DROSOPHILA INFORMATION SERVICE

 56
March 1981

> Material contributed by DROSOPHILA WORKERS
> and arranged by
> P. W. HEDRICK
> with bibliography edited by
> H. H. HERSKOWITZ

Material presented here

should not be used in publications
without the consent of the author.

Prepared at the

DIVISION OF BIOLOGICAL SCIENCES

DROSOPHILA INFORMATION SERVICE

Number 5

March 1981

Prepared at the

For information regarding submission of manuscripts or other contributions to Drosophila Information Service, contact P. W. Hedrick, Editor, Division of Biological Sciences, University of Kansas, Lawrence, Kansas 66045 - USA.

Table of Contents

ON THE ORIGIN OF THE DROSOPHILA CONFERENCES. L. Sandler 56: vi
1981 DROSOPHILA RESEARCH CONFERENCE 56: 1
1980 DROSOPHILA RESEARCH CONFERENCE REPORT 56: 1
ERRATA 56: 3
ANNOUNCEMENTS 56: 4
history of the hawailan drosophila project. h.t. Spieth 56: 6
RESEARCH NOTES
BAND, H.T. Chymomyza amoena - not a pest. 56: 15
BAND, H.T. Ability of Chymomyza amoena preadults to survive $-2^{\circ} \mathrm{C}$ with no preconditioning. 56: 15
BAND, H.T. Duplication of the delay in emergence by Chymomyza amoena larvae after subzero treatment 56: 16
BATTERHAM, P. and G.K. CHAMBERS. The molecular weight of a novel phenol oxidase in D. melanogaster. 56: 18
BECK, A.K., R.R. RACINE and F.E. WURGLER. Primary nondisjunction frequencies in seven chromosome substitution stocks of D. melanogaster. 56: 17
BECKENBACH, A.T. Map position of the esterase-5 locus of D. pseudoobscura: a usable marker for "sex-ratio". 56: 23
BEWLEY, G.C. and S. LUBINSKY. Thermal stability of catalase during development in Drosophila. 56: 19
BIEMONT, C. Parental effect and inbreeding depression in D. melanogaster. 56: 20
BISHOP, C.P. and A.F. SHERALD. Isolation of two third chromosome mutants conferring resistance to α-methy1 dopa. 56: 21
GARTON, Y., J. ROUALT and H. KITANO. Susceptibility of the seven sibling species of subgroup melanogaster infected with a Cynipide parasite. 56: 24
CHADOV, B.F. Effect of aberrant Y-chromosomes on X-chromosome nondisjunction 56: 26
CHADOV, B.F. Nonhomologous $X-2$ pairing in females containing structurally normal X-chromosomes. 56: 27
CHADOV, B.F. and E.V. CHADOVA. Nonhomologous pairing and spontaneous interchanges in D. melanogaster males. 56: 27
CHARTON-STRUNK, U. and W.-E. KALISCH. Intrachromosomal effect of a heterozygous tandem duplication. 56: 28
CHENEVIX TRENCH, G. An endemic inversion in the X-chromosome of D. melanogaster 56: 30
CHERNYSHEV, A.I. and B.A. LEIBOVITCH. The effect of temperature during development in the amount of heterochromatin DNA fractions in D. melanogaster. 56: 30
CURTSINGER, J. Embryonic lethality associated with multiple inversion heterozygosity in D. pseudoobscura. 56: 33
DASMOHAPATRA, P., N.K. TRIPATHY and C.C. DAS. Distribution of different species of Drosophila in Khallikote Ghats, Ganjam District, Orissa, India. 56: 45
ECKSTRAND, I.A. and R.H. RICHARDSON. Comparison of water balance kinetics between laboratory-reared and field-caught D. mimica. 56: 34
ENGELS, W.R. and C.R. PRESTON. Characteristics of a "neutral" strain in the P-M system of hybrid dysgenesis. 56: 35
FALK, R. Somatic mosaics produced by loss of a centric fragment. 56: 37
FOGLEMAN, J.C. and W. HEED. A comparison of the yeast flora in the larval sub- strates of D. nigrospiracula and D. mettleri. 56: 38
FUJIKAWA, K. Pilot experiments involving visible mutations induced in immature Drosophila oocytes by γ-rays at low dose rate. 56: 39
FUTCH, D.G. Crossing over in hybrid D. ananassae-D. pallidosa X-chromosome. 56: 40
GALUS, H.M., I.B. PERELLE and L. EHRMAN. The heritability of egg length in D. paulistorum. 56: 42
GILBERT, D.G. Effects of CO_{2} vs. ether on two mating behavior components of D. melanogaster. 56: 45
GILBERT, D.G. Sperm counts and initial sperm storage in D. melanogaster. 56: 46
GONCHARENKO, G.G. and I.K. ZAKHAROV. A phosphoglucomutase locus in D. virilis. 56: 47
GRACE, D. The Ubx/bx transfection effect in the entire compound chromosome C(2;3)EN. 56: 49
GROMKO, M.H. An attempt to reduce population size through extensive trapping. 56: 49
GUPTA, J.P. A list of drosophilid species so far known from India. 56: 50
GVOSDEV, T.I., T.I. GERASIMOVA, G.L. KOGAN, Ya.M. ROSOVSKY and S.G. SMIRNOVA. A collection of G6PD mutations which suppress the lethal effect of mutations affecting 6-phosphogluconate dehydrogenase in D. melanogaster. 56: 53
HAGELE, K. and W.-E. KALISCH. $3_{H-t h y m i d i n e ~ l a b e l i n g ~ i n t e n s i t y ~ o v e r ~ a ~ p r o m i n e n t ~ b a n d ~}^{\text {l }}$ group prior to and during puffing. 56: 56
HANKINS, G.R. and A.F. SHERALD. Hydropyrimidine hydrase in D. melanogaster. 56: 57
HARTMANN-GOLDSTEIN, I.J. DNA content of Malpighian tubule nuclei from white- variegated larvae. 56: 58
HEED, W.B. Central and marginal populations revisited 56: 60
HILLIKER, A.J. Heterochromatic duplications and the meiotic segregation of compound second autosomes during spermatogenesis in D. melanogaster. 56: 61
HILLIKER, A.J. Meiotic effects of second chromosome heterochromatin deletions. 56: 72
HILLIKER, A.J., A. CHOVNICK and S.H. CLARK. The relative mutabilities of vital genes in D. melanogaster. 56: 64
HILLIKER, A.J., S.H. CLARK, W.M. GELBART and A. CHOVNICK. Cytogenetic analysis of the rosy micro-region, polytene chromosome interval 87D2-4; 87E12-F1, of D. melanogaster. 56: 65
HUNTER, A.S. Drosophila of Pompano Beach, Florida. 56: 74
JAMES, A., M. BOWNES and S. GLENN. The re-establishment of pattern elements in regenerating imaginal wing discs of D. melanogaster. 56: 75
JENKINS, J.B. Paternal age and mutagen sensitivity. 56: 77
KAIDANOV, L.Z. and E. HUGUTO. Studies on genetical possibilities of inbred stocks in Drosophila. 56: 78
KAPLIN, V. and L. KOROCHKIN. Histochemistry of the tissue distribution of some enzymes during the development in D. melanogaster 56: 78
KAUROV, B.A. To the definition of the notion "field of gene activity". 56: 80
KAUROV, B.A. Mutation aristapedia causes the transformation of distal segments of antennae to five-segment tarsi in D. melanogaster. 56: 81
KIDWELL, M.G. The use of pupation height as a method for distinguishing between the sibling species D. melanogaster and D. simulans 56: 81
LIEBRICH, W. In vitro differentiation of single cysts of spermatocytes of D. hydei. 56: 82
LOHS-SCHARDIN, M. A new allele of Ubx causing a strong phenotype. 56: 84
LOUKAS, M. A new esterase locus in D. melanogaster. 56: 85
LOUKAS, M. Breeding sites of D. subobscura. 56: 86
LUJAN, D. A comparison of TSP's of Notchts1, shibiretsl and the double mutant 56: 86
LYTTLE, T.W. Segregation in XYY males and XXY females of D. melanogaster. 56: 87
MALOGOLOWKIN-COHEN, Ch. and M. LIVNI. A preliminary study on polymorphism and heterozygosity found in D. subobscura in Israel. 56: 90
MATHER, W.B. and G. BALWIN. Inversions in three species of Drosophila from the River Kwai, Thailand. 56: 91
MATHER, W.B. and G. BALWIN. Inversions in the nasuta complex from the River Kwai, Thailand. 56: 92
McINNIS, D.O. Drosophila collections from Raleigh, North Carolina. 56: 94
McINNIS, D.O. A seasnnal spread of D. melanogaster and D. simulans in Raleigh, North Carolina. 56: 96
MIGLANI, G.S. and F.R. AMPY. A possible cline between the body weight and altitude in Mexican populations of D. melanogaster. 56: 96
MIGLANI, G.S. and F.R. AMPY. ADH denaturation depends on native ADH activity levels in D. melanogaster. 56: 97
MOSS, L.J. and E.A. CARLSON. EMS-induced yellow mosaics in D. melanogaster. 56: 97
MUKHINA, L.I., V.A. KULITCHKOV and I.F. ZHIMULEV. Distribution of chromosome rearrangement breaks along the polytene chromosomes of D. melanogaster. 56: 98
NIKOSHKOV, A.B. and V.T. KAKPAKOV. Dosage compensation of sex-linked genes in established cell lines of D. melanogaster. 56:103OSIPOVA, N., L. KOROCHKIN, M. GOLUBOVSKY, T. KHLEBODAROVA and V. KULUTCHKOV. Bio-chemical-genetical investigation of the unstable locus lozenge in D. melanogaster. 56:104
PLATT, S.A. Discrimination learning in individual D. melanogaster. 56:105
POLIVANOV, S. Possibly non-Mendelian factor for stimulation of egg deposition. 56:106
POT, W. Courtship and mating success in alcohol dehydrogenase genotypes of D. melanogaster. 56:107
RAHMAN, R. and D.L. LINDSLEY. Ysu(f)-, a spontaneous derivative of Ymal+. 56:108
RAMAMOORTHY, C., N.R. PADAKI, S. NIRMALA SAJJAN and E. KRISHNAMACHARI. Mutagenic activity of quinine in D. melanogaster. 56:109
RAPPORT, E. and M.K. YANG. Effects of food deprivation on larval amino acid pools. 56:109
RICHMOND, R.C. and M.E. CLAERBOUT. Ratios in crosses segregating for Esterase 60 (Null) and Esterase 6 S alleles. 56:110
RUIZ, A. and A. FONTDEVILA. Two new chromosome arrangements in D. buzzatii. 56:111
SAMPSELL, B. Survival differences between Drosophila with different Adh thermo- stability variants. $56: 114$
SAPUNOV, V.B. The effect of juvenile hormone analogs on mutation frequency in D. melanogaster. 56:116
SAPUNOV, V.B. The effect of juvenile hormone analogs on reproductive behavior of D. melanogaster 56:116
SEMJONOV, E.P. and A.F. SMIRNOV. Somatic synapsis of D. melanogaster chromosomes. 56:117
SENE, F.M., M.A.Q.R. PEREIRA, C.R. VILELA and N.M.V. BIZZO. Influence of different ways to set baits for collection of Drosophila flies in three natural environ- ments 56:118
SHADRAVAN, F. and J. McDONALD. The effect of environmental 2-propanol on the ability of flies to survive in alcohol environments. 56:121
SHITAMOTO, T. and H. IKEDA. Differences in the diurnal rhythmicity of mating activity in D. melanogaster. 56:122
SIEGEL, J.G. Cytological identification of autosomal breakpoints in several T(Y;2) stocks. 56:123
SIMMS, R.W., N.D. BEARSS and J. TONZETICH. Transfer RNA resolution in a Minute mutant of D. melanogaster. 56:124
SINGH, B.K. and Y.N. DWIVEDI. Report on spontaneous occurrence of mosaics in D. rajasekari Reddy \& Krishnamurthy. 56:126
SMARAGDOV, M.G., A.F. SMIRNOV, A.V. DUKELSKAYA and A.V. FELCHER. Condensation and interchromosomal heterogeneity of D. melanogaster heterochromatin. 56:127
SPERLICH, D. Lack of male recombination in D. subobscura. 56:128
STAMATIS, N.D. Male recombination elements in a southern Greek D. melanogaster population. 56:129
STARK, W.S., K.G. HU and R.B. SRYGLEY. Comparisons of phototaxis properties in differing mazes. 56:131
STARK, W.S., R.B. SRYGLEY and R.M. GREENBERG. Analysis of a compound eye mosaic of outer rhabdomeres absent marked with cardinal. 56:132
STEINER, Th. and F.E. WURGLER. Oocyte stages in newly hatched females of some mus and mei mutants. 56:133
STEVENS, P.G. and E.A. CARLSON. Chromosome mosaics induced in ring-X by ethyl methane sulfonate and by X-rays in D. melanogaster. 56:135
TAKAMURA, T., H. HAYASHI, A. YOKOYAMA and I. SHIMADA. D. melanogaster can taste amino acids. 56:136
TEMIN, R.G. and R. KREBER. A look at SD (Segregation Distorter) in the wild popu- lation in Madison, Wisconsin, more than 20 years after its initial discovery there. 56:137
TOBARI, I. and M. MURATA. Fertility load and frequency of lethal second chromosomes in Drosophila populations with radiation histories. 56:139
TRAUT, H. An approximate X^{2} test as applied to mutation experiments with D. melanogaster. 56:140
TRIANTAPHYLLIDIS, C.D. The esterase-A of D. auraria 56:141
TRIANTAPHYLLIDIS, C.D. Genetic localization of Est-C, Acph and w genes of D. auraria. 56:142
TRIBE, J. and I.R. BOCK. Drosophila collections in southeastern Australia 56:143
TRIPATHY, N.K., D.P. DASMOHAPATRA and C.C. DAS. Chromosomal polymorphism in D. ananassae. 56:144
TRIPPA, G., A. LOVERRE and M. LEPORE. Segregation distortion of second chromosomes by a wild third chromosome in D. melanogaster: modifier or SD gene? 56:144
TSAKAS, S.C. Chromosomal breaks and alteration in staining observed in vitro after ultrasonication of salivary glands of D. subobscura species. 56:145
TURNER, M.E. A laboratory overwintering experiment with D. montana and D. pseudo- obscura. 56:147
VALENTE, V.L.S., C.C.R. SAAVEDRA, A.M. de ARAUJO and N.B. MORALES. Observations on the attraction of Drosophila species for different baits and chromosomal polymorphism in D. willistoni 56:147
VAN DELDEN, W. and A. KAMPING. Selection against an Adh null allele. 56:149
VAN DIJK, H. The relationship between ADH activity and body weight in D. melano- gaster. 56:150
VASUDEV, V. and N.B. KRISHNAMURTHY. Effect of Dithane M-45 on rate of development and viability in D. melanogaster. 56:151
VASUDEV, V. and N.B. KRISHNAMURTHY. Effect of aspirin on D. melanogaster. II. Non-induction of sex-linked recessive lethals. 56:151
VASUDEV, V. and N.B. KRISHNAMURTHY. Preliminary studies on the effects of cadmium chloride on D. melanogaster. 56:153
VIJAYAN, V.A. and N.B. KRISHNAMURTHY. Reduction of oviposition by a polycyclic hydrocarbon in D. melanogaster. 56:155
VILLA, T.G. and W.T. STARMER. Some carbohydrases present in axenic larvae of D. mojavensis. 56:156
WHEELER, M.R. Are the new species described in DIS validly published? 56:157
WIJSMAN, E.M. The effect of ether on mating behavior in D. simulans y w. 56:158
WILLIAMS, J.M. Tumorigenesis in D. melanogaster bearing the temperature-sensitive mutation shibiretsl. 56:158
WU, C.K. and P. SMITH. Calcium cyclamate induced lethal effect and genetic damage in spermatocytes of Drosophila. 56:161
XAMENA, N., R. MARCOS and A. CREUS. Effect of mating system on disruptive selection. 56:162
YOO, B.H., J.J. MOTH and J.S.F. BARKER. Abdominal bristle numbers and sex-dimorphism ratios in different Drosophila species. 56:163
YOUNG, D.J., D.C. VACEK and W.B. HEED. The facultatively anaerobic bacteria as a source of alcohols in three breeding substrates of cactophilic Drosophila. 56:165
ZACHAROPOULOU, A., G. YANNOPOULOS and N. STAMATIS. Cytological localization in the "cn" (cinnabar) locus in D. melanogaster. 56:166
ZOUROS, E. An autosome-Y chromosome combination that causes sterility in D. mojavensis x D. arizonensis hybrids. 56:167
DROSOPHILA RAMBLINGS. W. Prop. 56:168
TECHNICAL NOTES
ALLEMAND, R., J. BISTON and P.M. MALLET. An apparatus for recording free-running oviposition rhythm in Drosophila. 56:169
BAND, H.T. A method for growing Chymomyza amoena in the laboratory. 56:171
BAND, H.T. A medium for growing Chymomyza amoena in the laboratory. 56:171
BAUMANN, J.L. and W.L. BISCHOFF. A rapid reliable assay for glucose and fructose specific hexokinases in crude extracts of D. melanogaster. 56:172
BOULETREAU, M. and P. FOUILLET. An accurate and reliable olfactometer. 56:172
BOULETREAU, M. and 0. TERRIER. A device for getting rid of excess adult flies. 56:174
CABRE, O. and S. CRESPI. A simple method for electron-microscope visualization of D. melanogaster embryo polysomes. 56:174
DONE, J.H. and D.B. McGREGOR. A simple device for Drosophila containment during exposure to gases or vapors. 56:175
GRAF, U. An easy way to test for ring configuration of ring-X chromosomes in D. melanogaster. 56:176
GUPTA, A.P. A new technique for collecting Drosophila eggs. 56:177
KEKIC, V. Maze for the study of phototaxic behavior in Drosophila. 56:178
McINNIS, D.O. Estimation of the attractive radius for a Drosophila collection trap. 56:179
PLATT, S.A. and M. HOLLIDAY. A versatile apparatus for the demonstration of and selective breeding for discrimination learning in individual D. melanogaster. 56:180
SEECOF, R.L. An apparatus for rinsing Drosophila eggs. 56:181
STOCK LISTS - D. MELANOGASTER 56:182
STOCK LISTS - OTHER SPECIES 56:184
NEW MUTANTS - D. MELANOGASTER, Report of:
M. Ashburner et al. 56:186
E. Gateff 56:191
M.A. Kotarski et al. 56:191
S. Kulkarni and P. Babu 56:192
D.L. Woods and D.T. Kuhn 56:192
LINKAGE DATA. Report of C.A. Strommen and R. Falk. 56:196
BIBLIOGRAPHY ON DROSOPHILA. PART SEVEN. I.H. Herskowitz. 56:197
COAUTHOR INDEX. 56:211
TITLE INDEX 56:221
PART II. GEOGRAPHICAL INDEX. 56:256
PART III. SYSTEMATIC INDEX 56:256
ALPHABETICAL DIRECTORY 56:259
GEOGRAPHICAL DIRECTORY 56:271
Artefact Nerds Score Advantage
Scatiopigus malesit turns out
have got a better shot
at mating with caliopigus females.Darwin was confused.
It's not the fittest pig
but the ugliest.
Even the Drosophila women
flock and mob
nerd male heterosexual fruit flies.

... a noble storie
 And worthy for to drawen to memorie

Larry Sandler
Contemporary Drosophila geneticists feel that Drosophila studies occupy a position close to the cutting edge of modern biology, a conviction which must be evident to participants of recent Annual Drosophila Conferences. This feeling can be objectively validated. A comparison of the material presented one year ago in Bloomington with that reported this year in Salt Lake City shows very rapid progress in many aspects of the genetic biology of Drosophila.

A second striking feature of Drosophila studies that has been amply illustrated in recent Drosophila Conferences is the exploitation for experimental purposes of multiple biological aspects of the fly. From the classical role of Drosophila as a mere vehicle for its chromosomes and its traditional use as a manipulable object in population genetics, Drosophila studies now include biochemical, developmental, neurobiological, and behavioral attacks. The depth and sophistication of this exploitation of the biology of Drosophila is shown by the range of material now considered in the specialized concurrent workshops held during Drosophila Conferences of recent years.

This sense of vitality and centrality that has animated the Conferences lately, as well as the contemporary use of Drosophila in all of its important biological aspects, were not prominent features of the earliest Drosophila Conferences. Indeed, the Drosophila Conferences mirror precisely the renaissance in, and the evolution of, Drosophila studies themselves. Today the meetings are characterized as useful, perhaps even as important. But they started as small get-togethers that could have been called "genetic analysis for fun and recreation". The very first Drosophila Conference, which took place in Madison, Wisconsin in the fall of 1958, was not a formal conference, nor did anyone there at that time imagine that it would give rise to a tradition which has now continued for over twenty years.

In 1958 Dan Lindsley, who was then at the Oak Ridge National Laboratories, flew to Chicago and joined Bill Baker, who was at the University of Chicago, and together they drove to the University of Wisconsin in Madison, where I was a postdoctoral fellow in the laboratory of Jim Crow. Ted Pittenger, a Neurospora geneticist now in Manhattan, Kansas, was then at Marquette. Because Ted had been one of the geneticists at Oak Ridge along with Bill and Dan (and, for a time, me), he joined the two of them in Milwaukee and also came to Madison. Thus, the first "Drosophila Conference", which lasted for two days, involved both Drosophila and Neurospora genetics. ${ }^{1}$ The meeting, however, consisted primarily of Baker, Crow, Lindsley, Pittenger, and Sandler each speaking--more or less endlessly--about his current research. Of course, other members of Crow's laboratory, his students and postdoctoral fellows, also attended and participated in the sessions. Most notably, from my point of view, was that Yuichiro Hiraizumi, with whom I was just beginning to collaborate, was present. Also there--this list is from my memory and therefore almost surely incomplete--were Rayla Greenberg (now Temin), Elaine Johansen (now Mange), and Tom Gregg.

[^0]${ }^{*}$ The perspectives provided here are, of course, mine. However, I have included--mostly without specific attribution--current recollections of Bill Baker, Yuichiro Hiraizumi, Dan Lindsley, and Ted Pittenger. To them, my thanks, in part for their help here, but mostly for making me a participant in the events themselves. Those of you who have read any of my scientific works will surely wonder at the quality of the prose in this note. I haven't learned to write, merely to dictate to Ms. Barbara Hlavin, whose typewriter turns gibberish into English. You may ask, if Barbara Hlavin is responsible for the writing, and others have supplied the memories, why am I the author of this note? You may indeed ask.

It was difficult in those days to find people both interested in and able to discuss the intricacies of formal genetic analysis. The whole group of us did nothing else for two whole days, and it was, to say the least, enormous fun. While the meeting could scarcely be characterized as important, there was enthusiastic agreement that we should do the same thing again the following year, and Bill Baker suggested Chicago as the site of that meeting. In 1959, therefore, Bill sent notices to Dan, Jim and me (Neurospora and corn being summarily dismissed as temporary aberrations), to attend the "Little Men's Chowder and Marching Society". Dan, however, both to explain his absence from Oak Ridge and in order to get reimbursed for the trip, adorned the event with the title of "Midwestern Drosophila Conference". ${ }^{2}$ Attendance at this "Second Annual Drosophila Conference" at Chicago ballooned to about 15 or 20 (according to my best recollection), as there were rather a lot of Drosophilists at Chicago and some other workers had heard casually about the projected meeting during the year. This meeting followed the same format as the one at Madison, with individuals speaking whenever they felt they had something relevant to say.

The Chicago meeting was quite as much fun as the earlier one, but it created a considerable furor as news of its existence spread through the Drosophila community, both by word of mouth and through the medium of the bulletin put out by the Oak Ridge National Laboratories. The Christmas edition of that bulletin was received by most laboratories in the country, and contained a notice that Dan Lindsley had attended the Midwest Drosophila Conference. Ed Novitski (learning of the meeting from his new position in Eugene, Oregon) asserted that since Hawaii had become a state, Oregon was in the midwest, and he should therefore have been invited. H.J. Muller was angry that he had not been informed about it, when, after all, he worked in Bloomington, Indiana which was archetypically midwestern, while Dan Lindsley worked in Tennessee, which was the south.

In general, there developed a strong feeling about the impropriety of "exclusive congresses", like those of 1958 and 1959 (although, of course, neither had been congresses in any real sense), so that in 1960 the Third Annual Drosophila Conference, which was held in Bloomington, Indiana, had an enrollment open to anyone who knew of it and wished to come. It was, however, another year before the idea of Drosophila meetings as annual events, with all Drosophila workers formally invited, originated. ${ }^{3}$

[^1]"Three years ago Bill Baker and I got together with Larry Sandler and Jim Crow in Madison and spent two days informally telling each other of our recent experimental results. This meeting was so successful that we decided to repeat it the following year in Chicago. In Chicago we were joined by George Brosseau and Stan Zimmering among others. Last year the meeting was held in Bloomington and the attendance was again higher than the year before.
In previous years we have had no formal program and no official invitations; people simply agreed verbally to meet, and we took turns presenting material. I think that this year the group will be quite large, but we plan to follow much the same procedure as in previous discussions. In view of the annual increase in attendance, the time has come to make a decision whether we wish to formalize an annual Drosophila genetics meeting open to all investigators in the field or whether it would be preferable to disband into the originally conceived, small, regional, bull sessions."

On the copy sent to Bill Baker, Dan appends (by hand): "I decided this year we have to invite everyone--as they all know about it and want to come--or be chicken--I chose the former."

At that conference, as well as at the next several following, the format was still primarily free-form. The entire group met in a single room, and there was no fixed program. People spoke as the spirit moved them, though, as enrollment grew, it became necessary to sign up to speak just before a session was held. However, by 1962 at the latest, enrollment had grown to a point where concurrent sessions had to be scheduled, although free-form plenary sessions were still the norm. At the 1965 Seattle meeting, for example, there was only one afternoon with concurrent sessions (cytogenetics, evolutionary genetics, and physiological genetics).

Following is a list of the Conferences from 1958 through 1980, as reconstructed in 1979 in Bloomington, Indiana and put together and spot-checked by Adelaide Carpenter. There are included, parenthetically, some highlights of early meetings. Also note that the first five meetings, from 1958 through 1962, were held in the fall; afterwards they were held in the spring, and one year (1963) was skipped in the change-over.

1.	1958	Madison I
2.	1959	Chicago I
3.	1960	Bloomington I
4	1961	Oak Ridge
5.	1962	St. Louis
6.	1964	Madison II [There was a dinner honoring A. H. Sturtevant as he approached his 75th birthday]
7.	1965	Seattle [There was a first general showing of several films depicting courtship and mating in Drosophila, including that classic example of erotica, "I Am Curious Yellow Forked"]
8.	1966	Chicago II
9.	1967	Texas [A eulogy to H. J. Muller, who had recently died, was delivered by C. P. Oliver]
10.	1968	Yale
11.	1969	Iowa
12.	1970	Pasadena
13.	1971	Ithaca College
14.	1972	North Carolina State (Raleigh)
15.	1973	DeKalb
16.	1974	Banff
17.	1975	Louisiana State University
18.	1976	Tempe
19.	1977	La Jolla
	1978	No meeting--no coal
20.	1979	Bloomington II
21.	1980	Salt Lake City

The next (by true count, the 22nd) conference will be held in Chicago at the Center for Continuing Education on the University of Chicago campus on the weekend of April 24-26, 1981. Save this date and enter it onto your 1981 desk calendar! The first notices will be mailed in midautumn. If you have not previously attended or received mailings of earlier conferences, and wish to hear about this one, please contact: Janice Spofford, Dept. of Biology, University of Chicago, 1103 East 57th Street, Chicago IL 60637.

1980 DROSOPHILA RESEARCH CONFERENCE REPORT

Following are abstracts of a few of the talks given at the Drosophila Research Conference in Snowbird, Utah, in May 1980.

Sex and the Single Cell
Bruce Baker
(Studies in collaboration with J. Belote and K. Ridge, research supported by USPHS grant GM23345)

Sex determination in D. melanogaster is under the control of the X chromosome: autosome ratio and at least five major regulatory genes: transformer (tra), transformer-2 (tra-2), doublesex (dsx), intersex (ix), and Female lethal (Fl). Since sex determination affects the developmental fate of numerous primordia, information about the genetic events involved in the regulation of sex should help elucidate the mechanisms by which eukaryotes effect the expression of alternative developmental pathways.

Our studies on mutations that affect sex determination have focused on the tra, tra-2, dsx and ix loci. A comparison of the phenotypes produced in mutant/deficiency and homozygous mutant bearing flies shows that the dsx, tra-2 and tra mutants result in a loss of wild type function and probably represent null alleles at these genes. By examining the sexual phenotype of clones of homozygous mutant cells produced by mitotic recombination in flies heterozygous for a given recessive sex-determination mutant it was shown that the tra, tra-2, and dsx loci determine sex in a cell-autonomous manner. These experiments also allowed us to determine when the tra-2+, tra ${ }^{+}$and dsx ${ }^{+}$loci had been transcribed sufficiently to support normal sexual development. The wild-type alleles of all three loci are needed into the early pupal period for normal sex determination in the cells that produce the sexually dimorphic (in pigmentation) cuticle of the 5 th and 6 th abdominal tergites. tra ${ }^{+}$and tra- 2^{+}cease being needed shortly before the termination of cell division in the abdomen. dsx ${ }^{+}$is required at least until the end of division. In contrast, in the foreleg the wild-type alleles of trat and tra2^{+}have functioned sufficiently for normal sexual differentiation to occur by about $24-48 \mathrm{hrs}$ prepupariation, but dsx ${ }^{+}$is required in the foreleg at least until pupariation.

The time (s) at which the product of the tra-2 locus was needed for normal sexual development was investigated by means of temperature shift experiments with ts alleles at this locus. These experiments demonstrated that tra-2+ function is required at several different times within one tissue for normal sexual differentiation to ensue. For example, in the sex comb region of the foreleg that is sexually dimorphic in bristle number and morphology the product of the tra-2 locus is required at different times for the determination of bristle number and bristle morphology. Multiple times of action were also strikingly evident in the genital disc.

All possible homozygous double mutant combinations of ix, tra, tra-2, and dsx have been constructed and reveal a clear pattern of epistasis: dsx $>$ tra, tra-2 $>$ ix. It is concluded that these genes function in a single pathway that determines sex. The phenotypes and interactions of these sex determination mutants suggests that dsx+ is a bifunctional locus that in males acts to repress female sexual differentiation whereas in females it functions to repress male sexual differentiation. The tra ${ }^{+}$and tra-2 ${ }^{+}$are suggested to act in concert in chromosomally female individuals to let dsx+ be expressed in the female mode. The ix ${ }^{+}$gene functions subsequent to dsx+ in females.

Finally whether there is a time during development by which the $\mathrm{X}:$ autosome ratio has acted to irreversibly determine sex was investigated by genetically removing an X chromosome from abdominal cells of 2 X 2 A females at various times during development. The removal of X chromosomes was brought about by (1) induced mitotic recombination in females heterozygous for $a \mathrm{~T}(\mathrm{X}: A)$ and (2) temperature pulses to mutants that affect mitotic chromosome stability.

When an X was removed furing the early embryonic period, a $1 \times 2 \mathrm{~A}$ ce11 was produced that developed into a healthy clone of phenotypically male cells in the adult. Removal of an X during the larval/pupal period yielded very small clones that appeared to be phenotypically female. The small size of these clones suggests to us that the hypothesis that the determination by the X / A ratio of X chromosome transcription rate has occurred in these cells prior to the time an X was removed and that once set the X chromosome's transcription rate is not reversible. Thus although these cells have a normal male chromosome complement (1X2A) their single X is being transcribed at the rate of a single X in a female which is half that of the single X in a normal male.

These observations suggest that early in development the X/A ratios function in an irreversible manner in both dosage compensation and sex determination. We view the tra ${ }^{+}$, tra- 2^{+}, dsx ${ }^{+}$and ix ${ }^{+}$loci as being the means by which the decision of the X / A ratio with respect to sex is effected. Implications of these observations for the understanding of other homeotic loci were discussed.

Of Flies and Men: Human Blood and Enzyme Variation in Drosophila
Jerry Coyne
(Study in collaboration with J.A.M. Ramshaw and R.C. Lewontin, supported by Public Health Service Grant GM- 24849 to R.C. Lewontin)

Standard methods of electrophoresis in Drosophila fail to detect a large number of genetic variants at certain allozyme loci. These variants can only be seen with the application of sequential electrophoretic methods, including varied pH 's and gel concentrations. The patterns of gene frequencies, polymorphism, and heterozygosity emerging from these new studies may substantially alter some of our conclusions about the genetics of natural populations.

In an attempt to calibrate the power of such methods, we performed sequential electrophoretic analysis of many human hemoglobin variants with known amino acid sequences.

Our study was divided into three parts. The first experiment was a sequential electrophoretic analysis of 20 hemoglobin variants which fell into only three charge classes. The standard electrophoretic condition used in many previous surveys resolved eight of these variants; and sequential analysis resolved 17, yielding a detectability of 85%.

The second experiment compared groups of hemoglobins, each of which consisted of identical amino acid substitutions occurring in different positions in the molecule. Sequential electrophoresis was able to distinguish 90% of these chemically identical substitutions.

Finally, we examined 5 pairs of substitutions, each of which was a charge-equivalent pair of substitutions occurring at the same position in the molecule. Four of these 5 pairs were distinguishable by our methods.

Using computer-generated pictures of the hemoglobin molecule, we examined the relationship of the position of specific substitutions with the electrophoretic mobility of the resulting variants. We concluded that, in general, substitutions occurring in the interior of the molecule do not express as much of their charge as those on the surface and, in addition, substitutions which appear spatially equivalent can nevertheless show different electrophoretic mobilities. The complexity of interactions between residues seems to be such that almost any genetic variant can be distinguished from any other by electrophoresis.

If hemoglobin is a valid model, then, standard and sequential electrophoresis are obviously capable of detecting much more than simple classes of variants with identical nominal charges. If these conclusions are confirmed in calibration studies using other molecules, we may conclude that sequential electrophoresis has detected a large fraction of the allozyme variation present in natural populations of Drosophila.

Regulatory Genes in Hawaiian Drosophila

W. J. Dickinson

In my laboratory, and several others, natural genetic variants that alter the tissue and stage specific pattern of expression of selected enzymes have been sought and investigated in hopes that they would provide insight into the mechanisms of gene regulation in eukaryotes. During the last several years, there has been increasing interest in the possibility that
changes in regulatory genes (affecting the time, place and quantity of production of proteins) may be more important in adaptive evolution than changes in structural genes (affecting the functional properties of proteins). The intra-specific regulatory variants that we and others have been studying could be the raw material on which selection would act to produce novel patterns of regulation. It therefore seemed relevant to ask how much divergence in patterns of enzyme expression has taken place during the evolution of a phylogenetically well studied group and, if possible, to investigate the nature of the genetic changes that lead to new patterns of regulation.

The tissue and stage specificity of expression of five enzymes was examined by electrophoretic analysis of relative enzyme levels in extracts of 13 larval and adult tissues in 27 species of Hawaiian picture-winged Drosophila. The developmentally regulated patterns of enzyme expression thus characterized were compared to a modal standard phenotype. About 30% of the pattern features analyzed differed significantly from the standard in one or more species. Many of these regulatory differences are essentially qualitative, with tissue specific differences in enzyme activity in excess of 100 fold for some species pairs. The adaptive significance of these pattern differences is unknown, but the results provide strong direct evidence for rapid evolution of new patterns of gene regulation in this group of organisms.

Several cases where closely related, hybridizable species pairs differ dramatically have been selected for genetic and molecular analysis. Both cis- and trans-acting elements have been recognized, and both can be involed in producing the pattern differences affecting a single enzyme in one pair of species. Some of the cis-acting elements appear to be complex, with different tissues affected to different extents or even in opposite directions. Where investigated, the cis-acting elements affect the number of enzyme molecules present, not the catalytic properties. As expected, they are linked to the corresponding structural gene.

A hybridization probe derived from a cloned D. melanogaster ADH gene has been used to investigate the molecular basis of a qualitative difference in the tissue distribution of ADH in D. grimshawi and D. orthofascia. The former species had ADH in both larval fat body and midgut but the latter has detectable activity only in fat body. Total RNA was prepared from both tissues of each species, electrophoresed in methyl mercuric hydroxide - agarose gels and blotted to "Northern" paper. Hybridization to the melanogaster probe revealed a major RNA species indistinguishable in molecular weight from the ADH mRNA of melanogaster. This RNA was present in both tissues of grimshawi and in orthofascia fat body but was undetectable in orthofascia gut, corresponding to the absence of $A D H$ from that tissue. Nor was there any trace of homologous RNA of a different size. Thus, this cis-acting element controlling tissue specificity of $A D H$ expression appears to control mRNA synthesis, apparently at or very close to the transcriptional level. Investigations into the evolution of new patterns of gene expression may prove to be a powerful way to gain insight into the normal operation of regulatory mechanisms.

References: Dickinson, W.J. and H.L. Carson, Proc. Natl. Acad. Sci. USA 76:4559-4562; Dickinson, W.J., Science 207:995-997; \qquad , Devel. Gen. (in press); \qquad , J. Mol. Evol. (in press).

ERRATA
DIS 55: January, 1980

Bibliography Item No. 4266: Volume 19, not Volume 119. [p. 239]
Corrections to M. Ashburner's Report:
Df(3L)stSS103: The breakpoints of this deficiency are 73A3.4;74A6, and not as stated. [p. 196].
DTS-5 (and not DTS-3, as stated): see this DIS. [p. 196]
$\mathrm{Su}(\mathrm{H})$: Within bands 35 B 8.9 to 35 Cl and not as stated. [p. 196]
T(Y;2)D6: The Y;2 breakpoint is at 25D6.7 and not 25D2.3 as stated. [p. 196]
cu: Within bands 86D1.2;86D4, and not as stated. [p. 196]

Sixth European Drosophila Research Conference: The Sixth European Drosophila Research Conference has been organized by the Association of Yugoslav Genetic Societies in Kupari - Dubrovnik, between $16-20$ th September 1979. The Conference was attended by 215 participants from 22 countries, including USSR (12), USA (8), Egypt (2), Israel (2), Canada (1) and Japan (1). A total of 140 reports were submitted at three parallel scientific sessions, (1) biochemical and cytogenetics, (2) developmental genetics, and (3) population and evolutionary genetics. Fourteen of these papers were presented as the plenary reports, such as: "The role of satellite DNA sequences in speciation" (F.J. Ayala), "Genetic instability in D. melanogaster" (B. Rasmussen), "Gene versus gene regulation polymorphisms" (J.R. Powell), "Which part may Drosophila play in solving the problem of the genetics of aging?" (F.A. Lints), "How many genes are involved in sexual isolation" (C. Petit), "Inversion, allozyme and lethal frequencies in natural populations of D. subobscura" (D. Sperlich), and others. A few round-table discussions were held during the Conference, among them on the genetics of sex determination (pres. R. NBthiger), and on the problems of Drosophila taxonomy and evolution (pres. G. Bathli and S. Lakovaara). The general meetings involved information about the Drosophila stock center in Umea, discussions about the cooperation on common research projects, a consideration of possibility of organizing the international Drosophila research conference which will involve also scientists from other continents. The final decision about such proposals should be given at the Seventh European Drosophila Research Conference in Finland, which will be organized by Prof. S. Lakovaara, Dept. of Genetics, University of Oulu, in June 1981. [--Prof. D. Marinkovic]

The Johns Hopkins University Schools of Medicine and Arts \& Sciences announce a new collaborative predoctoral training program in Human Genetics leading to a Ph.D. degree in Biology. Broad training will be offered in aspects of human biology (cell biology, biochemistry, anatomy, pathology, pathophysiology) with a special focus and research training in modern human genetics. Write to: Dr. Barbara R. Migeon, Genetics Unit, Dept. of Pediatrics, CMSC 1004 , Johns Hopkins Hospital, Baltimore MD 21205.

Genetics \& Biology of Drosophila price increases: Drosophilists concerned about the ridiculously high price of the latest volume in this series (volume 2d, \$124.50 US dollars) should definitely communicate their unhappiness to Mr. Fred Haight, National Sales Manager, Academic Press Inc., 111 Fifth Ave., New York NY 10003. Mr. Haight has already received a few complaints and seems very willing to pass along all letters to the British Office where the prices for these volumes are set. Strongly worded letters from both buyers and authors of this series should help keep the prices of future volumes down. [--W.H. Petri, Boston College, Chestnut Hill MA]

The card catalog of the world's Drosophilidae begun by E.B. Basden (DIS 45:171, 46:75) has been taken over by me. When Mr. Basden retired in 1975, he had already abstracted all relevant papers in the Univ. Texas Publications and some of Duda's. This catalog will be continued in a modified way. Successful tests have been made with a computer based Data Retrieval System. I would be grateful for any reprints on drosophilid taxonomy, evolution, ecology, faunistics and related topics. Please put my address on your mailing list. [G. Bachli, Zoologisches Museum, Universitat Zurich-Irche1, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland]

Winifred W. Doane and Lynda G. Treat-Clemons have updated the biochemical genetics map of D. melanogaster to include published material, notes, and personal communications available up to Dec. 1, 1980. The revised map, entitled Biochemical Loci of the "Fruit Fly" (Drosophila melanogaster), will appear in the January 1981 issue of the Isozyme Bulletin (No. 14), edited by G.S. Whitt. It includes an alphabetical list of all loci known to affect specific enzymes, proteins or nucleic acids. A genetic map of loci for which recombination data are available is included, as well as information on cytological mapping and a bibliography of 350 references. Loci mapped by segmental aneuploidy and/or by in situ hybridization are included. For the first time, loci for which there are physical mapping data from restriction enzyme and/or nucleotide sequencing studies are referenced.

For further information about this revised map, please write to: Dr. W.W. Doane, Dept. of Zoology, Arizona State University, Tempe AZ 85281.

Drosophila bottles: There seems to be a chronic shortage of the standard milk bottles traditionally used for culturing Drosophila. Inquiries among workers in the field indicate little interest by glass manufacturers in producing these bottles particularly when the number of potential sales is not clearly known but likely to be small by their usual standards. I have offered to coordinate the gathering of information about the consolidated need for bottles. With that information there may be the possibility of gaining the interest of a company to provide them. Please answer the following questions by letter within 30 days of its publication. Although it may appear in more than one journal, answer only once. The questions are: (1) how many bottles would you by immediately at a reasonable price? and (2) assuming that need is met how many would you buy two years hence?

Suggestions and ideas are welcome. Address replies to: David J. Remondini, Ph.D., Genetics Study Section, Division of Research Grants, SRB, National Institutes of Health, Westwood Bldg., Room 349, Bethesda MD 20205.

Shell vials ($33 \mathrm{~mm} \times 100 \mathrm{~mm}$) are now available through the Arthur H. Thomas Co. These shell vials are made of clear autoclavable glass and for a limited time are available for 25 c each. Send requests to: The Arthur H. Thomas Co., P.O. Box 779, Philadelphia PA 19105, Attention: John Domalewski.

Materials requested: The Drosophila cytogenetics group in Novosibirsk (USSR) deals with the organization of two X-chromosome regions: the puff 2B and the "vermilion" band 10Al-2. The first results are published in the following papers: (2 B region) Belyaeva et al. 1980, Chromosoma v. $81 \& 82$, in press; (10Al-2 region) Zhimulev et al. 1981, Chromosoma v. 81 \& 82, in press, and DIS 56, in press. We would be glad to receive from drosophilists any stock carrying a mutation or a chromosome rearrangement tentatively affecting 2B (genetic position 0.20.6 map units) or 10A (genetic position 32.0-34.0) region. Any such stock will be acknowledged with gratitude. They should be sent to: Igor F. Zhimulev \& Elena S. Belyaeva, Institute of Cytology \& Genetics, Siberian Division of USSR Academy of Sciences, Nobosibirsk 630090, USSR.

Materials requested: We have lost our source of non-absorbent cotton in rolls (Rock River in Wisconsin). Does anyone know where this can now be purchased? Please send information to: William M. Hexter, Webster Center for Biological Sciences, Amherst College, Amherst MA 01002.
"The Genetic Variations of Drosophila melanogaster" Revision

Dear Colleagues:

We are embarking on a revision of "The Genetic Variations of Drosophila melanogaster", and we wish to enlist your aid. We are soliciting material for inclusion in the forthcoming edition. We would be most grateful if Drosophila workers would submit to us the following: (1) corrections of all errors in the current volume that have come to their attention; (2) additions to current entries organized according to the categories of information as used in the format of the current edition; and (3) new entries prepared according to the format of the current volume. We are especially anxious to be as complete and as current as possible in the cytological and genetic mapping information included; thus, we are interested in information on recombination, complementation, and deficiency mapping, on the positions of breakpoints of chromosome rearrangements, and on the sites of in situ hybridization of cloned DNA sequences.

We are anxious to receive suggestions from users as to how the revised version can be made more useful, and we will be receptive to suggestions regarding format, nomenclature, and contents of the volume.

As we proceed with the revision, we propose to send selected copy to workers with expertise in different areas for approval and we sincerely request cooperation in attending to these requests with dispatch.

Dan L. Lindsley \& Georgianna Zimm
Dept. of Biology, B-022
University of California, San Diego
La Jolla, California 92093

Herman T. Spieth
University of California, Davis, California

The Hawaiian Drosophila Project was initiated by D. Elmo Hardy (University of Hawaii) and Wilson Stone (University of Texas) in 1963. The following accepted their invitations to participate in the Project: H.L. Carson, University of Washington, St. Louis; Frances Clayton, University of Arkansas; W.B. Heed, University of Arizona, H.T. Spieth, University of California, Riverside; H.D. Stalker, Washington University, St. Louis; H.L. Throckmorton, University of Chicago. This group began investigations in Hawaii in June 1963.

The overriding immediate problem was the development of methods of rearing the endemic species in the laboratory. Several investigators, including Curt Stern during the 1930's and Gordon Mainland during the late 1940 's, had been unable to rear any of the Hawaiian species in the laboratory. As a result the National Science Foundation funded the Project for only a single year and suggested that if successful rearing methods were devised then consideration would be given for extended support.

We quickly became aware that there also existed other refractory related problems. These can be categorized as follows: (1) collections of adequate numbers of flies; (2) successful transportation of captured flies to the laboratory in Honolulu and shipment of living specimens to Texas; (3) maintenance of the flies in healthy condition in the laboratory; and (4) identification of the individuals.

Hardy quickly educated us to the unwelcome fact that the baiting techniques used in other parts of the world were relatively useless for collecting the endemic Hawaiian species. His technique and that of other collectors was to use sturdy insect nets which they swung vigorously through the thick vegetation close to the substrate. Such a method often injured the flies and the specimens were still suitable for pinning but not for rearing. Since the flies would not come to any of the "standard" baits we perforce had to use nets.

Further, we found that the bulk of the native flies were restricted to the cool, moist-to-wet native rain forests which grow on the slopes of the volcanic cones at elevations of 600-1500 meters, with the 900-1200 meter zone containing the majority of the populations. Essentially no humans dwell in the rain forests, and few people enter them other than foresters, water officials, pig hunters, the military in some areas, and scientists. Access to the forests is under the control of private owners, State Foresters, water officials and in some areas the military. Permission to enter must be secured from one to three different agencies and the access routes or roads typically require the use of a four-wheel-drive vehicle. The volcanic terrain of the forest is rough, the footing treacherous and the vegetation often extremely dense. Fortunately, rough narrow trails have been developed for the use of foresters and the water service personnel. Nevertheless, until one has personally engaged in collecting in the rain forests it is difficult to appreciate how large an expenditure of time, energy and money is necessary.

Fortunately, there exist a few collecting sites that can be reached via paved public roads and which have living accommodations nearby. These are Kokee State Park, Kauai; Volcanoes National Park, Hawaii; and the Saddle Road area between Mauna Loa and Mauna Kea, also on Hawaii. On Oahu, with the permission of the military and the use of a four-wheel vehicle, the Mt. Kaala summit can readily be reached. The Tantalus area at the head of Manoa Valley just a few miles from the University of Hawaii campus had been during the early part of this century a major spot for collecting endemic Drosophila. It was here that Mainland and others had collected numerous species. By 1963 the majority of the species had been exterminated, apparently by the intrusion of exotic vegetation and the introduction of ants. Whenever ants, which were totally lacking in the native fauna, are introduced into Hawaii, they quickly exterminate most if not all of the native Drosophila.

We concentrated our collecting efforts during the summer of 1963 on Kokee, Tantalus, Mt. Kaala and the Volcanoes National Park. Our most productive results were achieved in Kipuka Ki and Kipuka Puaula (Bird Park) which are located.in the National Park on Hawaii. Both of these kipukas have a rich and abundant Drosophila fauna. Kipuka is the Hawaiian word for "opening" and is used to designate an area that is surrounded by recent lava flows. It is thus a small area or island of relatively rich and deep soil on which the forests are older and more mature than those found on the surrounding younger lava. In a real sense a kipuka is an experimental plot on the volcanic terrain.

We followed the standard technique of placing captured flies in small vials which had a layer of food medium on the bottom. Unlike mainland species the Hawaiians often become stuck to the walls or food of the vials. Since the Hawaiian flies cannot tolerate temperatures above $20^{\circ} \mathrm{C}$, we had to transport the vials back to the laboratory in insulated boxes which were cooled with containers of frozen artificial ice. This invariably resulted in some condensation in the vials and accentuated the "sticking" problem. This problem was not solved until about a year later when I developed the sugar vial technique.

Wheeler and Clayton remained in Hawaii during 1963-64, both on sabbatical leave, but the others returned to their home institutions at the beginning of the fall semester. Our achievements had been minimal but we had come to understand some of the problems we faced. During the summer of 1963 Throckmorton was able to study the reproductive anatomy and ova of a number of species. Heed had found the larvae of one species breeding in the leaves of the araliad Cheirodendron gauchichaudi. This was the compass sign that led to the solving of the larval substrate problem that Heed successfully pioneered and to which Steven Montgomery later contributed.

During their sabbaticals Wheeler and Clayton vigorously pursued their attempts to devise successful rearing techniques. They prepared and tested a large number of different media, but none was really adequate although they did manage to induce a few field-captured females to oviposit in the laboratory but the resulting larvae died. One morning Wheeler's young daughter refused to eat the prepared dry cereal her mother had purchased. Wheeler took the box of Kellogg's Special K to the laboratory, moistened the cereal and presented it to freshly captured Drosophila mimica from Bird Park. The females oviposited avidly and the larvae developed. From this clue the Wheeler-Clayton food was developed.

Several years later I observed that field-captured females which I was using for sexual behavior observations became lethargic when kept on the standard Wheeler-Clayton food. I instructed the food technician to omit the brewer's yeast from the Wheeler-Clayton food that he was preparing for my use. The effect was dramatic and today yeastless Wheeler-Clayton food is the standard medium for the Hawaiian species.

Wheeler and Clayton found that the mature larvae refused to pupate in the rearing vials. Insead they bored through the cotton plugs, wandered about and died. Wheeler remembered that Kenneth Frisk had solved a similar problem with Agromyzidae larvae by placing the larvae on a layer of sand. This clue led to the sand jar technique; i.e., when larvae in a food vial are almost mature, the cotton plug is removed and the vial is dropped into a large jar which has a $2-3^{\prime \prime}$ layer of moist, sterile sand and the jar is then tightly closed with a piece of cloth. The mature larvae leave the food vial, wander about for a considerable period of time but finally burrow into the sand and pupate. The emerging teneral adult wriggles back to the surface and then expands its wings and matures.

Throughout the life of the project undergraduates have served an important and valuable role in the conduct of the research; approximately 150 of them have participated. A large percentage of them have eventually received advanced degrees in zoology, genetics, botany, medicine, dentistry, veterinary medicine and the paramedical field. One of these undergraduates, Kenneth Kaneshiro, then a sophomore, joined the project in October 1963. Today he is Dr. Kaneshiro and a senior investigator. Ken is a superb field man, a gifted systematist, and an insightful experimentalist. I am sure that other senior investigators in the project will agree that Kaneshiro's overall intellectual grasp and knowledge of Hawaiian Drosophila are more comprehensive than that of anyone else who has participated.

In 1964 various types of fruits, vegetables and other substances were tested as baits and all were indifferently effective. Carson concentrated on this problem and found a surprising behavioral trait. On the mainland we place bait in the bottom of a bucket or similar container and collect the flies that come to feed by disturbing the container and netting the flies as they fly upward and out of the bucket. When the Hawaiian flies are similarly disturbed, they fly downward and become enmeshed in the bait. Carson therefore began to smear bait on boards or heavy cardboard which were hung vertically on tree trunks and other objects.

Throckmorion vigorously pursued his anatomical studies and by the end of the summer he was able to identify and delimit the major species groups.

Harua Tokada of Kushiro Women's College, Hokkaido, Japan, joined the project for the summer of 1964 and studied the male genitalia of 55 species of drosophiloids involving both
drosophilids and scaptomyzids. His efforts complemented Throckmorton's studies and helped to elucidate the relationships between the various species groups. Further, he concluded that all the numerous drosophilid species had descended from a single ancestral population and further that the genus Scaptomyza probably also arose from the same ancestral population.

Heed systematically searched for ovipositional sites, i.e., larval substrates. None of the native plants produces fleshy fruits so he concentrated on leaves, bark and other possible types of substrates. The two dominant trees of the forest, Matrosideros collina polymorpha (Ohia) and Acacia koa (Koa), occasionally develop slime fluxes, but proved not to be prime larval substrates.

Less numerous but rather uniform1y distributed throughout the forest are individuals of the evergreen deciduous tress and shrubs of the araliads (Cheirodendron, Reynoldsia and Tetraplasandra) and the lobeliads (Clermontia and Cyanea). In the fermenting fallen leaves, rotting bark, and slime fluxes of these Heed found the larvae of many species. These discoveries led to the finding of other less frequently used substrates and today more than 35 families of plants are known to serve as larval substrates for one or more species of the native Drosophila. Most of the species are monophagic, some oligophagic and a few polyphagic.

The Wheeler-Clayton food and sand jar techniques enabled them to rear a number of species, especially some of those that belong to the picture-winged species group. The species belonging to this group are large spectacular flies and Carson found that they had large salivary gland chromosomes. He therefore took this group as his province. Clayton was also able to study the cytology of these and other species. They were both aided by the fact that field-captured females would often lay fertile eggs on Wheeler-Clayton food and from these mature larvae could be reared and used for study. Typically, however, the F_{1} adults which emerged from such larvae died young or if they survived refused to oviposit--thus the stock died out.

In the fall of 1964 I was on sabbatical leave, so I remained in Hawaii after other investigators had departed at the end of the summer. During the summer I had made observations on the courtships of several species and was frustrated because, although the males might court vigorously, the females were almost all uniformly recalcitrant and refused to copulate. This occurred with both field-captured and laboratory-reared virgin females. Some species simply refused to engage in sexual activity in the laboratory. I also observed that the flies, especially the males of most species, showed intense antagonism toward each other, engaging in behavior that could only be described as fighting. This occurred also in the rearing vials, and the large picture-winged flies often broke each others' wings.

Since I knew that mainland flies engage in courtship and copulations on the feeding sites in the field, I decided to spend most of the fall in searching for feeding sites as well as collecting flies, etc. I chose three places: Kokiee on Kauai, Waikamoi on East Maui, and Bird Park at Volcano, Hawaii, each known to have populations of several species.

At Kokee I was able to collect flies but could find no feeding sites. Therefore, ground-up Cheirodendron leaves and other baits were used and observed for long periods of time. To my surprise the flies approached the baits in a quite different fashion than expected. Mainland species fly to the baits, often buzzing and circling before landing. In comparison, the Hawaiian species approach cautiously and slowly; they make quick, short darting flights, land, sit immobile for a period of time, then walk slowly foward and finally after many minutes reach the bait. Once there they feed quiet1y, engaging in no sexual or antagonistic activities. After feeding for a time, they depart by a quick downward flight and disappear.

At Waikamoi on Maui I searched for food sites and came across a spot where a number of tree ferns had been cut down a few days previously, and the stumps were covered with sap. A number of Clermontia shrubs had also been broken and cut with the result that the milky sap was exuding. Large numbers of flies of several species were ravenously feeding on these saps. Again, it was the same behavior as at Kokee. The quiet, cryptic behavior of the flies was amazing. I observed no courtships or antagonistic behavior by the flies when they were feeding. Neither did I find any courtship sites.

At Kipuka Ki, Volcano, a large limb bearing fungi had fallen and here the flies were also quiet, but as soon as they moved off the fungus food site they became antagonistic. I observed males sitting on the upper surface of nearby leaves. Whenever another individual
alighted, the male approached and courted. In another part of Kipuka Ki a large Polyporus fungus was found and again the pattern of behavior was similar to that found on the other fungi. Thus, the flies separate feeding and courtship; i.e., they engage in lek type courtships.

On the lek the males are aggressive, defending it vigorously if another male enters it. The females are extremely choosy in the selection of a male. Even when they are sexually ready and enter a lek, they will of ten allow a male to court for long periods and then depart without copulating.

In 1965, John Murphy came from Texas to serve as the operational manager of the project. Intelligent, tactful, and with a vivacious personality, he quickly became the individual to whom everyone turned for logistic planning and execution, both in the laboratory and in the field.

Malcolm Brown, a graduate student specializing in microbiology in the Botany Department at Texas, arrived in Hawaii in June of 1965 and began an investigation of the yeasts and other microorganisms found associated with the native vegetation and especially those found on or in the decomposing substrates in which the Drosophila larvae were living or upon which the adults fed, especially Cheirodendron and Clermontia. He isolated a number of the favored yeasts and collectors then began to hang petri dishes which had been inoculated with these yeasts in the field as baits.

The Hawaiian species are cryptic, in both their coloration and behavior. The adults often sit motionless on the vegetation for prolonged periods, especially in the areas surrounding a natural food source. If disturbed they typically fly or dive downwards. Kaneshiro and Jack Fujii exploited this behavior of the flies. They searched the vegetation, moving cautiously and deliberately. Finding a specimen on the underside of a limb or leaf or on the trunk of a tree, they slowly thrust the open end of an 8-dram glass vial over the fly. Invariably the specimen then dove to the bottom of the vial. This technique became known as the "pick off" method. Later the use of glass tube aspirators was introduced and today these two techniques are the standard methods for collecting those species that are attracted to baits as well as those individuals sitting on the vegetation. For those species for which we have as yet no effective baits, sweeping with nets is still mandatory.

Brown isolated a species of yeast from rotting Clermontia. Kaneshiro inoculated Gerber's baby banana with this yeast and then used the fermenting banana to smear on the trunks and under surfaces of limbs of trees and shrubs. Such bait proved attractive to a considerable number of species, especially the picture-winged flies. It was easy to use in the field and the method of application allowed the pick-off technique to be employed. This then became the standard baiting and collecting procedure. A number of species, however, especially those that oviposit on Cheirodendron leaves, only occasionally come to this bait.

Two persistent problems cnntinued to exist in the rearing of the flies: (1) the food in the large shell vials known as Texas vials became moldy and this smothered the eggs which had been deposited into them and also debilitated the adults; (2) the adults tended to "stick" to the food or the walls of the vials. Our normal practice was to insert into the food a small amount of loosely folded Kleenex tissue, with the major part of the paper extending upward above the food; i.e., this portion served as material for the flies to sit on, thus preventing them from becoming "stuck".

Kaneshiro developed the method of folding a small piece of Kleenex into a rectangular pad of about 1×2 inches, moistening this with a sterilized solution of yeast, sugar water, and propionic acid. This pad was then pressed against the inside wall of a vial and almost in contact with the food at the bottom. The food vial was then laid on its side with the pad on the "bottom". Thus, the adults could sit on the pad and feed when they desired on the vertically oriented food.

At Texas, Stone with the aid of Kathleen Resch was engaged in building up stocks of the Hawaiian species. Suffice it to say that if Resch cannot keep a species alive and healthy in the laboratory, no one can. Her skill has been invaluable in making it possible for various investigators, especially those at Texas, to study and publish findings on species and species groups that otherwise would not have been available. Kathleen spent the period of February-July 1966 in the laboratory at Honolulu. She had earlier determined that by immersing fresh Cheirodendron leaves in distilled water soluble fungistatic sub-
stances escaped from the leaves. This became known as Cheirodendron "tea". She also suggested that dampened Tomac tissues be used for making the pads rather than Kleenex.

Kaneshiro methodically made teas from the leaves and stems of all of the various native plants that we knew were used as ovipositional substrates. Not surprisingly, at least in retrospect, he found that all of these contained fungistatic substances and also that the teas provided ovipositional stimulus to the females. Cheirodendron tea proved to be the least effective and the many species that use Cheirodendron leaves as their ovipositional sites still remain recalcitrant to oviposition in the laboratory. Clermontia tea is the most effective and broad spectrum for mold control and ovipositional stimulation. Another advantage of the pads is that the females prefer to oviposit in the paper. When the larvae emerge they migrate to the food.

Forbes Robertson of Edinburgh, who had had considerable experience in the area of Drosophila nutrition, joined the group from May to late August of 1966. He chose to investigate D. waddingtoni, then known as D. disticha, which uses decaying Cheirodendron leaves as its larval substrate and whose eggs, larvae and adults can be readily collected in numbers at Waikamoi, East Maui. Robertson made the significant discovery that while the adults use yeasts, the larvae of waddingtoni feed exclusively on bacteria. He was, however, unable to rear stocks of the species in the laboratory. Even today, 14 years later, we still cannot maintain stocks of the varied and numerous species which use Cheirodendron as a larval substrate. During the late afternoon of the day that the Robertsons were to depart for Scotland, the laboratory personnel had a picnic for them at Hanauma Bay, and I took the opportunity to talk with him about his investigations on waddingtoni and other Hawaiian species. He ended the discussion by saying: "It will be really pleasant to get back to Edinburgh and work with normal Drosophila for these Hawaiian species literally make one psychotic."

Joseph Grossfield came to Hawaii at the same time as Kathleen Resch. He investigated the field biology of the flies with emphasis on their responses to different light intensities. In doing so he made the valuable discovery that the Hawaiian species are light dependent, i.e., they do not mate in darkness.

The period from 1967 to 1970 was one of great achievements by the various investigators. Carson pursued his studies on the polytene chromosomes of the picture-winged species. Clayton methodically and effectively studied the cytology of many species, concentrating especially on the picture-winged flies. Heed pursued the difficult and often frustrating investigations of the ovipositional substrates and also began his studies on the populations of various kipukas on the big island of Hawaii.

Because the Cheirodendron species, i.e., those whose larvae developed on some part of the trees, were so resistant to laboratory rearing it was suggested that perhaps there was some peculiar characteristic in the biochemistry of Cheirodendron that was responsible for their behavior. Heed had earlier solved a somewhat similar problem with D. pachea which uses the Senita cactus. He therefore joined with Henry Kircher, a biochemist at the University of Arizona, in an intensive analysis of Cheirodendron. Unfortunately, they did not solve this particular problem but they did learn a great deal about the biochemistry of Cheirodendron.

In 1967 Mike Kambysellis arrived in Hawaii. He and Heed soon joined together to investigate what can be broadly described as the reproductive strategies of the species of various species groups. A senior investigator of the project once remarked to me that Heed was probably the one member of the group who had not received adequate recognition for his contributions to the project, and there is substance to this evaluation. All of the problems to which Heed devoted his efforts were complex, elusive, time consuming, and often frustrating-but in every instance he achieved significant and basic information which he analyzed with skill and clarity.

At Texas Mrs. Yang and Wheeler investigated the problem of hybridization, using numerous species of the picture-wingeds. Their valuable studies complemented the work of Carson and gave us an understanding of the relationship of the various species, as well as helping to further delimit the parameter of the species group.

Hardy and Kaneshiro described numerous new species that continued to appear in the collections constantly being made. They also determined the geograpical ranges, identified sibling species, and gave insight into the speciation process, especially within the picturewinged flies.

Kaneshiro completed his undergraduate studies in 1966, became a graduate student and functionally a senior investigator as well as the prime field collector and skilled rearer of species in the Honolulu laboratory. His studies on the male genitalia enabled him to delineate clearly the subgroups within the picture-winged flies. This investigation plus data from Carson's studies showed that the species of the genus Idiomyia really constitute a subgroup of the picture-winged species group. Idiomyia has now been synonymized with Drosophila. Kaneshiro also studied the anomalous species group known as the crassifemur group, showing that it constitutes an intermediate unit between the genus Scaptomyza and the genus Drosophila.

Two young investigators broke "new" ground: Carmen Kanapi and Susan Rockwood, both graduate students at the University of Texas, were the first to use allozyme procedures on the Hawaiian species.

Although Stalker did not return to Hawaii after 1963, he did use the salivary chromosomes to elucidate the relationship of the picture-winged flies to the mainland robusta species group, thus giving a clue to the relationship of the Hawaiian flies to their ancestors.

Yeastless Wheeler-Clayton food is excellent for maintaining adults and many, but not all, species will oviposit in the Tomac pads that have been moistened with Clermontia "tea", commonly also called "juice". The young larvae migrate to the $W-C$ food but it is a rather Spartan larval substrate. Resch therefore formulated a cornmeal food that is much richer and the standard procedure today is to allow the young larvae first to thoroughly "work over" the W-C food. Then a generous amount of cornmeal food is added to the vials. This technique allows a large number of larvae to be reared to maturity in a single vial. The resultant adults from such larvae are healthy and robust individuals. The rearing techniques for the Hawaifan flies are thus more complicated and time-consuming than those used for melanogaster and other mainland species. Further, the life cycle is long; typically each full generation, from oviposition of the egg to the sexually mature adult, spans a period of at least $40-60$ days.

Although the years from 1966-70 were years of accomplishment, there was also tragedy. Wilson Stone died in 1968. His slipping away deprived us of his wisdom, understanding support, and advice. For myself it was not only the loss of a scientific colleague of great stature but also the loss of one of my closest personal friends. No one is indispensable but Wilson Stone certainly approached being that not only for the Drosophila Project but also for his department at the University of Texas.

A considerable number of investigators from various institutions located in diverse parts of the world have participated in the efforts of the Project during the period from 1970-80; some for short periods, others for prolonged stretches. Their individual efforts in the main complement and extend those of the various investigators who had originally founded the Project. In a brief history it is not feasible to comment on their contributions and areas of study. Their names are included in an addendum. Hopefully a full bibliography of the Project will be published, thus enabling their individual contributions to be specifically identified.

John Murphy resigned in 1970 when he accepted a responsible position with the Texas Department of Health Resources. The day-to-day management of the laboratory then fell upon Kaneshiro, a position which he still occupies. Busy as his days had been, they became even busier and his responsibilities more demanding.

At about the same time that Murphy departed, Steven Montgomery (then an undergraduate) began to work with Heed and others in investigating the ovipositional substrates of the picturewinged flies. This species group consists of over 100 species and although Heed had found the substrates of a goodly number of the species, there were many he had not discovered. Montgomery, a superb field investigator, made invaluable additions to Heed's earlier studies.

In 1970 Carson joined the Genetics faculty at the University of Hawaii, a move which vastly improved his effectiveness in his research for now he not only was constantly in Hawaii but also he was able to have his graduate students and postdoctoral fellows cooperate more fully in the investigation of the Hawaiian species. He continued his studies on the salivary chromosomes and expanded into allozyme investigations and intensively into the problem of the dynamics of speciation, concentrating on closely related species of the picturewingeds. In these speciation studies he and Kaneshiro have cooperated closely and effectively.

Recently he has turned his attention to the courtship behavior and the role that it serves in speciation and phylogeny of closely related species.

Heed has turned his attention primarily to the study and identification of the wild yeasts that the larvae use in their substrates as well as to the competition between larvae in the substrates, such as a single decomposing leaf of Cheirodendron. These studies of Heed and his graduate students have involved both desert species of Southwestern North America and the Hawaiian species. During a 1972-73 sabbatical at Davis he, in cooperation with Herman Phaff and Martin Miller, investigated various yeasts. He and Francisco Ayala also developed a technique which enabled them to begin to effectively quantify the biology of leaf breeding Hawaiian species.

At Texas Richard Richardson, Wheeler and Yoon, assisted by Kathleen Resch, have studied the salivary chromosomes and the evolution of the crassifemur, antopocerus and part of the modified-mouthparts species groups. Although all of these are exceedingly difficult to handle in the laboratory, they have been able to elucidate the relationships and evolutionary histories of the crassifemur and antopocerus species groups and also to determine the relationships of the modified-mouthparts to other species groups. Their findings have filled large lacunae in our ignorance.

Hardy and Kaneshiro continued their basic studies on the systematics of various species groups. By now large collections have been accumulated and Hardy has revised the antopocera and split-tarsi species groups. They are in the process of revising several other groups, basic information which is mandatory for further investigation into the evolutionary dynamics, biolgoy and ecology of the various species groups.

Kipuka Puaulu, known as Bird Park because of the considerable number of native birds that dwell therein, has been an important research area for the Drosophila Project as well as for other scientific investigations. It is approximately 56 acres in extent. Until it was incorporated into Volcanoes National Park during the second decade of this century, it was used as a fattening pen for cattle. It is still recovering from the evil effect of such usage and is a prime example of the necessity of the maintenance of preserves which cannot be decimated by the short-sighted activities of human society.

Richardson, aided by his students and associates, intensively investigated a number of problems in Bird Park and nearby Kipuka Ki which receives less precipitation than does Bird Park.

In 1964 Heed and I observed Drosophila engyochracea, a large picture-winged species which has its geographical range limited to the two kipukas and the immediately surrounding area. During daylight hours the flies hide away in the moss found on the trunks of trees. We found that during darkness the flies ascend into the foliage and sit on the undersides of leaves. Spencer Johnston investigated this behavior and found that the flies move to considerable heights and scatter through the forest--indicating how movements in the population occur.

Richardson then investigated in detail the movements of D. mimica, a modified-mouthparts species. The adults typically hide in the litter on the forest floors but under appropriate conditions do move; he was able to elucidate these movements and the environmental factors bearing upon such activities. He and his students have also directed their efforts towards understanding the dynamics and possible sympatric nature of speciation that may have occurred. They intensively studied three species that dwell in Bird Park and Kipuka Ki. Their conclusions have attracted attention, including considerable skepticism, but above all they have stimulated others of us to rethink and re-evaluate our ideas as to how speciation may have occurred in the exceedingly rich and complex Hawaiian drosophilid fauna.

Kambysellis continues his excellent and unique studies on the reproductive strategies of the flies, currently concentrating on allozyme investigations of the eggs of numerous species.

Clayton, despite a long period of debilitating illness, continues to provide new and important cytological data.

I was able to study with the cooperation of Heed, who spent a sabbatical year in Davis in 1972-73, two mainland species, D. pinicola and D. flavopinicola, which are restricted to the Pacific coastal area. We concluded that they are, on the basis of morphology, physiology and behavior, more closely related to the Hawaiian species than are species of the robusta species group. Since these species oviposit on mushrooms and the adults feed on mushrooms,

I concluded that perhaps rotting domestic mushrooms might serve as a bait to attract the species of the Hawaiian light-tipped scutellar group, often called the fungus feeders. We knew that one of the species, fungiperda, was attracted to large Polyporus fungi and used such fungi for a larval substrate.

I therefore went back to Hawaii and, although I was myself somewhat dubious about the outcome, my colleagues were downright skeptical about the use of mushrooms as bait. A trial run on Kauai, however, even under adverse conditions, was highly successful. Not only do the fungus feeders come in large numbers to the bait, but also all of the antopocerus, the crassifemur, and the majority of the picture-winged species are attracted in numbers. In typical fashion Kaneshiro quickly improved my original technique of using mushrooms impaled in twigs; i,e., he soaked thin cellulose sponges in "juice" of the rotting mushrooms and then attached them to tree trunks, etc.

The mushroom bait gives us a reliable method of capturing large numbers of individuals of at least 200 species. Unfortunately, mushrooms attract very few of the Cheirodendron leaf breeders nor most species of the modified-mouthparts and ciliated-tarsi species group. This last group is probably the most primitive species group of the Hawaiian fauna and we essentially know nothing about its biology, behavior or evolution at this point in time. The mushroom technique enabled Hardy, Kaneshiro, Ayala and myself to join together in a study on the systemtics, allozymes and behavior of the crassifemur, fungus-feeder and picture-winged species groups--a project now under way and yielding considerable new data.

Kaneshiro continued to shoulder the main responsibility for the day-to-day operation of the laboratory, the organization and logistics of field collecting, and the maintenance of relationships with the various organizations whose help and permission we constantly need-doing all of this in addition to pursuing his own extensive research program. Fortunately, the project acquired in 1976 the services of Mrs. Joyce Karihara. Earlier as an undergraduate Joyce, then Miss Sato, had served as a student assistant. She proved to be competent, resourceful, and responsible. Upon graduation she had become a public school teacher, but after being assaulted and badgered by students, she quit teaching. The Project was fortunate to have her back with it because student assistants, although quite capable and responsible, work only a few hours a week and each deals with only a limited number of species. Joyce, however, provided continuum and oversight for the laboratory.

During the entire period 1963-80 the National Science Foundation provided funds for the support of the Hawaiian Drosophila Project. The major portion of these funds was used to support the specialized "low-temperature" laboratory (which is necessary for maintaining and rearing the Hawaiian species), for media preparation, and for salaries paid to the undergraduate and non-academic staff that cared for the numerous Drosophila stocks, etc. As of this year (1980) this support has been discontinued, despite the fact that the last review visitation team indicated that at least another decade of support was justified. Thus, in a real sense the Hawaiian Drosophila Project as conceived by Hardy and Stone now belongs to history.

This is not to say that research on the Hawaiian Drosophila fauna has ceased. A number of investigators have grants in their own names, and the specialized laboratory still exists. By making contributions from their grants the laboratory is operating, albeit at a reduced level. Investigators in various parts of the world are now able to maintain stocks in their own facilities. Thus, research is still continuing on some aspects of the fascinating, unique and complex Hawaiian Drosophila fauna.

In no sense is this a complete history of the Hawaiian Drosophila Project. What I have tried to do is (1) to show how two intelligent and thoughtful scholars, Hardy and Stone, assembled a group of investigators in order to solve a seemingly intractable problem, (2) how the answers to at least some of the major problems were developed, and (3) the role that serendipity plus that elusive ingredient called insight contributes to the solutions.

Senior Investigators of the Hawaiian Drosophila Project

> Jayne N. Ahearn
> Francisco Ayala
> Visut Baimai
> Stephen M. Beverley

University of Hawaii
University of California, Davis
Mahidol University, Thailand
Stanford University
(Unavailable)

Peter J. Bryant
*Hampton L. Carson
*Frances E. Clayton
W. Joseph Dickinson
*Theodosius Dobzhansky
Antonio Fontdevilla
Helen Gelti-Douka
*Joseph Grossfield
*D. Elmo Hardy
*William B. Heed
Lewis Held
Ralph J. Hodosh
John A. Hunt
Duane E. Jeffrey
Walter E. Johnson
J. Spencer Johnston
*Michael P. Kambysellis
Elysse (Craddock) Kambysellis
*Carmen G. Kanapi
*Kenneth Y Kaneshíro
*Henry W. Kircher Karen Loeb1ich Terrence W. Lyttle
Robert Mangan
George Miklos
*Puliyampetta S. Nair
Alan T. Ohta
*Toyohi Okada
Rody Raikow
Richard Richardson
John M. Ringo
*Forbes W. Robertson
Fabio de Melo Sene
Susan Rockwood Sluss
Eliot Spiess
*Herman T. Spieth
*Harrison D. Stalker
William T. Starmer
William W. Steiner
*Wilson S. Stone
W. Dorsey Stuart
*Haruo Takada
Alan T. Templeton
*Lynn H. Throckmorton
John Tonzetich
Francisca C. do Val
Graeme Watson
*Marshall R. Wheeler
Thomas Wolfe
Hei Yang
Jong Sik Yoon

University of California, Irvine
University of Hawaii
University of Arkansas
University of Utah
Deceased, 1976
University of Santiago, Spain
Athens University, Greece
City College of New York
University of Hawaii
University of Arizona
University of California, Irvine
University of Maine
University of Hawaii
Brigham Young University
Case Western University

Texas A\&M

New York University
New York University
University of Santa Tomas, Philippines
University of Hawaii
University of Arizona
University of California, Davis
University of Hawaii
Pennsylvania State University
Australian National University, Canberra, Australia
Southern Illinois University, Carbondale
University of Hawaii
Tokyo Metropolitan University, Japan
University of Pittsburgh
University of Texas
University of Maine
University of Aberdeen, Scotland
University of São Paulo, Brazil
University of Arizona
University of Illinois, Chicago Circle
University of California, Davis
Washington University
Syracuse University
University of lliinois, Urbana
Deceased, 1968
University of Hawaii
Sapporo University, Japan
Washington University
University of Chicago
Bucknell University
University of São Paulo, Brazil
University of Melbourne, Australia
University of Texas, Austin
Washburn University
California Academy of Science
Bowling Green University
*Those whose names are marked with an asterisk began their participation in the Project prior to 1970.

Graduate Students

Lorna Arita
Elizabeth Thomas Arthur
Patrick Conant
Tina Dellas

Wayne Ibara
Melanie Kam
Jeremy Montague
Steven Montgomery

Band, H.T. Michigan State University, East Lansing, Michigan. Chymomyza amoena - not a pest.

The genus Chymomyza in the family Drosophilidae is of world-wide distribution (Throckmorton 1975). In North America they are typically regarded as forest or woodland species and are generally considered to be sap feeders (Wheeler 1963, 1965,
1970). As late as 1952 Chymomyza amoena in Michigan was still being collected around the cut ends of trees (Steyskal 1952) while Sturtevant (1921) reported that this species had been bred from walnut and butternut husks and acorns.
C. amoena in Michigan has now been found to be breeding in fallen apples in abandoned, remnants of abandoned and in commercial apple orchards. Both adults and larvae are able to use fresh apple as a food source. However, adults require a break in the skin in order to feed, and at the study sites outside East Jordan, Michigan eggs have only been found on apples on the ground, especially those which have been nibbled on by small animals or pecked by birds. Hence although individuals can be found in the trees, the MSU Pesticide Center does not consider C. amoena to be a pest.

Wheeler (1965) has commented that although economic pests in the family Drosophilidae are rare, some species may act as vectors for the transmission of plant diseases. Judging from the diseases manifest by the fruits on these long unattended trees at the East Jordan study sites, C. amoena may be such a species. Males are territorial, aggressive, and spar vigorously since lek behavior has not evolved. In the trees individuals may sit quietly wing-waving (a genus characteristic) on apples, but if challenged, chase one another over stems, leaves, branches and attached apples. Certainly they may transport mites; newly established minicages (small glass jars placed horizontally from which food dishes may be removed and inserted with forceps) may sometimes contain as many as 3 species of mites and several transfers of C. amoena larvae are required to get rid of them.

References: Steyskal, G. 1952, letter to Dr. Marshall Wheeler (courtesy of Dr. Wheeler); Sturtevant, A.G. 1921, Carn. Inst. Publ. 301, Carnegie Inst., Washington, D.C.; Throckmorton, L.H. 1975, Handbook of Genetics (R.C. King, ed.) 3:421-469; Wheeler, M.R. 1952, Univ. Texas Publ. 5204, pp. 162-180; 1965, USDA, Ag. Res. Serv., Ag. Handbook No. 276, pp. 760-772; 1970, Catalogue of the Diptera of the American South of the U.S., Museau de Zoologica, Universidade de Sao Paulo, part 79, pp. 1-65.

Band, H.T. Michigan State University, East Lansing, Michigan. Ability of C. amoena preadults to survive $-2^{\circ} \mathrm{C}$ with no preconditioning.

Chymomyza amoena, a member of the Family Drosophilidae, in Michigan is now living in apple orchards where it can overwinter in some preadult stage, presumably the late larval stage. Development of a media for growing this species in the laboratory has enabled experimental work on the mechanism of cold hardiness. In the process of determining that neither larvae nor pupae accumulate glycerol or other polyols when stored for 4 or more weeks at $-2^{\circ} \mathrm{C}$, late instar larvae--when disturbed--were found to have a tendency to leave the media en masse. This migratory tendency is not abated by mere transfer to $10^{\circ} \mathrm{C}$ for preconditioning at a low nonfreezing temperature prior to subzero treatment.

Therefore larvae and pupae have been transferred directly from room temperature ($22^{\circ} \mathrm{C}$) to $-2^{\circ} \mathrm{C}$. The following data have been accumulated on the subsequent ability of either phase to complete development. Larval size is approximately 1 mg in weight.

Table 1. Emergence time following storage at $-2^{\circ} \mathrm{C}$ for C . amoena larvae and pupae--no preconditioning.

Source	Stage	Days at $-2^{\circ} \mathrm{C}$	No. Larvae or pupae	No. to emerge	No. days to emerge after $-2{ }^{\circ} \mathrm{C}$
E. Jordan ' 78	larvae	3	7	6	14 days minimum
E. Jordan '79	larvae	3	4	4	14 days minimum
E. Jordan '78	larvae	8		larvae	dead
Grand Rapids	larvae	7		larvae	reactive but not motile
Lansing	pupae	1	5	5	3 days
E. Jordan '78	pupae	5	20	1	7 days
E. Jordan '79	pupae	4	20	2	12 days
E. Jordan '78	pupae	8	5	5	no record

Under random photoperiod in the laboratory, all larval stages and pupae can endure 24 h at $-2^{\circ} \mathrm{C}$. Late instar larvae (1 mg or larger) can resume development, pupate and emerge after 72 h at $-2^{\circ} \mathrm{C}$, but by 7 days are per-
manently injured if not preconditioned at a low nonfreezing temperature. Emergence records from pupae after 48 h at $-2^{\circ} \mathrm{C}$ are variable, may depend upon the stage at which pupae encounter the subzero temperature, and imagoes from cold-treated pupae are often weak, fail to unfold their wings and their appearance would offer no support to an hypothesis that the pupal stage is the overwintering stage for C. amoena.

However, the ability of the larvae to survive 72 h at mild subzero temperatures without injury indicates that the freeze resistance factor (s) is (are) present despite maintaining cultures at room temperature. Zachariassen and Hammel (1976) found that freeze tolerant tenebroid beetles lost this capacity upon warm acclimation; Duman (1977a,b) discovered that the thermal hysteresis factor in a tenebroid larva disappeared only after a 16 h photoperiod and short daylength, low relative humidity or low temperature could all induce production of the thermal hysteresis factor. These insects within the continental United States are not relying on the accumulation of glycerol or other polyols for freeze resistance but on proteins. Thermal hysteresis factors lower the supercooling point in a freeze susceptible insect; cryoprotectants enable an insect to freeze without injury; some contain both (Duman 1979) although diptera investigated (Duman 1979) did not show evidence of thermal hysteresis. Further work on the effects of photoperiod and on the mechanism by which C. amoena larvae survive subzero conditions in winter is planned.

References: Duman, J.G. 1977a, J. Exp. Zool. 201:85-92; __ 1977b, J. Exp. Zool. 201: 333-337; 1979, J. Insect Physiol. 25:805-810; Zachariassen, K.E. and H.T. Hammel 1976, Nature 262:285-287.

Band, H.T. Michigan State University, East Lansing, Michigan. Duplication of the delay in emergence by C. amoena larvae after subzero treatment.

Chymomyza amoena is a cold-hardy drosophilid that now can be grown in the laboratory. Energence time from field-collected apples in summer versus spring indicates that the overwintering stage is the late larval stage. Experiments subjecting larvae and pupae to $-2^{\circ} \mathrm{C}$ have shown that all stages can be stored at that temperature for 24 h and recover, but only the late instar stage can withstand prolonged storage at this mild subzero temperature provided the larvae are preconditioned first at a low nonfreezing temperature. Timed emergence tests after storage at $-2^{\circ} \mathrm{C}$ and $-5 / 6^{\circ} \mathrm{C}$ have now been carried out. $-2^{\circ} \mathrm{C}$ is achieved in the freezing compartment of a refrigerator, $-5 / 6^{\circ} \mathrm{C}$ in a Labline incubator in which the temperature fluctuated between $-5^{\circ} \mathrm{C}$ and $-6^{\circ} \mathrm{C}$ during the time cultures were kept in it. For $-5 / 6^{\circ} \mathrm{C}$ preconditioning intervals at $10^{\circ} \mathrm{C}$ and $-2^{\circ} \mathrm{C}$ varied, and larvae were transferred from room temperature appropriately to fresh media so that all were subjected to $-5 / 6^{\circ} \mathrm{C}$ and postconditioning temperatures simultaneously.

Table 1. Emergence data on C. amoena, field collections + laboratory.

Source	No. Collections	Emergence period aft maintenance at $22^{\circ} \mathrm{C}$
Field collected apples		
Spring (March, April, May)	4	$15-23$ days
Summer-Fall	7	$22-49$ days
Laboratory		
apples	Oct. ${ }^{1} 78 \mathrm{~F}_{2} \mathrm{~s}$	$26-52$ days
media	3	20 days minimum
oviposition to pupa		10 days
pupa to imago		10 days

Table 1 summarizes the emergence data on C. amoena obtained from field-collected fallen apples, from apples in the laboratory and from C. amoena media. Duration of larval and pupal stages on media have been the same for C. amoena populations from Northern Lower (East Jordan) and mid-Michigan (Lansing, Grand Rapids).
In the larval stage, the last 3 days the larvae are equivalent in size to D. m. 3rd instars, i.e., 1 mg or greater in weight. This is the size which has been stored successfully $28-33$ days at $-2^{\circ} \mathrm{C}$ and which was used in the experiments reported here. Table 2 gives the days stored at the specified temperatures, the number of larvae recovered from the media and transferred again to fresh media, number pupating and number of imagoes as well as duration of the larval and pupal stages after subzero treatment.

Table 2. Emergence data on C. amoena larvae after subzero treatment.

Source	Days at specified t°					Numbers			Days		
	$10^{\circ} \mathrm{C}$	$-2^{\circ} \mathrm{C}$	$-5 / 6^{\circ} \mathrm{C}$	$-2^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	1	p	i	1-p	p-i	T
E.J.	7	7				2	2	1	5	10	15
E.J.	7	8	5	8	1	7	6	4	5-10	11-15	16-20
G.R.	-	-	22h	-	-	5	1	0		emerge	
G.R.	3	-	5	8	1	6	0	0		reactive	
G.R.	7	1	5	8	1	5	0	0		reactive	

As shown in Table 2, successful emergence after $-5 / 6^{\circ} \mathrm{C}$ requires at least several days preconditioning at $10^{\circ} \mathrm{C}$ and $-2^{\circ} \mathrm{C}$ beforehand. This is
similar to the previous discovery that storage at $-2^{\circ} \mathrm{C}$ a week or longer requires preconditioning at $10^{\circ} \mathrm{C}$ and is therefore equivalent to what botanists call "hardening". Whatever changes are occurring are necessary to withstand successive lower temperatures, which in Michigan may be well below $-6^{\circ} \mathrm{C}$ when there is no snow cover.

After both $-2^{\circ} \mathrm{C}$ and $-5 / 6^{\circ} \mathrm{C}$ larvae require at least 5 days to reach the pupal stage again. Emergence data are comparable, 15-16 days, and compare favorably to emergence data for C. amoena from spring-collected apples kept in the laboratory at $22^{\circ} \mathrm{C}$.

As a check that the 3 rd or late instar is the overwintering stage for C. amoena, apples were collected from a nearby orchard in early March after a period of very cold weather in a winter of little snow cover. They were held at $10^{\circ} \mathrm{C}$ overnight, then inspected for C . amoena larvae. Five were found; one 2nd instar was dead, three of those actively mobile and feeding were late instars, and one was borderline late instar in size. The apples were quite soggy after defrosting, which suggests that C. amoena larvae may be freeze tolerant rather than freeze-susceptible with a very low supercooling point (Zachariassen and Hammel 1976a,b).

References: Zachariassen, K.E. and H.T. Hammel 1976a, Norw. J. Zool. 24:349-352; and \qquad 1976b, Nature 262:285-287.

Beck, A.K., R.R. Racine and F.E. Wiirgler. Institute of Toxicology, Swiss Federal Institute of Technology, and University of Zurich, Switzerland. Primary nondisjunction frequencies in 7 chromosome substitution stocks of D. melanogaster.
 Hikone-R stock, P unmarked autosomes from a stock containing the attached-XY chromosome Parker $110-8$ and A the autosomes with inversions (balancer stock). Since all chromosome substitution stocks contain identical X-chromosomes (from the Hikone-R stock) and identical 4th chromosomes (pol from the A stock) the abbreviations used indicate only the stock constitution with respect to chromosomes 2 and 3 (see the table).

In the nondisjunction tests we studied the meiotic segregation of the sex-chromosomes in the females of the chromosome substitution stocks. We crossed 1-2 day old males of the males of the genotype $Y S X \cdot Y \mathrm{~L}$,

$F=$ females, $M=$ males, $N D=$ nondisjunctional progeny in percent of total progeny. $\operatorname{In}(1) E N, y B$ to 1 day old females. Three pairs were used per vial. After 3 days the parents were discarded. The progeny were classified according to sex and phenotype. Two types of males could not be distinguished by phenotype: $Y S X \cdot Y \mathrm{~L}, \operatorname{In}(1) E N, Y$ B/O (resulting from primary nondisjunction in $X X$ females) and $Y S X \cdot Y L, \operatorname{In}(1) E N, y B / Y$ (resulting from secondary nondisjunction in XXY females). These males were crossed to C(1)DX, y $\mathrm{f} / \mathrm{y}^{+} \mathrm{Y} \mathrm{B}^{S}$; bw; st p^{p} females and surviving $\mathrm{C}(1) \mathrm{DX}$ progeny indicated the presence of a free Y chromosome in the male tested, because C(1)DX, y f contains a Y-suppressed lethal.

The results with the numbers of progeny scored and the observed frequencies of primary nondisjunction are shown in the table. With all crosses more male than female progeny were obtained. The frequencies of primary nondisjunction show some variation. In particular the HH stock displayed an unexplained high number of exceptional males. But all the nondisjunction frequencies are within the range found with wild type stocks. This demonstrates that no meiotic mutants are present in the chromosome substitution stocks studied.

This work was supported by the Swiss National Science Foundation, project no. 3.1560.77. Reference: Racine, Beck and Würgler 1979, Mutation Res. 63:87-100.

Batterham, P. and G.K. Chambers*. Monash University, Clayton, Victoria, Australia; *Australian National University, Canberra, A.C.T., Australia. The molecular weight of a novel phenol oxidase in D. melanogaster.

PHOX, a newly discovered form of phenol oxidase (0-diphenol: 02 oxidoreductrase E.C. 1.10.3.1.) encoded by the Phox locus (II 80.6) in D. melanogaster has been described by Batterham and McKechnie (1980). To firmly establish the novelty of this enzyme it was important to devise a test to distinguish it from A component phenol oxidases (see Seybold et al. 1974). We report here determination of the molecular weight of this new enzyme by Sephadex G-150 gel filtration. D. melanogaster pupae (48 hours old) from the Silvan (Victoria) population were homogenized (6 g pupae/ 4 ml buffer) in ice cold 50 mM Tris/HC1 buffer pH 8.3 containing 10% (w / v) sucrose and 2 M urea. The homogenate was centrifuged at $10,000 \mathrm{~g}$ for 30 min at $4^{\circ} \mathrm{C}$. The supernatant (6.0 ml) was applied to a Sephadex G-150 column ($5.0 \times 75 \mathrm{~cm}$) equilibrated with homogenization buffer lacking sucrose and urea. Fractions (15 ml) were collected at a flow rate of $40-45 \mathrm{ml} / \mathrm{hr}$. Effluent was monitored for absorbance at 280 mn , MDH activity (malate dehydrogenase: internal standard) after McReynolds and Kitto (1970) and polyacrylamide ge1 electrophoresis to detect phenol oxidase (after Batterham and McKechnie, 1980). The column was calibrated with chymotrypsinogen ($\alpha-$ CT: 25,000), ovalbumin (0A:45,000) and bovine serum albumin (BSA monomer: 68,000; BSA dimer 136,000).

The molecular weight of MDH was taken as 71,500 (G.K. Chambers unpublished). The elution position of the PHOX enzyme was judged to be 44.5 ± 0.5 fractions, from which we calculated a molecular weight of $108,000 \pm 4,000$ for the PHOX oligomer--see Fig. 1. Electrophoretic evidence (Batterham 1980) suggests that the Phox gene product is a dimer and hence we deduce the subunit molecular weight to be 54,000 . From such evidence we cannot discount the possibility of higher order aggregates (e.g., a tetramer that hybridizes as pairs of dimers in heterozygotes). However, it is certain that PHOX is non-identical to the Al phenoloxidase components described by Seybold et al. (1974) as a monomer of subunit molecular weight 77,000.

We would recommend this experimental approach to other workers involved in allozyme surveys of natural populations in view of recent suggestions that enzyme variability is correlated with subunit size (e.g., Nei et al. 1978).

We are indebted to Dr. J.B. Gibson in whose laboratory this work was carried out.
References: Batterham, P. and S.W. McKechnie 1980, submitted to Genetica; McReynolds, M.S. and G.B. Kitto 1970, Biochim. Biophys. Acta. 198:165-175; Seybold, W.D., D.S. Meltzer and H.K. Mitchell 1975, Biochem. Genet. 13:85-108; Nei, M., P.A. Fuerst and R. Chakraborty 1978, Proc. Nat. Acad. Sci. 75:3359-3362.

Bewley, G.C. and S. Lubinsky. North Carolina State University, Raleigh, North Carolina. Thermal stability of catalase during development in Drosophila.

An analysis of the thermal stability of the enzyme catalase $\left(\mathrm{H}_{2} \mathrm{O}_{2}: \mathrm{H}_{2} \mathrm{O}_{2}\right.$ oxidoreductase, E. C. 1.11.1.6) during Drosophila development was conducted on crude extracts of an Oregon-R-6 strain and the results are illustrated in Figs. 1 and 2. The optimum temperature for this study was considered to be $56^{\circ} \mathrm{C}$ since about half the activity decayed in 5 min (Fig. 1). In extracts from each develomental stage, there is a break in the semilog plot after 5 min, with a half-1ife of 6.5 min in adult and pupal extracts and 14 min in larval extracts (Fig. 2). Similar results have been obtained in screening 20 different wild type laboratory stocks. Such a bimodal curve indicates the possibility that more than one molecular form of the enzyme exists, although isozymic patterns are not yet evident on electrophoretic gels. Multiple forms could arise by one or more of the following mechanisms, although none of these have been rigorously ruled out in our current studies: (1) isozymes coded for by different structural genes, although only a single enzyme dosage-sensitive region has been identified by segmental aneuploidy (Lubinsky and Bewley 1979); (2) post-translational modification of a primary gene product leading to conformational alterations; (3) the partitioning into compartmentalized and soluble fractions of the enzyme; and (4) dissociation of the enzyme into enzymatically active subunits.

Fig. 1. The effect of increasing temperature on the thermal stability of catalase in adult crude extracts incubated for a period of 5 min .

Fig. 2. Thermal denaturation at $56^{\circ} \mathrm{C}$ of catalase activity in crude extracts. a. Crude adult (0) and crude pupal (${ }^{(1)}$ extracts. b. Crude larval extracts.

It has previously been demonstrated that a fraction of catalase is compartmentalized in the glyoxosomes of maize (Scandalios 1974) and the liver peroxisomes of mamals (Holmes 1971). In our studies, the use of triton $\mathrm{X}-100$ increased the amount of soluble extracted enzyme by $1 / 3$ in adult extracts and by two-fold in larval extracts. These results may indicate that a fraction of the catalase activity is compartmentalized or membrane-bound to subcellular organelles in Drosophila.

Supported by NIH Grants GM-23617 and AG-01739.
References: Holmes, R.S. 1971, Nature N.B. 232:218-219; Lubinsky, S. and G.C. Bewley 1979, Genetics 91:723-742; Scandalios, J. 1974, J. Heredity 65:28-32.

Biemont, C. Université Lyon I, Villeurbanne, France. Parental effect and inbreeding depression in D. melanogaster.

Natural populations of Drosophila carry genetic loads consisting of deleterious variants which reduce the viability of their carriers when homozygous as a result of inbreeding (see Lewontin 1974). Dying of inbred offspring ranges from early embryogenesis to larval and pupal stages. Recently, in D. melanogaster, I interpresed such effects in terms of a single gene hypothesis (Biemont 1978, 1979). An Is (inbreeding sensitivity) gene, located on chromosome III, with alleles Is ${ }^{-}$and Is ${ }^{+}$is involved in morphogenetic events. Its expression in homozygous (Is-/Is-) embryos depends on the presence in one parent of an Is ${ }^{+}$allele which promotes embryogenesis. Crosses between Is-/Is- sibs produce embryonic deaths, of a level that varies according to the regulation of the expression of the Is $^{-}$allele. We now report further evidence supporting the parental control of expressivity of the gene involved.

Brother-sister couples which 1aid eggs showing blocking in development were selected and the male and female separated. Once females from these couples of presumed $\mathrm{Is}^{-/}$ Is- constitution were no longer producing fertilized eggs, they were crossed with $\mathrm{Cy} / \mathrm{Pm} \mathrm{H} / \mathrm{Sb}$ males. Is-/ Is +Cy Sb flies from different sibships were then intercrossed leading to four classes of offspring with phenotypes

$\mathrm{Sb}:\left(\frac{+}{+} \frac{+\mathrm{Is}^{-}}{\mathrm{Sb}+}\right)$ and $\mathrm{Cy} \mathrm{Sb}:\left(\frac{\mathrm{Cy}+}{++\mathrm{Is}^{-}} \frac{\mathrm{Sb}+}{+}\right)$.
In each class, brothers and sisters were mated and viability of their offspring was evaluated as the proportion of wild type individuals (a11 +Is-/+Is-) obtained from the eggs laid by the sibs. Therefore, to each Is^{-}Is+ $\mathrm{Cy} \mathrm{Sb}_{\mathrm{x}} \mathrm{Is}{ }^{-} \mathrm{Is}^{+} \mathrm{Cy} \mathrm{Sb}$ parental couple, is associated the inbreeding response of the four classes of their offspring. Since our study is based on the egg-to-adult survival of wild type flies, I have eliminated the Cy Sb class in the progeny of which only $1 / 16$ of wild type flies is expected; the number of such flies obtained was too small for valuable statistical analysis. The rank correlation coefficient of Spearman reveals a significant link between the values of the + and Cy classes (Fig. 1) ($\mathrm{r}=0.57 ; \mathrm{t}=2.5 ; \mathrm{P}<0.05$) . This correlation was not significant either between
classes + and $\mathrm{Sb}(\mathrm{r}=-0.019 ; \mathrm{t}=0.63 ; \mathrm{P}>0.05$) nor between classes Cy and Sb ($\mathrm{r}=0.14$; $\mathrm{t}=0.53 ; \mathrm{P}>0.05$). Consequently, inbreeding depression is similar in the + and Cy classes but independent of that in the Sb class. As a result of our experimental scheme, all wild type individuals descending from the brother-sister matings were homozygous Is-/Is-. So, the difference between the + , Cy and Sb classes seems associated with the homozygous Is-/Isconstitution of the flies of the + and Cy class as compared with the Is-/Is + heterozygous state of the flies of the Sb class. This observation suggests that the proportion of wild type flies, therefore the mortality rate during development, depends on the genomic constitution of the parents. The extent of inbreeding depression appears to characterize the parental couple, thus suggesting regulation by cytoplasmic factors, as previously inferred (Biemont 1978).

Such a parental effect has to be taken into account when inbreeding effects with different mating systems, or various natural populations, are compared. Indeed, whatever the nature of the implied gene, variation of its frequency in populations may influence the extent of viability depression after inbreeding and thus estimate of genetic load.

I thank R. Grantham and C. Gautier for their help with the manuscript.
References: Lewontin, R.C. 1974, The Genetic Basis of Evolutionary Change, Columbia University Press, New York, London; Biémont, C. 1978, Mech. Ageing Develop. 8:21-42, 1979, Experientia (in press).

Bishop, C.P. and A.F. Sherald*. University of Virginia, Charlottesville, Virginia; *George Mason University, Fairfax, Virginia. Isolation of two third chromosome mutants conferring resistance to α-methyl dopa.
α-methyl dopa ($\alpha-\mathrm{MD}$) is an in vitro inhibitor of dopa decarboxylase (DDC) and it was originally thought that $\alpha-\mathrm{MD}$ might be used to screen for mutants with altered levels of the DDC enzyme. Although the original screen for resistance to $\alpha-\mathrm{MD}$ produced two strains with elevated levels of DDC (Sherald and Wright 1974), screens for sensitivity to the inhibitor produced mutants with no effect on the enzyme (Sparrow and Wright 1974). Furthermore, it has
been subsequently shown that the greater the number of DDC gene copies, the greater the sensitivity to $\alpha-M D$ (Wright, unpublished). Sensitivity to $\alpha-M D$, it was discovered, was due to a locus, 1 (2) amd, other than the structural locus for DDC (Wright et al. 1976a, 1976b). Since the 1 (2)amd locus maps very close to the structural gene for DDC, the mutants with both elevated resistance and enzyme activity may be control mutants (Marsh and Wright 1979).

The two $\alpha-\mathrm{MD}$ resistant mutants we report here were isolated from a total screen of 1,715 EMS mutagenized (Lewis and Bacher 1968) progeny from a lethal free third chromosome bw; st stock. They were isolated by survival on $0.8 \mathrm{mM} \mathrm{DL} \alpha-\mathrm{MD}$, well above the concentration that is lethal to wild type flies (less than 0.4 mM). A total of 80 putative resistant mutants were recovered, 18 of which showed resistance upon retesting and two (PR40 and PR45) of these were selected for further study.

