/CASE applications (Carey et al. 1994). The model can be

loaded with different parameters resulting in three databases with different sizes and different amount

of objects. The root of the entire class model is the abstract DesignObj class, from which most of the

classes inherit basic properties. The class model can be roughly divided into two sections, which have

a certain role in the model. The first one is the design library and the other the assembly hierarchy.

Assembly hierarchy consists of seven levels of Assembly objects that are connected with other

Assembly objects (Carey et al. 1994). The assembly hierarchy is less interesting from a performance

perspective and far less used than the design library. The design library is connected to the assembly

hierarchy through CompositePart objects. AtomicPart are the objects most used in queries and

they are connected to CompositePart objects.

3.3.1 Modifications to the OO7 benchmark

The OO7 is a massive benchmark, which provides enormous amounts of data to be interpreted.

Because of this the benchmark was not implemented fully and the tests where ran only against a

medium sized database. Also, changes where needed since the original OO7 was implemented in C++

and the approach here was not similar taken by Van Zyl et al. (2006), where the purpose was to port

the existing C++ code to Java. In this study, the implementation was made from scratch and code from

other implementations was not used. The implementation was based only on the descriptions of test

cases given by Carey et al. (1994) and for this reason the results are not fully comparable with the

results from the other OO7 implementations.

Mikael Kopteff 8

The Versant implementation was made by using JDO and the Hibernate implementation using both

JPA and Hibernate API annotations. The inheritance mapping strategy used was table per class, since

the DesignObj was an abstract class and never implemented, so there was no need to map it to a

table. The queries in Hibernate were mainly implemented using Criteria API, but some using HQL,

since in some cases HQL was more convenient and more flexible to use. Versant queries were

implemented using JDOQL. In this study the tests were only ran against the medium sized database.

A large portion of the traversals (navigating the object graph) was omitted from the benchmark, since

detailed traversal and update efficiency was not considered important. Traversal 1 and 2 were also

made lighter and they only retrieved the first 20 objects from the BaseAssembly objects. None of the

fields were indexed, except the buildDate attribute from the Document class. Because of this,

traversal 3 was also omitted from the tests, since it does not provide any additional information unless

performed on objects with indexes. This was replaced with a traversal X, which performs a simpler

update. The most interesting point on indexes is that Oracle 10g creates indexes on all primary key

columns. This fact raises an interesting question concerning indexes, when dealing with the object

relational impedance mismatch. In this study, the id field was used to maintain unique objects,

resulting that the object identity was indexed automatically. Should in this situation all Versant id

columns also be indexed? Versant maintains object identity using LOID (an own implementation of

OID) and these cannot be indexed, since they are not properties and so indexing a field in a Versant

object is not the same if a field is indexed in Hibernate (or Oracle). Also, the automatic generation of

indexes on primary keys is an internal function of Oracle, so the creation of indexes in Oracle is not

user created optimization, but the creation of indexes in Versant is. Due to all these reason, indexes

were almost unused in the benchmark, except in traversal X. Major reason was also, that indexes are

used in optimization and in this study the idea was to use default settings as much as possible, even

though OO7 specifies indexes.

Query 4 was also omitted because of the indexes. Each of the test cases were ran in separate

transactions. Traversals 8 and 9 were omitted, because of a problem with the Oracle JDBC thin driver

when accessing CLOB field over 4000 characters long. Traversals 8 and 9 were also not vital to the

benchmark since large text fields are rarely stored in a database.

3.3.2 Testing environment

The benchmark was executed with two Hewlett-Packard PCs that were identical. Single machines

hardware consisted of a Core 2 Duo processor, 4 GB of DDR2 667 MHz RAM, 500GB hard disk

(7300 rpm). Both machines ran MS Windows XP Pro, SP 2, which were installed from the same

image. The Java runtime used was Sun’s Java VM 6, update 2. All tests were performed in a computer

laboratory, with no other network traffic. Machine A had Versant ODBMS installed and machine B

Oracle 10 g. The server machine was always called from a client machine and for Versant, machine B

was the client and for Oracle, machine A was the client. During the tests, Java VM was provided with

1024 MB of memory at runtime. Both databases were installed with default settings and parameters.

3.3.3 Benchmark results

While interpreting the results it is important to keep in mind, that benchmarking is always dependent

on many variables and that all result only reflect the results of the tests in the benchmark. Even though

the tests in the benchmark endured a lot of testing, they are error prone, just as any other code. To

avoid errors, tests in both tools where based on the same code base. Also it is important to remember,

that the OO7 is developed for object-oriented databases using the object model and as a result the

domain model of the benchmark has lot of features like inheritance and many-to-many relationships,

which are more complex to handle in relational databases (Bauer & King 2007: 17). It is also good to

keep in mind, that in Hibernate for each test case, a new SessionFactory object is created, which is

Mikael Kopteff 9

an expensive operation. The test times displayed here are “cold” executions (cache empty) and from

the first run of each test case.

Traversal 1_MOD measures raw traversal speed and the test browses the 20 first BaseAssembly

objects, their CompositePart objects, their AtomicPart and for these objects a DFS (Depth First

Search) is performed. Traversal 2 A_MOD performs the exact same functions than Traversal 1, except

it also updates some objects. Traversal 6 is the same than Traversal 2, but does not perform the DFS.

Traversal Cached Update performs Traversals 1 and 2 in the same transaction, so the objects should be

cached in the session. In Traversal X all BaseAssembly objects, their CompositePart objects and

their Document objects are traversed. The text fields of Document objects (that are indexed) are then

updated. The performances of the traversals are shown in charts 1 and 2.

