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Abstract. In a previous paper [see Numer. Math. 72(1996), 501-522] we developed finite
element error estimates for the least-squares mixed formulation of second order elliptic boundary-
value problems. These estimates were established under appropriate regularity assumptions and
confirmed in supporting numerical experiments. In the present work we extend the analysis to
develop interior estimates on subdomains under weaker global regularity assumptions.
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1. Introduction. There is an increasing research interest in mixed finite element
methods for first order elliptic systems primarily because the flux enters explicitly
in the formulation. Hence the method is capable of generating more accurate flux
approximation and this may be of value in certain applications such as flow through
porous media [2]. Most of the attention has focused on mixed Galerkin finite element
methods [5, 11, 26], see also [12]. However, since this corresponds to a saddle-point
problem these schemes are subject to the consistency requirements of the associated
inf-sup condition [1, 4, 15]. Moreover, this mixed formulation frequently leads to
nonsymmetric systems that are indefinite. More recently, least-squares mixed finite
element schemes have been proposed as a possible alternative [3, 8, 9, 10, 13, 14,
16, 17, 18, 19, 21, 22, 23, 24, 25, 6]. While there are still several open questions
regarding both the theoretical properties and practical viability of this approach, it is
not subject to the previous LBB requirement and also leads to a symmetric positive
definite system.

Based on our previous works [23, 24, 21], optimal error estimates were developed
in [25] for the prototype second order elliptic problem under certain global regularity
assumptions. Several different variants of the formulation were studied in which an
additional curl term and flux boundary constraint were considered in order to obtain
improved estimates.

In general, we do not have the required global smoothness. However, the solution
is usually smooth in subdomains away from the singularities of the data. The present
work continues in the manner of our previous studies to develop interior estimates
on such subdomains. Local error estimates for Galerkin finite element methods were
developed by Nitsche and Schatz [20], Schatz and Wahlbin [27, 28], Wahlbin [29],
and our approach follows the same basic strategy. However, the least-squares mixed
method imposes specific problems which had to be overcome.

To fix ideads, let D be the domain of interest and Do, Dl be compact subdomains
of D such that Do CC Dl CC D. Consider finite element approximations Uh and O'h

to the primary solution U and the flux 0'. Assume that the finite element spaces for
Uh and O'h consist of piecewise polynomials of degree k and r, respectively. When
we use piecewise polynomials of equal degree, i.e. k = r, the analysis follows the
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general approach of Nitsche and Schatz [20], Schatz and Wahlbin [27], Wahl bin [29],
For example, the L2-error estimate is

Ilu - uhllo,oo + 110'- uhllo,oo ::; Ch2 (Ilu - uhlll,Ol + 110'- uhlll,oJ
(1.1) + C (Ilu - uhll-l,Ol + 110'- uhll-l,OJ

+ Chk+l (1Iullk+l,Ol + Ilullk+l,OJ .

Note that, as usual, we have terms of optimal order plus the error in weaker norms
on Dl' The latter terms control the rate of convergence provided the solution is
sufficiently smooth on Dl'

However, when finite element spaces of different polynomial degrees are employed,
significant technical difficulties arise. Such difficuties are not present in previous
works. Then we have to use the Galerkin projection Uk for a specific auxiliary problem,
see further (3.3).

Let k + 1 = r. Then, of course, we have the same estimate for Ilu - uhllo 0 as in
, 0

(1.1) above. When k + 1 = r, k > 1,

Ilu - uhll-l,oo + 110'- uhllo,oo ::; Ch3 (Ilu - uhl11,Ol+ Ilu - uJ;111,Ol)

+ Ch (Ilu - uhll-l,Ol + Ilu - uj;ll-l,OJ
(1.2) + C (Ilu - uhll-2,Ol + 110'- uhll-l,Ol)

+ Ch211u- uhlll 0, 1

+ Chr+l (1Iullr,Ol + Ilullr+l'Ol)
The reader is referred to Section 3 for these and other error estimates.