Table 1 shows that the locus responsible for resistance clearly segregates with the mutagenized third chromosome. Preliminary mapping of one of the mutants, PR45, places the locus between hairy (3-26.5) and thread (3-43.2) (Lindsley and Grell 1968). Using the L form of $\alpha-\mathbb{M D}$, which is roughly twice as lethal as the DL form, the LD_{50} for the two mutants has been established at $0.325 \mathrm{mM} \mathrm{L} \alpha-\mathrm{MD}$ for PR 40 (bw; $\operatorname{Tm} 3$ Ser $\mathrm{Sb} / \mathrm{st} \% 40$) and $0.35 \mathrm{mM} \mathrm{L} \alpha-\mathrm{MD}$ for PR45 (bw; $\operatorname{Tm} 3 \mathrm{Ser} \mathrm{Sb} / \mathrm{st*45}$). The LD50 for control stocks was below $0.1 \mathrm{mM} \mathrm{L} \alpha-\mathrm{MD}$.

In addition to showing dominant resistance to $\alpha-\mathrm{MD}$, these mutagenized third chromosomes are recessive lethal. During preliminary mapping of PR45, replacement of large portions of the third chromosome did not permit construction of a homozygous resistant stock. Crosses between the two resistant mutants produced very few flies (roughly 5% of expected) carrying both resistant chromosomes, indicating that the two chromosomes fail to complement. The fact that the two independently isolated mutants are lethal in trans configuration and that a homozygous resistant stock could not be established even after replacement of significant portions of the third chromosome suggests that dominant resistance and recessive lethality may be due to hits in a single locus.

It is not surprising that more than one locus can affect resistance to a lethal substance. The function of the 1 (2)amd locus and the locus reported here are unknown. The sites of possible action could include uptake or detoxification of the compound or alterations in the target protein. The genetic relationship between 1 (2)amd locus and the third chromosome
locus is being explored as is the relationship of the other 16 putative resistant mutants.
Table 1. Segregation of resistance to $\alpha-M D$ with the mutagenized third chromosome. 1

PR45 (bw; Tm3 Ser $\mathrm{Sb} / \mathrm{st}^{4}{ }^{45}$) X Con $\mathrm{B}\left(\mathrm{bw} ; \mathrm{Tm} 3 \mathrm{Ser} / \mathrm{st}^{\mathrm{B}}\right)^{2}$

Conc. L $\alpha-\mathrm{MD}$	\#eggs hatched	bw; Tm3 Ser/st** ${ }^{45}$	$\text { bw; st** }{ }^{45} / \mathrm{st}^{\mathrm{B}}$	bw; Tm3 Ser $\mathrm{Sb} / \mathrm{st}{ }^{\text {B }}$
0 mM	271	50	63	63
. 1 mM	257	71	58	26
. 2 mM	241	60	61	7
. 3 mM	265	50	43	0
. 4 mM	178	11	12	0

PR40 (bw; Tm3 Ser/st* ${ }^{40}$) X Con \#1 (bw; Tm3 Ser Sb/st**1) ${ }^{3}$ Conc. L $\alpha-\mathrm{MD}$ 非eggs hatched bw; Tm3 Ser/st*\#1 bw; st** ${ }^{40} / \mathrm{st*}^{\# 1}$ bw; Tm3 Ser Sb/st** ${ }^{40}$

0 mM	249	62	53	63
.1 mM	276	2	61	78
.2 mM	286	0	37	56
.3 mM	287	0	12	41
.4 mM	121	0	0	8

1) Data from reciprocal crosses were pooled since no maternal effect was found.
2) Con B was a control stock which had been through the same crosses as PR40, except that it was not mutagenized.
3) Con \#1 was a mutagenized control stock isolated from the screen and carried through the same crosses as PR45.

This work was supported by Public Health Service Grant GM19242 to T.R.F. Wright. Acknowledgements: We thank C. Ferguson, K. Walker and C. Dillard for valuable technical assistance and Dr. T.R.F. Wright for his help and encouragement.

References: Lewis, E.B. and F. Bacher 1968, DIS 43:193; Lindsley, D.L. and E.H. Grell 1968, Carnegie Inst. of Wash. Pub1. No. 627; Marsh, J.L. and T.R.F. Wright 1979, UCLA Symp. M. and Cell Biol. 14:183; Sherald, A.F. and T.R.F. Wright 1974, Molec. gen. Genet. 133:25; Sparrow, J.C. and T.R.F. Wright 1974, Molec. gen. Genet. 130:127; Wright, T.R.F., R.B. Hodgetts and A.F. Sherald 1976, Genetics $84: 267$; Wright, T.R.F., G.C. Bewley and A.F. Sherald 1976, Genetics 84:287.

Beckenbach, A.T. Simon Fraser University, Burnaby, B.C., Canada. Map position of the esterase-5 locus of D. pseudoobscura: a usable marker for "sex-ratio".

Recently, Anderson and Norman (1977) published a map of D. pseudoobscura mutants. The purpose of this note is to add the esterase-5 (est-5) locus to that map. The primary impetus for the work was to determine whether the est-5 alleles would provide usable markers for the "sex-ratio"
(SR) X-chromosome in laboratory population stud-
fes. Efforts to obtain recombinants between est-5 and SR have thus far failed (Beckenbach, unpub1.; Curtsinger and Feldman 1979). However, Sturtevant and Dobzhansky (1936) have provided a recombination map relating the $S R$ and standard (ST) chromosomes for a number of visible markers. Thus by localizing est-5 with respect to the visibles on the ST chromosome, it was hoped to obtain a better estimate of the linkage relationship between that locus and the SR inversions.

Stocks used: (1) A marker strain of D. pseudoobscura carrying the visible mutants yellow (y), singed (sn), vermillion (v), compressed ($c o$) and short (sh) was obtained from Dr. W.W. Anderson. This stock was found to be homozygous for the 1.07 allele of est-5. (2) A strain of the species, homozygous for the 0.85 allele, was obtained from Dr. G.A. Cobbs. This strain was originally derived from an isofemale line from a citrus grove in Riverside, California, and was made homozygous by recurrent inbreeding. Both strains carried the ST arrangement of the X-chromosome. Virgin females of the marker stock were crossed to est-5 males. A total of $887 \mathrm{~F}_{2}$ progeny (431 females, 456 males) were examined for the presence of the visible markers and then tested for est-5 genotype, using polyacrylamide vertical slab gel electrophoresis and the technique described by Cobbs (1976).

Results: The results are given in the table.

Region	Number Observed	Frequency
non-recombinants	297	0.335
$y-s n$	103	0.116
sn - v	18	0.020
v - co	194	0.219
co - est-5	54	0.061
est-5 - sh	418	0.471

Curtsinger and Feldman (1979) have placed the upper limit (95% confidence interval) of recombination between est-5 alleles and the SR chromosome in SR/ST heterokaryotypes at 1.5%. That value is based on 0 recombinants in 240 males examined. The results of this study suggest that their value is quite conservative. Comparison to Sturtevant and Dobzhansky's map suggests and upper limit of 0.5%. This value, too, may be excessive. SR differs from ST by three non-overlapping inversions and a considerable homosequential length of chromosome exists between the proximal pair of inversions and the distal one (Dob-

Fig. 1. Map positions for the visible markes and esterase-5 in the ST/ST homokaryotype and recombination frequency in the $S R / S T$ heterokaryotype. Map positions (upper figure) are taken from Anderson and Norman (1977), Sturtevant and Tan (1937) and this study. The symbol f refers to "forked"; mg refers to "magenta"; other symbols are defined in the text. Recombination values (lower figure) are taken from Sturtevant and Dobzhansky (1936).
zhansky and Epling 1944). Recombinants between SR and ST are known from that region (Wallace 1948; Anderson, pers. comm.), isolating the small distal inversion. The "sex-ratio" phenotype is carried in the proximal pair of inversions (Wallace 1948). It is quite likely that the recombination in the homosequential region accounts for much of the recombination found by Sturtevant and Dobzhansky. Since over 90 map units separate est-5 from sh, it is likely that most recombinants occur distal to est-5, beyond the region conferring the "sex-ratio" phenotype.

References: Anderson and Norman 1977, DIS 52:11-12; Cobbs 1976, Genetics 82:53-62; Curtsinger and Feldman 1979, Genetics, in press; Dobzhansky and Epling 1944, Carnegie Inst. Wash. Pub1. 554, Part II, Plate 4; Sturtevant and Dobzhansky 1936, Genetics 21:473-490; Sturtevant and Tan 1937, J. of Genetics 34:415-432; Wallace 1948, Evolution 2:189-217.

Carton, Y., J. Roualt and H. Kitano. Lab. Gén. Evolutive C.N.R.S., Gif-surYvette, France. Susceptibility of the seven sibling species of sub-group melanogaster infected with a Cynipide parasite.
pidae specific to Drosophila (Barbotin et al. thonaspis boulardi is a solitary, endophagous parasite (parasitoid) that oviposits into larvae of several species of Drosophila. We have tried to estimate the differential susceptibility of the seven sibling species of Drosophila towards this parasite. For this purpose we retained the following experimental procedure. Females of this solitary parasite lay their eggs (at $25^{\circ} \mathrm{C}$) in the second instar larvae of the host; consequently, the exposure of host larvae to the parasite was limited to 24 hrs . Ten wasp females were introduced into a plexi-

glas box containing 40 second instar larvae deposited on a thin disc of medium. 24 hrs. later, the larvae were collected and divided into two equal batches. The first replicate batch was dissected 48 hrs . after the beginning of infestation; we were able to estimate the experimental mortality (RLM), the degree of infestation (DIF), the average number of parasite eggs per parasitized larva (MNE) and the encapsulation rate (EPR), i.e., the intensity of cellular immunity of Drosophila species against the parasite (\% of larvae which encapsulated all the parasite eggs).

For the second replicate batch, observed on the 21 st day, information was obtained on the following: number of hosts surviving (RHE: rate of host emergence) comprising non-infested hosts plus infested hosts with successful immune reaction, experimental pupal mortality (RPM: rate of pupal mortality) including the hosts with remains of developing parasites, nonemerged fully developed parasites, and "mummified". pupae where no distinguishable parasite or fly remains were evident, and number of hosts producing parasite progeny (RSP: rate of successful parasitism). We must point out that the values for RLM and RPM were obtained from the experimental mortality subtracted from mortality obtained in controls. For each Drosophila species, the test was replicated eight times (i.e., 640 larvae).

The data were treated by a multivariate analysis. The analysis of correspondence has the advantage of allowing the simultaneous study and projection of the experimental results ($n=$ 56, since eight experiments at least were performed for each Drosophila species) and of the seven variables (DIF, MNE, EPR, RHE, RSP, RLM and RHM). To each group of experimental results showing the same characteristics (i.e., the same species of Drosophila) it is possible to associate a gravity center and an equidensity ellipse (50\%) (Fig. 1). In the same figure, we can observe the repartition of the different species, the localization of the different variables and the degree of association between the last two. It is therefore interesting to point out the main physiological features which characterize Drosophila species in response to C. boulardi.

Concerning defense capacity, D. yakuba and D. teissieri are the most effective (association with EPR); consequently these two species have the highest rate of host emergence (association with RHE). On the contrary, D. melanogaster has no encapsulation reaction; this species is the best host for C. boulardi (association with RSP on the graph). The other species present an intermediate position. D. erecta and D. orena are more susceptible to infestation; there is a good association on the graph between the two species and RLM. On the contrary, D. simulans presents susceptibility only at the pupal stage.

In this representative graph (Fig. 1) we observe the following correlations:

This representation, in some way, parallels the phylogenic relationships established by chromosomal analysis (Lemeunier et al. 1976). This parallelism strongly suggests that such specific host divergences played a role in the present situation. In other words, differences in susceptibility to the parasite would require long evolutionary periods and would be genetically stable.
References: Tsacas, L. 1979, C.R. Soc. Biogeogr. Paris 480:29-51; Barbotin, F., Y. Carton and S. Kelner-Pillault 1979, Bull. Soc. Ent. Fr. 84:20; Lemeunier, F. and M. Ashburner 1976, Proc. Roy. Soc. Lond. B 193:275.

Chadov, B.F. Institute of Cytology and Genetics, Siberian Branch of the USSR Academy of Sciences, Novosibirsk 630090, USSR. Effect of aberrant Y chromosomes on X chromosome nondisjunction.

It is known that structural mutations of X chromosomes and autosomes change considerably the frequency of secondary nondisjunction of X chromosomes. The latter changes with the age of the females, but to a lesser degree.

The effect of aberrant Y chromosomes on the secondary X chromosome nondisjunction was studied in order to obtain some lines contrasting for this character (Chadov 1971). The following Y chromosomes have been used: Y (structurally normal from Berlin wild stock), $y+Y, B S_{y}+Y, Y L$. $s c^{V 1}, R(Y) L b^{+}, R(Y) L, Y S . Y S, Y S, s c V 1 . Y S$. Every Y chromosome was introduced into the genome of $y \operatorname{sc}{ }^{\text {V1 }} \operatorname{In} 49 \mathrm{v} \mathrm{sc} 8 / \mathrm{y} v$ (female I), $\operatorname{In}(1) \mathrm{d} 1-49+\mathrm{B}^{\mathrm{Ml}}, \mathrm{y}^{2} \mathrm{sc} \mathrm{wa}^{2} \mathrm{v} \mathrm{BM1} / \mathrm{y} v \mathrm{f}$ (female II), and $\operatorname{In}(1) d 1-49+B M 1$, sc $v \mathrm{BM}^{\prime} / \mathrm{sc} \mathrm{v} \mathrm{f}$ (female III). The females were crossed to yellow males and the frequency of X chromosome nondisjunction in each of 27 stocks was determined (see table). This table shows that the stocks

Frequency of secondary nondisjunction (\%)
Female I Female II Female III

Y (normal)	54.2 ± 2.2	70.9 ± 2.0	69.6 ± 2.3
$\mathrm{Y}+\mathrm{Y}$	53.5 ± 2.2	68.5 ± 1.2	71.7 ± 0.5
$\mathrm{BSy}+\mathrm{Y}$	52.8 ± 1.5	70.7 ± 2.0	70.0 ± 2.4
$\mathrm{YL} . \mathrm{sc} \mathrm{V} 1$	51.3 ± 1.9	67.2 ± 1.7	---
$\mathrm{R}(\mathrm{Y}) \mathrm{L}$ bb +	49.9 ± 1.9	59.8 ± 2.0	60.6 ± 2.2
$\mathrm{R}(\mathrm{Y}) \mathrm{L}$	48.6 ± 1.5	58.5 ± 1.8	62.6 ± 1.9
$\mathrm{YS} . \mathrm{YS}$	43.2 ± 1.5	--	52.7 ± 1.5
YS	39.6 ± 1.8	48.3 ± 1.6	37.7 ± 1.6
$\mathrm{sc} \mathrm{V} 1 . \mathrm{YS}$	20.8 ± 1.4	21.8 ± 1.3	15.8 ± 1.3

 studied had different frequencies of X nondisjunction. To elucidate to what degree these differences depend on the Y chromosome structure or on the genetic background of the lines, the relative effect of each Y chromosome was determined by the formula

where f_{o} stands for nondisjunction frequency in the line containing structurally normal Y chromosome (control) and f_{n} represents the frequency in the line containing an aberrant Y chromosome. These values determined in each of the three lines for eight Y chromosomes are shown in the histogram. Each Y chromosome is presented as a triad of columns, YL.scVl and YS.YS as diads. It is evident that the aberrant Y chromosome effect doesn't depend considerably on the background of the line in which it was determined. The main tendency is that the smaller the Y chromosome size, the smaller is the frequency of X nondisjunction. The Y chromosomes deleted for the long arm ($\mathrm{sc}^{\nabla 1 .} \mathrm{YS}$ and Y S) reduce a control frequency in the greatest degree, followed by YS.YS chromosome; Y chromosomes deleted for the short arm ($\mathrm{YL} . \mathrm{sc} \mathrm{Vl}, \mathrm{R}(\mathrm{Y}) \mathrm{L} \mathrm{bb}+, \mathrm{R}(\mathrm{Y}) \mathrm{L}$) have a lesser effect; and "whole" Y chromosomes ($y+Y$ and $B S y+Y$) have the least effect.

Thus, the data obtained strongly suggest that the secondary X nondisjunction is a result of $X-Y$ pairing and the frequency of this pairing depends on a correspondence of X and Y sizes, in agreement with Grell's rule for nonhomolog pairing (Grell 1964).

References: Chadov, B.F. 1971, Genetica (Rus) 7(2):117-127; Chadov, B.F. and S.N. Davidova 1971, Genetica (Rus) 7(5):87-94; Grell, R.F. 1964, Proc. Nat. Acad. Sci. USA 52:226-232.

Chadov, B.F. and E.V. Chadova. Institute of Cytology and Genetics, Siberian Branch of the USSR Academy of Sciences, Novosibirsk 630090, USSR. Nonhomologous pairing and spontaneous interchange in D. melanogaster males.

It may be concluded from Moore's cytological data that nonhomolog pairing takes place in mitosis of D. melanogaster males (Moore 1971). Inasmuch as nonhomolog pairing is usually accompanied by spontaneous interchanges in D. females (Chadov 1975, 1977), it was supposed that nonhomologous pairing and interchanges between $C(2 L)$ and $C(2 R), C(2 L)$ and $Y, C(2 L)$ and X chromosomes took place in mitotically divisioned spermatogonial cells of sc . $\cdot \mathrm{Y} / \mathrm{Y} ; \mathrm{C}(2 \mathrm{~L}) \mathrm{RM}$, b pr; $\mathrm{C}(2 \mathrm{R}) \mathrm{RM}$, cn males bearing autosomal compounds $\mathrm{C}(2 \mathrm{~L}) \mathrm{RM}, \mathrm{b}$ pr and $\mathrm{C}(2 \mathrm{R}) \mathrm{RM}, \mathrm{cn}$. The appearance of chromosomes $2 \mathrm{~L} \cdot 2 \mathrm{R}, \mathrm{b}$ pr cn with the standard order of genes was expected as a result of interchanges between the compounds in their centromeric regions, and the appearance of half-translocations $Y \cdot 2 \mathrm{~L}, \mathrm{~b}$ pr or $\mathrm{X} \cdot 2 \mathrm{~L}, \mathrm{~b} \mathrm{pr}$, containing arm 2 L with b and pr genes, as a result of interchanges $C(2 L)-Y$ and $C(2 L)-X$.

In experiments the males mentioned above were mated to $C(1) D X, y ; b j p r ~ c n / T(Y ; 2) C$ and $C(1) D X, y ;+/ T(Y ; 2) C$ females. These females produce several types of gametes: some of them are euploid and complementary to sperm cells with new arising chromosome $2 \mathrm{~L} \cdot 2 \mathrm{R}, \mathrm{b}$ pr cn; others are aneuploid and complementary to sperm cells with half-translocations Y.2L or X.2L. The progeny of females in three crosses constituted 225 individuals. Judging by phenotypes, 156 individuals contained chromosomes 2L.2R and 12 individuals, half-translocations bearing arm 2L. As the subsequent analysis showed, some of the 225 individuals were sterile, 123 individuals contained chromosome $2 \mathrm{~L} \cdot 2 \mathrm{R}, \mathrm{b} \mathrm{pr} \mathrm{cn}$ and 5 individuals, half-translocation $\mathrm{YS} .2 \mathrm{~L}, \mathrm{~b} \mathrm{pr}$. 35 individuals arose from sperm and egg cells with nondisjunctional autosomes 2. The progeny with interchanged chromosomes arose in clusters. The data obtained have shown that in spermatogonial cells of Drosophila males nonhomologous pairing and interchanges take place.

References: Chadov, B.F. 1975, Genetica (Rus) 11(1):80-100; 1977, DIS 52:79;
and E.V. Chadova 1977, Genetica (Rus) 13:477-489; Moore, C.M. 1971, Genetica (Ned) 42:445-456.

Chadov, B.F. Institute of Cytology and Genetics, Siberian Branch of the USSR Academy of Sciences, Novosibirsk 630090, USSR. Nonhomologous $X-2$ pairing in females containing structurally normal X chromosomes. if two mon genotypes, but can take place in any genotype,
 (1) Females with structurally normal X chromosomes and heterozygous $S M 1$, a1 $1^{2} \mathrm{Cy} \mathrm{cn}^{2} \mathrm{sp}^{2}$ inversion were tested for formation of oocytes aneuploid for autosomes 2 and X's (Chadov et al. 1970). In mating with $\mathrm{C}(2 \mathrm{~L}) \mathrm{RM}, \mathrm{b}$ pr;C(2R)RM, en males they produced progeny arising from the following oocytes:

Oocyte type	XX	XX22	$2-2$	0	X22	X
Number	20	-	41	-	39	63

(2) Females $y / y ; C(2 L) R M 4, d p ; C(2 R) R M 4, p x$ were crossed to $C(2 L) P 4,+; C(2 R) P r,+$ males (Chadov and Podoplelova, in press). They produced, among others, 123 individuals resulting from the nondisjunction of matroclinal dp and px compounds. 49 of them arose from double aneuploid oocytes: 32 of XX type and 17 of $\mathrm{C}(2 \mathrm{~L}) ; \mathrm{C}(2 \mathrm{R})$ type. Oocytes of $\mathrm{XX} ; \mathrm{C}(2 \mathrm{~L}) ; \mathrm{C}(2 \mathrm{R})$ and 0 types were absent. One can suppose that the formation of double aneuploid oocytes is a result of pairing between the autosomal compounds and X's.

In both cases the conjugation of the X chromosomes was not purposely disturbed, but a part of them was involved in pairing with autosomes. The frequency of $\mathrm{x}-2$ pairing is nearly 1% in the first genotype and 8% in the second. According to Weinstein's data nearly 5% of X's are non-crossovers even if they are structurally normal (Weinstein 1936). Probably, these X's have taken part in the nonhomologous pairing. However, in the second genotype the frequency of nonhomolog pairing is higher than the 5% level. It is not ruled out that some crossover X's could be involved in nonhomologous pairing with autosomal compounds. Recent data concerning spontaneous formation of half-translocations in $y / \overline{X Y} ; C(2 L) ; C(2 R)$ females showed that some of them arising as a result of $\overline{X Y}-C(2 L)$ interchanges are X crossovers (Chadov and Podoplelova, in press).

The data obtained, from the methodical point of view, show that the registration of double aneuploid gametes is a simple and sufficiently sensitive test for the presence of nonhomolog pairing. In principle, it makes possible the study of this process also in structurally normal genotypes.

References: Chadov, B.F., E.V. Chadova and A.K. Gaponenko 1970, Genetica (Rus) 6(10): 79-91; Chadov, B.F. and M.L. Podoplelova, Genetica (Rus) in press; Weinstein, A. 1936, Genetics 21:155-199.

Charton-Strunk, U. and W.-E. Kalisch. Ruhr-Universität Bochum, Germany. Intrachromosomal effect of a heterozygous tandem duplication.

The tandem repeat chromosome $D p(1 ; 1) G r, y^{2} \mathrm{sc}$ (w^{-}spl $\mathrm{sn}{ }^{3}$) ($\mathrm{w}^{\mathrm{c}} \mathrm{sn} 3$), which duplicates approximately one quarter of the euchromatic part of the X-chromosome (3A2-3;8B4-C1), was checked for an introchromosomal effect (reviewed by Lucchesi 1976) on the $v-f$ and f - car region. $\mathrm{Dp}(1 ; 1) \mathrm{Gr}$ is homozygously and hemizygously lethal (Kalisch 1973). Crossover values are decreased within and adjacent to the duplication (Kalisch 1975). Exceptions come from patroclinous males and intrachromosomal exchanges between the two parts of the tandem repeat after double loop pairing (Kalisch 1976).

Data of experiments no. 3 and 4 in Table 1 show that the crossover decrease in region 1 is accompanied by a significant crossover increase in regions 2 and 3 . The long distance between vermilion (33.0) and forked (56.7) as well as the values of regions 1 and 3 suppose that the crossover value of region 2 could be composed of a decreased value near vermilion and an increased one in the rest of the region. Table 2 shows a comparison of the intrachromosomal effect in different X-chromosomal chromosome mutations on the f - car region. Surprisingly there is neither a correlation between the genetic length nor between the crossover reduction in the distal part ($y-v$ region) and the strength of the intrachromosomal effect on the proximal part of the euchromatic chromosome region (f - car region). The simultaneous effects of the heterozygous $D p(1 ; 1) \mathrm{Gr}$ chromosome (intrachromosomal effect) and of two heterozygous inversions in the autosomes (interchromosomal effect) on the f - car region have also been tested. The data of the experiments no. 2, 4, 5 and 6 in Table 1 show that the simultaneous effects are in the range of the summation of the two separate effects (90.63 \pm 47.98 : 157.51).

Table 1. Intrachromosomal effect of heterozygous $\mathrm{Dp}(1,1) \mathrm{Gr}$ females. Exceptions among the F_{1} males (patroclinous males and intrachromosomal exchanges; Kalisch 1976) are not listed, but included in the data. The numbers in parentheses are quotients obtained by dividing the finding for that region by the finding for that region in the control.

No.	Genotype of P-generation*	Number counted	Crossover units		
			$\begin{gathered} \text { Region } 1 \\ \mathrm{y}-\mathrm{v} \end{gathered}$	$\begin{gathered} \text { Region } 2 \\ v-f \end{gathered}$	$\begin{array}{r} \text { Region } 3 \\ \text { f - car } \\ \hline \end{array}$
1	y v f/+ x y v f/Y	5,078	23.95 ± 0.59	22.65 ± 0.58	
2	f car/+ x f car/Y	9,290	---	---	6.19 ± 0.25
3	$\mathrm{Dp}(1 ; 1) \mathrm{Gr}, \mathrm{y}^{2} \mathrm{sc} / \mathrm{v} \mathrm{f}$ car x y v f/Y	1,439**	$\begin{gathered} 9.68 \pm 0.77 \\ (40.41) \end{gathered}$	$\begin{gathered} 29.27 \pm 1.19 \\ (129.22) \end{gathered}$	$\begin{aligned} & 11.19 \pm 1.33 * * * \\ & (180.77) \end{aligned}$
4	$\mathrm{Dp}(1 ; 1) \mathrm{Gr}, \mathrm{y}^{2} \mathrm{sc} / \mathrm{f}$ car	4,803**	---	-	$\begin{gathered} 11.80 \pm 0.46 \\ (190.63) \end{gathered}$
5	f car/+; SM1/+; TM $/$ /+	3,567**	---	---	$\begin{gathered} 9.16 \pm 0.48 \\ (147.98) \end{gathered}$
6	$\mathrm{Dp}(1 ; 1) \mathrm{Gr}, \mathrm{y}^{2} \mathrm{sc} / \mathrm{f}$ car $; \mathrm{SM1} /+$; TM $2 /+$	1,286**	---	---	$\begin{gathered} 15.94 \pm 1.01 \\ (257.51) \end{gathered}$

* $\mathrm{Dp}(1 ; 1) \mathrm{Gr}$ chromosomes are additionally marked by ($\mathrm{w}-\mathrm{spl} \mathrm{sn}^{3}$) ($\mathrm{w}^{\mathrm{c}} \mathrm{sn} \mathrm{n}^{3}$) within the duplication. Females of exp. no. 4-6 were crossed to $v f^{36 a}$ car males.
** Data collected from single and mass cultures.
*** From $554 \mathrm{~F}_{1}$ males.

Table 2. Comparison of the intrachromosomal effect by two heterozygous X-chromosomal inversions (data from Grell 1962) and by heterozygous $\operatorname{Dp}(1 ; 1) \mathrm{Gr}$ females (Table 1 , exp. no. 4) in the f car region.

	Cytological position and length	Map length*	Region**	
			$\mathrm{y}-\mathrm{v}$	$\mathrm{f}-\mathrm{car}$
In(1)sc7/+	1B4-6;5D3-6	$\sim 13.7 \%$	23.2 \%	144.0 \%
In(1) $65 /+$	1C; 10B	~ 34.0 \%	0 \%	140.5 \%
Dp(1;1) Gr /+	3A2-3;8B4-C1	$\sim 26.0 \%$	40.4\%	190.6 \%

* Within the limits of the chromosome mutation in normal sequence X-chromosomes.
** Percent value for each region is the quotient obtained by dividing map length for that region in heterozygous females by map length for that region in the control with normal X -chromosomes.

References: Grell, R.F. 1962, Genetics 47:1737; Kalisch, W.-E. 1973, Chromosoma 41:237; 1975, Theoretical \& Applied Genetics 46:169;

1976, Genet. Res., Camb. 26:275; Lucchesi, J.C. 1976, In: The Genetics \& Biology of Drosophila, Vol. la:315 (Academic Press, New York).

Chenevix Trench, G. Trinity College, Dublin, Ireland. An endemic inversion in the X -chromosome of D . melanogaster.

An endemic paracentric inversion has been found in the X -chromosome of D . melanogaster. 35 progeny from a multiple mating (12 virgin females from a wild population, Dahomey, mated with 5 males of the Oregon-K inbred strain) were examined In addition, 2 or 3 larvae from each of 5 single
 the 47 individuals examined. It is a small paracentric inversion with break-points at 16 D and 18D, and was always observed to form an inversion loop in salivary gland cells of female larvae. This discovery is particularly interesting in view of the rarity of X-chromosome inversions. Dahomey is a wild type stock, collected in West Africa in 1969 and maintained in large cage populations in Edinburgh, whence this population came. It is noted for the high level of genetic variation which it has retained in the laboratory.

It has been shown earlier by cytophotometry that low temperature may cause underreplication of heterochromatin in a number of different organisms (Evans 1956). Heterochromatin DNA in Drosophila basically consists of ribosomal DNA and highly reiterative DNA. The latter contains two fractions: satellite and rapidly renaturing DNA. Satellite DNA consists of long blocks of simple repeats which differ from the main DNA fraction in buoyant density and are localized, with a few exceptions, in centromeric heterochromatin (Peacock et al. 1974). The rapidly renaturing DNA fraction consists of short blocks of simple repeats which do not differ from the main fraction in buoyant density (Hearst et al. 1974) and are localized in centromeric heterochromatin and some other loci, as follows from in situ hybridization (Fig. 1).

Chernyshev, A.I. and B.A. Leibovitch. Institute of Molecular Genetics, USSR Academy of Sciences, Moscow, USSR. The effect of temperature during development on the amount of heterochromatin DNA fractions in D. melanogaster.

-

Fig. 1. Hybridization of 3 H RNA synthesized on rapidly renaturing DNA with D. melanogaster polytene chromosome. The intensive labeling of centromeric heterochromatin and some other loci is clearly visible. Note regions 39D-E where histone genes are localized.

To find out whether the amount of heterochromatin DNA depends on the conditions of the flies' growth, we determined the amount of ribosomal, rapidly renaturing and satellite DNA in larvae and flies of the wild Oregon-RC stock which had been kept at $16^{\circ} \mathrm{C}$ for two generations and in control flies permanently kept at $25^{\circ} \mathrm{C}$. For this purpose RNA was hybridized, in the presence of excess RNA, with 3 H ribosomal RNA and with 3 H complementary RNA synthesized by E. coli RNA polymerase on the total satellite DNA (a mixture of satellites I, II and IV) and on the rapid$1 y$ renaturing DNA. The satellite DNA was isolated in a CsC1 gradient with actinomycin D (Peacock et al. 1974) and the rapid$1 y$ renaturing DNA with Cot $10-1$ was obtained from the main band DNA fraction by fractioning on hydroxyapatite (Hearst et a1. 1974).

The low temperature during development was found not to cause any decrease in the amount of the above heterochromatin DNA fractions either in larvae or in adult males (Table 1). Moreover, the amount of rDNA and rapidly renaturing DNA was the same in adult females reared at $16^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$. A significant difference was observed only with respect to satellite DNA in adult females reared at $16^{\circ} \mathrm{C}$ as compared with the control females ($25^{\circ} \mathrm{C}$). If the amount of ribosomal DNA and rapidly renaturing DNA is invariable, it is unlikely that the increase in satellite DNA content should be due to a relative decrease of the main DNA fraction. Since a large part of female DNA is constituted by oocyte DNA and that of the polytene nurse cells, the underreplication of satellite DNA at $25^{\circ} \mathrm{C}$ may be due to a greater polyteny of the nurse cells at normal temperature. But there is a reverse situation in the case of Drosophila salivary glands (Hartmann-Goldstein and Goldstein 1979). Another possible explanation of the cold-induced increase in the proportion of satellite RNA may be an increase in the amount of unfertilized eggs at $16^{\circ} \mathrm{C}$, the proportion of satellite DNA in them being as ,high as 80% of total DNA (Travaglini et al. 1972).

The above suppositions may explain the lack of excess satellite DNA in males unlike females. At the same time we cannot exclude the possibility that the highly heterochromatized Y chromosome in males affects the heterochromatin of the ausotomes. This seems to be suggested by the fact that the introduction of an additional Y chromosome into the Drosophila genome causes a smaller increase of satellite DNA than could be expected from the satellite DNA content in the Y chromosome (Wollenzien et a1. 1977). However, all these are suppositions that must be tested.

It is remarkable that adult females have twice as much satellite DNA as larvae, whereas the amount of ribosomal and rapidly renaturing DNA differs only slightly (Table 1). The excess of satellite DNA in flies corresponds to a smaller proportion of polytene tissues as compared with larvae. Meanwhile satellite DNA is more underreplicated than ribosomal DNA in larval salivary glands. The salivary glands of D. melanogaster contain 100 to 200 times less satellite DNA than the diploid tissues (Gall et al. 1971) but only 4 to 6 times less genes for rRNA than the diploid tissues (Spear and Gall 1973). The differences observed are probably due to this selective underreplication.

Lately it has been hypothesized that the amount of satellite DNA is unstable, for it may vary in closely related species (Ga1l et al. 1974) and in different tissues within one organism in the course of aging (Prashad and Culter 1976). Our data on the effect of temperature during development upon the satellite DNA content in Drosophila possibly support this hypothesis.

References: Evans, W.L. 1956, Cytologia 21:417-432; Gall, J.G., E.H. Cohen and M.L. Polan 1971, Chromosoma 33:319-331; Gal1, J.G., E.H. Cohen and D.D. Atherton 1974, Cold Spring Harbor Symposia 38:417-421; Hartmann-Goldstein, I. and D.J. Goldstein 1979, Chromosoma 71:333-346; Hearst, J.E., T.R. Cech, K.A. Marx, A. Rosenfeld and J.R. Allen 1974, Cold Spring Harbor Symposia 38:329-340; Peacock, W.J., D. Brutlag, E. Goldring, R. Appels, C. Hinton and D.L. Lindsley 1974, Cold Spring Harbor Symposia 38:405-416; Prashad, N, and R.G. Culter 1976, Biochim.

Table 1. The amount of different fractions of heterochromatin DNA in larvae and flies reared at $25^{\circ} \mathrm{C}$ and $16^{\circ} \mathrm{C}$.

$\begin{gathered} \text { DNA } \\ \text { source } \end{gathered}$	```t}\mp@subsup{}{}{\circ}\textrm{C during develop- ment```	Ribosomal DNA				Rapidly renaturing DNA				Total satellite DNA			
		\% of total DNA	$\begin{aligned} & 16^{\circ} \mathrm{C} \text { in } \\ & \% \text { of } \\ & 25^{\circ} \mathrm{C} * \end{aligned}$	```& larvae & o' imago in % of i imago```	N	\% of total DNA	$\begin{gathered} 16^{\circ} \mathrm{C} \text { in } \\ \% \text { of } \\ 25^{\circ} \mathrm{C}^{*} \end{gathered}$	+ larvae \& o' imago in \% of 9 imago	N	\% of total DNA	$\begin{aligned} & 16^{\circ} \mathrm{C} \text { in } \\ & \% \text { of } \\ & 25^{\circ} \mathrm{C}^{*} \\ & \hline \end{aligned}$	```& larvae & o' imago in % of & imago```	N
¢ larvae	25	0.254	(100)	82	2	5.87	(100)	95	2	3.6	(100)	62	2
	16	0.262	103 ± 2	84	2	5.93	101 ± 1.6	94	2	3.67	102 ± 1.3	54	2
¢ imago	25	0.310	(100)	(100)	14	6.2	(100)	(100)	6	5.8	(100)	(100)	17
	16	0.313	101 ± 1	(100)	14	6.32	102 ± 3	(100)	6	6.84	118 ± 1	(100)	17
o' imago	25	0.350	(100)	113	3	6.95	(100)	112	5	7.43	(100)	128	6
	16	0.364	104士2.2	116	3	7.29	105 ± 1.9	115	5	7.01	95 ± 4	102	6

The hybridization of DNA immobilized on nitrocellulose filters was carried out with an excess of labeled RNA. 1 to $2 \mu \mathrm{~g}$ of DNA deposited on a 5 mm HAWP filters was annealed in $25 \mu 1$ of 4 SSC for 18 hours at $66^{\circ} \mathrm{C}$ in the presence of $0.1 \mu \mathrm{~g}$ of $\mathrm{3}_{\mathrm{H}}$ rRNA or $1-2 \mu \mathrm{~g}$ of 3 H RNA complementary to the satellite or rapidly renaturing RNA. After annealing the filters were treated with RNAase and counted by a scintillation counter.
$\mathrm{N}=$ the number of experiments.

* Results expressed as mean \pm standard deviation.

Curtsinger, J.W. Stanford University, Stanford, California. [Present address: North Carolina State University, Raleigh, North Carolina] Embryonic lethality associated with multiple inversion heterozygosity in D. pseudoobscura.

In several species of Drosophila females heterozygous for two or more unlinked inversions produce high frequencies of inviable embryos (Riles 1965 and references therein). Intense selection against multiply heterozygous females can result: Terzaghi and Knapp (1960) reported 95\%, 93\%, 79\% and 59% egg hatchability among progeny of D. pseudoobscura females heterozygous for zero, one, two, and three unlinked inversions respectively. The resulting selection might account for the restriction of inversion polymorphism mostly to one chromosome: once an inversion system is established, the increase of new inversions (initially present only in heterozygous condition) on nonhomologous chromosomes would be inhibited by reduced fitness of some carriers.

$\begin{array}{r} \text { Mat } \\ \text { geno } \end{array}$	$\begin{aligned} & \text { ernal } \\ & \text { type } \end{aligned}$	Total eggs	Percent hatch	t-test	Probability ${ }^{2}$
X/X	ST/ST	225	. 964	t=0.11	$\mathrm{p}=0.912$
X/SR	ST/ST	186	. 962 \}	$t=0.11$	$\mathrm{p}=0.912$
X/X	AR/ST	231	. 978	$t=2.99$	$p=0.003$
X/SR	AR/ST	206	.917 \}	$t=2.99$	$\mathrm{p}=0.003$
X/X	TL/ST	196	. 990	$t=3.10$	
X/SR	TL/ST	202	. 936	$t=3.10$	$\mathrm{p}=0.002$
X/X	PP/ST	186	. 946	$t=2.17$	
X/SR	PP/ST	150	. 880	$t=2.17$	$\mathrm{p}=0.030$
X/X	$\mathrm{CH} / \mathrm{ST}$	227	. 991		<0
X/SR	$\mathrm{CH} / \mathrm{ST}$	215	. 907	. 52	p<0.00
All s	ingle hets.	1026	. 974		
All d	ouble hets.	773	. 912 \}	$t=5.85$	p<0.001
$1 \mathrm{X}=$ Standard (X)			TL = Tree Line (III)		
SR = "Sex-Ratio" (X)			PP = Pikes Peak (III)		
ST = Standard (III)			CH = Chiricahua (III)		
AR = Arrowhead (III)					
2 Two-tailed test.					

"Sex-Ratio" stocks were col-
lected at Jasper Ridge Biological Preserve in San Mateo County, California. Third chromosome stocks were obtained from Dr. W. Anderson. Stocks were maintained on Carolina Instant Medium at approximately $21^{\circ} \mathrm{C}$. Groups of ten 3-day-old females of each of the 10 genotypes shown in the table were mated with X/Y ST/ST males. Eggs were collected for 24 hours on day 5 and scored for hatching for 3 days. Dead embryos turn brown, while unfertilized eggs (two observed) remain white.

Results of the zygotic mortality observations are shown in the table. Standard X homozygotes and Sex-Ratio heterozygotes produce indistinguishable proportions of inviable embryos, provided individuals are also homozygous for inversions on III. However, among third chromosome heterozygotes, X chromosome heterozygotes consistently produce more inviable embryos than X chromosome homozygotes. Thus the deleterious effect of multiple inversion heterozygosity in D. pseudoobscura is confirmed for the two sets of inversions which are widespread in natural populations.

While the pertinent pair-wise comparisons of embryonic mortality shown in the table are statistically significant, the resulting selection differentials are small compared to those reported by Terzaghi and Knapp (1960) for other inversions. Excessive embryonic mortality among progeny of multiply heterozygous females might result from meiotic mis-pairing and subsequent production of aneuploid gametes. Sex-Ratio heterozygotes could be less sensitive to mis-pairing as a result of the unique inversion arrangement, consisting of three nonoverlapping inversions which preserves chromosome "flexibility". On the other hand, the proportions of inviable embryos observed in this study show no obvious relation to the length of third chromosome inversions carried by double heterozygotes.

The selection differentials reported here are small compared with other modes of selection associated with Sex-Ratio, which can include strong viability, fertility, and sexual selection (Wallace 1948, Policansky 1979, Curtsinger and Feldman 1979). Thus these data confirm the assertion of Anderson et al. that third chromosome heterozygosity is unlikely to significantly influence the geographical distribution of Sex-Ratio inversions through increased embryonic mortality among progeny of multiple inversion heterozygotes.

References: Anderson, W.W., Th. Dobzhansky and C.D. Kastritsis 1967, Amer. Nat. 101: 89-93; Curtsinger, J.W. and W.M. Feldman 1979, Genetics, in press; Policansky, D. 1979, Amer. Nat. 114:672-680; Terzaghi, E. and D. Knapp 1960, Evol. 14:347-351; Riles, L. 1965, Genetics 52:1335-1343; Wallace, B. 1948, Evol. 2:189-217.

Eckstrand, I.A. and R.H. Richardson. University of Texas at Austin, Austin, Texas. Comparison of water balance kinetics between laboratory-reared and field-caught D. mimica.

Drosophila mimica are found on the island of Hawaii in a variety of habitats, ranging from rain forests to arid regions. The species is usually associated with the soapberry tree, Sapindus saponaria, and the flies are usually found courting, feeding, or fighting on the leaf litter. Although D. mimica are easily captured, the require special conditions to rear in the laboratory. However, the Drosophila Species Resource Center at the University of Texas maintains several stocks, including K85Pl, which is the "standard" line.

The ability to remain in water balance is probably a highly selected character (Eckstrand 1979), and physiological, morphological, and behavioral adaptations are all important to survival in field animals. It is likely, however, that the fitness components of water balance control differ between field and laboratory flies. To test differences between field and laboratory flies, transpiration and sorption rates for each group were determined by using tritiated water to measure net water uptake and loss. The techniques for this procedure are found in Eckstrand (1979).

Table 1. Comparison of transpiration rate constants and sorption rates in laboratory and fieldcaught D. mimica.

a_{v}	Sex	K85P1		Field	
		$\begin{gathered} \mathrm{k}_{\mathrm{T}} \\ (\% / \mathrm{hr}) \end{gathered}$	$\begin{gathered} \mathrm{m}_{\mathrm{S}} \\ (\mathrm{mg} / \mathrm{hr}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{k}_{\mathrm{T}} \\ (\% / \mathrm{hr}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{m}_{\mathrm{S}} \\ (\mathrm{mg} / \mathrm{hr}) \end{gathered}$
0.99	F	-0.068	0.179	-0.328	0.838
	M	-0.094	0.168	-0.249	0.419
0.70	F	-0.165	0.273	-0.177	0.301
	M	-0.150	0.201	-0.229	0.279

Table 1 gives the net transpiration rates k_{T} or \% body water lost each hour) and the net sorption rates ($m S$ or the $m g$ of water taken up each hour) for labora-tory-reared and field-caught flies tested at either $0.99 \mathrm{a}_{\mathrm{V}}$ or at $0.70 \mathrm{a}_{\mathrm{v}}$ ($\mathrm{a}_{\mathrm{v}}=$ relative humidity/100). Laboratory animals have lower transpiration and sorption rates than do field-caught flies, especially at the high av. Culture conditions select for inactivity, and because laboratory flies expend little energy searching for food and mates, they probably have lower metabolic rates than do their wild counterparts. Field flies are noticeably more active than those reared in the laboratory. Their high activity level is probably supported by high metabolic rate which requires that the flies open their spiracles to obtain oxygen. This would result in increased transpiration. Sorption across the tracheal surfaces or the rectal pads might be enhanced to compensate for the increased water loss. At the low humidity, both field and laboratory D. mimica are less active, and their transpiration and sorption rates are similar. Field flies may additionally rely on behavioral adaptations and habitat selection to reduce water loss. Therefore, they may not require strict physiological regulation of water loss at low a_{v} 's. However, laboratory animals, which cannot reduce water loss by habitat selection, may depend relatively more on physiological control of water balance.

References: Eckstrand, I.A. 1979, Ph.D. dissertation, The University of Texas at Austin, 190 pp.

Engels, W.R. and C.R. Preston. University of Wisconsin, Madison, Wisconsin: Characteristics of a "neutral" strain in the PM System of hybrid dysgenesis.

The great majority of D. melanogaster strains can be classified by sterility tests as either paternally-contributing (P) or maternally-contributing (M) in the PM system of hybrid dysgenesis (Kidwe11 et a1. 1977). A few strains, however, appear to be neutral ("Q strains") by their lack of sterile offspring when crossed to either P males or M females (Kidwell 1979). One such strain, designated ν_{6}, is an inbred line derived from a Madison wild population in 1975. The neutrality of ν_{6} was demonstrated as follows: Under conditions restrictive for sterility (Engels and Preston 1979) a large number of crosses between single ν_{6} males and females from the M strain, bw;st, were performed. Sterility tests of the daughters by the tissue culture plate method of Engels and Preston (1979) yielded less than 1% sterility (4/427), which is indistinguishable from background effects. This lack of sterility cannot be attributed to a suppressor of sterility in the ν_{6} genome, as shown by tests of each of the ν_{6} major chromosomes in the absence of the others. The procedure was similar to that reported previously (Engels 1979a) for π_{2}, a typical P strain. Sterility frequencies from the lone action of the X, second, and third chromosomes of ν_{6} were respectively $1 / 103,1 / 91$, and $0 / 93$. Therefore, ν_{6} lacks the potential for sterility when crossed to M females. To determine the cytotype of ν_{6} (see Engels 1979a), $133 \nu_{6}$ females were crossed individually to π_{2} males under restrictive conditions. None of these crosses produced an appreciable proportion of sterile daughters, with the overall sterility frequency being less than 1% (14/2071). We may therefore say that ν_{6} has the P cytotype, which confers immunity to the sterilizing action of the π_{2} chromosomes (Enge1s 1979a).

There is a strong correlation among wild genomes between their ability to cause sterility and their ability to bring about male recombination when in the M cytotype (Engels and Preston 1980). One might therefore expect ν_{6} to produce little or no male recombination in its dysgenic hybrids. This was not the case, however, as shown by experiments measuring male

Fig. 1. Determination of cytotype for two reciprocal types of hybrids between ν_{6} and bw:st. Each block represents sterility tests of 16 daughters of a single A^{1} or B^{1} female.
recombination between cn and bw , and also segregation distortion at chromosome 2 in the two reciprocal kinds of hybrids involving ν_{6} and M strain (see Engels 1979 b for stocks and procedures). Among approximately 200 progeny from each of 40 males (20 of each reciprocal type) the recombination frequency was $0.3 \% \pm 0.1$ for the dysgenic class, and 0 for the reciprocal class. The transmission frequencies of the ν_{6} second chromosome were 50% and 54% (both $\pm 1 \%$) respectively. (See Engels 1979c for the method of calculating standard deviations when clustering is present.) Treating the progeny of each male as an independent observation, the difference between the two reciprocal crosses was significant at $p<0.01$ by the Rank Sum test for both comparisons. Thus v_{6} behaves like a typical P strain regarding male recombination and segregation distortion.

Finally, the following set of experiments shows that the cytotype of ν_{6} as well as its chromosomal determinants are essentially identical to those of π_{2}. Genetically-identical females from the two reciprocal crosses between v_{6} and $b w / s t$ were grown in permissive conditions, then mated to π_{2} males under restrictive conditions to determine their cytotype. The results are in Fig. 1. It is clear that the cytotype of ν_{6} is transmitted matroclinously through two generations, and is therefore not determined by strictly Mendelian factors or simple maternal effects. A self-replicating property of the cytoplasm (or nucleoplasm) which was previously demonstrated (Engels 1979a) is again indicated. To continue substituting the ν_{6} genome into bw;st cytoplasm, the A^{1} females were backcrossed to ν_{6} males for several generations to produce A^{2}, A^{3}, etc., females. Each generation about 100 of these females were crossed to π_{2} to determine their cytotype as above. We see (Fig. 2) that with each successive generation, more of the females have switched their cytotype from M to P. By comparing these results to Fig. 2 in Engels (1979a) it is clear that the ability of the v_{6} genome to switch the cytotype is at least equal to that of π_{2}.

We may conclude that ν_{6} is neutral for gonadal dysgenic sterility, but it behaves like a typical P strain regarding its influence on cytotype and on the production of some other dysgenic traits. These observations imply that the determinants of cytotype and other traits,

Fig. 2. Determination of cytotype after each successive backcross generation of genomic substitution. Each block represents sterility tests of 16 daughters of a single Al female.
are separable from those of sterility. One possibility is that ν_{G} carries a P factor (presumed to be a movable, multicopy genetic element [Engels 1980]) which lacks its usual sterility function but retains its other capabilities.

This work was done in the laboratory of J. F. Crow, University of Wisconsin, supported by grants 5T32 GM 07133-03, 22038, and 07131 from the National Institutes of Health.

References: Engels, W.R. 1979a, Genetical Research 33:219-236; Research 33:137-146; 1979c, Environmental Mutagenesis 1:37-43; 1979b, Genetical and J. Hicks), in preparation; Engels, W.R. and C.R. Preston 1979, Genetics 92:161-174; ___ 1980, Genetics 95 (in press); Kidwell, M.G., J.F. Kidwell and J.A. Sved 1977, Genetics 86:813-833; Kidwe11, M.G. 1979, Genetical Research 33:105-117.

Falk, R. The Hebrew University, Jerusalem, Israel, and University of Oregon, Eugene, Oregon. Somatic mosaics produced by a loss of a centric fragment.
mitotic recombination events. Here we report on still another method to obtain marked clones, namely by nondisjunction of free chromosome fragments with appropriate markers.

Novitski and Puro (1978) derived a small free ring chromosome from the second autosome, bearing the dominant bristle morphology mutant B1: Dp(2;f)B1. Flies with two wild type alleles on their chromosomes and with the mutant allele on the ring are Bl in phenotype. The spontaneous loss of the ring during development can be observed by the appearance of non-Bl bristles on the thorax and the head. We followed seven macrochetae on the dorsal side of the head, the two major humeral bristles and 13 macrochetae on the thorax (including two sternopleurals). 213 out of 1070 scored flies had non-Bl spots (19.9\%); of these 193 had one spot, 18 had two spots and 2 had three spots each. This is in good agreement with the expectation of random distribution of independently originating spots ($X^{2}(3)=0.86$). The size of the spots ranged from those of single bristles to one comprising half the thorax and head:

No. of bristles	No. of flies	No. of bristles	No. of flies
1	131	10	2
2	52	11	1
3	16	13	2
4	9	14	1
5	6	15	3 (half thorax)
6	7	\vdots	1 (half body)
7	2 (half head)	22	

of the mutant character.
The distribution of spots of all sizes indicates that fragment loss may occur at any time during development, being merely a function of the number of cells at each stage that undergo cell division, starting with few large clones induced at early stages of embryogenesis to many small ones shortly before puparium formation. However, the distribution of the spots may depend also on the presence of borderlines for developing clones and on the denseness of the bristle pattern at each site. Thus of the 10 large clones comprising most of the mesothorax only one included also the head disc, while 8 included also the humeral disc; two of these included both left and right humeral discs. These clones were obviously established even before the imaginal disc borders were determined, some even before the midline was laid down (note that the humeral focus is nearer to the midline on the blastoderm fate map than are the mesothoracic foci). In two flies an anterior dorso-central bristle was included in halfthorax clones of the "other side". It could be that these clones too were established before midline determination. Only three of the small clones crossed disc border lines (one 3-bristle spot crossed from head, through humerals to mesothorax). It is possible that these were also large early clones that extended mainly to the inside of the animal.

The scutum-scutellum separation occurs quite late in larval development (Garcia-Bellido 1975) and indeed, of 43 scutellar clones, 15 included only one bristle, 14 included both bristles and another 14 extended into the scutum.

There is no distinct pattern of spot distribution within the head and thorax (besides contingency); spots partially overlap in all possible directions, thus confirming the absence of cellular determination within the disc until late in development (Sturtevant 1929). However, a nonrandom rate of cell division at the late larval development is indicated by the distribution of single bristle spots: Of the 131 single bristle spots, 37 affected the anterior and posterior verticals on the head, 11 the posterior humerals, 13 the anterior notopleurals and 15 the posterior dorso-centrals. The same bristles were also frequently involved in larger spots (though they were not the most frequently involved ones in these spots). The remaining 17 bristles were affected 55 times in single bristle spots. This would indicate a higher rate of cell division at the posterior zones of all three imaginal discs as well as at the antero-lateral zone of the mesothorax at late larval development.

In summary, the loss of a small free chromosome fragment, carrying genes of interest, could become a useful tool in developmental genetics of Drosophila. The random loss of such a fragment throughout development may prove useful for the study of the kinetics of determination and of cell multiplication.

Work supported by NIH grants GM 18678 to E. Novitski and GM 24182 to J.H. Postlethwait.
References: Garcia-Bellido, A. 1975, Ciba Found. Symp. 29:161-182; Novitski, E. and J. Puro 1978, DIS 53:205; Sturtevant, A.H. 1929, Z. wiss. Zool. 135:323-356.

Fogleman, J. and W. Heed. Arizona, Tucson, Arizona.

University of A comparison of the yeast flora in the larval substrates of D. nigrospiracula and D. mettleri.

Table 1. Comparison of Larval Substrates

| Parameter | Cactus
 Rots | Soaked
 Soils |
| :---: | :---: | :---: | | Significant |
| :---: |
| Difference? |

Log Average Concentration*
Pichia opuntiae
(var. thermotolerans)

Pichia cactophila	7.282	7.669	no
Pichia heedii	7.099	7.528	no
Pichia amethionina	6.797	6.744	no

3.163	7.406	$P<0.1$
2.219	6.053	--
4.902	5.423	-
-	6.125	-
-	5.247	-
0.65	0.60	no
7.198	7.341	no

og Avg. Concentration (A11 Yeasts)

Shannon-Weaver

Diversity Index (H^)	0.433	0.630	--
(previous estimate)	(0.590)	(0.568)	--
Evenness $\left(\mathrm{J}^{\prime}\right)$	0.512	0.660	-

Avg. Number of Yeast
Species Per Sample \pm SE 4.57 ± 0.48 5.43 ± 0.57 no
(previous measurement) $(1.88 \pm 0.33)(2.00 \pm 0.38)$ no
Average \% (Wt./Wt.)
Moisture \pm SE $\quad 82.3 \pm 1.3 \quad 13.5 \pm 1.0 \quad \mathrm{P} \ll 0.001$

Two cactiphilic Drosophila of the Sonoran Desert, nigrospiracula and mettleri, exhibit a larval niche separation (Heed 1977). D. nigrospiracula breeds mainly in the necrotic tissue of cardon (Pachycereus pringlei) on the Baja peninsula and saguaro (Carnegiea gigantea) on mainland Mexico. D. mettleri breeds in the soil saturated with the fermenting juices of these cacti. The niche separation certainly acts to eliminate interspecific larval competition. The mechanism through which the niche separation is maintained has yet to be fully elucidated, but laboratory experiments have shown that nigrospiracula larvae are more adapted to relatively "fresh" cactus substrates (Mangan 1978). Previous studies (Heed et al. 1976; Starmer et al. 1976) have analyzed the yeast flora associated with cactiphilic Drosophila and their host plants. They reported little overall difference between saguaro and soaked soils with one yeast, Pichia membranaefaciens, being predominant in both. They speculated that competition for this yeast could be one of the factors that led to the spatial isolation of the larvae. Since then, it has been shown that their isolates designated P. membranaefasciens were really several new species of yeast distinct from

[^2]P. membranaefaciens (Starmer et al. 1980). In addition, new techniques have been developed which provide for the quantification of the yeast flora through the use of selective media (Starmer et al. 1980). This report is a reinvestigation of the larval substrates in the light of this new information.

Seven samples of each substrate, saguaro rots and soaked soils, were collected over a 10 -month period starting in January 1979. The results are shown in Table 1 . Yeast concentrations are expressed as the log of the average number of cells per milliliter of available water. That is, an adjustment was made to compensate for the differences between substrates in percent moisture content. Statistical comparisons between substrates represent t-tests of arc sin $\sqrt{\text { relative percent }}$ transformed data.

The bottom four species in Table 1 were not used in the comparison of substrates since they represent less than 1% of the total yeasts and were infrequently encountered. The concentration of only one, C. sonorensis, of the remaining five species was significantly different between substrates. The high concentration of this species in soils, however, is due to one collection in which it occurred with abnormally high frequency. There are noticeable increases in the diversity index for soils and in the average number of yeasts per sample for both substrates over previous reports of these parameters. These increases are most likely due to the split of P. membranaefaciens into the four new species: P. opuntiae, P. cactophila, P. heedii, and P. amethionina. It is evident from the data that no major differences exist between the substrates with respect to yeast species. Seasonal variation in yeast flora may, however, have masked significant differences between substrates. Seasonal variation in yeast flora has been shown to exist in Opuntia rots of the Australian desert (H. J. Phaff, pers. communication).

The techniques employed in this study provide a more accurate characterization of the yeast flora than previously possible. This is especially true with respect to yeasts that occur in low concentrations. The conclusions remain essentially unchanged: there are several predominant yeasts which could be considered common resources and the basis of competition if the larvae of the two species were to live together and feed exploitatively. The only physical parameter measured for which major and consistent differences exist between substrates is percent moisture content (Table l). It is possible that females of the two Drosophila species use this as a cue for oviposition site separation.

This work was supported by an NIH postdoctoral fellowship (GM06807) awarded to J.F.
References: Heed, W.B., W.T. Starmer, M. Miranda, M.W. Miller and H.J. Phaff 1976, Ecology 57:151-160; Heed, W.B. 1977, Proc. Entomol. Soc. Wash. 79:649-654; Mangan, R. 1978, Ph.D. Dissertation, Univ. of Arizona; Starmer, W.T., W.B. Heed, M. Miranda, M.W. Miller and H.J. Phaff 1976, Microbial Ecology 3:11-30; Starmer, W.T., H.J. Phaff, W.B. Heed, M. Miranda and M.W. Miller 1980, Am. Nat. (submitted).

Fujikawa, K. Hiroshima University, Hiroshima, Japan. Pilot experiments involving visible mutations induced in immature Drosophila oocytes by γ-rays at low dose rate.

In an attempt to obtain more information on factors which alter the incidence of genetic radiation damages induced in meiotic germ cells corresponding to prophase I, the dose-rate effect of γ-rays on the frequency of visible mutations induced in immature Drosophila oocytes was in-
vestigated in the experiments described herein.
Females of D. melanogaster carrying X-chromosomes marked with sc $\mathrm{S}^{\mathrm{S}} \mathrm{B}$ InS sc ${ }^{8}$ were collected within 4 h of eclosion and then irradiated with 3000 rad of $60 \mathrm{Co} \gamma-\mathrm{rays}$ either at $3000 \mathrm{rad} / \mathrm{min}$ or at $30 \mathrm{rad} / \mathrm{min}$. The irradiated females were aged for 24 h and mass mated with $\mathrm{y} \mathrm{w} \mathrm{m} \mathrm{f} / \mathrm{BS} \mathrm{Y}$ sc^{8}; dp males (40 females to 120 males per culture bottle). Six successive daily brood changes were made. All the F_{1} progeny were examined for dumpy mutations, and the recovered mutants were classified according to their phenotypes ($o l v, o v, o l, 1 v, o, v$ and $c m ; ~ s e e ~ C a r l s o n ~ a n d ~$ Oster 1962). The yellow and Minute exceptions were scored in the F_{1} female count. Although these three kinds of exceptions are detectable as either whole-body or mosaically expressed changes, the mosaic-individuals for any of them were seldom recovered in the present experiments. Therefore, data pertaining to mosaic-types are not discussed in this report.

The results obtained are summarized in Table 1. Since the number of any kind of exceptions isolated in each brood was not large, the mutation frequencies in this table are given as average of those obtained in six broods. As shown in Table 1 , the frequencies of yellow and Minute

Table 1. Frequencies of yellow, Minute and dumpy mutations observed after irradiation of immature oocytes with 3000 rad of γ-rays at $3000 \mathrm{rad} / \mathrm{min}$ and at $30 \mathrm{rad} / \mathrm{min}$.

	Mutation frequency		
Dose rate (rad/min)	yellow	Minute	dumpy
Control	0.0000	0.0442	0.0000
	$(0 / 13587)$	$(6 / 13587)$	$(0 / 24113)$
3000	0.2254	0.7364	0.1023
	$(15 / 6654)$	$(49 / 6654)$	$(12 / 11733)$
30	0.0781	0.2342	0.0894
	$(9 / 11529)$	$(27 / 11529)$	$(18 / 20141)$

mutations are considerably lower after irradiation at $30 \mathrm{rad} / \mathrm{min}$ than after irradiation at $3000 \mathrm{rad} / \mathrm{min}$. Statistical tests by the use of Kastenbaum and Bowman's tables (1970) showed that such differences were highly significant, but the difference observed for dumpy mutations was far from significant. The simplest, although not only, interpretation for the relative lack of dose-rate effect on dumpy mutations may be ascribed to the fact that these mutatations originate from point mutational events as well as from breakage events (Carlson and Southin 1962; Fujikawa and Inagaki 1979), while the majority of the yellow mutations induced in scute ${ }^{8}$ chromosome (the one used) and Minute mutations are known to involve minute deficiencies (see Frye 1961, and Lindsley and Grell 1968). An association of yellow mutations with minute deletions was confirmed in the present study. Almost all of the yellow mutants recovered after irradiation either at $3000 \mathrm{rad} / \mathrm{min}$ or at $30 \mathrm{rad} / \mathrm{min}$ were male lethals in the progeny test. On the other hand, it was found that 9 out of 18 dumpy mutants isolated in the low dose-rate series and 5 out of 12 in the high dose-rate series were the ($o l, 1 v, o, v$) types, a class of dumpy mutations which are usually free from aberration phenomena (Carlson and Southin 1962; Fujikawa and Inagaki 1979). The remainder were the olv types, which often originate from deficiencies or rearrangements. However, no Minute bristles were observed in the olv mutants, although a locus whose deficiency results in a Minute phenotype lies close to the dumpy locus (see Carlson and Southin 1962).

Acknowledgements: I express my sincere thanks to Dr. E. Inagaki for stimulating interest and to Dr. K. Takeshita for providing the facility of γ-ray irradiation.

References: Carlson, E.A. and I.I. Oster 1962, Genetics 47:561-576; Carlson, E.A. and J.L. Southin 1962, Genetics 47:321-336; Frye, S.H. 1961, Genetics 46:865-866; Fujikawa, K. and E. Inagaki 1969, Mutation Res. 63:139-146; Kastenbaum, M.A. and K.O. Bowman 1970, Mutation Res. 9:527-549; Lindsley, D.L. and E.H. Grell 1968, Genetic Variation of D. melanogaster.

Futch, D.G. San Diego State University, San Diego, California. Crossing over in a hybrid D. ananassae-D. pallidosa Xchromosome.

In the course of my studies on the comparative genetics of the two interfertile sibling species, D. ananassae and D. pallidosa, I have found a certain synthesized X-chromosome to be very useful, especially as a marker chromosome in the analysis of parthenogenic strains of the two species. The chromosome is marked with the three mutations yellow, forked, and white and has been integrated by repeated (13 generations) backcrossing into otherwise normal strains of ananassae and pallidosa.

This particular chromosome was obtained from F_{1} interspecific hybrid females heterozygous for an ananassae X-chromosome marked with yellow and a pallidosa X-chromosome marked with forked and white and resulted from a single crossover between y and f. Several genetic maps have been constructed for the ananassae X-chromosome with these three mutations arranged in the sequence y f w (see Moriwaki and Tobari 1975). The three alleles in this hybrid chromosome, y^{d} (ananassae) and f and w (pallidosa), were reported by me in DIS 50 (1973). The forked mutant which has a very strong bristle effect was mistakenly identified as a singed mutant in that report because of its phenotypic resemblance to singed and because it seemed to complement another allele of forked (probably f49) carried in one of my ananassae stocks. However, mapping results have subsequently placed this mutant at the forked locus and closer inspection of hybrid females heterozygous for the two alleles in trans-position has revealed a very mild forked phenotype expressed by one or two bristles in most of them. Claude Hinton (pers. communication) has noticed a similar relationship between a pair of ananassae forked alleles in his possession, one of them being $f 49$.

The hybrid composition of this synthesized X-chromosome and estimates of the approximate physical locations of the three mutant genes have been determined by observing how the chromo-
some crosses over in a variety of genetic backgrounds. The chromosome which is identically submetacentric in both species has a left arm which is largely ananassae containing the mutant allele y^{d} and the standard ananassae gene sequence rather than the standard sequence of pallidosa with the fixed inversion $1 n$ (1) LA. The right arm is mainly pallidosa containing the two mutant alleles f and w from pallidosa.

Table 1. X-Chromosome Inversions

Inversion	Approximate proportion of			
chromosome arm				

Table 2.

Exp. No.	Structural karyotype of female parent		No. progeny		\% Recombinant between	
Chromosome						
	$\mathrm{X}=1$	2	3		$y-f$	f. - w
	L - R	L . R	L . R			
1	$\underline{+\quad . \quad+}$	$\underline{+\quad . \quad+}$	$\underline{+}+$	1992	42.8	20.4
2	$\underline{+\quad . \quad+}$	$\frac{\mathrm{A} \cdot+}{+}$	A $\quad . \quad+$ $+\quad . \quad+$	2216.	43.2	27.8
3	$\frac{\mathrm{A}}{\mathrm{A}}$. +	$\frac{(C ; D), B \cdot(A ; B)}{(C ; D), B \cdot(A ; B)}$	$\underline{+\quad .} \mathrm{B}$	2193	9.5	22.3
4		$\frac{(C ; D), B \cdot(A ; B)}{+}$	$\underline{+\quad . \quad B}$	1795	11.1	34.6
5	$\frac{A \cdot A}{+\quad \cdot}$	$\frac{C,(E ; B) F \cdot(A ; C), D}{+\quad+}$	$\frac{C}{+.} \quad(B ; C)$	1222	13.7	1.6
6	$\frac{A, B . A}{+}$	$\frac{C,(E ; B) F \cdot(A ; C), D}{+\cdots}$	$\frac{\mathrm{C}}{\mathrm{C}} . \quad+$	1391	1.4	2.9

Table 1 provides a description of three naturally occurring inversions in pallidosa and ananassae Xchromosomes. 1n (1) A is a fixed sequence in pallidosa and two strains of ananassae from Papua, New Guinea (Futch 1966). Fig. 1 represents a photomicrograph of synapsed polytene salivary gland X-chromosomes from a female larva heterozygous for \ln (1) LA and $1 n$ (1) RA and the standard ananassae gene sequence. Break points of each of the 3 X-chromosome inversions are given relative to two different cytological maps (Hinton from Hinton and Downs 1975, and Seecof from Stone et al. 1957). Approximate percentages of euchromatic portions of each arm occupied by each inversion as determined from polytene chromosomes are also given.

Table 2 presents recombination data for crossovers between y and f and between f and w involving the hybrid X -chromosome in combination with various hybrid karyotypic conditions. The two major autosomes of both species are metacentric. The letter designations of autosomal inversions are from my earlier study (Futch 1966) as are the X-chromosome inversions; +'s indicate standard ananassae arrangements. Centromere positions are indicated by dots. Parentheses surrounding two letters, e.g., (C/D) in chromosome 2L, identify instances of overlapping inversions; in this instance l_{n} (2) LC and 1 n (2) LD occur together and overlap one another in this particular pallidosa chromosome.

The data in Table 2 clearly show the relationship of y with 1 n (1) LA. This agrees with Hinton's observation (pers. communication) that the locus of y is between the left and right break points of 1 n (1) LA. Crossing-over between y and f is even further reduced by the presence of \ln (1) LB which has its right-hand break point very near to the right end (proximal end) of the euchromatic portion of XL. The effect of 1 n (1) RA on crossing over between f and w is also very clear showing that w is located in the medial to distal part of XR, very likely within the break points of \ln (1) RA. The location of f is certainly very close to the centromere end and, based on these data, probably in the proximal part of XR.

Reductions in crossing over between genes located in an X-chromosome heterozygous for structural rearrangements are very obvious here. Also of significance are increases in crossing over associated with structural heterozygosity in other chromosomes. This interchromosomal, Schultz-Redfield effect (Schultz and Redfield 1951) is particularly apparent in Experiment No.

Fig. 1. Photomicrograph of synapsed polytene X -chromosome of a D. ananassae female larva heterozygous for \ln (1) LA in the left arm (XL) and \ln (1) RA in the right arm (XR).

Fig. 2. Diagram of ananassae-pallidosa X-chromosome showing approximate locations of break points of three inversions and genes y, f and w.
 Symp. Quant. Biol. 16:175-197; Stone, W.W., M.R. Wheeler, W.P. Spencer, F.D. Wilson, J.T. Neuenschwander, T.G. Gregg, R.L. Seecof and C.L. Ward 1957, Univ. Texas Publ. 5721:260-316.

Galus, H.M., I.B. Perelle and L. Ehrman. SUNY College at Purchase, Purchase, New York. The heritability of egg length in D. paulistorum.

Research done by Curtsinger (1976a,b) indicates that egg length in the Oregon-R D. melanogaster strain is influenced by stabilizing selection. This is a type of natural selection in which intermediate phenotypes are favored. Curtsinger employed hatchability as the criterion of fitness and found that hatchability was higher from intermediate-sized eggs. Studies of artificial selection for egg length have also been undertaken utilizing this same species (Bell, Moore and Warren 1955; Parsons 1964). In these instances artificial selection for egg length resulted in the culling of both large- and smallsized lines diverging from unselected control lines. Maximum divergence occurred by the tenth generation of selection after which regression toward the unselected mean appeared to take place.

Research published by Perelle, Daniels and Ehrman (1980) indicates that egg length heritability is low in the Mesitas strain of D. paulistorum. A bimodal distribution resulted when
a graph was constructed of measured egg lengths versus frequency or number of eggs deposited. The midpoint of depressed frequency of eggs was found at approximately the mean length of the eggs. Hatchability of all measured eggs was then derived. Upon comparison among egg lengths, frequencies and hatchability, it was discovered that eggs of the mean length--that of depressed frequency--had a higher hatchability than any other egg length measured. From these results it was concluded that heritability of egg length must be low in this strain. If egg length was indeed substantially heritable then the point of highest hatchability--in this case the mean--would represent the model egg length. Initially one would suspect a larger number of assorted lengths would be produced, but a significantly higher percentage of mean-lengthed eggs would hatch. The resulting adults would then be likely to produce more eggs of approximately the same mean lengths, and this mean would have eventually become the most common, modal egg length. Therefore when the graph of eggs deposited versus egg lengths was constructed, a unimodal distribution would have resulted with its point of highest frequency at the modal length, rather than the bimodal distribution which was actually found.

A more direct approach to heritability estimates was taken in our present study. This was done by measuring and comparing eggs from which larvae eclosed to produce P_{1} and F_{1} generations, i.e., over a three generation level. Once more the D. paulistorum strain used originated in Mesitas, Colombia and belonged to the Andean-Brazilian semi-species.

Eggs were chosen at random from cultures of this strain, measured, and then "bottled" according to their individual egg lengths. Measurements were taken on microscope slides aided by a $12 \times 10 \mathrm{~cm}$ microscope screen (Hudson Photographic Ind. Inc., Irvington-on-Hudson, NY 10533, model \#325), which was attached to a compound microscope. A 20X objective lens was used and magnification contributed by the screen was adjusted to give a total magnification of 100x. The image of eggs were then measured with a metric ruler on this screen; once measured, they were divided into groups of 0.005 mm egg length intervals. Then, each group was gently placed into half-pint culture bottles which held cardboard spoons containing fresh medium (Carolina Biological Supply, Burlington, NC 27215, Formula 4-24) seeded with yeast. To this substrate a 0.01 percent solution of crystal violet was added to impede bacterial growth and provide background pigment.

In approximately 10-12 days, with the appearance of imagoes, crosses between parental flies were made. Such crosses were initiated both between imagoes hatched from eggs of the same lengths, and between imagoes hatched from eggs of different lengths. These parents were then placed in fresh half-pint culture bottles outfitted as described earlier, and allowed to breed. After approximately $2-3$ days, eggs from these bottles were removed from the spoons and measured, using the same technique described above. The results from these crosses are listed in Table 1. Statistical analyses are provided in Tables 2 through 4.
t-tests were performed for each "within cross" to determine the relationship between the \bar{F}_{1} means $\left(\bar{X}_{2}\right)$ and the P_{1} means $\left(\bar{X}_{1}\right)$. For crosses numbered $1,3,4,6$ and 9 , $\overline{\mathrm{X}}_{1}$ was found to be significantly different from \bar{X}_{2} at $p<0.01$. For crosses numbered 2 and 5 , $\frac{1}{X_{1}}$ was significantly different from \bar{X}_{2} at $p<0.05$. Only cross number 6 provided a nonsignificant tvalue. t-values obtained for F_{1} means with mothers' egg lengths and fathers' egg lengths showed essentially the same results (see Table 1). Comprehensively, these tests indicate that the P_{1} and F_{1} eggs within each cross do have significantly different egg length means.

The critical statistic for heritability is the regression line of F_{1} values on parent values (Curtsinger 1980). Using standard regression techniques it was determined that the

Table 1. Results of crosses made between P_{1} eggs of Mesitas D. paulistorum.

Cross no.	Mother's egg length (mm)	Father's egg length (mm)	Parents' mean egg length (mm)	Number F_{1} eggs	F_{1} 's egg 1ength means (mm)	Standard error
1	.445	.450	.447	19	.480	0.003
2	.470	.470	.470	14	.484	0.006
3	.480	.480	.480	23	.467	0.004
4	.485	.485	.485	12	.454	0.008
5	.455	.455	.455	12	.442	0.005
6	.500	.505	.502	17	.466	0.004
7	.460	.450	.455	7	.441	0.006
8	.435	.390	.412	22	.456	0.005
9	.505	.505	.505	9	.471	0.002

Table 2. t-tests: Mesitas D. paulistorum egg lengths.

$\begin{aligned} & \text { cross } \\ & \text { no. } \\ & \hline \end{aligned}$	df	t values of F_{1} 's mean egg length with mother's egg length	t values of F_{1} 's mean egg length with father's egg length	t values of F_{1} 's mean egg length with parents' mean egg length
1	18	12.73	10.93	11.83
2	13	2.27	2.27	2.27
3	22	-3.35	-3.35	-3.35
4	11	-4.11	-4.11	-4.11
5	11	-2.61	-2.61	-2.61
6	16	-9.11	-10.46	-9.78
7	6	-3.23	-1.49	-2.36
8	21	3.96	12.30	8.13
9	8	-15.62	-15.62	-15.62

Table 3. One-way analysis of variance: Mesitas D. paulistorum egg lengths.

Source	df	Sum of squares	Mean squares	Fatio ration
between groups	8	23.064	2.883	7.74
within groups	126	46.949	.372	
\quad total	134	70.013		
F.01 $(8,126 \mathrm{df})$	$=2.65$			

regression of F_{1} egg lengths on mothers' egg lengths is $.425+0.084 \mathrm{~m}$; the regression of F_{1} egg lengths on fathers' egg lengths is $.420+0.096 \mathrm{f}$. It is apparent that heritability is extremely low, 0.084 and 0.096 of mothers' and fathers' egg lengths, respectively. It must be noted that even though heritability was extremely low the apparent similarity of maternal and paternal effect is almost certainly due to the mating of flies artificially selected from identical or very similar length

Table 4. Multiple range test--Scheffé procedure: Mesitas D. paulistorum egg lengths.

Subset 1		Subset 2	
Cross no.	F_{1}mean (mm)	Cross no.	F_{1}mean (mm)
7	.441	4	.454
5	.442	8	.456
4	.454	6	.466
8	.456	3	.467
6	.466	9	.471
3	.467	1	.480
9	.471	2	.484
1	.480		

eggs ($\mathrm{r}=0.93, \mathrm{p}<0.001$).
A one-way analysis of variance was conducted on this data (Table 3). An F ratio of 7.74 was obtained, which is much higher than $\mathrm{F}, 01$ (8,126 $\mathrm{df})=2.65$. This shows that a significant difference does exist between the mean F_{1} egg lengths of the crosses. A multiple range test (Scheffé procedure) was calculated with these means and homogeneous subsets were derived (Table 4).

In conclusion, this study found low heritability existing in the Mesitas strain of D. paulistorum for egg length. This was shown most dramatically by the regression lines of F_{1} egg lengths on mothers' and fathers' egg lengths and by the t-tests, which show significant differences existing between P_{1} and F_{1} egg lengths both within crosses and over all of the crosses.

References: Bell et al. 1955, Cold Spring Harbor Symp. Quant. Bio1 20:197-212; Curtsinger 1976a, J. Hered. 67:59-60; ___ 1979b, J. Hered. 67:246-247; \qquad 1980, pers. communication; Parsons 1964, Genetics $\overline{35: 175}-181$; Perelle et al. 1980, Univ. Texas Publ., Studies in Genetics (in press).

Dasmohapatra, D.P., N.K. Tripathy and
C.C. Das. Berhampur University, Orissa, India. Distribution of different species of Drosophila in Khallikote Ghats, Ganjam District, Orissa, India.

Species	No. of flies collected			Percentage
	Male	Female	Total	
Subgenus: Sophophora				
D. malerkotliana	245	189	434	58.25
D. kikkawai	78	50	128	15.83
D. takahashii	23	55	78	10.45
D. rajasekari	8	31	39	5.23
D. bipectinata	8	27	35	4.69
D. melanogaster	4	14	18	2.41
D. suzukii	1	1	2	0.26
Subgenus: Scaptodrosophila				
D. nigra	3	8	11	1.46

The genus Drosophila has a wide range of distribution covering entire India. The available data on field collection cover most parts of the country, but there still remain large regions lacking dependable data on the Drosophila fauna. In this short communication we wish to report the Drosophila fauna from the Khallikote Ghats, Orissa, India, which are about 60 km to the northeast of Berhampur at $19^{\circ} 15^{\prime}$ and $19^{\circ} 5^{\prime}$ N latitude and $84^{\circ} 20^{\prime}$ and $85^{\circ} 15^{\prime} \mathrm{E}$ longitude. This mountain range has woody plants at its foot while teak plantation and thick bushy vegetation occur in its upper ranges. The table gives the different species of Drosophila collected on banana bait during several collection trips conducted between the months of January and March, 1980. The average temperature during this period was $27^{\circ} \mathrm{C}$. A total of 745 flies were collected which included eight different species belonging to two subgenera.

The dominant species in the collection belonged to melanogaster species group (especially D. malerkotliana and D. kikkawai) with males outnumbering the females; the sex ratio, however, was reversed in the case of D. takahashii, D. rajasekari, D. bipectinata and D. melanogaster.

Gilbert, D.G. Indiana University, Bloomington, Indiana. Effects of CO_{2} vs. ether. on two mating behavior components of D. melanogaster.

Various effects of two anesthetics, carbon dioxide and ethyl ether, on Drosophila have been reviewed by Ashburner and Thompson (1978). These authors indicate that carbon dioxide treatment can markedly reduce survival and fertility of adults if administered up to 3 hours post-eclosion, but shows no toxic effect if used 5 or more hours after eclosion. Light ether treatment does not produce similar toxic effects. Bingo (1971) found ether to have slighter effects on behavior of D. grimshawi than cold or carbon dioxide when flies were tested a few hours after anesthetization. To determine whether the type of anesthesia used in virgin collection had any long-term effects on reproductive behavior in D. melanogaster, virgin males and females were collected with carbon dioxide or ether and were paired 3 days later in a 2 x 2 factorial experiment. Latency to mounting and copula durations were measured.

Table l. Analysis of variance in mating behavior components due to female and male anesthetic treatment 3 days previously.

	Mounting latency		Copula duration			
	Df	Ms	F	Df	Ms	F
Term	1	0.6022	$4.65 *$	1	0.00883	1.99
Female treatment	1	0.3554	2.74	1	0.00222	0.50
Male treatment	1	0.0906	0.70	1	0.00047	0.11
Interaction	56	0.1294		49	0.00444	
Error						

[^3]The D. melanogaster stock tested was a strain homozygous for esterase 6 Slow derived from flies trapped in Bloomington, Indiana, and free of extreme CO_{2} sensitivity associated with viruses. The stock was maintained in half-pint bottles of well yeasted cornmeal-molasses-agar media at $25 \pm 1^{\circ} \mathrm{C}$, $60 \pm 10 \%$ humidity, on a $12: 12$ hour light/dark cycle. Eight hours after clearing the stock bottles of adults, newly eclosed flies were sexed and separated by first shaking flies into a transfer bottle. They were then either anesthetized on a CO_{2} diffusion pad for the duration of sexing, up to 5 minutes, or anesthetized with ether until their surface clinging response was lost, about 30 seconds. Twenty males or females were housed per vial for 64 to 76 hours at $25^{\circ} \mathrm{C}$.

All collected flies were alive and appeared vigorous at this time, 3 days after the ether or CO_{2} anesthetization. Male and female pairs were aspirated from their holding vials into observation vials containing media seeded with liquid yeast two days previously. A block of pairings consisted of an ether-treated male with an ether-treated female, an ether male with a CO_{2} female, a CO_{2} male with an ether female, and a CO_{2} male with a CO_{2} female. Two blocks were started at each observation period by adding all males, then all females within 5 min of each other, or the reverse order. The time of initial pairing, time of male mounting female and time of dismounting were recorded for each pair to the nearest half-minute.

The factorial analysis of variance for latency to mounting and copula duration are presented in Table 1. These two measures were transformed to their common logarithms for analysis to reduce the correlation of group means with variances. Within group variances are homogeneous, as determined by an $F_{m a x}$ test ($F_{\max }=1.45$, $D f=4,14$ and $F_{\max }=2.26$, $D f=4,13$ for mounting latency and copula duration, respectively). Female anesthetic treatment significantly affected latency to mounting, and had the largest, but nonsignificant effect on copula duration. Male treatment and the interaction of treatments are nonsignificant components of variance.

The effect of carbon dioxide treatment

Table 2. Mean effects of female anesthetic treatment on mating components.

Treatment	Mounting latency	Copula duration
Ether	11.5 min	22.21 min
CO_{2}	18.2 min	20.93 min

References: Ashburner and Thompson 1978, in: The Genetics and Biology of Drosophila,
v. 2a (Ashburner and Wright, eds.), pp. 1-109; Ringo 1971, DIS 47: 118.

Gilbert, D.G. Indiana University, Bloomington, Indiana. Sperm counts and initial sperm storage in D. melanogaster.

In the course of investigating reproductive functions of the male anterior ejaculatory duct enzyme esterase 6 (Richmond et al. 1980), I have examined the number of sperm initially stored by D. melanogaster females from ejaculates of males differing in their esterase 6 genotype. This note describes the methods used for counting sperm and the major results for 47 matings of 3 to 5 day virgins of the Oregon-R strain.

The dissection methods reported here are modified from those described by Fowler (1973) in two important respects. Female reproductive tracts are dissected directly in aceto-orcein stain rather than in Ringer's saline, avoiding a saline-stain reaction which destroys the specimen within a week. Specimens dissected in the stain and sealed under coverslips preserve for several months. Secondly, the spermathecae are dissected from the uterus, pared of their surrounding fat which inhibits staining, and squashed under a separate coverslip. With this method, sperm heads in the densely packed mass of spermathecal sperm stain deeply enough to count the preparations accurately.

Materials used in dissections are two fine forceps, two tungsten dissecting needles, a dissecting microscope, slides and coverslips, and nail polish for sealing slides. The orcein stain used is the salivary chromosome "dissecting" solution described by Strickberger (1962). Viewing specimens with phase optics at 1000X, the stained 10 micron long sperm heads of D. melanogaster can be readily counted with a hand held counter.

The uterus, with attached ventral receptacle, dorsal spermathecae and parovaria, along with the lower portion of the common oviduct, are simply dissected from the female. A mated, etherized female is placed in a drop of orcein stain on a slide. Squeezing the abdomen with the left forceps, the extruded ovipositor is grasped with the right forceps and pulled posteriorly until the reproductive tract is out of the abdomen. Any exterior chitin and digestive tract are dissected away. To obtain clear counts of spermathecal sperm, these paired organs are dissected from the uterus by severing the spermathecal ducts. The fat is dissected away, and the spermathecae are transferred to a second drop of orcein stain on the slide. After applying coverslips to both spermathecal and uteral preparations, the spermathecae are squashed with a hard pressure that expels the sperm mass entirely from its opaque capsule. The uterus-receptacle is squashed gently to flatten it for phase optics without disrupting receptacle integrity.

Females were dissected at intervals ranging from 10 minutes to 50 hours after mounting of the female by the male, which included interrupted copulations. Details of these results will be reported elsewhere. There is a high degree of individual variation in the sperm storage process; the results reported here are in terms of least squares regression estimates of the population values and individual values. Uteral sperm numbers, when greater than 300 , were estimated by measuring the area covered by the uteral sperm mass with an ocular micrometer and counting sperm density at random points in the mass. Receptacle and spermathecal sperm were counted directly. The entire counting time for a specimen ranged from 15 to 45 minutes. Only specimens for which two complete replicate counts could be obtained ($\mathrm{N}=47$) were analyzed. Counting error (mean coefficient of variation \pm SEM) for the combined classes of receptacle, spermathecal and uteral sperm was $2.7 \pm 0.91 \%$ per individual, after logarithmic transformation of counts. Table 1 lists the maximums and times of maximum sperm numbers for these sperm classes.

An important aspect of
Table 1. Initial sperm storage parameters for Oregon-R matings, in terms of regression estimates of population values and individual observed values.

	Maximum number		Hour* of maximum Sperm class Estimated	
Observed	Estimated	Observed		
Transferred sperm:				
Uteral sperm	5800	4690	0.28	0.25
Stored sperm:				
All organs	1120	1032	5.1	5.3
Receptacle	670	767	4.0	0.9
Spermathecae	390	449	7.0	5.3

*Hour post mounting of female by male.
of stored sperm, as well as transferred sperm (approximately 10% of transferred may ultimately fertilize eggs), suggests that sperm selection may be an important component of natural selection in D. melanogaster, particularly if sperm genotypes within or between ejaculates differ in their functional abilities.

Supported by NIH AGO2035.

References: Fowler 1973, Adv. in Genetics 17:293-360; Gilbert et al. 1981, Evolution, in press; Kaplan et al. 1962, DIS 36:82; Richmond et al. 1980, Science 207:1483-1485; Strickberger 1962, Experiments in Genetics with Drosophila, p. 103, Wiley.

Goncharenko, G.G. and I.K. Zakharov. Institute of Cytology and Genetics, Novosibirsk, USSR. A phosphoglucomutase locus in D. virilis.

The vaara and Saura 1972, Charlesworth et al. 1977). D. americana texana, D. littoralis, D. ezoana, D. novomexicana, D. lummei) was included in this study. The genetic variability of phosphoglucomutase has been studied using starch gel electrophoresis. Each $f l y$ was homogenized in 0.025 ml double distilled water on the rough surface of a slide. The starch gel electrophoresis was performed vertically using 12-13\% starch and 10% sucrose in medium containing 0.045 M TRIS, 0.025 M boric acid and 0.001 M EDTA. The electrode buffer had 0.18 M TRIS, 0.1 M boric acid, 0.004 EDTA (anodal) and 0.13 M TRIS, 0.07 M boric acid, 0.003M EDTA, $10^{-5} \mathrm{NADP}$ (catodal) (Porter et al. 1964). The electrophoresis took $4-5$ hours at $5-10^{\circ} \mathrm{C}$ with a voltage of $320-360 \mathrm{v}$ and current intensity of $60-80 \mathrm{ma}$. Staining mixture as in Ayala et al. (1972).

The electrophoresis of Pgm revealed the presence of three variants, called Pgm 0.80 , Pgm 1.00 and Pgm 1.20 on the basis of their mobilities (see Fig. 1). The data from different crosses indicate that these three variants are coded by three codominant alleles at one locus.

Fig. 1. Starch gel electrophoretic pattern of one fly homogenates of D. virilis. The following genotypes are shown:

$$
\begin{aligned}
& 1,8-\frac{\operatorname{Pgm}^{1.20}}{\operatorname{Pgm}^{1.20}} ; 2,3,4-\frac{\operatorname{Pgm}^{1.20}}{\operatorname{Pgm}^{1.00}} ; 5-\frac{\operatorname{Pgm}^{1.00}}{\operatorname{Pgm}^{0.80}} ; 6-\frac{\operatorname{Pgm}^{0.80}}{\operatorname{Pgm}^{0.80}} ; \\
& 7-\frac{\mathrm{Pgm}^{1.00}}{\operatorname{Pgm}^{1.00}}
\end{aligned}
$$

According to the result of such crosses the recombination frequency between $s v$ and t genes was 27.8%; between t and $\mathrm{tb}, 33.0 \%$; and between tb and $\mathrm{gp}, 13.6 \%$. This is in agreement with the position of the loci on the standard genetic map of D. virilis (Alexander 1976). In the D. virilis map four visible markers have the following localization: sv (shot veins, 3-24.5); t (telescoped, 3-57.5), tb (tiny bristles, 3-104.0), and gp (gapped, 3-118.5) m.u.

Table 1. Localization of Pgm locus.

Parent	Offspring maternal chromosome	$\frac{\mathrm{Pgm}^{1.20}}{\mathrm{Pgm}^{1.00}}$	$\frac{\operatorname{Pgm}^{1.00}}{\text { Pgm }^{1.00}}$
Prm. 20	+ + + +	14	0
¢ ($\frac{\mathrm{Pgm}}{1.00}$) $\frac{+t++}{\text { sv t tb gp }}$	sv $t \mathrm{tb}$ gp	0	13
Pgm ${ }^{1.00}$ Sv to ${ }^{\text {c }}$	$+\mathrm{tbb} \mathrm{gp}$	2	0
	sv + + +	0	4
	$+{ }^{+} \mathrm{tb} \mathrm{gp}$	4	0
Pgm 1.00 sv t tb gp	sv $\mathrm{t}+\mathrm{+}$	0	4
σ ($\frac{\text { Pgm }}{1.00}$) $\frac{\mathrm{sv} \mathrm{t} \mathrm{tb} \mathrm{gp}}{\mathrm{sv} \mathrm{t} \mathrm{gb} \mathrm{g}}$	$+++\mathrm{gp}$	3	0
Pgm ${ }^{1.00}$ sv to gp	sv t tb +	0	3
	+ t	41	2
	sv +	4	65

It is necessary to note that under the electrophoresis method used the homozygous variants were always revealed by two bends. The discussion of the causes of this phenomenon is beyond the scope of this report; further details will be published elsewhere.

The examination of the offspring from the backcross
우 ($\left.\frac{\mathrm{Pgm}^{1.00}}{\mathrm{Pgm}^{1.00}}\right) \frac{\mathrm{b}}{\mathrm{b}} ; \frac{\mathrm{gp}}{\mathrm{gp}} ; \frac{\mathrm{cd}}{\mathrm{cd}} ; \frac{\mathrm{pe}}{\mathrm{pe}} ; \frac{\mathrm{g} 1}{\mathrm{~g} 1} \mathrm{X}$

demonstrated that the Pgm gene is linked to the gp (gapped,3-118.5) locus and therefore located in the third chromosome. For a more definite localization of the locus Pgm the following crosses were carried out:

$$
\circ \circ\left(\frac{\operatorname{Pgm}^{1.00}}{\operatorname{Pgm}^{1.20}}\right) \frac{\mathrm{sv} \mathrm{t} \mathrm{tb} \mathrm{gp}}{++++} \times \text { ơo }^{\circ}\left(\frac{\mathrm{Pgm}^{1.00}}{\mathrm{Pgm}^{1.00}}\right) \frac{\mathrm{sv} \mathrm{t} \mathrm{tb} \mathrm{gp}}{++++}
$$ From Table 1 it is evident that $6 / 112$ of crossovers occurred in the course of recombination between sv and Pgm genes and 106/ 112 between Pgm and t genes. Therefore, Pgm is placed at $26.3 \pm$ on the genetic map of the third chromosome of D. virilis.

References: Alexander, M.L. 1976, in: The Genet. and Biol. of Drosophila, Vol. 1c:1365-1427, Academic Press; Ayala, F.J., J.R. Powe11, M.L. Tracey, C.A. Mourao and S. Perez-Salas 1972, Genetics 70:113-119; Charlesworth, B., D. Charlesworth and M. Loukas 1977, DIS 52:133; Hjorth, J.P. 1970, Hereditas 64:146-148; Lakovaara,
S. and Saura 1972, DIS 48:93; Porter, J.H., S.H. Boyer, E.J. Watson-Williams, A. Adam, A. Szienberg and M. Siniscalo 1964, Lancet 1:895; Trippa, G., C. Santolamazza and R. Scozzari 1970, Biochem. Genet. 4:665-667.

Grace, D. University of Oregon, Eugene. The Ubx/bx transvection effect in the entire compound chromosome $C(2 ; 3) E N$.

Series	Progeny	Exceptions	Transmitted	\% tr.	0	4
A	1718	37 (2.2\%)	11	29.7	11	0
B	1638	34 (2.1\%)	9	26.4	7	2
C	1878	28 (1.5\%)	15	53.5	14	1
D	1545	20 (1.3\%)	8	40.0	7	1
E	1189	32 (2.7\%)	11	34.4	11	0
F	1783	41 (2.3\%)	27	51.2	21	0
G	1052	19 (1.8\%)	4	21.1	4	0
H	1642	26 (1.6\%)	10	38.5	8	2
I	2241	39 (1.7\%)	18	46.2	16	2
J	1107	21 (1.9\%)	7	33.3	7	0
K	3322	33 (1.0\%)	12	36.4	11	1

In Ubx/bx flies, the phenotype is enhanced when one of the chromosomes is involved in a rearrangement which has a break in 3R between the locus of $b x$ and the centromere (the transvection effect, Lewis 1954). In the entire compounds now available, the 3L arm is placed between the locus of bx and the centromere (composition: 3R3L. 2 L 2 R), and it is of interest to know whether breaks in 3R under these conditions can also exaggerate the Ubx/ bx phenotype.

Flies carrying C(2;3)EN, Ubx chromosomes were irradiated with $3000 r$ and mated to flies with normal metacentric third chromosomes
carrying bx ${ }^{34 e}$. Following the numerical scale of $0-4$, most of the progeny had a transvection score of 3 ; the exceptions fall into two distinct categories, those with a score of 0 or a weak 1 and those with a score greater than 3 .

The table is a summary of the data. Over 90% have a score of 0 . Since they occurred singly, in most cases, and in subsequent crosses appear to be the result of changes on the third chromosome, it seems likely that these represent induced changes of some sort. Some other exceptions also enhance or reduce the haltere effect. Mosaic and complete somatic and gonadal mutants were observed. Cytological analysis of these exceptions will be undertaken.

Gromko, M.H. Bowling Green State University, Bowling Green, Ohio. An attempt to reduce population size through extensive trapping.
migrating to the study area have been demonstrated to show bait-directed movement (Johnston and Heed 1975) and to be capable of long distance migration. Here I report an attempt to reduce population size of D. affinis in an isolated woodlot. Although migration from other woodlots is not impossible, the frequency of such events is limited by the woodlot's island nature.

The study area, Carter Woods (Wood County, Ohio), is a small (6.3 acre) woodlot dominated by oak and hickory. It is surrounded by fields usually planted in corn. The nearest neighboring woodlot is 1.5 km distant, with no fence rows or migratory corridors of any kind between.

Sixty-four baits (old banana and yeast) were placed in the woodlot at 15.2 m (50 ft) intervals in a rectangular grid. The bait-grid was situated centrally, and occupied approximately 60% of the total wooded area. Collections were made in all activity periods in which it was not raining, and were carried out over a period of 18 consecutive days in August, 1979. Temperature, humidity, approximate wind speed and degree of cloud cover were recorded at the beginning of every collection period. Baits were removed and replaced with previously unused baits so that no bait was left in the woodlot for more than nine days.

8,157 individuals of 19 species of Drosophila were removed from the woodlot over the 18day trapping period. The most abundant species and their approximate relative frequencies in the collections were D. putrida (0.35), affinis (0.25), tripunctata (0.11), falleni (0.09), robusta (0.06), and algonquin (0.05). The daily relative abundance data were analyzed using factor analysis and multiple regression (SPSS). Of the large number of data manipulations tried, the outcome that explained the largest amount of variability gave the following results. For the fungus-feeding species (predominantly D. putrida, tripunctata, and falleni), the regression of abundance on time was positive, large and highly significant. The increase in population size was not unexpected for these species as the experiment was carried out in late
summer when large numbers of mushrooms were evident throughout the woods. For D. affinis-which has a population flush much earlier in the year--the regression of abundance on time was in fact negative in sign, but not significantly different from zero.

Thus, extensive trapping has failed to reduce population size of D. affinis significantly despite the fact that flies were probably not immigrating in numbers large enough to replace the trapped individuals. Apparently, replacements are abundantly available from within the small isolated woodlot.

This work was supported by the Eaculty Research Comittee at Bowling Green State University.
References: Dobzhansky, Th. and S. Wright 1943, Genetics 28:304-340; Johnston, S. and W.B. Heed 1975, Am. Nat. 109:207-216.

Gupta, J.P. Banaras Hindu University, Varanasi, India. A list of drosophilid species so far known from India.

There has always been a conspicuous gap in our knowledge of world distribution of Drosophila where India is concerned. Although a beginning of such study in the subcontinent of India was made as early as 1920 , only about a decade ago have workers shown renewed interest in such study. During these years several collections undertaken by various workers in different parts of the country have yielded considerable data on Indian species. Recently our extensive surveys in different localities of northeast India have uncovered several interesting new species inhabiting this region. A few of them have already been published; manuscripts for those remaining are in preparation and have also been included in this list. In this report an attempt is made to include all species so far described and recorded from India. However, the final picture of the Indian drosophilid species seems to be far from complete. There are undoubtedly more species awaiting discovery.

Genus Amiota Loew
Genus Cacoxenus Loew

Genus Chymomyza Czerny

Genus Curtonotum Macquart
Genus Gitonides Knab
Genus Hypselothyrea de Meijere
Genus Leucophenga Mik

Genus Liodrosophila Duda

Genus Lissocephala Malloch
Genus Microdrosophila Malloch Genus Mycodrosophila Oldenberg Genus Paraleucophenga Hendel Genus Scaptomyza Hardy

1. shillongensis
2. punctatus
3. vaidyai
4. neoangustipennis
5. perspicax
6. guttata
7. varanasiensis
8. albicincta
9. flavicosta
10. guttiventris
11. interrupta
12. neoangusta
13. shillongensis
14. subpollinosa
15. angulata
16. okadai
17. penispinosa
18. rufa
19. metallescens
20. sabroskyi
21. purpurata
22. gratiosa
23. invicta
24. cristata
25. graminum
26. pallida
27. plumata

Singh \& Gupta (in press)
Duda 1924, Syn. of Gitonides perspicax Knab 1914. Ref. McAlpine 1968, Canad. Entomol. $100(5): 514$.
Okada 1976, Nom. nov. for Chymomyza pararufithorax Vaidya \& Godbole 1973, DIS 50:71.
Dwivedi \& Gupta (in press)
Knab 1914
Duda 1926
Gupta 1974
(de Meijere 1908)
Duda 1926
(de Meijere 1911)
Duda 1924
Vaidya \& Godbole 1976
Dwivedi \& Gupta (in press)
(de Meijere 1914)
Dwivedi \& Gupta (in press)
Dwivedi \& Gupta (in press)
Dwivedi \& Gupta (in press)
Okada 1974
(de Meijere 1914)
Wheeler \& Takada 1964
Okada 1956
(de Meijere 1911)
(Walker 1857)
Singh 1976
(Fallén 1823)
(Zetterstedt 1847)
Singh 1976

Genus Sinophthalmus Coquillett
Syn. of subgenus Erima Ker-
tész of genus Amiota Loew.
Ref. Okada 1971, Kontyû 39:83.

Genus Stegana Meigen Genus Zaprionus Coquillett

Genus Drosophila Fallén
28. creberii
-29. pictus
30. subexcavata
31. indiana
32. multistriata
33. paravittiger
34. striata
35. albomicans
36. ananassae
37. andamanensis
38. andamanensis
39. annulipes
40. anomelani
41. bambuphila
42. birarmipes
43. bicolovittata
44. bifasciata
45. bipectinata
46. brachynephros
47. brevis
*48. brindavani
49. brunettii
50. bryani
51. busckii
52. chamundiensis
53. chandraprabhiana
*54. charmadensis
55. coei
56. confusa
57. coonorensis
58. coracina
59. curviceps
60. daruma
61. ebonata
62. emulata
63. epiobscura
64. eugracilis
65. ficusphila
66. fusciostata
67. giriensis
68. gundensis
69. guptai
70. helvetica
71. hoozani
72. hypocausta
73. immacularis
74. immigrans
75. jambulina
76. kikkawai
77. krishnamurthyi

Singh 1976
Coquillett 1904

Vaidya \& Godbole 1976
Gupta 1970
Sturtevant 1927
Godbole \& Vaidya 1972
Nirmala Sajjan \& Krishnamurthy 1975
Duda 1924
Doleschall 1858
Gupta \& Ray-Chaudhuri 1970
Parshad \& Singh 1971. Syn. of D. andamanensis Gupta \& Ray-Chaudhuri
1970. Ref. Gupta 1980, DIS 55.