21,656

22,329

340,172

343,283

0 100 200 300 400

T1_MOD

T2A_MOD

seconds

Hibernate

Versant

Chart 1: Traversals 1_MOD and 2 A_MOD

Traversals 1_MOD and 2 A_MOD perform similar tasks and the difference between Hibernate and

Versant can be the result of memory management or the mapping strategy used in the tables.

Interesting is, that Traversal 2 A_MOD did not take much more time to execute, than Traversal

1_MOD even though it updates objects.

1,547

1,484

2,531

2,437

2,844

2,797

2,969

2,828

0 0,5 1 1,5 2 2,5 3 3,5

T6

C T6

TX

C TX

seconds

Hibernate

Versant

Chart 2: More traversals

Mikael Kopteff 10

Rest of the traversals don't have so much difference in the execution times, traversal 6 is twice as fast

in Versant than in Hibernate, but Traversal X, which updates indexed columns, is almost equally fast.

Query 1 finds 10 random AtomicPart objects and queries 2, 3 and 7 find a certain percentage from

the AtomicPart objects. Query 5 and 8 compare properties of objects between two different classes.

The performances of the queries are shown in chart 3.

1,969

0,671

3,656

0,156

21,625

2,516

1,5

2,14

6,047

1,875

42,281

2,438

0 10 20 30 40 50

Q1

Q2

Q3

Q5

Q7

Q8

seconds

Hibernate

Versant

Chart 3: Queries

The results for queries 1 and 8 are easily explained, since both queries target an indexed column in

Oracle (indexes, which Oracle automatically creates). It would be interesting to see how Versant

would perform if these columns were also indexed in Versant, but of course this would slow down the

inserts and updates. In rest of the queries Versant was clearly faster.

The final test cases were structural modifications, which removed approximately 1000 objects from the

database. As seen from chart 4, the performance of the insert operation had a small difference and the

delete operation in Hibernate took surprisingly long. When comparing this result to Traversals 1 and 2,

it seems that Hibernate has problems handling large masses of data.

0,594

1,407

1,579

27,454

0 5 10 15 20 25 30

Insert

Delete

seconds

Hibernate

Versant

Chart 4: Structural modifications

Mikael Kopteff 11

Overall the results seemed to be consistent with previous research (Van Zyl et al. 2006), that object

databases are faster in managing object style data. Most surprising was the long performance times in

Hibernate while deleting objects, but this can be partly explained with the use of indexes, since Oracle

has to maintain the indexes when performing these operations.

4. CONCLUSIONS

From the three areas investigated, features, usage and performance, Versant was surprisingly strong in

all areas. When we consider the features in both Versant and Hibernate, they provide similar, and in

some cases identical, services for users. From the usage section we can conclude, that using Versants

interfaces is at least equally easy than using Hibernates interfaces and in most cases easier, since it

lacks the object-relational mismatch configuration. Using an object database lets the developer focus

on actual design problems and not on the problems of the ORM tool or the conversion of objects to

relational form. When considering the results of the performance comparison, Versant was faster in

most cases, hence it is more efficient to use. When looking at the results as a whole we can conclude

that Versant is more useful for developing applications, since users can use Versant to develop

applications more efficiently and with less workload, than with Hibernate. This also results savings in

costs, which could be one of the key factors for the usage of object database to spread.

5. DISCUSSION

One major issue in the study was the benchmark used. The OO7 is somewhat outdated and the object

database community is in need of a new database benchmark, which not only focuses on object

features, but measures situations, that are common also in modern software. OO7 has still the historical

baggage of CAM/CAD applications and the test cases have a great deal of traversals, and almost no

complex queries. The OO7 benchmark can be easily criticized because of these reasons, and that also

can crumble the trust for object databases.

6. ACKNOWLEDGMENTS

I would like to thank Timo Raitalaakso from Solita and Timo Westkämper from Mysema for their

expertise. I would like also to thank Elina Huhtala from Solita, Jukka Juslin from Haaga-Helia

University of Applied Sciences, Anssi Piiranen and Hannu Leinonen from Floobs for their comments.

I would also like to thank Maria Ball from Versant Corporation for her assistance.

7. REFERENCES

Bauer, C. & King, G. 2007. Java Persistence with Hibernate,

Greenwich, CT: Manning Publications Co.

Carey, M.J. & DeWitt, D.J. & Naughton, J.F. 1994. The OO7 Benchmark,

In proceeding of the 1993ACM SIGMOD international conference on management of Data, New York, USA, 12-21.

Cattell, R.G.G. 1991 Object Data Management: Object-oriented and Extended Relational Database Systems

Addison-Wesley

Cattell, R.G.G & Barry, D.K. [et al.] 2000. The Object Data Standard: ODMG 3.0

San Diego: Morgan Kaufmann Publisher.

Dietrich, S. W. & Urban, S. D. 2005. An Advanced Course in Database Systems: Beyond Relational Databases, New

Jersey: Prentice Hall.

Hibernate 2007. Hibernate 3 reference manual, accessed: 24.10.2007.

http://www.hibernate.org/hib_docs/reference/en/html/

Van Zyl, P. & Derrick, G.K. & Boake, A. 2006. Comparing the Performance of Object Databases and ORM tools, ACM

International Conference Proceeding, Vol. 204, 1-11.

Mikael Kopteff 12

Versant 2006a. Versant Database Fundamentals Manual (Release 7.0.1.3)

Versant 2006b. Versant JVI API documentation (Release 7.0.1.3)

Versant 2006c. Java Versant Usage Manual (Release 7.0.1.3)

Versant 2007a. Versant JDO Interface User's Guide.

Versant 2007b. Versant. accessed: 5.11.2007.

http://www.versant.com/en_US/products/objectdatabase