The structure of the paper is as follows: In section 2 we present the least-squares
mixed formulation of the problem and define the associated spaces. Section 3 contains
the main results. The proofs are given in Section 4,

2. Least-squares formulation. Let D be a bounded domain in ]Rn, n = 2,3,
with boundary r. Consider the second order boundary-value problem

(2.1)

(2.2)
-div (A grad u) - b· grad u + c(x)u =! in D,

u = 0 on r,

where A = (a;J'(x)t '-I' x E n, is a symmetric positive definite matrix of coefficients,
1,)-

b = (bl (x), ... , bn(x)f. Introducing 0' = -A grad u, 0' = (0'1, ... , O'n), we obtain the
following system of first-order differential equations for u and 0'

(2.3)
(2.4)
(2.5)

divu+bTA-lu+cu=! in D,
0' + A grad u = 0 in D,

u = 0 on r.

Since grad u = -A-lu, applying the curl-operator we get

(2.6)
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see Neittaanmiiki and KriZek [16]. Also, from the boundary condition u = 0 on r, it
follows that n !\ grad u = 0 where !\ denotes the exterior product. This implies the
property

(2.7)

Next, define the spaces

(2.8)

(2.9)

with norms

V={VEHl(D):v=O on r},
W = {q E L2 (D) n : di v q E L2 (D)

curl A-lq E L2(D)2n-3 , n!\ A-lq = 0 on r}

Ilvll~,o == Ilvll~,o + Ilgrad ull~,o ,

Ilqll~(div,CUrl)== Ilqll~,o + Ildivqll~,o + IlcurlA-lqll~,o .

We specify a least-squares minimization problem for (2.3), (2.4), and (2.6): find
u E V, 0' E W such that

J (u, 0') = inf J (v, q) ,
vEV,qEW

where

(2.10)

J( v, q) = (curl A -lq, curl A -lq) 0,0

+ (div q + bT A -1q + cv - f, div q + bT A -1q + cv - f)
0,0

+ (q+Agradv,A-1(q+Agradv))0,0'

Taking variations leads to the weak statement: find u E V, 0' E W such that

(2.11)

where

(2.12)

a(u,u;v,q)= (t,divq+bTA-lq+cv) for all vEV,qEW,
0,0

a(u,u;v,q) = (curIA-lu,curlA-lq)o,o

+ (divu + bT A-lu + cu,divq + bT A-lq + cv)
0,0

+ (0' + A grad u, A-l(q + A grad v))o,o .

For any compact subdomain G of D, i.e. Gee D, define

(2.13)

(2.14)

V (G) = {v E HI (G) : v = 0 on BG} ,

W(G) = {q E L2(Gt : divq E L2(G)

curl A-lq E L2(G)2n-3 , q = 0 on BG}.

Let Dl be a fixed compact subdomain of D with sufficiently smooth boundary. If
v E V(Dr), q E W(Dr) then extending v and q by zero outside Dl we conclude that
the solution (u,u) of (2.11) satisfies

(2.15) a(u,u;v,q) = (t,divq+bT A-lq+cv)
0,01
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(2.16)

for all v E V(Dr), q E W(Dr).
Let us now consider the finite element approximation problem. First, introduce a

partition T,. of D into finite elements. Let Pk(~), ~ C ]Rn, be the set of polynomials
of degree k on ~ and let K denote the master element. Suppose that for any element
J{ E T,. there exists a mapping FK : K -t K, FK(K) = K, with components
(FK)j E Ps (K), i = 1, ... , n; i.e., these components are polynomials of degree s. As
usual, we have the correspondence Vh(X) = Vh(X), qh(X) = ih(x) for any x = FK(X),
x E k, and any functions Vh, qh on k.

Let Vh and W h denote the finite element spaces corresponding to V and W,
respectively. The discrete approiximation to problem (2.11) then becomes: find Uh E
Vh, 0' hEW h such that

a(uh,uh;vh,qh) = (t,divqh +bT A-lqh +CVh)
0,0

for all Vh E Vh, qh E Who
Denote

(2,17) D~ = {I{ E T,. K C Dr} ,

that is, D~ consists of all elements K C Dl' Now we specify that the restrictions of
the finite element spaces Vh and W h on D~ consist of piecewise polynomials of degree
k and r, respectively. More specifically,

Then the solution Uh, Uh to (2.16) also satisfies

(2.20)

for all Vh E Vh(Dr), qh E W h(Dr). Using (2.15), (2.20) and the inclusions Vh(Dr) C
V(Dl), W h(Dr) C W(Dr) we derive the following "interior" orthogonality property