Duda 1924
Reddy \& Krishnamurthy 1973
Gupta 1971
Ma1loch 1924
Singh 1974
Pomini 1940
Duda 1923
Okada 1956
Parshad \& Singh 1971; Homonym
Ray-Chaudhuri \& Mukherjee 1941
Malloch 1934
Coquillett 1901
Nirmala Sajjan \& Krishnamurthy 1975
Gupta \& Ray-Chaudhuri 1970
Okada 1966
Staeger 1844
Reddy \& Krishnamurthy 1973
Kikkawa \& Peng 1938
Okada \& Kurokawa 1957
Okada 1956
Parshad \& Duggal 1966
Ray-Chaudhuri \& Mukherjee 1941. Syn. of D. melanogaster Meigen 1830.
Ref. Parshad, Narda \& Paika 1964.
Parshad \& Duggal 1966
Bock \& Wheeler 1972. Nom. nov, for D. (Tanygastrella) gracilis Duda 1926, not gracilis Walker 1853.
Kikkawa \& Peng 1938
Okada 1966
Prakash \& Reddy 1977
Prakash \& Reddy 1977
Dwivedi (in press)
Burla 1948
Duda 1923
Osten Sacken 1882
Okada 1966
Sturtevant 1921
Parshad \& Paika 1964 (identified in error as seguyi Smart in Gupta \& Ray-Chaudhuri 1970c:59).
Burla 1954
Nirmala Sajjan \& Reddy 1975

Genus Drosophila Fallen

 (continued)78. kurseongensis
79. lacertosa
80. 1atifshahi
81. 1ucipennis
82. malerkotliana
83. maryensis
84. mediobandes
85. meijerei
*86. meijerei indicus
86. melanogaster
87. mercatorum pararepleta
88. minima
89. montium
90. multispina
91. mundagensis
92. mysorensis
93. nasuta
94. neoelegans
95. neokuntzei
96. neonasuta
*98. neotruncata
97. nepalensis
98. notostriata
99. novaspinofera
100. novazonata
101. obscuricornis
102. orissaensis
103. parabipectinata
104. parazonata
105. penidentata
106. penispina
107. pentaspina
108. pentavittata
109. prashadi
110. prolongata
111. prostipennis
112. pulchrella
113. punjabiensis
114. pseudoananassae
115. quadrilineata
116. rajasekari
117. ramamensis
118. raychaudhurii
119. repleta
120. rhopaloa
121. riverata
122. rufa
123. setaria
124. setitarsa
125. silvalineata
126. subtilis
127. suzukii indicus
128. takashii
129. testacea
130. tricombata
131. trilutea
132. trisetosa

Gupta \& Singh 1977
Okada 1956
Gupta \& Ray-Chaudhuri 1970
Lin 1972
Parshad \& Paika 1964
sp. nov.
sp. nov.
Wheeler 1959

Meigen 1830
Dobzhansky \& Pavan 1943
Okada 1966
de Meijere 1916
Okada 1956
Nirmala Sajjan \& Reddy 1975
Reddy \& Krishnamurthy 1970
Lamb 1914
Gupta \& Singh 1977
Singh \& Gupta (in press)
Nirmala Sajjan \& Krishnamurthy 1973
Okada 1955
Okada 1966
Gupta \& Singh (in press)
sp. nov.
(de Meijere 1915)
Gupta 1972
Gupta \& Ray-Chaudhuri 1970
sp. nov.
Singh \& Gupta (in press)
Gupta \& Singh (in press)
Parshad \& Duggal 1966
Gupta \& Ray-Chaudhuri 1970
Brunetti 1923
Singh \& Gupta (in press)
Lin 1972
Tan, Hsu \& Sheng 1949
Parshad \& Paika 1964
Bock 1971
(de Meijere 1911)
Reddy \& Krishnamurthy 1968
Dwivedi (in press)
Gupta 1969. Syn. of D. rajasekari
Reddy \& Krishnamurthy 1968. Ref.
Bock \& Wheeler 1972.
Wollaston 1858
Bock \& Wheeler 1972
Singh \& Gupta 1977
Kikkawa \& Peng 1938
Parshad \& Singh 1971
sp. nov.
Gupta \& Ray-Chaudhuri 1970
Kikkawa \& Peng 1938
Parshad \& Paika 1964
Sturtevant 1927
van Roser 1840
Singh \& Gupta (in press)
Bock \& Wheeler 1972
Okada 1966

Genus Drosophila Fallen (continued)

136. tristipennis	Duda 1924
137. trizonata	Okada 1966
138. truncata	Okada 1964
139. varietas	Singh 1972

*Indicates names were reported for new species, but no description of these supposedly new species has been published so far.

Gvozdev, V.A., T.I. Gerasimova, G.I. Kogan, Ya.M. Rosovsky, S.G. Smirnova. Institute of Molecular Genetics, USSR Academy of Sciences, Moscow 123182, USSR. A collection of G6PD mutations which suppress the lethal effect of mutations affecting 6-phosphogluconate dehydrogenase in D. melanogaster.

We have obtained 39 mutations in the Zw locus (1-63) (Lindsley and Grell 1968) of D. melanogaster. 32 mutations were induced with ethylmethane sulfonate (EMS), one with γ-irradiation as described earlier (Gvozdev et al. 1977), and six were selected as spontaneous mutations. All the mutations were selected as recessive X-1inked suppressors which corrected the lethal effect of mutations inactivating 6-phosphogluconate dehydrogenase. The amount of protein product of the gene as assessed by immonochemical techniques remained unchanged in all cases. Meanwhile if mutant individuals kept an active enzyme its properties usually differed from the wild type enzyme. These results suggest that all the mutations affect the structural part of the locus. The frequency of mutations affecting G6PD was evaluated by comparing the number of sisters and revertant brothers in the progeny of the cross between C(I)RM, ywf females and mutagen-treated $\mathrm{Pgd}^{-} \mathrm{pn} / \mathrm{w}^{+} \mathrm{Y}$ males (no treatment in the case of spontaneous mutagenesis). The frequency came to 6.6×10^{-5} for EMS-induced mutations and about 0.6×10^{-6} for spontaneous mutations. Both figures accord with other people's data (Green 1977; Mukai and Cockevham 1977; Schalet 1957, 1978; Simmons and Crow 1977). The mutants showed a broad range of G6PD activities as assessed under optimum conditions for the wild type: from complete inactivity (17 mutations) to the normal level.

A study of mutant G6PD activity in Drosophila extracts revealed considerable activity oscillations probably due to the high and uncontrollable lability of the mutant enzyme. In some cases the G6PD activity in mutant extracts exceeded the G6PD activity in wild type Drosophila extracts, which shows that mutations may increase the maximum rate of the reaction catalyzed by G6PD.

In accordance with the proposed biological mechanism of suppression (Gvozdev et a1. 1977) all null-mutations proved to be good suppressors, i.e., the number of males in the progeny which carried a lethal mutation and a suppressor did not differ from the number of normal sisters carrying linked X chromosomes. Most of the mutants keeping some level of G6PD activity also showed a good suppression of the lethal mutations, although this group included some weak suppressors ($5,12,15,23,26,28,47$).

The table shows that in most of the mutants that keep G6PD activity the enzyme is different from normal G6PD. It is not always possible, however, to establish a correlation between the degree to which the enzyme is changed and the level to which viability is restored. This is not surprising since the data on G6PD activity in vitro do not necessarily reflect its activity in the cell (Olaniyi et al. 1976). A similar situation has been described for mutant forms of human G6PD when the emergence of a chronic haemolysis of erythrocytes could not be related to specific changes in the enzyme's functional properties (Johnson et al, 1977).

A comparison of the viability of heterozygotes for various mutant alleles of the Zw gene with the viability of the corresponding homozygous stocks revealed the possibility of interallelic complementation, but only for combinations of (su) 14 with three other suppressors (2,9 and 12). The number of su2/sul4 and su9/sul4 heterozygotes was decreased 5 to 50 times as compared with the corresponding males and their development was considerably delayed. The number of sul2/sul4 females was halved.

References: Green, M.M. 1977, Proc. Nat. Acad. Sci. USA 74:3490; Gvozdev, V.A., T.I. Gerasimova, G.L. Kogan and Ya.M. Rosovsky 1977, Molec. gen. Genet. 153:191; Johnson, G.J., M.E. Kaplan and E. Beutler 1977, Blood 49:247; Lindsley, D.L. and E.H. Grell 1968, Carnegie Inst. Wash. Publ. 627; Mukai, T. and C.C. Cockevham 1977, Proc. Nat. Acad. Sci. USA 74:2154; Olaniyi, A., G. Babalola, J.G. Beetlestone and L. Luzzatto 1976, J. Biol. Chem. 251:2993; Schalet, A.P. 1957, Genetics 42:393; 1978, Mutation. Res. 49:313; Simmons, M.J. and J.F. Crow 1977, Ann. Rev. Genet. 11:49.

[Gvosdev	a1.]	Chara	terizatio	of mutation	affecting			
No. of mutation	Mutagenized X chromosome	Mutagen	G6PD activity in \% of norm*	$\begin{aligned} & \mathrm{K}_{\mathrm{m}}^{\mathrm{NADP}}{ }_{\mathrm{G} 6 \mathrm{PD}} \\ & \times 10^{5} \mathrm{M}^{*} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{K}_{\mathrm{m}}^{\mathrm{G6P}} \mathrm{G6PD} \\ & \times 10^{5} \mathrm{M}^{*} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Maximum } \\ & \text { rate (V)* } \end{aligned}$	Electrophoretic mobility of G6PD (in respect to $\mathrm{ZwA}^{\mathrm{A}}$ and $\mathrm{ZwB}^{\mathrm{B}}$	$\begin{aligned} & \text { Thermo- } \\ & \text { sensitivity } \\ & \text { of G6PD } \end{aligned}$
Wild type				0.6-1.5	4.7-11.8	37-51		
($\mathrm{Zw}{ }^{\text {A }}$)								
6**	139pnZw ${ }^{\text {A }}$	EMS						
7**	"	"						
8**	"	11						
10	"	"			,			
11	"	"						
13	"	"						
14	"	"						
16	"	"						
17	"	"	0.5-1					
18	"	"						
20	"	"						
21	"	"						
22	"	"						
24	135pnZwA	"						
31		Co ${ }^{60}$ (γ-irrad.)						
34	139pnZw ${ }^{\text {A }}$	spontaneously						
36		"						
15	"	EMS	2-5					normal
23	"	"	7				adjacent to B	
27	"	"	4-10	46	40	11		
32	"	spontaneously	1-7					
33	"	"	2-6				A^{+}	
44	$171 \mathrm{pnZw}{ }^{\text {B }}$	EMS	2-10		280			
45	"	"	4-10	10	430		A^{+}	
1**	"	"	10-20	$14.9+$	260		intermediate	
2**	"	"	4-20	$23.7 \dagger$	360		"	
5**	"	"	3-20	$33.0+$	590		"	
9	135pnZw ${ }^{\text {A }}$	"	90-130	11			"	increased
12	139pnZw ${ }^{\text {A }}$	"	90-140	1.2	15		"	"
19	"	"	30-60	2.9	280		"	

(continued)			G6PD activity in \% of norm*	$\begin{aligned} & \mathrm{K}_{\mathrm{m}}^{\mathrm{NADP}} \mathrm{G} 6 \mathrm{PD} \\ & \times 10^{5} \mathrm{M}^{*} \\ & \hline \end{aligned}$	$\begin{aligned} & K_{m}^{\mathrm{G} 6 \mathrm{P}} \mathrm{G6PD} \\ & \times 10^{5} \mathrm{M}^{*} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Maximum } \\ \text { rate }(\mathrm{V}) * \end{gathered}$	Electrophoretic mobility of G6PD (in respect to ZwA and Zw^{B}	Thermosensitivity of G6PD
No. of mutation	Mutagenized X chromosome	Mutagen						
25	$139 \mathrm{pnZ} \mathrm{w}^{\text {A }}$	EMS	30-70		11		A	increased
26	"	"	40-70	increased	increased		A^{+}	
28	"	"	20-40	"	"		A	
29	"	"	70-130	1.8	86		A	increased
30	"	"	30-70	18	47	29	A	
35	"	spontaneously	20-180	9.0	130			increased
40	135pnZw ${ }^{\text {A }}$	EMS	20-130	2.0	2300	150	A	decreased
43	$171 \mathrm{pnZw}{ }^{\text {B }}$	"	7-20				intermediate	
47	139 pnZw A	spontaneously	30-110	1.7	1300	120	A	decreased

* The norm is the stock with the $Z_{w}{ }^{A}$ isozyme. $K_{m} Z W^{A}$ and $Z w^{B}$ coincide with regard to coenzyme and substrate. The mean activity of the normal stock is 60 nmol of reduced $\mathrm{NADP} / \mathrm{min} / \mathrm{mg}$ of protein. V is expressed in the same units.
** G6PD mutations described earlier.
+ The staining intensity of the G6PD band is very low.
\dagger To determine these values of $K_{m}^{N A D P}$ the extracts were obtained in a homogenization buffer without NADP. In this case the value of $\mathrm{K}_{\mathrm{m}}^{\mathrm{NADP}}$ for normal G6PD was $7.4 \times 10^{-5} \mathrm{M}$.

Hägele, K. and W.-E. Kalisch. RuhrUniversität Bochum, Germany. ${ }^{3}$ H-thymidine labeling intensity over a prominent band group prior to and during puffing.

3 H -thymidine labeling experiments on polytene chromosomes of D . melanogaster have been made in order to check whether or not an alteration in the morphology of a chromosome section is correlated with a change in the amount of silver grains over it. In late third instar larvae (115 h after egg deposition) and white prepupae ($0-2 \mathrm{~h}$ after puparium formation) region 61A-64C of chromosome arm 3L was analyzed autoradiographically at the discontinuously labeled end phases of the replication cycle. Especially section 63E1-5 was studied because the prominent band group of this region forms a large puff in prepupae.

The ratios of silver grain numbers over the puffed and nonpuffed 63El-5 sections and the reference sections $62 \mathrm{Al}-2$ and 63A1-3 to those over section 62Cl-2 were determined (Table 1). In 53 chromosomes, silver grain ratios between the reference sections correspond with each other during late third instar larvae and prepupae. However, the ratios of the 63E sections show that the labeling intensity over the puffed 63E1-5 section is twice as high as over the non-puffed 63E bands. Fig. 1 gives an example for labeling distributions over the $62 \mathrm{~B}-64 \mathrm{~A}$ region in a late third instar larva and a prepupa.

Our data do not agree with those of Zhimulev and Belyaeva (1975), which claim that the amount of silver grains over the 63E1-5 section does not depend on whether the puff is present or not. Experimental methods used in this study, however, are quite different from ours. After hatching, larvae were incubated up to the 0 h and 1 h prepupa stage in a medium containing the radioactive precursors. In our experiments, pulse labeling with 3 H -thymidine was only allowed to take place before (late third instar larva) or during (prepupae) puff formation of 63E. Furthermore, Zhimulev and Belyaeva (1975) have used a "correction factor" for silver grain calculations which is thought to correct region geometry and self-absorption of β-particles (Holmquist 1972). We have omitted this correction because the factor does not deal with the increase of a region's volume in the special case of puffing of a condensed band.

With regard to our results it could be argued that the molecules, necessary for DNA synthesis, more easily reach the DNA in the puffed state than in the condensed situation because of the less dense packing of the DNA protein complex in the puff (Berendes 1966). This would imply that replication in the puffed 63El-5 section could proceed faster and that, therefore, the labeling intensity after 3 H -thymidine application is higher than in the condensed 63 E section. However, replication duration of 63 E remains unchanged whether this region is puffed or not (Hägele and Kalisch, in press). Thus, an increased labeling intensity of the puffed 63 E section, based on a faster replication, can be excluded. It seems more likely that in a
labeled puff section the changed conditions in comparison to the non-puffed state have an increasing effect on the silver grain numbers. In the transcriptionally active, puffed situation there is a greater area of chromosome contact with autoradiographic emulsion, a decreased clustering of the precursors incorporated and, presumably, a lowered self-absorption of β particles on the basis of the changed DNA histone (nucleosome) configuration.

References: Berendes, H.D. 1966, Chromosoma 20:32; Hägele, K. and W.-E. Kalisch 1974, Chromosoma 47:403; \qquad and \qquad , Chromosoma (in press); Holmquist, G. 1972, Chromosoma 36: 413; Kalisch, W.-E. and K. Hägele 1973, Chromosoma 44:265; \qquad and \qquad 1977, DIS 52:127; Zhimulev, I.F. and E.S. Belyaeva 1975, Chromosoma 49:219.

Hankins, G.R. and A.F. Sherald. George Mason University, Fairfax, Virginia. Hydropyrimidine hydrase in D. melanogaster.

The black mutation (2-48.5) of Drosophila is the result of a partial deficiency in beta-alanine synthesis (Hodgetts and Choi 1974); however, the specific enzymatic lesion is still unknown. Betaalanine can be synthesized via a number of pathways including direct decarboxylation of aspartate, or by synthesis and degradation of uracil. In Musca, the major biosynthetic pathway proceeds
through uracil (Ross and Monroe 1972), and in Drosophila, Jacobs (1974) found that, like betaalanine, exogenous uracil, dihydrouracil and beta-ureidopropionate promoted normal coloration in black adults; and label from both orotate and uracil was incorporated more strongly into black than wild type cuticles. These data would suggest that black causes a partial metabolic lesion in the pathway via uracil, possibly prior to orotate. However, studies of several gene-

FIGURE 1. Hydropyrimidine Hydrase Activity in Canton-S and black Drosophila. Assays were performed using crude Drosophila supernatant of 100 flies $/ \mathrm{ml}$. Protein determinations were performed for assay no. 3 and no significant difference was found between black and Canton-S supernatants. Flies were usually no older than 9 hours.
enzyme systems are in complete contradiction to this interpretation. The first three enzymes in orotate synthesis are reduced by various of the alleles of rudimentary (Ralws and Fristrom 1975) and the last two by rudimental (Lastowski, pers. comm.). None of these mutations show a black phenotype, nor does suppressor of rudimentary which blocks the first step in uracil catabolism (Stroman et al. 1973). Therefore, if the black lesion does occur in the pathway via uracil, it must affect either of the final enzymes; hydropyrimidine hydrase or beta-ureidopropionase.

We have assayed hydropyrimidine hydrase EC 3.5.2.2. which catalyzes the conversion of dihydrouracil to beta-ureidopropionate. The spectrophotometric method described by Dudley et al. (1974) was used except that buffer was substituted for ethanol to attain better solubility of the substrate. Protein was determined by the method of Lowry et al. (1951). CantonS was used as the wild type control and the black strain was back bred to Canton 11 times prior to the assays.

The results given in Fig. 1 fail to show any difference in activity between black and wild type for this enzyme. Whild beta-ureidopropionase remains to be tested, it appears more likely that black is a lesion in aspartate decarboxylase. Jacobs (1974) found a slight but significant decrease in 14 CO 2 excretion from black flies injected with labeled aspartate. Since a heterozygous deficiency of the wild allele also produces a black phenotype (Lindsley et al. 1972) suggesting that black homozygotes could have enzyme levels as high as 50% or more than wild type; and the available black alleles are leaky, homozygotes producing as much as 50% of normal levels of beta-alanine (Hodgetts 1972); more definitive results might be obtained with a direct in vitro assay for aspartate decarboxylase using either stronger black alleles or flies that are heterozygous for black and a deficiency of the wild allele. While the pathway through uracil is capable of compensating for black when supplied with exogenous substrates, it appears that the increased amounts of beta-alanine needed during puparium formation and eclosion are normally supplied by aspartate decarboxylase.

This research was supported in part by George Mason University Research Grant to A.F.S. The authors wish to thank Dr. George Andrykovitch, Ms. Martha Corjay, Mr. Thomas Hundley and Ms. Nancy Meinecke for their expert advice and assistance.

References: Dudley, K.H. et al. 1974, Drug. Metab. Disp. 2:103; Hodgetts, R. 1972, J. Insect Physiol. 18:937; Hodgetts, R. and A. Choi 1974, Nature 252:710; Jacobs, M.E. 1974, J. Insect Physiol. 20:859; Lindsley, D.L. et al. 1972, Genetics 71:157; Lowry, 0.H. et al. 1951, J. Biol. Chem. 193:265; Rawls, J. and W. Fristrom 1975, Nature 233:738; Ross, R. and R. Monroe 1972, J. Insect Physiol. 18:1593; Stroman, P. et al. 1973, Hereditas 73:239.

Hartmann-Goldstein, I.J. Sheffield University, England. DNA-content of Malpighian tubule nuclei from white-variegated larvae.
flattened type II cells are colorless, generally occur singly, and tend to decrease in number towards the proximal end of the segment. To establish whether there are consistent differences in the degree of polyteny in these cell types, I used a Barr and Stroud GN2 integrating microdensitometer to measure the Feulgen-DNA content of formalin-fixed cells in one anterior tubule from each of four female $T(1 ; 4) \mathrm{w}^{\mathrm{m}} 258-21$ prepupae reared at $14^{\circ} \mathrm{C}$. In the squash preparations used, the relative positions of the cells in the tubule were largely preserved. Of 384 nuclei measured (Fig. 1; Table 1) all but 12 fell into 3 discrete DNA classes, with mean values of approximately 9,36 and 70 arbitrary units. Presumably the class with the smallest mean differed from the other two classes by two and three replication steps respectively. The remaining 12 nuclei (shown on the histogram as unshaded areas, and not included in the tables) were, with only one exception, grouped between the two smaller classes and had a mean value of 19.2 ; they may represent the "missing" replication step.

Nuclei falling into the lowest DNA class were usually distributed singly and were somewhat more numerous toward the distal end of the tubule. It seems probable, therefore, that they belong to type II cells. Nuclei in the highest class were most numerous in the proximal regions while those in the next lower class predominated near the distal end. In the intermediate regions these two classes were represented in approximately equal numbers, and nuclei

Table 1. Mean Feulgen-DNA values, in arbitrary units, of Malpighian tubule nuclei in three DNA classes.

Prepupa	N	$\overline{\mathrm{M}} \quad \mathrm{SE}$	Prepupa	N	$\overline{\mathrm{M}}$	SE
a	17	11.40 ± 0.65	unpigmented	13	8.69	± 0.86
	59	36.96 ± 0.76		27	32.93	± 0.72
	40	71.03 ± 1.15		3	64.0	± 3.0
b	18	8.28 ± 1.03	$\begin{gathered} c \\ \text { pigmented } \end{gathered}$	-	-	-
	58	37.31 ± 0.45		22	36.96	± 0.81
	25	75.92 ± 1.40		10	62.70	± 1.45
c	13	8.69 ± 0.86	unpigmented	10	7.40	± 0.86
	49	34.73 ± 0.61		24	35.13	± 0.48
	13	63.0 ± 1.26		5	61.0	± 0.89
d	10	7.40 ± 0.86	$\begin{gathered} \mathrm{d} \\ \text { pigmented } \end{gathered}$	-	-	-
	59	35.86 ± 0.45		35	36.37	± 0.67
	11	64.64 ± 1.57		6	67.67	± 2.11

of a given class occurred either singly or in groups of two or three. This distribution pattern is reminiscent of white-variegation, since those type I cells which are colorless usually occur singly or in small groups, and are frequently more common towards the distal than the proximal end of the tubule.

Two of the tubules (c and d in the illustrations) had been pre-fixed in 2% mercuric chloride (which preserves the pigmentation and improves the contrast between pigmented and unpigmented cells), and photographed before being fixed and stained. The DNA-content of individual cells could therefore be correlated with presence or absence of pigment. To investigate the possibility that degree of polyteny and variegated position effect are related, the DNA-content of pigmented and unpigmented cells was compared (Table 2). Cells with the lowest DNA content were always unpigmented, confirming the conclusion that they are of type II; the absence of pigment in this cell type is not related to variegation, since type II cells are colorless even in wild-type strains. All 12 unclassified nuclei belonged also to unpigmented cells, which suggests that they too may be of type II. The nuclei in the two highest DNA classes were found in similar proportions in pigmented and unpigmented cells; in neither tubule was the difference statistically significant ($X^{2}=0.421$ and 0.086 respectively in c and d). Thus in larval Malpighian tubules the absence of pigment associated with variegated position effect does not appear to be related to degree of polyteny.

Reference: Wessing, A. and D. Eichelberg 1978, in: The Genetics and Biology of Drosophila (Ashburner, M. and T.R.F. Wright, eds., Academic Press) Vol. 2c:1-41.

Heed, W.B. University of Arizona, Tucson, Arizona. Central and marginal populations revisited.
D. mojavensis appears to be an exemplary species with which to study the ecology and life history strategies of populations containing substantial amounts of inversion heterozygosity ("central populations") and those with little or none ("mar-
ginal populations") chiefly because the geographic areas containing each kind of population are approximately equal in size and the host plants are well known in each case. Furthermore, detailed field studies may be accomplished on a year-round basis.

Central populations are considered by many investigators to be (1) geologically older and to live under conditions considered to be (2) spatially more heterogeneous and (3) temporally more predictable. The question arises whether all three conditions are necessary for the origin and maintenance of inversion heterozygosity. Our preliminary studies are demonstrating that increased trophic resource predictability is a characteristic feature of areas in which D. mojavensis maintains inversion heterozygosity while increased niche diversity or breadth is not immediately evident. The question of geologic age is at least not disputed.
D. mojavensis spends its entire life cycle on chiefly two host plants. In Baja California, the islands in the Gulf and in the Desemboque Region of Sonora, mojavensis utilizes agria cactus, while in the remainder of Sonora and in northern Sinaloa and southern Arizona, the species switches to the organ pipe cactus. Of special interest is the fact that all inversion heterozygosity on chromosome 2 (4 common gene arrangements and 3 rare gene arrangements) and the major portion of the heterozygosity on chromosome 3 (2 gene arrangements) are restricted to populations living in agria cactus. Furthermore, while there are areas in Baja California which have lower heterozygosities than other areas, none of the more than 30 localities sampled were completely monomorphic for gene arrangements. By contrast populations living in organ pipe are invariably monomorphic in the northern half of their distribution and three localities where heterozygous in chromosome 3 in the south. In general then, and as a first approximation, populations living in agria cactus are considered to be central or subcentral while those living in organ pipe are called marginal or submarginal populations. The data on the inversions was kindly supplied by William R. Johnson.

Trophic resource predictability is being measured by three different methods: (1) surveys of the host plant density and density of the necrotic tissue, (2) correlations of the variation in biotic and abiotic factors in the necrotic tissue and (3) comparison of yeast species diversity in both host plants. A total of 13 plant censuses have been conducted throughout the Sonoran Desert to date. Nine of these were made in agria cactus and four were made on organ pipe cactus (data kindly supplied chiefly by Robert L. Mangan, Jean S. Russell and William T. Starmer). The areas surveyed varied in size from 3 to 62 acres. In one area of 54 acres both agria and organ pipe were scored. The mean number of organ pipe plants per
acre was 11.6 with a range of 2.4 to 21.7 . The agria cacti averaged 46.9 plants per acre with a range of 4.3 to 167.1 . The latter figure represents a survey of about 4 acres in southern Baja California. These occasional thickets are produced vegetatively and are probably nurtured by the decaying stems themselves as they bend down and take root. We can tentatively state that agria cactus is generally more abundant than organ pipe even though it is not as large. The mean frequency of rotting plants among all plants scored was 13.5% of 4,100 agria cacti compared to 6.1% of 286 organ pipes. The biological difference is even greater, however, since many organ pipe rots do not contain D. mojavensis larvae while the majority of agria rots do.

The second method for measuring resource predictability was attempted by correlating the variation in concentration of yeasts, low molecular weight volatiles, and abiotic factors such as pH and temperature, with each other, and with the presence or absence of adult D . mojavensis (information kindly supplied by Don C. Vacek). Four significant correlations were found in agria rots while only one was found in organ pipe rots. Therefore, a D. mojavensis female can better assess an agria rot for both feeding and egg laying. For instance, there is a positive correlation between the concentration of ethanol, 2-propanol and other volatiles with the presence of adult D. mojavensis and a negative correlation between the concentration of these volatiles and the concentration of yeasts in the substrate. As the necrotic tissue advances, the yeasts increase in density, at least in part, at the expense of the volatiles and subsequently for the benefit of the maturing larvae. In the case of organ pipe necrotic tissue, the only significant correlation found was a negative one between pH and volatile concentration. No correlations were detected for temperature in either host plant.

Yeast species comparisons among host plants showed agria rots to be more predictable because they are less variable (data kindly offered by William T. Starmer). There were 4 effective species out of 12 species recovered in this host compared to 5.4 effective species out of 9 species recovered in organ pipe. On a per-plant basis, agria averages 1.8 species of yeast while the organ pipe average is 2.2. Furthermore, on a per-isolate basis, the yeasts from agria utilize an average of 8.5 compounds for growth ($N=183$) while those from organ pipe utilize an average of 10.1 compounds ($\mathrm{N}=83$). Since the variance of these means is twice as high in organ pipe (31.0 vs 16.5) it means this plant is a more variable environment. The most notable evidence we have for this lies in the presence or absence of Pichia cactophila, probably the most important yeast for D. mojavensis since it is a good indicator of the presence or absence of larvae. This yeast was recovered in 73% of 105 agria rots sampled compared to 59% of 41 organ pipe rots. The difference is marginally significant.

In summary, central populations live in a more predictable environment than marginal populations because of the greater abundance of rots which have higher resolving power for the flies and which are more suitable (chemically stable?) for the growth of the nutritionally favored yeast. The first and last points may be a reflection of the asexual reproduction periodically exhibited in agria cactus.

Hilliker, A.J. University of British Columbia, Vancouver, British Columbia.* Heterochromatic duplications and the meiotic segregation of compound second autosomes during spermatogenesis of D. melanogaster.
homology between the two compound autosomes was clear as it could be easily perturbed by the introduction of a Y chromosome, by the substitution of an attached X chromosome for the two free X chromosomes or by structural heterozygosity for the other autosome.

The present of meiotic pairing sites active during spermatogenesis and responsible for the meiotic segregation of the X and Y chromosomes (reviewed in Peacock and Miklos 1973) led to the speculation that analogous sites may exist in the autosomal heterochromatin. Nevertheless, Holm (1969; Holm and Chovnick 1975) in the analysis of compound third autosomes
*Present address: CSIRO, Canberra City, ACT, Australia.
found that they behaved as nonhomologous chromosomes during spermatogenesis. As recent work has demonstrated that compound autosomes arise by a translocation mechanism (reviewed in Holm 1976; Hilliker 1978), any pair of compound autosomes share heterochromatic homology and, hence, one would expect some pairs of compound third autosomes to exhibit non-random segregation during male meiosis given the existence of pairing sites in the autosomal heterochromatin.

Holm (1969) in examining the meiotic segregation during spermatogenesis of compound second autosomes in several Drosophila strains found that none of the compound second autosomes examined segregated randomly, that is, there was a smaller proportion of sperm recovered nonsegregational for the compound autosomes than would be predicted from a model of random segregation. However, such departures from random segregation are minor and may be the consequence of elimination of one compound autosome from a proportion of diplo-2 spermatid nuclei (see Hardy 1975).

Sandler et al. (1968) found a C(2R) chromosome which apparently segregated in males with relatively high efficiency from any $C(2 L)$ chromosome with which it was tested in combination. The segregational properties of this chromosome, $C(2 R) c n$, were further analyzed by Evans (1971) and Gethmann (1976). C(2R) cn carries a 2L duplication extending from the centomere to 38 or 39 (E.B. Lewis, unpub1., cited in Gethmann 1976) and is, therefore, duplicated for the 2 L heterochromatin as well as 2 L proximal euchromatin. Gethamnn (1976) suggests that the relatively efficient segregation of $C(2 R) c n$ from $C(2 L)$ is due to the $2 L$ duplication and specifically to the duplication of pairing sites in the heterochromatin. Equally likely is that $C(2 R) c n$ is duplicated for a pairing site in the 2 L proximal euchromatin. Yamamoto's (1979) cytological analysis of the meiotic segregation of $C(2 R)$ en from a complement C (2L) during spermatogenesis led him to conclude that these chromosomes segregated randomly; however the data in support of this conclusion are not presented in sufficient detail to allow statistical evaluation.

In our laboratory a number of compound autosomes carrying heterochromatic duplications of a portion of the complementary arm have been constructed. For example, C(2L)SHl+ carries a duplication of $2 R$ extending from the centromere to a point distal to the r1+ locus within the 2R heterochromatin. Our previous analysis of the second chromosome proximal heterochromatin (Hilliker and Holm 1975; Hilliker 1976) has enabled us to set limits on the extent of the duplications associated with compound second autosomes. C(2L)SH1+ and C(2L)VH1 1t, which bear r1+ duplications of 2 R , are duplicated for at least half of the 2 R heterochromatin and $C(2 R) V K 2 b w$ is duplicated for most of the 2 L heterochromatin.

In order to examine the role, if any, of heterochromatin homology in meiotic pairing in males, the segregation of compound autosomes bearing duplications for heterochromatic material of the complementary compound autosomes was assayed. Segregation was assayed by crossing males of the selected compound-second autosome bearing strains to differentially marked compound-second autosome bearing females possessing a Y-chromosome. These BSY; C(2L)P,b; C(2R)P,px females give, as first demonstrated by E.H. Grell (1970) for BSY; C(2L); C(2R) bearing females in general, a high frequency of compound-second autosome nonsegregation. Female gametes nonsegregational for the compound second autosomes will result in a viable zygote only if fertilized by a sperm nonsegregational for the paternal compound-second autosomes. Thus a strain in which compound-second autosomes partially segregate in males when crossed to $B S Y$; $C(2 L) P, b ; C(2 R) P, p x$ females will give a lower frequency of progeny completely matroclinous or patroclinous for the two compound-second autosomes than will a strain in which $C(2 L)$ and $C(2 R)$ segregate at random in the male.

Therefore, males of the $C(2 L) S H 3+; C(2 R) S H 3+$ strain, one in which nearly equal frequencies of $C(2 L)$; $C(2 R)$; diplo-2; and nullo-2 sperm are produced (Holm 1969), and of several other strains in which one or both compound autosomes bore heterochromatic duplications of the other arm were crossed singly in shell vials to $B S Y ; C(2 L) P, b ; C(2 R) P, p x$ virgin females. The results are presented in Table 1 and in summary form in Table 2.

Since there is no significant reduction in the frequency of nonsegregation in those crosses involving males carrying $C(2 L)$ and $C(2 R)$ chromosomes with extensive heterochromatic homology (Table 2), it is probable that heterochromatic homology per se is not a major factor in the meiotic segregation of autosomes in male D. melanogaster. Further, in conjunction with the compound third chromosome studies, as well as studies involving autosomes (and autosomal derivatives) heterozygous for heterochromatic deletions (Yamamoto 1979; Hilliker 1980), these data provide evidence for the absence of male meiotic pairing sites in the bulk of the autosomal heterochromatin.

The foregoing data have been abstracted from Hilliker (1975).

Table 1. Progeny of $B S Y ; C(2 L) P, b ; C(2 R) P, p x$ females and various compound second autosome bearing males.

	${ }_{B} S_{Y}$		Chromosome from mother			$B^{\text {S }} \mathrm{Y}$			
Male genotype	$\begin{aligned} & \mathrm{C}(2 \mathrm{~L}) \mathrm{P}, \mathrm{~b} ; \\ & \mathrm{C}(2 \mathrm{R}) \mathrm{P}, \mathrm{px} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{C}(2 \mathrm{~L}) \mathrm{P}, \mathrm{~b} ; \\ & \mathrm{C}(2 \mathrm{R}) \mathrm{P}, \mathrm{px} \\ & \hline \end{aligned}$	$\mathrm{C}(2 \mathrm{R}) \mathrm{P}, \mathrm{px}$	C(2R) P, px	C(2L)P, b	C(2L)P, ${ }^{\text {b }}$		0	Total
$\begin{aligned} & \text { C(2L) SH3,+ } \\ & \text { C(2R)SH3,+ } \end{aligned}$	1	462	300	273	204	279	247	5	1771
$\begin{aligned} & \mathrm{C}(2 \mathrm{~L}) \mathrm{SH} 1, \mathrm{Dp}(2 \mathrm{R}) \mathrm{r} 1^{+} \\ & \mathrm{C}(2 \mathrm{R}) \mathrm{SH1},+ \end{aligned}$	1	567	395	365	286	383	447	4	2448
$\begin{aligned} & \mathrm{C}(2 \mathrm{~L}) \mathrm{SH} 1, \mathrm{Dp}(2 \mathrm{R}) \mathrm{r} 1^{+} \\ & \mathrm{C}(2 \mathrm{R}) \mathrm{SH} 3,+ \end{aligned}$	0	57	39	46	31	47	44	0	264
$\begin{aligned} & \mathrm{C}(2 \mathrm{~L}) \mathrm{SH} 3,+ \\ & \mathrm{C}(2 \mathrm{R}) \mathrm{VK} 2, \mathrm{Dp}(2 \mathrm{~L}) 1 \mathrm{t}^{+}, \mathrm{bw} \end{aligned}$	0	127	153	146	122	174	215	3	940
C(2L) VH1, $\mathrm{Dp}(2 \mathrm{R}) \mathrm{r} 1^{+}, 1 \mathrm{t}$ C(2R)VK2, Dp (2L) $1 t^{+}$, bw	1	122	127	102	80	146	163	1	742

Table 2. Frequency of progeny nonsegregational for compound-second autosomes from $\mathrm{B}^{\mathrm{S} Y}$; C(2L)P,b; C(2R)P,px virgin females crossed to various strains of compound-second autosome bearing males.

Percent

C(2L)	C (2R)	nonsegregational \qquad progeny	N
SH3+	SH3+	40.4	1771
SH1+*	SHl+	41.6	2448
SH1*	SH3+	38.3	264
SH3+	VK2bw**	36.7	940
VH11t*	VK2bw**	38.7	742

[^4]Supported by operating grant A5853 from the National Research Council of Canada to Dr. David G. Holm.

References: Evans, W.H. 1971, DIS 46:123-124; Gethmann, R.C. 1976, Genetics 83:743-751; Grell, E.H. 1970, Genetics 65:65-74; Hardy, R.W. 1975, Genetics 79:231-264; Hilliker, A.J. 1975, Ph.D. Thesis, Univ. of British Columbia; \qquad 1976, Genetics 83:765-782; 1978, Genetics 90:85-91; 1980, DIS (in press); —— and D.G. Holm 1975, Genetics 81:705-721; Holm, D.G. 1969, Ph.D. Thesis, Univ. of Connecticut; 1976, The Genetics and Biology of Drosophila Vol. 1b:529-561; ___ and A. Chovnick 1975, Genetics 81:293-311; Peacock, W.J. and E.L.G. Miklos 1973, Advances in Genetics 17:361-409; Sandler, L., D.L. Lindsley, B. Nicoletti and G. Trippa 1968, Genetics 60:525-528; Yamamoto, M. 1979, Chromosoma 72:293-328.

Hilliker, A.J.*, A. Chovnick and S.H. Clark. Univ. of Connecticut, Storrs, Connecticut. The relative mutabilities of vital genes in D. melanogaster.

In recent years, several chromosomal regions of D. melanogaster have been subjected to intensive analysis. Most of these studies have focused primarily on the identification of genes capable of mutating to a lethal or semi-lethal state within a short, defined chromosome segment. However, the screens employed were generally competent to detect genes whose mutant alleles exhibit a recessive alteration in visible phenotype.

If all vital genes in a given region were equally mutable, then it would be possible to employ the Poisson distribution to determine the number of unmutated genes remaining after completion of a mutagenesis study. Cohen (1960) has discussed such methods for truncated Poisson distributions. It is, however, generally appreciated that vital genes within a given chromosomal interval are not of equal mutability, a point we herein substantiate and document for several regions of the Drosophila genome that have been extensively analyzed.

Since the Poisson distribution has only one parameter, the mean (m), which is equal to the variance, it is possible to determine if a given distribution of counts differs from a Poisson distribution by use of the variance ratio, $s 2 / m$, where the sample mean square, s^{2}, estimates the variance of the distribution, and where m has infinite degrees of freedom (see discussion in Gilbert 1973). The variance ratio test of significance for deviation from the Poisson distribution is preferable to the chi square test in that it is more readily applicable to smaller data samples. Moreover, even in situations where one can apply the chi square test, the variance ratio test is associated with a greater number of degrees of freedom. Where the variance ratio is not significantly different from one, indicating possible agreement with a Poisson distribution, it is possible that the count distribution does differ from a Poisson distribution. Such cases would be better revealed by the chi square test which examines the entire distribution. However, this issue is irrelevant with respect to the present analysis since (1) the sample counts are too small to employ the chi square test, and (2) none of the 11 data sets examined are in good agreement with a Poisson distribution by the variance ratio test.

Table 1 sumarizes a series of mutagenesis experiments that are competent to determine if vital genes within a given region are equally mutable by a given mutagen. Each entry represents a mutagenesis screen in which lethal mutations for all genes within a region are detected following treatment of sperm with the indicated mutagen. The data for the regions defined by $D f(3 R) r y 614$ ($D f(3 R) 87 D 2-4 ; 87 D 11-14$) and $D f(3 R) r y 619$ ($D f(3 R) 87 D 7-9$; 87E12-F1) were obtained in this laboratory as part of a larger analysis of the chromosome interval adjacent to the rosy locus (Hilliker et al. 1980).

The six regions included in the analysis of Table 1 involve both euchromatic and heterochromatic segments of the Drosophila genome. In no instance are the vital genes within a segment of equal mutability. Of the 11 experiments examined in Table 1 , only the analysis of fourth chromosome spontaneous mutations failed to show a significant deviation from the Poisson expectation. The P value for this count distribution is greater than 0.05 but less than 0.10 .

On the basis of these data, we are led to conclude that Drosophila vital genes within a defined chromosome segment are not of equal mutability. Hence, one cannot use the Poisson distribution to estimate the number of remaining unmutated vital genes within such an extensively analyzed segment.
*Present address: CSIRO, Canberra City, ACT, Australia.

Research Notes

Table l. Variance ratio analyses for the 11 indicated mutagenesis experiments involving six chromosomal intervals in D. melanogaster.

$\begin{gathered} \text { Region } \\ \text { analyzed } \end{gathered}$	No. of lethal complementation groups	Mutagen	Mean no. of alleles per complementation group	Variance	$\begin{gathered} \text { Variance } \\ \text { ratio } \\ \hline \end{gathered}$	Reference
Chromosome 4	36	Spontaneous	0.806	1.190	1.477^{\dagger}	Hochman 1973
		X-rays	0.833	2.486	2.983***	
		EMS	3.111	18.273	5.873***	
		ICR-170	0.306	0.733	2.397***	
2R Heterochromatin	6	EMS	14.000	202.800	14.486**	Hilliker 1976
2L Heterochromatin	7	EMS	4.000	20.000	5.000**	Hilliker 1976
Df (3R) ry 614	9	EMS	3.778	23.444	6.206**	Hilliker et al. 1980
Df (3R)ry 619	15	EMS	4.933	20.210	4.097**	Hilliker et al. 1980
Zeste-white	15	EMS	5.533	53.552	9.678***	Lim \& Snyder 1974
		TEM	1.800	10.029	5.571***	
		MMS	7.000	37.286	5.327***	Liu \& Lim 1975

$\dagger 0.05<\mathrm{P}<0.10 \quad * * \mathrm{P}<0.01 \quad * * * \mathrm{P}<0.001$

Supported by a research grant, GM-09886, from the Public Health Service.
References: Cohen, A.C. Jr. 1960, Biometrics 16:203-211; Gilbert, N. 1973, Biometrical Interpretation, Oxford Univ. Press, London; Hilliker, A.J. 1976, Genetics 83:765-782; \qquad , S.H. Clark, A. Chovnick and W.M. Gelbart 1980, Genetics (in press); Hochman, B. 1973, Cold Spring Harbor Symp. Quant. Biol. 38:581-589; Lim, J.K. and L.A. Snyder 1974, Genet. Res. 24: 1-10; Liu, C.P. and J.K. Lim 1975, Genetics 79:601-611.

Hilliker, A.J.*, S.H. Clark, W.M. Gelbart** and A. Chovnick. University of Connecticut, Storrs, Connecticut. Cytogenetic analysis of the rosy micro-region, polytene chromosome interval 87D2-4; 87E12-F1, of D. melanogaster.

Figure 1 presents a summary of our cytogenetic analysis of the rosy micro-region. A total of 153 recessive lethals falling into this region were subdivided by inter se complementation, and complementation tests with rosy region deficiencies, into 20 lethal complementation groups. Adjacent complementation groups illustrated within parentheses in Fig. 1 have not
been separated by deficiency from one another, hence their relative left-right order is unknown.

The recessive lethals employed in this study are listed in Table 1 according to complementation group (beginning with the most proximally located and continuing through to the most distal). Each listed recessive lethal mutation is accompanied by a description of its source, the mutagen used and, where possible, the isogenic third chromosome on which it was constructed (designated by the specific ry+ allele carried on that chromosome).

A majority of the 153 recessive lethals listed in Table 1 were synthesized by Hilliker and Clark (120) as lethal alleles of $D f(3 R) r y 614$ (34), $\operatorname{Df}(3 R) r y 619$ (83) and $D f(3 R) r y 75$ (3) (see Table 2). These recessive lethals were recovered from the treatment of iso- 3 males with either 0.025M EMS (Lewis and Bacher 1968) or gamma radiation (2000 to 4000 rads).

Since the majority of recessive lethals were synthesized as alleles of $\operatorname{Df}(3 R)$ ry 614 or $\mathrm{Df}(3 \mathrm{R}) \mathrm{ry} 619$, the region encompassed by these deficiencies, $87 \mathrm{D} 2-4$; 87E12-F1, defines the rosy micro-region.

[^5]

Figure 1. Summary of the cytogenetic analysis of polytene chromosome region 87DE.

The rosy region recessive lethals synthesized by Gelbart, by Schalet and by Deland (Table 1) were selected as lethal alleles of larger deficiencies which encompassed the entire 87D2-4; 87E12-Fl interval. Further details on the synthesis of the recessive lethals provided by Schalet and by Deland may be found in Schalet, Kernaghan and Chovnick (1964) and Deland (1971).

Each rosy region recessive lethal was subsequently tested for complementation with the rosy region deficiencies listed in Table 2.

On the basis of complementation tests with rosy region deficiencies, the recessive lethals fell into 14 clusters. Within each cluster, ALL inter se combinations of recessive lethals were examined for complementation. Further, when the recessive lethals within each cluster were resolved into complementation groups, each recessive lethal within each cluster was tested for complementation with a representative allele of each of the complementation groups defining the immediately adjacent clusters. Finally, most recessive lethals were tested for complementation with a representative allele of each complementation group within the rosy micro-region.

Let us now consider, briefly, each functional group in terms of phenotype and complementation pattern, beginning with the most proximally located.

The 1(3)S3 complementation group is associated with two additional, semi-lethal alleles, $1(3)$ A34-1 and 1(3)A46-1. The 1(3)A46-1 allele is associated with a mean viability of approximately 15% when heterozygous with 1 (3)S3. Both alleles, when heterozygous with 1 (3)S3, are associated with variation in dorsocentral bristle number and length. Further, among heterozygotes for the semi-lethal alleles and 1(3)S3, females greatly outnumber males. The 1(3)A34$1 / 1$ (3)A46-1 heterozygotes are associated with about 75% viability and normal bristle morphology and sex ratio.

Table 1. Recessive lethals listed according to complementation group.

Lethal allele	Isogenic third chromosome	Mutagen	Source
1 (3) S3	--	X-rays	Schalet
1(3)A34-1	ry+4	EMS	Hilliker, Clark
1 (3) A46-1	ry+4	EMS	Hilliker, Clark
1(3) 55	--	X-rays	Schalet
1(3) $\mathrm{C8a}$	--	X-rays	Chovnick
1(3) E4a	--	X -rays	Chovnick
1(3) G12	ry+2	EMS	Gelbart
1 (3) 9-13	ry+11	EMS	Hilliker, Clark
1 (3) B-103	ry+11	EMS	Hilliker, Clark
$1(3) \mathrm{A} 6-1$	ry+4	EMS	Hilliker, Clark
1(3) ml 4	--	EMS	Deland
$1(3) 10-194$	ry+11	EMS	Hilliker, Clark
1(3)mes-1A	--	X-rays	Schalet
$1(3) \mathrm{G} 2$	ry+2	EMS	Gelbart
1(3) G3	ry+2	EMS	Gelbart
1 (3) G8	ry+2	EMS	Gelbart
1(3) G19	ry+2	EMS	Gelbart
1(3)A27-2	ry+4	EMS	Hilliker, Clark
$1(3) 10-140$	ry+11	EMS	Hilliker, Clark
1(3) 2-34	ry+11	EMS	Hilliker, Clark
1 (3) 8-9	ry+11	EMS	Hilliker, Clark
1(3) A1 3-1	ry+4	EMS	Hilliker, Clark
1(3) 13-62	ry+11	EMS	Hilliker, Clark
1 (3) 4-22	ry+11	EMS	Hilliker, Clark
1(3) B26-1	ry+11	EMS	Hilliker, Clark
$1(3) \mathrm{Al2-2}$	ry+4	EMS	Hilliker, Clark
1(3)mes-4B	--	X-rays	Schalet
1 (3) 34-2	ry+4	EMS	Hilliker, Clark
1 (3) B14-1	ry+11	EMS	Hilliker, Clark
1 (3) G9	ry+2	EMS	Gelbart
1 (3) G15	ry+2	EMS	Gelbart
1 (3)G21	ry+2	EMS	Gelbart
1 (3) 6-120	ry+11	EMS	Hilliker, Clark
1(3) 2-228	ry+11	EMS	Hilliker, Clark
$1(3) 11-147$	ry+11	EMS	Hilliker, Clark

Lethal allele	Isogenic third chromosome	Mutagen	Source
1(3)A39-2	ry+4	EMS	Hilliker, Clark
1 (3) B10-1	ry+11	EMS	Hilliker, Clark
1(3) B13-2	ry+11	EMS	Hilliker, Clark
1 (3) $\mathrm{B} 13-3$	ry+11	EMS	Hilliker, Clark
1 (3) $\mathrm{B} 23+1$	ry+11	EMS	Hilliker, Clark
1 (3) B25-1	ry +11	EMS	Hilliker, Clark
1 (3) H37	ry+11	EMS	Hilliker, Clark
1 (3) H 73	ry+11	EMS	Hilliker, Clark
1 (3) H2	ry+11	Gamma	Hilliker, Clark
1 (3) H 23	ry+11	Gamma	Hilliker, Clark
1(3) S12	ry+11	X-rays	Schalet
1 (3) G1	ry+2	EMS	Gelbart
1(3)B21-4	ry+11	EMS	Hilliker, Clark
1 (3) pic ${ }^{21}$	--	X-rays	Schalet
1(3) ml 0	--	EMS	Deland
1(3) G23	ry+4	EMS	Gelbart
1(3) G26	ps612	Gatma	Gelbart
1(3) 8-107	ry+11	EMS	Hilliker, Clark
1 (3) 12-196	ry+11	EMS	Hilliker, Clark
1 (3) A34-3	ry+4	EMS	Hilliker, Clark
1 (3) 33-1	ry+4	EMS	Hilliker, Clark
1 (3) D-64	ry+11	EMS	Hilliker, Clark
1 (3) A3-3	ry+4	EMS	Hilliker, Clark
1 (3) A112	ry+11	EMS	Hilliker, Clark
1(3)A80	ry+11	EMS	Hilliker, Clark
1(3)A19-1	ry+4	EMS	Hilliker, Clark
1 (3) A42-1	ry+4	EMS	Hilliker, Clark
1(3) 3-119	ry+11	EMS	Hilliker, Clark
1(3) Al2-3	ry+4	EMS	Hilliker, Clark
1(3)A19-2	ry+4	EMS	Hilliker, Clark
1(3) 8-181	ry+11	EMS	Hilliker, Clark
1 (3) All1	ry+11	EMS	Hilliker, Clark
1 (3) B2-4	ry+11	EMS	Hilliker, Clark
1(3) H 10	ry+11	EMS	Hilliker, Clark
1(3) H49	ry+11	EMS	Hilliker, Clark
1(3) H51	ry+11	EMS	Hilliker, Clark
1 (3) H59	ry+11	EMS	Hilliker, Clark
1(3)H72	ry+11	EMS	Hilliker, Clark

Table 1. [continued]

Lethal allele	Isogenic third chromosome	Mutagen	Source
1(3) H19	ry+11	Gamma	Hilliker, Clark
1 (3) H22	ry+11	Gamma	Hilliker, Clark
1(3)C-9-2	ry+11	Gamma	Hilliker, Clark
1 (3) C-17-3	ry+11	Gamma	Hilliker, Clark
1 (3) $\mathrm{C}-18$-1	ry+11	Gamma	Hilliker, Clark
1 (3) H54	ry+11	EMS	Hilliker, Clark
$1(3) \mathrm{S} 8$	--	X-rays	Schalet
1(3) B21-2	ry+11	EMS	Hilliker, Clark
1 (3) B30-1	ry+11	EMS	Hilliker, Clark
1 (3) H79	ry+11	EMS	Hilliker, Clark
1 (3) B13-4	ry+11	EMS	Hilliker, Clark
1 (3) H66	ry+11	EMS	Hilliker, Clark
1 (3) H9	ry+11	Gamma	Hilliker, Clark
1 (3) B16-1	ry+11	EMS	Hilliker, Clark
1 (3) B16-4	ry+11	EMS	Hilliker, Clark
1 (3) B27-2	ryt 11	EMS	Hilliker, Clark
1 (3) H13	ry+11	EMS	Hilliker, Clark
1 (3) H69	ry+11	EMS	Hilliker, Clark
1(3)C9a	--	X-rays	Chovnick
1 (3) B2-6	ry+11	EMS	Hilliker, Clark
1 (3) B26-2	ry+11	EMS	Hilliker, Clark
1 (3) 26	--	X-rays	Schalet
1 (3) m15	--	EMS	Deland
1 (3) B2-5	ry+11	EMS	Hilliker, Clark
1 (3) $\mathrm{B} 4-2$	ry+11	EMS	Hilliker, Clark
1 (3) B8-2	ry+11	EMS	Hilliker, Clark
1 (3) B15-2	ry+11	EMS	Hilliker, Clark
1 (3) B22-1	ry+11	EMS	Hilliker, Clark
1 (3) B22-2	ry+11	EMS	Hilliker, Clark
1 (3) B27-1	ry+11	EMS	Hilliker, Clark
1 (3) B29-1	ry+11	EMS	Hilliker, Clark
1(3) B29-2	ry+11	EMS	Hilliker, Clark
1 (3) H36	ry+11	EMS	Hilliker, Clark
1 (3) H4 1	ry+11	EMS	Hilliker, Clark
1(3) H89	ry+11	EMS	Hilliker, Clark
1 (3) B21-5	ry+11	EMS	Hilliker, Clark
1 (3) H 15	ry+11	EMS	Hilliker, Clark

Letha1 allele	Isogenic third chromosome	Mutagen	Source
1(3)G7	ry+2	EMS	Gelbart
1 (3) B1-3	ry+11	EMS	Hilliker, Clark
1 (3) B9-1	ry+11	EMS	Hilliker, Clark
1 (3) B13-1	ry+11	EMS	Hilliker, Clark
1 (3) $\mathrm{B} 30-2$	ry+11	EMS	Hilliker, Clark
1 (3) H34	ry+11	EMS	Hilliker, Clark
1 (3) H91	ry+11	EMS	Hilliker, Clark
1 (3) H75	ry+11	EMS	Hilliker, Clark
1 (3) H20	ry+11	Gamma	Hilliker, Clark
1(3)m32	--	EMS	Deland
1(3) m17	--	EMS	Deland
1 (3) B1-1	ry+11	EMS	Hilliker, Clark
1 (3) B11-1	ry+11	EMS	Hilliker, Clark
1 (3) B16-3	ry+11	EMS	Hilliker, Clark
1 (3) B26-3	ry+11	EMS	Hilliker, Clark
1 (3) H45	ry+11	EMS	Hilliker, Clark
1 (3) H77	ry+11	EMS	Hilliker, Clark
1 (3) ml16	--	EMS	Deland
1(3) S9	--	X-rays	Schalet
1 (3) m102	--	EMS	Deland
1(3) B1-2	ry+11	EMS	Hilliker, Clark
1 (3) $\mathrm{Bl}-5$	ry+11	EMS	Hilliker, Clark
1 (3) B2-3	ry+11	EMS	Hilliker, Clark
1 (3) B8-1	ry+11	EMS	Hilliker, Clark
1 (3) B8-4	ry+11	EMS	Hilliker, Clark
1 (3) B12-2	ry+11	EMS	Hilliker, Clark
1 (3) B15-1	ry+11	EMS	Hilliker, Clark
1 (3) 21-3	ry+11	EMS	Hilliker, Clark
1 (3) B26-4	$\mathrm{ry}+11$	EMS	Hilliker, Clark
1 (3) B28-1	ry+11	EMS	Hilliker, Clark
1 (3) H 9	ry+11	EMS	Hilliker, Clark
1 (3) H30	ry+11	EMS	Hilliker, Clark
1 (3) H32	ry+11	EMS	Hilliker, Clark
1 (3) H57	ry+11	EMS	Hilliker, Clark
1(3)G5	ry+2	EMS	Gelbart
1 (3) B4-1	ry+11	EMS	Hilliker, C1ark

Table 1. [continued]

Lethal allele	Isogenic third chromosome	Mutagen	Source	Lethal allele	Isogenic third chromosome	Mutagen	Source
1(3)m112	--	EMS	Deland	1(3) H21	ry+11	EMS	Hilliker, Clark
1(3) B9-2	ry+11	EMS	Hilliker, Clark	1(3) H24	ry+11	Gamma	Hilliker, Clark
1(3) B16-2	ry+11	EMS	Hilliker, Clark	1(3) H 25	ry+11	Gamma	Hilliker, Clark
1(3) B17-1	ry+11	EMS	Hilliker, Clark				

Table 2. Deficiencies employed in this analysis and their breakpoints.

The 1 (3) S5 associated complementation group is represented by four other alleles (Table 1). All allele combinations are completely lethal.

The $1(3) \mathrm{B}-103$ complementation group is associated with two alleles (Table l).
The foregoing three lethal complementation groups have not been separated from one another by deficiency or by recombination analysis, thus their relative left/right order is not defined.

The next complementation group, 1(3)ml4 (Fig. 1), has two alleles and is separable by deficiency from adjacent complementation groups. Df(3R)ry 1608 separates 1 (3)m14 from the complementation groups to its left while $\operatorname{Df}(3 R) r y^{36}$ separates it from mes-A.

The next complementation group is that associated with mes-1A. The deficiency, Df(3R)ry 36 (Fig. 1, Table 1) separates mes-1A from 1 (3)m14, the proximally flanking complementation group. Further, $1(3)$ mes-1A was separated from the distally flanking complementation group associated with 1 (3)mes-4B by $D f(3 R)$ ry 74 (Schalet, Kernaghan and Chovnick 1964), a deletion which has been lost. All of the 14 mes-A alleles are semi-lethals associated with a visible mutant phenotype when hemizygous and in mutant allele heterozygous combinations. The visible phenotype is characterized by extra head and thoracic bristles; especially marked is duplication of the anterior scutellar bristles. Surviving mutant allele heterozygotes uniformly express the mes-A phenotype. Although mes-A alleles were tested for complementation with 1 (3)m14, all mes-B alleles and three alleles of the $1(3)$ G9 group [1(3)G9, 1(3)G15 and 1(3)G21]. All heterozygotes exhibited full complementation.

The next complementation group, mes-B (Fig. 1), has three alleles and is similar to the mes-A group in that alleles are semi-lethal and associated with a recessive visible phenotype; namely, outspread wings, held at about a 45° angle to the body, and a dark trident-like crown on the dorsal thorax. The penetrance of this phenotype is excellent. (Occasionally, thoracic bristle duplication reminiscent of that associated with mes-A alleles is observed.)

The adjacent lethal complementation group, the 1 (3) G9 complex, is associated with 16 alleles (Fig. 1), one of which, 1(3)H23, is semi-lethal. Although the l(3)G9 complementation group has not been separated by deficiency from the mes-B group, all combinations of mes-B alleles with 1 (3) G9 alleles complement fully. Thus, we conclude that these two complementation groups represent separate gene loci. The order of $1(3) G 9$ and mes-B is unclear. We infer that $1(3) G 9$ is to the right of mes-A from the following observations: $D f(3 R) r y 619$ appears to have its left breakpoint in the inmediate vicinity of mes-A for although heterozygotes for $D f(3 R)$ ry619 and alleles of the mes-A complementation group exhibit a mes-A phenotype, they have much greater viability than is ordinarily the case for mes-A allele hemizygotes, suggesting that the mes-A locus on the $\operatorname{Df}(3 R)$ ry 619 chromosome is partially functional; whereas, $D f(3 R) r y 619$ is completely lethal in combination with 1 (3) G9 alleles.

The next complementation group (Fig. 1), that associated with 1 (3)S12, consists of three alleles and is separated from 1 (3) G9 and mes-B by $D f(3 R) k a r l G_{2} 7$. We observed that 1 (3)S12 fully complemented with $1(3)$ G1. However, neither allele complemented with 1(3)B21-4. Since all three recessive lethals mapped by deficiency analysis immediately adjacent to the rosy locus we concluded that the complementation map observed was a function of allele complementation. Although 1 (3)S12 and 1(3)B21-4 are completely lethal when hemizygous, 1(3)G1 is associated with low hemizygous viability. Surviving hemizygotes for 1(3)Gl uniformly express a phenotype of very thin and short thoracic bristles. Although 1(3)S12 has not been separated by deficiency from the rosy locus, recombination experiments have demonstrated that 1 (3) S12 maps to the left of all rosy locus variants which have been assigned positions in the rosy locus genetic map (Chovnick et al. 1976; McCarron et al. 1979).

The next complementation group is that associated with the rosy locus (ry: 3-52.0), a genetic unit containing the xanthine dehydrogenase structural element and adjacent cis-acting regulatory sequences (Chovnick et al. 1976; McCarron et al. 1979).

The next complementation group is that associated with the previously described piccolo (pic) locus, which has been separated from the rosy locus by deficiencies and recombination (Schalet, Kernaghan and Chovnick 1964; Fig. 1). $D f(3 R) r y 36$ serves to place pic to the right of ry; $D f(3 R) r y 614$, to place pic to the left of $1(3) S 8$. A total of 32 recessive lethal and semi-lethal alleles of this locus were available for analysis. Unlike all other complementation groups, not all inter se allele combinations of pic variants were tested for complementation (185 of 496 possible allele combinations were tested). Of the pic alleles listed in Table 1, all allele combinations involving the 19 alleles from $1(3)$ pic 21 to 1 (3)A111 inclusive were tested for complementation. Of the 19 alleles extensively analyzed, 6 alleles exhibited, in combination, heterozygous surviving progeny--1(3)pic $21,1(3) \mathrm{ml}, 1$, 1 (3)A42-1,
$1(3) \mathrm{A} 12-3,1(3) \mathrm{A} 33-1$ and $1(3) \mathrm{A} 3-3$. The heterozygous surviving progeny were of reduced viability and uniformly exhibited a pic phenotype, namely, short, fine bristles and abnormal tergite morphology. Thus interallelic complementation extending to the visible phenotype was not observed among alleles of the pic locus.

The next complementation group, that associated with $1(3) \mathrm{S} 8$, consists of 7 alleles (Fig. 1 ; Table 1), all combinations of which exhibit complete lethality. $\operatorname{Df}(3 R) 126 \mathrm{c}$ places 1 (3)S8 to the left of 1 (3)B16-1.

The next complementation group, associated with 1 (3)Bl6-1, consists of 5 alleles (Table 1) and on the basis of its localization by complementation with rosy region deficiencies almost certainly corresponds to the previously described 1(3)S6 locus (Schalet, Kernaghan and Chovnick 1964), the sole representative allele of which was lost prior to the present analysis. A11 allele combinations were lethal save two. Heterozygotes for 1(3)H69/1(3)B16-1 and for 1 (3) $\mathrm{H} 69 / 1$ (3)B27-2 were of 4% and 15% viability, respectively. Surviving heterozygous progeny were of normal phenotype.

The 1(3)C9a complementation group consists of three hemizygous lethal alleles which exhibit limited allele complementation. The heterozygotes, 1(3)C9a/1(3)B2-6, 1(3)C9a/1(3)B26-2 and $1(3) \mathrm{B} 2-6 / 1(3) \mathrm{B} 26-2$, were of $8 \%, 14 \%$ and 2% mean viability, respectively. Surviving heterozygous progeny are somewhat reduced in size relative to wild type. $\operatorname{Df}(3 \mathrm{R}) \mathrm{ry} 1402$ and $\mathrm{Df}(3 \mathrm{R})$ ry 1608 place 1 (3) C9a to the right of 1 (3) B16-1.

The next complementation group, Ace, associated with 1 (3) 26 (Schalet, Kernaghan and Chovnick 1964), consists of 16 alleles (Table 1). All allele combinations are lethal save two, both involving 1 (3)B15-2. The heterozygotes 1 (3) $\mathrm{m} 15 / 1$ (3) B15-2 and $1(3) \mathrm{B} 15-2 / 1$ (3) B22-1 are of 5% and 12% viability, respectively. This locus has been the focus of a recent analysis (Hall and Kankel 1976) which presents strong evidence that the locus associated with the 1 (3) 26 complementation group is the site of the structural gene for acetylcholin-esterase. Hence, following the suggestion of Hall and Kankel (loc. cit.) it is renamed Ace, although 1(3) 26 must remain a synonym. Df(3R)ryl607 places Ace to the left of 1 (3) G7, the next complementation group.

The 1 (3) G7 complementation group is represented by 9 alleles (Table 1); all allele combinations exhibit complete lethality.

The next complementation group is associated with only one allele, l(3)m32. A second allele, $1(3) \mathrm{J} 38$, has been generated by J. Hall. The two alleles are completely noncomplementary. $\mathrm{Df}(3 \mathrm{R}) \mathrm{kar}{ }^{\text {SZ11 }}$ places $1(3) \mathrm{m} 32$ to the right of $1(3) \mathrm{G} 7$ and $\mathrm{Df}(3 \mathrm{R}) 126 \mathrm{~d}$ separates 1 (3) m 32 from the cluster of lethal loci to the right (Fig. 1).

The next four complementation groups, associated with 1 (3)m116, 1(3)ml7, 1(3)S9 and 1(3)G5 have not been separated by deficiency.

The 1 (3)ml7 group includes 7 alleles and exhibits limited allele complementation as outlined in Fig. 2. One allele combination shown as noncomplementary in Fig. 2 does exhibit weak viability. This heterozygote, $1(3) \mathrm{H} 45 / 1(3) \mathrm{H} 77$, is associated with a mean viability of 11%.

$\mathrm{Bl} 16-3$	H 45,	$\mathrm{ml7}$
$\mathrm{Bl}-1$	$\mathrm{Bll-1}, \mathrm{~B} 26-3, \mathrm{H} 77$	

Fig. 2. Complementation map of the $1(3) \mathrm{ml} 7$ group.
$\mathrm{Bl}-1 \quad \mathrm{Bll}-\mathrm{B} 26-3, \mathrm{H} 77$

The 1 (3)mll6 complementation group is associated with only one allele.
The 1(3)S9 complementation group is associated with 16 alleles and exhibits limited allele complementation as indicated in Fig. 3. All complementing allele combinations involve $1(3) \mathrm{B} 8-4$. Three allele combinations indicated as noncomplementary in Fig. 3 do, in fact, exhibit weak complementation, all involving 1 (3) B8-4. The heterozygotes 1 (3) B8-4/1(3)B2-3, $1(3) B 8-4 / 1$ (3) B15-1 and $1(3) B 8-4 / 1$ (3) B12-2 are of $14 \%, 13 \%$ and 22% mean viability, respectively.

$$
\text { S9, B2-3, B } 12-2, \text { B } 15-1, \text { В } 21-3, \text { B } 28-1, \mathrm{H} 9 \text {, } \mathrm{H} 30
$$

B 8-4 $\mathrm{ml} 102, \mathrm{BI}-2, \mathrm{BI}-5, \mathrm{~B} 8-1, \mathrm{~B} 26-4, \mathrm{H} 32, \ldots \mathrm{H} 57$

Fig. 3. Complementation map of the $1(3) \mathrm{S} 9$ group.

The fourth member of this cluster of complementation groups is that associated with 1(3)G5 which has two alleles (Table 1).

The most distal complementation group in the 87D2-4-87E12-F1 interval is that associated with $1(3) \mathrm{mll2}$. The complementation map of the alleles of this group is presented in Fig. 4. A1though 1 (3) H24 and $1(3) \mathrm{H} 25$ are indicated as noncomplementary to $1(3) \mathrm{ml12}$, they do, in fact, weakly complement. The heterozygotes $1(3) \mathrm{H} 24 / 1(3) \mathrm{mll} 2$ and $1(3) \mathrm{H} 25 / 1(3) \mathrm{m} 112$ are of 40% and 24% mean viability, respectively; however, unlike other complementing allele combinations of this locus, surviving heterozygotes are associated with a mutant visible phenotype of short, very thin bristles and irregularly arranged ommatidia. $D f(3 R)$ ry 1168 separates $1(3) \mathrm{ml} 12$ from the complementation groups to the left.

Bl7-I
B16-2, H21

Fig. 4. Complementation map of the $1(3) \mathrm{mll} 12$ group.

Overall, we have observed 21 complementation groups within the 87D2-4 to 87E12-F1 interval, a polytene chromosome segment of 23 or 24 chromomeres. Supported by a research grant, GM-09886, from the Pub1ic Health Service. References: Chovnick, A., W. Gelbart, M. McCarron, B. Osmond, E.P.M. Candido and D.L. Baillie 1976, Genetics 84:233-245; Deland, M. 1971, Ph.D. Dissertation, Univ. of Connecticut; Gausz, J., G. Bencze, H. Gyurkovics, M. Ashburner, D. Ish-Horowicz and J.J. Holden 1980, Genetics (in press); Ha11, J.C. and D.R. Kankel 1976, Genetics 83:517-535; Lewis, E.B. and F. Bacher 1968, DIS 43:193; McCarron, M., J. 0'Donnel1, A. Chovnick, B.S. Bhullar, J. Hewitt and E.P.M. Candido 1979, Genetics 91:275-293; Schalet, A., R.P. Kernaghan and A. Chovnick 1964, Genetics 50:1261-1268.

Hilliker, A.J. Univ. of British Columbia, Vancouver, British Columbia. Meiotic effects of second chromosome heterochromatic deletions.

It has been suggested by a number of authors (reviewed in Yunis and Yasmineh 1971) that centromeric heterochromatin may promote the initiation of mefotic pairing of homolgous chromosomes and, further, protect the centromere from the "rigors of meiosis"--presumably the terminalization of chiasmata and subsequent reductional segregation of homologous dyads. These hypotheses suggested the following experiments, as they predict that heterozygosity for second chromosome heterochromatic deficiencies may result in appreciable second chromosome nondisjunction and/or chromosome loss. The proximal deficiencies studied were $\operatorname{Df}(2 R) M-S 210$, which is deficient for the $2 R$ heterochromatic block and $D f(2 L) C^{\prime}$, which is undoubtedly deficient for much of the 2 L proximal heterochromatin (Hilliker 1976).

Df(2R)M-S210: Virgin females heterozygous for $\operatorname{Df}(2 R) M-S 210$ and b pr cn were crossed, singly, in vials, to $C(2 L) V H 1,1 t ; C(2 R) P, p x$ males and brooded for six days. As these com-pound-second autosome bearing males produce nearly equal frequencies of the four classes of $C(2 L) ; C(2 R) ; ~ n u l l o-2 ; ~ a n d ~ d i p l o-2 ~ s p e r m ~(G i b s o n ~ 1977) ; ~ n u l l o-2 ~ a n d ~ d i p l o-2 ~ f e m a l e ~ g a m e t e s, ~$ the consequence of second chromosome nondisjunction or chromosome loss, may be recovered as viable zygotes with 25% efficiency. Thus by the use of control (multiplier) crosses to estimate the total number of fertilized eggs one may assay second chromosome loss and nondisjunction in Drosophila females by mating them with compound second autosome bearing males.

From an estimated 4844 fertilized eggs, no nondisjunctional progeny were recovered. Thus neither chromosome loss or nondisjunction of chromosome two is associated with heterozygosity for $\mathrm{Df}(2 \mathrm{R}) \mathrm{M}-\mathrm{S} 210$. The absence of chromosome loss is in contradiction to the theory of the protection of centromeres by flanking heterochromatin. No newly induced isochromosome bearing exceptions (a possible consequence of chromosome "breakage") or patroclinous progeny were observed. Clearly the $\mathrm{M}(2) \mathrm{S} 10$ chromosome is stable despite the absence of the 2 R heterochro-
*Present address: CSIRO, Canberra City, ACT, Australia.
matic block. The upper 95% confidence limit of second chromosome loss, and therefore chromosome instability, is 0.25%.

Nor did $\mathrm{M}(2) \mathrm{S} 10 / \mathrm{b}$ pr cn heterozygotes prove particularly sensitive to radiation-induced nondisjunction. From mating $D f(2 R) M-S 210 / \mathrm{b} \mathrm{pr} \mathrm{cn}$ females irradiated with 2000 rads of gamma radiation to $C(2 L) V H, 1 t ; C(2 R) P, p x$ males only one matroclinous progeny was observed in an estimated 44,269 fertilized eggs, although 33 patroclinous progeny and 15 newly induced compound second autosome bearing exceptional progeny were recovered. Indeed, M(2)S10 heterozygotes appear to be resistant to radiation induced disjunction. Gibson (1977) found the frequencies of matroclinous progeny from $+/ 1 \mathrm{t} \mathrm{pk}$ cn females irradiated with 2000 rads to be 0.053%, a frequency an order of magnitude greater than that observed for $\mathrm{M}(2) \mathrm{S} 10 / \mathrm{b}$ pr cn females.

Second chromosome nondisjunction, and loss, was also assayed in males heterozygous for $D f(2 R) M-S 210$ and $\operatorname{In}(2 L R) S M 1$. $D f(2 R) M-S 210 / I n(2 L R) S M 1$ males were crossed to $B S Y ; C(2 L) P, b ;$ $C(2 R) P, p x$ virgin females, singly in vials and brooded for 9 days. $B S Y$ is a Y-chromosome carrying a small duplication of the X-chromosome including a dominant allele of the Bar (B) locus (see Lindsley and Grell 1968 for further details). $B^{S Y} ; \mathrm{C}(2 \mathrm{~L}) \mathrm{P}, \mathrm{b} ; \mathrm{C}(2 \mathrm{R}) \mathrm{P}, \mathrm{px}$ females produce 40% second chromosome nonsegregational progeny when crossed to compound second autosome bearing males. Thus 20% of the female gametes are diplo-2 and 20% are nullo-2. Consequently, nondisjunction for chromosome 2 may be assayed in males by mating them to $\mathrm{B}_{\mathrm{Y}} \mathrm{Y}_{\text {; }}$ $C(2 L) P, b ; C(2 R) P, p x$ females.

In order to estimate the number of nondisjunctional female gametes produced per female per vial, a sample of $B S Y ; C(2 L) P, b ; C(2 R) P, p x$ virgin females were crossed to $C(2 L) S H 3,+$; $\mathrm{C}(2 \mathrm{R}) \mathrm{SH} 3,+$ males. As these males produce approximately $25 \% \mathrm{diplo}-2$ and 25% nullo-2 sperm (Holm 1969), the nondisjunctional progeny represent $1 / 4$ of nondisjunctional female gametes. Thus, the number of nondisjunctional female gametes per experimental vial may be estimated as 4 times the number of nondisjunctional progeny per multiplier vial. However, in the cross to the $\operatorname{Df}(2 R) M-S 2^{10 / I n}(2 L R) S M 1$ males a nondisjunctional (dip1o-2 or nullo-2) sperm fertilizing a nondisjunctional female gamete has a 50% chance of resulting in a viable, diplo-2 zygote.

Thus chromosome-2 nondisjunction per experimental vial may be estimated as 2 times the number of exceptional (i.e., nondisjunctional) progeny per experimental vial divided by 4 times the number of nondisjunctional progeny per multiplier vial. In the experimental series, an estimated 8810 nondisjunctional female gametes resulted in no diploid nondisjunctional progeny. (The only exceptional progeny recovered were one triploid female and 2 intersexes.) Thus a 95% upper confidence limit on chromosome-2 nondisjunction in $D f(2 R) M-S 210 / I n(2 L R) S M 1$ heterozygotes of 0.068% is established. With chromosome-2 nondisjunction and chromosome loss less than 0.1% in males and 0.3% in females heterozygous for $D f(2 R) M S-10$, the loss of the heterochromatic block to the right of the centromere of chromosome-2 clearly does not result in any meiotic instability of the second chromosome.

We do not consider these data to indicate the absence of sites important for meiotic pairing in the $2 R$ heterochromatin. If a number of pairing sites are distributed throughout the second chromosome heterochromatin and/or euchromatin, deleting one or even several sites may not be sufficient to induce nondisjunction.

However, the absence of chromosome loss among $M(2) S 10$ heterozygotes argues strongly that centromeric heterochromatin is not important for chromosome stability.

Heterozygosity for $\operatorname{Df}(2 R) M-S 210$ is associated with a reduction in exchange in 2 R. If one examines crossing-over in $M(2) S 10 / b$ pr cn heterozygotes, where b and pr lie in the proximal euchromatin at 48.5 and 54.5 (Lindsley and Grell 1968) and cn lies in the proximal 2R euchromatin at 57.5, crossing-over is reduced in the pr cn interval nearly fivefold relative to the control. As most crossovers in the pr cn interval occur in proximal 2R euchromatin between stw and cn (T. Yeomans, pers. comm.) and as crossing-over in the b pr interval is not reduced, these data suggested that heterozygosity for $M(2) S 10$ affected exchange in $2 R$ euchromatin. Exchange in 2 R was then examined in $M(2) S 10 / \mathrm{cn}$ bw heterozygotes, where bw at 104.5 near the tip of $2 R$ and cn in the proximal euchromatin span most of 2 R . Recombinant progeny were recovered at a frequency of 28%, well below that observed in the control (48\%). Thus M(2)S10 appears to have a significant effect on meiotic recombination in the 2 R euchromatin despite the fact that the region deleted, the $2 R$ heterochromatin, is not a region in which appreciable crossing-over occurs. It should be noted that save for the deltion of $2 R$ heterochromatin the $M(2) S 10$ chromosome is associated with no visible chromosomal aberrations, thus the meiotic effect noted is probably the result of deleting the 2 R heterochromatin.
$\mathrm{Df}(2 \mathrm{~L}) \mathrm{C}^{\prime}$. Virgin females heterozygous for $\mathrm{Df}(2 \mathrm{~L}) \mathrm{C}^{\prime}$ and b pr cn were mated to $\mathrm{C}(2 \mathrm{~L}) \mathrm{VH} 1,1 \mathrm{t}$; $C(2 R) P, p x$ males and brooded for 6 days. In an estimated 31,200 fertilized eggs, 2 matroclinous and 1 patroclinous progeny were recovered. The frequency of spontaneous second chromosome nondisjunction in $\operatorname{Df}(2 \mathrm{~L}) \mathrm{C}^{\prime}$ heterozygotes is $4 \mathrm{x} \mathrm{3/31,200}$ or 0.038% with 95% confidence limits of 0.008% and 0.112% (Stevens 1942), well within the range observed for Drosophila females homozygous for normal second chromosomes (Gibson 1977).

Although $\operatorname{Df}(2 \mathrm{~L}) \mathrm{C}^{\prime}$ is deficient for much of the 2 L heterochromatin (Hilliker and Holm 1975; Hilliker 1976), cytological analysis of Df(2L)C' found a substantial block of heterochromatin to the left of the centromere, approximately equal in size to that normally associated with the 2L heterochromatin. This can be explained by the following hypothesis. In the construction of $\mathrm{Df}(2 \mathrm{~L}) \mathrm{C}^{\prime}$ from the detachment of $\mathrm{C}(2 \mathrm{~L}) \mathrm{SH} 3,+; \mathrm{C}(2 \mathrm{R}) \mathrm{SH} 3,+$ the acentric 2 L fragment was generated by a break in the distal 2L heterochromatin (that this break was proximal to the secondary constriction at the 2 L heterochromatin-euchromatic junction was clear, as $\mathrm{Df}(2 \mathrm{~L}) \mathrm{C}^{\prime}$ was not deficient for this constriction) with the centric 2 R fragment being generated by a break in the distal heterochromatin of $2 R$ resulting in a centric 2 R fragment duplicated for much of the $2 R$ heterochromatin including the rl+ locus. $D f(2 L) C^{\prime}$ therefore would be a 2 L proximal deficiency but a 2 R proximal duplication with a r1+ locus on each side of the centromere.

In order to test the hypothesis I constructed with radiation nonsister 2 L compound autosomes (compound autosomes with one 2 L chromatid from one second chromosome and the other 2 L chromatid from its homolog) from females heterozygous for $D f(2 L) C^{\prime}$ and $b \mathrm{pr} \mathrm{cn}$. If $D f(2 L) \mathrm{C}^{\prime}$ carries a r1+ duplication in the left arm then compound left autosomes deriving one arm from the $\operatorname{Df}(2 \mathrm{~L}) \mathrm{C}^{\prime}$ chromosome should more frequently carry r1+ duplications of 2 R than do compound lefts derived from normal second chromosomes. Of 21 nonsister compound left autosomes derived from $\operatorname{Df}(2 L) C^{\prime} / b \mathrm{pr}$ cn heterozygotes, 17 were rl^{+}whereas Yeomans (1972) found only 10 of 21 compound left second chromosomes derived from $1 t \operatorname{stw} 3 / \mathrm{b}$ pr cn heterozygous females were rit. Thus $\mathrm{Df}(2 \mathrm{~L}) \mathrm{C}^{\prime}$ would appear to be duplicated for $\mathrm{rl}+$ and, therefore, much of the 2 R heterochromatin. Additional genetic evidence is presented in Sandler (1977).

Interestingly heterozygotes for $\operatorname{Df}(2 \mathrm{~L}) \mathrm{C}^{\prime}$ and b pr cn show normal levels of recombination in both the $b \mathrm{pr}$ and pr cn intervals. Thus unlike $\mathrm{Df}(2 R) \mathrm{M}-\mathrm{S} 210$, $\mathrm{Df}(2 \mathrm{~L}) \mathrm{C}$ ' has no marked effect on recombination in adjacent euchromatin. However, in this regard the duplicated 2 R heterochromatin may substitute for the deleted 2 L heterochromatin.

Further, again unlike $\operatorname{Df}(2 R) M-S 210$ heterozygotes, $D f(2 L) C^{\prime}$ heterozygous females showed no apparent resistance to radiation induced second chromosome nondisjunction. Df(2L)C'/b pr cn females were irradiated with 2000 rads of gamma radiation and crossed to C (2L) VH1H; C(2R)P, px. Among 56,890 estimated zygotes 27 matroclinous and 71 patroclinous progeny were recovered as well as 73 progeny bearing newly induced compound autosomes. The frequency of recovery of these progeny is similar to that obtained in females with standard second chromosomes given the same irradiation treatment and brooding (Gibson 1977).

The foregoing data have been extracted from Hilliker (1975).
References: Gibson, W.G. 1977, Ph.D. Thesis, Univ. of British Columbia; Hilliker, A.J. 1975, Ph.D. Thesis, Univ. of British Columbia; 1976, Genetics 83:765-782; \qquad and D.G. Holm 1975, Genetics $81: 705-721$; Holm, D.G. 1969, Ph.D. Thesis, Univ. of Connecticut; Lindsley, D.L. and E.H. Grell 1968, Carnegie Inst. of Wash. Pub1. No. 627; Sandler, L. 1977, Genetics 86:567-582; Yunis, J.J. and W.G. Yasmineh 1971, Science 174:1200-1209.

Hunter, A.S. Univ. of the Pacific, Stockton, California. Drosophila of Pompano Beach, Florida.
D. melanogaster 54
D. simulans 12
D. cardini 134
D. acutilabella 5
D. willistoni 26
D. equinoxialis 10
D. sturtevanti 87
D. latifasciaeformis 48

A small collection of Drosophila was made in December 1978 in Pompano Beach. The flies were collected by net sweepings over the fallen fruit under various citrus trees. The number of flies of the various species found are as follows:
In order to identify the females of the willistoni group, they were each isolated and the genitalia of the male offspring were checked. These data are reported here because I believe that this is the northernmost range of D. equinoxialis. Additional collections made in 1979 and 1980 in the same location contained the same species, although in different frequencies.

Reference: Spassky, B. et al. 1971, Evolution 25: 129.

James, A., M. Bownes* and S. Glenn**. Sidney Farber Cancer Institute, Boston, Massachusetts; *Edinburgh University, Edinburgh; **Center for Pathobiology, University of California, Irvine. The re-establishment of pattern elements in regenerating imaginal wing discs of D. melanogaster.

We have attempted to analyze how regeneration occurs in imaginal discs by determining the sequence in which pattern elements reappear during regeneration of a fragment of the wing disc.

Late third instar wing discs were cut into a small 02 fragment corresponding to presumptive notum and a large 28 fragment corresponding to the wing hinge and blade (Bryant 1975). The 02 pieces were metamorphosed immediately as controls. The 28 pieces were injected into females and allowed to grow for 1 to 5 days before metamorphosis in a larval host was induced. The metamorphosed implants were scored for the regeneration of the bristles found in the notum.

The process of wound healing and

Fig. 1. Wound healing and growth during culture. (a) 28 fragment immediately after cutting and after (b) 1 day, (c) 2 days, (d) 3 days, (e) 4 days, (f) 5 days of culture in an adult female abdomen. \rightarrow marks the original wound line. growth observed in the majonity of discs can be seen in Fig. 1. Before culture in the adult abdomen the 28 fragment has as exposed surface of cells. After culture for 1 to 2 days these cells have healed together. Maximum growth occurs between 2 and 4 days of culture.

The results of the sequence of regeneration are shown in Table 1. Regeneration in the 28 pieces was measured as an increase in the frequency of those elements expected from the immediate metamorphosis of the 02 controls. Fig. 2a shows the wing disc fate map and the location of the cutting line. The bristles scored were the presutural bristles, the anterior and posterior notopleural bristles, the anterior and posterior supraalar bristles, the anterior and posterior postalar bristles, the anterior and posterior dorsocentral bristles and the scutellar bristles. All of these bristles, with the exception of the presutural bristle, were present at least 75% of the time in 02 control implants.

28 fragments metamorphosed immediately in larvae produced no thoracic bristles. Implants cultured for one day showed very little regeneration. The pattern elements which were regenerated at a low frequency were those structures near to the original 02 cutting line, notopleural bristles, presutural bristles, supra- alar bristles, and structures furthest from the cut edge, the scutellar bristles. Fig. $2 b$ shows the frequency of regenerated elements and three outside markers. By the second day all of the pattern elements of the notum were present at a low frequency except the postalar bristles, which were missing completely. As seen in Fig 2c, the notopleural, supraalar, and scutellar bristles were present in the highest frequencies. Implants cultured for three days had regenerated the notopleural and scutellar bristles more than 20% of the time (Fig. 2d). The dorsocentral and presutural bristles were regenerated with lower frequencies. The notopleural, supraalar, postalar, and scutellar bristles were regenerated at least 70% of the time in pieces cultured for four days (Fig. 2e). The remaining bristle elements were present more than 50% of the time, except for the presutural bristle which was present 20% of the time. However, the presutural bristle is often absent in control implants, being present in only 62% of the 02 control fragments. In

Element scored	$\begin{aligned} & \text { control } \\ & 0 \text { Day } \\ & 02 \end{aligned}$	```control O Day 28```	$\begin{gathered} \text { experimental } \\ 1 \text { Day } \\ 28 \end{gathered}$	$\begin{aligned} & \text { experimental } \\ & 2 \text { Day } \\ & 28 \end{aligned}$	$\begin{gathered} \text { experimental } \\ 3 \text { Day } \\ 28 \end{gathered}$	$\begin{gathered} \text { experimental } \\ \text { \& Day } \\ 28 \end{gathered}$	$\begin{gathered} \text { experimental } \\ 5 \text { Day } \\ 28 \end{gathered}$
Presutiaral Bristles	62		5	4	13	20	26
Notopleural Bristles	81		10	15	57	80	56
Supraalar. Bristles	93		5	15	25	85	67
Post alar Sristles	86				30	70	59
Dorsocentral Bristles	86			4	17	55	56
Scutellar Bristles	94		5	8	52	70	63
Anterior notal wing process		46	52	54	96	95	74
Tegula	8	88	81	85	100	100	81
Humeral plate		79	67	92	100	90	81
Unnamed plate		75	48	88	100	100	74
Axillary sclerites							
first	6	96	76	96	100	100	93
second	1	100	95	100	100	100	85
third		92	90	100	78	100	81
fourth	67	33	52	23	35	60	44
Proximal costa		96	67	88	83	95	81
Medial costa		96	86	88	87	100	81
Distal costa		92	71	85	78	90	81
Triple row		100	76	92	96	85	74
Double row		96	52	81	74	60	74
Posterior row		25	38	69	52	95	70
Sc4d		92	52	92	65	80	59
Sc25		100	90	96	87	95	85
Prealar apophysis		21	90	73	74	65	67
Yellow club		88	90	85	91	85	89
Proximal ventral radius		92	67	73	83	90	78
Pleural wing process		71	90	92	96	90	93
Axillary pouch		75	76	77	36	75	89
Total implants	84	24	21	26	23	20	27

Fig. 2. (a) Fate map of wing disc (after Bryant 1975). Markers used in this study: ANWP, anterior notal wing process; AP, axillary pouch; AS, axillary sclerites, first, second and third; PCO, MCO, and DCO, proximal, medial and distal costa; DC, dorsocentral bristles; HP, humeral plate; NP, notopleural bristles; PS, pleural sclerite; PWP, pleural wing process; PA, postalar bristles; PAA, prealar apophysis; PST, presutural bristles; PVR, proximal ventral radius; TR, OR, and PR, triple row, double row and posterior row of wing margin hairs; Scu, scutellar bristles; Sc4d and Sc25, group of 4 and group of 25 sensilla campaniformia on the dorsal radius; SA, supraalar bristles; Reg, tegula; UP, unnamed plate; YC, yellow club. For rest of abbreviations see Bryant 1975. (b) Frequency of presence of pattern elements in disc fragments cultured for one day. The frequencies of 3 unregenerated markers are given in the 28 piece to contrast with the frequency of markers in the regenerating 02 region. (c) Two-day culture periods. (d) Three-day culture periods. (e) Four-day culture periods. (f) Five-day culture periods.
the five day implants all pattern elements of the notum appeared less frequently than in the four day pieces, with the exception of the presutural bristle which now appeared in 26% of the implants.

Using statistics we were able to conclude that the sequence with which the bristles reappeared was: (1) notopleurals, (2) supraalars and scutellar bristles, (3) presuturals, postalars and dorsocentral bristles. It should be noted that presutural bristles are not included in the figures since they are often not differentiated in the controls (Table 1).

During regeneration the cells respond to positional cues which are set up in the growing tissue mass and these in turn define which part of the regenerate the cells will make. Initially there are not enough cells to regenerate the entire thorax and cells must decide which pattern elements to differentiate first. One might have expected a simple sequence beginning close to the cut surface and moving towards the edge of the fate map of the disc until the pattern of the thorax is complete. It appears, however, that regions close to the cut edge, notopleural and supraalar bristles, and those furthest from it, scutellar bristles, are re-established
first in the regenerating disc and the remaining structures are then intercalated. Reference: Bryant, P.J. 1975, J. exp. Zool. 193: 49-78.

Jenkins, J.B. Swarthmore College, Swarthmore, Pennsylvania. Paternal age and mutagen sensitivity.

This study was undertaken to ascertain whether the chronological age of Drosophila males was a factor in the sensitivity of germ cells to ethyl methane-sulfonate (EMS) mutagenesis. Ore-R males of different ages were fed EMS (40 mM for 8 hours) by the Lewis technique, then mated individually to 2 day old ed dpov'cl virgin females. The F_{1} from post-meiotic male germ cells only (first 6 days of mating) was scored for $d p$ mutations. As can be seen in this preliminary analysis, 27 day old males are substantially more susceptible to EMS mutagenic action than 2 day old males. The basis for

No. of males	Male age (days)	F_{1} scored	dp mutants	Frequency $(\%)$
36	2	7156	40	$0.56 \pm .03$
23	27	5050	54	$1.07 \pm .04$

the increased susceptibility to EMS mutagenesis by aged males is unknown, but may be due to depressed error-free repair functions which normally deteriorate with age.

Kaidanov, L.Z. and E. Huguto. Dept. of Genetics \& Selection, Leningrad State University, USSR. Studies on genetic possibilities of inbred stocks of Drosophila.

This work was aimed at discovering genetic consequences of long-term selection on sexual activity. The concentration of mutations to viability has been studied for selected stocks of flies. We used the following stocks: LA (low activity) and HA (high activity), produced from the former by reverse selection. Both of these have been maintained by closed inbreeding during about 300 generations. After 261 generations lateral branches were founded, which were selected for increasing a number of abdomen bristles. In contrast to HA the LA selection was very effective. There were also some differences between the stocks. The rate of LA and its lateral branches' semi- and sublethal mutations was higher (55-65\% for 2 chromosome). When the selection of LA was stopped, the result was gradual clearing of the stock from mutation load. There was no equal distribution of harmful mutations among the LA genome; they have been concentrated in chromosome 2. The reasons for their accumulation were artificial selection and increased rate of spontaneous mutations (Gorbunova and Kaidanov 1975; Kaidanov 1979). The latter probably also was a result of previous selection. The mutable loci have been localized (Kaidanov 1979).

References: Gorbunova, V.N. and L.Z. Kaidanov 1975, Genetika (Russ) 11:9; Kaidanov, L.Z. 1979, Z. ob. biol. (Russ) 40:6.

Kaplin, V. and L. Korochkin. Institute of Cytology \& Genetics, Novosibirsk, USSR. Histochemistry of the tissue distribution of some enzymes during the development of D. melanogaster.

Using histochemical methods we investigated the tissue distribution of some enzymes at the different stages of development in D. melanogaster. Two stocks, Canton S and $\operatorname{In}(3 L R) D / S b$ with the complicate inversion on the 3rd chromosome, have been investigated. Embryonic material was synchronized according to Delcour (1969). Two special methods of preparation of sections for the histochemical staining were elaborated by us.

First method: (1) Washing of eggs in some portions of distilled water. (2) Treatment by 2.5\% glutaraldehyde prepared using Hanks solution with the addition of a substrate for a corresponding enzyme, at $4^{\circ} \mathrm{C}$.

Fig. 1. Sections which were stained histochemically. (a) Alkaline phosphatase; embryo 22
h. (b) Esterase; embryo 22 h . (c) Malic acid; embryo 24 h .

Fig. 2. Results of histochemical investigations of some enzymes in D. melanogaster, stock Canton-S. \square, the first finding of the activity; , the beginning of the increase of histochemical reaction; APH, alkaline phosphatase; EST-A, esterase, $\alpha-$ naphthyl acetate used as substrate; EST-B, esterase, β-naphthyl acetate used as substrate; ODH, octanol dehydrogenase; XDH, xanthine dehydrogenase; MDH , malic enzyme; AO, aldehyde oxidase. 1-aorta, 2-muscles, 3-fat body, 4-cardia, 5-gastric caeca, 6ventriculus, 7-midintestine, 8-Malpighian tubules, 9-esophagus, 10-hypopharynx, 11ganglion, 12-oenocytes, 13-spiracles, 14-salivary glands, 15-hypoderm.
(3) Egg membranes are pierced by a fine needle; fixation 2 h at $4^{\circ} \mathrm{C}$. (4) Chorion and yolk membranes are removed by special needle. (5) Washing in cold Hanks solution for 1 h at $4^{\circ} \mathrm{C}$. (6) Incubation in the solution for histochemical staining, $5-30$ minutes. (7) Hanks solution 30 min . at $4^{\circ} \mathrm{C}$. (8) Alcohols ($40,70,96,100 \%$) 5 min . in each concentration at $4^{\circ} \mathrm{C}$. Alcohol + aceton (1:1), 10 min.; aceton, 10 min . (9) Araldite:aceton $1: 3,2 \mathrm{~h} ; 1: 1,2 \mathrm{~h} ; 3: 1,2 \mathrm{~h}$. Araldite, 15 h . (10) Polymerization of araldite for 1 day at $43^{\circ} \mathrm{C}$ and 2 days at $60^{\circ} \mathrm{C}$. (11) Preparation of sections. This method was used mainly for the staining of histological sections by the usual histological and cytological technique.

Second method (mainly for the histochemical investigations): (1) Washing of eggs (50-100) in some portions of distilled water. (2,3) Same as in the first method. (4) Hanks solution, 30 min . at $4^{\circ} \mathrm{C}$. (5) Impregnation by solution of polyacryl amide gel. The solution is prepared by the mixture of 5 parts solution A and 3 parts solution B. Solution A: acryl amide 30 g , bisacryl amide 1 g , TEMED 0.25 ml , Tris-acetic buffer $0.05 \mathrm{M}, \mathrm{pH} 8.2,10 \mathrm{ml}$, distilled water 60 ml . Solution B: 2% ammonium persulfate 20 ml , distilled water 15 ml . (6) Polymerization $20-30$ min. (7) Freezing of the gel slabs with eggs. (8) Preparation of sections (5-10 micron) in the cryostate. (9) Histochemical staining. We used histochemical methods according to Pearse (1960) and Burstone (1962). Aldehyde oxidase was detected according to Dickinson (1970).

The quality of our histochemical technique is illustrated in Fig. la,b,c. Designated on Fig. 2 are the periods of development when some enzymes are detected in the different tissues for the first time and a time when the increase of enzymatic activity is established histochemically. It was shown that alkaline phosphatase has been detected rather early during development (12-14 h of embryogenesis) before histochemical finding of the activity of most other enzymes investigated by us. Traces of aldehyde oxidase can be seen at the earliest stages of development. This activity is a result of the presence of the maternal products in the eggs. Then the activity of aldehyde oxidase in the embryos decreases. The increase of this activity and correspondingly the intense histochemical reaction is established rather late during development (1st-2nd instar larvae).

The increase of histochemical reaction of NADP-dependent malic enzyme takes place before the corresponding increase in activity of aldehyde oxidase. There is some similarity of the histochemical pattern between the organs which are developed from the same embryonic anlages. It was established that two chains of enzymes are sequentially expressed during development: (1) Alkaline phosphatase \rightarrow esterase \rightarrow octanol dehydrogenase \rightarrow xanthine dehydrogenase. (2) Malic acid \rightarrow aldehyde oxidase. It is possible that there is a correlation between the sequence of phenotypic expression of some enzymes and the sequence of distribution of genes coded for the corresponding enzymes (Korochkin 1978).

The histochemical pattern in the developing embryos and larvae of the stock with the inversion $\operatorname{In}(3 L R) D / S b$ has in general some similarity to the same in Canton-S but there are also some differences in the periods of the first histochemical detection of enzymes in the different tissues.

References: Burstone, M. 1962, Enzyme histochemistry and its application in the study of neoplasms, Academic Press, New York-London; Delcour, J. 1969, DIS 44:133; Dickinson, W. 1970, Genetics 66:487; Korochkin, L. 1978, 13 Internat. Embryol. Conf. Berlin, p. 26; Pearse, A. 1960, Histochemistry J. and Churchil1 Ltd., London.

Kaurov, B.A. Institute of Medical Genetics, AMS USSR, Moscow, USSR. To the definition of the notion "field of gene activity".
of the body. This region of visible gene effect
was defined "field of gene activity" (Rokizky 1929). In this work special attention was given to the topographic features of gene manifestation, not to explanations concerning the reasons for gene behavior. This question was not well studied and its discussion confined to phenotypical gene manifestation. However, lately the data on the interaction of genes have been obtained which permit the attachment of new importance to this notion.

Studying the interaction of homoeotic mutations $N s$ and ssa (transforms antennae to legs of mesothoracic type) with mutation sn (twists bristles), as well as homoeotic mutation pb (transforms oral lobes of proboscis to legs of prothoracic type) with "antenna" mutations
al and th (decreases the number of aristal filaments and the number of claws on the prothoracic legs) and "leg" mutations d and $f j$ (decreases the number of tarsal segments on the prothoracic legs) at $16^{\circ} \mathrm{C}$ and $29^{\circ} \mathrm{C}$ in D . melanogaster, we found the appearance of essential signs of nonhomoeotic mutations on the corresponding homoeotic structures (Kaurov et al. 1976, 1978). In addition, in double mutants pb ssa $^{\text {a }}$ we observed a special manifestation of mutation ssa on homoeotic structures, caused by the action of mutation pb (Kaurov et al. 1977). Similar effects were also observed by other authors (Brown 1940, Ouwenell 1970, Lewis 1963, Stepshin and Ginter 1972).

On the basis of the data obtained I suggest defining the notion "field gene activity" as a totality of cells of definite determination, specific for manifestation of activity of a given gene, to which a definite phenotype of definitive structures corresponds. The consequences include application for definition of gene activities, morphogenetic relationship of normal and homoeotic structures and gene activity after the appearance of cells of definite determination, independently of its origin in ontogenesis and localization.

References: Brown, W. 1940, Genetics 25:143-149; Kaurov, B.A., V.I. Ivanov and V.A. Mglinetz 1976, Genetics (Russ.) 12:75-81; ,_,_ and 1977, Genetics (Russ.) 41: 1-20; , and 1978, Genetics (Russ.) 13:76-84; Lewis, E. 1963, Amer. Zoologist 3:33-56; Ouwenell, W. 1970, Genetica 41:l-20; 1970, Wilh. Roux's Archiv 166:76-88; Rokizky, P.F. 1929, Zh. exp. Biol. (Russ.) 5:182-214; Stepshin, V.P. and E.K. Ginter 1972, Genetics (Russ.) 8:67-74.

Kaurov, B.A. Institute of Medical Genetics, AMS USSR, Moscow, USSR. Mutation aristapedia causes the transformation of distal segments of antennae to fivesegmented tarsi in D. melanogaster.

Despite the fact that homoeotic mutation causing the transformation of distal segments of antennae to the distal structures of mesothoracic legs has been discovered by Balkaschina in 1928 in D. melanogaster, there was no information concerning the number of tarsal segments in the homoeotic tarsus up to now. This number is considered to be equal to four and to correspond to $\mathrm{Ta} 2-\mathrm{Ta} 4$ of the tarsus, which are homologous to AIY-AY of the antenna; Tal of the tarsus is homologous to AIII of the antenna (Postlethwait and Schneideman 1971). So, the appearance of leg bristles on AIII and four tarsal joints on the homoeotic tarsus will indicate the presence of Tal on it.

Studying the different alleles of the aristapedia locus (ssak, ssax and ssa40a) in D. melanogaster at 16,25 and $28^{\circ} \mathrm{C}$, we observed the appearance of four tarsal joints on homoeotic tarsi in the mutants ssa40a at $16^{\circ} \mathrm{C}$ and between Ta and Ta 2 (Kaurov and Ivanov 1977). The tarsal joints in the mutants ssa at this locus have been observed by other authors (Mglinetz 1974). In addition, we observed leg bristles on AIII. The mean number of these bristles varied depending on the temperature (16,25 or $28^{\circ} \mathrm{C}$) and the genotype ($s s^{a k}$, ssax or ssa40a) from 1.5 ± 0.1 to 7.4 ± 0.4. It can be noted that leg bristles on AIII in different mutants ssa reacted to the change in temperature, as well as the bristles reacted to Ta2-Ta5 of homoeotic tarsus. At $16^{\circ} \mathrm{C}$ the number of leg bristles on AIII in the mutants ssak and ssax was increased, while in the mutants ssa40a it was decreased in comparison with $28^{\circ} \mathrm{C}$.

So, the data obtained show that the homoeotic mutation aristapedia causes the transformation of AIII-AY of the antenna to $\mathrm{Tal-Ta5}$ of the tarsus, i.e., the formation of five-segmented homoeotic tarsi.

References: Balkaschina, E.I. 1928, Zh. exp. Biol. (Russ.) 4:93-106; Kaurov, B.A. and V.I. Ivanov 1977, Genetics (Russ.) 13:70-75; Mglinetz, V.A. 1974, Genetics (Russ.) 10:91-97; Postlethwait, J.H. and H.A. Schneiderman 1971, Develop. Biol. 25:606-640.

Kidwel1, M.G. Brown University, Providence, Rhode Island. The use of pupation height as a method for distinguishing between the sibling species D. melanogaster and D. simulans.
preliminary separation for females of the two species without time-consuming microscopic examination of male progeny.

Although males of the sibling species D. melanogaster and D. simulans may be readily distinguished by examination of their external genitalia, separation of females is difficult on the basis of morphological differences. We have found that pupation height in shell vial cultures provides a quick and reliable means of

Fig. 1. Typical shell vial cultures showing a high frequency of pupation above the medium level in D. melanogaster (left) but not in D. simulans (right).

During the 1977 and 1978 summer seasons, Drosophila collections were made at a number of North American locations in order to establish isofemale lines of D. melanogaster from widely dispersed geographical areas. The frequency of D. simulans at several locations was high, but after some practice it was possible to separate individual female cultures of the two species with a high degree of accuracy according to their pupation pattern in shell vials. It was observed that a majority of melanogaster larvae pupated at a level clearly above that of the food medium while simulans pupae were only occasionally seen above this level. Typical examples of these two distinct patterns are illustrated in Fig. 1. The fact that similar differences were observed in flies collected in Rhode Island, New Hampshire and Texas suggests that species differences rather than strain differences are involved.

An experiment was designed in order to quantify the observed variation in pupation site. An equal volume of a standard cornmeal-molasses-agar medium was dispensed into sixty
$8-\mathrm{dm}$ shell vials and all were seeded with live yeast. The level of the medium in the vials was at a height of 2.5 cm . Into 30 of the vials were placed single gravid melanogaster females, aged 4-5 days, which were the progeny of flies collected locally in October 1978. Into the remaining 30 vials were similarly placed simulans females, the progeny of flies from the same collection. Development took place at 21° under identical humidity and lighting conditions. All pupation sites located above the initial level of the medium were marked daily on the exterior of the vials with a magic marker. The number of adult progeny were counted on the 22nd day after the start of the experiment. The mean adult production per female at 22 days was 59.3 for melanogaster but only 39.9 for simulans. The number of pupae located above the 2.5 cm level was 95.4% of the 22 day adult production for melanogaster but only 8.9% of that production for simulans. This difference in pupation behavior cannot be explained in terms of larval density, however, because the 15 melanogaster vials that were ranked lowest for adult production had a higher frequency of pupation above the 2.5 cm level than the 15 vials with the highest production. Close examination of the culture vials indicated that simulans tended to pupate on the surface of the medium itself. It was further noted that the medium in melanogaster vials was clearly more liquefied by the action of the larvae than in simulans vials. Indeed, in most cases, pupation on the surface of the liquefied medium in melanogaster vials would likely have resulted in the drowning of the pupae.

These observations of species differences in pupation height are consistent with the previously reported results of Barker (1971) and Markow (1979).

References: Barker, J.S.F. 1971, Oecologia 8:139-156; Markow, T.A. 1979, Behav. Genet. 9: 209-217.

Liebrich, W. Institut für Genetik, Universităt Düsseldorf, F.R. Germany. In vitro differentiation of single cysts of spermatocytes of Drosophila hydei.

In this laboratory techniques have been developed to study the in vitro differentiation of single cysts of spermatocytes isolated from testes of Drosophila hydei (Fowler and Uhlmann 1974, Fowler and Johannisson 1976). Recently Cross and Shellenbarger (1979) showed that it is possible to obtain differentiation of isolated cysts of D. melanogaster, too.

Improvements of these culture techniques have recently been worked out. A simple culture chamber (details described below) permits the observation of the developing cells even with an oil immersion objective (100x).

Fig. 1. Culture chamber. The basic part of the chamber is a 3 mm thick glass slide. The hole has a diameter of 15 mm . First coverslip b^{\prime} is mounted. If the chamber shall be opened to change the medium, it is better to use a piece of mica or plastic (c) to close the chamber. (A glass coverslip c can cohere to a glass coverslip b.)

Fig. 2. Burst cyst cell (C) with the freed spermatids (arrow); $2 b$ shows the same cell after 3 hrs of observation. ($\mathrm{N}=$ nucleus, $\mathrm{Nk}=$ Nebenkern; X 500.)

For proper development of the isolated cysts it is important to stage the pupae from where the testes are isolated: the color of the cuticula should be light brown and the contour of the developing embryo should be visible through the transparent cuticula. The eyes should still be white, i.e., they should not yet show the final red color. The testes of these pupae, in general, are ellipsoid and have lose their dense contact to fat-body cells. After collecting pupae of the right stage, the testes are isolated in Drosophila Ringer, removed from the Ringer with a Pasteurpipette, and transferred immediately into Shields and Sang's medium to which 20% fetal calf serum and a mixture of antibiotics are added. After washing the testes a second time in fresh medium, one testis is pipetted into a culture chamber and opened by means of thin glass needles. The culture chamber is filled with medium and closed as described below. The basic part of the culture chamber is a thick glass slide with a hole of 15 mm diameter (Fig. 1). From one side a thin coverslip (Fig. 1, b') is mounted with vaseline. The chamber is filled partly with nutrient medium. The isolated testis is transferred into it and opened. To close the chamber another coverslip (Fig. l, $b^{\prime \prime}$) is mounted leaving a small cleft through which the chamber finally is filled with medium. Thereafter, the cleft is closed with a small piece of coverslip (or mica; Fig. l, c) using vaseline as a glue. By removing the small coverslip it is very easy to change partly the medium under the stereo microscope with the aid of a Pasteurpipette or to transfer the cysts with a microliter pipette into a chamber with fresh medium. Observations are made with the inverted light microscope (Zeiss IM 35) with phase contrast optics.

With this technique it is possible to follow the development of $5-10$ cysts up to the "coiling process" (Tokuyasu et al. 1972). When the medium is not changed, the two cysts often detach from their 8 primary spermatocytes or the 32 spermatids. Despite this, it might occur that the "naked" spermatocytes continue meiosis until metaphase I. Spermatids also continue to differentiate (Fig. 2). The apical tips of the spermatids of the burst cyst emanate in all directions thus forming a star-like configuration. The spermatids are connected only terminally in a center which often is covered by the detached cyst cells. Free spermatids elongate continuously, whereas the detached cyst cells do not alter their fibroblast-like shape. Individualization of the spermatids was not
observed. However, individualization may sometimes occur also in vitro, since we found a damaged cyst in the coiling stage which contained unconnected spermatozoa. An "individualization cone" as seen in vitro (Tokuyasu et al. 1972) and in vitro (Cross and Shellenbarger 1979) on D. melanogaster was not detected. In our preparations coiling occurs even in cysts which are not so much elongated as is expected from in vivo investigation.

The following preliminary conclusions can be drawn from our observations. (1) The elongation of the spermatids is independent of an intact cyst. (2) The elongation of the cyst is more a consequence of the elongation growth of spermatids. (3) Individualization seems to occur only in an intact cyst. (4) Individualization and coiling of spermatids may also occur in completely elongated cysts, or spermatids, respectively.

References: Cross, D.P. and D.L. Shellenbarger 1979, J. Embryol. exp. Morph. 53:345; Fowler, G.L. and R. Johannisson 1976, in: Invertebrate Tissue Culture (E. Karstak and K. Maramorusch, eds.) p. 161, Academic Press; Fowler, G.L. and J. Uhlmann 1974, DIS 51:81; Tokuyasu, K. et al. 1972, Z. Zellforsch. 127:492.

Lohs-Schardin, M. Biologisches Institut I, Freiburg, West Germany. A new allele of Ubx causing a strong phenotype.

The allele Ultrabithorax 78 was discovered in a line selected for an embryonic mutation. Recombination experiments demonstrate that the mutation is located in the bithorax region (358.8). Flies heterozygous for Ubx 78 are fertile and show the typical Ubx-phenotype (Lindsley and Grell 1968) which is characterized by enlarged haltere. The homozygous condition is lethal at late embryonic stages or shortly after hatching. In the homozygous state, the Ubx^{78} allele has a more extreme phenotype than any other Ubx allele described so far. It resembles the phenotype of larvae homozygous for $\mathrm{Df}(3) \mathrm{P} 9$, the deficiency of the entire bithorax complex (Lewis 1978). On all segments posterior to the mesothe homozygous larvae show morphological structures which are characteristic for the mesothorax (Fig. 1). These characteristics include the thorax-type ventral row of fine denticles with some stronger denticles in the posterior segments. Keilin's organs, "black" sense organs (Lohs-Schardin et al. 1980) and a separate section of the tracheal trunk are found on all segments, but the 8th abdominal segment. However, the phenotype differs from larvae homozygous for $\operatorname{Df}(3) P 9$ at the posterior end where the telson appears normal.

Fig. 1. The most posterior series (7 th and 8 th segments and telson) of a homozygous Ubx 78 larva. The abdominal segments show the thin thoracictype denticle rows, but some denticles of the 8 th segment are slightly stronger. The 7 th segment carries two "black" sense organs (Lohs-Schardin et al. 1980) and Keilin's organs.

Fig. 2. A series of abdominal segments from a homozygous $\mathrm{Pc}^{3} ; \mathrm{Ubx} 78$ larva. The rudimentary spiracles of four segments and the thin thoracictype denticles of one of these segments are visible.

Trans-combination between Ubx 78 and other mutations of the bithorax region [bx ${ }^{3}$, pbx , $b^{3}{ }^{3} \mathrm{pbx}$, Cbx (Lindsley and Grell 1968)] produce flies with extreme phenotypes; in this respect Ubx 78 is comparable to some other Ubx alleles (Ubx 130 , Ubx 80) and to deficiencies of the whole bithorax complex [Df(3)P115, Df(3)P9 (Morata 1975)].

In larvae homozygous for $\mathrm{Pc}^{3}(3-48)$ and Ubx^{78} each segment posterior to the mesothorax is influenced by both mutations. Ubx 78 exerts its effect on the ventral denticle rows which are thorax-like but at the same time Ubx 78 enhances the expression of Pc 3 : most segments develop rudimentary posterior spiracles with "Filzkörper" and carry posterior sense organs which decrease in size towards the anterior segments (Fig. 2) while Pc ${ }^{3}$ carries these structures only on the posterior 4 segments. This effect is even stronger than in larvae homozygous for Pc^{3} combined with 3 doses of the bithorax complex (Lewis 1978).

When exposed to ether vapors at the cellular blastoderm stage, Ubx 78 produces in 75% of the treated embryos bithorax phenocopies as compared to 25% phenocopies in the sib controls. The response to ether is known to be higher in embryos carrying bithorax mutations associated with break-points in the bithorax region [Ubx 80 , Ubxl30, Df(3)P9 (Capdevilla and GarciaBellido 1978)]. Cytological analysis of salivary gland chromosomes with the genetical constitution Ubx 78/Df(3)P9 [Dp(3)P115 translocated] and Ubx78/+ failed to reveal any deficiency in the bithorax region 1 inked to Ubx 78 .

The allele Ubx 78 resembles the deficiency of the entire complex by its homozygous phenotype. However in combination with Pc^{3} it shows effects ascribed to increased doses of the bithorax complex. Yet the yield of ether phenocopies is increased as in bithorax mutants known to carry a break-point within the bithorax region.

Supported by the Deutsche Forschungsgemeinschaft (SFB 46).
References: Capdevilla, M.P. and A. Garcia-Bellido 1978, Roux's Archives 185:105-126; Lewis, E.B. 1978, Nature 276:565-570; Lindsley, D.C. and E.H. Grell 1968, Genetic Variations of D. melanogaster, Publs. Carnegie Inst.; Lohs-Schardin, M., C. Cremer and C. NussleinVolhard 1980, Dev. Biol. 33:239-255; Morata, G. 1975, JEEM 34:19-31.

Loukas, M. Agricultural College of Athens, Greece. A new esterase locus in D. melanogaster.

We found that D. melanogaster possess the corresponding locus to Est-9 of D. subobscura. This esterase is detected only in the adults and only when 1 -leucyl- β-naphthylamide is used as a substrate together with α-naphthyl acetate. (For the technique used for detecting the enzyme, see Loukas and Krimbas 1975.) It is located on the fly's head and migrates in the gel as fast as Est-9 of D. subobscura.

In order to locate this gene we performed the following crosses (in all cases we refer to the same Fast and Slow alleles): For chromosome 3: Males of the "curled" strain (cu a recessive mutant located on chromosome 3), homozygous for the Slow allele (SS), were crossed with females of wild type homozygous for the Fast allele (FF). F_{1} males were then crossed with females of the curled strain. Half of the wild and half of the curled progeny of this backcross were heterozygous (FS), while the other half were homozygous (SS). So, the esterase gene is not located on chromosome 3. For chromosome 4: Males of the "cubitus interruptusDominant" strain (ciD a dominant mutant, lethal in homozygotes, located on chromosome 4), homozygous FF, were crossed with females of wild type homozygous SS. F1 males of phenotype ciD were then backcrossed with the females of wild type. Half of the wild and half of the mutant progeny were heterozygous, while the other half were homozygous (SS). So, the esterase gene is not located on chromosome 4. For chromosome 2: Males of the "orange" strain (or, a recessive mutant located on chromosome 2), homozygous $F F$, were crossed with females of wild type homozygous SS. F_{1} males were then crossed with females of the orange strain. All the wild type progeny were heterozygous and all the orange ones homozygous FF. So, the esterase gene is located on chromosome 2.

Taking into consideration all the similarities between this esterase gene and the Est-9 of D. subobscura (similar biochemical properties of the enzymes and probably similar physiological role) as well as the fact that Est-9 is located on chromosome E of D. subobscura which is homologous to 2R of D. melanogaster (Krimbas and Loukas 1980), we suggest that these esterase loci are homologous.

References: Krimbas, C.B. and M. Loukas 1980, DIS 55:55; Loukas, M. and C.B. Krimbas 1975, Genetics 80:331-347.

Loukas, M. Agricultural College of Athens, Greece. Breeding sites of D. subobscura.

Until now very little was known of the breeding sites of D. subobscura. Decaying Cornus berries in northern Italy (Buzzati-Traverso 1948), diseased Iris root in England (Smart 1945), oak galls of Biorrhiza pallida in England (Basden 1952) or slime fluxes, where larvae of other obscura group species are found (e.g., D. ambigua by Prevosti 1959) have been advocated as possible breeding sites. Also, D. subobscura flies emerged from rowan-berries collected in the field (Begon 1975), from apples (Hummel 1978) and from fruits of Magnolia grandiflora (Lachaise 1978). Finally Shorrocks (unp. information) found that the species breeds in England on mushrooms, especially Amanita phalloides, and Fontdevila (1978) in northwest Spain (Galicia) in Amanita rubescens.

We collected 30 fruits of Ziziphus jujuba and 30 orange fruits from the Botanical Garden of Athens. From the Zizyphus jujuba fruits 218 D. subobscura and 637 D. melanogaster flies emerged while from the orange fruits only D. melanogaster.

The rarity of all these substrates mentioned above does not seem to justify the great densities of D. subobscura at least in the "central" populations (Begon, Krimbas and Loukas in prep.). The situation resembles its North American counterparts, for which we ignore their breeding sites.

References: Basden, E.B. 1952, Entomol. Monthly Mag. 88:200-201; Begon, M. 1975, Oecologia (Berlin) 20:227-255; Buzzati-Traverso, A.A. 1948, DIS 22:69; Fontdevila, A. 1978, Bul. European Drosophila Pop. Biol. Group No. 2 (Leeds); Humme1, H. 1978, Bul. European Drosophila Pop. Biol. Group No. 1 (Leeds); Lachaise, D. 1978, Bul. European Drosophila Pop. Biol. Group No. 1 (Leeds); Prevosti, A. 1959, DIS 33:154; Smart, J. 1945, Proc. Roy. Ent. Soc. (London) B14:53-56.

Lujan, D. University of California, Santa Cruz. A comparison of TSP's of Notchtsl, shibiretsl and the double mutant.

Although a number of mutants affect the disposition of bristles on Drosophila none has the extensive pleiotropic effects of shibirets (Poodry et al. 1973) and Notchts (Shellenbarger and Mohler 1975). The developmental phenotypes of these two mutants are remarkably similar even though the mutants are located far from each other on the X chromosome and they do not share the phenotype of reversible paralysis. A detailed analysis of the temperature-sensitive periods for each mutant and for the double mutant was undertaken to determine whether the loci interact in any way.

Strains bearing shibire ${ }^{t s l}$ (shitsl) and Notchtsl (Wantslrb) and both mutations (WaNtsl rb shitslf) were reared in mass cultures on standard food at 22°. White prepupae were collected at 1 hr intervals, transferred to shell vials and shifted to 29° for 6 hrs then returned to 22° for the remainder of their development. The 6 hr heat pulses were delivered at various times in 1 hr increments from pupariation to 48 hrs after pupariation.

The results confirmed the similarity in phenotypes and temperature-sensitive periods reported previously. The effects causing deletion of structures are more severe in shitsl. The period from pupariation to pupation is lethal at 29° for shitsl but not for Ntsl. The deletion of bristles especially macrochaetes is much less severe in Notchtsl. In contrast, Notchtsl appears to have a much stronger response to heat pulses causing supernumerary microchaetes. Since the temporal pattern of temperature-sensitive periods is specific to various regions, and even to bristle rows, on the thorax a single 6 hr heat pulse may lead to overlapping phenotypes. That is, supernumerary bristles in one area or row may be near regions where deletion of bristles has begun. Notchtsl is less effective in deleting bristles so the net result is a more hirsute thorax on Notchtsl animals given comparable heat pulses to shitsl. The timing, duration and intensity of the effect on bristle shape called "scimitar" is the same in the two mutants.

The phenotype of the double mutant is essentially that of shibiretsl alone. The presence of Notchtsl does not enhance or rescue any of the shibire effects at the restrictive temperature. Neither does it alter the restrictive temperature.

The similar complex pleiotropic phenotypes of these two non-interacting temperature-sensitive mutants are difficult to explain by a hypothesis of intermittant gene activity. The interpretation we favor is that the temperature-sensitive periods reflect times when the particular cells enter a sensitive stage of their cell cycle or developmental program.

This work was supported by NIH Grant RR 08132.
References: Poodry et al. 1973, Develop. Biol. 32:373-386; Shellenbarger and Mohler 1975, Genetics 81:143-162.

Lyttle, T.W. University of Hawaii., Honolulu. Segregation in XYY males and XXY females of D. melanogaster.

Grell (1958) investigated the pattern of sex chromosome segregation in the progeny of XYY males and recovered XY/Y segregation in excess of the .667 frequency predicted under nonpreferential segregation. In addition, there appeared to be a deficiency of XYY males which Grell attributed to a lowered viability of such aneuploid types. This report presents data which independently supports Grell's speculation.

In the course of our work with a translocation $\left[T(Y ; 2), S D L^{2}\right]$ in D. melanogaster which has its autosomal break in division 58 proximal to bwt, we found it necessary to measure the amount of sex chromosome nondisjunction in $\mathrm{X} / \mathrm{X} / \mathrm{T}(\mathrm{Y} ; 2), \mathrm{SD} \mathrm{L} 2 / \mathrm{CyO}$ females and $\mathrm{X} / \mathrm{Ybw}+/ \mathrm{y}+\mathrm{YBS}$ males. Flies hyperploid for the $2 R$ tip survive and carry all the Y fertility factors.

Table 1 shows the resulting progeny when $X / X / T(Y ; 2), S D L^{2} / C y O$ ($=$ RspI) females are mated to $y / y^{+} Y_{B S} ; \operatorname{Rsp}^{S} \mathrm{cn} \mathrm{bw}$ (or RspI-16 cn bw, kindly provided by B. Ganetzky) males. Here Rsp ${ }^{S}$ and RspI denote the alleles at the Responder locus which are sensitive and insensitive, respective$1 y$, to the sperm dysfunction induced by Segregation distorter (SD).

Some progeny classes are lethal and others are confounded, but a reasonable estimate of the overall nondisjunction rate can be obtained by doubling the contribution of the three surviving nondisjunctional classes to the total, to give $\underline{m}=$ proportion of $X X / Y$ disjunctions $=$ $14 / 635=.022$. This should be compared to the somewhat higher rate of $2 \cdot(2404 / 54070)=$.086 obtained by Bridges (1916, $\chi^{2}=15.4, p \ll .001$). The apparent reduction in secondary nondisjunction may be partially due to a decreased viability of y flies, or may be explained on the basis of a decreased probability of heterosynapsis owing to the interference of the bw^{+} material on the Y.

Two classes of progeny males (A and B) were themselves progeny tested in matings to cn bw females in order to further determine the viability of, and segregation in, XYY flies. Tests of $B C y$ cn males (class A in Table 1) showed $3 / 21$ males were XYY, and their progeny distribution is presented in Table 2. The B L males (class B, Table 1) are all XYY, but some of those (5/14) tested were carrying RspS and showed segregation distortion, while the remainder were $X / y^{+} Y B S ; T(Y ; 2), S D L 2 / R s p I-16 \mathrm{cn}$ bw and showed no SD activity. The progeny from these crosses are summarized in Tables $3 b$ and a, respectively.

Several observations can be made from this somewhat heterogeneous mass of information. First, the data from Table 2 include all progeny classes and allow the best estimate of $\ell=$ proportion $X / Y Y$ disjunction (summarized in Table 4 b). I give a range for $\hat{\ell}$ because its value depends critically on whether there is a viability reduction in XYY flies, since $\hat{\ell}_{1}=(X+$ YY)/TOTAL will then underestimate ℓ. On the other hand, $\hat{l}_{2}=X /(X+Y)$ uses less of the available information and is therefore less precise, though perhaps moe accurate. Secondly, the presence of the $S D L$ portion of the $T(Y ; 2)$ in the $B L$ males allows us to use Table 3a to determine whether the translocation itself affects segregation. Finally, from Table 3b we can determine whether the strength of $S D$ is altered by the presence of the extra sex chromosome.

From Table 3a we first estimate the parameter $c=$ proportion of $X \leftrightarrow S D$ segregations, which should be equal to 0.5 if the two chromosomes are assorting independently. Here $c=$ $167 / 343=.487$ with $\chi_{1}^{2}=.557, p \cong .54$, and we provisionally accept the hypothesis that the translocation is not interfering with sex chromosome disjunction.

Also in Table 3a, we attempt to measure ℓ by first estimating the three missing classes by the observed numbers for their respective complementary classes (immediately right adjacent to each empty box) and summarizing the data in Table 4 c . Notice that the range of ℓ here barely overlaps that obtained from the data of Table 2 (see Table 4 b). This is primarily because of the zero value for the XYY class in the latter data, which males ℓ_{1} extremely low. It should be noted that the pattern of the data and the estimates of ℓ_{1} vary very little if we ignore the missing or confounded data classes in Tables 2 and 3 and use only the even numbered columns for purposes of estimation. These alternate estimates of $\ell \underline{\ell}$ are presented in Table 4 with asterisks.

The overall estimate of ℓ in the current data may also have a slightly upward bias owing to the apparent tendency of $y^{\dagger} Y B S$ to be involved in a proportionally greater number of heterosynapses in these XYY males, perhaps due to some pairing ability of the X material on $y+Y B S$. This shows up in all crosses as an increased tendency for $X Y b w+/ y+Y B S$ compared to $X Y+Y B S /$ Ybw+ segregations. The data from both Tables 2 and 3 are homogeneous in this respect, and when pooled (ignoring the $S D L$ classes) gives an overall $X 1=15.63, \mathrm{p} \ll .001$) for the contingency test for independence of the X and the type of Y chromosome present ($89 \mathrm{XYbw}^{+}: 50$ $X y^{+} Y_{B S}: 57 \mathrm{YbW}^{+}: 84 \mathrm{y}^{+} \mathrm{YB}^{5}$). If there is an enhanced tendency for Xy+YBS synapses, this will increase the proportion of recovered $X \leftrightarrow Y Y$ disjunctions and thus increase $\hat{\ell}$ above the level

Table 1 - Progeny from $X / X / T(Y ; 2) \underline{S D} \underline{L}^{2} /$ CyO o o by
$\underline{y} / \underline{y}^{+} \underline{Y B} ; \underline{c n}$ bwo.

GAMETES $0 / 9$	$\begin{gathered} \mathrm{X} \\ \mathrm{CyO} \end{gathered}$	$\begin{gathered} \text { XYbw } \\ \text { CyO } \end{gathered}$	$\begin{gathered} \mathrm{X} \\ \mathrm{SDL} \end{gathered}$		$\begin{gathered} \mathrm{XYbw} \\ \mathrm{SDL} \end{gathered}$		$\begin{gathered} \mathrm{XX} \\ \text { Cyo } \end{gathered}$			$\begin{gathered} \mathrm{Ybw}^{+} \\ \mathrm{CyO} \end{gathered}$	$\begin{gathered} \text { XX } \\ \text { SDL } \end{gathered}$	$\begin{aligned} & \text { Ybw }{ }^{+} \\ & \text {SDL } \end{aligned}$
y;cn bw	303	cy cn ${ }^{\text {P }}$	+		97 L +		†			Cy cn	\dagger	$1 \mathrm{yLo}{ }^{\text {a }}$
$\mathrm{y}^{+} \mathrm{YB}^{\text {S }}$; cn bw	(A) 160	B Cy cno ${ }^{\text {c }}$	+	(B)	61 BL**		B Cy	¢		\dagger	\dagger	\dagger

by $X / X ;$ cn bw $^{\circ}+$.

0^{*} GAMETES ${ }^{\dagger}$	$\begin{gathered} \mathrm{XY} \\ \text { CyO } \end{gathered}$	$\begin{gathered} \mathrm{XY} \\ \mathrm{cn} \mathrm{bw} \end{gathered}$	$\begin{aligned} & \mathrm{XY}^{1} \\ & \mathrm{CyO} \end{aligned}$	$\begin{gathered} \mathrm{XY}^{1} \\ \mathrm{cn} \mathrm{bw} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ \mathrm{CyO} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ \mathrm{cn} \mathrm{bw} \end{gathered}$	$\begin{gathered} Y^{1} \\ \text { Cyo } \end{gathered}$	$\begin{gathered} Y^{1} \\ \text { cn bw } \end{gathered}$	$\begin{gathered} \mathrm{X} \\ \mathrm{CyO} \end{gathered}$	$\begin{gathered} \mathrm{X} \\ \mathrm{cn} \mathrm{bw}_{\mathrm{w}} \end{gathered}$	$\begin{aligned} & \mathrm{YY}^{1} \\ & \mathrm{CyO} \end{aligned}$	$\begin{gathered} \mathrm{YY}^{1} \\ \text { cn bw } \end{gathered}$
PROGENY	18^{\dagger}	28	8	10	15	9	20	22	$8{ }^{+}$	12	0	0
PHENOTYPE	$\underset{\substack{\text { cy } \\ \hline}}{ }$	cn		$\mathrm{cn}_{\underset{+}{\mathrm{b} b w}}^{\mathrm{B}}$	Cy	$\stackrel{\text { Cn }}{\substack{\text { a }}}$	$\mathrm{B} \mathrm{Cy}_{\mathrm{O}^{\circ}}$	$\mathrm{cn}_{\mathrm{O}^{\text {bw }}}^{\mathrm{B}^{\text {a }}}$	Cy \vdots	$\mathrm{cn}_{¢} \mathrm{bw}$	B ${ }_{\substack{\text { ¢ }}}^{\text {Cy }}$	B cn c°

\dagger based on partitioning 26 Cyp progeny according to $X Y$ cn $b w: X$ cn bw proportions observed.

$$
\text { \% } \mathrm{Y}=\mathrm{Ybw}+
$$

$$
\mathrm{Y}^{1}=\underline{y}^{+} \underline{Y B}^{\mathrm{S}}
$$

Table 3a, b-Progeny from a) $X / \underline{y}^{+} \underline{Y B}^{\mathrm{S}} ; \mathrm{T}(\mathrm{Y} ; 2), \underline{\mathrm{SD}} \underline{\mathrm{L}}^{2} / \mathrm{Rsp}^{\mathrm{T}}-16 \underline{\mathrm{cn}} \underline{\mathrm{bw}}$

o' GAMETES*	$\begin{gathered} \mathrm{XY} \\ \mathrm{SDL} \end{gathered}$	$\begin{gathered} \mathrm{XY} \\ \text { cn } \mathrm{bw}^{2} \end{gathered}$	$\begin{aligned} & \mathrm{XY} \\ & \mathrm{SDL} \end{aligned}$	$\begin{gathered} \mathrm{XY}^{1} \\ \mathrm{cn} \quad \mathrm{bw} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ \mathrm{SDL} \end{gathered}$	$\stackrel{\mathrm{Y}}{\mathrm{cn}} \mathrm{bw}^{(2)}$	$\underset{\mathrm{YDL}}{\mathrm{Y}}$	$\mathrm{Y}^{\mathrm{Y}}{ }^{1}{ }^{\text {bw }}$	SDL	$\mathrm{cn}^{\mathrm{X}} \mathrm{bw}$	YY^{1}	$\underset{\text { cn }}{\text { Y }}{ }_{\text {bw }}^{1}$
PROGENY a	39	42	-	26	14	33	-	42	-	30	13	6
b	71	1	-	5	73	0	-	0	-	0	12	1
PHENOTYPE	L 9	$\underset{q}{\text { cn }}$	+	$\mathrm{cn}^{\text {B }}{ }_{\text {¢ }}$	L	cn	+	$\mathrm{cn}^{\mathrm{B}} \mathrm{c}^{\text {bw }}$	+	$\mathrm{cn}_{\substack{ \\\text { bw }}}$	BL	B cn

* $\begin{aligned} Y & =Y^{Y}{ }^{+}{ }^{+} \\ Y^{1} & =\underline{y}^{+} \underline{Y B}^{S}\end{aligned}$

Table 4 - Summary of data from Grell (1958) and Tables 2 and 3.

o'GAMETES	XY	X	YY	Y	$\hat{\ell}_{1}$	\rightarrow	$\hat{\ell}_{2}$
PROGENY	$\underset{\ddagger}{\mathrm{XXY}}$	XX	XYY	XY σ^{*}			
a	1153	307	207	1155	. 182	-	. 210
b	64	20	0	66	$\begin{aligned} & .133 \\ & .148 \end{aligned}$	-	$\begin{aligned} & .233 \\ & .279 * \end{aligned}$
c	133	60	19	131	$\begin{aligned} & .230 \\ & .201 \end{aligned}$	-	$\begin{aligned} & .314 \\ & .286^{*} \end{aligned}$

* see text
obtained for normal XYY males. In any case, even if we ignore this potential bias, the various estimates for ℓ tend to argue against nonpreferential segregation (i.e., $\ell=.333$), and in favor of Grell's conclusion of preferential pairing of the Y chromosomes.

Table 3 b can be used to estimate k (= proportion of SD bearing sperm) in these crosses where distortion is active. The estimate obtained is $\hat{k}=156 / 158=.987$, indistinguishable from a control value obtained for $X ; T(Y ; 2), S D L 2 / R s p S$ cn bw males of $6260 / 6290=.995\left(X_{1}^{2}=\right.$ $1.94, \mathrm{p}=.173$). Therefore, I conclude that the presence of the extra Y is having no significant effect on the strength of distortion.

The low frequency of XYY males among the B Cy cn progeny tested from Table 1 (14% recovered) as well as the disparity in the X versus $Y Y$ gamete recovery in all data of Table 4 indicates a reduced viability for XYY flies, best estimated from Grell's data alone as a loss of about 0.33 compared to $X Y$ males. The viability is further lowered in my data by the fact that the XYY males are often hyperploid for the $2 R$ tip.

The estimates of ℓ differ somewhat, with ℓ_{2} being most reliable owing to the viability effect. After making allowances for the possible biases discussed, it would seem that $\ell \mathcal{\sim} .2$ - . 25 is a reasonable estimate. However, an important inference from the data presented here should be that marked Y chromosomes may introduce considerable bias for segregation studies in Drosophila.

References: Bridges, C.B. 1916, Genetics 1:1-52; 107-163; Grell, R.F. 1958, 10th Int. Cong. of Genet. (Proc.) p. 105.

Malogolowkin-Cohen, Ch. and M. Livni. Institute of Evolution, University of Haifa, Israel. A preliminary study on polymorphism and heterozygosity found in D. subobscura in Israel.

A genetic analysis, polymorphism and hetero zygosity of 16 loci of 12 enzymes of Israeli populations of D. subobscura was initiated in our laboratory in 1976. Five collecting sites from three of the four biogeographic regions cited by Malogolowkin-Cohen (1979) and Malogo-lowkin-Cohen et al. (1979) are used in this study: (1) mountains - Biryah-Zefat, Carmel and Quiriat Anavim-Mevasseret; (2) foot hills -Tivon-Oranim; (3) coastal plain - Dor (Fig. 1). Males caught at the above mentioned places were pair-mated to virgin females from a stock of inversion-free chromosomes and wild impregnated females caught at the same places were permitted to oviposit in the lab, after which

	$\overline{\mathrm{A}}$ (allele frequency)	$\overline{\mathrm{p}}$ (polymorphism)	$\overline{\mathrm{H}}$ (heterozygosity)
Kiryat Anavim-Mevasseret	1.68	0.37	0.05
Tivon-Oranim	2.19	0.81	0.08
Biryah-Zefat	2.19	0.81	0.05
Dor	2.06	0.62	0.05
Mount Carmel	2.37	0.87	0.09

wild males and wild females were assayed for enzymes. Horizontal starch gel electrophoresis was carried out according to the techniques of Ayala et al. (1972) with modifications and additions made by Saura et al. (1973). The allele frequency, \bar{A}, polymorphism, \bar{p}, and heterozygosity, \bar{H}, are calculated and the results may be seen in Table 1 . Polymorphism and allele frequencies are found to be higher in the center (Tivon-Oranim, Mount Carmel and Dor) and in the north (Biryah-Zefat) and lower in the western distribution area of the fly (Quiriat-AnavimMevasseret), while no variation is found in heterozygosity (Table 1). The estimates are based on the following loci: acid phosphatase (Acph 1, 2, and 3), aldehyde oxidase (Ao), esterase (Est), fumarase (Fum), α-glycerophosphate dehydrogenase (α-Gpdh), hexokinase (Hk), isocitrate dehydrogenase (Idh), leucine aminopeptidase (Lap), malate dehydrogenase (Mdh 2 and R), malic enzyme (Me), phosphoglucomutase (Pgm) and phosphoglucose isomerase (Pgi 1 and 2).

Mather, W.B. and G. Balwin. University of Queensland, Brisbane, Australia. Inversions in three species of Drosophila from the River Kwai, Thailand.

Acknowledgements: We would like to thank Mrs. D. Sarid for her technical assistance. This work was supported by the Israel Absortion Center, Contract II to the senior author and by a grant from the U.S.-Israel BiNational Science Foundation (BNSF), Jerusalem, Israel

References: Ayala, F.J., J.R. Powell, M.L. Tracey, C.A. Mourao and S. PerezSalas 1972, Genetics 70:113-139; Malogo-lowkin-Cohen, Ch. 1979, DIS 55; Malogolow-kin-Cohen, Ch., H. Levene and E. Nevo 1979, Rev. Bras. Genetica (in press); Saura, A., Lakovaara, J. Lokki and 0. Lankinen 1973, Hereditas 75:33-46.

Fig. 1. Map of Israel illustrating sites where D. subobscura was found by us in 1976. Underlined are the sites used for the present study. U.H. = University of Haifa.

In June 1979 twenty-four isolines of D. s. albostrigata, fifteen of D. albomicans and three of D. kohkoa were established from the River Kwai region of Thailand. The inversions from this region have been reported on three times before from collections made in November 1977, June 1978 and January 1979 (Mather et al. 1980; Mather and Balwin 1979 and in press).
(a) D. s. albostrigata. Seven

Table 1

Inversion			Complex	Het. \%
	Chromosome	Simple		
C	III	X		4.2
E	ILL	X		12.5
G	I	X		4.2
W_{2}	III	X		4.2
F3	III	X		4.2
A_{5}	III	X		91.7
C_{5}	IIR	X		45.8
D_{5}	IIL		X	25.0

simple and one complex inversions were detected. No new inversions were detected but this is the first time that inversions G and F_{3} have been recorded at the River Kwai. Inversion G - Mather, W.B. and P. Thongmeearkom DIS 48:40 previously recorded at Cebu (Phill.), DIS 48:40 and Luzon (Phil1.), DIS 50:60. Inversion F_{3} - Mather, W.B. and P. Thongmeearkom, M. Clyde and D. Lambert DIS 51:86, recorded at Kuala Lumpur (Malaysia). The heterozygosity frequency of all inversions detected is given in Table 1.

Inversion	Table 2				
	Chromosome	Simple	Complex	Break Points	Het. \%
C	III	X			33.3
L_{3}	III	X			6.6
R5	I	X			13.3
S_{5}	IIL	X			73.3
U_{5}	IIL		X		20.0
W5	III	X			13.3
X_{5}	III		X		73.3
B_{6}	III	X			13.3
C_{6}	IIL	X			20.0
D_{6}	III	X			20.0
E_{6}	III		X	21.6-40.0	13.3

Table 3

		$\frac{\text { Table 3 }}{}$		
Inversion	Chromosome	Simple	Complex	Break Points
F6	III	X		$32.9-37.0$
G6 2	IIL		X	$6.6-20.3$

(b) D. albomicans. Eight simple and three complex inversions were detected. All inversions except one had previously been detected at the River Kwai. A photograph of the new inversion (E_{6}) is presented and breakpoints assigned (in relation to the standard photographic map - Mather, W.B. and P. Thongmeearkom DIS 55:101). See Table 2. The heterozygosity frequency of all inversions detected is given.
(c) D. kohkoa. One simple and one complex inversion were detected. Both inversions F_{6} and G_{6} are new. Photographs are presented and break points assigned (in relation to the standard photographic map, Mather, W.B. and P. Thongmeearkom 1978, DIS 53: 150). See Table 3.

The material was collected and the isolines established by W.B.M. The laboratory work was carried out by G.B.

References: Mather, W.B. and G. Balwin 1980, DIS 55:99 and in press; Mather, W.B., W.R. Knibb and G. Balwin 1980, DIS 55:103; Mather, W.B. and P. Thongmeearkom, DIS 48:40, 50:60, 53:150 and 55: 101; Mather, W.B., P. Thongmeearkom, M. Clyde and D. Lambert, DIS 51:86.

Mather, W.B. and G. Balwin. University of Queensland, Brisbane, Australia. Inversions in the nasuta complex from the River Kwai, Thailand.

Inversions in species of the nasuta complex from the River Kwai region of Thailand have been reported on twice before from collections made in November 1977 and June 1978 (Mather et al. 1980; Mather and Balwin 1980). In January 1979 seventy-one isolines of D. s. albostrigata and four isolines of D. albomicans were established.
(a) D. s. albostrigata. Nine simple and one complex inversions were detected. Seven of these had previously been detected at the River Kwai and one (A_{2}) had first been detected elsewhere in Southeast Asia (Mather and Thongmeearkom 1973). The remaining inversions Y_{5} and Z_{5} are new and photographs are presented and break points assigned (in relation to the standard photograhic map, Thongmeearkom 1977). See Table 1. The heterozygosity frequency of all inversions detected is given and compared with June 1978. It will be noted that there are considerable differences in frequency in some cases. (Seventy-six isolines were analyzed in the June 1978 collection.)

Inversion	Type	Table Chromosome	s. albostriga Break Points	$\begin{array}{r} \text { Het } \\ \text { Jan. } 79 \end{array}$	$\begin{aligned} & \text { - \% } \\ & \text { June ' } 78 \end{aligned}$
C	simple	III		5.6	1.3
E	simple	III		19.7	14.5
A_{2}	simple	III		4.2	--
W_{2}	simple	III		9.9	3.9
A_{5}^{2}	simple	IIL		76.1	55.3
B_{5}	simple	III		7.0	7.9
C_{5}	simple	IIR		29.6	55.3
D_{5}	complex	IIL		16.9	34.2
Q_{5}	simple	IIL		--	2.6
Y_{5}	simple	III	10.2-15.6	1.4	--
Z_{5}	simple	IIL	17.0-21.4	1.4	--
Inversion	Type	Table 2. D. albomicans Chromosome Break Points		Inversion Detection Jan. ' 79 June ' 78	
C	simple	III		+	+
J_{2}	complex	IIL		+	-
L_{3}	simple	III		+	-
R_{5}	simple	I		+	+
S_{5}	simple	IIL		+	+
T5	simple	III		-	+
U_{5}^{5}	complex	IIL		-	+
V_{5}	simple	III		-	+
${ }^{\text {W }}$	simple	III		-	+
X_{5}	complex	III		+	+
${ }^{\text {A }} 6$	simple	III	32.4-38.8	+	-
${ }^{\text {B }} 6$	simple	III	$34.2-40.1$	+	-
${ }^{\text {C }} 6$	simple	IIL	$1.1-10.0$	+	_
D_{6}	simple	III	1.1-7.4	+	-

(b) D. albomicans. Eight simple and two complex inversions were detected. Five of these had previously been detected at the River Kwai; four in D. albomicans and J_{2} in D. s. albostrigata. One (L_{3}) had been detected previously at Phuket in Thailand (Mather and Thongmeearkom in press). The remaining inversions A_{6}, B_{6}, C_{6} and D_{6} are new and photographs are presented and break points assigned (in relation to the standard photographic map, Mather and Thongmeearkom in press). See Table 2. Because only four isolines were established and analyzed heterozygosity frequencies are not given but a comparison between the inversions detected in June ' 78 and Jan. '79 is given.

The material was collected and the isolines established by W.B.M. The laboratory work was carried out by G.B.

References: Mather, W.B. and G. Balwin 1980, DIS in press; Mather, W.B., W.R. Knibb and G. Balwin 1980, DIS in press; Mather, W.B. and P. Thongmeearkom 1973, DIS $50: 60$, 1980 DIS in press; Thongmeearkom, P. 1977, DIS 52:154.

Table 1. Drosophila collected in Raleigh, N. C. (1975-1977).

Species

 $1975 \quad 1976$| | Oct. | | Nov. | | Dec. | | Jan. | | Feb. | | Mar. | | Apr. | | May | | June | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 0^{*} | 아 | 0^{*} | \bigcirc | 0 | $\stackrel{+}{+}$ | σ | 앙 | 0 | q | 0^{*} | ¢ | 0^{*} | \ddagger | 0° | 아 | 0^{*} | \ddagger |
| D. melanogaster
 " simulans | $\left.{ }_{67}^{30}\right\} 92$ | | $\left.{ }_{122}^{21}\right\} 76$ | | $\left.{ }_{69}^{3}\right\} 38$ | | $\left.\begin{array}{l} 0 \\ 0 \end{array}\right\} 0$ | | $\}_{0}^{1}\right\} 3$ | | $\left.{ }_{0}^{12}\right\} 16$ | | $\left.\begin{array}{c} 14 \\ 0 \end{array}\right\} 16$ | | $\left.{ }_{0}^{6}\right\} 7$ | | $\left.{ }_{9}^{33}\right\} 42$ | |
| " tripunctata | 13 | 9 | 14 | 1 | 16 | 8 | 9 | 1 | 35 | 15 | 133 | 82 | 65 | 45 | 173 | 13 | 326 | 39 |
| " immigrans | 63 | 31 | 86 | 39 | 28 | 14 | 1 | 0 | 1 | 0 | 9 | 9 | 29 | 14 | 46 | 9 | 55 | 37 |
| " affinis | 16 | 3 | 3 | 0 | 8 | 1 | 6 | 1 | 184 | 32 | 244 | 33 | 126 | 27 | 64 | 3 | 26 | 7 |
| " putrida | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 133 | 82 | 380 | 20 | 348 | 14 | 79 | 5 |
| " robusta | 0 | 1 | 3 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 34 | 7 | 11 | 0 | 7 | 0 | 9 | 4 |
| " quinaria | 1 | 1. | 1 | 4 | 0 | 0 | 0 | 0 | 3 | 3 | 0 | 0 | 22 | 38 | 18 | 29 | 11 | 22 |
| " buskii | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 6 | 3 | 0 | 0 | 2 | 1 |
| " hydei | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 3 | 3 | 0 | 0 | 0 | 1 | 0 | 0 |
| " nigromelanica | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| " micramelanica | 5 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| " melanica | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| " falleni | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 21 | 8 | 83 | 43 | 69 | 21 |
| " duncani | 2 | 0 | 0 | 0 | 1 | 0 | 12 | 12 | 1 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| \# Collections | | 4 | | 4 | | 6 | | | 1 | | 2 | 9 | 3 | 0 | | 1 | | 6 |

Table 1. (cont'd).

Species	1976												1977						June	
	July		Aug.		Sept.		Oct.		Nov.	Dec.-Feb.			Mar.		Apr.		May			
	σ	아	σ^{\prime}	앙	σ°	\ddagger	σ^{*}	9	σ^{\prime}	\ddagger	6	9	$0^{\prime \prime}$	안	0	\ddagger	$0^{\prime \prime}$	우	σ	\ddagger
D. melanogaster " simulans	$\left.{ }_{8}^{59}\right\} 37$		$\left.{ }_{62}^{119}\right\} 116$		$\left.\begin{array}{c} 46 \\ 194 \end{array}\right\} 148$		$\left.{ }_{96}^{11}\right\} 77$		$\left.{ }_{53}^{2}\right\} 45$		$\left.{ }_{0}^{0}\right\} 0$		$\left.\begin{array}{l} 0 \\ 0 \end{array}\right\} 1$		$\left.{ }_{0}^{11}\right\} 17$		$\left.{ }_{0}^{3}\right\} 1$		$\left.{ }_{50}^{9}\right\} 36$	
" tripunctata	65	20	64	16	42	21	15	2	23	4	1	0	4	12	22	17	36	10	15	7
" immigrans	13	15	2	7	17	13	21	14	24	9	0	0	0	1	12	22	15	17	46	39
" affinis	2	1	29	5	35	2	12	3	2	1	8	3	26	14	22	21	1	1	22	3
" putrida	90	7	84	7	24	0	1	0	2	0	0	1	6	0	74	6	42	1	4	1
" robusta	6	10	6	0	2	1	0	0	1	0	0	2	3	0	0	1	3	2	14	7
" quinaria	3	11	4	6	4	13	0	1	1	2	0	0	0	0	3	5	1	5	3.	0
" buskii	1	1	3	0	0	0	0	0	1	0	0	0	16	12	16	13	34	21	9	1
" hydei	0	2	1	0	0	0	0	0	0	0	0	0	0	0	2	2	0	0	6	1
" nigromelanica	1	0	2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
" micromelanica	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0
" melanica	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
" falleni	3	5	3	2	10	5	1	0	4	3	1	1	1	0	5	17	18	20	11	4
" duncani	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0
\# Collections		0						8	7		8					9		9		7

McInnis, D.O. Screwworm Research Laboratory, Mission, Texas. Drosophila collections from Raleigh, North Carolina.

A shaded glen on the campus of North Carolina State University at Raleigh, NC provided a suitable and convenient area for Drosophila collections. A fixed trap site was the source of data from October 1975 to June 1977. During evening activity periods Drosophila were netted above a bucket containing fermenting banana. Collections were taken at least once a week except for the months of December (1976) and January (1977) when the weather was extremely unfavorable for Drosophila. The results of the samples are shown in Table 1 [preceding pages].

Several comments can be made about the seasonal variations in abundance of the 15 species trapped. Typically, the arrival of warm spring temperatures heralded the arrival of large numbers of Drosophila, occasionally with suddenness. Populations of the most numerous species, D. tripunctata, D. immigrans, D. affinis appear to increase swiftly during March or April before tapering off gradually into the winter months. Two of these species, D. tripunctata and D. affinis, seem to have continuity year-round, though their means of overwintering is not known. Interestingly, D. duncani was trapped almost exclusively during the winter months, albeit at low numbers. Of the two sibling species, D. melanogaster and D. simulans, the latter appeared later in the spring yet lasted longer during the fall. However, the spring catch of D. melanogaster could have been at least partly due to escaped laboratory flies from a campus building only $1 / 4$ mile from the trap site (known multiply marked laboratory mutants were sometimes trapped). The female members of these siblings are not reliably distinguished on morphological grounds so only a single total is given for them. With the exception of D. quinaria, males were consistently trapped in greater numbers than females. D. putrida was the most extreme example of this.

McInnis, D.0. Screwworm Research Laboratory, Mission, Texas. The seasonal spread of D. melanogaster and D. simulans in Raleigh, North Carolina. hardwood (Umstead State Park) areas. A difference between the campus and residential park data was noted in the timing of the onset of relatively high frequencies of D. melanogaster and D. simulans. For the campus site, combined frequencies (ca. 75\%) of D.melanogaster and D. simulans were observed by early June, but at the residential park the peak did not occur until late June or early July. The phenomenon of a gradual spread of "domesticated" species of Drosophila from source areas of human habitation into wilder habitats has already been observed for D. melanogaster, D. hydei and D. busckii by McCoy (1962) in Indiana. The relevancy of this notion to the Raleigh area of North Carolina is further strengthened by the Schenck Forest and Umstead Park data. The peak populations of the siblings appeared in August or September at Schenck Forest, sometime after their appearance at the campus and residential park sites. At the most isolated of collecting areas (the experimental field at Umstead Park) the siblings never attained ascendancy over the class of other Drosophila combined, while their greatest abundance came in October. As a result of the late arriving pulse of D. melanogaster and D. simulans in the study areas, the peak populations of the sibling species are correspondingly more short-lived than in the two urban sites. By the end of November, colder temperatures apparently reduced numbers of Drosophila to near zero at all four trap sites. Reference: McCoy, C.E. 1962, Jour. Econ. Ent. 55:978-985.

Miglani, G.S. and F.R. Ampy. Howard University, Washington, D.C. A possible cline between the body weight and altitude in Mexian populations of D. melanogaster.

Mean body weight (mg) per 40 males was measured for 12 Adh I/Adh I and 40 Adh II/Adh II isochromosomal lines extracted from 16 Mexican populations of D. melanogaster (Pipkin et al. 1976) raised at $25^{\circ} \mathrm{C}$. A significant correlation ($r=0.627$; $p<0.05$) was observed between the altitude and mean body weight of the populations representing the Adh II/Adh II lines. The sites located at higher altitudes were in northern Mexico where the mean annual temperatures were low as compared to the sites located at lower altitudes in southern Mexico (Atlas Climatologico de Mexico, 1921-30). This
relationship suggested that the increased body weight at low temperatures may be due to the slower development of the individual. This view was supported by highly significant differences ($p<0.001$) in mean body weight among three developmental stages (third instar larvae > pre-emergency pupae $>$ adult) raised at $18^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$. It was also observed that the rate of development at $18^{\circ} \mathrm{C}$ was approximately one half the rate at $28^{\circ} \mathrm{C}$. The above relationship suggested a possible cline between the body weight and altitude in Mexican populations of D. melanogaster.

Reference: Pipkin et a1. 1976, J. Hered. 67:258-266.

Miglani, G.S. and F.R. Arapy. Howard University, Washington, D.C. ADH denaturation depends on native ADH activity levels in D. melanogaster.

Native ADH activity (nM of NADH produced/ml/ $\mathrm{min} / \mathrm{mg}$ of live weight) was determined spectrophotometrically for 12 Adh I/Adh I and 40 Adh II/Adh II isochromosomal lines extracted from 16 Mexican populations of D. melanogaster (Pipkin et al. 1976) raised at $25^{\circ} \mathrm{C}$. The native

ADH activity was compared with the activity of ADH for each line after treatment with 0.7 M guanidine hydrochloride (GuHC1) or l.OM urea (UR) for 40 seconds or with heat for 15 minutes at $45^{\circ} \mathrm{C}$. The relationship between native ADH activity and ADH activity after treatments with denaturants was investigated. A significant correlation ($\mathrm{r}=0.63$; $\mathrm{p}<0.05$) was observed between native ADH activity for the 12 Adh I/Adh I lines and ADH activity after treatment with UR. Significant correlations were observed between native ADH activity for the 40 Adh II/Adh II lines and ADH activity after treatment with GuHC1 ($\mathrm{r}=0.59$; $\mathrm{p}<0.01$) and UR ($\mathrm{r}=$ $0.71 ; \mathrm{p}<0.01$). These relationships suggested that the degree of ADH denaturation was possibly dependent on the native ADH activity levels of the strain.

Reference: Pipkin et al. 1976, J. Hered. 67:258-266.

Moss, L.J. and E.A. Carlson. State University of New York, Stony Brook. EMS induced yellow mosaics in D. melanogaster.

Table 1. Frequency of mutation chart.

	yellow phenotypes	F1 females
EMS run \#1	3	1235
EMS run \#2	11	5162
EMS run \#3	3	854
EMS run \#4	4^{*}	$\frac{2387}{9638}$
total	21	

*Includes one yellow complete; all others in runs $1-4$ are mosaic.

Total yellow phenotypes $=(21 / 9638)(100)=$ 0.217% frequency of yellow phenotypes.

Total F_{1} females $=(17 / 9638)(100)=0.176 \%$ frequency of yellow mutations.

Wild type Ore-R males were fed EMS (ethyl methane sulfonate) using an 0.0125 M concentration for 24 hours. These males were mated to virgin $y \mathrm{w} f$ females and the F_{1} flies were observed for mutations of yellow body, white eyes, or forked bristles. Altogether 21 yellow, 5 forked (all mosaic), and 5 white (all mosaic, one of which was an apricot) mutations were found among $9638 \mathrm{~F}_{1}$ progeny. The yellow mutations were classified as mosaic or complete in phenotype and then mated to y w f males for a test of transmissibility. Of the 21 yellow mutations, 7 were transmitted, 4 were probably gynandromorphs involving (y f) F_{1} mosaic phenotypes with non-white head areas. Of these 4 gynandromorphs, 2 were sterile, and the 2 which were fertile segregated the y w f and Ore R wild type X (along with some f crossovers). Of the 17 yellow phenotypes not due to chromosome loss, 6 were sterile. Of the 11 fertile yellow mutants, 10 were mosaic and 1 was complete. The complete transmitted as did 6 of these 10 mosaics. The transmissibility data for the yellows are shown in Table 1.

These results show that EMS induces chromosome loss as well as gene mutations affecting yellow (none of the transmitted viable yellows showed achaete or scute mutations in association with the yellow). One of the two lethals is not associated with an lJl lethal because

Table 2．Frequency of transmissibility of y mosaics．

	Transmitted	Sterile	Non－transmitted mosaics	Total yellow mosaics
EMS run $⿰ ⿰ 三 丨 ⿰ 丨 三$				

the $y \mathrm{w}$ f／ $\mathrm{y}^{\text {ems }}$ females do not produce（ y ）sons，indicating the presence of an independent lethal to the right of white．Of 4 surviving stocks carrying the EMS－induced yellow，one shows a（ y^{2} ）phenotype（dark bristles）．The others have typical yellow－brown bristle color． Unlike X－rays，which frequently involve the $1 \mathrm{J1}^{+}$， ac^{+}，or sc^{+}regions，none of the transmitted mutants in this series shows evidence of minute structural rearrangements or multiple involve－ ment of these neighboring genes．

This work was supported by USPHS Biomedical Research Support Grant RF431－H114G．

Mukhina，L．I．，V．A．Kulitchkov and I．F． Zhimulev．Institute of Cytology and Gene－ tics，Novosibirsk，630090，USSR．Distri－ bution of chromosome rearrangement breaks along the polytene chromosomes of D．mela－ nogaster．

Hannah（1951）described two main characteris－ tics of intercalary heterochromatin in D ．mela－ nogaster：ectopic pairing and a high frequency of chromosome rearrangement break points．Since then new peculiarities if intercalary hetero－ chromatin have been described：late replication （Arcos－Teran 1972；Zhimulev and Kulitchkov 1977）， ＂weak points＂（Zhimulev and Kulitchkov 1977）， and strong homologous synapsis（Kulitchkov and Belyaeva 1975；Polyanskaya 1975）．After in situ hybridization，bands，having the characteristics of intercalary heterochromatin，prefer－ entially bind labelled nucleic acids，i．e．，c－DNA（Rudkin and Tartof 1974），c－RNA（Gvozdev et al．1980），poly（ A^{+}）RNA（Spredling et al．1975；Gvozdev et al．1980）and also some cloned D．melanogaster sequences（Ilyin et al．1977；Finnegan et al．1977）．In addition，more pre－ cise data on the location of the regions of ectopic pairing in the polytene chromosomes（Kauf－ man and Iddles 1963；Kulitchkov and Zhimulev 1976）and numerous chromosome rearrangements have been published in recent years．

Distribution of chromosome rearrangement breaks along the polytene chromosomes will be described here．

We have chosen to exclude mutations selectively induced in a specific region by investi－ gator and have included only those rearrangements which either were induced in Drosophila ge－ nome at random or those found in populations（we classify these provisionally as＂spontaneous＂）． Table 1 lists the origin of the rearrangements analyzed．

Data on the localization of break points in F_{1} larvae after mating females with irradiated males（Prokofyeva－Belgovskaya and Khvostova 1939；Kaufman 1946）were also used．

The distribution of breaks is shown in Figs．1－6．Data on translocations and inversions both naturally occurring and induced are presented separately．In the summary histogram as well as the inversions and translocations，all the remaining aberrations listed in Table 1 are included．For the regions adjacent to the centromere：20A－F，40A－41F，80D－81F，the total num－ ber of breaks was divided by the number of letter subdivisions of these regions and mean data are shown in Figs．1， 2 and 4.

Distribution of the breaks in the X chromosome（Fig．1F）is clearly non－random．In addi－ tion to the centromeric region $20 \mathrm{~A}-\mathrm{F}$ such regions as $1 \mathrm{~B}, 2 \mathrm{~B}, 3 \mathrm{C}, 7 \mathrm{~B}, 11 \mathrm{~A}, 12 \mathrm{E}, 16 \mathrm{~F}$ ， 19 E show marked peaks as well．All these regions are considered to be intercalary heterochromatin re－

Table 1. List of chromosome rearrangements studied.

Nature of rearrangements	$\begin{array}{r} \text { Defici- } \\ \text { encies } \end{array}$	$\begin{gathered} \text { Duplica- } \\ \text { tions } \\ \hline \end{gathered}$	Inversions	Translocations and transpositions	Rearrangements with non-precise locations of 1 break	Breaks in the first generation	References
Spontaneous	28	6	$\begin{array}{r} 34 \\ 52 \\ 43 \\ 13 \\ 6 \\ 6 \\ 4 \\ 3 \\ 2 \\ 2 \\ \\ 21 \\ 4 \\ 1 \end{array}$	1 8 4	$\begin{array}{r} 17 \\ 8 \\ 15 \\ 2 \end{array}$ 4		Lindsley, Grell 1968 Yamaguchi et al. 1976 Stalker 1976 Pipkin et al. 1976 Dubinen et al. 1940 Zacharopoulou 1974a Yang et al. 1971 Zacharoupoulou 1947b Paik et al. 1969 Mukai et al. 1970 Koliantz 1971 Ashburner, Lemeunier 1976 Choi 1977 Mettler et al. 1977 Yutaka et al. 1979 Yamaguchi et al. 1974 Alahiotis et al. 1977
Total1y spontaneous	29	6	315	13	46		
Induced	9 5 1 43 1		$\begin{array}{r} 11 \\ 8 \\ 25 \\ 7 \\ 1 \\ 14 \\ \\ \hline 20 \end{array}$	309 269 60 53 25 48 7 4 12 50 5	$\begin{array}{r} 61 \\ 6 \\ 16 \\ 1 \\ 17 \\ 1 \\ 17 \\ 1 \\ 1 \\ 3 \end{array}$	$\begin{array}{r} 170 \\ 1389 \\ \hline \end{array}$	Lindsley, Grell 1968 Lindsley et al. 1972 Roberts 1970 Stewart, Meriam 1973 Valencia 1970 Mukhina, Zhimulev 1980 Mamon et al. 1977 Lefevre 1974 Ashburner 1972 Denell et al. 1978 Roberts 1972 Woodruff,Ashburner 1978 Prokofyeva-Belovskaya, Khvostova 1939 Kaufman 1976
Totally induced	59		86	842	130	1529	
Tota11y	88	6	401	855	176	1529	

gions. Table 2 shows the correlation coefficients between frequencies of breaks in the regions and the other cytological characteristics of polytene chromosomes. All the coefficients with the exception of the underlined ones are statistically significant ($\mathrm{P} \geqslant 0.05$). It is unlikely that break point frequencies follow the DNA concentration in the region. Although precise estimatations of DNA quantities in the lettered subdivisions have not been done, it can be seen that in the regions $9 \mathrm{~A}, 10 \mathrm{~A}$ and 10 B where very large bands are located there are no peaks of break points. This suggests that higher break frequencies in different regions may have structural significance.

Table 2. Coefficients of correlation between the frequencies of breakage in weak points (wp), ectopic pairing (ep), late replication (lr), strong homologous synapse (ss), preferential binding of c-RNA (cR), poly(A+) RNA (pR), and chromosomal rearrangements (b).

	ep	1 r	cR	pR	b	SS
Chromosome X						
wp	0.77	0.61	0.49	0.48	0.47	0.49
ep		0.65	0.39	0.43	0.55	0.50
1 r			0.55	0.58	0.34	0.59
cR				0.77	0.40	0.56
pR					0.36	0.64
b						0.50
Chromosome 2L						
wp	0.72	0.54	--	--	0.21	--
ep		0.62	--	--	0.27	--
1 r			--	--	0.24	--
Chromosome 2R						
wp	0.54	0.40	0.33	0.27	0.08	--
ec		0.67	0.53	0.41	0.17	--
1 r			0.68	0.67	0.32	--
cR				0.80	0.22	--
pR					0.30	--
Chromosome 3L						
wp	0.83	0.62	--	--	0.24	--
ep		0.59	--	--	0.35	--
1 r			--	--	0.20	--
Chromosome 3R						
wp	0.78	0.58	--	--	0.06	--
ep		0.60	--	--	0.16	--
1 r			--	--	0.25	--

Data were taken: for weak points, ectopic pairing, late replication from Zhimulev and Kulitchkov (1977), for strong homologous synapsis from Kulitchkov and Belyaeva (1975), for binding of c-RNA and poly(A+) RNA from Gvozdev et al. (1980).
-- = No data available.

Some differences are rather clear between the distributions in Figs. 1D and 1E. For example, among rearrangements which are maintained in the stocks (Fig. 1D) the highest peak is located in 3C, and there are also high peaks in 11A, 12 E and 20AF. As for the F_{1} rearrangements (Fig. 1E), the highest peaks are seen in $20 \mathrm{AF}, 12 \mathrm{E}, 11 \mathrm{~A}$ and 2 B .

In the other chromosomes the "peaks" are located in the centromeric regions as well as in the regions 26A, 30B, 34A (Fig. 2), 50A, 56F, 59D (Fig. 3), 61F, 64C, 75C (Fig. 4), 101F (Fig. 6) which with the exception of 26 A and 34 A are considered to be intercalary heterochromatin (Zhimulev and Kulitchkov 1977).

The data examined show once more that chromosome rearrangement break points are distributed non-randomly among the chromosomes and are predominantly located in the regions of intercalary heterochromatin.

References: Alahiotis, S. et al. 1977, DIS 52:106; Arcos-Teran, L. 1972, Chromosoma 37:233; Ashburner, M. 1972, DIS 49:34; Ashburner, M. and F. Lemeunier 1976, Proc. Roy. Soc. Lond. B193: 137; Choi, Y. 1977, DIS 52: 89; Denell, R.E. et al. 1978, Mutat. Res. 49:219; Dubinin et al. 1940, Zhurn. Obsch. Biol. 1:543; Finnegan et al. 1977, Cold Spring Harb. Symp. Quant. Biol. 42:1053. Gvozdev et al. 1980, Chromosoma, in press; Hannah, A. 1951, in: Adv. in Genet. (M. Demerec, ed.); Ilyin, Y.V. et al. 1977, Cold Spring Harb. Symp. Quant. Biol. 42:959; Kaufman, B.P. 1946, J. Exp. Zool. 102:293; Kaufman, B.P. and M.K. Iddles 1963, Portugal Acta Biol. 7:225; Koliantz, G. 1971, DIS 46: 52; Kulitchkov, V.A., and E.S. Belyaeva 1975, Dok1. Acad. Nauk SSSR 221:463; Kulitchkov, V.A. and I.F. Zhimulev 1976, Genetica (USSR) 12(5):81-89.

Lefevre, G. Jr., Cold Spring Harb. Symp. Quant. Biol. 38:591; Lindsley, D.L. and E.H. Grell 1968, Carn. Inst. Wash. Publ. N627; Lindsley, D.L. et al. 1972, Genetics 71:157; Mamon, L.A. et al. 1977, Genetica (USSR) 13:1378; Mettler, L.E. et al. 1977, Genetics 87: 169; Mukai, T. et al. 1970, DIS 45:77; Mukhina, L.I. and I.F. Zhimulev 1980, DIS 55:209; Paik, Y.K. et al. 1969, DIS 44:67; Pipkin, S.B. et al. 1976, J. Hered. 67:258; Polyanskaya, G.G. 1975, Cytology (USSR) 18:693; Prokofyeva-Belgovskaya, A.A. and V.V. Khvostova 1939, Dokl. Acad. Nauk SSSR 23:269; Roberts, P.A. 1970, Genetics 65:429; Roberts, P.A. 1972, Genetics $71: 401$; Rudkin, G.T. and K.D. Tartof 1974, Cold Spring. Harb. Symp. Quant. Biol. 38:397; Spradling, A. et a1. 1975, Cell 4:395; Stalker, H.D. 1976, Genetics 82:323;

Stewart, B. and J.R. Meriam 1973, DIS 50:167; Valencia, R. 1970, DIS 45:37; Woodruff, R.C. and M. Ashburner 1978, Amer. Naturalist 112:456; Yamaguchi, 0. et al. 1974, Genetics 78:1209; Yamaguchi, O. et a1. 1976, Genetics 83:409; Yang, H. et al. 1971, DIS 47:71; Yutaka, I. et al. 1979, Japan J. Genet. 54:69; Zacharopoulou, A. 1974a, DIS 51:110; Zacharopoulou, A. 1974b, DIS 51:52; Zhimulev, I.F. and V.A. Kulitchkov 1977, Genetica (USSR) 13(1):85.

Fig. 1-6: Distribution of chromosome rearrangement breaks along the X chromosome (Fig. 1), 2L chromosome (Fig. 2), 2R chromosome (Fig. 3), 3L chromosome (Fig. 4), 3R chromosome (Fig. 5) and fourth chromosome (Fig. 6).

Abscissa: chromosome regions according to Bridges' revised maps.
Ordinate: number of breaks in the letter subdivision of the map.

Fig. 1. $A=i n v e r s i o n s$ induced, $B=i n v e r s i o n s$ spontaneous, $C=t r a n s l o c a t i o n s$ induced, $D=$ sum of A-C plus deficiencies, duplications and translocations indicated in Table 1. $\mathrm{E}=$ sum of the data of Kaufman and Prokofyeva-Belgovskaya and Khvostova, $\mathrm{F}=$ sum of D and E .

Fig. 2. $A=$ inversions induced, $B=i n v e r s i o n s$ spontaneous, $C=t r a n s l o c a t i o n s$ induced,
 transpositions, indicated in Table 1.

Fig. 3. A=inversions spontaneous, $B=t r a n s l o c a t i o n s ~ i n d u c e d, ~ C \doteqdot$ translocations spontaneous, $D=$ sum of $A-C$ plus deficiencies, duplications and transpositions (Table 1).

Fig. 4. $A=i n v e r s i o n s ~ i n d u c e d, ~ B=i n v e r s i o n s ~ s p o n t a n e o u s, ~ C=t r a n s l o c a t i o n s ~ i n d u c e d, ~$ $D=t r a n s l o c a t i o n s ~ s p o n t a n e o u s, ~ E=s u m ~ o f ~ A-D ~ p l u s ~ d e f i c i e n c i e s, ~ d u p l i c a t i o n s ~ a n d ~$ transpositions, indicated in Table 1.

A

B

c

Fig. 5. $A=i n v e r s i o n s$ induced, $B=i n v e r s i o n s$ spontaneous, $C=$ translocations induced, $D=t r a n s l o c a t i o n s$ spontaneous, $E=s u m$ of $A-D$ plus deficiencies, duplications and transpositions, indicated in Table 1.

Fig. 6. Sum of all breaks.

Nikoshkov, A.B. and V.T. Kakpakov. Institute of General Genetics, Moscow, USSR. Dosage compensation of sex-linked genes in established cell lines of D. melanogaster.

Established cultures of Drosophila cells which are homogeneous from caryological point of view and have different ratio between sex chromosomes and autosomes represent an advantageous model for the study of dosage compensation. We measured the activity of two enzymes, 6-phosphogluconate dehydrogenase (Luccheci and Rawls, Jr. 1973) and fumarase (Pipkin et al. 1977), determined by sex-linked structural genes Pgd (1-0.64) and Fuh (1-19.9) and α-glycerophosphate dehydrogenase (Luccheci and Rawls, Jr. 1973), determined by autosomal structural gene $\alpha-G p d h(2-20.5)$ in cell cultures with different ratio between sex chromosomes and autosomes (see Table 1).

Table 1. Ratio of fumarase and α-glycerophosphate dehydrogenase activity in cell lines of D. melanogaster.

Cell 1ines		Passage	Caryotype	X:A	Fumarase activity -glycerophosphate dehydrogenase activity
KcH	(3)	80-100	1X:2A	0.5	0.163 ± 0.008
KcI	(3)	1-10	2X:2A	1.0	0.175 ± 0.011
67jDBS	(4)	180-200	2X:2A	1.0	0.151 ± 0.002
67j25D	(4)	600-620	2X:2A	1.0	0.172 ± 0.006

Identification of the isozymes of all three enzymes was carried out by means of polyacril amide ge1 electrophoresis. All cultures showed heterozygosity in three enzymes except Kc cell line cells. We could find only two bands of fumarase in heterozygotes.

The ratio of fumarase and α-glycerophosphate activity remains approximate-
ly constant in all cell cultures (see Table 1). It means that the cells with one X chromosome have fumarase activity per X chromosome two times higher than the cells with 2 X chromosomes. The change of ratio between X chromosomes and autosomes from 1 to 0.5 causes the "switching" of gene activity from the low level to the high which means the existance of dosage compensation on the cell level (see Table 1).

The same data obtained for 6PGD varied greatly from passage to passage and from experiment to experiment. For instance, in $67 j 25$ cell lines and KcH the ratio between 6 PGD and $\alpha-$ GPDH activities was fluctuating from 1.8 to 4 and from 2 to 6.4 , respectively.

Detection of dosage compensation on cell level will make it possible to make further investigation of this phenomenon.

References: Echalier, G. and A. Ohanessian 1970, In vitro 6(3):162-172; Kakpakov, V.T., V.A. Gvozdev, T.P. Platova and L.G. Polukarova 1969, Genetika 5:67-75; Luccheci, J.C. and Rawls, Jr. 1973, Bioch. genet. 9:41-51; Pipkin, S.B., P.K. Chakrabartty and T.A. Bremner 1977, J. Hered. 68:245-252.

Osipova, N., L. Korochkin, M. Golubovsky, T. Khlebodarova and V. Kulutchkov. Institute of Cytology and Genetics, Novosibirsk, USSR. Biochemical-genetical investigation of the unstable locus lozenge in D. melanogaster.

The following stocks of D. melanogaster have been investigated: Oregon R - wild type. Lozenge 50 (stable allele) - eye narrower than wild type and ovoid, facets are absent; females are fertile. Lozenge A (unstable allele) males are characterized by oval small eyes; facets are absent, tarsal claws reduced; females are sterile. Stock A+1 (stable allele A^{+}) - reverse of unstable lzA to wild type (A^{+}); phenotype of males is identical to the wild type. Stock $B+5$ (stable allele A^{+}) - revertant of unstable 1 zA to the wild type; males are phenotypically identical to stocks Oregon R and $A+1$. In all stocks (except Oregon R and $1 z 50$) males cross to females XX (linked X chromosomes) with markers w of ywf. The development of flies was synchronized beginning with the stage of white pupa (the formation of puparium). The pupae have been investigated in different times after pupariation. We de-

Table 1. Changes of the activity of phenol oxidase during the development of pupae of D. melanogaster.

Age of pupae (hours)	Total activity of phenol oxidase (units of						Oct./mg/min)
0	43.5 ± 0.5	18.0 ± 1.0	29.5 ± 0.5	34.0 ± 1.0	32.5 ± 1.0		
24	17.5 ± 1.1	22.5 ± 1.2	21.0 ± 0.5	16.8 ± 1.0	21.5 ± 1.5		
48	23.0 ± 0.5	30.0 ± 1.0	24.5 ± 1.25	17.8 ± 1.0	15.1 ± 1.0		
72	26.0 ± 1.0	28.0 ± 1.0	23.5 ± 1.0	23.0 ± 1.0	28.1 ± 1.8		
96	17.5 ± 1.0	12.5 ± 0.7	11.5 ± 0.5	17.0 ± 0.2	10.0 ± 0.5		

Table 2. Ratio A_{2} / A_{1} fractions of phenol oxidase during the development of pupae of D. melanogaster.

Age of pupae (hours)	Oregon R	lozenge A	$\mathrm{~A}+1$	1 z 50	$\mathrm{~B}+5$
	Ratio $\mathrm{A}_{2} / \mathrm{A}_{1}$				
	0.76 ± 0.07	---	0.71 ± 0.07	0.50 ± 0.05	0.65 ± 0.12
	1.20 ± 0.04	3.70 ± 0.40	0.78 ± 0.08	1.54 ± 0.02	1.02 ± 0.11
	0.98 ± 0.10	1.43 ± 0.14	1.28 ± 0.19	1.67 ± 0.30	0.87 ± 0.05
	0.44 ± 0.14	0.07 ± 0.06	0.83 ± 0.21	2.25 ± 0.30	1.05 ± 0.24
	2.02 ± 0.31	--	0.61 ± 0.05	1.05 ± 0.24	0.65 ± 0.05

tected the activity of phenol oxidase (Mitchell 1966) and pattern of isozymes of this enzyme, using the microelectrophoretic method (Korochkin et al. 1977).

The results of the detection of enzymatic activity are depicted in Tabie 1. The similarity of changes of enzymatic activity in stocks Oregon R and $1 z 50$ can be seen.

The unstable stock 1zA is characterized by the low level of enzymatic activity on the stage of white pupae and in 96 h after pupariation and by the high level of the activity of phenol oxidase during the middle pupal period.

It is interesting
that the pattern of en- zymatic activity during the development of two reversible stocks is different on the stage 48 h after pupariation. In this period the enzymatic activity is higher in stock A+1 in comparison with stock B+5 (see Table 1).

Reversible stocks differ from the unstable stock lzA, which is their ancestor. These differences are especially distinct during pupariation and 48 h later. In the first stage of pupal development the activity of phenol oxidase is higher in reversible stocks in comparison with $1 z A(P>0.999)$ but 48 h later the enzymatic activity is higher in stock lzA. The similar pattern of changes of the enzymatic activity in the reversible stock $A+1$ and Oregon R was established.

After microelectrophoretic investigations and densitometry we determined the ratio A_{2} / A_{1} - fractions of phenol oxidase. The results are shown in Table 2. Stock Oregon R is characterized by the predominance of A_{1} fraction (monophenol oxidase). The ratio A_{2} / A_{1} in this time is equal to 0.76 ± 0.07. Then (24 h after pupariation) the activity of the fraction A_{2} (diphenol oxidase) is higher. The total enzymatic activity decreases in this period (see Table 1). Probably this process is caused mainly by the change of activity of monophenol oxidase. However, in the following stages of pupal development (48 h and 72 h after pupariation) the ratio A_{2} / A_{1} decreases again. In this period the total enzymatic activity increases and we suggest that the activity of A_{2} fraction is not changed and the activity of A_{1} fraction increases. The activity of A_{2} fraction is twice that of A_{1} at 96 h after pupariation. The total enzymatic activity is relatively low in this period. Probably the predominance of A_{2} fraction is explained mainly by the decrease of activity of monphenol oxidase. It can be proposed that the changes of the enzymatic activity and the pattern of phenol oxidase isozymes is caused by the changes of the level of activity of monophenol oxidase.

Unstable stock $1 \mathrm{z50}$ is characterized by the specific change of the pattern of isozymes of phenol oxidase during ontogenesis. In this stock diphenol oxidase is absent during puparium formation. Its activity is detected at 24 h after pupariation and is very high at this time (ratio A_{2} / A_{1} is 3.7 ± 0.4). Monophenol and diphenol oxidases are present at 48 h after pupariation. However, the activity of A2 fraction sharply decreases at the end of pupa development. Diphenol oxidase is not detected at 96 h after pupariation. The activity of diphenol oxidase is not detected in the unstable stock $1 z A$ during pupariation and 72 and 96 h after pupariation. The pattern of changes of the ratio A_{2} / A_{1} in the unstable stock $1 z 50$ is different from Oregon at this time, although the total activity of enzyme is similar. Unlike the Oregon R stock, $1 z 50$ is characterized by the predominance of diphenol oxidase at 72 h after pupariation (ratio $\mathrm{A}_{2} / \mathrm{A}_{1}$ is 2.25 ± 0.3), but the activity of monophenol oxidase is higher at $96 \mathrm{~h}\left(\mathrm{~A}_{2} / \mathrm{A}_{1}\right.$ is $\left.0.61 \pm 0.08\right)$. The ratio $\mathrm{A}_{2} / \mathrm{A}_{1}$ in this case at 72 h after pupariation is intermediate between Oregon and $1 z 50$.

We conclude that the unstable stock A has some specific capacities in the pattern of changes of activity of phenol oxidase and pattern of isozymes of phenol oxidase during development and is different from the stable stock $1 z 50$, reversible stocks and wild stock Oregon. Probably the instability of locus $1 z$ is explained by the insertion and exclusion of a strange segment of DNA into the region of this locus. In this case the regulatory effect of locus $1 z$ on the ratio A_{2} / A_{1} is changed.

References: Korochkin, L. et a1. 1977, Genetics of Isozymes, Nauka, Moscow (in Russian); Mitchell, H. 1966, J. Insect Physiol. 12:755.

Platt, S.A. Northern Michigan University, Marquette, Michigan and University of Illinois, Champaign, Illinois. Discrimination learning in individual D. melanogaster.
presence of the discriminative stimulus at of the discriminative stimulus at a horizontal choice point, D. melanogaster bred for negative geotaxis in a Hirsoh-type geoselection maze were given the opportunity to ascend a vertical alley leading to another choice point. When cues were consistent reliable learning occurred. When cues were inconsistent learning did not occur. Cue reversal produced the classic temporary increase in "incorrect" responses.

The apparatus is inexpensive and versatile. It is described in a technical note herein (Platt and Holliday). We believe there are several factors responsible for our successful demonstration of discrimination learning in D. melanogaster. In general, we took an ethological perspective that the association of a discriminative stimulus with some response pattern would be possible if, and only if, we did not elicit tropistic or escape responses.

Lights and odors tend to elicit an automatic, stereotyped approach response highly resistent to modification. Noxious stimuli (e.g., shock, shaking, sudden movements, sudden strong light) inevitably elicit immediate, and apparently disruptive, flight (escape) responses. We, therefore, allowed the fly to progress from one trial to the next with a minimum of disruption and experimenter interference. Our "reinforcer" for the negative geotaxic strain, the opportunity to ascend a vertical tube, led to the next choice point. At the choice point the presence or absence of paper served as a substrate discriminative cue.

At each of 30 horizontal T-choice points, a correct response was recorded if the fly did not reach the end of the cul-de-sac arm and continued up the vertical alley at the end of the correct arm of the T. An incorrect response was recorded if the fly touched the end cap of the cul-de-sac. Learning was observed in individual flies as an increase in number of correct responses over the 30 choice points. Convincing evidence was noted when the consistent discriminative cue at the first 15 choice points (consistent presence or absence of paper in the arm leading to the next vertical alley) was reversed for the second 15 choice points. Many "incorrect" responses were noted as choice points $16-18$ where the previously correct discriminative cue now led to the cul-de-sac.

Using this paradigm and apparatus we are currently attempting to selectively breed for a behavior change over trials--learning.

Reference: Platt, S.A., M. Holliday and O.W. Drudge 1980, J. Exp. Psych: Anim. Beh. Proc. 6(4):in press.

Polivanov, S. Catholic University of America, Washington, D.C. Possibly non-Mendelian factor for stimulation of egg deposition. it is reasonable to assume that the genetic background of the lozenge and M-5 males was largely equalized, and that M-5 and $1 z$ males differed, on the average, from each other only in the X chromosomes. If this is so, then the genetic factor responsible for the increase in egg deposition should be associated with the X chromosomes, containing the mutant lozenge $63 i$. In our experiment populations were started with $1 z / \mathrm{M}-5$ females and with either lozenge or M-5 males. All populations were started with 100 pairs of flies and were maintained for one generation. Apparently overproduction of eggs in the lozenge-fathered populations led to overcrowding and extremely high larvae mortality. As a result of that, the average size of lozengefathered F_{1} populations was 529, while that of the $\mathrm{M}-5$ fathered ones was 1041. Checking my old records, I found that I performed a similar experiment in the past but that experiment was initiated for a completely different purpose (Polivanov, unpub.). In that experiment 8 populations were also started with $100 \mathrm{lz} / \mathrm{M}-5$ females and with 100 either lozenge or M-5 males. In four of these populations the flies were derived from one subpopulation, while in the other four they were derived from the other subpopulation. These subpopulations were isolated from each other for approximately 12 generations. The total number of adult flies in the F_{1} of the eight experimental populations was as follows:

Populations derived from subpopulation 1		$\frac{\text { Populations derived }}{\text { from subpopulation }}$	
Pop. \#	Total \# of flies	Pop. \#	Total \# of flies
	1z-fathered		1z-fathered
1	821	5	782
2	848	6	851
	M-5 fathered		M-5 fathered
3	1286	7	838
4	1164	8	827

If the sizes of these populations reflect the stimulating effect of the males, it could be said that in the population derived from Subpopulation 1 there was a difference in the stimulating effects of lz and M-5 males, while none of such existed in the populations derived from Subpopulation 2. It is interesting to note that visible recombinants between 1 z and M-5 X chromosomes were almost completely absent. There was found one recombinant in three out of the eight populations.

It is very probable that the factor for the stimulating male effect behaves similarly with the factor for the female sterility reported by Picard (1979); in other words, it could be transposed from one chromosome to another without classical crossing over. Further investigations of this problem are in progress.

References: Picard, G. 1979, Genetics 91:455-471; Polivanov, S., P. Peck and K. DornanKendig 1980, J. Hered., in press.

Pot, W. University of Groningen, Haren (Gr.), The Netherlands. Courtship and mating success in alcohol dehydrogenase genotypes of D. melanogaster.

Investigating the role of mating behavior in the maintenance of the alcohol dehydrogenase (Adh) polymorphism, Pot et al. (1980) found large differences in numbers of matings performed by flies having different Adh genotypes. In multiple choice experiments FF males were about five times as successful as SS males, and FF females were almost three times as successful as SS females, as indicated by the mating chance ratio r. This paper describes observations of courtship behavior of individual flies in single pair mating chambers (19 mm diameter, 7 mm deep) which were carried out in order to investigate whether differences in the pattern of courtship were involved in the differential mating success.

Table 1. Numbers of matings and percentages mated in single pair mating chambers.

¢ $\mathrm{x} 0^{\circ}$	Time (min.)				\% mated
	0-10	10-20	20-30	>30	within 30 min .
FF \times FF	26	10	4	3	93.0
FF \times SS	15	11	7	10	76.7
SS \times FF	28	7	2	6	86.0
SS x SS	16	13	4	10	76.7
FF ${ }^{\circ} 0^{\circ}$	54	17	6	9	89.5
SS $0^{\circ} 0^{\circ}$	31	24	11	20	76.7
FFiof	41	21	11	13	84.9
SS 9 ¢	44	20	6	16	81.4

First, mating success in the single pair chambers was measured in 30 min. observation periods (this time limit was also used in the multiple choice experiments). At the time of the experiments the flies were 6 days ± 8 hours old; the sexes had been separated within 8 hours from eclosion. One female and one male were introduced without anaesthesia and the time the copulation started was noted. Table 1 gives the results. The percentages of flies mating within 30 min. were much higher than those in the multiple choice experiments (those were: FF males 54.9\%, SS males 14.3%, FF females 46.9%, SS females 22.3\%). Not surprisingly, starting a copulation appears to be much easier when only one male and one female are present. Probably as a consequence of this the differences in mating success between the genotypes were much smaller in the single pair experiments. The difference between the males was still significant (FF vs. SS, mated vs. not mated: $\chi_{1}^{2}=5.02, P=0.05$) but the difference between the females was not significant any more ($\chi_{1}^{2}=0.37$). Testing the distribution of matings over consecutive periods of time ($0-10 \mathrm{~min} ., 10-20 \mathrm{~min} ., 20-30 \mathrm{~min}$. , and >30 min.) yielded a similar result (FF males vs. SS males: $\chi_{3}^{2}=13.06, \mathrm{P}<0.005$; FF females vs. SS females: $\left.\chi_{3}^{2}=1.91, N . S.\right)$.

Table 2. Courtship latency times of FF and SS males with FF females.

	Courtship latency time (min.)					
	$\overline{0}-1$	1-2	2-3	3-4	4-5	>5
FF ${ }^{\circ} 0^{\circ}$	-	4	9	1	1	5
SS 9 ¢	1	6	5	2	2	4

For a behavioral observation one female (always FF) and one male (either FF or SS) were introduced into a mating chamber. Twenty replicate observations were carried out for each male genotype. Table 2 gives the distribution of the courtship latency times, that is the time till the first vibration (see below) occurred. No significant difference was found between the distributions of FF and SS (data taken together in three periods: $0-2$ min., $2-4$ min., and >4 min. $; x_{2}^{2}=1.35$, N.S.). The behavior of the males was recorded on an event recorder during the first 5 min. after introduction. The following elements of courtship were distinguished: orientation (or): the male stands still, facing the female; approaching (ap): the male walks towards the female or follows her if she is moving; wing vibration (vi); licking (1i); and attempted copulation (ac). (For a description of the latter three elements, see Bastock and Manning 1955.) The frequencies (number of
times an element was performed) and duration (total time spent performing an element) of the courtship elements were calculated over a period of 30 sec . and a period of 60 sec. , both starting with the first vibration. The duration of li and ac could not accurately be recorded as these activities lasted very short. The bout lengths (duration divided by frequency) of the elements were calcu-

Table 3. Frequencies, duration, and bout lengths of the courtship elements (average values of N observations).

		N^{1}	or	ap	vi	li	ac
frequencies:	FF (30)	13	3.9	6.2	6.2	0.8	0.6
	SS (30)	14	4.1	$4.2 *$	4.3^{*}	0.6	0.3
	FF (60)	12	7.3	11.8	11.8	1.8	0.7
duration:	SS (60)	12	7.3	$7.4 * *$	$6.6 * *$	1.2	0.3
	FF (30)	13	4.3	9.8	12.6		
	SS (30)	14	6.7	7.5	$8.2 * *$		
	FF (60)	12	9.0	19.5	22.6		
bout lengths:	SS (60)	12	12.1	17.5	$12.8 * *$		
	FF	15	1.2	1.8	2.0		
	SS	16	1.7	2.3	2.0		

Significance of the difference between FF and SS: *P 0.05, **P 0.02 (Mann-Whitney U test). (30) and (60) indicate values over the first 30 and 60 seconds after the start of the first vibration, respectively.
${ }^{1}$ In a number of observations the courtship period was shorter than 60 sec ., or even 30 sec ., therefore N is always smaller than 20. lated over the complete courtship periods. Table 3 gives the outcomes. FF males show significantly higher frequencies of ap and vi. The duration of vi is also significantly longer for FF , while its bout length is exactly the same for FF and SS. FF and SS show no significant differences in duration and bout length of or and ap. So FF males show a more active courtship behavior in which especially the element of vibration, which is performed more often, though not in longer bouts, might be responsible for the higher mating success. Vibration has been shown to be very stimulating to the female (Bastock 1956).

It is theoretically possible that the difference
in behavior between the FF and SS males is not an intrinsic quality of the males themselves, but is mediated by the females. Females might be able to distinguish between the genotypes and to exert a differential influence on their courtship, for instance by making more repelling movements (see. Bastock and Manning 1955) towards SS males, thus causing more breaks in their courtship.

References: Bastock, M. 1956, Evolution 10:421-439; Bastock, M. and A. Manning 1955, Behavior 8:85-111; Pot, W., W. van Delden and J.P. Kruijt 1980, Behav. Genet. 10:in press.

Rahman, R. and D.L. Lindsley. University of California, San Diego. Ysu(f)-, a spontaneous derivative of Ymal+.

Yma1 ${ }^{+}$is an x-ray induced derivative of $Y S X \cdot Y^{L}$, In(1)EN that arose through the deletion of the majority of the X euchromatin [1(1) Jl^{+}through car ${ }^{+}$] (E.H. Grell). Among a number of stocks in which Ymal+ was being used to cover proximal lethals induced on the X chromosome by Lifschytz and Falk (1968), one was found that differed from the rest in that the Y, although still covering the proximal lethal in the stock, no longer covered deficiencies for su(f). Tests of this Y in combination with an array of proximal X-1inked lethals indicate that it is a derivative of Ymal from which the X -derived segment from 1(1)R10-10 through su(f) has been deleted. This segment includes the loci of lethals designated R10-10, Q463, X4, and X1 by Lifschytz and Falk, as well as that of su(f); the Y carries at least one dose of bb^{+}as determined from its phenotype in combination with bbl. The constitution of this duplicated Y, which we designate Y su(f) ${ }^{-}$, may be designated as follows:

$$
\mathrm{KL}{ }^{*} \mathrm{bb}^{+} ? \quad \mathrm{sw}+--1(1) \mathrm{Q}-56^{+} \mathrm{bb}^{+} ? \mathrm{KS}
$$

Ramamoorthy, C., N.R. Padaki, S. Nirmala Sajjan and E. Krishnamachari. K.L.E. Society's S. Nijalingappa College, Bangalore, India. Mutagenic activity of quinine in D. melanogaster.

Quinine is one of the commonly used antimalarial drugs in India. It has been shown that it forms an intercalated complex with DNA in vitro (cf. Schupbach 1979). But its mutagenicity in higher organisms remains obscure. The mutagenic activity of injectable quinine (each $m \mathrm{l}$ contains 0.3 gm of quinine dihydrochloride $1 . P$ and 0.01 gm of sucrose I.P, manufactured by Bengal Immunity Co., Ltd., India) is tested in D. melanogaster at different germ cell stages employing "Basc" test for sex-linked recessive lethals.

Two-day-old male Drosophila flies of Oregon-R stock are fed with quinine solution on glass filters for 48 hours following the method described by Vogel and Luers (1974). The brooding pattern (3-2-2) of Wurgler et al.
(1977) is followed. The results have been tabulated in Table 1. The data given indicate mutagenic effect of quinine in Dro~ sophila at different germ cell stages. The incidence of sex-linked recessive lethals is significantly very high in Brood 2, which represents the spermatid stage. Detailed work in this direction is in progress.

Acknowledgments: The authors are deeply indebted to the Principal, S. Nijalingappa College, Bangalore for his constant encouragement. This work is financially supported by U.G.C., India.

References: Schupbach, M.E. 1979, Mut. Res. 68:41-49; Voge1, E. and H. Luers 1974, DIS 51:113-114; Wurg1er, F.E., F.H. Sobels and E. Vogel 1977, Handbook of Mutagenicity Test Procedures, ed. Kilbey et al., pp. 335-373.

Rapport, E. and M.K. Yang. University of Toronto, Ontario, and Simon Fraser University, Burnaby, B.C. Effects of food deprivation on larval amino acid pools.

Experimental manipulations often require that fruit fly larvae be removed from the normal complement of food. We wished to determine the effect of an 8-hour period of food deprivation on the free amino acid pool. Oregon-R larvae 36 , 56 or 85 hours after hatching were removed from a yeast seeded cream of wheat-molasses medium. Approximately half the larvae in each age group were placed on paper pulp moistened with water and the remainder were frozen prior to amino acid analysis. After 8 hours, larvae on the paper pulp were also frozen. Amino acids were obtained from supernatants of 80% ethanol homogenates of larvae which had been boiled for $1 / 2$ hour and centrifuged (Rapport and Sing 1971; Rapport and Yang 1974). A Beckman 119 amino acid analyzer was used for quantitative amino acid determinations. Table 1 shows the relative abundance of amino acids in molar percents.

The most striking result is that the relative abundance of alanine diminishes after food deprivation in each age group. It is likely that alanine is deaminated to pyruvic acid for energy metabolism and the amino group is either found primarily as ammonia in the 44-hour larvae or as glutamine in the 64 -hour larvae. Other changes less readily interpreted involve a reduction in threonine with "starvation" and an elevation of arginine and a peak identified tentatively as ethanolamine in the two younger age groups. Analysis of the oldest group is complicated by the fact that even under normal conditions feeding is slowing down in this age group as rapid physiological changes occur in preparation for metamorphosis. For example, relative tyrosine levels almost double between 85 and 93 hours and glucosamine was found in the 93 but not 85 -hour larvae. The results tend to support the view that certain amino acids like alanine fluctuate in response to physiological stress, perhaps buffering the relative abundance of other amino acids.

Table 1. Percentage (in moles) of free amino acids in Oregon-R larvae at different ages before and after 8 hours of food deprivation.

	$36 \mathrm{hr*}$	$\begin{gathered} 36-44 \mathrm{hr} \\ \mathrm{H}_{2} \mathrm{O} \end{gathered}$	$56 \mathrm{hr*}$	$\begin{gathered} 56-64 \mathrm{hr} \\ \mathrm{H}_{2} \mathrm{O} \end{gathered}$	$85 \mathrm{hr*}$	$\begin{gathered} 85-93 \mathrm{hr} \\ \mathrm{H}_{2} \mathrm{O} \end{gathered}$
Aspartic acid	3.6	1.6	3.4	2.1	2.0	2.4
Threonine	3.3	0.9	3.9	1.7	4.8	2.4
Serine	3.5	2.9	3.1	2.7	2.3	2.2
Asparagine \& glutamine	32.9	32.2	30.1	37.1	25.6	27.5
Proline	2.5	3.1	7.6	5.4	12.2	14.2
Glutamic acid	11.5	12.6	8.9	7.8	7.2	9.8
Glysine	4.1	5.1	3.5	3.8	3.5	3.2
Alanine	16.6	5.9	13.3	6.2	10.9	5.6
Valine	1.3	0.8	1.0	0.8	1.0	1.2
Methionine	--	--	--	--	--	0.1
Isoleucine	0.5	0.3	0.3	0.4	0.7	0.7
Leucine	0.7	0.5	0.5	0.6	1.1	1.2
Tyrosine	0.9	0.9	3.4	4.6	7.7	13.3
Phenylalanine	--	0.2	--	0.4	0.6	0.9
β-alanine	3.1	2.3	4.7	3.4	4.6	2.4
Ethanolamine	2.1	5.0	2.3	5.0	0.6	0.3
Ammonia	2.9	11.0	2.2	1.2	2.6	1.6
Lysine	3.1	3.4	4.4	4.0	3.0	2.4
Histidine	4.2	5.3	3.6	6.7	4.6	4.0
Typtophane	0.1	--	0.2	--	0.4	0.3
Arginine	3.2	6.0	3.6	6.2	4.7	4.2

*removed from growth media and immediately prepared for analysis
References: Rapport and Sing 1971, Can. J. Genet. and Cytol. 13:822-833; Rapport and Yang 1974, Comp. Biochem. Physiol. 493:165-169.

Richmond, R.C. and M.E. Claerbout. Indiana University, Bloomington. Ratios in crosses segregating for Esterase 6° (Null) and Esterase 6^{5} alleles.

The presence of a null allele at the esterase 6 locus in D. melanogaster was first described in these pages (Johnson et al. 1966). These investigators examined segregation ratios in crosses of Est $6^{5} /$ Est 60 x Est $60 /$ Est 60 and Est $6^{5} /$ Est 60 x Est $6 \mathrm{~s} /$ Est 6°. In both cases a significant deficiency of the Est $6^{\circ} /$ Est 6° genotype was found. This result suggests that the Est 6 locus has an important function which is expressed during the development of flies. These data are suspect, however, since the stock homozygous for the Est 6° allele apparently also carried car. We repeated this analysis using esterase 6 stocks which do not carry morphological markers. Our data show no significant deviation from mendelian expectations.

Stocks homozygous for the Est 6^{5} and Est 6° alleles were obtained by crossing a sc ec $\mathrm{cv} \mathrm{ct}^{6} \mathrm{vg} \mathrm{g}^{2} \mathrm{f} / \mathrm{FM}^{\prime} \mathrm{y}^{31 d} \mathrm{sc}^{8} \mathrm{dm}$ B 1 strain which is also homozygous for a null allele of Esterase C to a car strain which is homozygous for Est $60 . F_{1}$ females from this cross were mated to $\mathrm{TM} 3(\mathrm{Sb}) / \operatorname{Pr}$ males to begin the series of crosses necessary to extract recombinant third chromosomes. This procedure is summarized on the following page and allowed us to produce four different types of strains each homozygous for the following combinations of alleles at the esterase 6 and esterase C loci: $6^{\circ} C^{+}, 6^{+} \mathrm{CO}, 60 \mathrm{CO}, 6^{+} \mathrm{C}^{+}(+=$active allele). These stocks contain no morphological markers.

Approximately 200 \#3 crosses were made and strains that proved to have identical Est 6 and C genotypes were combined. Crosses made to determine segregation ratios utilized the $60{ }^{+}+$and $6^{+} C^{+}$combined stocks.

Segregation ratios were checked by first crossing $60^{\circ}{ }^{+}$ of to $6^{+} \mathrm{C}^{+}$o'o'. F_{1} females and males from this cross were separately backcrossed to the $60^{\circ}{ }^{+}$ stock. Backcross progeny should exhibit a $1: 1$ ratio of Est 60/ Est 6° and Est 60/Est 6^{+}genotypes. Since females show low esterase 6 activity, only male progeny from the backcrosses were analyzed using standard starch gel procedures (Richmond 1972). In order to determine if larval density affected genotype ratios, the final crosses were completed under conditions which produce high larval density (10 pairs of adults allowed to lay eggs for 4 days at $25^{\circ} \mathrm{C}$ in a $1 / 2$-pint bottle) or low larval density (2 pairs of adults allowed to lay for 2 days). Since there were no significant differences between the reciprocal backcrosses, they are combined in the data presented below.