Remark. We use Dirichlet boundary conditions for problem (2.1)-(2.2) for clarity of
exposition. Since the definition of Vh (Dl) and W h (Dr) is not affected by the boundary
conditions, the theory presented in the next sections covers the general case. 0

In [25] we specified certain conditions on the coefficients of the boundary-value
problem (see inequalities (2.4), (2.5), (2.7), and (2.10) in [25]). Here we require that
these inequalities are satisfied in the fixed subdomain Dl' Under these conditions we
have the following coercivityestimate:

(2.22) C (1Ivll~,OI+ Ilqll~(diV,CUrl)) ::; a(v, q; v, q)

for all v E V(Dl), q E W(Dr). Moreover, taking into account the Friedrichs inequality

(2.23)
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we obtain a coercivity estimate in HI-norm; i.e.

(2.24)

where the constant C depends only on the coefficients of equation (2.1) and the
Poincare-Friedrichs ineqality constant for Dl'

3. Error Estimates. In this section we present the main results. The proofs
are given in the next section.

First, we state the result for the case of equal polinomial degrees in the finite
element spaces Vh(Dr) and W h(Dr).

THEOREM 3.1. Let k = r and Do CC Dl CC D. The following estimates hold:

IIU- uhlll,oo + 110'- uhlll,oo ::; Ch (Ilu - uhlll,O, + 110'- uhlll,OJ
(3.1) + C (Ilu - uhll-l,Ol + 110'- uhll-l,OJ

+ Chk (1Iullk+l,OI + Ilullk+l,OI) ,
Ilu - uhllo,oo+ 110'- uhllo,oo ::; Ch2 (llu - uhlll,O, + 110'- uhlll,OJ

(3.2) + C (Ilu - uhll-l,O, + 110'- uhll-l,O,)

+ Chk+l (1Iullk+l,O' + Ilullk+l,OI) .0

Note that the third terms on the right-hand sides of (3.1) and (3.2) are of optimal
order. Also, note that hand h2, respectively, appear in the first terms. Hence the
terms which involve negative norms will actually control the rate of convergence. Since
the error is measured in weaker norms, we expect to achieve optimal convergence rate
in Do, especially when some care is taken of the singularities away from Dl'

In order to present the results for the case of differing polynomial degrees, let
uj; E Vh be such that

Note that uj; is similar to a Galerkin finite element projection.
THEOREM 3.2. Let k + 1 = r and Do CC Dl CC D. The following estimates

hold:

\\u - uhlll,oo ::; Ch (Ilu - uhlll,O, + 110'.- uhlll,o,)
(3.4) + C (Ilu - uhll-l,Ol + 110'- uhll_l,o,)

+ Chk (1Iullk+1,ol + Ilullk+l,Ol) ,
Ilu - uhllo,oo ::; Ch2 (Ilu - uhlll,Ol + 110'- uhlll,o,)

(3.5) + C (Ilu - uhll-l,OI + 110'- uhll-l,Ol)

+ Chk+l (1Iullk+l,OI + lIullk+l,OI) ,
110'- uhlll,oo ::; Ch2 (Ilu - uhlll,O, + Ilu - uj;lll,OI)
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+ C (Ilu - uhll-l,Ol + flu - uj;ll_l,o,)

+ C (11110'- uhlll,O, + 110'- Uhll-l.O,)
+ Chr (1Iullr,Ol + Iluflr+l,OJ .

(4.2)

(4.1)

(4,3)
(4.4)
(4.5)

If k + 1 = r, k> 1, then

Ilu - uhll-l,oo + 110'- uhllo,oo ::; Ch3 (Ilu - uhlll,Ol + Ilu - uj;lll,OI)
+ Ch (Ilu - uhll-l,O, + Ilu - uj;ll-l,OJ

(3.7) + C (Ilu - uh1l-2,01+ 110'- uhll-l,OJ
+ Ch211u- uhlll.01
+ Ch"+l (Ilullr,o, + Ilullr+l,o,)' 0

Again, we would like to emphasize that the error in the corresponding norms on
Do is bounded by terms of optimal order plus the error in weaker norms on Dl'

4. Error Analysis. Let <p E HI (D). Denote

curl<p=(-02<p,01<P) when DC]R2,

(
0 -03<P 02<P)

curlrp= 03rp 0 -Olrp when DC]R3.
-02rp 01 rp 0

For q = (ql, ... ,qn) E Hl(D)n, v E Hl(D) the following relations hold:

div (rpq) = grad<p' q + rp div q ,

curl (<pq) = <p curl q + curl <p q ,

grad (<pv) = v grad <p+ <p grad v ,

where

curl q = 01q2 - 02ql when DC]R2,

curl q = (02q3 - 03Q2, 03Ql - 01Q3, 01Q2 - 02Qr) when DC]R3.