Although there is an absolute deficiency of Est $60 /$ Est 60 genotypes at both densities

Density	N	$6^{\circ} / 6^{\circ}$	$60 / 6^{+}$	X_{1}^{2}	P
High	174	81	93	0.83	>0.1
Low	143	63	80	2.02	>0.1

neither case approaches statistical significance as determined by chi-square. A chisquare test of homogeneity of the high and low density crosses is also insignificant ($X^{2}=0.2$) indicating little effect of larval density on segregation ratios. The discrepancy between our results and those of Johnson et al. can likely be traced to the inclusion of morphological markers in the earlier crosses or the presence of a gene affecting viability which was closely linked to the Est 6 locus but which was recombined away in our crosses. The present data demonstrate that the absence of the esterase 6 enzyme has little if any effect on viability.

Acknowledgments to Kathy Sheehan for technical assistance.
References: Johnson, F.M., B.B. Wallis and C.M. Denniston 1966, DIS 41:159; Richmond, R.C. 1972, Genetics 70:87-112.

Ruiz, A. and A. Fontdevila. Universidad de Santiago de Compostela, Spain. Two new chromosome arrangements in D. buzzatii.
D. buzzatii belongs to the mulleri subgroup of the repleta group of the genus Drosophila. Wasserman (1962) has proposed that the chromosomal arrangements of this species are derived from the most primitive chromosomal sequence of the group by fixing three inversions in the second chromosome ($2 \mathrm{x}^{3}, 2 \mathrm{k}, 2 \mathrm{w}^{3}$) and one inversion in the fifth chromosome (5 g). In addition, D. buzzatii has been reported heterzygous for inversion $j, j z^{3}$ and y^{3} in the second chromosome (Wasserman 1962; Carson and Wasserman 1965).

We have studied the chromosomal polymorphism of 12 populations and two strains of D. buzzatii (Fontdevila et al. 1979) of the Old World. The majority of these samples showed the presence of two new inversions, one in the second and another in the fourth chromosome.

Fig. 1.

Fig. 2.

Fig. 3

Fig. 4

The second chromosome has been found polymorphic for a new inversion which is always associated with \mathbf{j} arrangement and it has been named tentatively jq7. Its breakage points are D 3 b and G2f, the former included in inversion j region. In Fig. 1 is shown a scheme of both ends of inversion jq7 in a chromosome j / j and also the ends of j and $j z^{3}$ already described (Wasserman.1962) for comparison.

Fig. 2 shows three microphotographs (A, B, C) of inversion loops formed in polytene chromosomes of three heterokaryotypes for the second chromosome ($2 \mathrm{jq7} / \mathrm{j}, 2 \mathrm{jq7} / \mathrm{st}$ and $2 j q^{7} / j z^{3}$, respectively), with the interpretative scheme. This inversion was found originally in Carboneras (Spain) and since then it has been found in the great majority of the studied populations of the Iberian Peninsula and Canary Islands. However, it is absent in the Balearic Island, the Madeira Island, Egypt and Dahomey populations. The frequency of jq7 arrangement ranges from 0.13 to 0.04 , which qualifies it as moderately frequent.

Most of the populations and strains studied by us have been found also polymorphic for the fourth chromosome. This chromosome shows two arrangements: the standard (st) which is the primitive fourth chromosome of the repleta group (Wasserman 1962), and another arrangement which bears the new inversion extending from Dld to Flc regions. The breakage points are diagrammed in Fig. 3. The s inversion had not been detected in all the previous analyses of natural populations (Carson and Wasserman 1965) or laboratory strains (Wasserman 1962, 1954; Mather 1957). Yet, the frequency of this inversion is rather high (between 0.1 and 0.3) in the great majority of populations and strains analyzed by us. Fig. 4 (D) shows a microphotograph of the inversion loop formed in salivary gland chromosome of one heterokaryotype for the fourth chromosome ($4 \mathrm{st} / \mathrm{s}$), with the interpretive scheme.

The origin of these inversions is not known. The species has been given an Argentinian origin (Wasserman 1962; Carson and Wasserman 1965), on the basis of its high chromosomal polymorphism in the populations of S . Luis (Argentina). However, the polymorphism found by us in the 01d World is the highest of all studied and poses the problem of its origin. D. buzzatii was introduced in the 01d World following most probably the spread by man of its host plant Opuntia ficus-indica after the discovery of America. The evolutionary implications of this polymorphism, especially on the process of colonization, are discussed elsewhere (Fontdevila et al. 1979) and emphasize the interest for searching these new inversions in the endemic areas of the

New World in order to understand the colonizing strategy of this species. The presence of these new inversions in introduced populations of D. buzzatii suggests that colonization may not necessarily lead to loss of chromosomal polymorphism when the niche is narrow, although more information is needed from the original populations to further substantiate this point.

References: Carson, H.L. and M. Wasserman 1965, Amer. Natur. 905:111-115; Fontdevila, A., A. Ruiz, G. Alonso and J. Ocaña 1979, Evolution (submitted); Mather, W.B. 1957, Texas Univ. Publ. 5721:221-225; Wasserman, M. 1954, Texas Univ. Pub1. 5422:130-152; Wasserman, M. 1962, Texas Univ. Pub1. 6205:85-117.

Sampsell, B. Chicago State University, Chicago, Illinois. Survival differences between Drosophila with different ADH thermostability variants.

Temperature has been implicated as a potential selective agent in maintaining the polymorphism at the Alcohol dehydrogenase locus in D. melanogaster (Gibson 1970; Vigue and Johnson 1973; Clarke 1975). Two alleles, Adh ${ }^{\mathrm{Fm}}$ and $\mathrm{Adh}^{\mathrm{Sm}}$ (see Sampsell 1977 for an explanation of symbols) are found in most natural populations. Adh Sm codes for an enzyme, $A D H S m$, that is generally less active, but more heat stable than the $A D H^{F m}$ form produced by Adh Fm . Along the eastern coast of the United States, Adh ${ }^{\text {Sm }}$ increases in frequency from about 60% in Maine to nearly 90% in Florida (Vigue and Johnson 1973; Sampsell 1977). This allelic distribution may be the result of an increasing fitness of flies with $A D H S m$ (or conversely a decreasing fitness of flies with $\mathrm{ADH} \mathrm{Fm}^{\mathrm{Fm}}$) with increasing mean temperature.

Numerous laboratory studies have shown that ADH is necessary for survival on various alco-hol-supplemented media (the exception involves certain alcohols whose ketone metabolites are extremely toxic). If a significant portion of a fly's ADH enzyme were inactivated by high temperatures without killing the fly outright, the alcohol tolerance and thus survival would be reduced.

In an effort to test this hypothesis, larval viability was observed under various environmental conditions. Four strains have been constructed which are nearly isogenic except for a small region of the second chromosome containing the Adh locus. The relative thermostabilities of the allozymes of these strains is $\mathrm{ADH} \mathrm{Fr}>\mathrm{ADH}^{\mathrm{Sm}}>\mathrm{ADH}^{\mathrm{Fm}}>\mathrm{ADH}^{\mathrm{Fs}}$ (Sampsell 1978). Three

Table 1. Survival of larvae under various combinations of temperature and ethanol.

Parental genotype	Temp${ }^{\circ} \mathrm{C}$	Ethanol conc.	Number of adults emerging				x^{2}	Relative survival		
			FF	FS	SS	Total		FF	FS	SS
$\mathrm{Fr}^{\text {Sm }}$	20	0\%	201	422	179	802	3.31	. 25	. 53	. 22
		5\%	185	353	148	686	4.62	. 27	. 51	. 22
		10\%	13	17	2	32	7.69*	. 41	. 53	. 06
	29	0\%	209	413	171	793	5.01	. 26	. 52	. 22
		5\%	168	362	150	680	3.79	. 25	. 53	. 22
		10\%	24	50	9	83	8.81*	. 29	. 60	. 11
$\mathrm{F}^{\mathrm{m}} \mathrm{S}^{\mathrm{m}}$	20	0\%	234	411	186	831	5.69	. 28	. 49	. 22
		5\%	177	389	150	716	7.40*	. 25	. 54	. 21
		10\%	30	75	12	117	14.25**	. 34	. 56	. 10
	29	0\%	190	332	154	676	4.05	. 28	. 49	. 23
		5\%	210	406	185	801	1.72	. 26	. 51	. 23
		10\%	42	85	15	142	16.01**	. 30	. 60	. 11
Fssm	20	0\%	190	440	218	848	3.05	. 22	. 52	. 26
		5\%	193	405	190	788	0.64	. 24	. 51	. 24
		10\%	57	81	22	160	15.34**	. 36	. 51	. 14
	29	0\%	179	393	143	715	10.67**	. 25	. 55	. 20
		5\%	156	280	128	564	2.81	. 28	. 50	. 23
		10\%	32	37	7	76	16.50\%*	. 42	. 49	. 09

[^6]different combinations of Adh alleles were studied. F1ies homozygous for one of the three fast alleles were crossed to flies homozygous for Adh ${ }^{\text {Sm. This }}$ is the slow allele which is most common in natural populations. FS heterozygous offspring were inbred, and the females were allowed to oviposit on "apricot-agar" for 18 hours. The egg-covered dishes of agar were incubated at $25^{\circ} \mathrm{C}$ for 24 hours; then first-instar larvae were collected and transferred to food vials at a density of 50 per vial. Vials contained Instant Drosophila medium (Carolina Biological) made up with an ethanol solution to produce a final concentration by volume of 0%, 5%, or 10% alcohol. Vials were placed at $20^{\circ} \mathrm{C}$ or $29^{\circ} \mathrm{C}$ until development was complete. Twenty vials were prepared for each experimental condition making an initial input of 1000 larvae. After the adults emerged, they were electrophoresed using standard procedures for cellulose acetate strips (Sampsell 1977).

If larvae of all genotypes are equally viable, the adults from an FS x FS cross should appear in a ratio of 1 FF:2 FS:1 SS. Table 1 shows the number of flies of each genotype that emerged, as well as the relative survival of each genotype within a specific set of conditions.

From the data, it is clear that increasing temperature and increasing alcohol concentrations reduce survival among virtually all genotypes. Significant deviations from a $1: 2: 1$ ratio are seen primarily when high concentrations of ethanol are present. The survival of SS flies is about 22% on either 0% or 5% ethanol, regardless of temperature. On 10% ethanol, at both $20^{\circ} \mathrm{C}$ and $29^{\circ} \mathrm{C}$, their survival decreases by 50%. On food supplemented to 10% ethanol, $F F$ and FS flies survive in greater than expected proportions in the vials involving the Adh ${ }^{\text {Fr }}$ and AdhFm alleles; however, with $A D H F s$, only the $F F$ homozygotes seem to be favored.

Superficially, these results appear to be in agreement with other studies in which flies with the more active forms of $A D H$ have a relatively higher survival rate on higher alcohol concetrations. Spectrophotometric assays of $A D H$ activity levels in the strains with the rare thermostability variants has only just begun in our laboratory. Visual observation of stained strips following electrophoresis confirms that $A D H^{F m}$ and $A D H^{F s}$ are more active than ADHSm. $\mathrm{ADH}^{\mathrm{Fr}}$, however, is not nearly as active as the other two allozymes with fast mobility; instead its activity level appears very similar to that of $A D H S m$. Thus the greater survival of Frfr flies can't be ascribed to higher activity as that of $\mathrm{FmF}^{\mathrm{m}}$ and $\mathrm{FSF}^{\mathrm{S}}$ can.

In the FmSm crosses, there was a significant departure from 1:2:1 on 5\% ethanol-supplemented food at $20^{\circ} \mathrm{C}$ as a result of an excess of $F S$ and a deficiency of SS flies among the emerging adults. At $29^{\circ} \mathrm{C}$, the three genotypes are equally viable on 5% ethanol. Although this might reflect a change in the fitness of SS and FS flies caused by the increase in temperature, the relative survival values are not adequate to produce the allele frequencies observed in natural populations. SS need not be the genotype with the highest fitness, but it must be superior to FF if AdhSm is to be the more common allele.

In this experiment, relative survival was clearly a function of the specific environmental conditions, but there was no consistent evidence that flies with the enzymes that have been shown to be more heat-labile in vitro have lower survival rates than ones with the more heat resistant forms when reared at high temperatures. Our failure to observe the kind of differences that would support temperature as a selective agent for this enzyme does not disprove the hypothesis, however. It may well be that a constant temperature of $29^{\circ} \mathrm{C}$, while high enough to cause some non-specific mortality, is not a severe enough heat stress to inactivate a substantial fraction of a fly's ADH and thus reduce its alcohol tolerance.

We have recently begun a series of tests in which adult flies are subjected to a heat treatment of 15 min at $40^{\circ} \mathrm{C}$. Most adults survive this treatment; however, when Fsfs flies are tested immediately after such a treatment, there is almost no ADH activity detectable on the stained strips. That the living flies' alcohol tolerance has indeed been reduced as well is confirmed by placing them on alcohol-supplemented food as soon as they recover consciousness. Preliminary results indicate that flies with $A D H^{F m}$ show much less loss of alcohol tolerance after this heat treatment than ones with the more heat-labile ADHFs. These experiments are being continued with flies with other ADH variants.

This work was supported by an NSF grant DEB-7911538.
References: Clarke, B. 1975, Genetics 79:101-103; Gibson, J. 1970, Nature 227:959-960; Sampse11, B. 1970, Biochemical Genetics 15:971-988; Sampse11, B. 1978, Biochemical Genetics 16:1139-1141; Vigue, C. and F. Johnson 1973, Biochemical Genetics 9:213-227.

Sapunov, V.B. Dept. of Genetics, Leningrad State University, Leningrad, 199164, USSR. The effect of juvenile hormone analogs on mutation frequency in D. melanogaster.

Table 1. The effect of JHA (Entacon) on frequency of dominant lethal mutations.

Line	Variant	n	\% mutations
LA	control	7095	1.3 ± 0.13
Canton-S	$"$	4267	1.0 ± 0.15
LA	treatment	974	3.4 ± 0.58
Canton-S	$"$	1797	4.4 ± 0.48

The physiological hypothesis of the mutation process (Lobashev 1947) suggests that the endocrine system is able to control mutagenesis. The aim of this work was to study the effects of juvenile hormone analogs (JHA) on mutation frequency in D. melanogaster. Two strains were studied: Can-ton-S (wild strain) and LA. The latter line was selected for the low male mating activity and characterized by a high rate of spontaneous mutations and hypofunction of the gland corpus allatum (Sapunov and Kaidanov 1977; Kaidanov 1978; Kaidanov et al. 1978).

The analogs used were Altozid and Entacon (Zoecon Corporation). Dominant lethal mutations, effective at the end of embryogenesis, were detected by microscope as eggs which stopped development at the last stages of embryogenesis. Recessive viability mutations were checked by the method of Muller-5 (X-chromosome) and Cy/Pm (chromosome 2). Analogs were applied in concentrations of 10% (Altozid, water solution) and 20\% (Entacon, oil
solution). 0.07μ-liter was applied to pupae at age 135 hours. The data (shown in Tables 1 and 2) suggest that the LA strain has a high rate of mutability in chromosome 2 . JHA has no effect on the mutation frequency in the X-chromosome of strain LA, but increased the mutability in chromosome 2 of both lines. Entacon could induce dominant mutations in both strains.

The data suggest that hormones are able to induce some types of mutations. Perhaps the endocrine system is the natural regulator of mutability in living organisms as well.

References: Kaidanov, L.Z. 1978, XIV Internat. Cong. Gen., Symposia 91-92; Kaidanov, L. Z., I.R. Pole and V.B. Sapunov 1978, XIV Internat. Cong. Gen., Contrib. Paper Sessions I:553; Lobashev, M.E. 1947, Vest. Leningrad Univ. 8:10-29; Sapunov, V.B. and L.Z. Kaidanov 1977, Vest. Leningrad Univ. 15:135-142 (Russ.)

Sapunov, V.B. Dept. of Genetics, Leningrad State University, Leningrad, 199164, USSR. The effect of juvenile hormone analogs on reproductive behavior of D. melanogaster.

In some insect species the corpus allatum has been shown to affect mating behavior, while in others this gland is less important (Engelmann 1970). To test the effect of juvenile hormone (JH), the secretion of the corpus allatum, on mating behavior in D. melanogaster, we have compared the wild strain Canton-S to the LA strain, which has been selected for 10 years for low male mating activity (Kaidanov 1978). In the LA line the corpus allatum contains very small cells, suggesting that corpus allatum function might also be altered (Sapunov and Kaidanov 1977). A third stock was obtained in which the proximal part of the X-chromosome is derived from the LA, but the rest of the genome is from wild strain. This strain, L, y ct, is characterized by males with mating activity lower than of the parent LA stock.

The index of mating activity was the percent of animals engaging in copulation during 0.5 hours after contact with $3-4$ virgin flies of the opposite sex. The JH analogs (JHA) Altozid and Entacon (Zoecon Corporation) were topically applied in doses of 0.07 microliter. Altozid was dissolved in water, Entacon in oil. Concentrations are given in the tables. Treatment was performed in white prepupae (Stage I), middle pupae (130-140 hours after hatching of the larvae, Stage II), and some hours (3-5) before hatching of the larvae (Stage III).

Table 1. Effects of JH analogs on male mating activity of D . melanogaster.

Line	Stage	Variant, analog, concentration \%	n	\% of ơ ơ engaging in copulation during 30 min .
Canton-S	-	control	86	84 ± 4.0
	III	Entacon, 20	128	81 ± 3.5
LA	-	control	1049	12 ± 1.1
	I	Entacon, 4	122	33 ± 4.2
	I	" 20	129	16 ± 3.2
	II	" 4	265	15 ± 2.1
	II	" 20	158	29 ± 3.6
	III	4	107	28 ± 4.3
	III	" 20	158	25 ± 3.4
	III	Altozid, 10	122	25 ± 3.9

I - white prepupae (98 hrs after hatching)
II - middle pupae (130-140 hrs after hatching)
III - old pupae (165-170 hrs after hatching)

Table 2. Effects of JH analogs on female mating activity of D. melanogaster.

Line	Stage	Variant, analog, concentration \%	n	\% of 9 f engaging in copulation during 30 min .
Canton-S	-	control	159	84 ± 2.9
	III	Entacon, 20	118	83 ± 3.4
LA	-	control	147	48 ± 2.9
	I	Entacon, 4	77	47 ± 5.7
	I	" 20	91	55 ± 5.2
	II	4	117	52 ± 4.6
	II	", 20	108	45 ± 4.8
	III	" 4	141	55 ± 4.2
	III	" 20	142	72 ± 3.8
	III	Altozid, 10	76	59 ± 5.5
L,y ct	-	control	207	24 ± 2.3
	III	Entacon, 20	128	66 ± 4.6

V.B. and L.Z. Kaidanov 1977, Vest. Leningrad Univ. 15:135-142 (Russ.)

Table 1 shows that mating activity in the LA line is normally quite low--only 12% of treated imago males engaged in copulation in the half-hour test period. Seven times as many Canton-S males mated in the test period. A treatment with JHA resulted in increasing mating activity in LA but not Canton-S males. The most sensitive stage of treatment was pharate adults.

Females of the LA line also have lower mating activity than Canton-S despite the fact that the line was selected only for low mating activity in males. This trait is also very low in L, y ct flies, suggesting that genes responsible for the effect reside on the proximal part of the X-chromosome. JHA application stimulated mating activity in both LA and L,y ct lines (Table 2).

Our experiments show that mating activity can be stimulated by JHA in both males and females of a low mating activity strain.

Since the cytology of the corpus allatum is abnormal in LA strain and since JHA increased mating activity, we conclude that $J H$ is the regulator of mating activity in Drosophila.

References: Engelmann, F. 1970, Physiology of Insect Reproduction, N.Y.; Kaidanov, L.Z. 1978, XIV Intern. Cong. Gen., Symposia 91-92; Sapunov,

Semjonov, E.F. and A.F. Smirnov. Dept. of Genetics \& Breeding, Leningrad State University, USSR. Somatic synapsis of D. melanogaster chromosomes.
without colchicine and hypotonic treatment (Patkin et al. 1978). Tight synapses of homologous chromosomes have been discovered in heteroand euchromatic regions during interphase-mitosis (prophase-anaphase). The chromocenter-like structure has been shown for heterologous heterochromatic regions until anaphase. The disturbing influence of cochicine and hypotonic treatment has been noted in relation to somatic synapsis of chromosomes (Semjonov and Smirnov 1979). There were tight homologaus synpases of chromosome 2 in $\mathrm{Df}(2 \mathrm{R}) \mathrm{MS}-210 /+, \mathrm{Df}(2 \mathrm{~L}) \mathrm{C}^{\prime} /+, \mathrm{Df}(2 \mathrm{R}) \mathrm{MS}-210 / \mathrm{Df}(2 \mathrm{~L}) \mathrm{C}^{\prime}$ and $\mathrm{In}(2 \mathrm{LR}) \mathrm{SMI} /+$. However, the frequency of intimic heterozygous SMI inversion of chromosome 2 increased synapses
of X chromosomes (Table 1). Sometimes interchromosome connections have been found between heterologous chromosomes.

There were tight homologous and heterologous synapses of chromosomes during practically all the mitotic cycle. We propose that normal homologous synapses have been connected with the intact structure of the common chromocenter.

Table 1. Homologous synapses of chromosomes X and 2 in neuroblasts of D. melanogaster.

	Tight synapses (\%)				
Chromosome	Canton-S	Df(2R)MS-2 $10 /+$	$\mathrm{Df}(2 \mathrm{~L}) \mathrm{C}^{1 /+}$	$\mathrm{Df}(2 \mathrm{R}) / \mathrm{Df}(2 \mathrm{~L})$	$\operatorname{In}(2 \mathrm{LR}) \mathrm{SMI} /+$
2	73.7	61.3	55.8^{*}	29.3^{*}	51.2^{*}
X	48.0	52.7	51.3	48.9	57.6^{*}

* significant differences from control (Canton-S), $\mathrm{P}<0.05$

References: Hilliker, A.J. 1975, Genetics 81:705; Hilliker, A.J. and D.G. Holm, Genetics 83:765; Patkin, E.L., A.F. Smirnov and M.G. Smaragdov 1978, Vestn. Ser. Biol. Leningr. Univ. 15:143; Semjonov, E.P. and A.F. Smirnov 1979, Genetika (Russ) 15:12.

Sene, F.M., M.A.Q.R. Pereira, C.R. Vilela and N.M.V. Bizzo. IBUSP, São Paulo, Brazil. Influence of different ways to set baits for collection of Drosophila flies in three natural environments.

Bait traps have been used in South America and other parts of the world in most ecological and geographical surveys of Drosophila. Dobzhansky and Pavan (1943, 1950), Pavan, Dobzhansky and Burla (1950), Freire-Maia and Pavan (1950), Pavan and Cunha (1947), Peterson (1960), and others have used this technique.

On the other hand, several investigators, especially Dobzhansky and Pavan (1950), Pavan (1959) and Brncic (1957), have pointed out that the results obtained do not always represent natural conditions, since they are affected by many factors: the weather, kinds and conditions of bait, natural foods existing within the surveyed area, feeding and flight activities of the flies, and so on. Da Cunha et al. (1957) show that species of flies are attracted in different frequencies when different yeasts are used as bait.

In the present paper we report the influence of two different types of traps using the same kind of bait, on the attraction of species of Drosophila. Beppu and Toda (1976) did a similar study in Japan and conclude that the different ways to set bait cans affect species attraction.

The collections were made in three localities, two of which are adjacent to each other: (1) Mogi-Guacu ($41^{\circ} 11^{\prime} \mathrm{W}-22^{\circ} 17^{\prime} \mathrm{S}$). The area is covered by cerrado vegetation and is part of a Natural Reserve belonging to the Secretaria de Agricultura do Est. de São Paulo. Four collections were made in January, March, May and June 1978. (2) Peruibe ($46^{\circ} 56^{\prime} \mathrm{W}-24^{\circ} 14^{\prime} \mathrm{S}$). The area is covered by restinga (or strand) vegetation, which shows a transitional type of vegetation between the dunes and the Atlantic Forest. The place where the collection was made is about 2 km away from the sand beach. Four collections were made in May, July and October 1978 and in February 1979. (3) Peruibe ($46^{\circ} 55^{\prime} \mathrm{W}-24^{\circ} 14^{\prime} \mathrm{S}$). The area is covered by typical dune vegetation and is situated close to the sand beach. Three collections were made in May and July 1978, and in February 1979.

In all collections, bananas and oranges seeded with baker's yeast were used as bait. The collections were made 2 or 3 days after the baits wereset. The bait was placed in two different ways: (1) On the ground--the banana-orange was simply placed on the ground in an area previously cleaned in order to avoid problems of sweeping with the net during collection. The collection was done by sweeping the net over the trap while the fruits were kicked. In hanging cans--the banana-orange was put inside of l-liter cans, which were ung by wire on trees at about 1.5 meter over the ground. The collection was done by lacing a net on the can's open side. A rubber band was used to keep the net fastened on the can. By carefully tapping the can, all flies can be collected inside the net. With this technique, no flies can escape. In each collection, we have three situations: (a) cans hanging close to the ground baits, never more than 3 meters from each other; (b) ground baits situated at least

	CERRADO					RESTINGA								DUNES					
SPECIES	Jan/78	Mar/78	May/78	Jun/78		May/78		Ju1/78		Oct/78		Feb/79		May/78		Ju1/78		Feb/79	
	C G	C G	C G	C	G	C	G	C	G	C	G	C	G	C	G	C	G	C	G
Sbg.willistoni	9.849 .6	10.744 .6	13.719 .3	32.4	62.8	46.4	40.5	8.4	36.3	2.3	2.2	9.5	21.8	36.6	23.4	6.5	5.4	3.4	7.0
D.capricorni	- -	- -	- 0,1	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
D. nebulosa	0.312 .0	0.11 .5	0.23 .5	-	1.6	-	0.3	-	-	-	-	0.7	2.7	-	0.3	-	-	0.9	6.1
Sbg.bocainensis	- -	- -	0.5	-	-	-	-	-	-	-	_	-	-	_	-	-	-	-	-
D.austrosaltans	- -	- -	- -	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
D.prosaltans	0.5	0.60 .1	4.90 .8	1.5	-	0.2	-	0.1	-	-	-	0.1	-	0.1	-	0.1	-	-	-
D.sturtevanti	52.60 .6	69.469 .9	37.419 .4	16.5	2.7	18.1	1.7	41.6	21.3	7.0	0.9	22.7	7.1	14.5	1.3	22.9	4.6	8.9	0.9
D.malerkotiiana	1.100 .4	8.714 .8	2.312 .3	0.1	0.4	3.9	7.8	3.3	5.4	0.1	1.8	5.9	15.8	4.6	2.3	3.9	7.2	11.3	22.7
D. simulans	21.36 .8	1.02 .0	19.215 .4	20.2	7.4	16.6	15.9	29.8	12.1	55.4	64.7	31.9	36.2	13.0	14.0	46.3	52.7	45.5	41.5
D.1atifasciel ${ }^{\text {marmis }}$	0.61 .7	1.06 .7	9.024 .8	0.4	0.6	8.7	26.3	0.8	4.3	1.0	4.0	0.7	1.3	16.7	44.8	1.8	14.4	1.4	3.5
D.immigrans	0.2	0.1	0.20 .1	0.3	0.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-
D.ararama	- -	- -	0.2	0.1	0.1	-	-	-	-	-	-	-	-	-	-	0.1	-	-	-
Gr.cardini	4.115 .2	4.613 .1	4.37 .7	14.0	14.0	2.1	1.1	3.4	7.2	1.9	2.7	23.3	13.6	3.5	0.3	3.8	2.8	22.3	18.3
D. guaramunu	0.8	0.2	- 0.3	0.3	1.0	-	-	-	-	-	-	-	0.4	-	-	-	-	-	-
D.guarani	- -	- -	- -	0.5	-	-	-	-	-	-	-	-	-	-	0.3	-	-	-	-
D.pallidipennis	- -	1.00 .1	- -	0.4	-	0.1	0.3	0.2	-	0.4	-	0.6	0.1	0.5	-	0.5	-	0.5	-
Gr.repleta	9.60 .4	3.42 .2	9.05 .1	12.5	1.4	3.6	4.3	12.4	13.0	31.5	22.8	3.3	1.0	10.0	12.3	14.0	12.8	5.3	-
D.griseolineata	- -	- -	- -	-	-	-	0.6	-	-	-	-	-	-	0.5	-	-	-	-	-
Gr.calloptera	- -	- -	- -	-	-	-	0.3	-	-	-	-	-	-	-	-	-	-	-	-
Gr.tripunctata	- 11.8	0.24 .6	- 0.5	0.6	6.8	-	-	0.1	0.1	-	0.4	-	-	-	0.6	-	-	-	-
Total	$614 \quad 474$	8925262	5111400	1645	482	1118	345	2986	831	1014	223	2380	920	852	299	2775	389	1686	299

$\mathcal{C}=$ Cans ; G $=$ Ground

TABLE 1 - Results of collection made using baits setted at differents ways in three environments situation, in differents times.

200 meters away from any can baits; (c) can baits situated at least 200 meters away from any ground baits. Since we found no difference between the ground baits in cases (a) and (b), they are considered together here; the same happens with can baits in cases (a) and (c).

All flies were brought alive to the laboratory and classified. All of the specimens were deposited in the Museum of Zoology, USP. In the classification we placed some species in groups as follows: willistoni subgroup--consisting of the sibling species which were not identified; cardini group--consisting of three species, D. polymorpha, D. cardini and D. cardinoides. The identification of these flies is in progress. As far as we know, D. cardinoides is rare in all three areas studied, D. polymorpha is more common in cerrado and D. cardini is more abundant in restinga and dunes. Repleta group--this group will be the special subject for a future paper and we can say now that D. mercatorum is the most common species in the three areas; tripunctata group--the flies belonging to this group were not identified to species level.

The species and number of flies collected at the two different traps in the three ecological situations at different times are presented in Table 1. The preference of the different species to the two kinds of traps was not the same in the three environments analyzed. In the cerrado situation, the following flies show a preference: (a) to ground baits--willistoni subgroup, D. nebulosa, D. latifasciaeformis, cardini group, D. guaramunu and tripunctata group; (b) to can baits--D. prosaltans, D. sturtevanti, D. simulans and repleta group; D. malerkotliana show no preference and the other flies were collected in small numbers. In the restinga situation we found: (a) preference for ground baits--willistoni subgroup, D. nebulosa and D. latifasciaeformis; (b) preference for can baits--D. prosaltans and D. sturtevanti; D. malerkotliana D. simulans, cardini group and repleta group show no preference. In the dunes situation: (a) ground--D. nebulosa and D. latifasciaeformis; (b) can--D. prosaltans and D. sturtevanti; no preference--subgroup willistoni, D. malerkotliana, D. simulans, cardini group and repleta group.

We know from previous studies (cited above) that different kinds of baits attract different species of flies. But in this study we show that the same kind of baits give different results depending on the way they are set. In previous personal observations we have detected that the age of the bait, set on the ground, affects the attraction of different species. The same observation was made by Beppu and Toda (1976). Although we have no systematic data to show this, we have some evidence which seems to indicate that the species that were attracted preferentially by old baits set on the ground are the same as those that are attracted preferentially to baits set in cans. Based on this observation we have the hypothesis that the differences between baits set on the ground and those set in cans are caused by differences in the fermentation process.

As we can see from the results, the influence of the way the baits were set was strong in the cerrado, where 10 "entities" show preference and one was indifferent; in the restinga the effect was less obvious as only five showed preference while four were indifferent; in the dunes we have the smallest effect with four showing preference and five being indifferent.

A possible explanation is that in the dunes, the wind and the salty, dry situation affect the baits more strongly than in the cerrado, and interfere with the fermentation of the baits. Another hypothesis to explain the differences between the environments, that must be checked in the future, is that the species which have been grouped into what we have called the willistoni subgroup or cardini group could be different species in the cerrado and in the restinga or dunes (Dobzhansky and Pavan 1950), and instead of differences due to environmental situations we may have different species in each area. For the repleta group, we know for sure that the dominant species in the three environments was D. mercatorum. D. nebulosa shows a constant preference for ground baits in spite of the environmental situation; the same happens with tripunctata group species and D. latifasciaeformis. The flies of saltans group showed a strong preference for the can baits.

These data increase the problem of conducting a survey of the Drosophila fauna by using bait set in only one way for attracting the flies. For instance, the more extreme data found was the collection in the cerrado in January 1978. If we compare the collection made on the ground with the collection made in the can, we would be led to believe that they were made in two different enviroments and that the faunal composition of each were very different.

References: Beppu, K. and M.J. Toda 1976, J. Fac. Sci., Hokkaido Univ. 20(3):299-312; Brncic, D. 1957, Monografias Biologicas de la Univ. de Chile 8:1-136; Da Cunha, A.B., A.M. El Tabey Shehata and W. Oliveira 1957, Ecology 38:98-106; Dobzhansky, T. and C. Pavan 1943, Bol. Fac. Filos. Cienc. Let. USP 36, Biol. Geral 4:7-72; __ 1950, J. Anim. Ecol. 19:1-14; Freire-Maia, N. and C. Pavan 1950, Cultus 1:5-71; Pavan, $\bar{C} .1959$, Bol. Fac. Filos. Cienc. Let.

USP 221, Biol. Geral 11:1-81; Pavan, C. and A.B. Da Cunha 1947, Bol. Fac. Filos. Cienc. Let. USP 86, Biol. Geral 7:3-46; Pavan, C., T. Dobzhansky and H. Burla 1950, Ecology 31(8):36-43; Petersen, J.A. 1960, Rev. Bras. Biol. 20(1):3-16.

This work was supported by CNPq (PIG), FAPESP and the University of São Paulo.

Shadravan, F. and J. McDonald. Iowa State University, Ames, Iowa. The effect of environmental 2-propanol on the ability of flies to survive in alcohol environments.

Anderson and McDonald (1980) have recently demonstrated that Drosophila exposed to an environment containing 2 -propanol undergo (1) a post-translational conversion of their alcohol dehydrogenase, (2) a significant drop in ADH specific activity, (3) an increase in ADH in vivo stability, and (4) a consequent increase in in vivo levels of $A D H$. These authors suggest that this phenomena may have adaptive significance for Drosophila living in those environments abundant in secondary alcohols (e.g., Heed 1978) by preventing the production of highly toxic ketones. A second prediction which follows from these data is that Drosophila exposed to environmental 2-propanol should be more sensitive to the toxic effect of alcohols due to a decrease in ADH specific activity. In this note we present the results of a study designed to test this prediction.

The strains used in this study are $\mathrm{F}-2$ and $\mathrm{S}-1$ as described by McDonald et al., 1980. These flies are completely homozygous (McDonald and Ayala 1978) and are fixed for an ADH-fast ($\mathrm{F}-2$) and ADH-slow (S-2) allele. The relative survivorship of flies pretreated with 2-propanol and non-pretreated were examined at $0, .125, .250, .500,1.00,3.00,5.00$ and 8.00% ethanol. For each experiment 6 vials (3 vials of females, 3 vials of males) each containing 10 flies ($6-10$ days post-eclosion) were set up for each strain and alcohol concentration tested. Flies were allowed to fully recover from very light etherization for a period of $1-2$ hours before

Fig. 1. Mean longevities given in $1 \mathrm{lh}(\mathrm{hr})$ for Fast strain exposed to increasing concentrations of ethanol. Closed circles are control flies and open circles are pretreated flies with $1 \% 2$-propanol for 1 day.

Fig. 2. Mean longevities given in $\ln (h r)$ for Slow strain exposed to increasing concentrations of ethanol. Closed circles are control flies and open circles are pretreated flies in 1\% 2-propanol for 1 day.
the test was initiated. Initiation of a test consists of adding to each vial a $2.00^{\prime \prime} \times 2.00^{\prime \prime}$ filter paper tab (Watman \#1) which had been saturated with 1 ml of either $\mathrm{H}_{2} \mathrm{O}$ (control) or a test alcohol- $\mathrm{H}_{2} \mathrm{O}$ solution of a specific concentration. Vials are immediately sealed with parafilm and placed in the incubator $\left(25^{\circ} \mathrm{C}\right.$, constant humidity and lighting). The number of flies alive in each vial are observed and recorded (every 5 hours for high alcohol concentrations, every 10 hours for low alcohol concentrations). Mean \% survivorship at each alcohol concentration is plotted vs. time. From these "primary plots", we graphkcally determined mean hrs to 50% mortality at each alcohol concentration and use this information to construct secondary plots (1 n hrs to 50% mortality vs. alcohol concentration) as devised by Starmer et al. 25 hrs exposure of flies to 2-propanol pretreatment which consists of the addition to a food bottle of a Kimwipe absorbed with 1 ml of $1 \% 2$-propanol solution. The results presented in Figs. 1 and 2 demonstrate that 2-propanol pretreated flies are in fact more sensitive to ethanol than non-pretreated flies. These results are analogous to the results recently reported by Papel et al. (1979) which demonstrate that pretreatment with acetone (the oxidized product of 2-propanol) also reduces the viability of Drosophila in alcohol stress environments.

References: Anderson, S.A. and J. McDonald 1980, Biochem. Genet. (in press); Heed, W.B. 1978, in: Ecological Genetics--the Interface, P.F. Brussard (ed.), Springer-Verlag, New York, p. 109; McDonald, J., M. Santos and S.A. Anderson 1980, Genetics (in press); McDonald, J. and F.J. Ayala 1978, Genetics 89:371-388; Pape1, I., M. Henderson, J. Van Herrewege, J. David and W. Sofer 1979, Biochem. Genet. 17:553; Starmer, W.T., W.B. Heed and E.S. Rockwood-Sluss 1977, Proc. Nat. Acad. Sci. USA 74:387-391.

Shitamoto, T. and H. Ikeda. Ehime University, Matsuyama, Ehime, Japan. Differences in the diurnal rhythmicity of mating activity in D. melanogaster.

Two strains of D. melanogaster were compared with respect to the diurnal rhythms of mating activity. Strains used are J5, a wild type laboratory strain, and Bw , a brown eye color strain. Flies were reared and aged in the LD cycle, which was set as follows: a light phase (200 lux), 7:00-17:00; a dark phase, 19:00-5:00. Dim light phases were set for two hours between the dark and the light phases both in the late afternoon and in the early morning. Observations of matings were carried out in the light (200 lux) and also in the red light. Fifteen 5- or 6-day-old males and ten 5- or 6-day-old females were introduced into an observation vial. The number of matings per 5 min. interval was scored during a $30-\mathrm{min}$, observation period. A mating index was calculated by the formula proposed by Spiess et al. (1966), on the basis of data of 3 to 6 runs.

Figure: Changes in the mating index depending on the time of day at which observations were carried out. $-0-, J^{5}$, in the light; $-J^{5}$, in the red light; $-\square$, in the light; \rightarrow, bw, in the red light.

The figure shows the change of the mating index depending on the time of day. The diurnal rhythmicity in mating was found for the bw strain, but not for the $J 5$ strain. This tendency was not affected by the light condition under which observations were performed. However, mating indices obtained in the light are significantly larger than those measured in the red light, except that no difference in the value was found at 14:00 for the bw strain and at 0:00 and 12:00 for the $J 5$ strain.

More careful experiments should be carried out to test whether or not the differences in the diurnal rhythmicity in mating between strains depend on the eye color of flies. References: Spiess, E.B., B. Langer and L.D. Spiess 1966, Genetics 54:1139-1149.

Siegel, J.G. Scripps Clinic \& Research Foundation, La Jolla, California. Cytological identification of autosomal breakpoints in several $T(Y ; 2)$ stocks.

In a series of experiments to analyze the base of 2L, I have made use of segmental aneuploids to generate specific deficiencies, as described in Lindsley and Sandler et al. (1972). One group of $T(Y ; 2)$-bearing stocks was selected reported bearing autosomal breakpoints in or near the proximal heterochromatin of 2 L , but distal to $\mathrm{M}(2) \mathrm{H}$. A second group was also chosen, with reported breakpoints proximal to $\mathrm{M}(2) \mathrm{H}$. Polytene chromosomes from each of these stocks

Stock	Reported Autosomal Breakpoint	Observed Autosomal Breakpoint
A87	40	$38 \mathrm{~A}-\mathrm{B}$
L138	39 C	39 A
B190	40	39C
A107	40	39D-E
B209	40	39D-E
B251	40	39D-E
H54	40	$39 \mathrm{D}-\mathrm{E}$
B199	40	40
H118*	40	40
H131	40	40
R116	40	40

*May have free $\mathrm{B}^{5} \mathrm{y}^{+}$element segregating in stock.
were examined to verify the reported breakpoints. Several discrepancies between the reported and observed breakpoints were found.

Table 1 lists the various $\mathrm{T}(\mathrm{Y} ; 2)$ stocks examined, the autosomal breakpoints as reported in Lindsley and Sandler et al. (1972), and the observed breakpoints. All stocks with breakpoints reported to be distal to $\mathrm{M}(2) \mathrm{H}$ carry euchromatic breaks, whereas those reported broken proximal to $\mathrm{M}(2) \mathrm{H}$ bear heterochromatic breaks. It is of interest that several of the stocks examined are broken between 39 D and 39 E , the chromosomal region known to include the histone gene sequence (Pardue et al. 1977). Segmental aneuploids deficient for the region between the breakpoint of L138 and the breakpoints of H54, B251, and B209 do not show a Minute phenotype. However, deficiencies carrying more proximal euchromatic breaks are Minute (Wright et al. 1976). It is possible, therefore, that $\mathrm{M}(2) \mathrm{H}$ may map to the proximal region of the histone gene cluster. My recent studies on irradiation-induced lethal mutants mapping to the histone gene locus also suggest that the $\mathrm{M}(2) \mathrm{H}$ locus may coincide with a part of the histone gene locus.

References: Lindsley, D.L., B. Baker, A.T.C. Carpenter, R.E. Denell, J.C. Hall, P.A. Jacobs, G.L.G. Miklos, B.K. Davis, R.C. Gethmann, R.W. Hardy, A. Hessler, S.M. Miller, H. Nozawa, D.M. Parry and M. Gould-Somero 1972, Genetics 71:157; Pardue, M.L., L.H. Kedes, E.S. Weinberg and M.L. Birnsteil 1977, Chromosoma (Berl.) 63:135; Wright, T.R.F., R.B. Hodgetts and A.F. Sherald 1976, Genetics 81:267.

Simms, R.W., N.D. Bearss and J. Tonzetich. Bucknell University, Lewisburg, Pennsylvania. Transfer RNA resolution in a Minute mutant of D. melanogaster.

Mutations producing the Minute phenotype in D. melanogaster occur in a number of genes on all four chromosomes. It has been proposed by Atwood (Ritossa et al. 1966) that alterations in DNA cistrons which code for transfer RNA are responsible for the characteristic mutations of the Minute class. Atwood argued that the slow rate of development in Minute bearing individuals was consistent with the reduced rate of protein synthesis expected from the decreased availability of a par-

Fig. 1. Elution profiles of $\mathrm{M}(2) \mathrm{S} 7-(3 \mathrm{H})-$ tRNA and Oregon R-(14C)tRNA from a BD-cellulose column. ticular tRNA. Several investigators have tested this hypothesis using radioactively labeled tRNA and the method of in situ RNA-DNA hybridization to correlate sites of tRNA binding with genetically established positions of Minute loci (Steffensen and Wimber 1971; Grigliatti et al. 1974). The results, however, have been inconclusive. The present study involves a new preliminary test of the Atwood hypothesis, which utilizes a qualitative comparison of tRNA chromatographic elution profiles from both normal and Minute flies, thus

Fig. 2. Elution profiles of $M(2) S 7-(3 \mathrm{H})-$ tRNA and Oregon $R-(14 \mathrm{C})-$ tRNA contained in fractions $20-120$ of Fig. 1 from a BD-cellulose column.
avoiding the difficulties associated with in situ hybridization. Labeling of RNA in Oregon R flies was accomplished by growing first instar Oregon R larvae on a low agar medium (0.3%) injected daily with a yeast-water suspension containing a total of 1 mCi (5-14C)-uridine (New England Nuclear
Corp., $51.0 \mathrm{mCi} / \mathrm{mole}$). M(2)S7 Minute RNA was labeled by permitting the first instar Minute larvae to feed on the low agar medium injected daily with a yeast-water suspension containing a total of $1 \mathrm{mCi}(5-3 \mathrm{H})-$ uridine (New England Nuclear Corp., 28.3 Ci/
mole). Transfer RNA from Drosophila was prepared by the method of White et al. (1973). Whole labeled third instar M(2)S7 Minute and Oregon R larvae were homogenized together and the final tRNA preparation was applied to a DEAE-cellulose column for further purification. The chromatography of the labeled tRNA sample follows the general method of Gillam et al. (1967), utilizing BD-cellulose. The sample was applied to a $1 \times 90 \mathrm{~cm}$ BD-cellulose column previously equilibrated with the starting buffer. The column was then prewashed with buffer and the labeled tRNA was subsequently eluted in 5 ml fractions using a linear NaCl gradient ranging from 0.3 M NaCl to 1.0 M NaCl . Once the gradient was completed, 7 M urea was added to the final NaCl solution. Two ml aliquots of each fraction were added to 15 ml of Biofluor and then assayed for radioactivity in a Packard Tri-Carb liquid scintillation spectrophotometer. Fractions 10120 from the BD-cellulose column were taken to be the major tRNA fractions as they contained the peaks with the highest number of counts. To further resolve the profile these fractions were pooled, precipitated, and applied to a BD-cellulose column as before with a similar linear NaCl gradient. 2 ml aliquots of each fraction were added to 15 ml of Biofluor and again counted in the scintillation spectrophotometer.

Fig. 1 shows the elution profiles of both M(2)S7 Minute (3 H)-tRNA and the wild type Oregon R (14C)-tRNA chromatographed simultaneously on a BD-cellulose column. The two curves indicate that the tRNA from both Minutes and wild type are qualitatively very similar. The differences in height are due to the lower specific activity of the 14 C isotope. The major peaks in Fig. 1 occur simultaneously at fractions 30 and 55 and drop off at the same rate through fraction 120. tRNA's in fractions $120-138$ are also similar with no major discrepancies and occur in much lesser quantities until the final peak representing the extraction by urea. If the relative peak heights of each profile are compared by dividing the counts per minute of each fraction by the height of peak A for each profile, no significant differences are found.

Fig. 2 shows the elution profile obtained from a rechromatographing of fractions 20-120 on a BD-cellulose column. Both curves exhibit a large peak at fractions 145 and 169 and two small shoulders at fractions 124 and 131. The tRNA constituting the sharp peak at fraction 30 in Fig. 1 is spread over the broad profile ranging from fractions $0-100$ in Fig. 2. Thus only one broad peak is observed as opposed to the two sharp peaks seen in Fig. 1. Fig. 2 also shows a significant reduction in the number of radioactive counts detected as compared to the number of counts observed in Fig. 1. A small portion of the tRNA (500 ml) in Fig. 1 was spread over a volumn of 2 liters in the latter graph. Thus a substantial loss of quantity is expected. A comparison of relative peak heights of the two profiles in Fig. 2 again shows no significant differences. Further resolution may be achieved by chromatographing the peak material on reverse phase columns as described by Pearson, Weiss and Kilmers (1971).

References: Gillam, I., S. Millward, D. Blew, M. van Tigerstrom, E. Wimmer and G.M. Tener 1967, Biochemistry 6:3043-3056; Gillam, E. and G.M. Tener 1971, in: Methods in Enzymology, Vol. XX, K. Moldane and L. Grossman, eds., Academic Press, New York; Grigliatti, T.A., B.N. White, G.M. Tener, T.C. Kaufman and D.T. Suzuki 1974, Proc. Nat. Acad. Sci. USA 71:35273531; Pearson, R.L., J.F. Weiss and A.D. Kilmers 1971, Biochem. Biophys. Acta 228:770-774; Ritossa, F.M., K.C. Atwood and S. Spiegelman 1966, Genetics 54:663-676; Steffensen, D.M. and D.E. Wimber 1971, Genetics 69:163-178; White, B.N., G.M. Tener, J. Holden and D.T. Suzuki 1973, J. Mo1. Bio1. 74:635-651.

Singh, B.K. and Y.N. Dwivedi. Banaras Hindu University, Varanasi, India. Report on spontaneous occurrence of mosaics in D. rajasekari Reddy \& Krishnamurthy.

It was Morgan (1914) who reported for the first time the spontaneously arising gynandromorph in D. melanogaster. Subsequently, there have been a few reports on gynandromorphs in other species of Drosophila also, such as in D. simulans (Sturtevant 1921), D. virilis (Weinstein 1922)
and D. funebris (Spencer 1927; Timofeeff-Ressovsky 1928). According to Sturtevant and Beadle in the insects hormonal control of sex and secondary sex characters apparently does not occur, but instead these are controlled by intracellular factors. This is shown in a very simple way in individuals in which part of the body is XX in constitution and the remainder XY or XO. Such individuals, known as gynandromorphs, are mosaic for sex characters. They result in two ways: (1) by elimination from one daughter cell at an early cleavage of one of the two X chromosomes (Morgan and Bridges), or (2) from double nucleus eggs (Doncaster). In the former, all descendents of the cell with a single X chromosome are genetically male while those from the sister XX cell are female. A double-nucleus egg may or may not give rise to a gynandromorph, depending on whether the two nuclei are fertilized by like (X and X or Y and Y) or different (X and Y) sperms. Regardless of origin, gynandromorphs in Drosophila usually show autonomy of development with regard to sex characters, i.e., each part develops (with few exceptions) according to its own genetic constitution and without regard to the genetic constitution of adjacent or associated tissues.

Recently extensive collections were carried

Fig. 1 out for Drosophilid fauna in the vicinity of Punjim (Goa) which yielded a large number of flies representing several species of the genus Drosophila. They are D. bipectinata, D. malerkotliana, D. jambulina, D. rajasekari, D. nasuta, D. orissaensis, D. eugracilis and D. meijerei.
D. rajasekari is an indigenous species which seems to be quite common in certain parts of the Indian subcontinent. The male individual of the species can be easily distinguished from the female in having completely black terminal tergites, apical black patch on wings, metatarsal sex-comb of prothoracic legs. Altogether 50 flies represented this species during the collection. Of these flies, one was found to show the characteristics of a gynandromorph, with half of the body showing male and the other half female characters, especially with respect to wing patch and sex comb. However, this fly was found to be a female with respect to its external genitalia and the abdominal banding pattern (Fig. 1).
The authors wish to express their gratitude to Dr. J.P. Gupta for his guidance and to the University Grants Commission for financial assistance.

Smaragdov, M.G., A.F. Smirnov, A.V. Dukelskaya and A.V. Felcher. Dept. of Genetics \& Breeding, Leningrad State University, USSR. Condensation and interchromosomal heterogeneity of D. melanogaster heterochromatin.

Table 1. The frequency of differential staining in D. melanogaster heterochromatin (in percentage).

Type of banding	Stock	Chromosome					
		X	Y	2L	3L	3R	4
H band	C-S	97 ± 2	94 ± 3	62 ± 4	66 ± 4	26 ± 4	34 ± 4
	LA	96 ± 1	95 ± 2	47 ± 3	64 ± 3	16 ± 3	29 ± 3
C band	C-S	99 ± 1	95 ± 4	[66 ± 2]	35 ± 4
	LA	98 ± 1	99 ± 1	[79 ± 2]	44 ± 6

Table 2. Specific decondensation of X chromosome heterochromatin (after 6 hrs Hoechst 33258 treatment, 80) (ml).

Sex	n	Number of decondensed	Length of decondensed heterochromatic regions
\circ	624	41 ± 2.8	0.354 ± 0.0049
σ°	189	16 ± 2.5	0.287 ± 0.0021

Fig. 1. The length of heterochromatin and chromosome size in D. melanogaster mitotic chromosomes from neuroblasts. ----- C-S - LA [For the Y chromosome H (LB) region has been measured.]

In relation to the frequency of C and H (Hoechst 33258) banding interchromosomal heterogeneity of heterochromatic regions have been demonstrated in third instar larvae neuroblasts. Both very different methods revealed practically the same results. Heterochromatin of sex chromosomes was stained differentially more frequently than these regions of autosomes (Table 1). Interstock differences have been demonstrated also for chromosome 2 heterochromatin of Canton-S and inbred stock LA (Smaragdov 1977; 1978; Patkin et al. 1978). In respect to specific decondensation heterogeneity of heterochromatin has been shown also by using Hoechst according to the method of Pimpinelli et al. (1975). Besides different intra- and interchromosomal sensitivity of heterochromatin the differences for male and female X chromosomes have been discovered (Table 2). Regarding the nature of interchromosomal heterogeneity of heterochromatin it is possible to imagine different levels of chromosomal DNA packing inside heterochromatin due to various timetables of mitotic condensation. True morphometric analysis revealed definite timetables of mitotic condensation for heterochromatin of LA and Canton-S.

References: Pimpine11i, S., M. Gatti and A. DeMarco 1975, Nature 256:335; Patkin, E.L., A.F. Smirnov and M.G. Smaragdov 1978, Vestn. Ser. Biol. Leningr. Univ. 15:143; Smaragdov, M.G. 1977, Vestn. Ser. Biol. Leningr. Univ. 15:143; Smaragdov, M.G. 1978, Tzytologia 11:1278.

Sperlich, D. University of Tübingen, Germany. Lack of male recombination in D. subobscura.

Rare male recombination has been observed several times in D. melanogaster and other Drosophila species (for a review see Thompson and Woodruff 1978) including D. subobscura (Philip 1944). The phenomenon of male recombination (MR) is frequently accompanied by segregation distortion, mutator activity and sterility. The final cause for this MR syndrome is not yet clear but it might be due to DNA insertions analogous to IS elements of bacteriophages (Green, Golubowsky and others) or simply to hybrid dysgenesis (Sved, Thompson and others). Whatever the case might be the MR effect seems to become an important factor in population and evolutionary genetics.

Since D. subobscura is our favored species for population studies we have made a small experiment in order to investigate whether MR effects can be discovered in our otherwise studied populations. Two different mutant strains, "cn, ma" (most probably homologous to st and se of D. melanogaster, respectively) and "vg, pp " ($\mathrm{vg}=\mathrm{vg}$ of D . melanogaster; $\mathrm{pp}=$ light red eyes, maybe cn of D. melanogaster). According to localization and linkage to a group of enzyme loci cn , ma must be on chromosome I of D. subobscura which corresponds to III L of D. melanogaster, whereas vg, pp must be on chromosome E of D. subobscura which is

Wild	Phenotype of offspring				Wild	Phen	type of	offsp	ing
Chrom. No.	+ +	vg pp	vg +	+ pp	Chrom. No.	+ +	vg ++	vg +	+ pp
2	117	30	-	-	2	106	38	-	-
10	173	61	-	-	9	202	104	-	-
13	222	67	-	-	13	137	66	-	-
14	275	81	-	-	24	182	112	-	-
22	70	24	-	-	27	43	33	-	-
24	237	65	-	-	29	236	135	-	-
29	105	31	-	-	42	34	8	-	-
31	55	11	-	-	46	27	1.3	-	-
34	138	30	-	-	50	31	16	-	-
42	105	52	-	-	51	99	80	-	-
46	157	82	-	-	53	24	23	-	-
47	96	40	-	-	54	64	50	-	-
50	146	27	-	-	55	56	23	-	-
186	242	52	-	-	60	75	54	-	-
188	48	13	-	-	63	185	116	-	-
189	293	85	-	-	179	96	44	-	-
191	128	54	-	-	186	55	21	-	-
203	157	29	-	-	188	246	126	-	-
310	262	103	-	-					
311	85	21	-	-					
$n=20$	3111	958	-	-	$\mathrm{n}=18$	1898	1062	-	-

homologous to II R of D. melanogaster. A number of wild males from Cinisy (Sicily) were crossed individually to cn , ma or vg , pp females. From the offspring heterozygous single cn ma/++ or vg pp/++ males respectively were back-crossed to ten or more mutant females in order to get a big enough number of offspring flies to detect any male recombination with a rate higher than 0.5%. The results are shown in the table.

There was not a single male recombination in any of the various wild chromosomes and no segregation distortion could be observed. The predominance of ++ phenotype is due to the poor performance of the double mutant phenotypes. Segregation distortion, however, is expected to be effective against the ++ chromosomes. There is no evidence for such an effect in any of the cultures. The results can certainly not be taken as a general proof of absence of male recombination in D. subobscura but might be an indication that the phenomenon is not a general one for all crosses, for all populations and all chromosomes of the genome.
(The technical assistance of Mrs. Stögerer and Miss Kaipf is highly appreciated.)

Stamatis, N.D. University of Patras, Patras, Greece. Male recombination elements in a southern Greek D. melanogaster population.
vethals in a atural population of southern Greece, one lethal second chromosome (symbol 31.l) was discovered to be associated with male recombination element(s) (Yannopoulos and Pelecanos 1977).

The aim of the present communication which constitutes a part of a much wider investigation is to ascertain whether male recombination elements are still present in the same population and to estimate their frequencies.

Wild flies were collected in June 1977. Captured females were transferred individually on fresh food (consisting of a standard cornmeal medium) and were allowed to lay eggs for five days. All cultures were kept in $25 \pm 0.5^{\circ} \mathrm{C}$.

The progenies of each captured wild female were then crossed in a brother-sister mass mating; thus, a number of wild lines were established. Afterwards, strains Cy/+; Ubx $130 /+$, bearing one second and one third chromosome from each wild line, were established by the following procedure:

$$
\begin{aligned}
& \mathrm{G}_{1}:+/+;+/+\mathrm{x} \mathrm{Cy}^{\mathrm{Cy}} \mathrm{bw}^{\mathrm{VI}} ; \mathrm{Ubx}^{130} / \mathrm{Sb}^{*}(1 \text { \& } \mathrm{x} 3 \mathrm{o} \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{G}_{3}: \mathrm{Cy} /+; \mathrm{Ubx}^{130} /+\mathrm{x} \mathrm{Cy}_{\mathrm{Cy}} /+; \mathrm{Ubx}^{130} /+\left(\begin{array}{llll}
1 & \circ & \mathrm{x} & 1 \mathrm{o}^{\circ}
\end{array}\right) \\
& \begin{array}{c}
\downarrow \\
\text { strain } \mathrm{Cy} /+; \mathrm{Ubx}^{130} /+
\end{array}
\end{aligned}
$$

In order to determine whether the wild chromosomes of these strains have the ability to induce male recombination along the second chromosome, males $\mathrm{Cy} /+; \mathrm{Ubx} 130 /+$ were mated with $\mathrm{dp} b \mathrm{cn} \mathrm{bw}$; ve virgin females. The $\mathrm{F}_{1}+/ \mathrm{dp} \mathrm{b} \mathrm{cn} \mathrm{bw;}+/ \mathrm{ve}$ and $+/ \mathrm{dp} \mathrm{b} \mathrm{cn} \mathrm{bw} ; \mathrm{Ubx} 130 / \mathrm{ve}$ sons (at least ten for each case) were then separately selected and individually mated with $d p b c n d w ;$ ve virgin females (see Table 1 ; crosses A and B, respectively). The F_{2} progenies of both crosses were scored for recombinants until the 18 th day after setting up the matings.

Among the 23 strains tested 13 (56.52%) have shown an association with MR elements, for they yielded male recombination frequencies higher than those of the control (see Table 1 , line 14). Moreover, the spontaneous level of male recombination frequency is known to be 08/10,000 (Demerec 1965). For control, F_{1} Canton/dp b cn bw Canton/ve males derived from Can-
 were scored for recombinants.

The results show that the presence of the wild third chromosome influences male recombination along the second chromosome.

Our data do not allow us to suggest that one or more of the MR elements are identical

[^7] (+ stands for the whole second and third chromosomes.)

Strain	A				B			
	Male recombination frequency (\%)	No. of males which produced recombinants (\%)	No. of progeny	$\begin{gathered} \text { Average } \\ \mathrm{K}^{*} \\ \hline \end{gathered}$	Male recombination frequency (\%)	No. of males which produced recombinants (\%)	No. of progeny	$\begin{gathered} \text { Average } \\ \mathrm{K}^{*} \\ \hline \end{gathered}$
1	4.12	25.00	1844	0.53	0.13	6.67	1707	0.58
2	1.75	65.38	1660	0.46	0.08	6.67	1181	0.59
3	--	---	--	--	0.47	20.00	1909	0.51
4	0.46	13.33	2161	0.49	0	0	1114	0.55
5	0.31	30.77	1923	0.51	0	0	825	0.53
6	0.28	14.29	717	0.57	0.21	8.33	1421	0.57
7	0	0	1719	0.52	0.27	12.50	1100	0.54
8	0.05	6.67	1949	0.51	0.24	25.00	418	0.54
9	0.20	11.11	987	0.47	0	0	772	0.53
10	0.17	10.00	563	0.52	0	0	2250	0.59
11	0	0	1665	0.53	0.16	5.88	1899	0.60
12	0.15	19.19	1370	0.53	0	0	1018	0.55
13	0	0	1082	0.57	0.15	12.50	684	0.54
14	0	0	1835	0.55	0	0	2153	0.56

[^8]with the 31.1 MRF , which was found. in the same population. Moreover, it is still obscure whether the above mentioned population is polymorphic as regards the male recombination elements. New experiments are needed before jumping to conclusions. Our investigation is still in progress.

References: Demerec 1965, Hafner Publishing Co.; Hiraizumi, Y. 1971, Proc. Nat. Acad. Sci. USA 68:268-270; Lindsley, D.L. and E.H. Grell 1968, Carnegie Inst. of Wash. Publ.; Yannopoulos, G. and M. Pelecanos 1977, Genet. Res. 29:231-238.

Stark, W.S., K.G. Hu and R.B. Srygley. The Johns Hopkins University, Baltimore, Maryland. Comparisons of phototaxis properties in differing mazes.

The purpose of this communication is to dramatize the dependence of phototactic behavior in D. melanogaster upon the conditions of the experiment. Specifically, we have found flies to be photoneutral in a 10-outcome Hirsch-Hadler (Hadler 1964) classification maze at an illumination wavelength and intensity to which flies are highly phototactic in our straight and Yshaped arenas (Hu and Stark 1977). The accompanying figure plots the outcome placements in the Hirsch-Hadler classification maze of white-eyed cn bw D. melanogaster ($N=339$) under medium intensity (6.3×10^{13} quanta $/ \mathrm{cm}^{2} . s$) blue-violet light (from a GE ribbon filament bulb, 6 V 18A, with Corning filters CS-5-57 and CS-3-75 transmitting from 400 to 500 nm). Outcome 10 is towards light. Under these conditions, unselected flies were photoneutral (mean score $=5.51$), consistent with a slight photonegativity greatly lessened by lack of eye color pigment (see Markow and Scavarda, 1977 recently). Even though the subject number, $N=339$, is summed from 7 runs of 26 to 87 flies, the data show a slight flattening from the expected binomial distribution, perhpas due to crowding at early central decision points. On the other hand, the same Drosophila are highly positively phototactic in our straight (and Y) arenas: they go in increasing numbers to the brighter side in a choice. This is expressed as a high correlation coefficient (typically $r=0.9$) in the function relating proportion of flies on one side with the log of the intensity on that side for 7 intensity levels spanning 2 log units. At these illumination levels, phototaxis was found to be dominated by compound eye receptor cells R 7/8 (see Hu and Stark 1977).

The discrepancies in phototactic be-
 havior among different experimental situations are rarely discussed (except see Rockwell and Sieger 1973; Markow and Merriam 1977). Polygenic selection experiments using the classification maze find unselected flies photoneutral while in most studies emphasizing function of compound eye receptors, Drosophila are photopositive (Bertholf 1932; Schümperli 1973; Heisenberg and Buchner 1977; Hu and Stark 1977; Jacob et al. 1977). In this study, we compared the same fly strain under similar illumination conditions to reduce the number of variables which differ between most straight, Y or T arena vs. Hirsch-Hadler maze experiments. To this end, we used much dimmer monochromatic light, typical of the receptor input experiments conducted at specific receptor thresholds, rather than bright white fluorescent lighting used in genetic-selection experiments. Even so, flies were photoneutral. Lewontin (1959) has reported that agitation can increase phototaxis. This could account in part for the clear distinction of phototactic flies from nonphototactic mutants using Benzer's (1967) counter current device (see also Markow and Merriam 1977). Clearly, flies meandering through a classification maze overnight are unagitated. But in some of the receptor-input studies cited (Schümperli 1973; Heisenberg and Buchner 1977; Jacob et al. 1977) flies were also unagitated. Our experiments using straight or Y arenas, as well as the classification maze, would minimize the contribution of the predominant photoreceptor type Rl-6, by
adaptation (see Hu and Stark 1977 for arguments), resulting in behavior dominated by R7/8. At lower intensities, selected to be near R1-6 electrophysiological and behavioral thresholds, flies are photoneutral in our straight or Y arena experiments. In these arenas, reasonably light-adapted flies are shaken and given 30 s for a choice. In experiments with less agitated, dark-adapted flies orienting to extremely dim lights at their leisure, flies show strong photopositive phototaxis probably mediated by the sensitive R1-6 photoreceptor system (Schümperli 1973; Jacob et al. 1977). These differing conditions operationally define additional phototaxis variables, namely fast vs. slow phototaxis (see Heisenberg and Götz 1975). In straight, T or Y arenas, R1-6 may mediate positive slow phototaxis near R1-6 threshold while R7/8 mediates fast phototaxis at R7/8 threshold. Phototaxis in a Hirsch-Hadler maze is obviously different. Clearly, numerous variables affect phototaxis under the differing conditions of straight, T or Y arenas vs. Hirsch-Hadler mazes; we have shown that fly strain or illumination condition cannot completely account for these discrepancies.

References: Benzer, S. 1967, Proc. Natl. Acad. Sci. 58:1112-1119; Bertholf, L.M. 1932, Z. vergl. Physiol. 18:32-64; Hadler, N. 1964, Biol. Bull. 126:264-273; Heisenberg, M. and E. Buchner 1977, J. comp. Physiol. 117:127-162; Heisenberg, M. and K.G. Götz 1975, J. comp. Physiol. 98:217-241; Hu, K.G. and W.S. Stark 1977, J. comp. Physiol. 121:241-252; Jacob, K.G., R. Willmund, E. Folkers, K.F. Fischbach and H.Ch. Spatz 1977, J. comp. Physiol. 116:209-225; Lewontin, R. 1959, Am. Naturalist 93:321-328; Markow, T.A. and J. Merriam 1977, Behav. Genetics 7:447-455; Markow, T.A. and N.J. Scavarda 1977, Behav. Genetics 7:139-146; Rockwell, R. and M. Sieger 1973, Am. Scientist 61:339-345; Schumperli, R.A. 1973, J. comp. Physiol. 86:77-94. Supported by NSF grant BNS-76-11921 and by Johns Hopkins University administered NIH Biomedical Sciences Research Support grants. We thank Dr. J. Grossfield for loan of the classification maze and K. Frayer for technical assistance.

Stark, W.S., R.B. Srygley and R.M. Greenberg. The Johns Hopkins University, Baltimore, Maryland. Analysis of a compound eye mosaic of outer rhabdomeres absent marked with cardinal.

Drosophila with mutant compound eye receptors have been investigated by developmental biologists and vision researchers. Harris, Stark and Walker (1976) introduced characterizations of 3 such mutants, frequently studied since. Two of these mutants, rdgB and sev (causing degeneration of retinula cells R1-6 and nonformation of $R 7$ respectively) were shown to be cell autonomous by mosaic studies. The third mutant, oraJK84, was not studied by mosaic means at that time because its third chromosome location (65.3) made mosaic induction and combination with autonomous markers more difficult. Outer rhabdomeres absent, ora, discovered and mapped by Koenig and Merriam (1977) causes non-
 we present a mosaic study of ora.

An ora stock with eye color markers, bw; ora cd, was constructed with the aid of microscopic optical techniques and histology (see Harris, Stark and Walker 1976). Brown (bw) blocks and red drosopterin synthesis while cardinal (cd) is an eye-autonomous mutant lowering brown ommochromes to about 15%; cd (3-75.7) is near ora on the right arm of chromosome 3 (see Lindsley and Grell 1968). The bw and bw; ora cd stocks were crossed to produce heterozygotes which were irradiated at 24 to 75 hours after egg laying (rearing at $24^{\circ} \mathrm{C}$) with 1200 r of gamma rays (from 137Cs source, Gammator) to induce somatic crossing over. Several eyes mosaic for eye color were found. Heads were fixed shortly after eclosion with a hypertonic aldehyde fixative followed by osmium tetroxide (see Stark and Clark 1973) and embedded in Spur, a low viscosity epoxy. One large right eye mosaic was serial sectioned at 1 micron and examined (without staining to enhance eye color pigment contrast) for reconstruction.

The accompanying figure shows reconstruction of much of this large mosaic. The trapezoidally arranged R1-6 rhabdomeres were scored for their presence or absence. The central R7/8 rhabdomeres, not affected by ora, were always present and are thus always drawn in. Secondary pigment cells (SPC's), 6 of which surround an ommatidium and are shared between ommatidia, were scored for presence (dark) or absence (clear) of brown pigment granules. Primarily pigment cells (PPC's), 2 of which surround the distal light-focusing pseudocone in each ommatidium, were scored for the presence (dark) or absence (clear) of conspicuous large brown pigment granules. The mosaic patch is located at the eye's equator (shown by a line and arrows).

Basically, the ommatidia lacking R1-6 have unpigmented secondary pigment cells and primary pigment cells with large brown granules while ommatidia with normal receptors have pigmented secondary pigment cells and pale primary pigment cells. Most of the rest of the eye's ommatidia not drawn in this reconstruction show this same pattern of normal receptor cells. The apparent reversal from the expected primary pigment cell phenotype is caused by a previously undescribed property of cd ; cd , which does not completely eliminate ommochromes, actually increases the size and visibility of primary pigment cell granules. It causes much greater ommachrome loss in secondary pigment cells. Thus, the primary pigment cells scored dark are actually cd phenotype (bw; ora cd genotype) and the paler ones (which do, in fact, have smaller brown granules) are actually phenotypically cd+ (bw; ora+ cd+). The large mosaic studied is thus a bw, ora cd patch in a phenotypically bw (otherwise wildtype) background. Such a mosaic should have a homozygous ora+ cd+ twin patch (undetected in the same phenotype heterozygous background) and would be expected from an early somatic crossover event between the centromere and the closely linked ora $c d$ vs ora+ ${ }^{+} d^{+}$in the heterozygotes.

Near the borderline, ommatidia with mixed rhabdomere and pigment cell phenotype were found. The presence or absence of Rl-6 rhabdomeres was not consistently correlated with whether nearly neighboring pigment cells were bw; ora cd or bw; ora+ cd^{+}phenotype. This mosaic thus suggests that ora and cd are cell autonomous, i.e., that the mutant phenotypes are determined by the cells themselves, not by any possible interaction between receptor and eye color pigment cells or circulating factors. The pattern of receptor cell autonomy is consistent with other receptor cell mutants (e.g., see Campos-Ortega and Hofbauer 1977).

References: Campos-Ortega, J.A. and A. Hofbauer 1977, Wilhelm Roux's Arch. 181:227-245; Harris, W.A., W.S. Stark and J.A. Walker 1976, J. Physiol. 256:415-439; Koenig, J. and J.R. Merriam 1977, DIS 52:50-51; Lindsley, D.L. and E.H. Grell 1968, Genetic Variations of Drosophila melanogaster, Carn. Inst. Wash. Publ. 627; Stark, W.S. and A.W. Clark 1973, DIS 50:105106.

Supported by NSF grant BNS-76-11921 and by Johns Hopkins University administered NIH Biomedical Sciences Research Support grants. We thank Allen Shearn, William Harris, Ellen Pentz and Harry Teitelbaum for advice, Kenneth Muller, Samuel Ward, David Olton and Allen Shearn for supportive facilities, Barbara Thomas and Elaine Phillips for histological sectioning, and Austina Ivanyshyn and Mark Chapin for technical assistance.

Steiner, Th. and F.E. Würgler. Institute of Toxicology, Swiss Federal Institute of Technology \& University of Zürich, Schwerzenbach, Switzerland. Oocyte stages in newly hatched females of some mus and mei mutants.
ce11s of such stocks be possible to treat and test comparable germ cell stages. Studies on ooctyes cannot be ini-

Table 1. Strains from which females were analyzed.

Abbreviation	Formula	Reference
mus101	w mus(1)101D1	Boyd et al. 1976
mus104	w mus(1)104D1	Boyd et al. 1976
mei-41	w mei-41D5	Boyd et al. 1976
mei-9	mei-9L1	Graf et al. 1979
mei-9/M5	mei-9L1/Basc	Graf et al. 1979
w	Woyd et al. 1976	
B.w.	Berlin wild	Steiner \& Würgler 1979
$\overline{\mathrm{X} \bar{X}}$	C(1)RM, y2 su-wa wa bb/	Steiner \& Würgler 1979

tiated without some basic information concerning the kinetics of oogenesis in the various mutants. To this aim we analyzed the ovarioles of freshly hatched females of a few mus and mei mutants and some control strains. Table 1 gives the genetic constitution of the strains used, the abbreviated name, and references which give further details concerning the particular mutants. The mutagensensitive mutants were chosen because they have known DNA repair defects: mei-9 is excision repair deficient (Nguyen and Boyd 1977), whereas mei-41, mus101, and musl04 are postreplication repair deficient (Boyd et al. 1976). The flies were cultured on our standard Drosophila medium (Würgler, Sobels and Vogel 1977) at $25^{\circ} \mathrm{C}$ and 60% rh under uncrowded conditions. Females $2.5 \pm$ 1.5 h old were dissected and the ovaries analyzed as described by Bürki and Würgler (1972). Oocyte stages were classified according to King, Rubinson and Smith (1956). The results of our study are compiled in Table 2. The most advanced stages in all types of female are stage 8 oocytes (S8). Only in a few exceptions were stage 9 or even stage 10 oocytes found. Of the younger oocytes stage 7 , stage $5 / 6$ and stage $3 / 4$ are found in slightly increasing frequencies. This unexpectedly good agreement of oocyte stages between females of such divergent genotypes indicates that the mus and mei mutants studied do not alter the kinetics of oogenesis. In addition, because the white stock is the ancestor of the mus101, mus104 and mei-41 females (Boyd et al. 1976), our results also indicate that the mutagenic treatment of germ cells of the white stock did not induce other mutations on the X-chromosome which modify the kinetics of oogenesis in these related mutagen-sensitive stocks. It is important to stress that comparable kinetics of oogenesis does not mean comparable "quality" of the oocytes studied. This is easily seen if we look at the last line of Table 2 in which we report the egg-to-adult survival observed with the ooctyes obtained from the different types of females. In contrast to the kinetics of oogenesis these data on spontaneous lethality indicate profound strain differences which seem to be due to the mus and mei mutations.

Table 2. Analysis of ovarioles and oocyte stages in $2.5 \pm 1.5 \mathrm{~h}$ old females of different D, melanogaster strains.

	Genotypes of females							
	mus101	mus104	mei-41	mei-9	mei-9/M5	W	B. W.	$\overline{\mathrm{X}} \overline{\mathrm{x}}$
No. flies analyzed	20	20	20	20	20	20	18	20
No. ovarioles analyzed	824	784	817	768	786	800	783	748
Mean numbers per female:								
ovarioles	41.2	39.2	40.8	38.4	39.3	40.0	43.5	37.4
S10	--	--	--	0.05	--	--	--	--
S9	--	--	0.2	0.6	--	0.4	0.2	0.2
S8	3.4	1.8	3.8	5.8	3.8	3.2	2.9	3.0
S7	19.6	17.5	20.2	16.4	17.6	18.6	20.5	11.0
S5-6	20.0	21.6	25.1	19.7	17.8	22.6	17.5	14.4
S3-4	27.1	26.6	28.7	24.7	23.0	27.5	n.d.	n.d.
$\begin{aligned} & \text { Class B } \\ & \text { oocytes } \end{aligned}$	43.0	40.9	49.2	42.6	39.3	44.8	41.1	28.5
Egg to adult survival (\%)	88.8	n.d.	34.9	23.8*	61.5*	88.1	92.1	33.6

n.d. $=$ not determined \quad from Graf and Würgler 1978

This work was supported by the Swiss National Science Foundation, project No. 3.156-0.77. References: Boyd, J.B. et al. 1976, Genetics 84:485-506; Bürki, K. and F. E. Würgler 1972, DIS 46:49; Graf, U. and F.E. Würgler 1978, Mutation Res. 52:381-394; Graf, U. et al. 1979, Mutation Res. 59:129-133; King, R.C., A.C. Rubinson and R.F. Smith 1956, Growth 20: 121-157; Nguyen, T.D. and J.B. Boyd 1977, Molec. Gen. Genet. 158:141-147; Steiner, Th. and F.E. Wirgler 1979, Int. J. Radiat. Biol. (in press); Würgler, F.E., F.H. Sobels and E. Vogel 1977, in: Kilby, B. et al., Handbook of Mutagenicity Test Procedures, pp. 335-373.

Stevens, P.G. and E.A. Carlson. State University of New York, Stony Brook. Chromosome mosaics induced in ring-X by ethyl methane sulfonate and by X rays in D. melanogaster.

Chromosomal mosaics were produced by inducing breakage of a ring-X chromosome. When this resulted in the loss of the ring chromosome during one of the early cleavage stages of the zygote, an XX/XO gynandromorph was formed. In some cases the chromosome was repaired or altered without breakage, resulting in a point mutation rather than chromosome loss. The markers w, m, f, and B were used so that the extent of mosaicism could be observed to distinguish point mutations from gynandromorphs.

In the first
Table 1. EMS-induced mosaics and their transmissibility.

Transmissibility	Gynandromorphs	Point mutations					
		$\bar{W}^{+}+$	W	B	$\rightarrow \mathrm{B}^{+}$		\rightarrow m
died	1	1			1		0
nontransmissible	0	4			1		1
sterile	5	0			0		0
transmissible	0	0			1		0
lethal	0	0			2		0
total	6	5			5		1

series $X^{c 2}$ y B males were fed ethyl methane sulfonate $(0.0125 \mathrm{M}$ EMS in 2% sucrose) for 24 hours. They were then mated to w m f virgin females and progeny were examined for mosaics (Table 1). The mosaics obtained from among 4787 total progeny consisted of 6 gynandromorphs (0.1\%) and 11 point mutations (0.2\%). The data sug- gest that EMS produces more chemical alterations or repaired breaks on the ring-X chromosome, resulting in point mutations, than unrestituted breaks or aneucentric rings leading to loss and gynandromorphism.

In the second series $X^{2} 2$ y B males were exposed to X-rays (2500R) and then mated to $\mathrm{w} m \mathrm{f}$ virgin females. As in the previous series, the progeny were examined for mosaics (see Table 2). The mosaics obtained from among 920 total progeny consisted of 5 gynandromorphs
(0.5%) and 1 point mu-
Table 2. X-ray induced mosaics and their transmissibility. tation (0.1%). These X -ray results are consistent with the expectation that breakage of the ring-X chromosome is more likely to occur, producing gynandromorphs, than the induction of point mutations.

The distribution of the 11 gynandromorphs obtained is shown in Table 3. Note that in none of these 11 cases was there mosaicism for all five of the phenotypic characteristics used. Most of the gynandromorphs were genital male or female in phenotype and their sterility is probably due to incompatible head tissue of the opposite sex. The fertility of three gynandromorphs, one with an apparently male head and female genitalia, suggests that her head ganglial tissue was female or that males were successful in overcoming her behavioral barriers to reproduction. In two of the three fer-
tile gynandromorphs, only the w m f chromosome (male tissue) entered the gonads. In those two cases the genitalia of the gynandromorphs was male.

Table 3. Distribution of affected tissue in gynandromorphs

mutagen used	```fertile(F) or sterile(S)```	eye color		bristles	wing	sex comb $\mathrm{P}=$ present $A=a b s e n t$		abdomen
		R	L			R	L	
EMS	S	$B+w^{\text {mos }}$	B ${ }^{+}$	f^{+}	m^{+}	A	A	+-1ike
EMS	died	$\mathrm{B}^{+} \mathrm{w}^{\text {mos }}$	$\mathrm{B} \mathrm{W}^{+}$	$f^{\text {mos }}$	$\mathrm{m}^{\text {mos }}$	P	A	$0{ }^{2}$
EMS	S	$\mathrm{B}^{+}{ }_{\mathrm{w}}$	$\mathrm{B}^{+}{ }_{\text {w }}$	$f^{\text {mos }}$	$\mathrm{m}^{\text {mos }}$	P	A	0
EMS	S	B w ${ }^{+}$	B ${ }^{+}$	$f^{\text {mos }}$	$\mathrm{m}^{\text {mos }}$	A	P	0^{7}
EMS	S	$\mathrm{B} \mathrm{W}^{+}$	B w ${ }^{+}$	f^{+}	m^{+}	A	A	${ }^{*}$
EMS	S	B ${ }^{+}$	B w ${ }^{+}$	f^{+}	m^{+}	A	A	$0{ }^{7}$
X-ray	F*	$\mathrm{B}^{+}{ }_{\mathrm{W}}$	B W^{+}	f	m	P	P	$0^{\boldsymbol{n}}$
X-ray	F*	$\mathrm{B}^{+}{ }_{\mathrm{W}}$	$\mathrm{B}^{+}{ }_{\text {W }}$	f^{+}	m^{+}	P	A	0^{7}
X-ray	S	B w ${ }^{+}$	B ${ }^{+}$	f^{+}	$\mathrm{m}^{\text {mos }}$	P	A	0^{2}
X-ray	S	$\mathrm{B} \mathrm{W}^{+}$	$\mathrm{B} \mathrm{W}^{+}$	f	m	P	P	0^{7}
X-ray	F**	$\mathrm{B}^{+}{ }_{\mathrm{W}}$	$\mathrm{B}^{+}{ }_{\text {w }}$	f^{+}	m^{+}	A	A	9

*=non-transmitted, on1y (w m f) progeny obtained
**=non-transmitted, (y B) and (w m f) progeny obtained

Supported by Biomedical Research Support Grant $31 \mathrm{H}-144 \mathrm{H}$ (USPHS) SUNY at Stony Brook.

Takamura, T., H. Hayashi*, A. Yokoyama* and I. Shimada*. Tokyo Metropolitan University and *Tohoku University, Japan. D. melanogaster can taste amino acids.

Some progress has been made in the genetics of taste perception in Drosophila (Isono and Kikuchi 1974a; Falk and Atida 1975). Like other dipterans, the taste-bristle of Drosophila contains 4 chemosensory cells (Falk et al. 1976).
One of these is the sugar receptor which reacts specifically with certain sugars. In larger flies such as fleshfly and blowfly, Shiraish and Kuwabara (1970) showed 6 of 19 L -type amino acids could electrophysiologically stimulate the sugar receptor of these flies but there have been no data on Drosophila. In this report we show that D. melanogaster can also taste certain amino acids dissolved in pH-adjusted phosphate buffer.

A petri dish with 4 glass rings in it was employed for behavioral assay (Isono and Kikuchi 1974b). Two of the 4 rings were filled with $5 \times 10^{-2} \mathrm{M}$ amino acid dissolved in $1 / 15 \mathrm{M}$ phosphate buffer (pH 7.0), while the other 2 were filled with phosphate buffer only. Each solu-
tion contained 2% agar to set it in the ring. Six amino acids which can stimulate sugar receptor of larger flies were used (Shiraishi and Kuwabara 1970). About 100 D. melanogaster, 24-48 hours old, allowed to take only water for 24 hours before experiments, were introduced into the petri dish and the distribution of the flies on the rings was examined by photographing them 4 times at 30 -minute intervals (for details see Isono and Kikuchi 1974b). Isogenic strain AA75-3 (Isono and Kikuchi 1974b) and wild-type laboratory stock derived from natural populations were used. The results are shown in Table 1.

Table 1. Response of D. melanogaster to six L-type amino acids presented at the concentration of $t \times 10^{-2} \mathrm{M}$.

Amino acid	Strain	Sex	Number of flies observed on the amino acid	Number of flies observed on the phosphate buffer	χ^{2}	P
L-Leucine	AA75-3	female male	103	82	2.38	>0.1
			30	38	0.94	>0.7
L-Valine	AA75-3	female male	139	45	48.02	<0.001
			93	61	6.65	<0.01
L-Methionine	AA75-3	female male	276	138	46.00	<0.001
			116	79	7.02	<0.01
L-Phenylalanine	Wild	female male	219	76	69.32	<0.001
			323	103	113.62	<0.001
L-Isoleucine	AA75-3	female male	230	92	59.14	<0.001
			119	59	20.22	<0.001
L-Tryptophan	AA75-3	female male	98	74	3.35	>0.05
			37	38	0.01	>0.9

D. melanogaster could discriminate L-valine, L-methionine, L-phenylalanine, and L-isoleucine from the buffer control but they did not seem to taste L-1eucine and L-tryptophan at the concentration tested. Because $5 \times 10^{-2} \mathrm{M}$ is the concentration at which the magnitude of the electrophysiological responses of larger flies reached maximum and usually behavioral assay is more sensitive than electrophysiological assay, there must be a large difference in stimulating ability between the former four and the latter two amino acids. However, further study is necessary to conclude that D. melanogaster is not able to taste L-leucine and Ltryptophan at all. Shimada and Isono (1978) reported two of these six amino acids, L-phenylalanine and L-tryptophan, differed from the other four in such a manner that these two reacted with furanose site of the fleshfly. This classification, however, did not agree with our data here. It would be interesting to know the relationship of these six amino acids and the furanose site in D. melanogaster by electrophysiological technique.

Temin, R.G. and R. Kreber. University of Wisconsin, Madison, Wisconsin. A look at SD (Segregation Distorter) in the wild population in Madison, Wisconsin, more than 20 years after its initial discovery there.

Flies were collected in the fall, 1979, for a study of how SD behaves in nature and to understand the factors determining its frequency. With the recent work on hybrid dysgenesis in our laboratory (Engels 1979-1980) and with the more detailed understanding of the substructure of the SD region (Hartl and Hiraizumi 1976; Ganetsky 1977), it became of interest to see what bearing these might have on the course of $S D$ in wild populations.

There were two trapping sites in Madison, in woods near the homes of R.G. Temin and J.F. Crow. Since the observations, listed below, were similar in the two subpopulations, they have been combined:

1. SD is still present in Madison, in 20 chromosomes among 741 screened. This frequency of 3% is, in fact, the same as it was in 1956 ($6 / 183$) and must represent the equilibrium frequency. The average " k " value, representing the degree of distortion, was 0.95 , from the
ratio of $1603+: 86 \mathrm{cn}$ bw progeny from individual test crosses of $+/ \mathrm{cn} \mathrm{bw}$ ơo , where + is derived from a wild-caught male.
2. Cytological analysis revealed that 19 of the 20 SD chromosomes contained the small pericentric inversion $\operatorname{In}(2 \mathrm{LR}) 39 \mathrm{E} 1.4-5.8 ; 42 \mathrm{~A}-\mathrm{B}$, as well as the large distal Nova Scotia inversion in the right arm. This set of inversions is of the SD-72 type, as designated for the original SD's. The remaining one of the 20 was of the SD-5 type, namely with In(2R)NS and a small proximal inversion also in the right arm, In(2R)45D2-E1; $49 \mathrm{~A} 2-\mathrm{Bl}$, but lacking the pericentric inversion. As controls, $23 \mathrm{SD}^{+}$lines had no second chromosome inversions and two SD+ lines had In(2R)NS only. (Two of the SD lines from Crow's collection, in addition to being SD-72, had a highly complex set of second chromosome inversions; the more complex of these also showed a reduced k value of 0.66 on further testing.)

Thus, nearly all the SD chromosomes are now SD-72, in contrast to 1956, when five of the six were SD-5 and one was SD-72. This difference in relative frequencies of $\mathrm{SD}-5$ and $\mathrm{SD}-72$ in the two collections was significant at $p=0.0005$, by Fisher's Exact Test. The chromosome with the pericentric inversion has become predominant, maintaining the tight linkage between the SD and Rsp alleles in that region.

Even before the pericentric inversion was discovered by Lewis in 1962, Hiraizumi, Sandler and Crow (1960) predicted, from population cage studies, that SD-72 might replace SD-5. Finding that SD-72 (which was lethal-free) maintained a higher equilibrium frequency than SD-5 (lethal bearing) in cages, they suggested that in nature SD-72 had just arisen as a derivative of $\mathrm{SD}-5$ but had not yet in 1956 had time to replace it. Studies are underway to determine the homozygous viabilities of the newly collected SD's.
3. Male recombination was also detected in the $S D$ screening test crosses of the $F_{1}+/ \mathrm{cn}$ bw dysgenic male, indicating that components of hybrid dysgenesis are present in these populations. Among 27,216 progeny of such heterozygous males, 82 were either cn or bw, a frequency of 0.3% recombinants. These occurred in $S D$ lines as well as in S^{+}lines, in the same approximate frequency. Recombinant progeny from heterozygous fathers continued to appear even in the F_{4}. In the SD lines the ratio of bw to on recombinants ($67: 10$ among 14,536 progeny) was significantly greater than in the non-SD lines ($44: 33$, among 25,523), with $p=0.00003$. This supports the notion that segregation distortion and hybrid dysgenesis can occur simultaneously.

It is interesting to speculate whether male recombination was occurring in the SD screening of the Madison population in 1956. The original isolation of SD by Hiraizumi during a study of lethal heterozygotes (1960) was from $+/ \mathrm{cn}$ males which would not have revealed this. However, other tests in our laboratory in that era (Mange 1961; Greenberg 1962) to screen wild populations for $S D$ did use $+/ \mathrm{cn}$ bw dysgenic F_{1} males, but recombinants were not reported. We do not know if they were too infrequent or were overlooked, or actually did not occur. However, this raises the question of whether the situation has changed since that time with regard to components of hybrid dysgenesis, either in the cn bw lab stock or in the wild flies themselves.
4. Previous studies have demonstrated suppressors of $S D$ activity, on the X and on other autosomes, as well as on the second chromosome (non-allelic and at the Rsp locus itself). To estimate directly how active $S D$ is in a wild genome, k values were measured for the 20 wild caught males revealed to be harboring $S D$. This was done by testing a number of F_{1} sons (1445) of each such line. If SD was fully operative in the P1 male ($k=1$) then all of the F1 sons would have inherited $S D$ and themselves have a high k value. If $S D$ was completely suppressed in the P_{1} male ($k=1 / 2$) then about half of the F_{1} sons would have a high k.

SD appeared to be fully active in only about $1 / 4$ of the cases; in fact, there was a wide range of distortion in the wild males. Of the 20 lines, 8 showed no distortion in the P_{1} male (k less than 0.57), 5 showed high distortion ($k=0.87$ or greater), 6 showed reduced distortion (k between 0.63 and 0.77), and one gave too few sons to test.
5. Another approach to the question of how much distortion occurs in nature was to screen SD^{+}chromosomes from Madison for sensitivity vs. insensitivity. A strongly distorting SD-5 bw recombinant, provided by Dr. Barry Ganetsky, was used to test 122 non-SD chromosomes, as +/ R (SD-5 bw), in the fourth generation after crossing to laboratory stocks, providing an opportunity for some of the unlinked modifiers to be crossed out. Of the 122 , approximately 82 were sensitive to $S D-5$ action ($k=0.83$ or greater), 24 had reduced sensitivity (k between 0.61 and 0.80), and 16 appeared to be in the range of insensitivity (k less than 0.60). Thus, the maximum frequency of insensitive chromosomes is about 13%; to establish these as having true Rspins alleles would require further special tests. This figure is substantially lower than the 45\% found by Hartl and Hartung (1971) in more specific and thorough testing. This variability among populations with regard to the non-SD chromosome bears further investigation.

References: Hart1, D.L. and Y. Hiraizumi 1976, in: The Genetics of Drosophila, 1, Novitski and Ashburner, eds.; Ganetsky, B. 1977, Genetics 86:321; Engels, W.R. and C.R. Preston 1980, Genetics 95:1 (in press); Hart1, D.L. and N. Hartung 1975, Evolution 29:512; Hartl, D.L. 1970, Can. J. Genet. Cytol. 12:594; Hiraizumi, Y. 1971, PNAS 68:268; Hiraizumi, Sandler and Crow 1960, Evolution 14:433.

Tobari, I. and M. Murata. National Institute of Radiological Sciences, Chiba-shi, Japan. Fertility load and frequency of lethal second chromosome in Drosophila populations with radiation histories.

It has in general been considered that most of the radiation-induced mutations are sooner or later eliminated from a population by the acts of natural selection of the irradiation is suspended. The purpose of this study is to see a recovery of genetic damages caused by the radia-tion-induced mutations by estimating the amounts of fertility load and the frequency of lethal second chromosomes in the populations with radiation histories. Experimental populations of D. melanogaster used in this study were identical with those reported by Murata and Tobari (1973). Three experimental populations, B, C and D, were derived from the irradiated population which had been successively exposed to $5,000 \mathrm{r}$ of X-rays in every generation (Tobari and Murata 1970). The populations B, C and D have been subjected to the cumulative radiation exposures of $25,000 \mathrm{r}, 50,000 \mathrm{r}$ and $75,000 \mathrm{r}$, respectively. These populations were maintained for $75-77$ generations without X-irradiation before the present experiment was carried out. The frequency of lethal second chromosomes was estimated by the Cy/Pm technique, using about 200 males taken from each of the experimental populations. To estimate the fertility load the homozygous and heterozygous flies for wild-type second chromosomes were reconstituted. For each of approximately 100 chromosomes, in homozygous as well as heterozygous condition, 10 males and 10 females were tested. Each wild-type male (or female) was mated individually to three cn bw virgin females (or males). After one week all cultures were examined for evidence of fertility. A vial was classified as sterile (S) if there were no larvae or pupae present and the parents were alive. Cultures bearing progeny were classified as fertile (F). In some of the cultures which contained no progeny, the parent of interest was dead; this type was recorded as D.

The frequency of lethal second chromosomes in a non-irradiated (control) population was estimated to be $17.8 \pm 1.9 \%$, while it was $30.7 \pm 3.7 \%, 32.7 \pm 3.8 \%$, and $32.5 \pm 3.4 \%$, respectively, in populations B, C and D. The difference in frequency between the control populations, A, and the experimental one is statistically significant.

The proportion of fertile cultures among the total fertile and sterile cultures was computed and these fertility ratios, $F /(F+S)$, for males and females are given in Table 1. In all

Table 1. The mean fertility ratios, $F /(F+S)$, in the irradiated and control populations.

Population		A: Control	B: $25 \mathrm{KR}-77 \mathrm{G}$	C: 50KR-75G	D: $75 \mathrm{KR}-75 \mathrm{G}$
Males:					
Heterozygotes	$\begin{gathered} n \\ F /(F+S) \end{gathered}$	$\begin{aligned} & 99 \\ & 0.934 \pm 0.016 \end{aligned}$	$\begin{gathered} 72 \\ 0.957 \pm 0.012 \end{gathered}$	$\begin{aligned} & 100 \\ & 0.868 \pm 0.021 \end{aligned}$	$\begin{aligned} & 117 \\ & 0.881 \pm 0.023 \end{aligned}$
Homozygotes	$\begin{gathered} \mathrm{n} \\ \mathrm{~F} /(\mathrm{F}+\mathrm{S}) \end{gathered}$	$\begin{aligned} & 101 \\ & 0.866 \pm 0.020 \end{aligned}$	$\begin{aligned} & 99 \\ & 0.892 \pm 0.025 \end{aligned}$	$\begin{aligned} & 102 \\ & 0.789 \pm 0.032 \end{aligned}$	$\begin{aligned} & 105 \\ & 0.748 \pm 0.031 \end{aligned}$
Homozygotes excluding complete steriles	$\begin{gathered} \mathrm{n} \\ \mathrm{~F} /(\mathrm{F}+\mathrm{S}) \end{gathered}$	$\begin{gathered} 99 \\ 0.884 \pm 0.016 \end{gathered}$	$\begin{aligned} & 97 \\ & 0.916 \pm 0.019 \end{aligned}$	$\begin{gathered} 94 \\ 0.856 \pm 0.023 \end{gathered}$	$\begin{gathered} 95 \\ 0.856 \pm 0.024 \end{gathered}$
Females:					
Heterozygotes	$\begin{gathered} \mathrm{n} \\ \mathrm{~F} /(\mathrm{F}+\mathrm{S}) \end{gathered}$	$\begin{aligned} & 105 \\ & 0.969 \pm 0.008 \end{aligned}$	$\begin{gathered} 97 \\ 0.969 \pm 0.008 \end{gathered}$	$\begin{aligned} & 101 \\ & 0.941 \pm 0.011 \end{aligned}$	$\begin{aligned} & 120 \\ & 0.961 \pm 0.007 \end{aligned}$
Homozygotes	$\begin{gathered} \mathrm{n} \\ \mathrm{~F} /(\mathrm{F}+\mathrm{S}) \end{gathered}$	$\begin{aligned} & 104 \\ & 0.909 \pm 0.019 \end{aligned}$	$\begin{aligned} & 99 \\ & 0.871 \pm 0.028 \end{aligned}$	$\begin{aligned} & 100 \\ & 0.842 \pm 0.026 \end{aligned}$	$\begin{aligned} & 100 \\ & 0.817 \pm 0.030 \end{aligned}$
Homozygotes excluding complete steriles	$\begin{gathered} \mathrm{n} \\ \mathrm{~F} /(\mathrm{F}+\mathrm{S}) \end{gathered}$	$\begin{aligned} & 102 \\ & 0.926 \pm 0.014 \end{aligned}$	$\begin{aligned} & 95 \\ & 0.907 \pm 0.022 \end{aligned}$	$\begin{gathered} 94 \\ 0.896 \pm 0.015 \end{gathered}$	$\begin{gathered} 93 \\ 0.896 \pm 0.021 \end{gathered}$

Table 2. Total sterility load (T), partial sterility load (P) and complete sterility load (C) in the irradiated and control populations.

Population	T	P	C	$P: C$

Males:

A: Contro1	0.0755 ± 0.0288	0.0550 ± 0.0250	0.0205 ± 0.0295	2.7
B: $25 \mathrm{KR}-77 \mathrm{G}$	0.0703 ± 0.0320	0.0438 ± 0.0253	0.0266 ± 0.0352	1.6
C: $50 \mathrm{KR}-75 \mathrm{G}$	0.0954 ± 0.0465	0.0139 ± 0.0361	0.0815 ± 0.0487	0.2
D: $75 \mathrm{KR}-75 \mathrm{G}$	0.1636 ± 0.0493	0.0288 ± 0.0282	0.1348 ± 0.0520	0.2

Females:

A: Control	0.0640 ± 0.0108	0.0454 ± 0.0177	0.0186 ± 0.0168	2.4
B: $25 \mathrm{KR}-77 \mathrm{G}$	0.1066 ± 0.0332	0.0661 ± 0.0256	0.0504 ± 0.0405	1.6
C: $50 \mathrm{KR}-75 \mathrm{G}$	0.1112 ± 0.0326	0.0489 ± 0.0205	0.0623 ± 0.0349	0.8
D: $75 \mathrm{KR}-75 \mathrm{G}$	0.1623 ± 0.0355	0.0700 ± 0.0234	0.0923 ± 0.0437	0.8

the populations the fertility rates are higher for heterozygotes than for homozygotes. Furthermore, in populations C and D, which had been exposed to $50,000 \mathrm{r}$ and 75,000 r of X -rays respectively, the fertility of both the homozygotes and the heterozygotes is lower than that in the control population. The loads have been computed from the mean fertility ratios by the same method as Temin's (1966). As seen in Table 2, the total load for males and females markedly increases as an accumulated dose of X-rays increases. In populations A and B most of the total load for males and females is due to mutant genes leading to partial sterility. On the other hand, in populations C and D the total load for males is mainly due to mutant genes causing complete sterility and for females the ratio of $\mathrm{P}: \mathrm{C}$ is approximately 1:1.

The results described above indicate that some of the radiation-induced mutant genes with detrimental effects on viability or fertility are maintained for a number of generations in the populations with radiation histories, although these detrimental genes may partly be eliminated by natural selection in early generations after the irradiation is suspended.

References: Temin, R.G. 1966, Genetics 53:27-46; Tobari, I. and M. Murata 1970, Genetics 65:107-119; Murata, M. and I. Tobari 1973, Jap. S. Genet. 48:349-359.

Traut, H. Institut für Strahlenbiologie, Universität Münster, Münster, Germany. An approximate X^{2} test as applied to mutation experiments with D. melanogaster.

The rapidly increasing interest in the development of methods for the detection of environmental mutagens has been accompanied by an interest in the statistical procedures to be employed by mutation researchers (see e.g., Armitage 1971; Berchtold 1975; Kastenbaum and Bowman 1970; Katz 1978, 1979; Traut, in press; Würgler et al. 1975). One of those procedures is the chi-square (χ^{2}) test. The following approxfmation to that test facilitates the computation of χ^{2} considerably and yields nevertheless \underline{P} values almost identical with those calculated in the usual way. (Note that by the help of Patau's (1942) graphs the P values belonging to the calculated χ^{2} values can be obtained.) Although this approximation has already been described (Armitage 1971), it is, as far as I know, not employed to test the significance of the difference between mutation frequencies. The approximate procedure should be applied to low relative frequencies only, amounting to at most a few percent. This requirement, however, is generally complied with in mutation experiments carried out with D. melanogaster (main types of mutations studied: recessive sex-linked lethals, autosomal translocations and X-chromosomal aneuploidy). It is true that there are cases allowing the applicaiton of the following approximate formula also to high mutation frequencies (Traut, unpublished). However, it would be difficult to consider this possibility in practice and it seems, therefore, wise to use the approximate formula only when the mutation frequencies are small. As well formulae (1) to (4) presented below as the two examples illustrating the performance of the approximate test consider Yates' correction for continuity.

The following χ^{2} formula is usually applied to test the significance between two mutation frequencies x_{1} / n_{1} and x_{2} / n_{2} ($x=$ number of mutated units, e.g., cells, chromosomes, loci; and $\mathrm{n}=$ number of units analyzed), where $\mathrm{x}_{1}\left(\mathrm{x}_{2}\right)=$ number of mutated units and $\mathrm{y}_{1}\left(\mathrm{y}_{2}\right)=$ number of
(1) $\quad x^{2}=\frac{\left(\left[x_{1} y_{2}-x_{2} y_{1}\right]-0.5 N\right)^{2} N}{\left(x_{1}+x_{2}\right)\left(y_{1}+y_{2}\right)\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right)}$ non-mutated units of experiment 1 (experiment 2), and $N=x_{1}+y_{1}+x_{2}+y_{2}$. For low mutation frequencies (see above), formula (1)

can be replaced by the simpler approximate formula (2), where $x_{1}^{\prime}=n_{1}\left(\left[x_{1}+x_{2}\right] / N\right)$ and $\mathrm{x}_{2}^{\prime}=\mathrm{n}_{2}\left(\left[\mathrm{x}_{1}+\mathrm{x}_{2}\right] / \mathrm{N}\right)=\mathrm{x}_{1}+\mathrm{x}_{2}-\mathrm{x}_{1}^{1}$ are the expected absolute frequencies belonging to x_{1} and x_{2}, respectively. This approximation can be derived as follows. When the formula for x^{2} is expressed in its extended version instead of by formula (1), we obtain:

$$
\begin{equation*}
x^{2}=\frac{\left(\left[x_{1}-x_{1}^{\prime}\right]-0.5\right)^{2}}{x_{1}^{\prime}}+\frac{\left(\left[x_{2}-x_{2}^{\prime}\right]-0.5\right)^{2}}{x_{2}^{\prime}}+\frac{\left(\left[y_{1}-y_{1}^{\prime}\right]-0.5\right)^{2}}{y_{1}^{\prime}}+\frac{\left(\left[y_{2}-y_{2}^{\prime}\right]-0.5\right)^{2}}{y_{2}^{\prime}} \tag{3}
\end{equation*}
$$

where $y_{i ́}$ and y_{2} are the expected absolute frequencies belonging to y_{1} and y_{2}, respectively. For low mutation frequencies the contribution to χ^{2} from the non-mutated units, y_{1} and y_{2}, is so small when compared with the contribution from the mutated units, x_{1} and x_{2}, that it can be neglected. It is this omission which transforms formula (3) to formula (2). In addition, the numerical computation carried out with formula (2) is facilitated by the fact that in formula (2), $\left(\left[x_{1}-x_{1}^{\prime}\right]-0.5\right)^{2}=\left(\left[x_{2}-x_{2}^{\prime}\right]-0.5\right)^{2}$, as can be shown by a simple consideration. Furthermore, when formula (2) but not when formula (1) is used, one automatically learns whether there is an expected absolute frequency (x) smaller than 5 , and, therefore, whether the application of the χ^{2} test is legitimate. Formula (2) could be expressed also in other ways; however, the numerical computations are carried out best when this formula is used as it stands.

Example illustrating the application of formula (2):
$\mathrm{x}_{1} / \mathrm{n}_{1}=100 / 1000=10.0 \%$ (experiment 1)
$\mathrm{x}_{2} / \mathrm{n}_{2}=40 / 50=8.0 \%$ (experiment 2)
(a) $x_{1}^{\prime}=1000([100+40] / 1500)=93.3$
(b) $x_{2}^{\prime}=100+40-93.3=46.7$
(c) $\left(\left[x_{1}-x_{1}^{1}\right]-0.5\right)^{2}=\left(\left[x_{2}-x_{2}^{\prime}\right]-0.5\right)^{2}=6.2=38.4$
(d) $x^{2} \approx 1.24$ [The exact value, computed with
formula (1) or (3), amounts to $\left.\chi^{2}=1.36.\right]$

Example illustrating the application of formula (4):
$x_{1} / n_{1}=30 / 5000=0.600 \%$ (treated sample)
$\mathrm{x}_{2} / \mathrm{n}_{2}=5 / 5000=0.100 \%$ (control sample)
$\chi^{2} \approx([30-5]-1)^{2} /(30+5)=16.46$ (The exact value, computed with formula (1) or (3), amounts to $\chi^{2}=16.52$.

References: Armitage, P. 1971, Statistical Methods in Medical Research, Blackwell Scientific Publ., Oxford, London, Edinburgh, Melbourne, pp. 138-140; Berchtold, W. 1975, Arch. f. Genetik 48:151-157; Kastenbaum, M.A. and K.0. Bowman 1970, Mutation Res. 9:527-549; Katz, A.J. 1978, Mutation Res. 50:301-307; \qquad 1979, Mutation Res. 64:61-77; Pätau, K. 1942, Zeitschr. Abst. Vererb. lehre 80:558-564; Traut, H. (in press), Biometrical Journ.; Würgler, F.E., U. Graf and W. Berchtold 1975, Arch. f. Genetik 48:158-178.

Triantaphyllidis, C.D. Aristotelian University of Thessaloniki, Greece. The es-terase-A of D. auraria.

In three laboratory strains of D. auraria, an enzyme polymorphism of esterase A (Est-A) could be detected by means of starch gel electrophoresis. There exist two variants of Est-A with different electrophoretic mobility, which were called Fast and Slow (Fig. 1). To analyze the genetic basis of these electrophoretic variants, homozygous stocks for each of them were constructed. Then single-pair matings in many combinations were performed. The hybrids resulting from these crosses as well as the progenies resulting from the backcrosses and from $F_{1} \times F_{1}$ crosses were analyzed electrophoretically. The results showed that the two esterase A variants were controlled by codominant alleles at an autosomal gene. Heterozygous individuals show two electrophoretic zones, and there is no indication for the formation of a hybrid enzyme. As far as substrate specificity is concerned the two Est-A variants showed an α-naphthyl acetate specificity in an $\alpha-\beta$ mixture. Furthermore the Est-A zones show increased activity in the presence of 10 ml n -propanol in 100 ml

$\alpha-\beta$-naphthyl acetate staining mixture. Also it is interesting that the Est-A zones have greater activity in the females than in the males (Fig. 1, no. 3).

Acknowledgements: I would like to thank Mr. A. Svinios for his technical assistance.

Fig. 1. Electrophoretic variants for the Est-A locus in D. auraria. 1-2: Est-AS. 3-5: Est-AF. $0=$ origin, $C=$ Est-C, $A=$ Est-A.

Triantaphyllidis, C.D. Aristotelian Univeristy of Thessaloniki, Greece. Genetic localization of Est-C, Acph and w genes of D. auraria.

It has been established earlier that the ester-ase-C (Est-C) and acid phosphatase (Acph) variants of D. auraria are under the control of autosomal loci (Triantaphyllidis and Kastritsis 1976; Triantaphyllidis 1978). These two genes as well as the white eyes gene are unplaced on
the chromosomes of D. auraria. For this reason crosses were made for their chromosomal localization. The results of crosses $\$ \mathrm{w} x+\mathrm{w} \mathrm{o}^{\prime}$ and $\%+\mathrm{w}$ x w showed that the w allele is recessive and sex-linked. On the other hand, in order to find if the Est-C and Acph loci are independent or linked, homozygous females of the form Est-CS Acph3-5 were crossed with homozygous males of the form Est-CF Acph ${ }^{1-3}$. Then heterozygous males or females Est-C C^{S} Acph ${ }^{3-5 /}$ Est-C ${ }^{F}$ Acph ${ }^{1-3}$ were backcrossed to Est-CS Acph ${ }^{3-5}$ females or males respectively. In the progenies of the first backeross only flies of the phenotypes Est-CS Acph ${ }^{3-5}$ and Est-CF Acph ${ }^{1-3}$ were found. Thus, the Est-C and Acph loci are linked in the same autosomal chromosome. In the progeny of the second reciprocal backcross 101 out of 254 offspring were recombinants (39.8\%). Hence, the Est-C locus is about 40 map units away from the Acph locus. The existance of similar gene-enzyme systems in D. melanogaster (0^{\prime} Brien and MacIntyre 1971) located in the third chromosome (positions 49.0 and 101.1 respectively) is a good indication that the Est-C and Acph loci are probably located in the same chromosome in D. auraria and the genes retained their ancestral position dising the phylogeny of the two species. The difference between the two species with respect to the relative distances between the similar genes may depend on many factors. Work is now in progress in order to map the position of the cistron which codes for other gene-enzyme systems in D. auraria.

Acknowledgements: I would like to thank Mr. A. Svinios for his technical assistance. References: 0^{\prime} Brien, S. and R.I. MacIntyre 1971, DIS 46:89-93; Triantaphyllidis, C.D. 1978, DIS 53:118; Triantaphy1lidis, C.D. and C. Kastritsis 1976, Experientia 32:1277-1278.

Tribe, J. and I.R. Bock. La Trobe. University, Melbourne, Australia. Drosophila collections in southeastern Australia.

Collections were made during December 1979 at several wineries and orchard areas in inland southeastern Australia. The localities sampled are shown in Fig. 1; the numbers represent Mourquong orchard (1), flies swept over fresh fruit; Mildura winery (2), flies collected on old filters outside the winery; Mildara winery (3); Ettiwanda fruit juice factory (4), flies swept from orange skins; Sarnia fruit juice factory (5), flies swept from mixed fruit skins; Lake Boga winery (6); Best's winery (7) ; and Bridgewater winery (8). F1ies collected at localities 3, 6, 7 and 8 were aspirated directly from fermentation vats. Ambient maximum temperatures on all collection days exceeded $30^{\circ} \mathrm{C}$.

Results are given in Table 1. Only cosmopolitan species were found, and indeed only two of the eight cosmopolitan Drosophila species (ananassae and repleta) were not collected. D. ananassae occurs in Australia but is restricted to the Northern Territory and northern Queensland, while D. repleta, although known from southern localities, is very rare. The large numbers of melanogaster collected in the wineries are not surprising; the ability of this species to utilize ethanol is well known and widely documented.

Perhaps of greater interest is the collection of large numbers of hydei in one of the wineries (3) as well as at several other sites. D. funebris has previously only been recorded within Australia from Sydney.

Acknowledgments: The assistance of Ms. Lesley Anderson and the wine and fruit producers at the localities sampled is gratefully acknowledged.

Tripathy, N.K., D.P. Dasmohapatra and C.C. Das. Berhampur University, Orissa, India. Chromosomal polymorphism in D. ananassae.

Abundant evidence now exists to prove that differential gene arrangements have evolved in many species of Drosophila to meet the adaptive needs in a dynamic environment. Inasmuch as the adaptive values of different genomes differ considerably, the fitness of certain kinds of gene arrangements may, therefore, increase or decrease with fluctuation in environmental milieu. D. ananassae, a cosmopolitan domestic species, is known to exhibit nearly 50 different inversions in different natural populations. Of the several paracentric inversions, 3LA, $3 R A$ and 2 LA are common to all populations while the rest of the inversions are selectively restricted to these populations. From their studies on D. willistoni, da Cunha et al. (1950) postulate a close correlation of chromosomal polymorphism with environmental conditions. In an attempt to assess the correlation, if any, between the different inversions and the environmental temperature, the present study has been undertaken on the natural population of D. ananassae of Golabandha, situated at an altitude of 17.5 m and about 6 km to the south of the university campus, during the months of January recorded as $24^{\circ} \mathrm{C}$ in January, through May, 1980. The temperature during these months was recorded as $24^{\circ} \mathrm{C}$ in January, $28^{\circ} \mathrm{C}$ in February and March, $32^{\circ} \mathrm{C}$ in April and $36^{\circ} \mathrm{C}$ in May.

Collections were made in the first week of every month and the naturally inseminated gravid females were isolated. Individual flies were transferred to independent vials with wheat cream agar medium. 100 larvae were used in studying the inversions every month. Table 1 lists the inversion frequency data during the different months of study.

The correlation graphs of the frequency of inversions, coextensive with the species, and the temperature fluctuation during these months are represented in Fig. 1. As can be seen there is no significant correlation between the frequency of these inversions and the environmental temperature in the investigated population of D. ananassae.

Reference: da Cunha, A.B., H. Burla and Th. Dobzhansky 1950, Evolution 4:212.

Trippa, G., A. Loverre and M. Lepore. Università di Roma, Italy. Segregation distortion of second chromosomes by a wild third chromosome in D. melanogaster: modifier or Sd gene?
meiotic drive systems utilizes a cross scheme which makes it possible to follow the segregation of both second and third chromosomes. $F_{1}+/ b w-5$; $+/ s t-5$ males from the cross between wild males and y; bw-5; st-5 females are backcrossed with y; bw-5; st-5 females to permit a first count of k_{1} and k_{2} at F_{2} (k_{1} for segregation of second chromosome $=b_{w}{ }^{+}$individuals/
total progeny; k_{2} for segregation of third chromosomes $=s t^{+}$individuals/total progeny). A further count of k_{1} and k_{2} in the progeny of F_{2} males makes it possible to evaluate the degree of distorted segregation of chromosomes 2 and 3 and their reciprocal effects on segregation.

A study on two wild populations collected in October 1978 in northern Italy (Mareno, Veneto) and in southern Italy (Nardo, Puglia) has led to the recovery of a third chromosome, III ${ }^{\mathrm{Nr}}$ (III ${ }^{\mathrm{Nard}}$) which alters the segregation of second chromosomes (Table 1). This chromosome normally segregates in IIINr/st heterozygous males ($\mathrm{n}=41 ; \mathrm{k}=0.53$). As things stand at present, two general hypotheses can be put forth to interpret the results obtained: (1)

Table 1. Effect of the III ${ }^{\mathrm{Nr}}$ chromosome on the segregation of second chromosomes.

there may be an Sd-like factor acting like other Sd factors so far detected on the second chromosome but located on the third chromosome; (2) there may be on chromosome 3 an Sd modifier (enhancer?) acting on the II ${ }^{+}$Nardo chromosome (which is actually an SD chromosome, despite
the fact that in the $+/ b w-5$; st-5/st-5 heterozygous males $k=0.51$) thus causing segregation distortion of second chromosomes. The frequency of genotypes with the SD trait which is a consequence of the interaction of wild chromosomes II and III is in the Mareno population 0.00% ($0 / 137$ chromosomes) and in the Nardo population about 0.03% ($3 / 108$ chromosomes). In the Nardo population, besides $\# 13$, there are two examples of $S D$ with k value equal to 0.67 in $+/ b w-5$; st-5/st-5 males and 1.00 in $+/ b w-5 ;+/ s t-5$ males. These data indicate that there is a significant difference ($\mathrm{P} \gg 0.001$) in the $\overline{\mathrm{k}}$ values of the two genotypes and that this difference depends on the presence of wild third chromosomes which enhance distortion by the wild second chromosome.

It is interesting to note that while the Nardo (South Italy) population shows an SD frequency of about 3% (a very similar value to those observed in wild populations from many parts of the world), the Mareno population (North Italy) shows no cases of SD . This is the second example of a wild population with no cases of $S D$, after that extensively examined in Austin, Texas (see Hartle and Hiraizumi 1976). If it is true that one of the mechanisms contrasting the spread of $S D$ in populations is the appearance and increase of normal chromosomes resistant to $S d$, it would be particularly stimulating to test the degree of sensitivity to distortion by Sd of the second chromosomes of these two populations.

References: Hartl and Hiraizumi 1976, in: Genetics and Biology of Drosophila (Ashburner and Novitski, eds.) vol. lb; Trippa et al. 1972, DIS 49:81; Trippa and Loverre 1975, Genet. Res. 26:113.

Tsakas, S.C. Agricultural College of Athens, Athens, Greece. Chromosomal. breaks and alteration in staining observed in vitro after ultrasonication of salivary glands of D. subobscura species.

It is known that many chemical agents and physical factors produce chromosomal breaks and aberrations. The purpose of this work was to discover if ultrasonics also have an effect of this kind in vitro.

Salivary glands of the "Küsnacht" strain, first pupal stage, were used. This strain has a standard/standard chromosomal structure for the five long chromosomes, $X, 0, \mathrm{U}, \mathrm{E}$, and J . Tap water was used as dissecting solution; its chemical analysis is as follows: $\mathrm{pH}=7.2 ; \mathrm{SO}_{4}^{--}=30 \mathrm{mg} / 1 ; \mathrm{NO}_{3}^{-}=2 \mathrm{mg} / 1$; $\mathrm{Cl}^{-}=34 \mathrm{mg} / 1$; $\mathrm{HCO}_{3}^{-}=150 \mathrm{mg} / 1 ; \mathrm{Ca}^{++}=60.1 \mathrm{mg} / 1 ; \mathrm{Fe}^{++}=0.2 \mathrm{mg} / 1 ; \mathrm{Mg}^{++}=29.4 \mathrm{mg} / 1 ; \mathrm{Cl}_{2}$ free $=0$; hardness: $\mathrm{CaCO}_{3}=150 \mathrm{mg} / 1$, the remaining $=32 \mathrm{mg} / 1$; total $=182 \mathrm{mg} / 1$. The staining solution was composed of 2 g of synthetic orcein (Edward Gurr, Ltd., London) dissolved into 50 ml hot glacial acetic acid, plus 50 ml of 85% lactic acid after removing from heat (Strickberger 1962).

Immediately after dissection of eight pairs of salivary glands, four of these pairs were placed on one slide and four on another. Each slide contained one drop of dissecting solution. One slide was kept as a control and the other was placed under the sonicator's microphone. A TECH Ultrasonicator (company, Japan) was used, with a crystalic twiter microphone.

Conditions were: (a) distance between the slide and the microphone, 6.0 cm ; (b) sine waves;
(c) frequency, $40,000 \mathrm{cps}$, first harmonic waves at $120,000 \mathrm{cps} ;$ (d) power, $\mathbb{N}=0.3$ watts; (3) time, 30 min ; (f) temperature, $19^{\circ} \mathrm{C}$.

After sonication each pair of salivary glands was placed on a slide containing a drop of staining solution. So, there were four slides produced from the control slide and four from the treated. After a 10 min. interval for staining, a cover slip was placed without applying pressure on top of each slide. The first observation then took place using a magnification of 100 X . After this, the cover slide was pressed slightly until the point enabling magnification of 700 X and another observation was made.

The above procedure was performed six times, so the total number of slides observed was 24 control and 24 treated. In every slide of treated glands a significant number of chromosomal breaks appeared as well as a significant alteration in the effectiveness of staining by orcein, whereas the control slides showed chromosomes without breaks and clear and sharp staining. Figs. 1 and 2 are presented as an example of these findings. The only difference between the two figures is that ultrasonication was applied to the glands in Fig. 2; all other conditions from dissection through the development of the photograph were the same.

Fig. 1. Partial view of a control slide of salivary chromosomes of D. subobscura (1000X).

Fig. 2. Partial view of a treated slide (ultrasonication) of salivary chromosomes of D. subobscura (1000X).

Since ultrasonication is used to break the bodies of cells such as chloroplasts, it was probable that it also would produce chromosomal breaks in salivary chromosomes in vitro. This work gave evidence that this does occur. The unexpected finding was the alteration of staining after ultrasonication with the white bands taking on some color and the dark bands appearing more faint. This resulted in such a difference in the appearance of the chromosome as to render it virtually unidentifiable. If staining is the result of chemical reactions between orcein and chromosomal DNA, then after ultrasonication these reactions take place in
in a different way from the usual. One possible explanation for this could be that ultrasonication alters the chemical and/or physical properties of the chromosomal DNA structure or composition.

Although this work took place in vitro and salivary glands were used, these findings require further attention because ultrasonics are utilized in research and applied science such as obstetrical medicine.

Reference: Strickberger, M.W. 1962, in: Experiments in Genetics with Drosophila, ch. 18, p. 103, John Wiley \& Sons, Inc., New York-London.

Turner, M.E. University of Georgia, Athens, Georgia. A laboratory overwintering experiment with D. montana and D. pseudoobscura.

Drosophila which live at high elevations are subject to low temperature extremes during the winter months. At elevations 7000 ft . and above low temperatures and/or snow cover may last six months or longer. For these populations of Drosophila to persist either some
stage (or stages) of the life cycle must overwinter or a new population must be founded each spring from lower elevation populations of the same species. D. montana and D. pseudoobscura were tested to determine their ability to endure cold temperatures for an extended period of time. D. montana were obtained from the University of Texas Stock Center (\#1218.8d); this strain was originally captured from Ogden, Utah and has been in the laboratory since 1941. The D. pseudoobscura were collected from American Fork Canyon, Utah (elev. 7550) in 1976.

Flies were kept in half-pint milk bottles containing cornmeal-molasses medium. Approximately 50 adults were put in a bottle and allowed to reproduce at $15^{\circ} \mathrm{C}$; when pupae appeared the bottles including the parents were put in an incubator at $-2^{\circ} \mathrm{C}$.

After eight days all D. pseudoobscura adults were dead. These bottles were moved to $15^{\circ} \mathrm{C}$ and no progeny from the original adults appeared; apparently the cold temperature had also killed eggs, larvae and pupae. D. pseudoobscura can be kept at $5^{\circ} \mathrm{C}$ for long periods of time with larvae, pupae and adults surviving.

After six months (184 days) the montana bottles (adults still alive) were removed from the incubator, adults were separated by sex and put in new bottles at $15^{\circ} \mathrm{C}$. No flies had hatched from the original bottles after one month at $15^{\circ} \mathrm{C}$ and no living larvae were observed. The other life stages (eggs, larvae, and pupae) had been killed by the cold temperature. Additionally no larvae appeared in the bottles containing surviving females after one month at $15^{\circ} \mathrm{C}$. The sexes were combined in a new bottle and larvae, and eventually adult progeny, appeared. The time at the cold temperature had despermed the "overwintering" females, but had not, at least grossly, affected their fertility.

The ability of montana adults to survive this temperature $\left(-2^{\circ} \mathrm{C}\right)$ for an extended period of time (6 months) would seem to imply that adults can and probably do overwinter. The death of the pseudoobscura individuals does not demonstrate that they do not overwinter, but only that they may overwinter where temperatures do not get this cold. In many forest environments at or above 7000 ft . elevation both montana and pseudoobscura live in the same area and are attracted to the same banana baits. The greater cold temperature tolerance of montana adults should allow them to survive in the more exposed and colder areas of this environment.

Valente, V.L.S., C.C.R. Saavedra, A.M. de Araújo and N.B. Morales. Universidade Federal do Rio Grande do Sul, Porto Alegre, R.S., Brasil. Observations on the attraction of Drosophila species for different baits and chromosomal polymorphism in D. willistoni.

Present data were obtained in three days of collection from October to November 1978, in the locality of Estação Experimental Agronômica de Guaíba, Guaíba County, 40 km from Porto Alegre, the capital of the State of Rio Grande do Sul, Brasil. The studied place is a brushwood enclosed in a capon, with some watersheds. Five fermented banana baits were used besides natural available baits: fer- mented fruits fallen around the original plant, the native palm-tree Arecastrum romanzoffianum (Palmae), which fruit is commonly called "coquinho".

The collection methods were: (1) capture of adults with nets over the two types of baits; (2) collection of two samples of 100 fruits individually placed in tubes with cultural medium in a controlled temperature chamber at $25^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$ for 15 days until metamorphosis of the preadult forms from nature was completed. In each of these samples, only 19 and 15% of the fruits were not colonized by Drosophila species.

Table 1. Numbers and percentage of Drosophila species from Guaíba.

Species	Collection method							
	Net (flying adults)				Rotting fruits (pre-adults)			
	Banana		"Coquinho"		"Coquinho"		Total	
	N	\%	N	\%	N	\%	N	\%
D. willistoni	51	8.02	574	21.87	169	14.54	794	17.95
D. simulans	477	75.00	1515	57.71	622	53.53	2614	59.10
D. griseolineata	17	2.67	226	8.61	-	-	243	5.49
D. guaramunu	14	2.20	88	3.35	-	-	102	2.31
D. polymorpha	34	5.35	108	4.11	8	0.69	150	3.39
repleta group	6	0.94	60	2.29	354	30.46	420	9.50
Others*	37	5.82	54	2.06	9	1.42	100	2.26
Total	636		2625		1162		4423	

*These numbers are relative to species whose frequencies were less than 1% individually as: D. cardinoides, D. bandeirantorum, D. immigrans, D. nebulosa and D. fumipennis.

Table 1 shows the numbers and percentages of the different species of Drosophila found in the samples. It is interesting to note that D. simulans is by far the most abundant species, irrespective of the collection method, followed by D. willistoni. As for the repleta group, the high frequency found when rotting fruits were used illustrates clearly the difference between oviposition site and the feeding sites of adults. In order to test the homogeneity of the species distribution of flying adults, two types of baits - banana and "coquinho" - a chi-square test was made. The differences between the two samples were highly significant, with a value of $\chi^{2}=110.88$ ($P<0.001$); this was due mainly to the different attractivity exerted by the two types of baits on D. willistoni, D. simulans and D. griseolineata, as far as food source is concerned.

Differences between fauna ecloded from "coquinho" and that captured with nets on the same trophic resource were compared by using the Kolmogorov-Smirnov test since there were null classes in the sample ecloded from "coquinho".

The maximum deviation between these two samples reached a value of 0.2837 which is highly significant ($P<0.001$). This result. points out that not all the females attracted by the fermentation of "coquinho" actually oviposit in the fruits, which can probably be attributed to genetic differences. Another explanation for this situation would be the occurrence of high selective pressures at the larval phase, the exploration of food resource being one of the more effective.

Table 2. Statistical significance of the differences in chromosomal rearrangements of D. willistoni among samples collected in banana baits, and those attracted and ecloded from Arecastrum romanzoffianum fruits ("coquinho").

Samples	II L rearrangements		III rearrangements	
	$\frac{\text { sing1e }}{\mathrm{P}}$	$\frac{\text { complex }}{\mathrm{P}}$	$\frac{\text { single }}{P}$	$\frac{\text { complex }}{\mathrm{P}}$
banana x "coquinho" (collected with nets)	N.S.	<0.05	N.S.	N.S.
"coquinho" x "coquinho" (ecloded from rotting fruits and attracted from the same fruit)	N.S.	N.S.	N.S.	<0.01

[^9]Nevertheless we believe we attenuated the conditions for food competition by putting each fruit individually in a tube with culture medium and dilute bread yeast.

As was previously stated, D. willistoni is one of the most abundant species and also presents differences concerning attraction for the different baits. That is why it has been chosen
for the evaluation of genotypical differences through the chromosomal polymorphisms, as had already been described by Dobzhansky (1950), da Cunha (1957), Cordeiro (1954) and others. The progeny of each female captured in nature was analyzed in relation to the larval salivary gland chromosomal rearrangements, by the technique of Ashburner (1967); the same was applied to the progeny of females ecloded from "coquinho" fruits fecundated by males ecloded from the same fruit.

The analysis of 363 individuals showed that of the five chromosome arms, $X L, X R$ and II R were homozygous. As for the left arm of the second chromosome (II L), the KolmogorovSmirnov test showed that the differences between the F_{1} of females collected from banana and "coquinho" baits were significant ($\mathrm{P}<0.05$) for combined rearrangements (two to four inversions together). For the third chromosome (III) there were significant differences between the offspring of females captured with nets over the fruits of Arecastrum romanzoffianum and the offspring of females ecloded from these fruits in the laboratory, when combined rearrangements were considered (two to three inversions).

The results of the statistical test to the chromosomal rearrangements are summarized in Table 2. The total number of rearrangements observed for II L chromosome was 17 , 6 of which were single rearragements (only one inversion) plus the homozygous; 11 were combined rearrangements (two to four inversions together), with a frequency different from those of each inversion separately, although most of these inversions being located far enough in the chromosome as to permit the occurrence of crossing over between them.

Four single rearrangements were found for the third chromosome, including the homozygous, as well as four complex rearrangements, representing two and three inversions. Among the combined rearrangements of $I I L$, for example, whereas $D, E, B / d, e, b$ reached a frequency of 54.1% in banan baits, it was not found in larvae of females ecloded in "coquinho" and attained 45.8\% in larvae from females attracted by the fruit; $F, D, E, B / f, d, e, b$ reached 77% in banana baits, 22% in the natural one as was not found in larvae of females ecloded from the native fruit.

Among the third chromosome complex rearrangements, $J, B / j, b$ was 22.3% in larvae from females attracted by banana, 2.12\% in larvae from flies ecloded from "coquinho" and 75.5\% in larvae attracted by this same fruit; the $B, C / b, c$ rearrangement reached $0 \%, 41.6 \%$ and 58.3%, respectively, in the offspring of the same samples and the $J, B, C / j, b, c$ rearrangement was exclusive of larvae from flies ecloded from "coquinho" fruits. This indicates a clear association of certain types of rearrangements with the kind of explored trophic resource.

References: Ashburner, M. 1967, Chromosoma (Berl.) 21:289-428; Cordeiro, A.R. 1954, Bol. Instituto de Ciências Naturais 1:5-54; da Cunha, A.B. 1957, Bol. Fac. Fil. Ciên. e Letr. Univ. São Paulo \#220, Biologia Geral 10:1-56; Dobzhansky, Th. 1950, J. Heredity 41:156-158.
van Delden, W. and A. Kamping. University of Groningen, The Netherlands. Selection against an Adh null allele.

Several null mutants of the alcohol dehydrogenase (Adh) locus in D. melanogaster are known. Homozygotes for these mutants, which lack detectable ADH activity, can be maintained as laboratory strains without culture problems when kept on regular food. On ethanol-supplemented medium, however, they lack detoxification ability and die quickly compared to ADH-positive flies. As we have found (van Delden et al. 1978) that selection occurs also on regular food in populations polymorphic for the naturally occurring Fast (F) and Slow (S) alleles we studied whether in populations polymorphic for a null mutant and either F or S alleles, selection would occur against the null allele. For this purpose the Adhnl (0) mutant (Grell et al. 1968) was introduced into the background of the Groningen population, whereafter $0 \times S$ and $0 \times F$ crosses were made with S and F strains possessing the same background. The offspring of these crosses (F_{1}) were put in population cages at $25^{\circ} \mathrm{C}$. The populations were continued in time and allele frequencies were determined at intervals beginning with the F_{2} generation. Populations were started both on regular and ethanol-supplemented food. Table 1 lists the observed null allele frequencies, populations indicated as $S 0$ and $F 0$ are polymorphic for the null allele and S and F alleles respectively. To study the importance of strain effects, five $S 0$ and five FO populations were started, both on regular and ethanol-supplemented food. Populations numbered up to four inclusive each contained two S or F lines which differed from the lines used in the other three populations; populations numbered five contained all eight lines S or F lines used in the other four populations of the same type.

Table 1. Frequencies of null-alleles in the course of time (initial frequency: 0.50).

Populations	Regular food						Ethanol-supplemented food			
	F_{2}	Time (weeks)					F_{2}	Time (weeks)		
		8	14	26	38	52		8	14	26
S0 1	0.50	0.45	0.44	0.37	0.35	0.22	0.23	0.06	0.01	0
S0 2	0.49	0.45	0.46	0.40	0.37	-	0.20	0.05	0.02	0
S0 3	0.49	0.44	0.38	0.36	0.33	0.31	0.18	0.05	0.01	0
SO 4	0.48	0.42	0.43	0.31	0.34	0.28	0.18	0.05	0.01	0
S0 5	0.49	0.46	0.40	0.33	0.28	0.24	0.23	0.05	0.01	0
S0	0.49	0.44	0.42	0.35	0.34	0.26	0.22	0.06	0.01	0
F0 1	0.46	0.42	0.42	0.33	0.33	0.30	0.26	0.01	0	0
F0 2	0.44	0.41	0.40	0.33	0.28	0.27	0.24	0.02	0	0
F0 3	0.49	0.44	0.41	0.38	0.36	0.23	0.23	0.03	0	0
F0 4	0.50	0.43	0.38	0.35	0.32	0.22	0.20	0.03	0	0
F0 5	0.50	0.42	0.37	0.24	0.28	0.28	0.20	0.01	0	0
F0	0.48	0.42	0.39	0.32	0.31	0.26	0.23	0.02	0	0

From Table 1 it is clear that, as has been expected, a rapid decrease in frequency of the 0 allele has occurred on ethanol food: frequency of the 0 allele had dropped to 0.01 after 14 weeks (approximately 4 generations) in the $S 0$ populations and the 0 allele was even lost in the F0 population. Also on regular food the frequency of the 0 allele decreased considerably: to 0.26 in 52 weeks (approximately 26 generations). It appears that the decline in 0 frequency is very similar in all populations of the same type: line effects are therefore small. We conclude that also on regular food the absence of ADH activity has detrimental effects and lowers the fitness of the homozygotes for the null allele; whether the fitness of the heterozygotes is also lowered is the object of further study.

References: Grell, E.H., K.B. Jacobson and J.B. Murphy 1968, Ann. New York Acad. Sci. 151:441-455; van Delden, W., A.C. Boerema and A. Kamping 1978, Genetics 90:161-191.
van Dijk, H. University of Groningen, The Netherlands. The relationship between ADH activity and body weight in D. melanogaster.

When measuring ADH-activity in larvae and flies of D. melanogaster it is important to take body weight into account. The parameter activity per mg is strongly positively correlated with body weight. The most likely explanation is the deposition of relatively large amounts of fat after reaching the critical weight. It is known (Ursprung et al. 1970) that fat bodies have a high ADH activity.

In this experiment done for the Groningen population (see Bijlsma-Meeles and Van Delden 1974) ADH activity was measured according to Van Delden et al. (1975) both in larvae showing the first signs of pupation and in 7-day-old male flies. Differences in individual weights were induced by varying the level of crowding. For $A D H$ activity per $\mathrm{mg}\left(\Delta \mathrm{Emin} \mathrm{m}^{-1} \mathrm{mg}^{-1}\right)=\mathrm{y}$ and body weight (mg) $=x$, the following relationships were found (see figures on following page):

Larvae	$A D H_{F F}$	$y=0.1144 x-0.0829$
$"$	$A D H_{S S}$	$y=0.0355 x-0.0255$
Flies	$A D H_{F F}$	$y=0.3765 x+0.0181$
$"$	$A D H_{S S}$	$y=0.0776 x+0.0089$

All regression coefficients were significant (P < 0.001).

The larger $A D H$ activities of larvae when ethanol is present in their food can be completely explained by this relation: body weights increase with increasing ethanol concentration. Selection experiments for increase of ADH activity will lead to selection for body weight when no precautions are made to keep body weight at a constant value.

Our Drosophila cultures were kept at $25^{\circ} \mathrm{C}$. At lower temperatures body weight increases. The described relationship with ADH activity does not hold in this case. ADH activity per mg is then even somewhat reduced with increasing body weight.

References: Bij1sma-Meeles, E. and W. van Delden 1974, Nature (Lond.) 247:369; Ursprung, H., H. Sofer and N. Burroughs 1970, Wilhelm Roux' Archiv 164:201; van Delden, W., A. Kamping and H. van Dijk 1975, Experientia 31:418.

Vasudev, V. and N.B. Krishnamurthy. University of Mysore, India. Effect of Dithane M-45 on rate of development and viability in D. melanogaster.

Rate of development and viability are the two parameters by which toxicity of a chemical is measured. Such parameters were used to test the effect of Dithane M-45 on D. melanogaster (Oregon-K). Eggs of the same age (± 4 hours) were collected following the procedure of Delcour (1969). 35 eggs were then placed into each $3^{\prime \prime} \times 1^{\prime \prime}$ vial containing chemical-supplemented
media and normal medium and permitted to develop at a constant temperature of $23 \pm 1^{\circ} \mathrm{C}$. Concentrations of $2,5,10,15,20,25$ and 30 mg of the chemical were thoroughly mixed in 100 ml wheat cream agar medium. The normal medium was used as control. The flies were scored each day from the time of emergence up to the end of eclosion. The pattern of emergence of flies in the control and in different concentrations of Dithane M-45 is depicted in Fig. 1 (see following page). It is clear from this graph that in the control the emergence of flies started on day 9 with a peak on day 11 and terminated on day 17 . In contrast to this, the rate of development is prolonged in different concentrations of the chemical, thus affecting the time of emergence. In the lowest concentration ($2 \mathrm{mg} / 100 \mathrm{ml}$ food medium) eclosion commenced on day 11 and ended on day 22 with a peak on day 14 . On the other hand, in the highest concentration ($30 \mathrm{mg} / 100 \mathrm{ml}$) emergence began on day 19 and terminated on day 29 . Here the peak of emergence was confined to day 25. The effect of Dithane M-45 on viability was measured by the number of flies emerged in each group. Thus the number of flies obtained in the control is 93.57%, while in the lowest concentration it is 82.14%; in the highest, 3.57%. From these results it is clear that Dithane M-45 has a significant toxic effect at higher concentrations.

Acknowledgements: The authors are grateful to Dr. M.R. Rajasekarasetty for his constant encouragement and valuable suggestions, and to the UGC for financial assistance. Reference: Delcour, J. 1969, DIS 44:133-134.

Vasudev, V. and N.B. Krishnamurthy. University of Mysore, India. Effect of aspirin on D. melanogaster. II. Noninduction of sex-linked recessive lethals.

Acetyl salicylic acid, marketed under the name "Aspirin", is well known for its antipyretic, analgesic and anti-inflammatory activity. It has been convincingly shown that aspirin produces drastic changes in experimental animals and plants. It is reported by Vasudev et al. (1978) that aspirin has a pronounced effect on the rate of development and viability in D. melanogaster. So far, there are no mutagenic reports of this drug. Hence, the authors tested the mutagenic property of this drug by scoring sex-linked recessive lethals in D. melanogaster. Oregon-K and M-5 of D. melanogaster formed the materials for the present study. Aspirin was fed to D. melanogaster larvae in concentrations of 300 and 350 mg per 100 ml of food

medium. The procedure for scoring sex-linked recessive lethals is described in detail by Abrahamson and Lewis (1971). In the present experiments two-day-old treated males were used to test for the induction of sex-linked recessive lethals.

Table 1. Frequency of sex-1inked recessive lethals induced by aspirin in D. melanogaster.

Concentration	No. of chromosomes tested	No. of lethals produced	$\%$ 1ethals
Contro $10 \mathrm{mg} / 100 \mathrm{ml}$	895	1	0.11
300	850	2	0.24
$350 \mathrm{mg} / 100 \mathrm{~m} 1$	615	2	0.33

Table 1 incorporates the data on the frequencies of sex-1inked recessive lethals in controls as well as in the chemical-treated series. From this it is clear that both the concentrations tested were unable to induce a significant percentage of lethals compared to controls. By this, it can be concluded that these concentrations of aspirin are non-mutagenic to D. melanogaster. Consistent with this non-mutagenic nature of the drug, Maner et al. (1970) have reported that aspirin is unable to induce chromosomal aberrations in human leukocytes. In contrast to these results, Jarvik and Kato (1968a,b) and Loughman (1971) in human leukocytes and Sen et al. (1975) in Allium cepa have shown significant chromosomal aberrations from aspirin and concluded it to be mutagenic. In the light of these highly contradicting results, more investigations on other animals and plants are necessary even though it is non-mutagenic in D. melanogaster.

Acknowledgements: The authors are grateful to Dr. M.R. Rajasekarasetty for his constant encouragement and valuable suggestions, and to the UGC for financial assistance.

References: Abrahamson, S. and E.B. Lewis 1971, in: Chemical Mutagens (A. Hollaender, ed.), Plenum Press, New York, pp. 464-469; Jarvik, L.F. and T. Kato 1968a, Lancet 1:250; and \qquad 1968b, Science 162:621; Loughman, W.D. 1971, Science 171:829; Maner et al. $\overline{1970}$, Science 169:829; Sen, P., O.S. Naik and K.N. Misra 1975, Cur. Sci. 44:713-714; Vasudev, V., N.B. Krishnamurthy and H.A. Ranganath 1978, Inter. Symp. Environ. Agents \& Biol. Effects 59.

Vasudev, V. and N.B. Krishnamurthy. University of Mysore, India. Preliminary studies on the effects of cadmium chloride on D. melanogaster.

Cadmium pollution is increasing day by day due to its extensive use in industries and its existence as an impurity in zinc products. Cadmium has been demonstrated to induce drastic effects in experimental animals (Gunn and Gould 1970; Fowler et al. 1975; Tiggle et al. 1976;

Kumaraswamy and Rajasekarasetty 1976). Further, the disease "Ouchi-Ouchi" has been shown to be due to cadmium poisoning (Lucas 1975). Lucas (1975) has pointed out that no conclusive evidence links cadmium as a mutagen, carcinogen or teratogen for man. An attempt is made by the authors to investigate the effects of cadmium on the somatic and genetic systems of Drosophila and the preliminary results are presented.
D. melanogaster (Oregon-K) formed the material for the present study. Cadium in the form of cadmium chloride was fed to larvae in concentrations of $0.05,0.1,0.5,1.0$ and 5.0 mg per 100 ml food medium. Normal medium was used as control. The eggs were collected following the procedure of Delcour (1969) and 35 eggs per vial were placed in each of the above concentrations. Flies were counted from the first day of eclosion to the last day of emergence. From the data, the rate of development and viability were estimated.

Fig. 1 (see following page) presents the pattern of emergence in different concentrations and in contro1. It is clear from this graph that the pattern of emergence is very much altered by the chemical. Developmental time is a fairly good indicator of various somatic effects caused by the chemical in the test substrate (Luning 1966). Hence, mean developmental time in control and in different concentrations of cadmium chloride has been estimated and presented in Table 1. Perusal of this table indicates that the rate of development is prolonged even at the lowest concentration tested. Prolongation of the mean developmental time becomes significant as compared to control ($\mathrm{P}<0.05$). This is in line with the findings of Sorsa and Pfeifer (1973), wherein more than $1.25 \mathrm{mg} \mathrm{CdCl} 2 / 1$ substrate is known to cause significant prolongation in the rate of development.

Vijayan, V.A. and N.B. Krishnamurthy. University of Mysore, Manasagangotri, Mysore, India. Reduction of oviposition by a polycyclic hydrocarbon in D. melanogaster.

Chlorinated naphthalenes are industrially important polycyclic hydrocarbons used in electrical industry, cable covering compositions and storage batteries. 2,4-Dichloro-1-naphtho1 is one such chemical employed here to find out its effect on fecundity in D. melanogaster. 30 $\mathrm{mg} / 100 \mathrm{ml}$ food medium is found to be the LC50 of this chemical on melanogaster (Krishnamurthy and Vijayan 1978).

20 and $30 \mathrm{mg} / 100 \mathrm{ml}$ food media represent the concentrations of the above chemical used to feed the larvae of Oregon-K strain of the said test system. Normal food medium was used as a control. Twenty virgin females and 20 bachelor males from each concentration were isolated, aged for five days and used for making crosses. The egg laying was calculated continuously for 10 days for each of the batches and compared with that of the control. All the experiments were carried out at $24 \pm 1^{\circ} \mathrm{C}$.

Table 1. Fecundity of chemical-treated and control D. melanogaster flies.

Concentrations	Total number of eggs	Number of eggs/ female/day
Control	6910	34.55
20 mg	3666	18.33^{*}
30 mg	2648	13.24^{*}

$* P<0.05$, by analysis of variance

Fig. 1
Fig. 1. Pattern of egg-laying by treated D. melanogaster with 2,4-dichloro-1-naphthol and control.

The results are presented in Table 1 and the daily pattern of egg laying is graphically represented in Fig. 1. In control the total eggs laid were 6910, whereas in 20 and 30 mg concentrations the totals were 3666 and 2648 eggs, respectively. This shows significant decline in fecundity in both the concentrations employed compared to the control.

The life span and the fecundity of Drosophila are extremely sensitive to a great variety of environmental conditions like temperature, light, crowding, presence or absence of the opposite sex, and so on. Gruwez et al. (1971) have reported that photoperiodicity rhythm considerably influences the rate of eclosion in melanogaster. In our experiment all the above conditions were stable; the decline in oviposition must have been brought about by the chemical only. The effect may be in the number of ovariole production or in the speed of growth of the successive stages of the egg chambers. So here the authors opine that the chemical might have interfered and affected the oviposition and hence a reduction in fecundity. Higher concentration induced more damage to fecundity than lower concentration (Table 1). The nature of genetic damage that

2,4-dichloro-1-naphthol could cause is being analyzed.
The authors are grateful to Dr. M.R. Rajasekarasetty for his constant encouragement and valuable suggestions. Financial aid by the Dept. of Atomic Energy, Government of India, is greatly acknowledged.

References: Gruwez, G., C. Hoste, C.V. Lints and F.A. Lints 1971, Experientia 27(12): 1414-1416; Hardie, D.W.F. 1964, in Encyclopedia of Chemical Technology, Vol. V (2nd ed.), pp. 302-304; Krishnamurthy, N.B. and V.A. Vijayan 1978, Entomon (in press).

Villa, T.G. and W.T. Starmer*. University of Salamanca, Salamanca, Spain, and *Syracuse University, Syracuse, New York. Some carbohydrases present in axenic larvae of D. mojavensis.

Most Drosophila species feed on yeasts, which supply vitamins, sterols, proteins and other nutritional requirements of the larvae and adults. Since yeasts are known to have a complex cell wall composed of glucans, mannans, chitin, protein and lipids (Pfaff 1971), it was of interest to assay Drosophila larvae for activity of carbohydrases which could function in degrading the yeast cell wall.

The larvae of an axenic strain of D. mojavensis were collected, washed and homogenized in 0.05 M sodium succinate buffer (pH 5.5) for 10 minutes (10 ml volume). The homogenate was centrifuged at $10,000 \mathrm{~g}$ for 15 minutes; the pellet was re-extracted and centrifuged in the same manner. Both supernatants were combined and brought down to 5 ml by ultrafiltration on an amicon ultrafiltration cell using PM-10 membranes. This solution of "soluble" enzymes was assayed for activity on the following carbohydrate substrates obtained from the carbohydrate collection of the Dept. of Food Science and Technology, University of California, Davis: laminarin, pustulan, xylan, $\alpha-(1-3)$-glucan, CM-chitin, CM-cellulose and starch. The unit of enzyme activity was defined as the amount of enzyme which catalyzed the release of 1 nmol of D -glucose or equivalent reducing power (Villa et al. 1975) per minute at $30^{\circ} \mathrm{C}$ from each of the substrates given above. Total protein in the sample (4 ml) was determined by the Lowry method to be 20 mg .

Table 1. Summary of some carbohydrases found in cell-free extracts of axenic larvae of D. mojavensis.

Substratel	Enzyme activity units/ml	Associated enzyme activity
Laminarin	3.1	$\beta-(1-3)$-Glucanase (EC 3.2.1.6)
Pustulan	4.1	$\beta-(1-6)$-Glucanase (EC 3.2.1.75)
Xylan	22.5	$\beta-(1-4)$-Xylanase (EC 3.2.1.32)
-(1-3)-Glucan	18.5	$\alpha-(1-3)-$ Glucanase (EC 3.2.1.59)
CM-Chitin 2	10.3	$\beta-(1-4)$-Chitinase (EC 3.2.1.14)
CM-Cellulose 3	2.3.	$\beta-(1-4)$-Cellulase (EC 3.2.1.4)
Starch	131.2	$\alpha-(1-4)$-Glucanase (EC 3.2.1.3)

$1_{\text {All }}$ substrates were prepared at a final concentration of 0.5% in 0.05 M sodium succinate buffer (pH 5.5)
${ }^{2}$ CM-Chitin $=$ Carboxy-methyl chitin
3CM-Cellulose $=$ Carboxy-methyl cellulose
Table 1 lists the enzyme activities for the various carbohydrases found in the axenic larvae. It is apparent that α-amylase accounts for most of the activity (68\%) while xylanase, $\alpha-(1-3)-$ glucanase and chitinase together account for 27% of the activity. The remaining activity (5%) is due to the enzymes β-(1-3)-glucanase, $\beta-(1-6)-$ glucanase and cellulase. These preliminary results indicate that the cell-free extracts of axenic lar- vae possess the enzymatic potential to partially
hydrolyze the cell wall of yeasts found in the natural diet of the fly (Starmer et al. 1976). It is noteworthy that several hydrolases, xylanase, $\alpha-(1-3)$-glucanase and chitinase are present in the larvae but the total enzyme complement necessary for the complete degradation of the yeast cell envelope is not present, otherwise the activities of $\beta-(1-3)$ and $\beta-(1-6)$-glucanases would be higher since it is well established that these enzymes are directly related to yeast cell wall hydrolysis (Pfaff 1977). This may indicate that the larvae only "weaken" the wall, rendering the cell more suceptible to extraction of the necessary nutritional factors for the development of the fly. It is known that the fecal pellet of adult Drosophila contains "ghost" cells and the yeast cell wall is left at least partially intact (Shehata et al. 1951). The
reason for the lack of total cell wall hydrolysis is not clear but it might be due to a biologically improbable adaptation or a coevolutionary condition of the yeast and the Drosophila. References: Phaff, H.J. 1971, in The Yeasts (eds. A.H. Rose and J.S. Harrison), pp 133210; 1977, in Food Proteins, Advances in Chemistry Series No. 160 (eds. R.E. Feeney and J.R. Whitaker), pp. 244-282; Shehata, A.M. E1 Tabey et al. 1951, Amer. Natur. 85:381-383; Starmer, W.T. et al. 1976, Microbial Ecology 3:11-30; Villa, T.G. et al. 1975, Arch. Microbiol. 104:201-206.

Wheeler, M.R. University of Texas,
Austin, Texas. Are the new species described in DIS validly published?

A number of new species of Drosophila and related genera have been described in DIS, but their validity and recognition in scientific nomenclature has never been clear. To be valid, new names must be "published" in accordance with the International Code of Zoological Nomenclature, as adopted by the International Congress of Zoology and administered by the International Commission on Zoological Nomenclature (ICZN). The question of whether DIS is a publication has been debated often--see for example DIS 30: $6 a, 33: 7,34: 164,36: 8$. Earlier issues of DIS, up to No. 29 of 1955 , carried the front cover statement "This is not a publication." Beginning with No. 30 (1956) the statement was dropped. The current statement, "Material presented here should not be used in publications without the consent of the author", does nothing to help determine whether new names are validly published or not.

The question, then, is not whether the editor (s) of DIS consider it to be a publication, but whether it is a publication in the sense of the Code. To (hopefully) settle this matter, I quote opinions from E.B. Basden of Scotland, who has been very active in Drosophila systematics, Curtis Sabrosky of the Systematic Entomology Laboratory, USDA, a well known Dipterist and long-time member of the ICZN, and Richard Melville, permanent Secretary of the ICZN, at the British Museum (N.H.), London.

They are unanimous in their opinions, with which I concur: New taxa described in DIS since 1955 should be considered as having been validly published. Here are a few of their comments:

Basden: "I have always thought that it [DIS] was a publication according to the Rules, p. 7, Art. 8, and I think that it should be accepted as such, in spite of Recomendation 8A [i.e., it is best not to use mimeographing, etc., for a publication - MRW]. It's a regular scientific periodical."

Sabrosky: "...now that I have seen [DIS] I am inclined to agree with Melville that it is indeed a publication... It seems obvious that the editors also realized that when they dropped the statement 'This is not a publication.' And unless DIS is copyrighted, they might as well drop the requirement about getting the author's consent. ...I have no doubht that some of the research notes are mere progress reports, which some journals would not accept. But some notes seem pretty complete in themselves, such as pp. 71-72 in DIS 50, where types and paratypes are specified. One very unfortunate aspect of all this is that taxonomic papers in DIS will probably not be picked up by Zoological Record or Biological Abstracts. And ordinary libraries--museums for example-will not have DIS on their shelves."

Melville: "It seems clear that the production satisfies all the mandatory requirements of Art. 8: (a) it is produced in ink on paper in numerous identical copies--No. 38 was issued in 1100 copies, which far exceeds the edition of many learned journals whose status as publications is not questioned merely because their editions are small; (b) some of the material in it is clearly published for the purpose of permanent, public record in the science; (c) it is obtainable by purchase; (d) it is not reproduced by a forbidden method."

The number of new names is, fortunately, fairly small. Only one appeared before 1956: Nolte and Stoch, DIS 24:90 (1950) described a new Drosophila from Africa; it has since been named D. yakuba (Burla 1954). Following is a list of the new taxa described in DIS since 1955. I consider them to have been validly published, and I am sending a statement to this effect to Zoological Record.

Chymomyza pararufithorax Vaidya and Godbole 1973. DIS 50:71-72
Drosophila chamundiensis Sajjan and Krishnamurthy 1972. DIS 48:56-57
Drosophila charmadensis Gwoda and Krishnamurthy 1972. DIS 48:38
Drosophila ezoana Takada and Okada 1957. DIS 31:164*

Drosophila mojavensis baja Mettler 1961. DIS 38:57-58
Drosophila neonasuta Sajjan and Krishnamurthy 1972. DIS 48:56-57*
Leucophenga neoangusta Godbole and Vaidya 1977. DIS 52:24
Stegana subexcavata Vaidya and Godbole 1977. DIS 52:55-56
Zaprionus paravittiger Godbole and Vaidya 1972. DIS 48:135-136
*Starred species were later described again in another journal.
In my opinion, Drosophila taxonomists should not publish new species descriptions in DIS--at least until it is formally recognized as a "publication". Further, it is not wise to include new names in articles of a non-taxonomic nature. The Code provides that a new name may be valid if accompanied by a "description"; but a complete, thorough description is not required--the simplest descriptive remark may be enough to validate a new name (e.g., describing the chromosomes, some electrophoretic patterns, etc.). Drosophila workers have a rather poor reputation in systematic circles, having used new, unpublished names without regard to the International Code.

Regretfully, the writer is an expert on this subject, having made more than a few of such errors!

Wijsman, E.M. University of Wisconsin, Madison, Wisconsin. The effect of ether on mating behavior in D. simulans y w.

In setting up some experiments which involved matings between virgin females and their brothers in D. simulans $y \mathrm{w}$, I encountered considerable difficulty with sterility. I decided to test the possibility that the ether that I was using as an anesthetic was causing this sterility.

I established pair matings using virgin females and their brothers separated by ether, CO 2 , or aspirator (no anesthesia), and placed the vials at $25^{\circ} \mathrm{C}$. Two weeks later I scored the vials as fertile or sterile. As can be seen in Table l, ether had a very strong effect on fertility. The hypothesis that anesthesia had no effect on fertility was tested using a 1 -tailed Fisher's exact test. Comparison of ether and no anesthesia gave p $<0.000001 . \quad \mathrm{CO}_{2}$ vs. no anesthesia gave $p=0.18$, which is not significant.

To determine which of the two sexes was steri-

Table 1. Number of vials which were either fertile or sterile when parents were exposed to different types of anesthesia.

Anesthesia	Fertile	Sterile
Ether	4	56
CO_{2}	18	8
None	21	4

lized I repeated the experiment using only one sex which had been exposed to ether. When only the male had been anesthetized high sterility resulted. Anesthetized females mated to non-anesthetized males were fertile.

To determine the cause of sterility I dissected the testes to check for motile sperm and watched the males court females. Males were isolated for 3-4 days after collection with either ether or an aspirator and then placed in empty vials with 3 aged virgin females. Those which had been collected without ether showed normal courtship behavior; those which had been exposed to ether showed virtually no courtship behavior. Dissection of the testes showed motile sperm. Thus in this strain of D. simulans, ether seems to produce almost complete, permanent, behavioral sterility in the males.

Williams, J.M. University of California, Santa Cruz, California. Tumorigenesis in D. melanogaster bearing the tempera-ture-sensitive mutation shibiretsl.

The imaginal discs of Drosophila are singlelayered secretory epithelia (Bodenstein 1950; Poodry and Schneiderman 1970) which resemble the ascinar units of vertebrate exocrine glands. This feature has been exploited along with the convenience of in vivo culturing methods (Hadorn 1963) to characterize the initial morphological and ultrastructural changes occurring in the eye-antenna imaginal disc of D. melanogaster. A temperature-sensitive mutation, shibiretsl (Poodry et al. 1973) in D. melanogaster
was used to generate information concerning the timing of initiation of tumorous growth and the pattern of cellular proliferation in the neoplasm. Neoplasia in Drosophila is well documented (Gateff 1977, 1978); however, none of the previously defined neoplasms of genetic or epigenetic origin have yielded satisfactory data concerning the initial stages of tumorigenesis. The fact that the eye-antenna disc of shitsl is temperature sensitive, transplantable, displays autonomous growth and loss of differentiation capacity has augmented its usefulness in documenting patterns of neoplasmic change.

Shitsl eye-antenna discs were dissected from mature third instar larvae and implanted
into the hemocoel of mated 3-4 day old Ore-R female hosts (Ursprung 1967). Host flies were incubated at $29^{\circ} \mathrm{C}$ (the mutant restrictive temperature) in shell vials containing standard medium. In some experiments these flies were cultured for two weeks. After this time the eye disc had tumorized and began to fill or filled completely the abdominal cavity. The tumorous growth was dissected from the abdomens in buffered ringer solution, fragmented with tungsten needles and reimplanted for second generation growth (one generation $=$ two weeks). Wild-type eye discs do not tumorize or behave similar to shitsl when treated in an identical fashion.

Other eye-antenna discs from shitsl third instar larvae were incubated in vivo for periods ranging from 16 to 22 days. These implants were cultured at $29^{\circ} \mathrm{C}$ for period between 2 and 10 days and then maintained at $22^{\circ} \mathrm{C}$ for the remainder of the incubation period. After dissection from the abdomens these implants were measured with a stage micrometer and examined for gross morphological features. Data summarized in Table 1 show that tumorigenesis is initiated within a 48 hour period in these tissues and that continued heat stimulation is not required to maintain tumorous growth. These data indicate that tumorigenesis in this tissue is irreversible. Furthermore, it is noted that the tumors grew to about the same size irrespective of the time cultured at $29^{\circ} \mathrm{C}$. This indicates that a maximum pattern of proliferation was established concomitant to the initiation of tumorigenesis. Thus, the neoplasms behave autonomously. This expression is initiated via temperature sensitivity to yield information concerning regulation of gene expression in normal vs. tumorous tissue.

Table 1.

	Group I	Group II	Group III	Group IV	Group V
Days at $29^{\circ} \mathrm{C}$	8	10	8	4	2
Days at $22^{\circ} \mathrm{C}$	14	10	10	13	14
Total days in culture	22	20	18	17	17
Size $\times 10^{-3}$	1.2	1.08	1.138	1.21	1.2

$*$ Size of control disc is $\sim 0.85 \operatorname{mm}^{2} \times 10^{-3}$.
bulge in what appears to be a solid mass of cells. The arrangement of the epithelium contorted resulting in irregular folds and projections. Some cells lose contact with the basement membrane in areas and aggregate in groups. The predominant columnar appearance of the epithelial cells seen in wild-type discs is not visualized in temperature-sensitive disc epithelia cultured for 6 hours. Instead they become more cuboidal and irregular in shape and show modification to the apical border. The microvilli become shortened and irregular with disorderly microtubular arrangement. Cell-to-cell contacts are interrupted by intercellular spaces and membrane-bound undersides appear intracellularly. The cytoplasm contains numerous ribosomes; many rough ER are present and possibly more mitochondria are present in these cells than in the controls.

Many of the initial morphological aberrations are detectable in implants cultured for longer periods and other abnormalities result as well. The basal lamina of these tumors often form pockets filled with amorphous material, vesiculate particles and dead cell debris. It is often thrown into irregular projections extending beyond the basal surface of the epithelial cells. Multiple cell layers are seen and membranes of juxtaposed cell layers often appear fused. Cells with picnotic nuclei increase in number with continued in vivo cultures as well as cells containing virus-1ike particles.

a. The cross section of third larval instar eye disc appears as a pseudostratified single layered epithelium with distinct microvillar and basal surfaces. PM, peripodal membrane; PC, peripodal cavity; dv, dividing cell; L, lumen; MC, macrophage-1ike cells. (1300X)
b. A section of eye-antenna disc tumors cultured for 6 hrs at $29^{\circ} \mathrm{C}$. A mass of epithelial cells infiltrated with dead cells (dc) protrudes into the lumen of the disc. (1000X)
c. Epithelium with virus-like particles (v1p) present. Intercellular spaces and a cell elaborating microvilli on two opposite sites is seen. (10,000X)
d. The epithelium (ep) which makes up the cortex varies in thickness but seems to be singlelayered. Aggregations of cells and cells organized in monolayers around a central lumina (arrows) are found in the medulla (M). (200X)
e. An aggregate of cells reminiscent of the ommatidial precursor clusters. No apical/basal distinction is apparent. (5000X)
f. The basement membrane (bm) is not in contact with the basal surface of the epithelial cells. A massive amount of mitochondria (arrows) and amorphous debris is present between them. Atypical cell morphology and large intercellular spaces (int) are evident. (3300X)

Abstract

After one generation in vivo the monolayer of epithelial cells becomes rearranged. It appears sponge-1ike due to intercellular spaces; it also lacks cellular continuity in areas. The basal lamina is often the only structure maintaining the sac-like appearance. In these tumors the outer portion of termed the "cortex" and is comprised of a remnant population of epithelial cells. These cells surround a "medulla" region which is composed of cells arranged in sperical configurations. The cell number in these spheroids vary but are reminiscent of the ommitidial precursor cluster found in the developing eye disc of the wild-type (Waddington and Perry 1960). Thus, it is possible that tumorigenesis did not affect the determined state of this cell population, but did interfere with the differentiation process. A considerable amount of cell debris and amorphous material is found in the medulla.

Autoradiographic studies of tumors incubated with 3 H -thymidine for 48 hours showed differential incorporation in areas of the tumor whre masses of cells bulge in the epithelium. This indicates that proliferation continues in the epithelium (cortex region) as opposed to the medulla. These features are important in determining basic kinds of cellular interactions which occur in other tumors arising from secretory epithelia and are indicative of a certain pattern of neoplastic change.

References: Bodenstein, D. 1950, Biology of Drosophila, Hafner, New York; Gateff, E. 1977, DIS 52:129; 1978, Science 200:1449-1459; Hadorn, E. 1963, Develop. Biol. 7:617629; Poodry, C.A. et al. 1973, Develop. Biol. 32:376-386; Poodry, C.A. and Schneiderman, H.A. 1970, Wilhelm Roux Archives 166:1-44; Urpsprung, H. 1972, Biology of Imaginal Discs, SpringerVerlag, New York; Waddington, C.H. and M.M. Perry 1960, Proc. Roy. Soc. B 153:155-178.

This work was supported by NIH grants GM 20401 and RR08132.

Wu, C.K. and P. Smith. Adrian College, Adrian, Michigan. Calcium cyclamate induced lethal effect and genetic damage in spermatocytes of Drosophila.

In determining the lethal effect of calcium cyclamate on development, $v \mathrm{w}$ females of the same age were mated individually with three males into five different series according to the concentrations of calcium cyclamate solution in the food media. It is assumed that, on the average, one female would lay the same number of eggs during the same period of time. It was found that in the treated series, the survival rates were decreasing with increasing concentrations of calcium cyclamate solution in the media, or in other words, the higher the concentration of calcium cyclamate in the medium causes the higher rate of lethality (Table 1). It clearly suggests that calcium cyclamate causes lethal effect on the early development of D. melanogaster.

Table 1. Average number of progeny, survival rate and lethality rate from a single female Drosophila in media with different concentrations of calcium cyclamate.

| | | Cyclamate media | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | Control | 0.625% | 1.25% | 2.5% | 5% |
| Male | 46.3 ± 9.8 | 27.2 ± 4.3 | 27 ± 2.5 | 10.2 ± 11 | 0 |
| Female | 56.7 ± 4.3 | 37.2 ± 2.7 | 35.6 ± 13.2 | 15.8 ± 9.8 | 0 |
| Total | 103 ± 14.1 | 64.4 ± 3.8 | 62.6 ± 13.0 | 28.6 ± 18.4 | 0 |
| Survival rate | 1.00 | 0.63 | 0.61 | 0.28 | 0 |
| Lethality | 0 | 0.37 | 0.39 | 0.72 | 1 |

To estimate the chromosomal damage induced by calcium cyclamate, a doubly marked Y chromosome was used in the experiment. Males of the composition ywf/Bs.Y.yt ($\mathrm{y}=$
yellow body; w= white eyes; $f=$ forked bristles; $B^{s}=$ Bar eyes of Stone, which is a marker on the long arm of the Y chromosome; $y^{+}=$normal allele of yellow, which is attached to the tip of the short arm of the Y chromosome) were used in this study. Day-old males were collected and transferred to a treatment chamber in which medium mixed with 1.25% calcium cyclamate for about 2 days. Then, the treated males were mated individually with three virgin females of the composition ywf/ywf for a period of 9 days; males treated with 1.25 sucrose mated in the same manner served as the control.

The regular offspring from these crosses are phenotypically yellow, white, forked females and Bar, white forked males. An exchange between the X chromosome and Y^{L} (the long arm of the Y chromosome) proximal to the B^{S} marker generates an X chromosome with $Y s$ and the appended yt marker attached proximally and is recoverable as a phenotypically white, forked female (ywf.
$y+/ y w f)$. The reciprocal product is a centric fragment carrying the $B S$ marker, recovered as Bar, yellow, white, forked male (ywf/FR Y•BS). An exchange between X and $Y S$ (the short arm of the Y chromosome) proximal to the $y+$ marker generates an X chromosome with $Y \mathrm{~L}$ and the appended B^{S} marker attached proximally and is recoverable as a phenotypically Bar, white, forked female (ywf. $\mathrm{B}^{S} / \mathrm{ywf}$) and the reciprocal product is also a centric fragment, carrying the marker $y+(F R Y \cdot y+$) recovered as a white, forked male (ywf/FR Y•y+). These exceptional males may also arise from the deletion of one of the two markers. From the recovery of both X and Y chromosomes following nondisjunction phenotypically Bar, white, forked females (ywf/ $y w f / B^{s} \cdot Y \cdot y+$) are obtained. The reciprocal product is recovered as yellow, white forked males ($y w f / 0$). Such a male may also arise from loss of both markers.

Table 2. Progeny from crosses of ywf females, mated with ywf/Bs.Y.y+ males. Treated (T) or not treated (C) with 1.25% calcium cyclamate medium (frequency $\times 10^{-4}$).

Series	Regular		X-Y Exchange		Nondisjunction	
	Female	Male	Female	Male	Female	Ma1e
C	10907	9022	0	$\begin{gathered} 1 \\ (1 \pm 1) \end{gathered}$	$\begin{gathered} 4 \\ (3.5 \pm 1.8) \end{gathered}$	$\begin{gathered} 6 \\ (6.6 \pm 2.7) \end{gathered}$
T	39449	32172	$\begin{gathered} 1 \\ (.25 \pm .25) \end{gathered}$	$\begin{gathered} 6 * \\ (10 \pm 5.5) \end{gathered}$	$\begin{gathered} 9 \\ (2.3 \pm 76) \end{gathered}$	$(1.6 \pm .7)$

*In one vial there were 7 exceptional males; the event probably occurred in the spermatogonia stage. It was scored as a single event.

The results
are given in Table
2. The informa- tion from the exception flies of $X-Y$ exchange class indicates that the frequencies in the treated series exceed those in the control series. Turning to the class of nondisjunctional, it may be seen that there is no harmful effect of

calcium cyclamate to the disjunction of X and Y chromosomes.
In line with the findings in the first experiment, these data suggest that the calcium cyclamate not only inhibits the early developmental stages to cause lethality, but also causes chromosomal breakage during spermatogenesis of D. melanogaster.

Xamena, N., R. Marcos and A. Creus. Autonomous University of Barcelona Bellaterra, Spain. Effect of mating system on disruptive selection.

Among the different effects that disruptive selection can produce on a population, the increase in the phenotypic variability and consequently, the divergence between the extreme phenotypes is generally accepted. See Thoday (1972) for a review. However, there is not agreement about other effects that disruptive selection can produce, as well as the effecivity of different mating systems used.

In order to check the effect that the different mating systems can produce on the divergence of extreme phenotypes we have carried out a disruptive selection experiment using two mating systems: quasi-random and mating-choice.

With the quasi-random mating the gene flow in any generation depends only on the probability that the "hybrid" individuals will be included in the selected sample. With matingchoice is also depends on the probability that "hybrid" matings will occur, and on their success relative to the "non-hybrid", that is, assortive matings that occur.

The experiment has been carried out during 15 generations and the trait selected has been the interocellar bristles in D. melanogaster. All the experiments were done at $25 \pm 1^{\circ} \mathrm{C}$ with a selection intensity of 20%.

For each kind of mating two lines were set up. Figs. 1 and 2 show the divergence between extreme phenotypes in the two mating systems. From these figures we can conclude that while mating-choice mating does not produce divergence (neither MChl nor MCh2), in one line of quasi-random (QR1) there is a clear divergence (2.04% of overlap at 15 generations) although in the other the divergence is practically null.

These results seem to show that quasi-random mating is more effective; but something striking in these results is the resistence to divergence of this population, which con-

Fig. 2 (Matine-choice)

Yoo, B.H., J.J. Moth and J.S.F. Barker. University of Sydney, Australia. Abdominal bristle numbers and sex-dimorphism ratios in different Drosophila species.

The number of bristles on abdominal sternites has been used as a model character in many experimental quantitative genetic studies. However, the functional role of the bristles and adaptive significance of the variation in number are not well understood, although this
character was described as being peripheral to reproductive fitness (Robertston 1955), and of ancient phylogenetic origin (Robertson and Reeve 1952). Mather (1941) observed enormous variation in abdominal bristle number, particularly in the ratio of numbers in the two sexes, among 4 species of Drosophila, and suggested the action of selection for this character in the process of speciation.

With this background in mind, bristle numbers on the 4 th abdominal sternite were scored in small samples ($20-40$ pairs) of 13 Drosophila species. These flies (except for D. repleta) were caught using banana baits in Sydney suburbs and cactus-infested areas of N.S.W., mostly in 1972-73. Wild-caught flies were bred on a dead yeast fortified medium, first under crowded conditions and then under "optimal" conditions, except for D. brunneipennis, which could not be cultured easily in the laboratory; wild-caught flies only were scored for the latter. The crowded culture conditions reduced bristle number in some species, but hardly influenced the sex dimorphism (SD) ratio, viz. male score to female score ratio. Hence, SD ratios are perhaps comparable under quite diverse conditions.

Mean bristle numbers under "optimal" conditions and SD ratios averaged over the two culture conditions are presented in Table 1. To indicate the extent of variation among different populations within a species, the mean and standard deviation of averages for 8 strains of D. melanogaster from literature (Reeve and Robertson 1954; C1ayton et al. 1957; Sheldon 1963; Sheridan et al. 1968) and our observations were calculated as follows:

The large variation in SD ratio among species

	Male	Female	SD Ratio
Mean	18.12	22.30	0.811
Std. deviation	2.37	2.24	0.033

Table 1. The number of bristles on the 4 th abdominal sternite and $S D$ ratio in different Drosophila species (mean \pm S.E.).

Subgenus	Group	Species	Male	Female	SD Ratio
Sophophora	melanogaster	simulans	15.2 ± 0.4	19.5 ± 0.5	$.770 \pm 0.020$
		melanogaster	15.4 ± 0.3	19.6 ± 0.5	$.782 \pm 0.022$
		ananassae	20.6 ± 0.3	23.1 ± 0.4	. 910 ± 0.017
		serrata	16.7 ± 0.3	17.9 ± 0.3	$.926 \pm 0.020$
	obscura	subobscura*	15.4 ± 0.3	16.6 ± 0.3	$.925 \pm 0.024$
Scapto-		lativittata	22.4 ± 0.5	24.5 ± 0.5	$.916 \pm 0.029$
drosophila		brunneipennis	26.9 ± 0.7	29.1 ± 0.5	$.924 \pm 0.029$
Drosophila	immigrans	immigrans	26.5 ± 0.4	23.3 ± 0.3	1.135 ± 0.023
	funebris repleta	funebris	39.2 ± 0.9	31.8 ± 0.7	1.235 ± 0.026
		hydei	45.4 ± 0.5	36.3 ± 0.6	1.251 ± 0.024
		repleta**	56.8 ± 0.8	42.1 ± 0.4	1.351 ± 0.023
		aldrichi	28.7 ± 0.5	26.0 ± 0.5	1.106 ± 0.028
		buzzatii	42.5 ± 0.5	29.0 ± 0.3	1.466 ± 0.023
	virilis	virilis*	59.9 ± 0.8	34.9 ± 0.4	1.716 ± 0.032
Dorsilopha		buskii	25.3 ± 0.6	17.0 ± 0.3	1.487 ± 0.033

[^10]This work was supported by a University of Sydney Studentship to BHY.
References: Clayton, G.A., J.A. Morris and A. Robertson 1957, J. Genet. 55:131-151; Frankham, R. 1968, Aust. J. Biol. Sci. 21:1225-1237; Mather, K. 1941, J. Genet 41:159-193; Reeve, E.C.R. and F.W. Robertson 1954, z. Vererbungslehre 86:269-288; Robertson, A. 1955, Cold Spring Harb. Symp Quant. Biol. 20:225-229; Robertson, F.W. and E.C.R. Reeve 1952, J. Genet. 50:414-448; Sheldon, B.L. 1963, Aust. J. Biol. Sci. 16:490-515; Sheridan, A.K., R. Frankham, L.P. Jones, K.A. Rathie and J.S.F. Barker 1968, Theor. App1. Genet. 38:179-187.

Young, D.J., D.C. Vacek and W. B. Heed. University of Arizona, Tucson, Arizona. The facultatively anaerobic bacteria as a source of alcohols in three breeding substrates of cactophilic Drosophila.

Knowledge of the microbial ecology of the necrotic tissues of columnar cacti, the breeding substrates of cactophilic Drosophila of the Sonoran Desert, is very important in elucidating the ecological niche of these Drosophila. The saprophytic yeast flora is probably important as a concentrated protein source and
attractant for Drosophila (Starmer et al. 1976). However, very little is known about the bacterial flora; Erwinia carnegieana is believed to be the causal agent of the necrosis (Lieghtle et al. 1942), and at least eight genera of bacteria can be found in Pachycereus pringlei, cardon cactus, and Carnegiea gigantea, saguaro cactus (Graf 1965).

Gas chromatography studies have shown that several alcohols are present in necrotic cacti (Heed 1978). Anaerobic bacteria probably play an important role in alcohol production because the only two saprophytic yeasts which ferment, Torulopsis sonorensis and Candida tenuis, produce only ethanol and are not found in all necrotic samples containing alcohol. Knowledge of alcohol variability as a function of the microflora is necessary for an understanding of the variability at the $A D H$ locus in D. mojavensis (Heed 1978). Here we report the results of a preliminary analysis of the distribution and alcohol production of the facultatively anaerobic bacteria inhabiting the soft rots of three species of giant cacti.

Samples of necrotic tissue of one Carnegiea gigantea (saguaro cactus), two Lamaireocereus thurberi (organ pipe cactus), and two Machaerocereus gummosus (agria cactus) were appropriately diluted and plated on the following three media: (1) 0.3% yeast extract, 0.3% Bacto peptone, 1.5% Bacto agar; (2) tryptic soy agar; (3) nutrient agar (all components and media were from Difco). One set of plates was incubated microaerophilically with CO_{2} and another set aerobically at $24^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$ for the initial isolation. Standard microbiological techniques were used for maintenance of the isolates. Identification was made with the aid of the API 20E System (Analtab Products), a miniaturized version of conventional procedures for bacteria identification, and other tests as indicated in Bergey's Manual (Buchanan and Gibson 1974). Although the API 20E System is designed for the identification of clinical isolates in the family Enterobacteriaceae, it can be very useful as a quick screening method in other studies where small, Gram-negative, facultatively anaerobic rods are present. The GasPak anaerobic system (BBL) was used to test for anaerobic growth. Gas chromatography

Table 1. The concentration of each bacteria species in the substrates and the amount of ethanol produced by each species in pure culture.

Bacteria		Colony forming units/cc of sample*					EtOH Production	
Species	$\begin{gathered} \text { No, of } \\ \text { isolates } \end{gathered}$	$\begin{aligned} & \text { Saguaro } \\ & (77-30) \end{aligned}$	$\begin{gathered} \text { Organ } \\ (77-31) \end{gathered}$	pipe $(77-32)$	$\begin{array}{r} \mathrm{Ag} \\ (77-33) \\ \hline \end{array}$	$\begin{aligned} & \text { ia } \\ & (77-34) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { No. } \\ & \text { tested } \end{aligned}$	$\begin{gathered} \% \\ \mathrm{EtOH} * * \end{gathered}$
Bacillus laterosporus	3	105	10^{7}				2	0-3
Citrobacter sp. A	2			10^{7}			2	31-34
Citrobacter sp. B	5		10^{7}			10^{8}	0	
Enterobacter aerogenes	1		10^{6}				1	55
Enterobacter agglomerans	1				10^{7}		0	
Enterobacter cloacae	1					$<10^{2}$	1	29
Erwinia carnegieana	2		10^{7}				0	
Escherichia coli	3		10^{4}	10^{7}			2	31-40
Klebsiella ozaenae	2	10^{3}				$<10^{2}$	1	94
Klebsiella pneumoniae	13		10^{8}				6	45-91
Leuconostoc sp.	2		10^{7}			10^{7}	2	2-3
Staphylococcus sp.	6	10^{5}		10^{7}			4	0
Yersinia enterocolitica	1				$<10^{2}$		0	
Unknown A	2			10^{4}			0	
Unknown B	1				10^{7}		0	
Unknown C	1				10^{8}		0	

[^11]($1 / 8$ inch x 5 foot stainless steel column packed with Poropac Q at $140^{\circ} \mathrm{C}$ and $170^{\circ} \mathrm{C}$ oven temperatures) was used to determine if methanol, ethanol, acetone, 2-propanol, and l-propanol were produced both in the rot pockets and by the isolates (grown in 0.5% glucose fermentation broth for 3-4 days).

Forty-six isolates representing 9 genera, 13 species, and 3 unknowns were obtained from the 5 samples of necrotic cactus (Table 1). The majority are in the family Enterobacteriaceae and are true phytobacteria. Yersinia enterocolitica, Escherichia coli, and Klebsiella ozaenae are not true phytobacteria. Klebsiella pneumoniae, previously associated only with inflammations of the respiratory tract, has recently been found in the heartwood and sapwood of living redwood trees (Bagley et al. 1978). Enterobacter aerogenes, E. cloacae, and Erwinia carnegieana are the only species from our study that were isolated from saguaro and cardon by Graf (1965).

Of the volatiles tested, only ethanol was produced in detectable quantities by the bacterial isolates. This corroborates White and Starr (1971) who found that 65 of 71 strains of Enterobacteriaceae produced ethanol. The cacti contained not only ethanol but also the other four volatiles as well.

Three conclusions can be made. First, the diversity of genera is high when compared with the yeasts which are represented by only four genera (Starmer et al. 1976) in the cactus substrates. Given the small sample size of five reported here, this is a minimum estimate of the diversity. Secondly, there is less similarity within than among substrates, i.e., the two agria samples have no species in common but share three species with saguaro and organ pipe, and the two organ pipe samples have only one species in common and share five species with saguaro and agria. Thirdly, the facultative anaerobes contribute only to the ethanol content. Alcohols are also produced by bacteria (i.e., obligate anaerobes) not isolated in this study (unpublished data). This investigation is a first approximation of the facultative anaerobes and suggests a much higher diversity of these bacteria than yeasts.

References: Bagley, S.T., R.J. Seidler, H.W. Talbot, Jr., and J.E. Morrow 1978, App1. Environ. Microbiol. 36:178-185; Buchanan, R.E. and N.E. Gibson (co-eds.) 1974, Bergey's Manual of Determinative Bacteriology, 8th ed., Williams \& Wilkins; Graf, P.A. 1965, Master's Thesis, Univ. of Arizona; Heed, W.B. 1978, in Proceedings in the Life Sciences (Symposia on Genetics and Ecology: The Interface), P.R. Brussard (ed.), Springer-Verlag (in press); Lieghtle, P.E., E.T. Standring and J.G. Brown 1942, Phytopath. 32:303-313; Starmer, W.T., W.B. Heed, M. Miranda, M.W. Miller and H.J. Phaff 1976, Microb. Ecology 3:11-30; White, J.N. and M.P. Starr 1971, J. Appl. Bacteriol. 34:459-475.

Zacharopoulou, A., G. Yannopoulos and N. Stamatis. University of Patras, Patras, Greece. Cytological localization of the "cn" (cinnabar) locus in D. melanogaster.
factor 31 MRF was found by Yannopoulos and
 with dp b cn $b w ;$ ve virgin females, high frequencies of cn individuals were observed, sometimes reaching up to 2.50%. Moreover, the 23.5 chromosome was found to induce sterility, male recombination, etc. (Stamatis, in preparation). Ten cn individuals derived from different $F_{1} 23.5 / d p b c n b w$ males were separately mated with $d p b c n d w ;$ ve virgin females. Salivary chromosomes from third instar larvae were then examined for deficiencies. Eight out of the ten males tested have shown detectable deficiencies in the $2 R$ chromosome, namely: (1) $\mathrm{Df}(2 \mathrm{R}) 43 \mathrm{C} ; 44 \mathrm{C}$, (2) $\mathrm{Df}(2 \mathrm{R}) 42 \mathrm{E} ; 43 \mathrm{~F}$, (3) $\mathrm{Df}(2 \mathrm{R}) 43 \mathrm{D} ; 44 \mathrm{~A}$, (4) $\mathrm{Df}(2 \mathrm{R}) 43 \mathrm{~B} ; 44 \mathrm{D}$, (5) $\mathrm{Df}(2 \mathrm{R}) 43 \mathrm{C}$; 44C, (6) $\operatorname{Df}(2 R) 42 \mathrm{E} ; 44 \mathrm{~A}$, (7) $\mathrm{Df}(2 \mathrm{R}) 43 \mathrm{D} ; 43 \mathrm{E}$, (8) $\mathrm{Df}(2 \mathrm{R}) 43 \mathrm{E}$. The breakpoints were recognized on the basis of photograpic maps of Lefevre (1976).

An approximate estimation of the distribution of the breakpoints on the chromosome is presented in Fig. 1. The figure shows that all eight deficiencies include the region $43 \mathrm{E}_{3}-$ E14. This finding strongly suggests that the "cn" locus is located in this region.

References: Lefevre, G., Jr., 1976, in The Genetics and Biology of Drosophila 1a (A. Ashburner and E. Novitski, eds.); Yannopoulos, G. and M. Pelecanos 1977, Genetical Research (Cambridge), 29:231-238.

Fig. 1

Zouros, E. Dalhousie University, Halifax, Nova Scotia, Canada. An autosome-Y chromosome combination that causes sterility in D. mojavensis x D. arizonensis hybrids.

The sibling species D. arizonensis and D. mojavensis can be crossed and produce hybrids which, with the exception of males from the cross o arizonensis $\mathrm{x} \sigma^{\prime}$ mojavensis, are fertile. The two species show partial ethological isolation. To study the chromosomal basis of this isola- tion I established two stocks of arizonensis and two stocks of mojavensis each of which was homozygous for an electrophoretic marker at each of the four autosomes (no marker was available for the fifth dot-like autosome). The arizonensis markers had different electrophoretic mobilities than the mojavensis markers. The loci-markers are: ODH, ADH, PGM, and Amy. These four loci reside each at a different autosome. Using inversions as markers it was found that ODH is on chromosome II (chromosome designation of Wasserman 1962), and ADH is on chromosome III. PGM is either on chromosome IV, in which case Amy is on V, or on V, in which case Amy is on IV. The fact that the two species bear no cytological differences at these two chromosomes makes it impossible to distinguish between the two possibilities.
F_{1} males from the cross \circ

Table 1. Combinations of autosomes that snow no sperm motility of $\mathrm{Ya} / \mathrm{Xm}$ flies.

Chromosome combination	Sperm motile	Sperm	immotile	
$\mathrm{IIm} / \mathrm{m}$	IIIm/m	PGMm/m	0	7
$\mathrm{IIm} / \mathrm{m}$	$\mathrm{IIIm} / \mathrm{m}$	PGMm/a	3	0
$\mathrm{IIm} / \mathrm{m}$	$\mathrm{IIIa} / \mathrm{m}$	PGMm/m	0	3
$\mathrm{IIm} / \mathrm{m}$	$\mathrm{IIIa} / \mathrm{m}$	PGMa/m	6	0
$\mathrm{IIa} / \mathrm{m}$	$\mathrm{IIIa} / \mathrm{m}$	$\mathrm{PGMm} / \mathrm{m}$	0	2
$\mathrm{IIa} / \mathrm{m}$	$\mathrm{IIIa} / \mathrm{m}$	$\mathrm{PGMa} / \mathrm{m}$	3	0

mojavensis x o' arizonensis were backcrossed to females mojavensis and the sperm motility of the resulting males was examined. It was found that half the males had immotile sperm and that this phenomenon has a single chromosomal basis. In Table 1 the chromosomal constitution of 24 males is shown together with the information about sperm motility. These males were not scored for Amy, so information about one autosome is missing. With regard to sex chromosomes all males were Y_{a} / X_{m} ($a=$ arizonensis origin, $m=$ mojavensis origin). It is seen that PGMa/m males have motile sperm, whereas PGMm/m males have immotile sperm. Subsequent crosses have shown that this phenomenon is strain-independent. To establish that presence or absence of sperm motility in Ya/Xm males depends solely on the PGM-marked autosome, I derived a line through repeated backcrosses to mojavensis females in which all autosomes were m/m, except the PGM-marked autosomes for which males were either m / m or m / a. Of these, those of the first type had immotile sperm, those of the second type had motile sperm.

The observation is of some interest because it points to an interaction between an autosome and the Y chromosome: when the Y is of arizonensis origin then at least one PGM-autosome of arizonensis origin is required for sperm motility. It may be coincidental that the auto-
some involved is the same one that in other species of Drosophila (e.g. pseudoobscura) has fused with the X arm to produce a metacentric X chromosome. If the same phenomenon were observed in pseudoobscura it would appear as an X / Y interaction.

Males of immotile sperm are capable of mating and transmitting sperm into female receptacles as the following experiment showed. Single pairs consisting of a mojavensis female and a $\mathrm{Ya} / \mathrm{Xm}$ male were kept for 24 hours and the females were examined for presence of sperm. Out of 87 such pairs 40 showed sperm. Of these in 32 cases the male was PGMa/m, and in 8 cases it was PGMm/m; the latter are males with fmmotile sperm. Of the 47 females that showed no sperm 12 had been kept with PGMa/m males, and $35 \mathrm{with} \mathrm{PGMm} / \mathrm{m}$ males. If presence or absence of sperm corresponds to copulation or no copulation, then these data suggest that PGMm/m males are only 30% as successful in mating as are $\mathrm{PGMm} / \mathrm{a}$. Females involved in such matings lay unfertilized eggs.

Drosophila Ramblings

It started with Mendel ${ }^{1}$
a horny old monk
his un-natural relationships with pea-pods.
New mendels tap away on calculators
learn about floppy disks ${ }^{2}$
and hurry over to hear about meaningful relationsships.
New mendels like to believe in choices
thus oocytes appear to be non-binding.
They watch the Drosophila
hoping to see something good enough for an article and maybe a better college town like San Francisco, or Boston ${ }^{3}$.
We are watching the Drosophila Studiers. We grade them by weight, color, sex, etc.
We pick only the strongest and most fit for the very best paying Drosophila slots ${ }^{4}$.
We consider sex linked middle factors ${ }^{5}$, interrupted mitosis, anaphase mypths, metaphase farce, etc.
A11 these inputs are calculated and weighed until we determine which Drosophila Researcher is the most fit.
Those with the brownest noses have been traditionally chosen,
Although ability to plagiarize has become a significant middle factor.
This could be a trend in Drosophilan Behavioral evolution.
A recent journal article predicted that the next
PRESIDENT will be a retired Drosophila freak, not from Georgia, but from Salsalito ${ }^{6}$.

Footnotes

1. Life With Mendel, Miss Sing Link, Jean Press, 1902, pp. 6.
2. IBID, pp. 964.
3. OPSIT, pp. 1148, V. 2.
4. BUF (Big Upfront Swingers), February 1979, pp. 40D.
5. Sex Linked Middle Factor Quarterly, Spring 1888, pp. 6.
6. National Enquirer, May 10 , 1980 , "Marta Madel reveals sex linked predictors in Presidential selection using demografic quantifiers", pp. 86.

Allemand, R., J. Biston and P.M. Mallet. University of Lyon I, Villeurbanne Cedex, France. An apparatus for recording freerunning oviposition rhythm in Drosophila.

To measure the oviposition rhythm in Drosophila, several devices have already been constructed. In these apparatuses the medium on which the flies lay their eggs is moved at a constant speed so that placement of the eggs corresponds to time of deposition. This was achieved either by sliding the medium under the flies (David and Fouillet 1973) or by shifting the cage with the flies over the medium (Jungen and Locher 1970). In both kinds of apparatuses, the food-bearing plates must be changed every day and this change acts as an external synchronizer. Free-running experiments, in which conditions must be kept absolutely constant, are thus impossible with these devices.

The apparatus which is described here allows free-running experiments since no handling of the flies is needed. The principle idea is to collect the eggs on small plates which are periodically changed automatically. Every hour a cup containing fresh medium is taken from a distributor, given to the flies for one hour and then put into storage in which the order corresponds to oviposition time.

Description: (Fig. 1) The cage containing the flies ($200 \mathrm{~cm}^{3}$) is made of plastic (methylmethacrylate) which a circular hole through the floor (diameter 2 cm) adapted to the size of the cups containing the medium. The cups (C) are plastic, cylindrical plates (diameter 2 cm , height 0.5 cm , depth 0.4 cm). The surface of medium is $2 \mathrm{~cm}{ }^{2}$. The transferringdisc (TD) is of duraluminium and is pierced by two holes (diameter 2 cm) in order to transfer the cups. Its thickness is the same as the height of the cups (0.5 cm). The tube-holder (TH) bears six store-tubes consisting of three distributors (D) and three alternated recuperators (R). Each tube can contain 35 stacked cups, this disposition preventing the dessication of the medium.

Functioning: Every hour an electric pulse given by the clock causes the change of the laying plate. This change is obtained by successive linked movements which occur in the following order:

1. A distributor-tube
(D) being above the transfer-ring-disc (TD), a downward movement of the lift (L) causes the lower cup to enter a hole of the transferring disc.
2. The transferring disc turns (180°) until the fresh plate reaches the hole at the bottom of the cage. Simultaneously the plate used by the flies during the previous hour is transferred by the same movement under the tube holder (TH).
3. The tube-holder turns
60° so that a recuperator-tube (R) comes above the lift.
4. The lift which was in the lower position is moved upward and pulls up the plate into the recuperator tube. The lift then stays in the upper position.

5. The tube-holder turns and stops when the next distributor tube is just above the lift (60°). The apparatus has then returned to starting position.

The onset of each movement is electrically dependent on the completion of the former one, making the apparatus more reliable. When the cup is transferred from the cage to the recuperator tube, glycerol (50\%) is poured over the medium in order to avoid its dessication and to prevent embryo development. The autonomy of the apparatus is 4 days (about 100 cups) but longer experiments can be carried out since the tube-holder can be changed without disturbing the flies, even in darkness.

Results: Fig. 2 shows two examples of oviposition rhythms in D. melanogaster studied during 7 days in free-running conditions. In both cases the flies lived under a LD 12:12 photoperiod and then were transferred under constant darkness or constant light. Under LD 12:12 a peak of egg deposition occurs after the lightoff (Allemand 1976a). Upon suppressing the light cycle, the oviposition pattern is modified: there are no more large peaks but only small peaks. A statistical analysis showed that in both cases a free-running rhythm remained with a period of about 25 hours (see autocorrelation functions, Fig. 2), a weak amplitude and a maximum during the virtual photophases. This oviposition rhythm in freerunning conditions seems to correspond to endogenous ovarian rhythm of vitellogenesis (Allemand 1976b).

References: Allemand, R. 1976a, J. Insect Physiol. 22: 1031-1035; 1976b, J. Insect Physiol. 22:1075-1080; David, J. and P. Fouillet 1973, Rev. Comp. Anim. 7:197-202; Jungen, H. and R. Locher 1970, DIS 45:201.

Fig. 2.

Band, H.T. Michigan State University, East Lansing, Michigan. A method for growing Chymomyza amoena in the laboratory.

Two behavioral traits, wing waving and aggression, seem to pose obstacles to the maintenance of Chymomyza amoena in the laboratory in the manner traditional for Drosophila. Therefore, pint-sized canning jars have been employed, tipped sideways, and capped with kleenex se-
cured by a rubber band. These are referred to as "minicages". Kerr canning jars work best since three of the four sides are clear glass. Each pint-sized jar will hold two mediafilled stendor dishes (5 cm wide by 2.5 cm deep) or two or more apple quarters, which are inserted and removed with teethed forceps. Territorial defense in this species is very strong. A watercolor brush is useful for sweeping away the flies from the dishes or from the apple pieces. This method is useful for maintaining stocks, for collecting eggs, larvae or pupae and for doing feeding choice experiments.

Before media-filled stendor dishes are added, a freshly cut apple piece (skin still attached) is inserted into the media. Newly emerging flies have a prefertile period lasting about a week, so the initial dish(es) is (are) discarded, after which oviposition may be allowed to continue for another week in cages of $20-25$ adults, then dishes removed, inserted into a clean jar to which is also added a piece of moist paper toweling or kleenex. Dessication is a problem but the paper also provides a pupation surface for those larvae that leave the medium to pupate. If undisturbed, most larvae pupate on the media surface or in the apple piece. Developmental time varies since egg hatchability, duration of the larval and pupal phases all vary. Minimum egg-eclosion time on the applesauce/protein/cream-of-wheat media devised for Michigan C. amoena seems to be 20 days.

The media has a tendency to mold. This may be cut away from the remaining surface or else larvae and pupae transferred to new dishes to continue development.

Band, H.T. Michigan State University, East Lansing, Michigan. A medium for growing Chymomyza amoena in the laboratory.
produce a wet surface which presents another hazard when depending on laboratory media to maintain the species.

A medium developed from that devised by Wheeler and Clayton (1965) for the Hawaiian Drosophila and the cream-of-wheat medium developed by Spassky (1943) has worked well. The following recipe yields just over a liter of food, enough for $34-36$ stendor dishes (5 cm wide x 2.5 cm deep) for use in glass "minicages":
8 gms Bacto-agar
15 gms Gerber's Hi-Pro
15 gms Kretschner's wheat germ
5 gms Kellogg's Concentrate
45 gms Quick Cream-of-Wheat

600 ml distilled water
500 ml Spartan applesauce (no corn products)
3 ml propionic acid
$9 \mathrm{ml} \mathrm{95} \mathrm{\%}$ ethyl alcohol.

> B1.end the Hi-Pro, wheat germ, and Concentrate in a Waring blender for several minutes, add the applesauce and blend 5 min . more. Boil 400 ml water in a large pot, add agar, stir till dissolved. Add in the applesauce-protein mixture; rinse the blender with 100 ml water and add to the food mixture. Add the remaining 100 ml water to the cream-of-wheat and stir into the food mixture as it begins to boil. Reduce heat and stir until thickened, usually about 5 minutes. Remove from heat, stirring to cool. Add the ethyl alcohol and propionic acid. The medium can then be poured into a 500 ml beaker, 300 ml at a time, for filling the stendor dishes. These are then cooled, capped and refrigerated until ready to use. No yeast is added. This medium can also be used for D. melanogaster, yeasted or unyeasted.

References: Spassky, B. 1943, DIS 17:67-68; Wheeler, M.R. and F.E. Clayton 1965, DIS 40:98.

Baumann, J.L. and W.L. Bischoff. University of Toledo, Toledo, Ohio. A rapid reliable assay for glucose and fructose specific hexokinases in crude extracts of D. melanogaster.

The initiation of a series of experiments designed to cytologically localize the hexokinase loci in D. melanogaster necessitated the development of a satisfactory spectrophotometric assay for this system of enzymes. Published methods designed for use with various mammalian systems proved to be unreliable due to a lack of linearity attributable primarily to inappropriate substrate concentrations and pH optima. These problems have been overcome in our laboratory through the use of the assay procedure described below.
A. Preparation of extracts: Three to ten adult males or females aged 5 ± 1 day postemergence are ground in 2 ml glass microhomogenizers containing 0.05 ml of 0.03 M tris- HCl buffer at $\mathrm{pH} 8.5 / f 1 \mathrm{y}$. Homogenates thus prepared are centrifuged at $12,000 \mathrm{xg}$ in the cold for 20 minutes, the supernatant fraction serving as a source of enzyme. Assays were performed within three hours of homogenization. Storage of extracts even at $-70^{\circ} \mathrm{C}$ results in a total loss of activity after 48 hours.
B. Assay: 0.56 ml of a reaction mixture composed of 0.015 M glucose or fructose, 0.02 M $\mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \overline{0}, 0.00013 \mathrm{M}$ NADP, 0.00001 M EDTA (disodium salt) and 0.12 units of glucose-6-phosphate dehydrogenase in 0.02 M tris- HCl at pH 8.5 is mixed with 0.02 ml of the above enzyme extract in a 0.75 ml Helma quartz cuvette and gently agitated. After 1 minute 0.02 ml of 0.03 M ATP is added to initiate the reaction. To assay fructose phosphorylating activity 0.12 units of phosphoglucose isomerase are added to an otherwise identical reaction mixture. Reference cuvettes contain reaction mixture, enzyme, and 0.02 ml of tris-HCl buffer in place of the ATP. The reduction of NADP is monitored at 340 NM , and under the above condition is proportional to enzyme concentration. This assay is linear for at least 30 minutes and has been successfully utilized for the cytological localization of two hexokinase loci. The results of these studies will be reported elsewhere.

Boulétreau, M. and P. Fouillet. University of Lyon, Villeurbanne, France. An accurate and reliable olfactometer.

A new olfactometer was developed in order to measure the behavioral response of flies to various odoriferous substances. The greatest concern was to allow flies to move and fly freely in a sufficient space during the experiment, to prevent the olfactory cue from interfering with other directional signals such as light, drafts or gravity, and to provide an accurate control of the composition and the concentration of the odor to be tested. The device has two main originalities: the use of a large, well aerated cage in which adults can fly and exhibit normal behavior towards an odoriferous source; the use of a gas mixing pump (Wosthoff) which mixes gases in definite ratios and delivers mixtures of reliable composition.

The cages (Fig. 1, 6) are made up of clear plastic boxes ($23 \times 17 \times 10 \mathrm{~cm}$) with large gauze panels arranged on the top and the walls. The traps (Fig. 1) are fitted on the sides of the cages and can be renewed at given intervals without disturbing the flies. Traps are fed with gas mixtures to be tested. The whole arrangement is drawn in Fig. 1: atmospheric air is compressed with a diaphragm pump (1) and dried on silica gel columns (2). It is divided into two flows respectively saturated with vapors of substances A and B in convenient saturators (3) before reaching the pump (4). The pump mixes flows (a) and (b) in the required ratios and delivers two mixing ratios $M 1$ and $M 2$ each of which feeds two traps. The flow in each line is regulated using a flowneter (5) and a needle valve so as to provide 25 $\mathrm{m} /$ /min to each trap.

The reliability of the device was tested by measuring the response of a wild strain of D. melanogaster to various concentrations of ethanol. Flow (a) is first saturated with ethanol vapor by bubbling twice in 100% ethanol and then conveniently diluted with flow (b), which is kept pure. The pump delivers two concentrations of M1 and M2 of ethanol vapor which are expressed as a percentage of concentration in flow (a), which is considered as saturated. Standardized flies, 6 days old and starved for 24 hours on water + agar are put in lots of 500 (250 of each sex) in each cage. Each cage is fitted with only one trap, so that four tests are run simultaneously. The cages are 1.5 m below two 40 W fluorescent lamps, and are kept at 25° and 30% R.H.

Fig. 2. Response of D.m. (wild strain) to various concentrations of ethanol vapor in dry air ($1 \%, 10 \%, 67 \%$).

Fig. 2 gives the kinetics for three concentrations of ethanol. Each curve corresponds to the mean of two parallel boxes and is based on 1000 flies. The different curves given for each concentration were obtained in different experiments. Their similarity demonstrates the reliability of the device. The curves fit well with an exponential model, thus indicating the constancy of individual response throughout the experiment. Each concentration can thus be simply characterized by the proportion of flies which enter the trap per unit of time. No decrease in ethanol attraction occurs at higher concentrations. This observation is opposite to previous results (Fuyama 1976; Carton 1977). This difference is likely to result from the quite different methods: our device allows the humidity to be kept constant (here: 0\%) whatever the concentration of ethanol. The only effect to be measured is that of ethanol. Other methods
lead necessarily to a simultaneous variation of ethanol and water contents in the tested air flow. Since in these experiments flies had to choose between this air flow and a control saturated with water, the authors actually measured some interaction between the response of flies towards ethanol and their response towards humidity. High concentrations of ethanol probably act as air dessicators, which could explain the observed repulsion.

Choice experiments can also be carried out with this olfactometer: by adjusting pump inputs and fitting two traps to each box, flies can be given a choice either between two different concentrations, or between two odor mixtures.

References: Carton, Y. 1977, Coll. Int. CNRS Tours (Fr.) 285-303; Fuyama, Y. 1976, Behavioral Genetics 6:407-420.

Boulétreau, M. and 0. Terrier. University of Lyon, Villeurbanne, France. A device for getting rid of excess adult flies.

Routine rearings or experimental plans often require the daily destruction of large numbers of flies. A simple device was developed to prevent flies from escaping in the lab and to avoid disadvantages of traditional devices.