Throughout this section we shall use subdomains of Dl. We assume that all
these subdomains have smooth boundaries. Recall that k and r denote the element
polynomial degrees for Uh and 0' h, respectively.

LEMMA 4.1. Let Go Cc Gee Dl. If k = r

Ilu - uhllo G + 110'- uhllo G ::; Ch (Ilu - uhlll G+ 110'- Uh III G)(4.6) , 0 , 0 , ,

+ C (Ilu - uhll-l,G + 110'- uhll-l,G)
If k + 1 = r, k > 1,

Ilu - Uhll-l G + 110'- uhllo G ::; C (h211u- uhlll G+ hllu - uhlll G)(4,7) , 0 , 0 , ,

+ C (Ilu - uhll-2,G + 110'- uhll-l,G)
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- -Proof. For Go CC G cc G let w be a cut-off function such that w E coo (G),
w = Ion Go. Denote c: = U - Uh, e = 0' - Uh, € = WC:,e = we. Consider the auxiliary
problem: find ~ E V(G), 1] E W(G) such that

(4.8) a(~, 11; v, q) = (E, V)o,G + (F, q)o,G

for all v E V(G), q E W(G). The functions E and F will be specified later. Setting
v = € E V(G), q = e E W(G), and using (4.3)-(4.5),

a(~,1];€,e) = (curIA-l1],curlA-l(we)o,G

+ (div1] + bT A -11] + c~, div (we) + bT A-lwe + cWC:)o,G

+ (1] + Agrad~, A-l(we) + grad (wC:))o,G

= (curl A-l1], curlw . (A-le))o G + (curIA-l1],wcurlA-le)o G, ,

+ (div 1]+ bT A-111 + c~, w(div e + bT A-Ie + cC:))o,G

+ (div1] + bTA-l1] + c~, e· gradw)o,G

+ (1] + Agrad~,wA-l(e + A grad c:))o G

+ (1] + Agrad~,c:gradw)o.G '

Similarly, for { = w~, 1] = W1],

a({, 1]; c:, e) = (w curl A -11], curl A -le)o G + (curl w . (A -11]), curl A -le)o G, ,

+ (w(div 1]+ bT A -11] + c~), dive + bT A-1e + cc:)o G

+ (1] 'gradw, dive + bT A -Ie + cC:)o,G

+ (w(1] + A grad~, A -Ie + grad c:))o G

+ (~gradw, e + AgradC:)o,G .

Hence

(4.9)

where

.C(~, 1];c:, e) = (curlA-l1], curlw . (A-le))o,G - ((curlw)A-l1], curl A-le)o,G

+ (div1] + bTA-l1] + c~, e· gradw)o,G

- (1] . grad w, div e)o,G - (1] . gradw, bT A -1 e + cC:)o,G
+ (1] + Agrad~,c:gradw)o G

- (~gradw, e)o,G - (~gradw, A gradC:)o,G

(4.10) = ((curlw)A -lcurl A -11], e)o,G + (A -lcurl ((curl w)A -11]), e)o,G

. + ((diV1]+ bTA-l1]+ cOgradw,e)o,G

+ (grad (1]' gradw), e)o,G - ((1]' gradw)A-lb, e)o,G

- ((1] . gradw)c, C:)o,G + ((1] + Agrad~)gradw, C:)o,G
- (~gradw, e)o,G + (div (~A grad w, C:)o,G
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Integration by parts and the fact that w E CIf (0) were used at the last step.
First, we consider the case k = I'. The following a priori estimate for problem

(4.8) holds:

(4.11) 11~112,G+ 1117112,G::; C (1IEllo,G + 11F110,G) .