A weak electric motor (M), fitted with a plastic fan (F), hangs on the cover of a cylindrical plastic spice jar (1.5 liter). A 30 mm hole is pierced through the wall of the jar, 10 cm above the bottom. 100 ml water, added with a few drops of household detergent, are poured into the device.

By gentling drumming inverted vials or tubes above the upper hole, flies are allowed to be sucked down by the air swirl. They immediately sink to the bottom. None escape or float on the surface, thus allowing the quick drowning of next victims and making the capacity unlimited.

Once the daily holocaust is completed, the cover is removed, the jar is water rinsed and provided again with water + detergent. Years of daily use proved the device to be very efficient and suitable.

Crespí, S. and O. Cabre. Autonomous University of Barcelona, Bellaterra, Barcelona, Spain. A simple method for electron-microscope visualization of D. melanogaster embryo polysomes.

The common techniques of polysome and ribosome preparation are based on relatively complex methods in which tissue homogenates, gradient centrifugations, etc., are used. These preparative methodologies are characterized in subjecting the samples to drastic treatments which can alter the native stage of the traduction complex. Here, we propose a very simple analytic method, with mild conditions, and material proceeding from only one egg. It allows the study by electron microscopy of processes related to translation, with minimum interference between the experimental treatment and its visualization.

The method consists of dechorionizing one egg in the embryonic stage that is to be studied. The egg is disrupted in $50 \mu 1$ of Na borate buffer $\mu \mathrm{M} \mathrm{pH} 8.5$, and left 10 min . at room temperature. $20 \mu \mathrm{l}$ of the sample is placed on a carbon-coated grid (300 mesh), and

Note the length of some polysomes and the apparent ribosome disposition in doublets, or the polysome in helix.
allowed to adsorb for a few minutes. The excess is removed with a lens tissue. Immediately, the grid is dipped in absolute ethanol, then in 0.5% Photo-fl6 and air dried. Finally the preparation is dyed with an ethanolic solution (70\%) of uranile acetate 2%, for 30 seconds.

The micrographies shown were obtained with a transmission electron microscope Hitachi at 70 KV at different magnifications. Pictures II and IV present positive staining and the others, negative. (Bar $=250 \mathrm{~nm}$).

Done, J.N. and D.B. McGregor. Inveresk Research International, Ltd., Musselburgh, Scotland. A simple device for Drosophila containment during exposure to gases or vapors.

The apparatus is simply a modified Dreschel bottle. Inlet tubes on Dreschel bottles now have scintered glass discs fused into them to facilitate dispersion of the incoming gas to the washing medium. This disc must be cut off. The only other modifications necessary are those which prevent the flies from escaping. Containment could be done by plugging inlet and outlet tubes with cotton wool or, if preferred, glass fiber. Plugging in this way does impede the flow of gases or vapors through the apparatus. With certain atmospheric analytical techniques such impediment may cause problems (e.g., infrared absorption analysis). We have, therefore, elected to prevent fly escape by closing the inlet and outlet apertures with stainless steel mesh.

A disc of the mesh is cut so as to fit the outlet aperture. Into the middle of this disc is punched a hole which is the same diameter as the external diameter of the inlet tube. The smaller mesh disc punched from the large disc is used to cover the inlet tube aperture. These mesh discs are held in their correct positions by teflon sleeves (Fig. 1).

This simple device allows the flies to be observed during exposure to dynamic test atmospheres passing through the bottle at $3-51 / \mathrm{min}$. Following exposure, the bottle may be flushed with air then the flies lightly anesthetized with carbon dioxide before they are re-

turned to their culture vials. Temperature control, by immersion in a water bath, is also possible.

This work was supported by NIOSH Contract No. 210-78-0026.

Graf, U. Institute of Toxicology, Swiss Federal Institute of Technology and University of Zurich, Schwerzenbach, Switzerland. An easy way to test for ring configuration of ring-X-chromosomes in D. melanogaster.

In experiments for mutagen-induced ring-X losses there is a permanent need for verification of the ring structure of the commonly used $R(1) 2$ chromosome. There are several ways of doing this (Leigh 1976). Since cytological analyses may be misleading (Moore 1971), the most common way is to record crossing-over in ring-X/ rod-X females. In a recent series of experi- ments we have found that this type of female produces enhanced rates of nullo-X eggs which lead to Xo-male progeny. Six males from $a R(1) 2$, y $B / y+Y \cdot B^{S}$; $b w$; st p p strain and five males from an identical strain with a spontaneously opened ring-X were crossed individually to virgin $y \mathrm{cv} v \mathrm{f}$ females. The heterozygous F_{1} females were then mated individually to Berlin wild males. In the F_{2} only the male progeny were classified and counted; the bristle phenotype (forked) was not recorded. The results are shown in the table. It is evident that the females heterozygous for a ring-X chromosome produce one order of magnitude more X0-male progeny than those heterozygous for an open ring-X (5.5\% and 0.1%, respectively). The presence of the ring-X is further demonstrated by the reduced frequency of females of recombinants in the progeny: The females heterozygous for the ring-X give rise to only 4.4% (57/1297) recombinants whereas the corresponding frequency of females heterozygous for the open ring-X is 35.6% (535/1503). In order to verify that the wild type male progeny are really X 0 , 30 of these males have been crossed to virgin w females. None of these crosses proved to be fertile.

The experiment has been repeated with the same procedure but using y w females to produce ring/rod heterozygous females. The results were essentially the same ($104 / 2709=3.8 \%$ X0males). It is therefore concluded that the registration of phenotypically distinguishable X0-males in the progeny of ring-X/rod-X females is an easier way to check for the ring structure than the laborious registration of crossing-over phenotypes.
[See table on following page.]
References: Leigh, B. 1976, Genetics and Biology of Drosophila, Vol. lb, pp. 505-528; Moore, C.M. 1971, Can. J. Genet. Cytol. 13:164-166.

Supported by the Swiss National Science Foundation, Project No. 3.156-0.77.

Gupta, A.P. ${ }^{+}$Harvard University, Cambridge, Massachusetts. [Present address: Cidade Universitaria UFRJ, Rio de Janeiro, Brazil.] A new technique for collecting Drosophila eggs.
number of crosses or strains simultaneously.

Generally, Drosophila eggs are collected by having flies oviposit in bottles on spoons containing food medium or in petri dishes on colored food medium. The well fed adults are usually allowed to oviposit 24 to 48 hours to collect an adequate egg sample. It is difficult to collect eggs of sufficient sample size from a To facilitate collecting large egg samples from a number of crosses simultaneously over a short period of time, I modified the prevailing techniques with excellent results. The success of this technique depends upon starving the flies shortly before permitting them to oviposit.

25-30 pairs of newly emerged D. pseudoobscura were allowed to mate in vials for 5-10 days at $24^{\circ} \mathrm{C}$ under optimal rearing conditions. They were then transferred to empty half-pint milk bottles for $45-90$ minutes at room temperature. The time of starvation is determined by noting when the activity of the flies diminishes. At this time, a teaspoon containing Carpenter's medium with food coloring and covered with a tin layer of dead or live Fleishmann's yeast suspension is put into the bottle. If dead yeast is used, prepare the solution $2-3$ days before use. The thin layer of yeast suspension is allowed to dry before the spoon is put into the bottle. The back of the spoon must fit firmly against the side of the bottle to prevent females ovipositing between the spoon and the bottle. The spoons with large numbers of eggs are removed after 6-14 hours.

It would appear that the starved females retain their eggs until they once again are able to feed. At that time they lay their eggs in profusion. For a research project, I had to collect 1800 fertile eggs for each of two parental and two F1 classes, for a total of 7200 eggs, to be tested simultaneously. Using this technique, I had no trouble in collecting the required number of eggs in a short period of time. The technique was further tested using 25-30 pairs of D. melanogaster. Approximately $1000-2000$ eggs were collected in $1-3$ hours. Thus this method is probably useful for collecting large numbers of eggs in a number of species in a short period of time.

This work was supported by NIH Grant GM 21179 to R.C. Lewontin.
†In memory of Prof. Th. Dobzhansky

Kekić, V. Institute of Zoology, University of Belgrade, Beograd, Yugoslavia. Maze for the study of phototaxic behavior in Drosophila.
havior of each individual was measured by the individual was at the end of succeeded in completing a very successful seloction ence of "low" (30-300 lux), "medium" (1300-3200 lux) and "high" (6500 lux) light intensities. In such a way we obtained three laboratory strains of D. subobscura which were very different regarding their distribution in this maze (Kekić and Marinković 1974). The modified maze which we want to describe now, although not basically different from the previous two, makes a study of phototaxic behavior faster and easier to a great extent.

The maze is composed of five $5 \times 5 \mathrm{x} 2 \mathrm{~cm}$ chambers, which are connected by 5 x 1 x 2 cm corridors (see diagram). In the middle of each corridor there is a movable partition by which we can permit or stop the free movement of Drosophila individuals between chambers. In each of the chambers there is an opening through which it is possible to manipulate flies in the chamber (to introduce, to etherize, etc.). This part of the maze is made out of wood. The maze is covered by an 0.5 cm glass plate, fastened by holders. As 1ight sources, the 20 W neon tubes are used, and gradient of light intensity is realized by the paper cover of different thickness which is put on the glass plate.

As all students of phototaxic behavior of Drosophila well know, their behavior is always to a great extent a function of the experimental procedure. In our experiments, using the following procedure, we noticed a high percentage of repetition. At the beginning of the experiment we introduced about 100 individuals in the middle ("start") chamber of the maze. At that time the corridor partitions were closed. After 15 minutes the corridors were opened and in the following hour a free movement through the maze was permitted. After one hour the partitions between chambers were closed and the flies etherized and counted.

In Table 1 the distribution of several Drosophila species is shown, when the light intensity was the same in each chamber (0 or 300 lux).

It can be seen that at 300 lux the distribution of all individuals, regardless of species, is uniform, and that at 0 lux the distribution is normal, with more or less positive excess. [See table on following page.]

Table 1. The distribution of Drosophila species in a maze when the light intensity was the same in each chamber (300 or 0 lux).

Species	Chamber					N
	I	II	III	IV	V	
300 lux						
D. funebris	36	38	46	42	38	200
D. testacea	36	40	50	44	30	200
D. kuntzei	32	42	42	48	36	200
D. melanogaster	34	46	40	38	42	200
D. subobscura	36	44	44	40	36	200
0 1ux						
D. funebris	2	20	140	30	8	200
D. testacea	6	26	122	36	10	200
D. kuntzei	10	30	122	24	14	200
D. melanogaster	10	20	132	28	10	200
D. subobscura	14	24	116	28	18	200

References: Kekic, V., D. Marinkovic, N. Tucic and M. Andjelković 1971, DIS 46:148; Kekic, V. and D. Marinkovic 1974, Behav. Genet. 4:285-300.

McInnis, D.O. Screwworm Research Laboratory, Mission, Texas. Estimation of the attractive radius for a Drosophila collection trap. $\begin{aligned} & \text { cated at the center. After returning } \\ & \text { to the } \text { lab, marked flies were separated from unmarked flies after shining a U.V. lamp upon }\end{aligned}$

A vital factor in some estimates of density and dispersal rate in field populations of Drosophila is the attractive radius of a standard trap containing a fairly fixed amount of bait. Each trap here consisted of a 2-gallon waxpaper bucket containing two fermenting bananas as bait.

Several experiments run at Schenck Forest, a pine forest in Raleigh, North Carolina, early in the summer of 1977, were directed toward estimating the attractiveness of individual traps used in a study of dispersal rate in Drosophila. The procedure involved marking and releasing flies at various distances (10 meter intervals out to 50 meters) from a central point, such that at each distance flies were marked with a differently colored dust (a micronized fluorescent pigment from Helecon Industries, U.S. Radium Corp.). An attempt was made to minimize overcrowding by releasing small numbers of flies at each of several points (at least four) around concentric circles at the specified distances (Fig. 1). Then, after one full day of elapsed time, flies were collected by swinging a net above a trap lo-

Fig. 1. Design for attractive radius determination.
 the samples. The proportion of released flies from a certain distance trapped at the center is illustrated in Fig. 2. A trap placed in a relatively sheltered site yielded a greater percentage of recaptured Drosophila at all distances compared to a trap placed in a more open area. For both traps the distances at which a trap's power to attract reaches zero (i.e., the attractive radius) is estimated to be approximately 60 meters from the best fitting lines of linear regression.

Fig. 2. Attractive radius experiments.

Platt, S.A. and M. Holliday. University of Illinois, Champaign, Illinois. A versatile apparatus for the demonstration of and selective breeding for discrimination learning in individual D. melanogaster.

Once instrumental learning has been demonstrated in individual Drosophila (Platt, Holliday and Drudge 1980), many questions concerning the parameters of the learning behavior can be investigated (e.g., what are the effects of delay of reinforcement; what is the duration of retention and memory) and the proposed components of learning might be teased apart by selective breeding and a behavior-genetic analysis. The apparatus we are currently using to attempt to selectively breed for learning is versatile, inexpensive and easily adaptable to various critical control procedures to insure that learning is, in fact, occurring and selection is being carried out on the behavior change (learning) and not upon some stereotyped or biased response pattern.

Our apparatus is constructed of modified Beral dropping pipets (Stock \#B-75-100). Horizontal arms of the choice points were made by cutting the straight tubing section from the pipet and drilling a small hole in the center for receiving a pipet tip (the pipet tip was cut back about 1 cm to permit the fly to move through). In pipets to be used for the vertical alleyways, a hole was cut near the bottom to insert one arm of the T. A perforated cap cut from a pipet bulb was placed over the other arm of the T to form the cul-de-sac.

Recently we have made several useful refinements. A small ring of vinyl tubing is slid over each end of the horizontal arm. The outside diameter of the tubing ring matches the inside diameter of the cut bulb and cap. This prevents escape of the subjects and facilitates the rapid reversal of the choice point arms. About one-half of the bulb at the bottom of the vertical alley is cut off, perforated and inserted inverted. This prevents the occasional fly from descending into the bulb. We now use two different textures of white paper inside each arm of the choice points. Therefore, it is no longer possible for a fly to avoid exposure to the discriminative stimulus at the choice point. In addition, we now introduce each fly to a brief maze pre-exposure of choice points and vertical alleys all leading to the first choice point with discriminative stimuli. The pre-exposure is thought to acclimate the subject to the apparatus and reduce excessive initial choice point exploration.

Reference: Platt, S.A., M. Holliday and O.W. Drudge 1980, J. Exp. Psych: Anim. Behav. Proc. 6(4): in press.

Seecof, R.L. City of Hope National Medical Center, Duarte, California. An apparatus for rinsing Drosophila eggs.

A large quantity of eggs can be dechorionated conveniently in a beaker. The eggs can then be rinsed in a funnel with attached T connecting tube. This apparatus is small, so it can be used within a sterile hood, and the level of rinse fluid can be controlled easily so that the eggs do not dry.

Attach a funnel (Hirsch type with coarse fritted disc) to a T-shaped connecting tube (0.D., $1 / 4^{\prime \prime}$) by rubber tubing. Attach the opposite end of the connecting tube to a trap, using flexible tubing, and attach the trap to a vacuum source. Support the funnel with a ringstand and clamp(s). Place the trap out of the working area.

Activate the vacuum. Pour the eggs into the funnel. Control the vacuum by touching a fingertip to the open end of the connecting tube. Follow with several rinses, controlling the vacuum so that eggs are not sucked dry. To prevent drainage over a long period of time, use a pinch clamp between the funnel and the connecting tube.

Partially supported by NSF Award No. PF78-09625 to R. . Seecof.

ACCUSED PROFESSOR CLONES DEFENDANT

PALO ALTO, Calif. (DIS) Officials in this university town are shocked and confused by the latest development in a trial that began in Recominit County Court Friday. Dr. Seamon Bullavard is accused of fabricating data on a research project. It is a felony in California to fabricate data on a state-funded project. Monday prosecutor Milford Delbert told the court that he believed that the defendant was a clone. Delbert said that Dr. Bullavard was actually working in her lab while her clone sat through boring courtroom sessions and faculty and Departmental meetings. DIS reporters swarmed around the alleged clone after Wednesday's session,

[^12]University of Göteborg, Dept. of Genetics, Stigbergsliden 14, S-414 63 G8teborg, Sweden.

Wild stocks		330	In (2L) Cy In (2R)Cy, Cy pr cn2 sp/
W10 Canton S			In(2LR) Gla, Gla
W20 Karsnäs 51		340	In (2L) Cy $\operatorname{In}(2 \mathrm{R}) \mathrm{Cy}, \mathrm{S} 2 \mathrm{Cy}$ pr B1
W30 Oslo			$\mathrm{cn}^{2} \mathrm{~L} 4$ bw $\mathrm{sp}^{2 / I n}(2 \mathrm{~L}) \mathrm{NS} \operatorname{In}(2 \mathrm{R}) \mathrm{NS}$,
W40 Sevelen			px sp
		350	vg
Chromosome 1 stocks			
10	$\mathrm{B}^{\text {SY/ }}$ / mei-41 ${ }^{\text {D }}$	Chromosome 3 stocks	
20	$\begin{aligned} & \text { Basc }=\operatorname{Muller} 5=\operatorname{In}(1) s^{S} S^{1} L_{s c} 8 R+S \end{aligned},$	360 370	$\begin{aligned} & \operatorname{In}(3 \mathrm{~L}) \mathrm{D}, \mathrm{D}^{3} / \operatorname{In}(3 \mathrm{~L}) \mathrm{P} \operatorname{In}(3 R) \mathrm{P} \\ & \operatorname{In}(3 \mathrm{LR}) \mathrm{DCx} F, \text { ru } \mathrm{h} D \operatorname{ca} / \operatorname{In}(3 R) \mathrm{C}, \end{aligned}$
30	C(1)DX, y f/y ${ }^{2} \mathrm{sc}$ ec ct6 v f 5		Sb
40	$\mathrm{Dp}(1 ; 1) \mathrm{sc}^{\mathrm{V} 1}, \mathrm{y}^{2} \mathrm{y}^{+} \mathrm{sc} \mathrm{scV1}$ ec ct ${ }^{6}$	380	mei-1
	v f5	390	ruh st pp ss $\mathrm{e}^{\text {S }}$
50	$\mathrm{Dp}(1 ; 1) \mathrm{sc} \mathrm{Vl}^{\prime}, \mathrm{y}^{2} \mathrm{y}^{+} \mathrm{sc} \mathrm{sc}^{\mathrm{Vl}} \mathrm{ctt}^{6} \mathrm{v}$	400	$r y^{2}$
	f5/FM7c, y ${ }^{31 d} \mathrm{sc}^{8} \mathrm{w}^{\text {a }}$ snX1 v B	410	se
	1 (1) TW-24	420	st c (3) G ca/ve h th $\mathrm{c}(3) \mathrm{G} \mathbf{S b}$ Ubx
60	ct ${ }^{6}$ v mei-218 car/FM7c, y 31 d	Chro	4 stocks
	sc^{8} wa $\mathrm{sn}^{\mathrm{X} 1} \mathrm{v}$ B 1(1)TW-24	430	C(4)RM, ci eyR.gvl svn (no free
$70 \mathrm{~A}, \mathrm{~B}$	$\mathrm{Dp}(1 ; 1) \mathrm{sc} \mathrm{V1}, \mathrm{y}^{2} \mathrm{y}^{+} \mathrm{sc} \mathrm{sc}^{\mathrm{V}} 1$ mei-9b ct 6 v f5/FM7c, $\mathrm{y}^{31 \mathrm{~d}} \mathrm{sc}^{8} \mathrm{w}^{\mathrm{a}}$ $\mathrm{sn}^{\mathrm{Xl}} \mathrm{v}$ B 1(1)TW-24 (2 strains)	440	$\text { ci ey } \mathrm{R}$
805,16	$\mathrm{Dp}(1 ; 1) \mathrm{sc}^{\mathrm{V1}}, \mathrm{y}^{2} \mathrm{y}^{+} \mathrm{sc} \mathrm{sc}^{\mathrm{V} 1}$ mei-9b	Chro	e 1-2 stocks
	ct 6 v mei-218 car/FM7c, y ${ }^{31 d}$	450	su(s) ${ }^{2} \mathrm{v}$; bw
	sc8 wa snX ${ }^{\text {X }}$ v B 1(1)TW-24 (2	460	v ; bw
	strains)	470	$y / y^{+Y} ; b^{\text {cn }} \mathrm{vg}$
90	FM7a $=\operatorname{In}(1)$ FM7, $y^{31 \mathrm{~d}} \mathrm{sc}^{8} \mathrm{w}^{\mathrm{a}}$ v0f B		
100	FM7c, y ${ }^{31 d} \mathrm{sc}^{8} \mathrm{w}^{\mathrm{a}} \mathrm{sn}^{\mathrm{X} 1} \mathrm{v}$ B	Chro	e 1-3 stocks
	1 (1)TW-24/y mei-218	480	+1/BSYy31d; In (3LR) TM 3 , y ${ }^{+}$ri pp
110	In(1)d1-49, fano		sep Sb bx34e es Ser/mus(3)312
120	w	490	$\mathrm{Dp}(1 ; 1) \mathrm{sc} \mathrm{V}^{\prime}, \mathrm{y}^{2} \mathrm{y}+\mathrm{sc} \mathrm{scV1}$ ec ct ${ }^{6}$
130	w ct ${ }^{6} \mathrm{f}$		v mei-218 car/FM6 (=In[1]FM6,
140	W $\mathrm{ct}^{6} \mathrm{~m}$ f		$\mathrm{y}^{31 \mathrm{~d}} \mathrm{sc}^{8} \mathrm{dm} \mathrm{B)}$; mei-1
150	$w^{\text {a }}$ ct ${ }^{6}$	500	$\mathrm{Dp}(1 ; 1) \mathrm{sc} \mathrm{V}^{\prime}, \mathrm{y}^{2} \mathrm{y}^{+} \mathrm{sc} \mathrm{sc}^{\text {V1 }}$ mei-9b
160	y		$\mathrm{ct}^{6} \mathrm{v}$ f $5 / \mathrm{FM} 7 \mathrm{c}, \mathrm{y}^{31 \mathrm{~d}} \mathrm{sc} 8 \mathrm{wa}^{\text {a }}$
170	$y \mathrm{ac} v \mathrm{f} \operatorname{su}(\mathrm{f})$		snX1 v B 1(1)TW-24; mei-1
180	ycv	510	FM6 ($=\operatorname{In}[1]$ FM6, y $\left.31 \mathrm{~d} \mathrm{sc}^{8} \mathrm{dm} \mathrm{B}\right) / \mathrm{y}$
190	y v		me-218; mei-1
200	y $\mathrm{v}_{3} \mathrm{~g}_{5} \mathrm{f}^{\text {f }}$	520	FM7c, y 31 d sc8 wa snX1 v B $1(1)$ TW-
210	y $v^{36 f}$		24/y mei-9b cv; mei-1
220	y w ct ${ }^{6} \mathrm{mf}$	530	wa ct6; mei-1
230	$\mathrm{y}^{2} \mathrm{sc}$ ec cv ct ${ }^{6} \mathrm{v} \mathrm{f}^{5} \mathrm{car}$	540	$y ; ~ m e i-1$
		550	$y \mathrm{cv}$; mei-1
Chromosome 2 stocks			
240	al dp b pr c px sp/In(2L) Cy	Chromosome 1-4 stocks	
	$\begin{aligned} & \operatorname{In}(2 R) C y, a^{2} C y 1 t^{3} \mathrm{cn}^{2} \\ & \mathrm{~L}^{4} \mathrm{sp}^{2} \end{aligned}$	560	BSY/C(1)DX, y f/y Hw w; C(4)RM, spapol (no free 4)
250	bwD	570	$\operatorname{Basc}\left(=\operatorname{In}[1] \mathrm{scSlL} \mathrm{sc}^{8 R+S}\right.$, sc^{8}
260	C(2L) RM/C (2R)RM		scS1 wa B)/y mei-9b cv/y ${ }^{+1} \mathrm{Y}$;
270	C(2L)RM, j/C(2R)RM, px		spapol
280	cn bw	580	C(1)DX, y f/y mei-218/y+Y; spapol
290	dp b		
300	$\begin{aligned} & \text { In (2L)Cy, al }{ }^{2} \mathrm{Cy} / \operatorname{In}(2 \mathrm{LR}) \mathrm{bw} \mathrm{~V} 1, \\ & \mathrm{ds} 33 \mathrm{k} \mathrm{dp} \mathrm{~b} \text { bwV1 } \end{aligned}$	$\frac{\text { Chr }}{590}$	2-3 stocks
310	In(2L) Cy, al ${ }^{2}$ ast 3 b pr (Cy not	600	cn bw; e^{11}
	present)	610	$\operatorname{In}(2 \mathrm{~L}) \mathrm{Cy} \operatorname{In}(2 \mathrm{R}) \mathrm{Cy}$, al2 ${ }^{\text {Cy }} 1 \mathrm{t} 3$
320	In (2L) Cy, al ${ }^{2}$ ast ${ }^{3} \mathrm{dp} \mathrm{b}$ pr (Cy not present)		$\mathrm{cn} 2 \mathrm{~L} 4 \mathrm{sp}^{2}$; $\mathrm{T}(2 ; 3) \mathrm{bw}_{W} \mathrm{VDe} 4$. bWDe4

Chromosome 2-3 stocks (cont'd.)

$$
\begin{aligned}
& 620 \\
& \operatorname{In}(2 \mathrm{~L}) \mathrm{Cy} \operatorname{In}(2 \mathrm{R}) \mathrm{Cy}, \mathrm{al} 2 \mathrm{Cy} 1 \mathrm{t}^{3} \\
& \mathrm{en}^{2} \mathrm{sp}^{2} \text {; TM2 }\left(=\operatorname{In}[3 \mathrm{LR}] \mathrm{Ubx}^{130}\right. \text {, } \\
& \text { Ubx130 es); T(2;3)apXa, apXa }
\end{aligned}
$$

Chromosome 1-2-3 stocks

630	$\begin{aligned} & \operatorname{Dp}(1 ; 1) \mathrm{sc}^{V 1}, \mathrm{y}^{2} \mathrm{y}^{+} \mathrm{sc} \mathrm{scV1} \text { ec } \\ & \mathrm{c}^{6} \mathrm{v} \mathrm{f}^{5} ;+2 / \operatorname{In}(2 \mathrm{~L}) \operatorname{Cy} \operatorname{In}(2 R) \end{aligned}$
	Cy, al2 Cy lt ${ }^{\text {c }}$ cn 2 sp 2 ; mei-

$\mathrm{ct}^{6} \mathrm{v} \mathrm{f}^{5} ;+2 / \operatorname{In}(2 \mathrm{~L}) \mathrm{Cy} \operatorname{In}(2 R)$
Cy, al2 Cy lt3 $\mathrm{cn}^{2} \mathrm{sp}{ }^{2}$; mei-1

Chromosome 1-2-3 stocks (cont'd) $640 \quad \operatorname{In}(1) \mathrm{sc}^{8 \mathrm{~L}} \mathrm{sc}^{S I R} \operatorname{In}(1) \mathrm{S}, \mathrm{y}^{S 1} \mathrm{y}^{3 P}$ $\mathrm{sc}^{8} ; \operatorname{In}(2 \mathrm{~L}) \mathrm{Cy} \operatorname{In}(2 \mathrm{R}) \mathrm{Cy}, \mathrm{al}^{2}$ Cy $1 \mathrm{t}^{3} \mathrm{cn}^{2} \mathrm{sp} 2 / \operatorname{In}(2 \mathrm{LR}) \mathrm{bw} \mathrm{V} 1$, ds 33 k dp b bwV1; $\operatorname{In}(3 L R) D C x F$, ru h D ca/In(3R)C, Sb

Universitat Munster, Dr. H. Traut, Institut fur Strahlenbiologie, Hittorfstrasse 17, 4400 Miinster, West Germany.

1) + (Berlin wild)
2) y f:=\& y scS1 B In49 sc8 ("Binsey")
3) B
4) $y \& y / y^{+} Y$
5) y
6) $y f:=/ y+Y \& y / y+Y$
7) w
8) $y / y / y+Y \& y / y+Y$ ("Trisom")
9) e^{11}
10) C(2L)RM, b; C(2R)RM, vg
11) y sc ${ }^{\text {S }} \operatorname{In} 49 \mathrm{sc} 8$; bw; st pp

University of Oregon, Dr. E. Novitski, Dept. of Genetics, Eugene, Oregon.
Several distinctly new compound chromosomes have been synthesized over the past several years. They consist of entire chromosomes attached together: C(2)EN consists of two attached second chromosomes with the sequence $2 R 2 L \cdot 2 L 2 R ; C(3) E N$ is $3 R 3 L \cdot 3 L 3 R$; and $C(2 ; 3) E N$ is $2 R 2 L \cdot 3 L 3 R$. Transmissibility of these chromosomes through the male is variable, ranging from a few percent to the theoretical 50%. Because of the difficulties involved in putting markers on the entire compounds and in adding markers to other chromosomes [C(2)EN and C(3)EN in particular are awkward to mark], we are listing a number of marked lines which should prove useful in certain kinds of experiments. Single arm derivatives of these chromosomes are also available.

C(2) EN, +	C(2)EN, ${ }^{\text {b }} \mathrm{pr}$	C(2)EN, +; ru	Basc; C (3)EN,+
C(2)EN, c bw	C(2)EN, cn bw	C(2) EN, +; th st $\mathrm{e}^{\text {S }} \mathrm{ca}$	
C(2) EN, bw			C(2;3)EN/Cy;D
C(2) EN, bw sp	C(1)RM,w;C(2)EN,+	C(3) EN, cu ca	C (2;3)EN,Ki/Cy; ${ }^{\text {d }}$
C(2)EN, sp	C(1)RM, y; C(2)EN,+	C(3) EN, cu sr st ca	C (2;3)EN, dpov-1/Cy;D
C(2)EN, b	Basc; C(2)EN,+	y;C(2)EN, +	C (2) EN; C (3) EN

John Innes Institute, Dept. of Genetics, Colney Lane, Norwich, NR4 7UH, England.

Wild stocks	Chromosome 1	Chromosome 2	Chromosome 3
1. Florida	6. B	11. bw	16. 3
2. Hampton Hill	7. y	12. cn bw	Chromosome 4
3. Poringland	8. w	13. Cy	17. ey ${ }^{2}$
4. Samarkand	9. w^{a}	14. vg	
5. Wellington	10. w m B	15. vg bw	Multichromosomal
			18, bw; e 19. $\mathrm{Cy} \mathrm{L} 4 / \mathrm{Pm}$; H/Sb

University of Swansea, Dept. of Genetics, Swansea, West Glamorgan, U.K.

Wild type stocks	Schio	Est-6F	Basc	H/Sb
Australia (5 strains)	Schio	Est-6S	ec, dx	Sb/Ubx
Canary Islands	Nazzano	Est-60	g	seEst ${ }^{\text {F }}$
Groningen (Holland)	Nazzano	Est-6VS		seEst ${ }_{\text {e }}$
Marino (Italy)			Chromosome II	ve
New Jersey	ADH stocks		b	e
Padua	ADHF		bw 75	
Peramola (Spain)	ADHS		bw81	Multiples
Schio (Italy)	ADH^{0}		$\mathrm{CyL} 4 / \mathrm{Pm}$	bw st
Votanikos (Greece)			c	$v \mathrm{bw}^{\text {D }}$
	X chromosome		sple	b vg se
Esterase-6 stocks	C1B/fu		tkv	vg se $\mathrm{p}^{\text {P }}$
Groningen Est-6F	y^{2}			vg st
Groningen Est-6S	$\mathrm{y}^{59 b}$		Chromosome III	vg est
Schio Est-6VF	V		ca	h7 BdG/In (3R) C, 1 (sA)
			H/LVM	ru, st, c(3) G sr $\mathrm{e}^{\text {S }}$

Universidad de Santiago, Depto. de Genetica, Santiago de Compostela, Spain.

Mutant stocks	cn	$\mathrm{sn}^{34} \mathrm{e}$	Wild-type stocks
	cnrbr	sn 36 a	Valencia
w	ft	Cy L 4 Pm	Carboneras
b	st	XX dm f	Candas
vg	snqr		

University of New England, Dept. of Animal Science.

Wild stocks	y B	y ec Oce cv ct ${ }^{6} \mathrm{t}^{3} \mathrm{dy} \mathrm{wy}{ }^{2} \mathrm{f} / \mathrm{FM} 3$	Chromosome 3
4 strains from	B	$y \mathrm{cx} \mathrm{cv} \mathrm{ct}{ }^{6} \mathrm{t}^{3} \mathrm{dy} \mathrm{wy}^{2} \mathrm{f} / \mathrm{FM} 3$	ell
N.S.W. \& Victoria	w ct	$y \mathrm{kz} \mathrm{cx} \mathrm{cv} \mathrm{ct}{ }^{6} \mathrm{t}^{3} \mathrm{dy} \mathrm{wy}^{2} \mathrm{f} / \mathrm{FM} 3$	e se
	ct v f	y ct 6 \& y f: $=$	st
Chromosome 1	y ec	$\mathrm{m}^{\text {d }} / \mathrm{FM} 3$	se
${ }_{\text {W }}{ }^{\text {b1 }}$	$y \mathrm{cx}$		
$\mathrm{w}^{\text {b }}$	y kz cx cv	Chromosome 2	Multichromosomal
y	y kg cx	vg	w; b
v	ycxcv	cn	vg; e
y ${ }^{\text {w }}$	ec Oce	$\mathrm{dp}^{\text {d }}$	
$\mathrm{y}^{2} \mathrm{sc}{ }^{1}$		Cy	

> STOCK LISTS - OTHER SPECIES

The College of Wooster, Dept. of Biology, Wooster, Ohio 44691.
D. ananassae

```
Wild types
Cristobal: In(2L)A/+; Ins(3L+3R)A/+
Majuro (Futch's standard)
Texas-3: Ins(3L+3R)A
```

X chromosome
cop; Ins (3L+3R)A
ct ${ }^{5}$; Ins (3L+3R)A
$\mathrm{ct}^{5} \mathrm{amb}$ snk; Ins (3L+3R)A
dc; Ins(3L+3R)A
f 49 Bx 2 w 65 ; Ins (3L+3R)A
fw; $\operatorname{In}(2 L) A /+; \operatorname{Ins}(3 L+3 R) A$

X chromosome (cont'd.)
g^{3}; Ins(3L+3R)A
In (1L) A; Ins ($3 \mathrm{~L}+3 \mathrm{R}$) $\mathrm{A} /+$
$\mathrm{m}^{2} \mathrm{v} 2 \mathrm{~g} 3$; Ins (3L+3R)A
rb ; Ins(3L+3R)A
rst; Ins(3L+3R)A
rst $1 \mathrm{~b} \mathrm{v}^{2}$; Ins (3L+3R)A
sc 24 ; Ins(3L+3R)A
sn 67 rst y 69 rb ; Ins (3L+3R)A
NG2; Ins(3L+3R)A
v^{2}; Ins (3L+3R)A
wg; Ins(3L+3R)A
y^{69}; Ins(3L+3R)A
Chromosome 2
$\begin{aligned} & \text { Arc/L, } \operatorname{In}(2 L R) A \\ & \text { by } 65 \end{aligned}$
ca
ca M(2)665/Ins(2L+2R)NG2
cd; In(3L)A
$\begin{aligned} & \text { cd cu ca } \mathrm{e}^{65 / D 1110,} \operatorname{In}(2 \mathrm{~L}) \mathrm{A} \\ & \mathrm{cu} \text { ca } \mathrm{e}^{65} \end{aligned}$
cu e ${ }^{65} \mathrm{se}, \operatorname{In}(2 \mathrm{~L}) \mathrm{A} ; \operatorname{In}(3 \mathrm{R}) \mathrm{A}$
D12/eyg, Ins(2L)A + H
e65 pea
e^{65} pea Pr gv
e^{76}, $\operatorname{In}(2 L) A$
eyg, $\operatorname{In}(2 \mathrm{~L}) \mathrm{A}$
g1, In(2L)A
M(2) $53 / \mathrm{Ins}(2 L+2 R) N \mathrm{~N} 2$
M(2)108/Ins(2L+2R)NG2

$\begin{aligned} & \text { M(2) } 127 \text { /Ins (} 2 \mathrm{~L}+2 \mathrm{R}) \mathrm{NG} 2 \\ & \text { ma; Ins (3L+3R)A } \\ & \text { pea uk by } 65 \end{aligned}$	$\frac{\text { Chromosome } 4}{\text { bt/M(4)7 }}$
Pr; In(3L)A 65	Multichromosomal
$\begin{aligned} & \text { Pu } 3 \text { M(2) } 91 \text { e } 65 \text { pea, } \operatorname{In}(2 L) A / \\ & \text { Ins }(2 L+2 R) N G 2 \end{aligned}$	$\begin{aligned} & \mathrm{ca} ; \mathrm{Ms} \mathrm{ru,} \mathrm{Ins(3L}+3 R) \mathrm{A} \\ & \mathrm{ca} ; \mathrm{stw} \end{aligned}$
$\mathrm{se}^{\text {A }}$; Ins(3L+3R)A	rst w65; Ins(3L+3R)A; bb74
$\mathrm{Tp}(2 \mathrm{~L} ; 2 \mathrm{R}) \mathrm{Sb} / \mathrm{M}(2) 91, \operatorname{In}(2 \mathrm{~L}) \mathrm{A}$	$\begin{aligned} & \mathrm{T}(\mathrm{Y} ; 2) \mathrm{A}, \mathrm{ca} \\ & \mathrm{~T}(\mathrm{Y} ; 2) \mathrm{B}, \mathrm{ca} \end{aligned}$
Chromosome 3	T (Y; 2) C, ca
$\widehat{\mathrm{Bb} 2 \mathrm{stw} / \mathrm{bri}} \mathrm{Rf}$ mot, Ins(3L) $\mathrm{A}, \mathrm{D}+\operatorname{In}(3 \mathrm{R}) \mathrm{A}$	T(Y;2;3)A, ca M stw
bri	T(Y;3)A, stw T(2;3)A, ca stw/
$\text { ri } M(3) 172 / \operatorname{Tr} r i, \operatorname{In}(3 L) A$ ri pe stw pc px ru; $\operatorname{In}(2 L) A$	$\mathrm{T}(2 ; 3) \mathrm{B}$, ca M stw/Ins(2L+2R)NG2
bri pe stw pe ru; $\operatorname{In}(2 L) A$	T(2;3)E, ca stw/Ins(2L+2R)NG2 $\mathrm{T}(2 ; 3) \mathrm{H}$, ca stw/M(2) 91 , In(2L)A
bri pe stw pe ru cy; In(2L)A	$\mathrm{T}(2 ; 3) \mathrm{J}$, ca Xa stw $+\operatorname{In}(3 \mathrm{LR}) \mathrm{A} /$
bri pe stw pc px ru; In(2L)A $c^{3}, \operatorname{In}(3 L) A ; \operatorname{In}(2 L) A /+$	Ins(2L+2R)NG2 $\mathrm{T}(2 ; 3) \mathrm{K}, \mathrm{ca}$ stw/M(2)C Pu3 e65
$\operatorname{In}(3 R) B$	pea, $\operatorname{In}(2 L) A$
$\begin{aligned} & M(3) 9 / b r i \operatorname{Rf} \text { mot, } \operatorname{Ins}(3 L) A, D \\ & +\operatorname{In}(3 R) A \end{aligned}$	$T(2 ; 3) L$, ca stw/Ins(2L+2R)NG2 $\mathrm{T}(2 ; 3) \mathrm{M}$, ca stw/Pu3 M(2)91 e65
$\begin{aligned} & \mathrm{M}(3) 281 / \mathrm{Tr} \mathrm{ri}, \operatorname{In}(3 \mathrm{~L}) \mathrm{A} ; \\ & \operatorname{In}(2 \mathrm{~L}) \mathrm{A} /+ \end{aligned}$	$\begin{array}{r} \text { Pea, } \operatorname{In}(2 L) A \\ T(2 ; 3) N, \text { ca stw } \end{array}$
mot	$\mathrm{T}(2 ; 3) 0$, ca stw/M(2)C Pu3 e65
pc ; $\operatorname{In}(2 \mathrm{~L}) \mathrm{A}$	pea, $\operatorname{In}(2 \mathrm{~L}) \mathrm{A}$
$\mathrm{pc}, \operatorname{In}(3 \mathrm{R}) \mathrm{E} ; \operatorname{In}(2 \mathrm{~L}) \mathrm{A}$	T(2;3)P, ca stw/Pu3 M(2)91 e65
$\begin{aligned} & \text { pe } \operatorname{vg}^{N} s t w / T r \text { ri, } \operatorname{In}(3 L) A ; \\ & \operatorname{In}(2 L) A \end{aligned}$	```pea, In(2L)A T(2;3)Q, ca stw/M(2)C Pu3 e65```
pr (Truk)	pea, $\operatorname{In}(2 \mathrm{~L}) \mathrm{A}$
px; $\operatorname{In}(2 \mathrm{~L}) \mathrm{A}$	
ri; $\operatorname{In}(3 \mathrm{~L}) \mathrm{A}$	

Descriptions and tentative mapping of all mutants and rearrangements in the above stocks can be found in Moriwaki and Tobari (1975, Handbook of Genetics 3:513-535), Hinton (1970, Genetics $66: 663-676$), Hinton and Downs (1975, J. Hered. 66:353-361) or in the New Mutants section of DIS 55.

University of Swansea, Dept. of Genetics, Swansea, West Glamorgan, U.K.

D. simulans		$\underline{\text { D. hydei }}$
Wild type stocks	Mutants	D. execta
Bebek (Istanbul) W	D. teissieri	
Canary Islands		D. yakuba
Peramola (Spain)		

University of New England, Dept. of Animal Science D. simulans

Mutants
dh b pm
jv se
st e
f_{2}

Report of M. Ashburner, P. Angel, C. Detwiler, J. Faithfull, D. Gubb, G. Harrington, T. Littlewood, S. Tsubota, V. Velissariou and V. Walker.
In addition to newly reported mutants and aberrations this report includes new information on aberrations induced in other laboratories that we have had occasion to study cytologically and new cytogenetic mapping of some visible and lethal loci.
black78.1D (b78.1D) [C. Detwiler]. Induced by feeding adult males 20 mM diepoxyoctane. Typical black allele.
black 80 c 2 (b80c2) [P. Ange1]. Induced by gamma-rays (4000R) in an adult male on a chromosome carrying Sco. Typical black allele. Associated with In(2L)b80c2 (see below).
cinnabar. Since $D f(2 R) p k 78 \mathrm{k}$ is cn^{+}and this deficiency has its distal limit at 43 C 3 cn is probably in bands 43C4;43C6.
cinnabar $80 \mathrm{cl}\left(\mathrm{cn}^{80 c 1}\right)$ [P. Ange1]. Typical cnl like allele, induced by gamma-rays (4000R) in adult male.
elbow ${ }^{4}$ (e14) [G. Harrington]. Induced after feeding EMS to adult males. Associated with $T(Y ; 2) e 14$ (see below).
frizzled. The cytology of $f z 3$ and $f z 4$ suggests that $f z$ is in bands 70D6 or 70D7.
frizzled ${ }^{3}$ (fz3) [V. Velissariou]. Gamma-ray induced in adult male (3800R). Associated with $\operatorname{In}(3 \mathrm{~L}) f z$ (see below). Typical fz.
frizzled ${ }^{4}$ (fz4) [V. velissariou]. Gamma-ray induced in adult male (3800R). Associated with $\operatorname{In}(3 \mathrm{~L}) \mathrm{f} z^{4}$ (see below). Typical fz allele.

1ethal (3)DTS-5 (DTS-5) [Holden and Suzuki 1973, Genetics 73:445]. The cytological location of DTS-5 can be refined to between 73 A 4 and $73 B 5.7$ on the basis of the limits of two X ray induced revertants of its dominant temperature sensitive phenotype that are deficiencies (i.e., $\operatorname{Df}(3 L) D T S-5 R+3$ and $D f(3 L) D T S-5^{R+4}$, see below) and mapping with st- deficiencies. DTS-5 is viable when heterozygous with a deficiency that includes it at $18^{\circ} \mathrm{C}$ but the fles have thickened L 2 wing veins.

M(3)h [see Lindsley and Gre11]. This Minute maps within the region 69E2 to 69F based upon the facts that $D f(3 L)$ VW1 (see below) is M and that Lindsley et al. (1972, Genetics 71:157) place $M(3) h$ distal to the breakpoint of $T(Y ; 3) R 7$ (in $69 F$). $M(3) h$ is not included in any of the vin ${ }^{-}$deficiencies of Akam et al. (1978, Cell 13:215) indicating that it is to the right of 69B4.5.

M(3)S34 [see Lindsley and Grel1]. This Minute maps to bands 76A3 to 76B2 since Df(3L)VW3 (see below) is M and since $M(3) S 34$ is proximal to the breakpoint of $T(Y ; 3) L 131$ (Lindsley et al. 1972, Genetics 71:157) in 75D4.5 (see Ashburner et al. 1980, DIS 55:196).

M(3)S35 [see Lindsley and Grel1]. There is some confustion as to the mapping of M(3)S35. Lindsley et al. (1972, Genetics $71: 157$) place $M(3) S 31$ between 85 E and 86 A and $\mathrm{M}(3) \mathrm{S} 35$ between 86 B and 86 F . We assume that this is simply a mistake since $\mathrm{M}(3) \mathrm{S} 31$ is $\mathrm{Df}(3 \mathrm{R})$ 86D1;86D4. The map positions (Lindsley and Gre11) for M(3)S35 and M(3)S35f (3-64 and $3-62.4$ respectively) would suggest a cytological location in region 90 , i.e., near that of sr. Yet there is no haplo-insufficient M between 86 F (i.e., M(3)S31) and 94E (i.e., $M(3) w$). We suggest that the M responsible for the haplo-insufficient phenotype found by Lindsley et a1. for region $85 \mathrm{E}-86 \mathrm{~A}$ is $\mathrm{M}(3) \mathrm{S} 35$. There is certainly an M in this region since $\operatorname{Df}(3 R) V W 4$, that lacks 85 El 1 to $85 \mathrm{Fl1}$, is M. In summary we suggest that $\mathrm{M}(3) \mathrm{S} 35$ is located between 85 E 11 and 85 F 11 .
no ocelli (noc). 2-50. Woodruff and Ashburner (1979, Genetics 92:117) remarked that certain genotypes heterozygous for different Adh ${ }^{-}$deficiencies were viable and lacked the ocelli and their associated bristles. Study of a much larger series of deficiencies than were then avałlable confirms that there is a region just distal to Adh which, when
homozygously deficient, results in the absence of ocelli, of the ocellar and interocellar bristles and a reduction in the number of anterior postalar bristles. Some interocellar microchaetae may remain but, if so, their pattern is very disturbed. The postvertical bristles are also affected, there often being an adventitious pair of bristles between the normal pair of postverticals. Three alleles of this locus, here called noc, are described below. The expressivity of the noc phenotype is stronger in the late emerging flies of a culture than in those that emerge first and, moreover, the males are usually more strongly affected than females. All three known noc alleles enhance the expression of Sco; indeed Sco is noc-. Cytological analysis of noc- deficiencies place this locus in 35B2.3.
noc ${ }^{2}$ [S. Tsubota]. Induced in an adult male with EMS. Expressivity much weaker than a nocdeficiency, three ocelli may be present though usually clearly smaller than normal. The ocelli may be present just as pigmented "ghosts". Anterior postalar bristles reduced in number and arrangement of interocellar microchaetae disturbed. Associated with In(2L)noc ${ }^{2}$ (see below).
noc ${ }^{3}$ [S. Tsubota]. Gamma-ray (3800R) induced in an adult male together with Df (2R)ST1 (see below). Even weaker than noc2, the ocelli only rarely absent, most often just small. Like noc ${ }^{2}$, reduces the mean number of anterior postalar bristles and of the ocellar bristles. Disturbs pattern of interocellar microchaetae. No detectable chromosome aberration other than $\operatorname{Df}(2 R) S T l$, which is separable.
noc ${ }^{\text {TE146 }}$ [G. Ising]. This noc allele is associated with the ${ }^{+}{ }^{+}$rst ${ }^{+}$transposing element of G. Ising. TE146 was derived from TE47, an insertion of two whrst elements into 60AB (Ising and Block, pers. comm.). Cytologically nocTE146 has about five bands inserted into 35B2.3, and we assume that it too is duplicated for the TE. Acts as a very strong noc allele, homozygotes have no ocelli, few interocellar microchaetae and reduced numbers of ocellar and anterior postalar bristles.
outspread (osp). 2-50. This locus was discovered by E.H. Grell who mapped it to Df(2L)64j. It appears to be the locus immediately proximal to Adh. Weak osp alleles have their wings held out from the body at an angle of about 45°. Strong alleles show, in addition, a tenting of the wings, so that the flies resemble homozygotes for arc. As with arc homozygous osp flies may have weakly upturned wings under crowded culture conditions. Maps cytologically to 35B2.3. The following osp alleles were induced with EMS by feeding adult males: osp4 [G. Harrington], osp6 [G. Harrington], osp7 [S. Tsubota], osp76e [T. Littlewood], osp77e [T. Littlewood]. osp80.1D [C. Detwiler] was induced by feeding adult males 20 mM diepoxyoctane.
pawn. On the basis of its inclusion in $D f(2 R) p k 78$ and $D f(2 R) p k 78$ (see below) pawn is located in 42E3 to 43C3. Genetically pawn maps between pk and cn at 2-55.4.
pupal (pu). The following alleles of pu were EMS-induced by feeding adult males. With the exception of pu5, which shows some wing expansion when heterozygous with pul, all are strong alleles at $25^{\circ} \mathrm{C}$, the wings remaining as unexpanded pads: pu ${ }^{2}$ [G. Harrington], pu ${ }^{3}$ [G. Harrington], pu4 [G. Harrington], pu5 [G. Harrington] and pu76e [T. Littlewood].
prickle. Cytologically pk is in bands 42 E 3 to 43 C 3 , based upon the limits of pk- deficiencies (see below). This does not agree with Lindsley and Grell.
reduced 4 (rd4) [P. Angel]. A gamma-ray (4000R) induced allele similar to rds in phenotype, at least when heterozygous with rds. As this allele was induced on a chromosome marked with Sco, a mutant that strongly suppresses exchange near rd, rd 4 homozygotes have not been obtained. $r d^{4} / \mathrm{rd}^{s}$ are female fertile. Not aberrant cytologically other than for Sco.
scarlet. New st- deficiencies allow st to be placed in the 73 A 3.4 doublet.
st ${ }^{5}$ [V. Velissariou]. Gamma-ray (3800R) induced in adult male. Associated with In(3L)st 5 (see below).
spiny legs. Genetically this is on $2 R$ (and not 2 L as in Lindsley and Grell) at approximately 2-56, certainly between pk and cn . Included within both $\mathrm{Df}(2 \mathrm{R}) \mathrm{pk} 78 \mathrm{k}$ and $\mathrm{Df}(2 \mathrm{R})$ pk78s, i.e., maps to 42E3-43C3.
thread ${ }^{3}$ (th3) [V. Velissariou]. Gamma-ray (3800R) induced together with Df (3L) st3 (see below). May be spontaneous existing in the base stock ($\mathrm{g} 1^{2} \mathrm{e}^{4}$) prior to mutagenesis.
transformer. Mapping tra with respect to new st- deficiencies places tra just proximal to st in band 73A5.
vestigial79f [M. Ashburner]. Spontaneous strong vg allele on In(2L)C158.1.
Df(2L)b80e3 [S. Tsubota]. Gamma-ray (6000R) induced, adult male. Df(2L)34C3;35B1. Includes b, j, and rk but not pu, el or Adh.

Df(2L)bL [Bruce Baker]. This Df is Df(2L)34D3;34E3.5 and includes b,j,rk but not pu,el or Adh.

Df(2L)C75RLLC163.41R [M. Ashburner]. Exchange product between $\operatorname{In}(2 L) C 163.41$ and $\operatorname{In}(2 L) C 75 R L$ (see DIS 55:193). New order: 21A-27D1.2/35A1.2-27D1.2/35E1.2-60. Deficient for 35Al.2; 35E1.2. May be aneuploid (either Dp or Df) in 27D since the two 27D breakpoints are derived from different events.

Df(2L)C158.1 $L_{S c o} R+11 R$ [V. Velissariou; see Velissariou and Ashburner 1980, Chromosoma 77:13]. An exchange product between $\operatorname{In}(2 L) C 158.1$ and $\operatorname{In}(2 L) S c o R+11$ (see DIS 55:193). Is Df(2L) 35B3.5;35D1.4, including rd but neither Adh nor osp. See also $D p(2 ; 2) C 158.1 \mathrm{~L} \mathrm{Sco}_{\mathrm{R}} \mathrm{R}+11 \mathrm{R}$. New order: 21A-26D1.2/35B3.5-24D1.2/35D1.4-60.

Df(2L)dol [C. Detwiler]. Induced by feeding adult males 20 mM diepoxyoctane. Is Df(2L)35B 1.2;35D1.2 including e1, noc,Adh,osp and rd, but not pu.
$\mathrm{Df}(2 \mathrm{~L}) \mathrm{e} \mathrm{l}^{4 \mathrm{D}_{\mathrm{R} 15 \mathrm{P}}}$ [G. Harrington and M. Ashburner]. Synthesized from the Y 2 element of $\mathrm{T}(\mathrm{Y} ; 2$) e14 and the 2 Y element of the "Lindsley-Sandler" $T(Y ; 2) R 15$. Cytologically is Df for 35A2.4;35B10. Genetically includes pu,e1,noc, Adh but not rd. Carries $\mathrm{y}^{+} \mathrm{ac}^{+}$from the R15 chromosome.

Df(2L)Scorev7 [E.H. Gre11; see 0'Donnell et al. 1977, Genetics 86:553]. This X-ray induced revertant of Sco is cytologically $\operatorname{Df}(2 \mathrm{~L}) 34 \mathrm{D} 5 ; 35 \mathrm{D} 5.7$. As 0^{\prime} Donne11 et al. showed it is deficient for b to rd.

Df(2L)Sco ${ }^{R+23}$. Aneuploid segregant from $T(2 ; 1) S c o{ }^{R+23 .}$
Df(2L)TE36-A [D. Gubb]. Induced by gamma-rays (3500R) as a w^{-}rst- revertant of the w^{+} rst ${ }^{+}$TE36 of G. Ising that is inserted in 1(2)br27 (see Woodruff and Ashburner 1979, Genetics 92:133). The deficiency includes $1(2) \mathrm{br} 27$ and two complementation groups immediately distal, i.e., $1(2) \mathrm{br} 26$ and $1(2) \mathrm{br} 7[=\mathrm{Su}(\mathrm{H})]$, but not rd (which is proximal to the deficiency). Acts as a dominant suppressor of Hairless.

Df(2L)VV9 [V. Velissariou]. Gamma-ray (3800R) induced in adult male. Df(2L)30B3;30C9.
Df(2R)pk78k [D. Gubb]. X-ray (3000R) induced in adult male. Df(2R)42E3;43C3. Includes pk,pwn,sple but not cn.

Df(2R)pk ${ }^{78 \mathrm{~s}}$ [D. Gubb]. X-ray (3000R) induced in adult male. Is $\mathrm{Df}(2 \mathrm{R}) 42 \mathrm{Cl} .7$;43F5.8 associated with $\operatorname{In}(2 R) 42 \mathrm{Cl} .7 ; 59 \mathrm{~F} 5.8$ (i.e., $\operatorname{In}(2 \mathrm{R}) \mathrm{pk} 78 \mathrm{~s}$). Includes pk,pwn,sple and cn.

Df(2R)ST1 [S. Tsubota]. Gamma-ray (3800R) induced in adult male together with noc ${ }^{3}$. Df (2R)43B3.5;43E18. Includes cn.

Df(3L)DTS-5R+3 [J. Faithfull]. An X-ray (3500R) induced revertant of the dominant temperature sensitive phenotype of DTS-5. Is Df(3L)72D3.6;73B5.6-C4. Includes DTS-5.st, associated with a $\mathrm{T}(\mathrm{Y} ; 3)$ broken at 90BC.

Df(3L)st2 [V. Velissariou]. Gamma-ray (3800R) induced in adult male. Df(3L)73A3;73A5 only. Includes st and tra.

Df(3L)st3 [V. Ve1issariou]. Gamma-ray (3800R) induced in adult male. Df(3L)72E5-F1; 73A4.5. Also carries an independent allele of th (th^{3}). Includes st but neither DTS-5 nor tra.

Df(3L)st4 [V. Velissariou]. Gamma-ray (3800R) induced in adult male. Df(3L)72E5-F1; 73B5-7. Includes st,tra and DTS-5.

Df(3L)th1 [V. Velissariou]. Gamma-ray (3800R) induced in adult male. Df(3L)71F3.5;72D6.8. Includes th. Lost.

Df(3L)th2 [V. Velissariou]. Gamma-ray (3800R) induced in adult male. Df(3L)70F1.3;72E3.5. Dominant female sterile. Lost.

Df(3L)VV8 [V. Velissariou]. Gamma-ray (3800R) induced in adult male. Df(3L)74B1.2;74F1.2. Lost.

Df(3L)VWl [V. Walker]. Gamma-ray (3800R) induced in adult male. Df(3L)69E2-F1;70C1. Minute, presumably due to $\mathrm{M}(3) \mathrm{h}$.

Df(3L)VW3. Gamma-ray (3800R) induced in adult male. Df(3L)76A3;76B2. Minute, presumably due to M(3)S34.

Df(3R)cu40 [J. Holden]. Cytologically Df(3R)86C1.2;86D8.
Df(3R)VW4 [V. Walker]. Gamma-ray (3800R) induced in adult male. Df(3R)85E11;85F11. Minute, presumably due to M(3)S35 (see above).

Dp(2;1)ScoR+23. Aneuploid segregant of $T(2 ; 1) S c o R+23$.
Dp (2;2)C158.1 $\mathrm{L}_{\mathrm{Sco}} \mathrm{R}+11 \mathrm{R}$ [V. Velissariou, see Velissariou and Ashburner 1980, Chromosoma 77: 13]. See $\mathrm{Df}(2 \mathrm{~L}) \mathrm{C} 158.1^{\mathrm{L}} \mathrm{ScoR}+11 \mathrm{R}$. Duplicated for 24D1.2;26D1.2. As expected suppresses $M(2) z^{B}$. Carries two different alleles of Sgs-1 (see Velissariou and Ashburner, loc. cit.).

Dp(3;3)VV7 [V. Velissariou]. Gamma-ray (3800R) induced in adult male. Cytologically a reverse tandem duplication for 66E1 to 67A9. New order 61A-67A9/67A9-66E1/67A9-100.

In(2L)b80c2 [P. Angel]. Gamma-ray (4000R) induced in adult male. In(2L)34C7;34D6.7. Associated with b80c2. Viable with b- deficiency (i.e., Df(2L)b75).

In(2L)noc 2 [S. Tsubota]. EMS induced in adult male. Associated with noc ${ }^{2}$. In(2L)35B1.2; 36D3.

In(2R)pk78s [D. Gubb]. X-ray (3000R) induced in adult male. Associated with Df(2R)pk78s. In (2R)42C1.7;59F5.8.

In(3L)fz3 [V. Velissariou]. Gamma-ray (3800R) induced in adult male. Associated with fz ${ }^{3}$. A complex of two overlapping inversions $\operatorname{In}(3 \mathrm{~L}) 70 \mathrm{D} 6.7 ; 75 \mathrm{D} 3.8+\operatorname{In}(3 \mathrm{~L}) 73 \mathrm{D} 3.5 ; 80-81$. An $\operatorname{In}(2 \mathrm{~L}) 21 \mathrm{D} ; 36 \mathrm{~F}$ was induced in the same sperm.

In(3L)fz4 [V. Velissariou]. Gamma-ray (3800R) induced in adult male. Associated with fz4. A complex of two overlapping inversions $\operatorname{In}(3 \mathrm{~L}) 70 \mathrm{D} 6.7$; 80-81 $+\operatorname{In}(3 \mathrm{LR}) 79 \mathrm{~F} ; 87 \mathrm{DE}$. Also induced in the same sperm was a $\mathrm{T}(2 ; 3) 42 \mathrm{~F} ; 100 \mathrm{~F}$.

In(3L)st5 [V. Velissariou]. Gamma-ray (3800R) induced in adult male. Associated with st ${ }^{5}$. In (3L) 73A2.3;80C.

In(3L)VV11 [V. Velissariou]. Gamma-ray (3800R) induced in adult male. In(3L)64C4.8;69F3.7.
$\underline{\operatorname{In}(3 L R) P 3}$ [E.B. Lewis]. $=\operatorname{In}(3 \mathrm{LR}) 75 \mathrm{~B} 12.13 ; 85 \mathrm{D} 18.27$.

In(3R)cu5J [J. Holden]. In(3R)84F11.12;86D1.E2. Associated with cu5J.
In(3R)VV10 [V. Velissariou]. Gamma-ray (3800R) induced in adult male. In(3R)94C;99F.
T(Y;2)e14 [G. Harrington]. Induced by adult male feeding EMS as an allele of elbow. e14/ ell like ell homozygotes and clearly far less extreme in phenotype than ell/e1-. We conclude that el 4 is mutant, but not deficient, for elbow. Cytologically broken at 35A2.4, Y arm not determined.

T(Y;2)TE-60V1 [D. Gubb]. Gamma-ray (3500R) induced as a partial revertant of the $\mathrm{w}^{+} \mathrm{rst}^{+} \mathrm{TE}$ element TE60. Variagates for white. Broken on 2L at 35D7. Y arm not determined. Male fertile.

T(1;3)N264-6. Larry Marsh and Rolf Nothiger have prompted two of us (VW and MA) to restudy the chromosomes of this translocation. Although we can say that the published description (in Lindsley and Grell) is incorrect we are not fully satisfied with all aspects of our interpretation. The "third" chromosome has the order ?/73B1.2-73F1.4/61F5.8-71B7.8/ 61F5.8-61A. There is clearly, as previously described, a long In(3L) but the third chromosome is also $\mathrm{Df}(3 \mathrm{~L}) 71 \mathrm{~B} ; 73 \mathrm{~B}$. The order of the fragment 73B1.2-73F1.4 cannot be determined with certainty. It will not escape notice that this element appears to be acentric. We suspect that it is capped by the X centromere, i.e., has the order . 20/73B1.2-73F1.4/ $61 F$ etc., though the 73 B end is not associated with the chromocenter as often as we would wish to feel confident of this interpretation.

The "X" element consists, as stated in Lindsley and Grell, of an inverted X and inserted third chromosome material. The third chromosome material has the order 75A5.11-71B7.8/73F1.4-80.81, i.e., is both inverted and deficient. This material is normally associated to the chromocenter by its third proximal (i.e., 80-81) end with the distal end free, or it synapses with a normal third. We suggest that the "X" order is ?/73A5.11-71B7.8/73F1.4-81/3C-20/3C-1A, but have no idea what "caps" at 73A5.11.

It is puzzling that this translocation should be said to variegate for pb since this gene is in 84A (Kaufman 1978, Genetics 90:579). We hope that this revised cytology will help those trying to clone tra and urge that further genetic studies of this translocation's nature are needed; these studies we are disinclined to do.

T(2;1)Sco ${ }^{R+23}$ [T. Littlewood]. An X-ray (3500R) revertant of Sco. Approximately 35Al. 2 to 35 C 1.2 has been translocated to X -base where it can be seen, in polytene nuclei, as a free fragment usually "floating" within the nucleolus. The $\operatorname{Dp}(2 ; 1) S c o R+23$ and $\mathrm{Df}(2)$ Sco ${ }^{R+23}$ segregants can be separately recovered. The duplication is homozygous female viable and fertile and male viable and fertile and covers at least from el+ through Adh + to rd^{+}.
$\mathrm{T}(2 ; 3) \mathrm{dp}$ [Lindsley and Grell, see Woodruff and Ashburner 1979, Genetics 92:113]. A restudy of this aberration shows that the description by Bridges requires revision. This is a very complex aberration and our best estimate of its new order is: 21-27E1.2/32E2.3-34D7.El/41-34D7.E1(?)/48A1-60; 61-80/(41-45A/27E2-32E2/45A-48A1)/81-100. Genetically $\mathrm{T}(2 ; 3) \mathrm{dp}$ is deficient for b and some nearby lethals, but not for j or rk. Our stock (from Bowling Green) is not mutant for dp , and is almost lethal with $\operatorname{In}(2 \mathrm{LR}) \mathrm{O}, \mathrm{Cy}$ dplvi Adh ${ }^{\mathrm{nB}} \mathrm{pr} \mathrm{cn}^{2}$ and some other Cy balancers (but viable with SMl).

T(2;3)HR30 [Ashburner DIS 49:34]. Revised cytology: T(2;3)34El.3;70C1.2.
T(2;3)Mpe [Hughes and Shelton DIS 55:204]. Revised cytology: $T(2 ; 3) 35 B 2.3 ; 86 \mathrm{C} 1.2$. Since ops is very near the 2 L breakpoint of this translocation the Mpe phenotype may be due to a dominant osp allele.
$\mathrm{T}(2 ; 3) \mathrm{pb} 3$ [Kaufman 1978, Genetics 90:579]. Revised cytology: $T(2 ; 3) 35 \mathrm{~B} 3 ; 83 \mathrm{E} 2.8+\mathrm{T}(2 ; 3)$ 50C14;80 $+\operatorname{In}(3 R) 83 \mathrm{E} 2.8 ; 89 \mathrm{~A} 9.10$. New order: $21-35 \mathrm{~B} 3 / 83 \mathrm{E} 2.8-89 \mathrm{~A} 9.10 / 83 \mathrm{E} 2.8-80 / 50 \mathrm{C} 14-60$; 61-80/50C14-35B3/89A9.10-100F. The 35B breakpoint has produced a viable recessive osp mutant allele.

T(2;3)TE94V1 [D. Gubb]. A gamma-ray (3500R) induced partial revertant of the wtrst+ TE94 that is inserted into 2L at 34D1.2. Variegates for white. Cytologically T(2;3)34D1.2; 80-81.

T(2;3)VW2 [V. Walker]. A gamma-ray (3800R) induced $T(2 ; 3) 49 \mathrm{E}-50 \mathrm{~A} 4 ; 80 \mathrm{C}$. Phenotypically Minute (?M(3)LS4).

Report of Elisabeth Gateff
University of Freiburg i. Br., F.R.G.
bgen: benign gonial cell neoplasm. On chromosome 2, between dumpy and black. EMS-induced. Homozygous females as well as males are sterile. Pole cell differentiation is normal. The ovaries of freshly eclosed females appear to consist only of germaria. The vitellaria are present, but are obscure because they are devoid of young follicles. The germaria begin with a terminal filament. The anterior and middle portion of the germarium contains large numbers of oogonia. No clusters of cystocytes are present. Profollicle cells can, in some instances, be observed at the posterior end of the germarium.

As the flies age, oogonia from the germaria enter into the vitellaria, where they continue to divide. In older flies (7 days and above), approximately 0.1% of the cells contain two, rarely three nuclei, which have the appearance of young cystocytes. Each ovariole takes the shape of a sausage in which hundred-thousands of oogonia are tightly packed. The epithelial sheath and the tunica propria appear normal. The muscle sheath is also functional, since the ovarioles perform strong peristaltic movements.

The testes of newly eclosed, as well as of older males, are smaller than wild-type testes and in some cases lack pigmentation. They are filled with spermatogonia, which closely resemble the oogonia in the mutant ovaries. At the anterior tip of the testes, the spermatogonia are in single array, while further down they can be observed sometimes in clusters of several hundreds. There is no trace of primary spermatocyte differentiation. The neoplastic growth of oogonia and spermatogonia in situ is not lethal to the mutant animals.

Young adult ovaries and testes, transplanted into the body cavity of wild-type female flies, grow autonomously in a similar, non-lethal fashion as in situ. Thus, the bgen gene mutation prevents the female and male primordial germ cells from differentiation into cystocytes and spermatocytes respectively, and thus, causes the development of benign gonial cell neoplasms in the ovaries and the testes.

Report of M. Kotarski, S. Pickert and R.J. MacIntyre
Cornell University, Ithaca, New York
In (2LR) O, Cy dplvI c13 pr cn ${ }^{2}$: CyO c13. Two new alleles of clot (c1: 2-16.5) were recovered following EMS mutagenesis (Lewis and Bacher 1968, DIS 43:193) of the CyO balancer chromosome.

The mutagenesis produced seven independently
 Curly, mosaic clot eyed F_{1} flies ($\mathrm{n} \cong 13,500$), only two of which were fertile and produced F_{1} 's that displayed a recessive eye color allelic to clot. F1ies carrying c13 as CyO c13/ Df(2L)GdhA (a deficiency for clot provided by Dr. E.H. Grell) show low viability. The second isolate, $\operatorname{In}(2 \mathrm{LR}) 0$, Cy dplvI c14 pr cn ${ }^{2}$, shows much better viability when heterozygous with this deficiency. Stocks containing both chromosomes will be sent to the stock centers.

Report of S. Kulkarni and P. Babu
Tata Institute of Fundamental Research, Bombay, India

Sht: Shrunk thorax; 2-54.7. EMS-induced on second chromosome of Canton-S stock. Located 2.8 ± 0.4 map units to the left of cn . The phenotype of this dominant mutation is an indentation across the dorsal mesothorax giving the appearance of shrunk thorax. Typically a groove runs across the thorax in a V shape. There is some variability in the expressivity; a small fraction of flies have only a marginal phenotype. But the penetrance is nearly complete. Newly emerged flies do not often show the phenotype or have only a faint line on the thorax; the groove becomes visible as the cuticle hardens. The mutant flies have good viability and fertility. Sht is homozygous lethal (or is closely linked to a recessive lethal).

Report of D.L. Woods and D.T. Kuhn
University of Central Florida, Orlando, Florida
iab-2: infra-abdominal-2 (3-58.8). Spontaneous mutation with bx 9 . Recovered in a single female from a cross between females tuh-1; tuh-3 with males sbd 2 bx 3 pbx/TM1. Homoeotic mutation of second abdominal segment towards first abdominal segment. Mutation occurred in the tumorous-head 3B chromosome which carries a recessive lethal presumably associated with In(3L)P, st. Observations made on flies deficient for the iab-2 gene. Cytological1y iab-2 is localized to region 89E3-5 by deficiency mapping. It is not uncovered by Df(3R)bxdl00 which suggests a position right of bxd, but is uncovered by $D f(3 R) P 10$ which indicates that it is to the left of iab-8. Viability good.
bx9: bithorax 9 (3-58.8). Spontaneous mutation found with iab-2. Anterior half of metathorax transformed towards mesothorax. A recessive mutant gene with complete penetrance, and somewhat variable expression. It deficiency maps to the left side of the Bithorax complex at $89 \mathrm{E} 1,2$ and is uncovered by $\mathrm{Df}(3 R) \mathrm{P} 9$ and $\mathrm{Df}(3 \mathrm{R}) \mathrm{bxd} 100$. Viability is good.

Report of I.F. Zhimulev, E.S. Belyaeva, G.V. Pokholkova, G.V. Kotchneva, O.V. Fomina, A.V. Bgatov, Ju. Khudyakov, I. Patzevich, V.F. Semeshin, E.M. Baritcheva, M.G. Aizenzon, P. Kramers* and J. Eeken*.
Institute of Cytology and Genetics, Novosibirsk, 630090, USSR, and *Sylvius laboratoria Rijksuniversititeit, Leiden, The Netherlands
*Df(1)rasP14. X-rays [Patzevich]. Distal end (D): interband 9E1-2/9E3 - right part of the band 9E1-2. Proximal end (P): 9F4. Includes ras ${ }^{-}$to 1(1)HM5. Induced in MFR31.1 stock.

X-ray induced series of Kotchneva:
*Df(1)sbrKl (4.0kR) D = 9B9-10; $P=$ interband 9F13/10A1-2 - left part of 10A1-2 (mapped with EM), includes ras ${ }^{-}$to $1(1) \mathrm{BP} 3$.
*Df(1)sbr ${ }^{K 8}(4.5 \mathrm{kR}) \mathrm{D}=9 \mathrm{~B} 1-2 ; \mathrm{P}=$ right part of $10 \mathrm{Al}-2$, includes ras ${ }^{-}$to $1(1) \mathrm{BP} 4$.
*Df(1) $\operatorname{sbr}^{K 9}(4.5 \mathrm{kR}) \mathrm{D}=9 \mathrm{~A} 2-4 ; \mathrm{P}=$ middle of $10 \mathrm{Al}-2$ (mapped with EM), includes ras ${ }^{-}$to 1 (1) BP4. *Df(1)sbr${ }^{K 10}(5 k R) D=9 A 2-4 ; ~ P=$ interband 9F13/10A1-2 - left part of the 10A1-2 (mapped with EM), includes ras- to 1(1)BP3.

Lefevre's series (Lefevre 1971):
Df(1) $v^{64 f 29} D=9 E 7-8 ; P=$ right part of the $10 A 1-2$ band (mapped with EM), includes 1 (1)S12 to $1(1) \mathrm{BP} 4$.
$\mathrm{Df}(1) \mathrm{v}^{65 b} \mathrm{D}=$ interband $9 \mathrm{~F} 12 / 9 \mathrm{~F} 13$ - left part of the band 9F13; $\mathrm{P}=11 \mathrm{~A} 8-9$ (mapped with EM), includes 1 (1)BP3 to dsh ${ }^{-}$(not mapped further to the right).
$\underline{\mathrm{Df}(1) \mathrm{v}^{\mathrm{L}} \mathrm{l}} \mathrm{D}=$ right part of the band 9F13 - interband 9F13/10A1-2; $\mathrm{P}=10 \mathrm{~A} 4-5$ (mapped with EM), includes v^{-}to 1 (1) BP5.

Df(1) $\mathrm{v}^{\mathrm{L} 2} \mathrm{D}=$ interband $9 \mathrm{~F} 12 / 9 \mathrm{~F} 13$ - band $9 \mathrm{~F} 13 ; \mathrm{P}=$ middle of the $10 \mathrm{Al}-2$ (mapped with EM), includes $1(1) \mathrm{BP} 3$ to $1(1) \mathrm{BP} 4$.

Df(1) $\mathrm{v}^{\mathrm{L} 3} \mathrm{D}=$ interband $9 \mathrm{~F} 10-11 / 9 \mathrm{~F} 12-$ band $9 \mathrm{~F} 12 ; \mathrm{P}=$ band 10A7 - interband 10A6-7/10A8-9 (mapped with EM), includes f1iG- to 1 (1)BP7.
 1(1) BP4.
*Df(1) $\mathrm{v}^{\mathrm{L} 7}$ Inc1udes ras ${ }^{-}$to 1 (1) BP4.
*Df(1) $\mathrm{v}^{\mathrm{L} 11}$ Includes ras ${ }^{-}$to $1(1) \mathrm{BP} 4$.
*Df(1) $\mathrm{v}^{\mathrm{L} 15}$ Includes ras ${ }^{-}$to 1 (1)BP4.
X-ray induced series of Kotchneva:
*Df(1) v^{Ml} (3.5kR) $\mathrm{D}=9 \mathrm{D} 3 ; \mathrm{P}=$ middle of the $10 \mathrm{Al}-2$ band, includes ras ${ }^{-}$to $1(1) \mathrm{BP} 4$.
$\mathrm{Df}(1) \mathrm{v}^{\mathrm{M} 5}(3.5 \mathrm{kR}) \mathrm{D}=$ right part of $9 \mathrm{Fl3}$ band - interband $9 \mathrm{~F} 13 / 10 \mathrm{Al}-2 ; \mathrm{P}=$ middle of $10 \mathrm{Al}-2$ (mapped with EM), includes V^{-}and 1(1)BP4.

Df(1) $\mathrm{v}^{\mathrm{M} 6}$ (3.5kR) D = interband 9F10-11/9F12 - left part of 9F12; $\mathrm{P}=$ middle of the 10Al-2 band (mapped with EM), includes 1(1)BP3 to 1(1)BP4.
*Df(1) $\mathrm{v}^{\mathrm{M} 7}(3.5 \mathrm{kR}) \mathrm{D}=9 \mathrm{D} 3, \mathrm{P}=$ middle of the $10 \mathrm{Al}-2$ band, includes ras to 1 (1) BP4.
*Df(1) $\mathrm{v}^{\mathrm{P} 5} \mathrm{X}$-rays (3.5kR) [Patzevich]. $\mathrm{D}=9 \mathrm{D} 1-2 ; \mathrm{P}=$ middle of the $10 \mathrm{Al}-2$ band, includes ras ${ }^{-}$to $1(1) B P 4$.

Df(1)ras-v17Cc8 [Lindsley, Grell 1968]. $\quad D=9 D 1-2 ; ~ P=$ right part of the 10A1-2 band - left part of interband 10A1-2/10A3 (mapped with EM), includes ras- to sev-.

Lefevre's deficiencies (Craymer, Roy 1980):
*Df(1)HC133 Includes ras- to 1(1)HM25.
Df(1)RA37 Inc1udes 1(1)BP8 to dsh ${ }^{-}$.
Df(1)KA7 Includes dsh- (not mapped further to the right).
Df(1)N71 Includes dsh (not mapped further to the right).
*have not been mapped to the left of ras.

Dpv+63i [Lefevre 1971]. Cover ras to $1(1) \mathrm{L} 1$, not cover $\mathrm{fs}(1) \mathrm{M} 43$ and dsh.
Dpv ${ }^{+}{ }^{+}{ }^{+}$[Lefevre 1971]. Cover 1(1)HM25 to dsh.
T(1;Y)B149 [Stewart, Meriam 1973]. X-chromosome breakpoint in the left part of the 10Al-2 band, genetically to the left of v.

T(1;2)1-v219 [Lindsley, Grell 1968]. X-chromosome breakpoint in the right part of the 10A1-2 band.

T(1;3)v [Lindsley, Grell 1968; Lefevre 1970; Zhimulev et al. 1980]. X-chromosome breakpoint in the middle of the $10 \mathrm{Al}-2$ band to the right of v .
ras 32.35 [Lefevre 1971]. Cytologically - broad (B): right part of 9F1-2 band - 9E7-8, narrow (N): 9E3-4; included in $D f(1) v^{P 14}$ but not in $D f(1) v^{64 f} 29$.

1(1)HM25 Hykanthone methan sulfonate (HMS) [Kramers], mapping between 32.53 and 32.67, cytologically - B:9F4 - 9F5-6, N: 9F5-6; covered by Dpv+Yy+ but not included in Df(1)vL4.
sbr Between 32.53 and 32.67. (33.4 according to Lindsley and Grell 1968), cytologically B: 9F5-6 - 9F10-11, N: 9F7 - 9F10-11 (Zhimulev and Ilyina 1980).

Lethal alleles:
sbrits $403=1(1)$ ts 403 (Arking 1975), lethal at $29^{\circ} \mathrm{C}$, semi-lethal at $25^{\circ} \mathrm{C}$, escapers have small body.

1HM424 HMS (Kramers).
124/45A Male recombination factor MRh12 (Eeken), induced in y mei-9a; mei 41D5.
X-ray induced series of Kotchneva:
$1 \mathrm{~K} 2 \quad(4 \mathrm{kR})$
1K3 (4kR)
1 K 4 (4.5kR)
$1 \mathrm{~K} 6 \quad(4.5 \mathrm{kR})$
$1 \mathrm{K7}$ (4.5kR)
1 K 11 (5.0 kR)

1 HM 424
$124 / 45 \mathrm{~A}$
1 K 11
1 K 7
1 K 6
1 K 5
$1 \mathrm{1K} 3$
1 K 2
1 1ts403

$\underline{1 \mathrm{~K} 5}(4.5 \mathrm{kR})$
$\operatorname{sbr}^{1} / 1$ - phenotypically $=\operatorname{sbr}^{1} / \mathrm{Df}$ (see Zhimulev, Ilyina 1980), $1 / 1=1$ ethal, 1 ts $403 / \mathrm{sbr}$ $\left(30^{\circ} \mathrm{C}\right)$ - viable, sbr+. See complementation map above.
£1iG 32.67. Cytologically - B: interband 9F10-9F12 - band 9F12, N: interband 9F10-11/9F12; included in $\mathrm{Df}(1) \mathrm{v}^{\mathrm{L}} 3$ but not in $\mathrm{Df}(1) \mathrm{v}^{\mathrm{M6}}$. Reduced ability to $f 1 y$ (Homyk, Sheppard 1977; Homyk et al. 1980), male fertility 10% of normal, reduced sex combs. Alleles: 1 (Homyk et al. 1980); $\underline{2}$ (Homyk, Sheppard 1977); B186, EMS (Belyaeva) semi-lethal at $18^{\circ} \mathrm{C}$; dp224, EMS (Bgatov) induced in Dpv+Yy+, lethal at $18^{\circ} \mathrm{C}$.

1(1)BP1 32.78. Cytologically - B: interband 9F10-11/9F12 - band 9F12, N: interband 9F10-11/ 9F12; included in $\mathrm{Df}(1) \mathrm{v}^{\mathrm{L} 3}$ but not in $\mathrm{Df}(1) \mathrm{vM6}$. Non-1ethal allele: bir336, EMS (Fomina);

EA86
$\mathrm{dpS42}$
191
G 98
171
$\mathrm{G101}$
$\mathrm{bir336} \mathrm{Q} 54$

Lethal alleles: Q54 = 1(1)Q54 (Lefevre 1971); 191, EMS (Belyaeva); G98, EMS (Pokholkova); 171, EMS (Pokholkova); G101, EMS (Pokholkova); dpS42, EMS (Bgatov) induced in Dpv ${ }^{+} \mathrm{Yy}^{+}$; EA86.

See complementation map.

1(1)BP3 32.96. Cytologically - B: interband 9F12/9F13 - band 9F13, N: right part of the 9F13 band; included in $D f(1) v^{L} 2$ but not in $D f(1) v^{M 5}$. Lethal alleles: 163, EMS (Pokholkova); 167, EMS (Belyaeva); 183, EMS (Pokholkova); dpS22, EMS (Bgatov) induced in Dp v+Yy+.
v 33.00 (Lindsley, Grell 1968; Lefevre 1971). Cytologically - left part of the 10A1-2 band between $\mathrm{T}(1 ; \mathrm{Y}) \mathrm{B} 149$ breakpoint and proximal break of $\mathrm{Df}(1) \mathrm{v}^{\mathrm{L} 4}$.

EMS-induced series of Belyaeva: E37, E57, E63, E70, E76, E78, E82, E84, E107, E110, AE111, E118, E119, E124, E129, E146, E154, E158, E160, E184, E195, ESB (induced in FM6).

EMS-induced series of Pokholkova: G57, G64, G73, G90, G100, G117, G121, G126, dpG1 (induced in $\mathrm{Dpv}^{+} \mathrm{Y}^{+}$).

EMS-induced series of Zhimulev: BN, DK, NK, NN, OS.
EMS-induced series of Khudyakov: J9, J25.
EMS-induced series of Biyasheva (induced in Dpv+Yy+): dpZ1, dpZ2, dpZ7.
05, 06, EMS (Fomina).
AM1, EMS (Aizenzon).
1(1)BP4 33.05. Cytologically: left part of the 10A1-2 band between $T(1 ; 4) B 149$ breakpoint and proximal break of $\mathrm{Df}(1) \mathrm{v}^{\mathrm{L} 4}$. Probably allele of 1 (1)L68 (Lefevre, Wiedenheft 1974).

Semi-lethal alleles: 166 and 162, EMS (Belyaeva), induced in y, viability reduced at $29^{\circ} \mathrm{C}$ stronger than at $25^{\circ} \mathrm{C}$, escapers phenotypically normal.

Lethal alleles: EMS-induced series of Belyaeva: E109, E115, E128, E143, E147. EMSinduced series of Pokholkova: G50, G92, G99, G130, dpG1 (induced in Dpv+Yy+). J20, EMS (Khudyakov).
sev 33.38 (33.2 according to Harris et al. 1977). Cytologically - B: right edge of the band 10A1-2 - left part of the interband 10A1-2/10A3, N: right part of the 10A1-2 band; included in $D f(1) v^{L 1}, ~ D f(1) r a s-v 17 C c 8$ but not in $D f(1) v^{64 f} 29$ or $D f(1) s b r{ }^{K} 8$.
ms(1)BP6 Cytologically: right part of the 10A1-2 band - band 10A4-5; included in Df(1) $\mathrm{v}^{\mathrm{L} 3}$, $\mathrm{Df}(1) \mathrm{v}^{\mathrm{L} 1}$ but not in $\mathrm{Df}(1) \mathrm{v}^{\mathrm{M} 6}, \mathrm{Df}(1) \mathrm{v}^{\mathrm{M} 5}, \mathrm{Df}(1) \mathrm{v}^{\mathrm{L} 2}, \mathrm{Df}(1) \mathrm{v}^{\mathrm{L} 4}$ and $\mathrm{Df}(1) \mathrm{RA} 37$.

Allele: dpS53, EMS (Bgatov) induced in Dpv+yy ${ }^{+}$. Males phenotypically normal, but 100% sterile in heterozygotes with exposing deficiencies.
slm 33.50 (33.7 according to Lindsley, Gre11 1968). Cytologically: bands 10A3 - 10A4-5; included in $D f(1) v^{L 1}$ but not in Df(1)RA37 or Df(1)ras-v17Cc8. All alleles including slm ${ }^{1}$ (Lindsley, Grell) delay imago eclosion for about 1-2 days.

New alleles: G94, G102, EMS (Pokholkova); E136, E138, E148, E149, EMS (Belyaeva).
1(1)BP5 33.51 (33.49 according to Lefevre 1971). Cytologically: bands 10A3-10A4-5, included in $D f(1) v^{L 1}$ but not in $D f(1) R A 37$ or $D f(1) r a s-v 17 C c 8$.

Lethal alleles: L12 = 1(1)L12 (Lefevre 1971). EMS-induced series of Belyaeva: E54, El12, E114, E120, 164, 169, 187, 193. EMS-induced series of Pokholkova: G62, G67, G76, G93, G95, G96, G105, G139. J21, EMS (Khudyakov). dp025, EMS (Fomina), induced in Dpv+Yy+. dpZ4, EMS (Biyasheva), induced in Dpv+Yy+. dpS145, EMS (Bgatov), induced in Dpv ${ }^{+} \mathrm{Yy}^{+}$. Compounds J21/164, J21/E54, E54/164 are viable both at $29^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$; J21/G96 viable at $25^{\circ} \mathrm{C}$ but lethal at $29^{\circ} \mathrm{C}$; G76/E54 viable at $29^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$ but lethal at $18^{\circ} \mathrm{C}$; viability of compounds J21/G76, E54/G96 and L12/E54 normal at $25^{\circ} \mathrm{C}$ decreases at $29^{\circ} \mathrm{C}$. Complementation map at $25^{\circ} \mathrm{C}$ below.

$\frac{d p 025}{\mathrm{dpZ}}$
$\mathrm{dpS145}$
193
187
169
$\mathrm{G139}$
E 120

E112
G105 G93 $\frac{\text { G67 }}{\text { G62 }}$ $\frac{\text { L12 }}{\text { J21 }}-\frac{164}{\text { G96 }}$

1(1)BP8 33.55 (33.57 according to Lefevre 1971). Cytologically: bands 10A6-10A7, included in both $D f(1) v^{\perp 3}$ and $D f(1) R A 37$, but not in $D f(1) v^{L 1}$.

Lethal alleles: Q66 = 1(1)Q66 (Lindsley, Gre1l 1968; Lefevre 1971). EMS-induced series of Belyaeva: E62, E72, 153, 174, 175, 194. G97, EMS (Pokholkova). dp05, dp024, EMS (Fomina) both induced in Dpv ${ }^{+} \mathrm{Y}^{+}$. dpZ3, EMS (Biyasheva) induced in Dpv+Yy+. HMSinduced series of Kramers: HM4, HM26, HM445.

1(1)BP7 33.56 (33.55 according to Lefevre 1971). Cytologically: bands 10A6-10A7, included in both $\mathrm{Df}(1) \mathrm{v}^{\mathrm{L} 3}$ and $\mathrm{Df}(1) \mathrm{RA} 37$ but not in $\mathrm{Df}(1) \mathrm{v}^{\mathrm{L} 1}$.

Lethal alleles: L8 = 1(1)L8 (Lefevre 1971). EMS-induced series of Belyaeva: E66, E67, TE108, E142, 170. G52 and G65, both EMS-induced (Pokholkova).

1(1)L1 33.68 (33.64 according to Lefevre 1971). Cytologically: bands 10A8-9 - 10A10-11, included in $\operatorname{Df}(1) R A 37$ but not in $D f(1) v^{L 3}$ or Df(1)KA7.

New allele: D40, male recombination factor MRh12 (Eeken).
hfs (haplo female sterile) (See also Lefevre 1969). The locus that, if present in single dose, results in female sterility. Cytologically: bands 10A8-9 - 10A10-11, between proximal end of $\operatorname{Df}(1) v^{L 3}$ and distal $D f(1) K A 7$.
dsh 34.05 (33.7 according to Lindsley, Gre11 1968). Cytologically: bands 10B3-10B17, included in $\operatorname{Df}(1) R A 37, \operatorname{Df}(1) N 71$ and covered by $\mathrm{Dpv}^{+} \mathrm{Yy}^{+}$. New information: viability and fertility of males reduced sharply.
fs(1)M43 Cytologically in the region 10B1-2 - 10B17, included in $D f(1) R A 37$ but not covered by Dpv $+63 i$

Allele: 14-31, female sterile (Mohler 1977), fertility of males reduced sharply, lethal against Df (1)RA37.

References: Arking, R. 1975, Genetics 80:519; Crayer, L. and E. Roy 1980, DIS 55:200; Harris, W.A. et al. 1976, J. Physiol. 256:415; Homyk, Th. and D.E. Sheppard 1977, Genetics 87: 95; Homyk, Th. Jr. et al. 1980, Molec. Gen. Genet. 117:553; Lefevre, G. Jr. 1969, Genetics 63: 589; 1970, DIS 45:39; 1971, Genetics 67:497; ___ and K. B. Wiedenheft 1974, DIS 51: 83; Lindsley, D.L. and E.H. Grell 1968, Genet. Var. Dros. mel.; Mohler, J.D. 1977, Genetics 85:259; Stewart, B. and J. Meriam 1973, DIS 50:167; Zhimulev, I.F. and O.V. Ilyina 1980, DIS 55:146; Zhimulev, I.F. et al. 1980, DIS 55:211.

LINKAGE DATA

Report of C.A. Strommen and R. Falk
University of Oregon, Eugene, Oregon
The following recombination values between the scJ4 translocated to the tip of chromosome 3 L and the genes mwh and ru were determined: y^{+}- mwh 1.854% ($\mathrm{N}=7550$), y^{+}- ru 2.570% ($\mathrm{N}=$ 9106). The distance mwh-jv was found to be $16.330 \% ~(N=4954)$. These values are somewhat higher than those obtained by D.B. Roberts and S. Evans-Roberts (1979, Genetics 93:674) but quite lower than Muller's observations (1934, DIS 2:60).

BIBLIOGRAPHY

ON

DROSOPHILA

PART SEVEN

Irwin H. Herskowitz

INTRODUCTION

Bibliography on Drosophila Part VII covers the literature for the period from 1973 through 1978. It contains some titles appearing before 1973 that were not listed in earlier parts of this series. As in the earlier parts, although most of the titles deal with the genetics of Drosophila, all other references to Drosophila are also included. Drosophila continues to increase in usefulness as a research organism. Whereas the average number of references per year was 964 in Part VI, it has grown to 1114 in Part VII.

The 6684 new references included in Part VII are in six sections: D. $I_{0} S_{0}$, Nos. 51: 159-193 (1974); 52: 176-226 (1977); 53:219-244 (1978); 55: 218-237 and 238-262 (1980); and this issue. In each of these sections titles are arranged alphabetically according to author. For the sake of accuracy, references were checked whenever possible with either the original paper, or a copy prepared by its author. This was true for 81 per cent of the titles numbered consecutively.

For indexing, references in the first section (D. $I_{.} S_{\circ}$, No. 51) are referred to by their page and entry: for example, $163: 12$ refers to the 12 th entry on page 163. References in the remaining sections have been given consecutive numbers, starting with 1 in $D_{.} I_{.} S_{0}$, No. 52 , and continuing through 5829 in this issue。 The bibliography section in this issue is followed by a Coauthor Index and a Title Index. These indexes cover the references in all of the sections comprising Part VH.

The Title Index is divided into three parts: Part I is a general index, listing various subject headings alphabetically, concluding with headings for the X, Y, II, III, and IV chromosomes. All titles have been indexed under at least one heading. An asterisk preceding a number indicates a reference dealing with a species other than D. melanogaster, as determined from the title. Methods and names of mutants are, in almost all cases, listed alphabetically under the headings "methods" and "mutants"; Part II is a geographical listing; and Part III is a systematic index for Drosophilidae and Drosophila species.

Subscribers may find it helpful to combine the various sections from $D_{0} I_{\text {. }} S_{0}$, Nos. $51,52,53$, and 55 with this section, to make one compact volume of Part VII.

Supported by Grant No. GM 20705 from the U. S. Public Health Service.

BIBLIOGRAPHY

D. $=$ Drosophila
D. m. = Drosophila melanogaster

A period following the code number indicates that the reference was not checked with either the original paper or a copy prepared by its author.

ADLER, P. N. 1978. Positional information in imaginal dises transformed by homoeotic mutations. Fate map and regulative behavior of fragments of haltere discs transformed by bithorax ${ }^{3}$ and postbithorax. Wilhelm Roux Archiv, 185(3): 271-292.
AGUADÉ, M. 1976. Relación de la variabilidad en leucinoaminopeptidasa D y xantindeshidrogenasa con la selección por tamaño en D.m. Publ. Univ, Barcelona: 2-16.

AGUADE, M., and SERRA, L. 1978. Estudio de la asociación de la inversión $\operatorname{In}(2 L) C y$ con dos sistemas enzimáticos y su posible relación con un carācter cuantitativo. (Abstr.) J. Genet. Luso Españolas, 14: 28.
AGUADE, M., TOMÁs, M., RIBÓ, G., OLIVERAS, M., and PERIS, F. 1976. Linkage disequilibrium in two cellular populations of D.m. (Abstr.) 5 th Eur. D. Res. Conf. : 2.
AKAM, M. E., ROBERTS, D. B., RICHARDS, G. P., and ASHBURNER, M. 1978. D. : the genetics of two major larval proteins. Cell, 13 (2): 215-225.
AKAM, M. E., ROBERTS, D. B., and WOLF, J. 1978. D. hemolymph proteins: Purification, characterization, and genetic mapping of larval serum protein 2 in D. m. Biochem. Genet., 16 (1/2): 101-119.
ALANEN, M., and SORSA, V. 1978. Identifiable regions of D. m. polytene chromosomes visualized by whole mount electron microscopy. Hereditas, 89 (2): 257-261.
ALEKSANDROV, D. D. 1978. Radiomutability of specific loci and mutation isoalleles in the D.: facts and fantasies. Radiobiology, 17 (6): 104-108.
ALLEMAND, R., DAVID, J. R., and FOUILLET, P. 1977. Bilateral symmetry in the number of sternopleural bristles: differences between two sibling species of Zaprionus (Diptera, Drosophilidae). Arch. Zool. exp gén., 118: 123-132. (In French.)
ALONSO, G., OCANA, J., and PREVOSTI, A. 1977. Características generales del polimorfismo cromósomico de D. subobscura puestas de manifiesto por el análisis factorial de correspondencias. (Abstr.) J. Genét. Luso Españolas, 13: 31.
ALTUKHOV, I. P。, and POBEDONOSTSEVA, E.I. 1978. Experimental modelling of genetic processes in subdivided populations. Dokl. Akad. Nauk SSSR, 238 (2): 466-469. (In Russian.)
ANANLEV, E. V., and BARSKY, V. E. 1978. Localization of RNA synthesis sites in the 1B-3C region of the D. m. X chromosome. Chromosoma, 65 (4): 359-371.
ANANIEV, E. V., GVOZDEV, V. A., ILYIN, Y. V., TCHURIKOV, N. A., and GEORGIEV, G. P. 1978. Reiterated genes with varying location in intercalary heterochromatic regions of D.m. polytene chromosomes. Chromosoma, 70 (1): 1-17.
ANDREGG, M. 1978. Learning in D. pseudoobscura? Experimental evidence for response preservation and some theoretical considerations. (Abstr.) Behav. Genet., 8 (1): 85.
ANNEST, J. L. 1974. Nuclear fusion in an outcrossed parthenogenetic strain of D. mercatorum. Master's Thesis, Univ. Hawaii, Honolulu, 31 pp .
1976. Genetic response in unisexual and bisexual laboratory populations of \underline{D}. mercatorum. Ph. D. Thesis, Univ. Hawaii, Honolulu, 130 pp .
ANONYMOUS 1977. Opinion 1099. Conservation of ㄹ. mercatorum Patterson and Wheeler, 1942 (Insecta, Diptera). Bull. Zool. Nomencl, , 34: 164-166.
APPELS, R., and PEACOCK, W. J. 1978. The arrangement and evolution of highly repeated (satellite) DNA sequences with special reference to D. Int. Rev. Cytol. Suppl., 8: 69-126.
ARKING, R. 1978. Tissue-, age-, and stage-specific patterns of protein synthesis during the development of D. m . Dev. Biol., 63 (1): 118-127.
ASHBURNER, M. 1978. Patterns of puffing activity in the salivary gland chromosomes of D. VII. A revision of the puffing patterns of the proximal region of chromosome arm 2L of D. m. Chromosoma, 68 (3): 195-203.
ASHBURNER, M., and WRIGHT, T. R. F. 1978. (Editors) The genetics and biology of D., vols. 2a, 2b, 2c. New York: Academic Press.
AUERBACH, C. 1978. Helena Slizynska: 1908/1977. Mutat. Res., 50 (2): 153-156.
BÄCHLI, G. 1977. Drosophilidae (Diptera) collected at the upper forest border in Switzerland. Mitt. Schweiz. Entomol. Ges., 50 (1): 47-55. (German with English summary.)
BAIMAI, V., and AHEARN, J. N. 1978. Cytogenetic relationships of D. affinidisjuncta Hardy. Amer. Midl. Nat., 99: 352-360. BAKER, W. K. 1978. A clonal analysis reveals early developmental restrictions in the D. head. Dev. Biol., 62 (2): 447-463. BARJAKTARI, I. 1978. Genetic changes during the ageing process in D.m. Genetika, Beograd, 10: 139-150. (Yugoslavian with English summary.)
BARKER, J. S. F. 1977. Population genetics of a sex-linked locus in D.m. I. Linkage disequilibrium and associative overdominance. Hereditas, 85 (2): 169-198.
BARNES, S. R., WEBB, D. A., and DOVER, G. 1978. The distribution of satellite and main-band DNA components in the melanogaster species subgroup of D. I. Fractionation of DNA in actinomycin D and distamycin A density gradients. Chromosoma, 67 (4): 341-363.
BARNETT, T., and RAE, P. M. M. 1977. Sequel arrangement in the ribosomal DNA of D. virilis. (Abstr.) J. Cell Biol., $75(2 / 2): 131 \mathrm{~A}$.
BECKENBACH, A. T. 1978. The "sex-ratio" trait in D. pseudoobscura: fertility relations of males and meiotic drive. Amer. Nat., 112 (983): 97-117.
BECKER, H. J. 1978. Mitotic recombination in D.: Its cytology, distribution and mechanisms as well as its application to the analysis of meiotic mutants. Conf. on Mutations, Their Origin, Nature and Potential Relevance to Genetic Risk in Man. (1977, Freiburg, Breisgau) Deutsche Forschungsgemeinschaft: I6-28.
1978. Mitotic recombination and position effect variegation. In: Genetic mosaics and cell differentiation, W. Gehring, Editor. New York: Springer, pp. 29-49.
BECKER, J. -L. 1978. Regulation of purine biosynthesis in cultured D.m. cells. I. Conditional activity of hypoxanthine-guaninephosphoribosyltransferase and 5-nucleotidase. Biochimie, 60 (6/7): 619-625.
BEGON, M., and SHORROCKS, B. 1978. The feeding- and breeding-sites of D. obscura Fallen and D. subobscura Collin. J. Nat. Hist., 12 (2): 137-151.