Let [/ and 71/ be the standard interpol ants of [ and 71. Taking into account the
orthogonality condition (2.21) and the bound (4.11),

a([,71;c,e) = a([ - [/,71 - 71/;c,e)
(4.12) ::; Ch (11~112,G+ IlrlI12,G) (1Iclll,G + Ilelll,G)

::;Ch (1IEllo,G + 11F110,G) (1Iclll,G + Ilelll,G)

Furthermore, bounding the respective terms in (4.10) and again applying (4.11),

(4.13)
.c(~, 17;c, e) ::; Ch (11~112,G+ 1117112,G)(1Icll-l,G + Ilell-l,G)

::; C (1IEllo,G + 11F110,G) (1Icll-l,G + lIell-l,G)

Recalling wE CIf(O), Go cc 0 and w = 1 on Go,

(4.14)
Ilu - uhllo,Go ::; Ilw(u - uh)llo,G

I(w(u - Uh), E)o GI< sup ,
- E E L2(G) IIEllo,G

First, let E E L2(G) be arbitrary but fixed. Consider problem (4.8) with F = 0,
v = €, q = e. Then

Hence the upper bound for Ilu - uhllo G in (4.15) follows from (4.9), (4.12), (4.13),
and (4.14). '

Similarly,

(4.16)
110'- uhllo,Go ::; Ilw(u - uh)llo,G

I(w(u - Uh), F)o GI< wp ,
- FE L2(Gt 11F1l0,G

Let F E L2 (G)n be arbitrary but fixed and consider problem (4.8) with E = O. Then

(w(u - Uh), F)o G = a(~, 17; €, e)
(4.17) - ' )

::; CllFllo,G (h (1Iclll,G + Ilelll,G) + Ilcll_l,G + Ilell-l,G

which completes the proof of estimate (4.6).
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Next, we consider the case k + 1 = r, k > 1. We have the a priori estimate

(4.18) 11~113,G+ 1117112,G::; C (1IElll,G + 11F110,G) .

where the constant C does not depend on E and F. Then following the same general
approach as before

a([, 1]; c, e) = a([ - [1,1] - 1]1; c, e)

(4.19) ::; C (11~113,G+ 11111kG) (h21Iclll,G + hllelll,G)
::;Ch (1IElll,G + 11F110,G) (h21Iclll,G + hllelll,G)

Also,

(4.20)

We have

(4.21)

.C(~,17;c, e) ::; Ch (11~113,G+ 1117112,G)(1Icll_2,G + IlelLl,G)

::; C (1IElll,G + 11F110,G) (1Icll-2,G + Ilell-l,G)

Ilu - uhll-l,Go ::; Ilw(u - uh)ll_l,G
I(w(u - Uh), E)o GI< sup ,

- E E HJ(G) IIElll,G

Let E E HJ(G) be arbitrary but fixed. Using (4.8) with F = 0, (4.9), (4.19), and
(4.20), we obtain the estimate for Ilu - uhll-l,Go' The estimate for 110'- uhll-l,Go
follows in the same way. This concludes the proof. 0

LEMMA 4.2. Let Go cc Gee Dl and k = r, Then

IIU - uhlll,Go + 110'- uhlll,Go ::; Ch (Ilu - uhlll,G + 110'- uhlll,G)
(4.22) + C (Ilu - uhllo,G + 110'- uhllo,G)

+ Chk (1Iullk+l,G + IIUIIk+l,G)

Proof. Denote Ch = UI - Uh, eh = 0'1 - Uh, where UI and 0'1 are the standard
interpol ants of U and u. Define a projection operator R such that Rw E Vh (G),
Rp E W h(G) for w E V(G), p E W(G), and

(4.23) a(w-Rw,p-Rp;vh,qh)=O forall VhEVh(G),qhEWh(G).

Let €h = WCh, eh = weh, where wE COO(0), w = 1 on Go, Go cc 0 cc G. Then

(4.24)

and
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(4.26)

Taking into account the coercivity estimate (2,24) and using the projection property
(4.23),

Ileh - Rehll~.G + Ileh - Rehlli,G::; Ca(eh - Reh,eh - Reh;eh - R£h,eh - Reh)
= Ca(eh - Reh,eh - Reh;eh - (eh)I,eh - (eh)I)

::; C (Ileh - Rehlll,G + Ileh - Rehlll,G)

x (Ileh - (eh)Illl,G + Ileh - (eh)Illl,G)

For any element KeG,

(4.27)

Similarly,

(4.28)

Ileh - (eh)Illl,K ::; Chkllwchllk+l,K

::; Chkllchllk,K
::; Chllchlll,K .

Ileh - (eh)II11 K ::; Chrllw€hllr+l,K
::; Chrll€hllr,K
< Chll€hlll K .- ,

(4.30)

From (4.26), (4.27), and (4.28),

(4.29) IWh - Rehlll,G + Ileh - Rehlll.G::; Ch (1Ichlll,G + II€hlll,G)

Now we estimate the terms IIRehill G and IIRehill G' We have, ,

C (1IRehll~,G + IIRehlli,G) ::; a(Reh, Reh; Reh, Reh)

= a(eh' eh; Reh, Reh)
= a(ch, €h;wReh ,wReh) + .c(Reh, Reh; Ch, €h)

= a(ch' €h;wR£h - (WR£h)I,wReh - (wReh)I)
+ a(ch' €h; (wReh)I' (wReh)I)
+ .c(Reh, Reh;ch, Ch)

Each of these terms can be bounded as follows: first, following the same reasoning as
in (4.27) and (4.28), we have

(4.31 )

(4.32)

Also,

(4.33)

and, similarly,

(4,34)

IlwReh - (wReh)Illl,G ::; ChllR£hlll,G ,
IlwReh - (wReh)Illl,G::; ChllRehlkG .

II(wR£h)II11,G::; II(wReh)I - wRehlll,G + IlwR£hlll,G
::; C11R£hlll,G ,
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Next, recalling the definition of Ch and eh,

a(u/ - Uh, 0'/ - Uh; (wR£'h)/, (wReh)/)
(4.35) = a(u/ - u, 0'/ - 0'; (WR€h)/, (wReh)/)

::;Chk (1Iullk+l,G + Ilullk+l,G) (1IR€hlll,G + IIRehlll,G)
Finally, for the last term in (4.30),

(4.36) £(R€h, Reh; Ch, eh) ::; C (Ilch Ilo,G+ IlehIlo,G) (1IR€h IIr,G + IIReh IIr,G)
Estimate (4.22) follows from (4.24)-(4.36). 0

Now we are ready to prove estimates (3.1) and (3.2).
Proof of Theorem 3.1. Let Do CC Gl CC G2 CC Dl. Applying (4.22) with Do

and Gl, and (4.6) with Gl and G2, we get (3.1). Applying Lemma 4.1 again, we get
(3.2). 0

The analysis below concerns the case k + 1 = r. Recall that u i. is defined in (3.3).
LEMMA 4.3. Let Go cc Gee Dl and k + 1= r. Then

110'- uhlll,Go ::; C (Ilu - uhllo,G + Ilu - uj;llo,G)
(4.37) + C (110'- uhllo,G + hllu - uhlll,G)

+ Chrllullr+l,G

Proof Denote Ch = uj; - Uh, eh = 0'/ - Uh. Let w E Coo(G), w = 1 on Go,
Go cc G cc G. Denote €h = WCh, eh = weh. Using the projection operator R
defined in (4.23) with w = €h, P = eh, we have

(4.38)

Analogously to (4.26),

(4.39) II€h - R€hlll,G + Ileh - Rehlll,G ::; C (11€h- (€h)/lll,G + Ileh - (eh)/lll,G) ,
where (-) / means the standard interpolant. For any element J( C G,

II€h - (€h)/lll,K ::; Chkllwchllk+l,K

< Chkllchllk K- ,

::; Cllchllo,K
which leads to

(4.40)

Substituting the above estimate and (4.28) into (4.39),

Ileh - Rehlll,G::; C (1Iui; - uhllo,G + hllu/ - uhllr,G)
(4.41) ::; C (Ilu - uj;llo,G + Ilu - uj;llo,G)

+ ChilO' - uhlll,G + Chr+lllullr+l,G .
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(4.42)

Using the coercivity property (2.24),

C (1IR€hll~,G + IIRehll~,G) ::; a(R€h, Reh; R€h, Reh)

= a(€h, eh; R€h, Reh)

= a(ch, eh ;WR€h, wReh) + .c(R€h, Reh; Ch, eh) ,

where (4.10) was used. For the second term on the right-hand side of (4.42) we have

(4.43)

.c(RZh, Reh; Ch,eh) ::; C (Ilch Ilo,G+ Ileh Ilo,G) (IIRZh IIr,G + IIReh IIr,G)
::;C (Ilu - uj;llo,G + Ilu - uhllo,G

+ 110'- uhllo,G + hrllullr+l,G)
X (1IR€hlll,G + IIRehlll,G) .

Define a projection operator S such that Sw E Vh(G) for w E V(G) and [NOTE: it
is enough to assume that w E HI (G) - check!]

(4.44) (A grad (w - Sw), grad Vh)o,G + (c( w - Sw), CVh)O,G= 0

for all Vh E Vh(G). Then

a(Ch, eh;wR€h,wReh)
(4.45) = a(uj; - Uh, 0'1 - Uh;wR€h - S(WR€h),wReh - (WReh)l)

+ a(uj; - Uh, 0'1 - Uh; S(WR€h), (WReh)l) .

I t is easy to see that

(4.46)

Then (4.46), (4.32), and integration by parts lead to

a(uj; - Uh, 0'1 - Uh;wR€h - S(WR€h),wReh - (wReh)l)

::;C (1Iuj; - uhllo,G + 110'1- uhlll,G)
(4.47) X (1IwR€h - S(WRZh)lll,G + IlwReh - (wReh)llll,G)

::;C (Ilu - uhllo,G + Ilu - uj;llo,G + 110'- uhlll,G + hrllullr+l,G)
x h (1IR€hlll,G + IIRehlll,G)

For the second term on the right-hand side of (4.45) we use the orthogonality property
(2.21). Then

a(uj; - Uh, 0'1 - Uh; S(WR€h), (wReh)l)
= a(u~ - u, 0'1 - 0'; S(WREh), (wReh)l)

(4.48)
::;C (Ilu - uj;llo,G + 110'- u11Il,G) (1IS(wR€h )lll,G + II(wReh)llll,G)

::;C (Ilu - uj;llo,G + hrllullr+l,G) (1IR€hlll,G + IIRehI11,G) .
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At the last step we used inequalities similar to (4.33) and (4.34). Combining (4.42),
(4.43), (4.45), (4.47), and (4.48),

IIRehlll,G ::; C (Ilu - uhllo,G + Iitt - 'Uj;llo,G)
+ C (110'- uhllo,G + hllu - uhlll,G)
+ Chrllullr+l,G .

Hence the desired result follows from (4.38), (4.41), and (4.49). 0
The next lemma concerns interior error estimates for the projection uj; defined in

(3.3). The proof is given in the fundamental work of Nitsche and Schatz [20].
LEMMA 4.4. Let Go cc Gee Dl' Then

(4.50)

(4.54)

Now we are ready to prove estimates (3.4)-(3.7),
Proof of Theorem 3.2. Estimates (3.4) and (3.5) follow in the same manner as

(3,1) and (3.2). It remains to prove (3,6) and (3.7).
Let Gl and G2 be subdomains of Dl such that Do CC Gl CC G2 CC Dl.

Applying Lemma 4.3 for Do and Gl,

110'- uhlll,oo ::; C (Ilu - uhllo,G1+ Ilu - uj;llo,G,)
(4.51) + C (110'- uhllo,G1 + hllu - uhlll,G1)

+ Chrllullr+l,G1 .
Next, we use inequality (4.6) from Lemma 4.1 for G1 and G2

Lemma 4.4 for Gl and G2 leads to

(4.53) Ilu - uj;llo,G1 ::; Ch211u - uj;lll,G2 + C1lu - uj;ll-l,G2 + Chrllullr,G2 .
From (4.51), (4.52), and (4.53),

110'- uhlll,oo ::; Ch211u- uhlll,G2 + Ch211u - uj;lll,G2
+ C (Ilu - uhll-l,G2 + Ilu - uhll-l,G2)

+ C (hllu - uhlll,G2 + 110'- uhIl-1,G2)

+ Chr (1Iullr,G2+ Ilullr+l,G2) .

In order to obtain the desired estimate (3.6) we have to apply inequality (3.1) for G2

and D1 to the term Iltt- uhlll G in (4.54).
, 2
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Next, we use inequality (4.7) from Lemma 4.1 for Do and Gl:

In order to bound the terms Ilu- uhlll G and 110' - uhlll G inequalities (3.4) and
I 1 J 1

(3.6) for Gl and Dl are used. This concludes the proof of estimate (3.7). 0
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