BEIIAEVA, E. S., AIZENZON, M. G., ILINA, O. V., and ZHIMULEV, I. F. 1978. Cytogenetic analysis of the puff in the region of 2B1-10 of the X-chromosome of D. m. Dokl. Akad. Nauk SSSR, 240 (5): 1219-1222. (In Russian.)
BENTLEY, M. M., and WILIIAMSON, J. H. 1978. Genetic and biochemical analysis of the cinnamon locus in D.m. (Abstr.) Can. J. Genet. Cytol., 20: 440.
BERGER, E., RINGLER, R., ALAHIOTIS, S., and FRANK, M. 1978. Ecdysone-induced changes in morphology and protein synthesis in D. cell cultures. Dev. Biol., 62 (2): 498-511.
BERNARD, J. 1978. In vitro synthesis of double stranded RNA by D. X virus purified virions. Biophys. Biochem. Res. Comm., 83: 763-770.
BERNSTEIN, S. I., and DONADY, J. J. 1978. Isolation of messenger RNA coding for myosin heavy chain from cultures of D.m. embryonic muscle cells. (Abstr.) J. Cell Biol., 79 (2/2): 359A.
BEST-BELPOMME, M., COURGEON, A. -M., and RAM BACH, A. 1978. beta-Galactosidase is induced by hormone in D. m . cell cultures. Proc. Nat. Acad. Sci., U.S., 75 (12); 6102-6105.
BICKLEMAN, T. G. 1978. Radiation-induced melanoma in D. Proc. Pa. Acad. Sci., 52: 31-33.
BIEMONT, C. 1976. Interaction between ageing and inbreeding effects on development of D. m. embryos. Mech. Ageing Develop., 5: 315-324.
BIÉMONT, C., and BOULETREAU-MERLE, J. 1978. Inbreeding effect: Embryonic development and fecundity of \mathbf{D}. m. offspring. Experientia, 34 (10): 1273-1274.
BIEMONT, C., and LEMAITRE, C. 1978. Inbreeding effects in D. m. : influence of embryonic development on thermogenesis of the offspring. C. R. Acad Sci., Paris, 286D (23): 1715-1717. (French with English summary.)
BIESSMANN, H., LEVY, W, B., and McCARTHY, B. J. 1978. In vitro transcription of heat-shock-specific RNA from chromatin of D.m. cells. Proc. Nat. Acad. Sci., U. S., 75: 759-763.
BILLINGS, P. C., ORF, J. W., and BLUMENFELD, M. 1978. Unusual electrophoretic behavior of H1 histones of D. virilis. (Abstr.) J. Cell Biol., 79 (2/2): 105A.
BLIJLEVEN, W. G. H. 1978. Mutagenicity testing of amines and amides combined with nitrite in D. m. (Abstr.) 8th Ann. Meet. E MS, July 11-13. Dublin, Ireland.
BLIJLEVEN, W. G. H., KORTSELIUS, M. J. H., and KRAMERS, P. G. N. 1977. Mutagenicity testing of H-193, AF-2 and furazolidone in D.m. Mutat. Res., 56:95-100.
BLJJLEVEN, W. G. H., and VOGEL, E. 1977. The mutational spectrum of procarbazine in D.m. Mutat. Res., 45: 47-59.
BLUMENFELD, M., ORF, J. W., SINA, B. J., KREBER, R. A., CALLAHAN, M. A., MULLINS, J. l., and SNYDER, L. A. 1978. Correlation between phosphorylated H1 histones and satellite DNAs in D. virilis. Proc. Nat. Acad. Sci., U.S., 75 (2): 866-870.
BOCK, I. R. 1976. Drosophilidae of Australia. I. D. (Insecta:Diptera). Aust. J. Zool., Suppl. Ser. No. 40: 105 pp.
1978. A note on D. albostriata Malloch (Diptera:Drosophilidae). Aust. ent. Mag., 5 (3): 51-53.

BOCK, I. R., and PARSONS, P. A. 1977. Distributions of the dipteran genera D. and Scaptomyza in Australia in relation to resource utilization. J. Biogeogr., 4 (4): 327-332.
1978. Australian endemic D. V. Queensland rain-forest species associated with fungi, with descriptions of six new species and a redescription of D. pictipennis Kertész. Aust. J. Zool., 26 (2): 331-347.
BOS, M., BURNET, B., FARROW, R., and WOODS, R. A. 1976. Development of D. species on four sterol mutants of the yeast Saccharomyces $\frac{\text { cerevisiae }}{5 \text { th }}$ and the occurrence of facilitation between D. m. and D. simulans larvae on erg-2 mutant yeast. (Abstr.) Proc. 5 th Eur. D. Res. Conf., 14.
BOURNIAS-VARDIABASIS, N., and BOWNES, M. 1978. Tumorous head is a maternal effect homoeotic mutant of D.m. Nature, Lond., 276 (5688): 611-612.
1978. Developmental analysis of the tumorous head mutation in D.m. J. Embryol. Exp. Morphol, , 44: 227-241.

BOWNES, M., and HAMES, B. D. 1978. Analysis of the yolk proteins in D. m. Translation in a cell free system and peptide analysis. FEBS Lett., 96 (2): 327-330.
BOYD, J. B. 1978. DNA repair in D. (Abstr.) J. Supramol. Struct., 7 (Suppl. 2): 31.
BRADY, T., and BELEW, K. 1978. Coenzyme (pyridoxine HCl) mediated activation of the tyrosine amino-transferase gene in D. hydei salivary polytene chromosomes. (Abstr.) J. Cell Biol., 79 (2/2): 343A.

BRNCIC, D., and VALENTE, V. L. S. 1978. Dynamics of D. communities on wild fruits in Rio Grande do Sul. Cienc. Cult. Bras. Progr. Cienc., 30 (9): 1104-1111. (In Portuguese.)
BROWN, S. W., and CHANDRA, H. S. 1977. Chromosome imprinting and the differential regulation of homologous chromosomes. Cell. Biol., 1: 109-189.
BRUN, G. 1977. A propos de l'infection de la lignée germinale femelle de la Drosophile par le virus sigma. Ann. Microbiol., 128A: 119-131.
BRYANT, P. J. 1977. Evolution of developmental compartments in Hawaiian D. Ann. Rep., Center for Pathobiology, Univ. Calif., Irvine: 33.
1977. Size-dependence of bristle patterns in Hawaiian D. Ann. Rep., Center for Pathobiology, Univ. Calif., Irvine: 34-37. 1977. Geographical variation of bristle pattern in D. silvestris in Hawaii. Ann. Rep., Center for Pathobiology, Univ. Calif., 37-38.
1978. Pattern formation in imaginal discs. Genet. Biol. D., 2c: 229-335.

BUCHETON, A., and PICARD, G. 1978. Non-Mendelian female sterility in D. m. : Hereditary transmission of reactivity levels. Heredity, 40 (2): 207-223.
BÜCHI, R. 1976/1977. Letalwirkung chemischer Mutagene in Abhタngigkeit der behandelten Chromosomenmengen bei D. (Abstr.) Arch. Genetik, 49/50: 92.
BUDNIK, M. 1977. The inhibition of \underline{D}. pavani preadult viability by different concentrations of larval biotic residues. Cienc. Cult. Soc. Bras. Para Progr. Cienc., $2 \overline{29}(6): 675-676$.
BULTMANN, H., and WHITE, R. A. 1977. Specificity of regular denaturation patterns in D.m. (Abstr.) J. Cell Biol., 75 (2/2): 120A.
BURNET, B., BOS, M., and SEWELL, D. 1976. Larval feeding rate as component of fitness in D.m. (Abstr.) Proc. 5th Eur. D. Res. Conf. : 26.

BUZIN, C. H., DEWHURST, S. A., and SEECOF, R. L. 1978. Temperature-sensitive differentiation of cells taken from the temperature-sensitive mutant shiberets1. (Abstr.) In Vitro, 14 (4): 374.
1978. Temperature sensitivity of muscle and neuron differentiation in embryonic cell cultures from the D. mutant, shibirets1. Dev. Biol., 66 (2): 442-456.

CALS, P. 1977. Phanerochasy: secretion of superficial cuticular areas by imaginal discs of insect holometabolous larvae Opius concolor (Hymenoptera), D. m. (Diptera). C. R. Acad. Sci., Paris, 285D (6): 685-688. (French with English summary.)
CALVEZ, C. 1978. Synthèse d'ADN dans les noyaux vitellins de D.m. Mise en évidence par autoradiographie d'hétérochromatine sous répliquée. Thèse de Spécialité, Biologie Appliquée, Lyon.
CAMPOS-ORTEGA, J. A., and WAITZ, M. 1978. Cell clones and pattern formation: developmental restrictions in the compound
eye of D. Wilhelm Roux' Archiv, 184 (2): 155-170.
5405 CANDIDO, E, P. M., EDWARDS, T. C. R., and CHOVNICK, A. 1977. Comparison of kinetic parameters for xanthine dehydrogenase from wild-type and from a putative regulatory variant of D. m. (Abstr.) J. Supramolec. Struct., Suppl. 1, 1977: 55.
CARLSON, M. B., and BRUTLAG, D. 1978. A gene adjacent to satellite DNA in D. m. Proc. Nat. Acad. Sci., U.S., 75 (12): 5898-5902.
CARSON, H. L. 1976. Ecology of rare D. species in Hawaii Volcanoes National Park. Proc. First Conf. Nat. Sci. Hawaii Volcanoes National Park. Honolulu, Dept. Bot., Univ. Hawaii: 39-45.
1978. Speciation and sexual selection in Hawaiian D. In: Ecological genetics: the interface. P. F. Brussard, Editor. New York: Springer-Verlag; pp. 93-107.
CARTON, Y. 1976. Attraction de Cothonaspis sp. (Hy ménoptère parasite, Cynipidae) par le milieu trophique de son hôte: D. m. Colloque int. C. N.R.S., 265. In: Comportement des insectes et les signaux issus du milieu trophique, pp. 285-303.
1977. Specificity of cell immune response in an insect. Ann. Parasitol. Hum. Comp., 52 (1): 70-72. (In French.)

CAVICCHI, S., GIORGI, G., and MOCHI, M. 1978. Investigation on early divergence between populations of $D . m$. kept at different temperatures. Genetica, 48 (2): 81-87.
CHABORA, P. C., and SMOLIN, S. J. 1978. Observations on the life history of Pseudeucoila spp. (Abstr.) J. N.Y. Ent. Soc., 86 (4): 282 。
CHAKRABARTTY, P. K. 1978. Isozymes in D. cell line. Experientia, 34 (4): 438-439.
CHAMBERLIN, M. E., DAVIDSON, E. H., and LEWIS, E.B. 1977/1978. Sequence content of the bithorax region of the D. genome. Carneg. Inst. Wash. Yearb., 77: 370.
CHAPCO, W., JONES, S. G., and MCCONNELL, W. B. 1978. Correlations between chromosome segments and fitness in D. m. II. Differential genetic responses to zinc sulfate and selenocystine. Can. J. Genet. Cytol., 20: 555-565.

CHATTORAJ, A. N., and SRIVASTAVA, B. B. L. 1977. Effect of hempa on the sterility and mortality of D.m. (Meigen). Botyu Kagaku, 42 (4): 151-157.
CHENDRA REDDY, V. R., and RATHNASABAPATHY, V. 1978. A note on mutagenesis in D.m. Indian J. Anim. Sci., 48 (9): 695-697.
CHERBAS, P. T., CHERBAS, L., YONGE, C., MANTEUFFEL-CYMBOROWSKI, M., and WILLLAMS, C. M. 1978. Ecdysone effect in a D. cell line. (Abstr.) In Vitro, 14 (4): 374.
CHERNYSHEV, V. B., and IFONINA, V. M. 1978. Effect of electric fields on the behavior of D. m. Izv. Akad. Nauk SSSR, Ser. Biol., 5: 723-731. (In Russian.)
CHOO, I. Y., LEE, T. J., and CHOO, J. K. 1976. Studies on the lethality and sterility under environmental pollution in Korean natural populations. Theses Collection, Chungang Univ., 20: 9-28.
$\mathrm{CHOO}, \mathrm{J} . \mathrm{K} .1974$. Phototactic selection and its effects on some quantitative characters of $\underline{\text { D }}$ virilis. Environ. Control in Biol., Japan, 12: 41-51.
1975. Studies on the effects of developmental time on the light and noise environment in D. Theses Collection, Chungang Univ., 19: 251-261.
1975. Studies on the effects of deleterious genes on the strains selected for phototaxis in D.m. Korean J. Zool., 18: 1-8.
1977. Artificial and natural selection for phototactic behavior in D. m. Korean J. Zool., 20: 1-8.

CHOO, J. K., and CHO, S. N. 1978. Effects of nicotine on the rates of pupation and adult emergence in D. New Medical J., 21: 115-117.
CHOVNICK, A., GELBART, W., and McCARRON, M. 1977. Organization of the rosy locus in D.m. Cell, 11: 1-10.
1977. Gene organization in higher organisms. In: Organization and expression of the eukaryotic genome, E. M. Bradbury and K. Javaherian, Editors. London: Academic Press, pp. 445-468.

CHOVNICK, A., McCARRON, M., HILLJKER, A., O'DONNELL, J., GELBART, W., and CLARK, S. 1978. Organization of a gene in D. mo A progress report. Stadler Genet. Sympos., $10: 9-24$.
CHRISTENSEN, M. E., and Le STOURGEON, W. M. 1978. Immunofluorescent localization of heterogeneous nuclear ribonucleoprotein particles in D. polytene chromosomes. (Abstr.) J. Cell Biol., 79 (2/2): 351A.
CLEGG, M. T., KIDWELL, J. F., and KIDWELL, M. G. 1978. Dynamics of correlated genetic systems. III. Behaviour of chromosomal segments under lethal selection. Genetica, 48 (2): 95-106.
COHEN, E. H. 1977. The virilis group species of D.: chromosomal locations of satellite DNA. (Abstr.) J. Cell Biol., 75 (2/2): $133 A$.
COHET, Y. A., and DAVID, J. R. 1976. Deleterious effects of copulation in D. females as a function of growth temperature of both sexes. Experientia, 32: 696-697.
CONANT, P. 1978. Lek behavior and ecology of two sympatric homosequential Hawaiian D. : D. heteroneura and D. silvestris. Master's Thesis, Univ. Hawaii, Honolulu, 191 pp .
COOK, R. 1977. Modulation of attractiveness to males by female D. m. Adv. Invertebr. Reprod., 1: 285-294.
CORWIN, H. O., and GOTTLIEB, F. J. 1978. Anthracene-induced melanotic tumors in D. Environ. Res., 15 (3): 327-331.
COSENS, D. 1978. Blue- and orange adaptation, a tool for the study of visual behaviour of D.m. (Abstr.) Neurosci. Lett. Suppl. 1: S405.
CRUMPACKER, D. W., PYATI, J., and EHRMAN, L. 1977. Ecological genetics and chromosomal polymorphism in Colorado populations of D. pseudoobscura. Evol. Biol., 10: 437-469.
DAGAN, D. 1977. New technique for movement analysis: Application to biological systems. Experientia, 33 (9): 1259-1262.
DATSON, C. R., and BRINK, N. G. 1978. Characterization of a temperature-sensitive female sterile mutant (l) (1)1074ts) in D. m . Aust. J. Biol. Sci., 31 (1): 73-91.
DAVID, J. R. 1976. Evolution and genetics of natural populations: concerning research on populations of D.m. and neighboring species. Bull. Soc. Zool. Fr., 101: 944-947. (In French.)
1977. Evolutionary importance of feeding behavior and egg laying behavior in insects. In: Ethological mechanisms in evolution, J. Médioni and E. Boesiger, Editors. Paris: Masson, pp. 34-46. (In French.)
1978. From the genotype to phenotypes. La Recherche, 9: 482-483. (In French.)

DAVID, J. R., and BOCQUET, C. 1977. Genetic tolerance to ethanol in D. m. : increase by selection and analysis of correlated responses. Genetica, 47:43-48.
DAVID, J. R., BOCQUET, C., de SCHEEMAEKER-LOUIS, M., and PLA, E. 1978. Utilisation du coefficient de variation pour l'analyse de la variabilité de differents caractères quantitatifs chez D. m. : comparaison des souches appartenant à trois races geographiques. Arch. Zool. exp. gen. , 118:(4): 481-494.
DAVID, J. R. BOCQUET, C., FOUILLET, P., and ARENS, M. F. 1977. Genetic tolerance to alcohol in D.: Comparison of the effects of selection in D. m. and D. simulans. C. R. Acad. Sci., Paris, 285D (4): 405-408. (French with English summary.)
DAVID, J. R., and LEGAY, J. -M. 1977. Relation between the genetic variability of egg size and female size: comparison of three geographical races of D.m. Arch. Zool. exp. gén., 118: 305-314. (In French.)
DAWID, I. B., DWORKIN, M., LONG, E. O., RASTL, E., and WAHIJ, W. 1977/1978. Studies on gene organization in eukaryotes. Carneg. Instit. Wash. Yearb., 77:85-106.
de FRUTOS, R. 1978. Changes in chromosomal polymorphism in experimental cage populations of D. subobscura. Genetica, 49 (2/3): 139-151.
DEJIANNE, D., PRUZAN, A., and FARO, S. H. 1978. Sperm competition in D. pseudoobscura. (Abstr.) Behav. Genet., 8 (6): 544.
5457.
（3）：253－260．
del SOLAR，E．，and NAVARRO，J．1975．Pattern of spacial distribution in D．funebris．Bol．Soc．Biol．Concep．，44：239－245． del SOLAR，E．，RUZ，G．，and KOHLER，N．1977．Gregarious behavior and microgeographical distribution．Medio Ambiente， 3 （1）：15－25．
del SOLAR，E．，WALKER，L．，and GUIJON，A．M．1976．Choice of oviposition sites on colored substrates by different mutants of D．m．Bol．Soc．Biol．Concep．，50：5－14．
DENNHÖFER，L．1978．Size and puff pattern of the larval salivary gland chromosomes of D．m．as influenced by L－glutamic acid in vivo．Genetica，48（2）：107－116．（German with English summary．）
DENNHÖFER，L．，and MÜLLER，P．1978．The puff patterns of salivary gland chromosomes from larvae and prepupae of D．m ． in vitro．Genetica， 48 （2）：117－128．（German with English summary．）
de STORDEUR，E．，and PASTEUR，G．1978．On the evolution of the enzyme alpha－glycerophosphate dehydrogenase in Drosophilidae．C．R．Acad．Sci．，Paris，287D（2）：93－95．（French with English summary．）
DETWILER，C．，and MacINTYRE，R．J．1978．A genetic and developmental analysis of an acid deoxyribonuclease in D．m． Biochem．Genet．， 16 （11／12）：1113－1134．
DOANE，W．W．1977．Temporal genes for tissue－specific expression of amylase in D．m．（Abstr．）J．Cell Biol．， 75 （2／2）：147A． DORSETT，D．，YIM，J．J．，and JACOBSON，K．B．1978．Biosynthesis of drosopterins in D．m．（Abstr．）VI Int．Sympos．Chem． Biol．Pteridines，La Jolla，Calif．
DUBININ，N．P．GLEMBOTSKY，Y．L．，VAULINA，E．N．，MERKIS，A．I．，LAURINAVICHIUS，R．S．，PALMBAKH，L．R．， GROZDOVA，T．Y．，HOLIKOVA，T．A．，YAROSHYUS，A．V．，et al．1977．Biological experiments on the orbital station Salyut－ 4．In：Life sciences and space research，15：267－272．
DUDAI，Y．$\frac{1978}{}$ ．Properties of an alpha－bungarotoxin－binding cholinergic nicotinic receptor from D．m．Biochim．Biophys．Acta， 539 （4）：505－517．
DUNN，R．J．，DELANEY，A．，GILLAM，I．C．，HAYASH，S．，and TENER，G．M．1978．Restriction nuclease analysis of transfer RNA genes in D．m．（Abstr．）Can．Fed．Biol．Soc．Proc．，21：33．
EKRMAN，L．1977．Theodosius Grigorievich Dobzhansky：1900－1975 scientist and humanist．Behav．Genet．，7：3－10． 1978．Sexual behavior．In：The genetics and biology of $\mathrm{D}_{\text {。 }}, 2 \mathrm{~b}: 127-180$ ．
EHRMAN，L．，PERELIE，I．，and SARETSKY，S．1978．Lateral consistency in D．（Abstr。）Behav．Genet．， 8 （6）： 545.
EHRMAN，L．，and PROBBER，J．1978．Rare D．males：the mysterious matter of choice．Amer．Scio， 66 （2）： 216 － 222 ．
ELISEEVA，K．G．1977．Frequency of somatic crossing－over in D．m．as affected by the combined action of X－ray irradiation and amino indene compounds．Izv．Akad．Nauk BSSR，Ser．Biol．Nauk，2：81－83．（In Belorussian．）
ENDOW，S．A．，and GLOVER，D．M．1978．Preferential replication of non－inserted rDNA repeats in polytene nuclei．（Abstr．） J．Cell Biol．， 79 （2／2）：142A．
ESPINOZA VEIAZQUEZ，J．1977．Some components of the adaptive value in a natural population of $\underline{\text { D }}$ ．arizonesis，Patterson and Wheeler．Agrociencia，28：53－60．（In Spanish．）
ESPINOZA VEIAZQUEZ，J．，and SALCEDO，S．1977．Effect of genetic load on the viability in a natural population of D．m．from Culiacan，Sinaloa．Agrociencia，28：61－65．（In Spanish．）
EVANS，B．A．，and HOWELLS，A．J．1978．Association between purine nucleotide metabolism and pteridine biosynthesis in D． m ． （Abstr．）Proc．Austral．Biochem．Soc．，11：44．
1978．Control of drosopterin synthesis in D．m．：Mutants showing an altered pattern of GTP cyclohydrolase activity during development．Biochem．Genet．， 16 （1／2）：13－26．
EVGENIEV，M．B．，KOLCHINSKI，A．，LEVIN，A．，PREOBRAZHENSKAYA，O．，and SARKISOVA，E．1978．Heat－shock DNA homology in distantly related species of $D_{\text {。 }}$ Chromosoma， 68 （4）：357－365．
EWING，A．W．1978．The antenna of D．as a＇love song＇receptor．Physiol．Entomol．， 3 （1）：33－36．
FACCIO DOLFINI，S．1978．Sister chromatid exchanges in D．m．cell lines in vitro．Chromosoma，69：339－347．
FACCIO DOLFINI，S．，and HALFER，C．1978．Spontaneous chromosomal changes in established cell populations of D．m． In：Progress in clinical and biological research，26：125－147．
FALK，R．，BLEISER－AVIVI，N．，and ATIDIA，J．1976．Labellar taste organs of D．m．J．Morph．，150：327－342．
FAURON，C．M．－R．，and WOLSTENHOLME，D．R．1977．Restriction enzyme studies of D．m．mitochondrial DNAs．（Abstr．） J．Cell Biol．， 75 （2／2）：311A．
FAUSTO－STERLING，A．1978．Pattern formation in the wing veins of the fused mutant（D．m．）Dev．Biol．， 63 （2）：358－369．
FLETCHER，T．S．，AYALA，F．J．，THATCHER，D．R．，and CHAMBERS，G．K．1978．Structural analysis of the ADHS electromorph of D．m．Proc．Nat．Acad．Sci．，U．S．，75：5609－5612．
FONTEDEVILA，A．，and CARSON，H．L．1978．Spatial distribution and dispersal in a population of D．Amer．Nat．， 112 （984）： 365－380．
FOX，A．S．1977．Gene transfer in D．m．In：Molecular genetic modification of eucaryotes，I．Rubenstein，et al．，Editors，pp．101－ 131 ．
FRANKHAM，R．1976．Selection studies in D．Proc．XVIII British Poultry Breeders Roundtable：1－10．
FRIAS，D．，and del SOLAR，E．1974．Selection for high and low dispersive behavior in D．m．females．Boll．Zool．， 41 （2）：73－80．
FRISTROM，D．，and CHIHARA，C．J．1978．The mechanism of evagination of imaginal discs of D．m．V．Evagination of dise fragments．Dev．Biol．， 66 （2）：564－570．
FULIILOVE，S．L．，JACOBSON，A．G．，and TURNER，F．R．1978．Embryonic development：descriptive．Genet．Biol．D．， 2c：105－227．
FYRBERG，E．A．，and DONADY，J．J．1978．Changes in protein synthetic patterns and cellular ultrastructure associated with D． myogenesis in vitro．（Abstr．）In Vitro， 14 （4）： 374.
1978．Protein synthesis during the differentiation of embryonic D．m．myoblasts．（Abstr．）J．Cell Biol．，79（2／2）：33A．
GALLO，A．J．1978．Genetic load of the X－chromosome in natural populations of D．m．Genetica， 49 （2／3）：153－157．
GALLO，A．J．，and SALCEDA，V．M．1978．Concealed genetic variability of the X，Π and III chromosomes，limited to the females of D．m．Cienc．Cult．Soc，Bras．Progr．Cienc．， 30 （12）：1454－1457．（In Portuguese．）
GAMO，S．，OGAKI，M．，and NAKASHIMA－TANAKA，E．1978．Genetic studies on anesthesia resistance in D．Jap．J．Anesth．， 27 （11）：99－100．
GARCIA，P．，PREVOSTI，A．，and AYATS，F；1977．Asociación entre alelos de sistemas aloenzimáticos y ordenaciones del cromosoma O en D．subobscura．J．Genét．Luso Españolas，13： 43.
GARCIA－BELLIDO，A．，and RIPOLL，P．1978．Cell lineage and differentiation in D．In：Genetic mosaics and cell differentiation， Gehring，W．，Editor．New York：Springer，pp．119－156．
GARCIA－BELLDO，A．，and SANTAMARIA，P。1978．Developmental analysis of the achaete－scute system of D．m．Genetics， 88 （3）：469－486．
GATEFF，E．1977．Malignant neoplasms of the hematopoietic system in three mutants of D．m．Ann．Parasitol．Hum．Comp．， 52 （1）：81－83．
1978．Malignant neoplasms of genetic origin in D．m．Science， 200 （4349）：1447－1459．
GATTI，M．，PIMPINELL，S．，and BAKER，B．S．1978．Chromosome breakage and rejoining in repair defective mutants of D．m． （Abstr．）J．Supramol．Struct．， 7 （Suppl．2）： 73.
GAY，P．1978．D．genes which intervene in multiplication of sigma virus．Mol．Gen．Genet．，159（3）：269－283． （French with English summary．）

GEER, B. W., WILLIAMSON, J. H., OLIVER, M. J., WALKER, V. K., and BENTLEY, M. M. 1978. The malic enzyme (ME) of D. m. (Abstr.) Can. J. Genet. Cytol., 20:444.

GEER, B. W., WOODWARD, C. G., and MARSHALL, S. D. 1978. Regulation of the oxidative NADP-enzyme tissue levels in D. m. II. The biochemical basis of dietary carbohydrate and D-glycerate modification. J. Exp. Zool., 203 (3): $391-402$.

GEKRING, W. J. 1978. Imaginal discs: determination. Genet. Biol. D., 2c: 511-554.
1978. (Editor) Genetic mosaics and cell differentiation. New York: Springer.

GERSH, E. S. 1975. Sites of gene activity and of inactive genes in polytene chromosomes of Diptera. J. Theor. Biol., 50: 413-428.
GHYSEN, A. , and DEAK, I. I. 1978. Experimental analysis of sensory nerve pathways in D. Wilhelm Roux' Archiv, 184 (4) : 273283.

GIESS, M. -C. 1977. Influence of sexual activity upon Iongevity of adult male in D. m. C. R. Acad. Sci., Paris, 285D (3): 233-235. (French with English summary.)
GINEVAN, M. E., and LANE, D. D. 1978. Effects of sulfur dioxide in air on the fruit fly, D. m. Environ. Sci. Tech. , 12 (7): 828831.

GODDARD, J. M.2 and WOLSTENHOLME, D. R. 1977. Replication of mitochondrial DNA from D. m. (Abstr.) J. Cell Biol., $75(2 / 2): 306 \mathrm{~A}$.
GOLDSTEIN, E. S. 1978. Translated and sequestered untranslated message sequences in D. oocytes and embryos. Dev. Biol., 63 (1): 59-66.
GOLIAPUDI, B., and KAMRA, O. P. 1978. Genetic effects of sodium azide in D. m. (Abstr.) Can. J. Genet. Cytol., 20: 444-445.
GOLZBERG, K. L., and VOROBTSOVA, I. E. 1977. Effects of exposure to single and divided doses of radiation on survival of offspring of irradiated and nonirradiated D. males. Radiobiology, $16(5): 108-112$.
1978. Age dynamics of radiosensitivity of the offspring of irradiated and nonirradiated D. males. Radiobiologiia, 18 (2): $214-217$. (Russian with English summary.)
GONZALEZ-DUARTE, R. 1976. Estudio de esterases en poblaciones naturales de D. subobscura. Publ. Univ. Barcelona: 3-19.
GOTTLIEB, F. J., GOITEIN, R., EHRMAN, L., and MCAVOY, S. 1977。 Interorder transfer of mycoplasmalike microorganisms between \mathbb{D}. paulistorum and Ephestia kuhniella. D. Numbers of MLO and sterility. Experientia, 33 (11): 1436.
GRAF, U. 1976/1977. Chemische Mutagenese. Arch. Genetik, 49/50: 1-15.
GRAF, U., and WURGLER, F: E. 1976. MMS-sensitive strains in D. m. (Abstr.) 5th Eur. D. Res. Conf., Louvain-la-Neuve, Belgium.
1978. Genetic control of mutagenesis in D. (Abstr.) Ann. Meeting Eur. Environ. Mutagen Soc., Dublin, Ireland.
1978. Genetische Kontrolle der Mutagenese bei D. (Abstr.) Mitgliederversammlung Gesell. Umweltmutationsforschung (GUM), Dusseldorf.
GRAY, D. M. LEE, C. S., and SKINNER, D. M. 1978. First-neighbor frequencies of satellite DNAs from D. nasutoides and Pagurus pollicaris from an analysis of their circular dichroism spectra. Biopolymers, 17: 107-114.
GREEN, M. M. 1978. The genetic control of mutation in D. Stadler Genet. Sympos., 10: 95-104.
GRELL, R. F. 1978. The origin of meiotic nondisjunction. (Abstr.) NIEHS Workshop on Systems to Detect Induction of Aneuploidy by Environmental Mutagens, Savannah, Ga.
GRICIUTE, L. 1978. Methods of determining the carcinogenic capacity of medicines, food and cosmetics. Acta Zool. Pathol. Antwerp, 72: 19-34.
GROMKO, M. H., and RICHMOND, R. C. 1978. Modes of selection maintaining an inversion polymorphism in D. paulistorum. Genetics, 88 (2): 357-366.
GRUWEZ, G. 1976. What does duration of development in D. m. depend on? Proc. 5th Eur. D. Res. Conf.
GRYGON, B. 1977. Heterosis in fertility as effect of crossing different stocks of D. m. Zool. Pol. , 26 (1): 51-75.
GUILLERMET, C., and MANDARON, P. 1978. Endoevagination: a special type of development of in vitro cultured D. imaginal discs. C. R. Acad. Sci., Paris, 287D (5): 483-486. (In French.)

HADORN, E. 1978. Transdetermination. Genet. Biol. D., 2c: 555-617.
HALFER, C. 1978. Karyotypic evolution in an originally XY cell line of D. m. A case of heterochromatin increase in vitro. Chromosoma, 68 (2): 149-163.
HALL, C. 1978. Behavioral analysis in D. mosaics. In: Genetic mosaics and cell differentiation, W. Gehring, Editor. New York: Springer, pp. 259-305.
HALL, J. C. 1978. Courtship among males due to a male-sterile mutation in D. m. Behav. Genet. , 8 (2): $125-141$.
HALL, L. M., Von BORSTAL, R. W., OSMOND, B. C., HOELTZLI, S. D., and HUDSON, T. H. 1978. Genetic variants in an acetylcholine receptor from D.m. FEBS Lett., 95 (2): 243-246.
HARDY, D. E. 1978. A new synmorphic sibling species of D. from the island of Mawi, Hawaii (Diptera). Amer. Midl. Nat., 99: 350-351.
HARRIS, P. V., and BOYD, J. B. 1978. Analysis of excision deficiency in mei-9 mutants of D. m. (Abstr.) J. Supramol. Struct. , 7 (Suppl. 2): 73.
HAY, D. A. 1978. The use of genetically homogeneous populations to study invertebrate learning. (Abstr.) Behav. Genet., 8 (1): 98.
HAZRA, S. K., BANERJEE, J., and SEN, S. K. 1978. Genetic nature of white ivory (wi) in the white locus of D. m. as resolved through crossing-over tests. Heredity, 40 (2): 299-303.
HELLACK, J. J., THOMPSON, J. N. (Jr.), WOODRUFF, R. C., and HISEY, B. N. 1978. MaIe recombination and mosaics induced in D_{0} m. by feeding. Experientia, 34 (4): 447.
HENDERSON, S. A., WOODRUFF, R. C., and THOMPSON, J. N. (Jro) 1978. Spontaneous chromosome breakage at male meiosis associated with male recombination in D. m. Genetics, $88(1): 93-107$.
HENIKOFF, S., and MESELSON, M. 1977. Transcription at two heat shock loci in D. Cell, 12 (2): $441-451$.
HERFORTH, R. S. 1978. A new strain of D. that inhibits the development of symptoms in imagoes infected with sigma virus. Genetics, 88 (3): 505-513.
HODGETTS, R., CLARK, W., PASS, P., and VENKATARAMAN, B. 1978. Regulation of gene expression in D. --the analysis of a model system. (Abstr.) Can. J. Genet. Cytol., 20:446.
HODGKIN, H. M., and BRYANT, P. J. 1978. Scanning electron microscopy of the adult of D. m. Genet. Biol. D., 2c: 337-358.
HOEKSTRA, R. F., and van DELDEN, W. 1978. Cyclical selection in small populations. Genetica, $48(3): 161-168$.
HOENIGSBERG, H. F., and LIN, F. J. 1977. Population genetics in the American tropics. XIV. D. m. Meigen in Colombian and Chinese natural habitats. Mitt. Schweiz. Entomol. Ges., 50 (1): 57-58.
HOLDEN, J. J., and ASHBURNER, M. 1978. Patterns of puffing activity in the salivary gland chromosomes of D. IX. The salivary and prothoracic gland chromosomes of a dominant temperature sensitive lethal of D. m. Chromosoma, 68 (3): 205-227.
HOORN, A. J. W., and SCHARLOO, W. 1978. The functional significance of amylase polymorphism in D. m. I. Properties of two amylase variants. Genetica, 49 (2/3): 173-180.
1978. The functional significance of amylase polymorphism in D. m. I. The effect of food components on amylase and alpha-glucosidase activity. Genetica, $49(2 / 3): 181-187$.
HOUGH-EVANS, B. R., DAVIDSON, E. H., and JACOBS-LORENA, M. 1977/1978. Complexity of D. egg RNA. Carneg. Instit. Wash. Yearb., 77: 370-371.
HU, K. G., and STARK, W. S. 1977. Specific receptor input into spectral preference in D. J. Comp. Physiol., 121 (2): $241-252$.
HUMME L, H. 1978. Overwintering of D, in an orchard near Groningen, Holland. Bull. Eur. D. Pop. Biol. Group, 1: 2-3.
HUNGATE, F. P. 1978. Mutagenic effects of static electric fields. Pac. Northwest Lab. Ann. Rep. USERDA Div. Biomed. Environ. Res., Pt. 1: 2.1-2.3.

5553a. IBARA, W. 1976. Morning glory flies: The biology of Exalloscaptomyza species living in Ipomea flowers (Drosophilidae). Master's Thesis, Univ. Hawaii, Honolulu, 55 pp.

IKEDA, K. 1978. Patterned motor activity and its release in a double-gene mutant of D. m. (Abstr.) Fed. Proc., $37: 397$. IKEDA, K., and TSURUHARA, T. 1978. Axonal organization of the dorsal mesothoracic nerve innervating the dorsal longitudinal flight muscle of D. m. (Abstr.) VII Soc. Neurosci., p. 196.
ILLMENSEE, K. 1978. D. chimeras and the problem of differentiation. In: Genetic mosaics and cell differentiation, W. Gehring, Editor. New York: Springer, pp. 51-69.
ILYIN, I. V., ANANIEV, E. V., TCHURIKOV, N. A., GVOZDEV, V. A., and GEORGIEV, G. P. 1978. New type of organization of genetic material in eucaryotic organisms. Izv. Akad. Nauk SSSR, Ser. Biol., 5: 761-764. (In Russian.)
ILYIN, Y. V., TCHURIKOV, N. A., SOLONIN, A. S., POLUKAROVA, L. G., and GEORGIEV, G. P. 1977 . Selection and certain properties of recombinant clones of lambda phage, containing genes of D.m. Mol. Biol., 11 (3, Pt. 2): 489-496.
ISH-HOROWICZ, O., HOLDEN, J. J., and GEHRING, W. J. 1977. Deletions of two heat-activated loci in D. m. and their effects on heat-induced protein synthesis. Cell, 12 (3): 643-652.

JAENIKE, J. 1978. Ecological genetics in D. athabasca: its effect on local abundance. Amer. Nat. , 112 (984): 287-299.
JANNING, W. 1978. Gynandromorph fate maps in D. In: Genetic mosaics and cell differentiation, W. Gehring, Editor. New York: Springer, pp. 1-28.
JAYAKAR, S. D., DELLA CROCE, L., SCACCHI, M., and GUAZZOTTI, G. 1977. A genetic linkage study of a quantitative trait in D. m. Proc. Int. Conf. Quant. Genet. : 161-175.
JUAN, E., and GONZĂLEZ, R. 1976. ADH from D. m. and D. simulans. A comparison between some of their molecular features. (Abstr.) 5th Eur. D. Res. Conf.

KAJI, S. , and MICHINOMAE, M. 1978. Cell affinities of the Bar eye disc in D. m. Annot. zool. Jap., 51 (4): 204-210.
KAJI, S., and YOSHIOKA, T. 1978. Ecdysterone induced differentiation in the eye discs of D. m. cultured in vitro. Mem. Konan Univ. Sci. Ser., 21: 45-52.
KAM, M. 1978. The biosystematics of the mimica subgroup of the "modified mouthparts" species group of Hawaiian D. Master's Thesis, Univ. Hawaii, Honolulu, 62 pp .
KANESHIRO, K. Y. 1974. A revision of generic and taxonomic concepts in the biosystematics of Hawaiian Drosophilidae. Ph. D. Thesis, Univ. Hawaii, Honolulu, 60 pp .
1976. Evolutionary studies of two D. species from Hawaii: a multidisciplinary approach. Proc. First Conf. Nat. Sci. Hawaii Volcanoes National Park. Dept. Bot., Univ. Hawaii, Honolulu: 115-119.
KATZ, A. J., and CARDELLINO, R. A. 1978. Estimation of fitness components in D. m. I. Heterozygote viability indices. Genetics, 88 (1): 139-148.
KAWANISHI, M. 1978. An ecological note on D. oshima. Jap. J. Zool., 28 (2): 97-99.
KEKIC, V., and VALVAJTER, B. 1978. Morphometric analyses of "positively" and "negatively" phototactic individuals of D. subobscura. Genetika, Beograd, 10: 185-197. (Yugoslavian with English summary.)
KIEFER, B. I. 1978. Genetic control of RNA metabolism. (Abstr.) J. Supramol. Struct., 7 (Suppl. 2): 284.
KIMURA, M. T., BEPPU, K., ICHIJO, N., and TODA, M. J. 1978. Bionomics of Drosophilidae (Diptera) in Hokkaido. II. D. testacea. Kontyû, 46: 585-595.

KIMURA, M. T., TODA, M. J., BEPPU, K., and WATABE, H. 1977. Breeding sites of drosophilid flies in and near Sapporo, Northern Japan, with supplementary notes on adult feeding habits. Kontyû, 45 (4): 571-582. (In Japanese.)
KING, R. C. 1975. Conference report: Regulation of insect reproduction. Acta Ent. Bohemoslovaca, 72: 425-428.
KING, R. C., BAHNS, M., HOROWITZ, R., and LARRAMENDI, P. 1978. A mutation that affects female and male germ cells differentially in D. m. Meigen (Diptera: Drosophilidae). Int. J. Insect Morphol. Embryol., 7: 359 -375.
KIRSCH, D. R., WIEBERS, J. L., and COHEN, E.H. 1977. Satellite III DNA from D. virilis contains modified nucleosides. (Abstr.) J. Cell Biol., 75 (2/2): 131A.
KLEINHOFS, A., OWAIS, W. M., and NILAN, R. A. 1978. Azide. Mutat. Res., 55 (3/4): 165-195.
KLEMENCIC, J. M., and WANG, C. Y. 1978. Mutagenicity of nitrofurans. In: Carcinogenesis-a comprehensive survey. New York: Raven Press, 4: 99-130.
KNOWLES, R. V., RICHARDS, J., ADAMS, C., LICHTENFELS, J., TRAUSCHT, R., and HUSFIELD, R. 1977. Partial sterility in D.m. schemes for complex chromosome rearrangements. J. Minn. Acad. Sci., 43 (3): 14-17.
KOEHN, R. K., and EANES, W. F. 1977. Subunit size and genetic variation of enzymes in natural populations of D. Theoret. Pop. Biol., 11 (3): 330-341.
1978. Molecular structure and protein variation within and among populations. Evol. Biol., 11: 39-100.

KOENIG, J. H., and IKEDA, K. 1978. Characterization of the concurrent interval correlation between fibers of the bilateral pair of dorsal longitudinal muscles in D. (Abstr.) VIII Soc. Neurosci., p. 198.
1978. Characterization of the temperature induced firing pattern of the dorsal longitudinal flight muscle in the D. mutant, shibire. (Abstr.) Fed. Proc., 37:527.
KOPELMAN, A., and CHABORA, P. 1978. Resource availability and reproductive variation in Pseudeucoila spp. (Hymenoptera, Cynipidae). (Abstr.) J. N.Y. Ent. Soc., 86 (4) : 302.
KOROCHKIN, L. 1978. Genetic regulation of isozyme synthesis in cells Int. Rev. Cytol. Suppl., 8: 171-228.
KRAMER, A., WILL, H., and BAUTZ, E. K. F. 1978. Localisation of individual subunits of RNA polymerase B on polytene chromosomes of D. m. (Abstr.) Hoppe-Seyler's Z. Physiol. Chim., 359 (9): 1109.
KRAMERS, P. G. N., and KNAAP, A. G. A.C. 1978. Absence of a mutagenic effect after feeding dichlorvos to larvae of D. m. Mutat. Res. 57 (1) : 103-105.
KRATZ, F. L. 1977. Thermoresistance in radioresistant strains of \underline{D}. nebulosa. Cienc. Cult. Soc. Bras. Progr. Cienc., 29 (10): 1157-1163. (Portuguese with English summary.)
KUHN, D. T., and CUNNINGHAM, G. N. 1978. Aldehyde oxidase distribution in D. m. mature imaginal discs, histoblasts and rings of imaginal cells. J. Exp. Zool., 204 (1): 1-9.
KUMAR, M, and LAKHOTIA, S. C. 1978. Chromatin content of brain cells in relation to larval development in D. nasuta. (Abstr.) 3rd All India Congr. Cytol. Genet., Hissar. (Oct. 23-27, 1978): 76-77.
1978. Variation of hetero- and eu-chromatin content in the larval neuroblast cells of D. nasuta. (Abstr.) Cell Biol. Conf. (Delhi University, Jan. 9-11): 28.
KVITKO, N. V. 1978. Change of photoperiodic reaction in D. phalerata Meig. (Diptera, Drosophilidae) at artificial selection. Vestn. Biol. Leningr. Univ., 15 (3): 20-27. (In Russian.)

LACHAISE, D. 1975. Les Drosophilidae des savanes préforestières de Lamto (Côte-d'Ivoire). II. Le peuplement du Palmier Ronier. Ann. Univ. Abidjan, 8: 223-280.
1976. Les Drosophilidae des savanes préforestières de Lamto (Côte-d'Ivoire). IV. b. - Synécologie fonctionnelle du peuplement de Ficus capensis. Bull. Ecol., 7 (1): 79-104.
1977. Niche separation of African Lissocephala within the Ficus Drosophilid community. Oecologia, 31: 201-214.

LAKHOTLA, S. C. 1978, Alpha-heterochromatin in related species of D. (Abstr.) Cell Biol. Conf. (Delhi University, Jan. 9-11): 104.
1978. Sites of transcription in polytene chromosomes. (Abstr.) Sympos. on Chromosome Organization, 3rd All India Congr. Cytol. Genet. : 10.
LAKHOTIA, S. C., GHOSAL, S., CHATTERJEE, S. N., and MUKHERJEE, A. S. 1976. Studies on structural and functional
5598.
organization of nucleus in animal cells. Ann. Rev. Zool., 2: 181-197.
LAKHOTLA, S. C., and KUMAR, M. 1977. Chromosome organization and cell differentiation in D. (Abstr.) 2nd All India Sympos. Dev. Biol. (Poona University, Nov. 5-7): 25-26.
1977. Observations on organization of larval neuroblast chromosomes of D. nasuta. (Abstr.) 6th Int. Chromosome Conf , Helsinki: 41.
LAMB, M. G. 1978. Ageing. Genet. Biol. D., 2c: 43-104.
LANKINEN, P., and PINSKER, W. 1977. Allozyme constitution of two standard strains of D. subobscura. Experientia, 33 (10): 1301-1302.
LATT, S. A. 1977. Fluorescent probes of chromosome structure and replication. Can. J. Genet. Cytol., 19 (4): $603-623$.
LAW, R. E., SINIBALDI, R. M., FERRO, A. J., and CUMMINGS, M. R. 1977. Effect of 5 -methylthioadenosine on gene action during heat shock in D. m. (Abstr.) J. Cell Biol., 75 (2/2): 336A.
LAWRENCE, P. A. GREEN, S. M., and JOHNSTON, P. 1978. Compartmentalization and growth of the D. abdomen. J. Embryol. Exp. Morphol., 43:233-245.

LEE, T. J. 1973. Ecological survey on the southern regions of the demilitarized zone in Korea (I). 3. Drosophilid fauna. Theses Collection, Chungang Univ., 18: 33-71
1974. Ecological survey on the southern regions of the demilitarized zone in Korea (II). 3. Genetic variability of D. populations of the demilitarized zone in Korea. Theses Collection, Chungang Univ., 19: 9-33.
LEE, T. J., CHOO, J. K., CHOO, I. Y., and LEE, C. S. 1977. Frequency of deleterious genes in the natural populations of D. Theses Collection, Chungang Univ., 21: 43-55.
LEE, T. J., CHOO, J. K., and KIM, E. S. 1975. Studies on deleterious and sterile genes from second chromosomes in natural population of D.m. Rev. Tech. and Sci., Chungang Univ., 2:11-16.
LEE, T. J., CHOO, J. K., NA, D. O., and KANG, K. R. 1975. Studies on ecological distribution of Drosophilidae in different localities of Korea. Rev. Tech. and Sci., Chungang Univ., 2: 29-44.
LEE, T. J., and KIM, J. W. 1976. Polymorphism of the esterase isozyme in natural populations of \underline{D}. virilis. Theses Collection, Chungang Univ., 20:49-62.
LEE, T. J., and LEE, C. S. 1974. A comparative study of the sternite bristles and wing indices in D. auraria complex. Rev. Tech. and Sci., Chungang Univ., 1: 9-16.
1974. A comparative study of external genitalia in D. auraria complex. Theses Collection, Chungang Univ., $19: 63-73$.

LEGAY, J. -M. 1977. Allometry and systematics: Insect egg form. J. Nat. His. , 11: 493-499.
LEIGH, B. 1978. Fertilization and mutation. (Abstr.) Genetics, 88: s56-s57.
LEMEUNIER, F., DUTRILLAUX, B., and ASHBURNER, M. 1978. Relationships within the melanogaster subgroup species of the genus D. (Sophophora). II. The mitotic chromosomes and quinacrine fluorescent patterns of the polytene chromosomes. Chromosoma, 69:349-361.
LEPESANT, J. -A., LEPESANT, K. -L., and GAREN, A. 1978. Ecdysone-inducible functions of larval fat bodies in D. Proc. Nat. Acad. Sci., U.S., 75 (11) : 5570-5573.
LEROY, Y. 1978. Generic differences of sexual behavior of Drosophilinae flies D. and Zaprionus. C. R. Acad. Sci. , Paris, 287D (5) : 559-561. (In French.)
LEVIS, R. 1978. Kinetic analysis of 5S RNA formation in D. cells. J. Mol. Biol., 123 (2): 279-283.
LEWIS, E. B. 1978. A gene complex controlling segmentation in D. Nature, Lond., 276: 565-570.
LEWONTIN, R. C., GINZBURG, L. R., and TULJAPURKAR, S. D. 1978. Heterosis as an explanation for large amounts of genic polymorphism. Genetics, 88 (1): 149-169.
L'HEITAS, C. 1975. Hormone juvénile de Pieris brassicae diapausante et mutations. Acid tétrahydrofolique et ptérines incubés dans les chrysalides provoquant chez D. m. des altérations de l'information génétique des ontogènes et mutagenes. Ann. EndocrinoI., 35: 63-85.
LIFSCHYTZ, E. 1978. Fine-structure analysis and genetic organization at the base of the X chromosome in D . m . Genetics, 88 (3) : 457-467.
LINTS, F. A. 1978. Genetics and ageing. Basel, Switzerland: Karger.
LINTS, F.A., and SOLIMAN, M. H. 1976. Growth rate and langevity in D. m. and Tribolium castaneum. Proc. 5th Eur. D. Res. Conf.
1977. Growth rate and longevity in D.m. and Tribolium castaneum. Nature, Lond., 266: 624-625.

LIVAK, K. J., FREUND, R., SCHWEBER, M., WENSINK, P. C., and MESELSON, M. 1978. Sequence organization and transcription at two heat shock loci in D. Proc. Nat. Acad. Sci., U. S., 75 (11): 5613-5617.
LOMBARD, M. F., and PETRI, W. H. 1978. Analysis of an eggshell defective mutant in D. m. (Abstr.) J. Cell Biol., $79(2 / 2)$: 30A.
LUBSEN, N. H., and SONDERMEIJER, P. J. A. 1978. The products of the "heat-shock" loci of D. hydei. Correlation between locus $2-36 \mathrm{~A}$ and the $70,000 \mathrm{MW}$ "heat-shock" peptide. Chromosoma, 66 (2): 115-125.
LUMME, J. 1978. Phenology and photoperiodic diapause in northern populations of D. In: Evolution of insect migration and diapause. H. Dingle, Editor, pp. 145-170.
LUMME, J., and KERANEN, L. 1978. Photoperiodic diapause in D. lummei Hackman is controlled by an X-chromosomal factor. Hereditas, 89 (2): 261-262.

MCDONALD, J. F., and AYALA, F. J. 1978. Genetic and biochemical basis of enzyme activity variation in natural populations. I. Alcohol dehydrogenase in D. m. Genetics, 89 (2): 371-388.

McKENZIE, S. L. 1977. Translational control of protein synthesis in D. (Abstr.) J. Cell Biol., 75 (2/2): 336A.
McKNIGHT, S. L., and MLLER, O. L. (Jr.) 1977. Electron microscopic analysis of chromatin replication in the cellular blastoderm D.m. embryo. Cell, 12 (3): 795-804.
MAJUMDAR, D., CHATTERJEE, R. N., and MUKHERJEE, A. S. 1975. Effect of alpha-amanitin and cordycepin on the RNA synthesis in the polytene chromosomes of D. m. J. Cytol. Genet. Congr., Suppl.: 128-132.
MAJUMDAR, D., GHOSH, M., DAS, M., and MUKHERJEE, A. S. 1978. Extra-hyperactivity of the X-chromosome in spontaneously occurring mosaic salivary glands of D. Cell and Chromosome Newsletter, 1: 8-11.
MANDARON, P., and GUILLERMET, C. 1978. Time lapse cinematographic analysis of the in vitro evagination of D. imaginal wing and leg discs. C. R. Acad. Sci., Paris, 287D (4): 257-260. (In French.)
MARGARITIS, L. H., and KAFATOS, F. C. 1978. Three dimensional analysis of the egg shell from D. m. In: Electron microscopy 1978, J. M. Sturgess, Editor, voI 2: 548-549.
MARGARITIS, L. H. and PETRI, W. H. 1978. Fine structure analysis of the eggshell in D. m. (Abstr.) J. Cell Biol., 79 (2/2): 17A.
MARINKOVIC, D., AYALA, F. J., and ANDJELKOVIĆ, M. 1978. Genetic polymorphism and phylogeny of D. subobscura. Evolution, 32 (1): 164-173.
MARKOW, T. A., QUAD, M., and KERR, S. 1978. Male mating experience and competitive courtship success in D. m. Nature, Lond. , 276 (5690): 821-822.
MAROY, P., DENNIS, R., BECKERS, C., SAGE, B. A., and O'CONNOR, J. D. 1978. Demonstration of an ecdysteroid receptor in a cultured cell line of D. m. Proc. Nat. Acad. Sci., U.S., 75 (12): 6035-6038.
MARSH, J. L., and WIESCHAUS, E. 1978. Is sex determination in germ-line and soma controlled by separate genetic mechanisms? Nature, Lond., 272: 249-251.
MARSH, J. L., WIESCHAUS, E., and GEHRING, W. 1976. Transplants of primordial germ cells to distinguish somatic versus germ-Iine contributions to egg shape. (Abstr.) Experientia, 32 (6): 803.
5643. MASADA, M., WATABE, S., and AKINO, M. 1978. Occurrence of beta-hydroxy-alpha-ketobutyric acid in D. m., with reference to drosopterins. In: Chemistry and biology of pteridines, R. L. Kisliuk and G. M. Brown, Editors. pp. $129-134$.
MATTHEWS, K. A., and HIRAIZUMI, Y. 1978. An analysis of male-recombination elements in a natural population of D. m. in south Texas. Genetics, 88 (1): 81-91.
MATTHEWS, K. A., SLATKO, B. E., MARTIN, D. W., and HIRAIZUMT, Y. 1978. A consideration of the negative correlation between transmission ratio and recombination frequency in a male recombination system of D. m. Jap. J. Genet., 53 (1): 13-25.
MEDINA, J., CHARLES-PALABOST, L., and GIRARD, P. 1978. Evolution of experimental populations of D. m. under drift and selection. C. R. Acad. Sci., Paris, 287D (6): 655-658. (French with English summary.)
MEDINGER, E. M., and WILLIAMSON, J. H. 1978. Genetic control of aldehyde oxidase activity and cross-reacting-material in D.m. Can. J. Genet, Cytol., 20: 489-497.

MENSUA, J. L., AGUADE, M., JUAN, E., SERRA, Le, and CORTADELLA, J. 19'77. Seleccion en microquetas interocelares de D.m. Genét. Mber., 29:59-78.
MERMOD, J. J., and CRIPPA, M. 1978. Variations in the amount of polysomes in mature oocytes of D. m. Dev. Biol., 66 (2): 586-592.
MERRIAM, J. R. 1978. Estimating primordial cell numbers in D. imaginal dises and histoblasts. In: Genetic mosaics and cell differentiation, W. Gehring, Editor. New York: Springer, pp. 71-96.
MEZZANOTTE, R. 1978. Differential banding induced in polytene chromosomes of D. m. stained with acridine orange. Experientia, 34 (3): 322-323.
MGLINETS, V. A., and KOSTINA, I, V. 1978. Studies on the interaction of suppressor Su(ss) 2 with bristle-reducing mutations in D.m. Tsitol. Genet., 12 (2): 147-152. (Russian with English summary.)
MLLLER, D. W., and ELGIN, S. C. R. 1978. A nuclear transcription system from D. m. (Abstr.) J. Cell Biol. , 79 (2/2): 347A.
MINKE, B. 1978. Transduction in photoreceptors with bistable pigments: intermediate processes. (Abstr.) Neurosci. Lett. Suppl. 1: S409.
MONCLUS, M. 1976. Distribución y ecología de Drosofilidos en España. II. Especies de D. de las islas Canarias, con la descripción de una nueva especie. Bol. R. Soc. Española Hist. Nat. (Biol.), 74: 197-213.
MORRISON, W. J., and MacTNTYRE, R. J. 1978. Cytogenetic localization of the acid phosphate-1 gene in D. m. Genetics, 88 (3): 487-497.
MORRISON, W. W., and MILKMAN, R. 1978. Modification of heat resistance in D. by selection. Nature, Lond., 273 (5657): 49-50.
MORTON, R. A., and SINGH, R. S. 1978. An electrophoretic study of D. acetylcholinesterase. (Abstr.) Can. J. Genet. Cytol., 20: 450.
MUKHERJEE, A. S. 1977. Gene and its function organization. Everyman's Science, 10: 175-182.
MUKHERJEE, A. S., and CHATTERJEE, R. N. 1977. Application and efficiency of scintillation autoradiography for D. polytene chromosomes. Histochemistry, 52: 73-84.
MUKHERJEE, A. S. , and MANDAL, S. K. 1978. Characterization of fractional mutations in D. : differential inhibition of complete and fractional mutations by inhibitors of repair synthesis. Genet. Res., Camb., 32: 19-24.
MUNOZ, E. R., and BARNETT, B. M. 1978. Embryonic and postembryonic lethals induced by diethyl sulfate in mature sperm of D.m. Mutat. Res., 51 (1) : 37-44.

NAG, A., MAJUMDAR, K. C., DUTTA GUPTA, A. K., and MUKHERJEE, A. S. 1977. An attempt for in vivo synchronization of the dipteran salivary gland muclei. Proc. Dunn Dobzhansky Sympos. Genet.: 11-14.
NAKAIDZE, N. S., OBUKHOVA, L. K., SMIRNOV, L。D., and AKIF'EV, A. P. 1978, Effect of gerontological protector 2-ethyl-6-methyl-3-oxypyridine hydrochloride on D.m. lifespan. Izv. Akad. Nauk SSSR, Ser. Biol., 4: 632-635. (In Russian.)
NAKAMURA, N. 1978. Dosage effects of the nonpermissive allele of D. ref(2)P gene on sensitive strains of sigma virus, Mol. Gen. Genet., 159 (3): 285-292. (French with English summary.)
NASH, D., and VYSE, E. R. 1977. On the polytene morphology of a D. m. chromosomal inversion including the nucleolus organizer. Can. J. Genet. Cytol., 19 (4): 637-644.
NISSANI, M., and FELLINGER, K. 1978. A method for studying tissue specificity of maternally affected D. m. mutants : Mosaic analysis of cinnamon. Dev. Biol., $66(1)$: 117-127.
NOGUES, R. M. 1977. Population size fluctuations in the evolution of experimental cultures of \underline{D}. subobscura. Evolution, 31 : 200-213.
NOVITSKI, E. 1978. The relation of exchange to nondisjunction in heterologous chromosome pairs in the D. female. Genetics, 88 (3): 499-503.

OHBA, S. 1977. Longevity and ageing in D. flies. (Abstr.) Zool. Mag., 86: 548. (In Japanese.)
OHBA, S_{\circ}, and SONE, N. 1976. Environmental and genetic factors affecting the longevity of D. virilis flies. (Abstr.) Zool. Mag., 85: 530. (In Japanese.)
OHTA, A. T. 1976. Host specificity in Hawaiian D.: Nutritional or behavioral? Proc. First Conf. Nat. Sci. Hawaii Volcanoes National Park. Dept. Bot., Univ. Hawaii, Honolulu: 167-170.
1977. Evolutionary relationships among six populations of Hawaiian D. in the grimshawi complex of species: A multidisciplinary approach. Ph. D. Thesis, Univ. Hawaii, Honolulu, 93 pp.
1978. Ethological isolation and phylogeny in the grimshawi species complex of Hawailan D. Evolution, 32: 485-492.

OKADA, T. 1976. Drosophilidae (Diptera) of Sabah, Borneo, of Dr. G. Imadate's collection in 1968. Nature and Life in Southeast Asia, 7: 343-346.
1976. New distribution records of the drosophilids in the Oriental region. Makunagi (Acta Dipteol.), 8: 1-8. (In Japanese.)
1976. A list of Drosophilidae of Tsusima Islands. Makunagi (Acta Dipteol.), 8: 8-9. (In Japanese.)
1976. The drosophilid species recently introduced in Japan mainland. Proc. Jap. Soc. Syst. Zool., 12; 56-57. (In Japanese.)
1977. The subgenus Phortica Schiner of the genus Amiota Loew of Japan and the Oriental region, with reference to anti-Burla's rule (Diptera, Drosophilidae). Bull. Biogeograph. Soc. Jap., 32:17-31.
1977. Family Drosophilidae. In: A catalog of the Diptera of the Oriental region, 3: 342-387.
1978. Pseudostegana, a new subgenus of the genus Stegana Meigen (Diptera, Drosophilidae). Kontyû, 46: 392-399.

OLIVER, M. J., and WILLJAMSON, J. W. 1978. Cytogenetic and biochemical properties of trehalase and sucrase in D. m. (Abstr.) Can. J. Genet. Cytol., 20: 452.
PARSONS, P. A. 1977. Lek behavior in D. (Hirtodrosophila) polypori Malloch--an Australian rain forest species. Evolution, 31: 224-226.
1978. Habitat selection and evolutionary strategies in D. : An invited address. Behav. Genet., 8: 511-526.
1978. Boundary conditions for D. resource utilization in temperate regions, especially at low temperatures. Amer. Nat., 112 (988) : 1063-1074.
1978. D. (Diptera:Drosophilidae) of Melbourne Victoria, and surrounding regions. Proc. Roy. Soc. Vict., $90: 241-244$.
1978. The effect of genotype and temperature on longevity in natural populations of D.m. Exp. Geront. , 13: 167-169.
1978. The genetics of aging in optimal and stressful environments. Exp. Geront., 13: 357-363.

PARSONS, P. A., and BOCK, I. R. 1977. Australian endemic D. I. Tasmania and Victoria, including descriptions of two new species. Aust. J. Zool., 25 (2): 249-268.
PARSONS, P. A., and McDONALD, J, 1978. What distinguishes cosmopolitan and endemic D. species ? Experientia, 34 (11): 1445-1446.
5688.

PATKIN, E. L., SMIRNOV, A. F., and SMARAGDOV, M. G. 1978. Effect of conditions of differential staining on the identification of heterochromatin areas of chromosomes. Vestn. Biol. Leningr. Univ., 15 (3): 142-145. (In Russian.)
PEACOCK, W. J. 1978. The molecular face of the chromosome. (Abstr.) Proc. Austral. Biochem. Soc., 11: P1.
PERIQUET, G. 1978. Influence of the rank of egg-laying on the transmission of the gonadal atrophy character in D. m. Experientia, 34 (11): 1438-1440. (French with English summary.)
PERIS, F., and AGUADE, M. 1978. Estudio de la resistencia a insecticidas organofosforados (Malathion) y su posible relación con tres sistemas enzimáticos. (Abstr.) J. Genét. Luso Españolas, 14: 50.
PERREAULT, W. J., ADKISSON, K. P., COBEL-GEARD, S. R., and GAY, H. 1978. The location of highly repetitious DNA in the somatic chromosomes of D. m. Chromosoma, 70 (1):31-39.
PIGNAL, M. C., LACHAISE, D., and BERNILLON, D. 1977. Yeast flora associated with Drosophilids of savanna in tropical Africa. Proc. 5th Intern. Spec. Sympos. Yeasts, Keszthely, Hungary.
PLUS, N. 1978. Endogenous viruses of $\mathrm{D}_{\mathbf{o}}$. . cell lines: their frequency, identification and origin. In Vitro, 14: 1015-1021.
PLUS, N., CROIZIER, G., VEYRUNES, J.-C., and DAVID, J. R. 1976. A comparison of buoyant density and polypeptides of $D . P, C$ and A viruses. Intervirology, $7: 346-350$.
POLICANSKY, D., and DEMPSEY, B. 1978. Modifiers and "sex ratio" in D. pseudoobscura. Evolution, 32 (4): $927-924$.
POSTLETHWAlT, J. H. 1978. Clonal analysis of D. cuticular patterns. Genet. Biol. D., 2c: 359-441.
POSTLETHWAIT, J. H., and KASCHNITZ, R. 1978. The synthesis of $D . m$. vitellogenins in vivo, in culture, and in a cell-free translation system. FEBS Lett. , 95 (2): 247-251.
POWELL, J. R. 1978. The founder-flush speciation theory : an experimental approach. Evolution, 32: 465-474.
POWELL, J. R., and WISTRAND, H. 1978. The effect of heterogeneous environments and a competitor on genetic variation in D. Amer. Nat., 112 (987): 935-947.
PRASAD, J., DUTTA GUPTA, A. K., and MUKHERJEE, A. S. 1977. Studies on the puffing activity pattern of the X-chromosome of D. ananasse with reference to their sexual dimorphism. Proc. Dunn Dobzhansky Sympos. Genet., pp. $15-20$.
PREVOSTI, A. 1976. Cariotipo de D. guanche Monclús y Dettopsomyia nigrovitatta Malloch. Bol. R. Soc. Espanola Hist. Nat. (Biol.), 74: 215-217.
1978. Polimorfismo cromos6mico y evolución. Investigación y Ciencia, 26: 90-103.

PREVOSTI, A., ALONSO, G., OCAÑA, J., and MALAGRIDA, L. 1. 1976. Polimorfismo cromosбmico de \underline{D}. subobscura en las islas del Mediterráneo. (Abstr.) J. Genét. Luso Españolas, 12:55.
PREVOSTI, A., GARCIA, M. P., SOLER, A., and FUSTE, E. 1976. Association between alleles of the leucine amino peptidase and esterase -5 allozyme systems and chromosome O arrangements in D. subobscura. (Abstr.) 5th Eur. D. Res. Conf.
PREVOSTI, A., ZARAZAGA, I., and RODERO, A. 1977. Estudio genético de polimorfismos moleculares en especies animales. Fundación Juan March, Serie Univ., 26: 7-17.
PROBBER, J., and EHRMAN, L. 1978. Pertinent genetics for understanding gender. In: Genes and gender. New York: Gordian Press, pp. 13-20.
PROCUNIER, J.D., and TARTOF, K. D. 1978. A genetic locus having trans and contiguous cis functions that control the disproportionate replication of ribosomal RNA genes in D. m. Genetics, 88 (1): 67-79.
PRUZAN, A., DEJIANNE, D., and FARO, S. 1978. Biotic residues affect D. eclosion. (Abstr.) Behav. Genet., 8 (6): 563.
PURO, J. 1978. Recovery of radiation-induced autosomal chromatid interchanges in oocytes of D. m. Hereditas, 88 (2): $203-211$. 1978. Factors affecting disjunction of chromosome 4 in D. m. female. Hereditas, 88 (2): 274-276.

PYLE, D. 1978. A chromosome substitution analysis of geotactic maze behavior in D. m. Behav. Genet. , 8 (1): 53-64.
PYLE, D. W., and GROMKO, M. H. 1978. Repeated mating by female D. m. : The adaptive importance. Experientia, 34 (4): 449-450.

RASCH, E. M., CASSIDY, J. D., and KING, R. C. 1977. Evidence for dosage compensation in parthenogenetic Hymenoptera. Chromosoma, 59:323-340.
RAUSHENBAKH, P. Y., GOLOSHEIKINA, L. B., KOROCHKINA, L. S. , and KOROCHKIN, L. I. 1977. Possible role of genetically controlled peculiarities of the esterase system in the resistance of \underline{D}. virilis to the action of increased temperature. Soils Bull. Food Agric. Organ. , U. N., 34:39-48.
RENESTO, E. 1977. Genetic load in the X chromosome of D. m. I. Influence of the genetic background on the sex limited effect. Cienc. Cult. Soc. Bras. Progr. Cienc., 29 (9) : 1041-1044.
REZVOY, M. 1977. Etude du système mitochondrial pendant le développement larvaire de D. m. Thèse de Specialité. Biologie Appliquée, Lyon.
1977. Evolution du système mitochondrial pendant le développement larvaire de D. m. (Abstr.) Bull. Soc. Zool. Fr., 102: 324.

RIBÓ, G. 1976. Valor selectivo del mutante "caramel" de D.m., procedente de una población natural. Publ. Univ. Barcelona: 3-20
RICHARDS, G. 1978. Sequential gene activation by ecdysone in polytene chromasomes of D. m. VI. Inhibition by juvenile hormones. Dev. Biol., 66 (1): 32-42.
RIDDELL, D. C., and WHITE, B. N. 1978. Properties of poly A+ RNA from adult female D. m. (Abstr.) Can. Fed. Biol. Soc. Proc., 21: 81.
RINGO, J. M., and PRATT, N. R. 1978. A juvenile hormone analogue induces precocious sexual behavior in D. grimshawi (Diptera:Drosophilidae). Ann. Entomol. Soc. Amer., 71 (2): 264-266.
RIZKI, T. M., and RIZKI, R. M. 1978. Larval adipose tissue of homoeotic bithorax mutants of D. Dev. Biol., 65 (2): $476-482$.
RIZKI, T. M., RIZKI, R. M., and ANDREWS, C. A. 1977. The surface features of D. embryonic cell lines. Dev. Growth Differ., 19 (4): 345-356.
ROWTON, E. D., and MCGHEE, R. B. 1978. Population dynamics of Herpetomonas ampelophilae, with a note on the systematics of Herpetomonas from D. spp. J. Protozool., 25 (2): 232-235.
RUBENSTEIN, J. L. R., BRUTLAG, D. L. , and CIAYTON, D. A. 1977. The mitochondrial DNA of D. m. exists in two distinct and stable superhelical forms. Cell, 12 (2): 471-482.

SALCEDA, S. 1977. Genetic loads in seven natural populations of D. m. from different localities of Mexico. Agrociencia, 28: 47-52. (In Spanish.)
1977. Genetics of natural populations of D.m. from Mexico. Urban populations of the Federal District. Agrociencia, 28: 67-72. (In Spanish.)
SALKOFF, L., and KELLY, L. 1978. Temperature-induced seizure and frequency-dependent neuromuscular block in a ts mutant of D. Nature, Lond., 273 (5658): 156-158.
SAMPSELL, B. M., and MILKMAN, R. 1978. Van der Waals bonds as unit factors in allozyme thermostability variation. Biochem. Genet., 16 (11/12): 1139-1141.
SANUNOV, V. B., and KAJDANOV, L. Z. 1978. Effects of a juvenile hormone analogue on the frequency of appearance of dominant lethal mutation and morphological abnormalities in the N.A. line of D.m. Nauchn. Dokl. Vyssh. Shk. Ser. Biol. Nauki, 9: 103-108. (In Russian.)
SAVVATEEVA, E. V., KAMYSHEV, N. G., and ROZENBLIUM, S. R. 1978. Obtaining of temperature-sensitive mutations affecting the metabolism of cyclic adenosine $-3^{\prime}, 5$-monophosphate in D.m. Dokl. Akad. Nauk SSSR, 240 (6): $1443-1445$. (In Russian.)
SAWICKI, J. A., and MacINTYRE, R. J. 1978. Localization at the ultrastructural level of maternally derived enzyme and determination of the time of paternal gene expression for acid phosphatase-1 in D. m. Dev. Biol., 63 (1): 47-58.
SCHAFER, U. 1978. Sterility in D. hydei \times D. neohydei hybrids. Genetica, 49 (2/3): 205-214.

SCHATZMANN, E. 1977. Fruits as natural breeding sites of Drosophilidae. Mitt. Schweiz. Entomol. Ges., 50 (2): $135-148$. (In German.)
SCHOELLER-RACCAUD, J. 1977. The cephalo-pharyngial skeleton of D. m. Meigen, in the first larval stage (Diptera). Bull. Soc. Entomol. Fr., 82 (3/4): 57-62.
SCHUBIGER, G., and SCHUBIGER, M. 1978. Distal transformation in D. leg imaginal disc fragments. Dev. Biol., 67 (2): $286-295$.
SCHÜPBACH, T., WIESCHAUS, E., and NOTHIGER, R. 1978. The embryonic organization of the genital disc studied in genetic mosaics of D. m. Wilhelm Roux' Archiv, 185 (3): 249-270.
1978. A study of the female germ line in mosaics of D. Wilhelm Roux' Archiv, 184 (1): 41-56.

SENE, F. M. 1977. Effect of social isolation on behavior of D. silvestris from Hawaii. Proc. Hawaiian Ent. Soc., 22:469-474.
SHAPIRO, A. A. ABILEV, S. K., BRATSLAVSKY, V., MEKSIN, V. A., REVAZOVA, Y. A., and FONSHTEIN, L. M. 1978. A study of quinoxidine mutagenic activity in Salmonella typhimurium and D.m. Khim. -Farm. Zh., 12 (3): 28-32. (In Russian.)
SHEARN, A. 1978. Mutational dissection of imaginal disc development. Genet. Biol. D., 2c: $443-510$.
SHEARN, A., HERSPERGER, G., and HERSPERGER, E. 1978. Genetic analysis of two allelic temperature-sensitive mutants of D. m. both of which are zygotic and maternal-effect lethals. Genetics, 89 (2): 341-353.

SHEARN, A., HERSPERGER, G., HERSPERGER, E., PENTZ, E. S., and DENKER, P. 1978. Multiple allele approach to the study of genes in D.m. that are involved in imaginal disc development. Genetics, 89 (2): 355-370.
SHELLENBARGER, D. L_{0}, and MOHLER, J. D. 1978. Temperature-sensitive periods and autonomy of pleiotropic effects of l(1)Ntsl, a conditional Notch lethal in D. Dev. Biol., 62 (2): 432-446.
SIMMONS, M. J., SHELDON, E. W., and CROW, J. F. 1978. Heterozygous effects on fitness of EMS-treated chromosomes in D. m. Genetics, 88 (3): 575-590.

SINGH, B. K., and GUPTA, J. P. 1977. The subgenus D. (Scaptodrosophila) in India (Diptera:Drosophilidae). Oriental Insect, 11 (2): 237-241.
SINGH, R. S. 1978. How serious is the problem of hidden allelic variation in a natural population? (Abstr.) Can. J. Genet. Cytol., 20: 454.
SINIBALDI, R. M., and CUMMINGS, M. R. 1977. Localization of the genes for 28S, 18S and 5S rRNA in D. tumiditarsus by in situ hybridization. (Abstr.) J. Cell Biol., 75 (2/2): 128A.
1978. Characterization of the dot chromosome in D. tumiditarsus. (Abstr.) J. Cell Biol , 79 (2/2): 128A.

SKRIPSKY, T. 1978. Females without sons: Son Killer. Genetic analysis of a maternal effect mutant of D. m. (Abstr.) Arch. Genetik, $49 / 50: 41-42$.
SLOTNICK, R. N., and HARFORD, A. G. 1978. Rotational constraints in the eukaryotic chromosome. (Abstr.) J. Cell Biol., 79 (2/2) : 112A.
SMITH, D. B., LANGLEY, C. H., and JOHNSON, F. M. 1978. Variance component analysis of allozyme frequency data from eastern populations of D.m. Genetics, 88 (1): 121-137.
SMITH, P. D. 1978. Mutagen sensitivity and pathways of DNA repair in D. m. (Abstr.) J. Supramol. Struct., 7 (Suppl. 2): 74.
SOBELS, F. H. 1975. A comparison of the mutagenic effects of chemicals and ionizing radiation research: biomedical, chemical, and physical perspectives. Proc. 5th Int. Congr. Rad. Res. Seattle, 1974: 958-965.
1976. Some thoughts on the evaluation of environmental mutagens. Mutat. Res., 38 (6): 361-366.
1977. Some problems associated with the testing for environmental mutagens and a perspective for studies in comparative mutagenesis. Mutat. Res., 46 (4): 245-260.
1977. Establishment of requirements for estimation of risk for the human population. "Risky estimates." Proc. Comp. Chem. Mutagenesis Workshop, NIEHS, Research Triangle Park, (Oct. 30-Nov. 4). New York: Plenum Press.
1978. The genetic effects of radiation. Photo-and Radiobiology Symposia. Fed. Univ. Rio de Janeiro, Proc. Brazil. Acad. Sci., pp. 23-31.
SOLIMAN, M. H., and LINTS, F. A. 1976. Bibliography on longevity, ageing and parental age effects in D. Gerontology, 22: 380-410.
SPIESS, E. B. , and EHRMAN, L. 1978. Rare male mating advantage. Nature, Lond., 272: 188-189.
SPIESS, E. B., and SCHWER, W. A. 1978. Minority mating advantage of certain eye color mutants of D. m. I. Multiple-choice and single-female tests. Behav. Genet., 8 (2): 155-168.
SPRUILL, W. A., HURWITZ, D. R., LUCCHESI, J. C. , and STEINER, A. L. 1978. Association of cyclic GMP with gene expression of polytene chromosomes of D. m. Proc. Nat. Acad. Sci., U.S., 75 (3): 1480-1484.
SRDIC, Z., BECK, H., and GLOOR, H. 1978. Yolk protein differences between species of D. Experientia, 34 (12): 1572-1574.
SRIDHARA, S., NOWOCK, J., and GILBERT, L. I. 1978. Biochemical endocrinology of insect growth and development. Int. Rev. Biochem., 20: 133-188.
STANWAY, L. 1978. Genetic control of phenotypic responses to hydroxyproline in D. m. (Abstr.) Can. J. Genet. Cytol., 20: 455.
STEERE, R. L. 1978. Ultrastructural details as revealed by stereo transmission electron microscopy of high resolution preshadowed surface and freeze etch replica samples of the D.m. eye. In: Electron microscopy 1978, J. M. Sturgess, Editor, 2: 144-145.
STEINER, T. Reparatur strahleninduzierter subletaler Schaden bei Klasse-B-Oozyten von D. m. Dissertation Nr. 5993 an der ETH ZUrich (unver甘ffentlicht).
STOCKER, R. F. 1978. Projections and properties of sensory neurons from transformed antennae in homoeotic mutants of D. (Abstr.) Neurosci. Lett. Suppl. 1: S348.
STORTI, R. V., HOROVITCH, S. J., SCOTT, M. P., RICH, A. , and PARDUE, M. L. 1978. Myogenesis in primary cell cultures from D.m. : Protein synthesis and actin heterogeneity during development. Cell, 13 (4): 589-598.
STROBEL, E., PELLING, C., and ARNHEIM, N. 1978. Incomplete dosage compensation in an evolving D. sex chromosome. Proc. Nat. Acad. Sci., U.S. , 75 (2): 931-935.

TANIMURA, T., ISONO, K., and KIKUCHI, T. 1978. Partial "sweet taste blindness" and configurational requirement of stimulants in a D. mutant. Jap. J. Genet., $53(1): 71-73$.
TEMIN, R. G. 1978. Partial dominance of EMS-induced mutations affecting viability in D. m. Genetics, 89 (2): $315-340$.
TEMPLETON, A. R., and ROTHMAN, E. D. 1973. The population genetics of parthenogenetic strains of D. mercatorum. I. One locus model and statistics. Theor. Appl. Genet., 43: 204-213.
THODAY, J. M. 1977. Effects of specific genes. Proc. Int. Conf. Quant. Genet. : 141-159.
THOMOPOULOS, G. N., and KASTRITSIS, C. D. 1978. A comparative fine structural study of the larval salivary gland cells in several closely related D. species. (Abstr.) J. Cell Biol., 79 (2/2): 35A.
TOBIN, S. L., and LAIRD, C. D. 1977. Actin-related loci in D. m. (Abstr.) J. Cell Biol., 75 (2/2): 150A.
TODA, M. J. 1977. Vertical microdistribution of Drosophilidae (Diptera) within various forests in Hokkaido. I. Natural broadleaved forest. Jap. J. Ecol., 27: 207-214.
TOKUNAGA, C. 1978. Genetic mosaic studies of pattern formation in $D . m$. , with special reference to the prepattern hypothesis. In: Genetic mosaics and cell differentiation, W. Gehring, Editor. New York: Springer, pp. $157-204$.
TONOMURA, Y., and TOBARI, Y. N. 1978. Karyotype variations in D. pseudoananassae nigrens from Kandy, Sri Lanka. Jap. J. Genet., 53 (1): 63-66.
TRAUT, H. 1978. Molecular aspects of mutagenesis due to ionizing radiation. In: Effects of ionizing radiation on DNA, A. Bertinchamps, et al., Editors. Heidelberg: Springer, pp. 335-347.
TRIPPA, G., DANIE LI, G. A., COSTA, R., and SCOZZARI, R. 1978. Phosphoglucomutase (PGM) and Esterase-6 (EST-6) alleles in D. m. : an attempt to detect linkage disequilibrium. Genetica, 49 (2/3): 225-227.
TSACAS, L., and BOCQUET, C. 1976. L'espèce chez les Drosophilidae. In: Les problèmes de l'espèce dans le rè̀gne animal,
C. Bocquet, J. Genermont, and M. Lamotte, Editors. MEm. Soc. Zool. Fr., 38: 203-247.

TSACAS, L., and CHASSAGNARD, M. T. 1977. Preliminary description of three Lissocephala Malloch from Africa (Diptera, Drosophilidae). Bull. Soc. Entomol. Fr., 82 (7/8): 204-205. (In French.)
TSACAS, L., and DAVID, J. R. 1977. Systematics and biogeography of the D. kikkawai complex, with description of new species (Diptera, Drosophilidae). Ann. Soc. ent. Fr., 13: 675-693.
1978. Une septieme espece appartenant au sous-groupe D.m. Meigen: D. orena n. sp. du Cameroun (Diptera, Drosophilidae). Beitr. Entom., 28 (1): 179-182.
TSACAS, L., DAVID, J. R., ALLEMAND, R., PASTEUR, G., CHASSAGNARD, M. T., and DERRIDJ, S. 1977. Biologie évolutive du genre Zaprionus: recherches sur le complexe spécifique de Z. tuberculatus (Diptera-Drosophilidae). Ann. Soc. ent. Fr., 13: 391-415.

URIELI, S., WEINBERG, Z., and RAZIN, A. 1977. DNA methylase activity in D. m. 1977. (Abstr.) Isr. J. Med. Sci., 13(9): 937.
USHAKOV, B. P. 1977. Population physiology and the problem of resistance adaptation. In: Selected topics in environmental biology. New York: Pergamon Press, pp. 119-123.
USHIODA, Y. 1976. Acetamide incorporation into the developing imaginal Bar eye discs in D.m. Annot. zool. Jap., 49 (1): 13-27.
VAL, F. C. 1976. Genetics of morphological differences between two interfertile species of D. (Abstr.) Genetics, $83: \mathrm{s78}$.
VALENTIN, J. 1978. An unusual pattern of interchromosomal effect in D. m. Hereditas, 89 (2): 263-264.
Van DELDEN, W., and KAMPING, A. 1976. Polymorphism at the Adh and Odh loci in D.m. (Abstr.) Proc. 5th Eur. D. Res. Conf. : 126.
van DIJKEN, F. R., van SAMBEEK, M. J. P. W., and SCHARLOO, W. 1977. Influence of anaesthesia by carbon dioxide and ether on locomotor activity in D.m. Experientia, 33 (10): 1360-1361.
Van HERREWEGE, J. 1978. Contribution to the study of adult nutrition of D.m. Doctoral Thesis, Univ. Lyon.
Van HERREWEGE, J., and DAVID, J. R. 1978. Feeding an insect through its respiration: Assimilation of alcohol vapors by D.m. adults. Experientia, 34 (2): 163-164.

VIKULOVA, V. K., and KONSTANTINOVA, L. M. 1978. Effect of actinomycin D on development of optic imaginal disks in D. Sov. J. Dev. Biol., 8 (2): 136-138; and Ontogenez, 8 (2): 166-169, 1977. (In Russian.)
VOELKER, R. A., COCKERHAM, C. C., JOHNSON, F。M., SCHAFFER, H. E., MUKAI, To, and METTLER, L. E. 1978. Inversions fail to account for allozyme clines. Genetics, 88 (3): 515-527.
VOELKER, R. A., and LANGLEY, C. H. 1978. Dipeptidase-A: a polymorphic locus in D.m. Genetica, 49 (2/3): 233-236.
VOUIDIBIO, J. 1977. Evolutionary biology and comparative ecophysiology of two species of African D. : D. iri and D. fraburu (Diptera, Drosophilidae). Doctoral Thesis, Univ. Lyon, 144 pp. (In French.)
WALLACE, B. 1977. Automatic culling and population fitness. Evol. Biol., 10: 265-276.
1978. Population size, environment, and the maintenance of laboratory cultures of D. m. Genetika, Beograd, 10: 9-16.

WARING, G. L., ALLIS, C. D., and MAHOWALD, A. P. 1977. Isolation of polar granules and the identification of polar granule specific protein. (Abstr.) J. Cell Biol., 75 (2/2): 43A.
WATABE, H. 1977. D. survey of Hokkaido, XXXIV. Seasonal variations of body color of D. testacea. J. Fac. Sci. Hokkaido Univ., VI, Zool., 21: 21-30.
WATABE, H., and BEPPU, K. 1977. D. survey of Hokkaido, XXXI. Ovarian development of D. in relation to wild population. J. Fac. Sci. Hokkaido Univ., VI, Zool., 20: 611-620.

WATANABE, T. K. 1977. Genetic variations in reproductive ability observed in natural populations of D.m. Adv. Invertebr. Reprod., 1: 25-35.
WATTERSON, G. A. 1978. An analysis of multi-allelic data. Genetics, 88 (1): 171-179.
WEBSTER, G. C., and WEBSTER, S. L. 1977. Ly sosomal enzyme activity during aging of D. m. (Abstr.) J. Cell Biol., $75(2 / 2): 199 A$.
WESSING, A., and EICHELBERG, D. 1978. Malpighian tubules, rectal papillae and excretion. Genet. Biol. D., 2c: 1-42.
WHEELER, L. L., ARRIGHI, F., CORDEIRO-STONE, M., and LEE, C. S. 1978. Localization of D. nasutoides satellite DNAs in metaphase chromosomes. Chromosoma, 70 (1): 41-50.
WHEELER, L. L., and LEE, C. S. 1978. Studies in DNA, chromatin and chromosomes of D. nasutoides. (Abstr.) J. Cell Biol., $79(2 / 2)$: 117 A .
WIESCHAUS, E. 1978. Cell lineage relationships in the D. embryo. In: Genetic mosaics and cell differentiation, W. Gehring, Editor. New York: Springer, pp. 97-118.
WIESCHAUS, E_{0}, MARSH, J. L., and GEHRING, W. 1978. $\mathrm{fS}(1) \mathrm{K} 10$, a germline-dependent female sterile mutation causing abnormal chorion morphology in D.m. Wilhelm Roux ${ }^{1}$ Archiv, 184 (1): 75-82.
WILLIAMSON, D. L. , OISHI, K., and POULSON, D. F. 1977. Viruses of D. sex ratio spiroplasma. In: The atlas of insect and plant viruses, K.' Maramorosch, Editor. New York: Academic Press, pp. 465-472.
WILLLAMSON, J. H., BENTLEY, M. M., OLIVER, M. J., and GEER, B. W. 1978. The effects of lao on alidehyde oxidase activity and cross-reacting material in D. m. (Abstr.) Can. J. Genet. Cytol., 20: 457-458.
1978. The effects of lao on aldehyde oxidase activity and cross-reacting-material in D. m. Can. J. Genet. Cytol., 20: 545-553.

WILSON, J. G. 1978. Review of in vitro systems with potential use in teratogenicity screening. J. Environ. Pathol. Toxicol., 2 (1): 149-167.
WILSON, T. G., and GILBERT, L. I. 1978. Metabolism of juvenile hormone I in D.m. Comp. Biochem. Physiol., 60A (1): 85-89.
WOLLENZIEN, P. L., YOUVAN, D. C., and HEARST, J. E. 1978. Structure of psoralen-crosslinked ribosomal RNA from Dom. Proc. Nat. Acad. Sci., U.S., 75 (4): 1642-1646.
WOODRUFF, R. C., and ASHBURNER, M. 1978. The frequency of X-ray-induced chromosome breakage in the sibling species D. m. and D. simulans. Amer. Nat., 112 (984): 456-459.

WOOLF, C. M., SASMOR, H. M., and MARKOW, T. A. 1978. Positive and negative geotaxis: sex-linked traits in D. pseudoobscura. Behav. Genet., 8 (1): 65-71.
WOSNICK, M. A., MCKINNON, R. D., and WHITE, B. N. 1978. Guanylation of D. transfer RNA in heterologous and homologous systems. (Abstr.) Can. Fed. Biol. Soc. Proc., 21: 61.
WRIGHT, R. G. 1978. Physiology of D. photochrome. (Abstr.) Neurosci. Lett. Suppl. 1: S413.
WRIGHT, T. R. F. 1978. The effects of the temperature allele, Ddcts1, on viability, fertility, and dopa decarboxylase activity and thermostability in D. m. (Abstr.) Int. Conf. Mol. Dev. Biol. Insects, p. 43.
WU, C., HOLMGREN, R., LIVAK, K., WONG, Y. -C., and ELGIN, S. C. R. 1978. Chromatin structure of specific genes. (Abstr.) J. Cell Biol., 79 (2/2): 113A.
WU, C.F., and PAK, W. L. 1978. Light-induced voltage noise in the photoreceptor of D. m. J. Gen. Physiol., 71(3): 249-268.
YAMAMOTO, M., and MIKLOS, G. L. G. 1978. Genetic studies on heterochromatin in D. m. and their implications for the functions of satellite DNA. Chromosoma, 66 (1) : 71-98.
YANNOPOULOS, G. 1978. Progressive resistance against the male recombination factor 31.1 MRF acquired by D.m. Experientia, 34 (8): 1000-1002.
YARDLEY, D. G. 1978. Selection for amylase isozymes in D.m. : A word of caution. Evolution, 32 (4): 920-921.
YASBIN, R., SAWICKI, J., and MacINTYRE, R. J. 1978. A developmental study of acid phosphatase-1 in D. m. Dev. Biol., 63 (1): 35-46.

YOON, J. S., and RICHARDSON, R. H. 1978. A mechanism of chromosomal rearrangements: the role of heterochromatin and ectopic joining. Genetics, 88 (2): 305-316.
1978. Evolution in Hawaiian Drosophilidae. III. The microchromosome and heterochromatin of D. Evolution, 32: 475-484. YUND, M. A., KING, D. S., and FRISTROM, J. W. 1978. Ecdysteroid receptors in imaginal discs of D. m. Proc. Nat. Acad. Sci., U.S., 75 (12): 6039-6043.

ZAMBETTAKIS, F., WALIYAR, F., PIGNAL, M. C., and LACHAISE, D. 1978. Les Micromycetes isolés des jabots de Drosophiles en Afrique intertropicale. Bull. Soc. mycologique France, 94 (1): 61-71.

COAUTHOR INDEX

AARON, C. S. 363637434676 4770
ABBOTT, K. S. 1803
ABILEV, S. K. 5739
ABOU-YOUSEFF, A. 13071776
ABRAHAM, I. 167:11 393394
231123122313
ABRAHAMSON, S. 180:2 1976
317548554856
ADAMS, C. 5577
ADDISON, W. R. 4457
ADKISSON, K. P. 5692
AFFIFI, E. L. 189:22
AGUADE, M. 33833956485691
AGUET, N. J. 3326
AGUILAR, A. 3450
AHEARN, J. N. 5354a
AHMAD, M. 3336
AIHARA, R. 3862
AIZENZON, M. G. 5365
AKAI, H. 552
AKAM, M. E. 50545291
AKIF'EV, A. P. 5664
AKINO, M. 5643
AKISHINA, N. I. 3284
AKITA, Y. 1850
AKOPYAN, L. G. 3912
AKSENOVA, V. B. 5121
ALAHIOTIS, S. 13835367
ALATALO, R. 1069
AL-BALDAWI, A. L. F. 118 1044
ALBONETTI, G. 2172
AL-DOORI, Z. 2731
ALEKSANDROV, I. N. 3454
ALEKSANDROVSKII, Y. A. 3486
ALEVIZOS, V. 176:1
ALEXANDROV, Y. N. 171:2
ALFAGEME, C. R. 4919
ALI, K. A. 1462
ALICCHO, R. 135228723991
ALLARD, L. F. 296729683983
ALLEMAND, R. 5784
ALLEN, P. 3672
ALLEN, W. 442
ALLIS, C. D. 5799
ALMAZAN, M. 190:12
ALONSO, C. 4805
ALONSO, G. 184:24 14385703
ALPERT, G. D. 1591
ALTENBURG, L. C. 5281
AMCHENKOVA, A. M. 4812358
AMOSOVA, I. S. 52345235
AMSTERDAM, A. 34684453
ANANIEV, E. V. 24464654 52025557
ANDERSEN, F. A. 4966
ANDERSON, W. 4466
ANDERSON, W. W. 32074016 4188
ANDJELKOVIĆ, M. 10925638
ANDREGG, B. N. 1034
ANDREGG, M. 404
ANDREWS, C. A. 15135047 50505723
ANDREWS, P. W. 15172971
ANGELES ORTIŹ, M. de los 1149
ANGERER, R. C. 4424
ANGUS, D. S. 3423
ANH, Le N. 672

ANISIMOV, A. I. 188:7 1638
ANISIMOVA, L. E. 828
ANXOLABEHERE, D. 1404
AOTSUKA, T. 1307
APPELS, R. 338445564967
ARAI, Y. 849
ARCUDI, D. 190:21
ARENS, M. F. 35434394421 44225452
ARMSTRONG, D. J. 1948
ARMSTRONG, F. B. 676677 248338684898
ARNEMANN, J. 4025
ARNHEIM, N. 5769
ARONSHTAM, A. A. 919970 13482644
ARRIGHI, F. 5806
ARRIGO, A. P. 48764889
ARTAVANIS-TSAKONAS, S. 50995277
ASCHOFF, J. W. L. 2476
ASHBURNER, M. 26712769 433752085293533955475614 5816
ASLUND, S. -E. 185:15
ATHERTON, D. D. 530
ATHERTON, H. A. 357
ATIDIA, J. 4765483
ATLAN, H. 413
ATZBACHER, U. 1932
AUBERT, G. 179:23
AUDIT, C. 189:29 5333269
AUERBACH, C. 4436
AVISE, J. C. 2737
AYAKI, T. 1631163216333037 5321
AYALA, F. J. 167:16 142500 109310941137182823182738 330134043777481248134837 548656305638
AYATS, F. 5499

BABBITT, D. G. 2935
BAHAMAN, R. 4829
BAHN, E. 189:15
BAHNS, M. 5573
BAILEY, L. J. 3598
BAILLIE, D. L. 239240282 2248
BAIMAI, V. 3287
BAIRD, M. B. 155515561557 27252726
BAIRD, W. L. 3474
BAKER, B. S. 25325155504
BAKER, G. T. 22364210
BAKER, N. V. 3123
BAKER, S. 79
BAKER, W. K. 186:1
BAKKEN, A. H. 664
BAKKER, K., 18704125
BAKULINA, E. D. 49965122
BALDWIN, D, G. 805
BALKIN, N. E. 1218
BALL, M. 4538a
BAMFORD, D. 2646
BANDO, K. 3867
BANDURSKI, M. J. 1535
BANERJEE, J. 5538
BANERJEE, R. S. 3630
BARBERA, E. 3298

BARBERIO, C. 190:21 1831
BARBOSA, P. 3925
BARGIELLO, T. A. 3485
BARIGOZZI, C. 6606612453 28034597
BARKER, J. S. F. 188:3 188:4
1841227280428114893
BARNES, B. W. 170
BARNETT, B. M. 5662
BARNETT, J. F. 3220
BARNETT, R. J. 3589
BARNETT, T. R. 2935
BARR, H. J. 4042
BARR, L. G. 8788
BARSANTI, P. 4168
BARSKY, V. E. 20645346
BARTON, L. M. 169:19
BARTSCH, H. 4825
BASHKIROV, V. N. 2586
BAUM, R. 5104
BAUMANN, K. R. 1217
BA UMBACH, G. 2822
BAUMGARDNER, K. 3998
BAUTZ, A. -M. 1739
BAUTZ, E. K. F. 62424342435
355435553556363539344579 458046715584
BAUTZ, F. A. 46714672
BEARDMORE, J. A. 1721043 10444313
BEAULATON, J. 49764977
BECK, H. 4509516051515762
BECK, T. 3953
BECKERS, C. 5640
BEER, M. 244145874810
BEERMANN, W. 3074
BEHNEL, J. 29555037
BEKNAZAR'IANTS, M. M. 34654447
BELETSKY, Y. D. 647
BELEW, K. 43395390
BELITSKII, G. A. 4026
BELL, A. E. 4983
BELL, J. B. 3529
BELLA, A. E. 1396
BELLONI, M. P. 23012302 2303
BELOTE, J. M. 37714807
BELYAEVA, E. S. 920921922 9239511009101020242025
202620272580262426663271 3272370442025328
BEMBEEVA, S. L. 3316
BEN-BARRAK, J. 4454
BENCZE, G. 26044501
BENCZE, L. 4776
BENDER, H. A. 1281976
BENEDIK, J. K. 13893101
BENNETT, J. 3018
BENSCH, K. G. 1185
BENTLEY, L. 3136
BENTLEY, M. M. 55065811 5812
BENTON, E. V. 2773
BENYAJATI, C. 5296
BENZER, S. 749145923332511 3044361139625302
BEPPU, K. 557055715801
BERDNIKOV, V. A. 26183700
BERENDES, H. D. 2359982153
BERG, R. L. 176:2 605

BERGER, E. 1179118019312768 321641554225
BERGER, E. M. 187931823183 4128
BERGOIN, M. 3646
BERNASHEVSKAIA, A. G. 4235
BERNHARD, H. P. 5031
BERNILLON, D. 5693
BERNINGER, M. 4328
BERSTEIN, S. 4526
BEST-BELPOMME, M. 4409
BEWEN, B. 4929
BEWLEY, G. C. 324137673868 4898
BICUDO, H. E. M. de C. 1875
BIEMONT, C. 346
BIESSMAN, H. 3530
BIGELOW, W. C. 296729683983
BILEVA, D. S. 5331
BIRLEY, A. J. 11111834267 4873
BIRNBOIM, H. C. 33716021603
BIRNSTIE L, M. 136049564357 4358
BIRSTEIN, V. J. 649650
BIRSTEIN, V. Y. 172:18
BIRT, L. M. 916
BISCHOFF, W. L. 2119
BLAKE, J. A. 942
BLANTER, T. V. 27782779
BLATTE, L. 4466
BLEISER-AVIV, N. 5483
BLINOVA, V. K. 4812358
BLOOM, K. S. 3474
BLUMENFELD, M. 5376
BLUMENTHAL, A. B. 43404341 43425051
BLUMER, A. 4448
BOCK, I. R. 109211328803915 39163917440749625686
BOCQUET, C. 166:5 347348349 3503552284228534393440 344144194420442154505451 54525780
BODENSTEIN, D. 15983016
BOEREMA, A. C. 5238
BONCINELLI, E. 61710843797 4518
BONDARENKO, L. V. 16395119
BONNER, J. 173:30 7414403 49555091
BOOKER, M. A. 2241
BORAI, F. B. $180: 27$
BORISOV, A. I. 1188
BORSATTI, G. 2057
BORTOLOZZI, J. 179:4 1981 4170
BOS, M. 43595399
BOSCHEK, C. B. 299
BOSCHIERI, E. 1353
BOSWELL, A. L. 241
BOTCHAN, P. 4428
BOULETREAU-MERLE, J. 310 136143075373
BOWMAN, J. 170:20 20413226 4593
BOWNES, M. 337335754333 460053865387
BOYD, J. B. 452207421092831 33233462492049215536
BOYD, S. F. 21663377

BOYER H L 4308
BOYER, H. W. 34094082
BRADLEY, B. P. 5795159
BRADY, T. 4282
BRANCH, A. D. 2946
BRANDIS, J. W. 24332936
BRASCH, K. 4776
BRASLAVSKAYA, O. Y. 2444
24452447244835694591
BRATSLAVSKY, V. 50385739
BREGLIANO, J. C. 4982
BREIMER, D. D. 4258
BREMNER, T. A. 4989
BRETT, W. J. 160:25
BREWER, G. J. 164928453052 3693
BREWER, J. W. 4719
BRINK, N. G. 49285446
BRISCOE, D. A. 186:2 45045055
BRITTEN, R. J. 228023863432 4424
BRNCIC, D. 163:5 163:6 163:6 2232194
BRODERICK, D. J. 29823988
BRODSKAYA, T. V. 2780
BROKAW, B. 1790
BROTHERS, L. L. 167:21
BROWDER, L. $186: 234162$
BROWN, A. H. D. 11083218
BROWN, B. L. 1198
BROWN, G. M. 23532354
BROWN, R. $181: 21$
BRUCK, D. 3397
BRUGGER, C. 164:15
BRUTLAG, D. L. 22122422 4367491654065725
BRYANT, P. J. 248529504615 50325544
BRYANT, S. 184:25
BUCHETON, A. 39294982
BÜCHI, R. 12012200
BUCHNER, E. 3592
BUCHNER, S. M. 299
BUDNIK, M. 162:24 21753508
BULTMANN, H. 20193267
BUNDGAARD, J. 184:25 2926
BÜNNING, E. 2476
BUURKHART, J. 4767
BÜRKI, K. 220
BURNET, B. 187:24 16102162 4165433144625385
BURROWS, P. M. 2544
BURUGA, J. H. 182:11
BURYCHENKO, G. M. 159:2 34 569
BUSBY, N. 183:3
BUSH, G. 39485010
BUSTIN, M. 48164817
BUTTERWORTH, F. M. 5233
BYERS, D. 2333
BYUS, C. V. 698

CABRINI, R. L. 898
CAILLA, H. L. 3803812307 CAIZZI, R. 3549
CALENDAR, R. S. 5170
CAligari, P. D. S. 2727
CALLAHAN, M. A. 43195380
CALVINO, J. F. 795796
CAMFIELD, R. 4091
CAMPBELL, C. A. 84
CAMPBELL, D. 904
CAMPBELL, S. D. 3060
CAMPOS $-O R T E G A$, J. A. 2505
CANDIDO, E. P. M. 22482427 4463
CANDIDO, P. 282
CANTELLO, W. W. 164:19
CANTOR, H. 4338
CAPPS, A. S. 1942
CARDELLINO, R. A. 181:1 1235 20013251366136625566
CARFAGNA, M. 182:26 182:27 239928764514
CARLSON, M. 4349

CARNEY K. 1283
CARPENTER, A. T. C. 2109 332333244260
CARRILLO-CASTANEDA, G. 34784478
CARSON, H. L. 174:6 174:24 193:14 173257638178181252 173017321789254830253026 386149035487
CASANOVA, P. 4952
CASIDA, J. E. 665
CASPARI, E. 168:18 187:21
CASSIDY, J. D. 175:16 5713
CASTRO, L. E. 173:28 731732
CATAMO, A. 268631525224 5226
CAVALLI-SFORZA, L. L. 4494
CH, C. 1327
CHABORA, A. J. 164:4
CHABORA, P. 5582
CHADOVA, E. V. 4373
CHAKRABARTTY, P. K. 173:20 71714004989
CHAKRABORTY, R. 12764915
CHALKLEY, R. 303
CHAMBERLIN, M. E. 23864424
CHAMBERS, G. K. 48135486
CHANDLER, J. L. R. 1887
CHANDRA, H. S. 5392
CHANDRASHEKARAN, M. K. 4361
CHANG, H. -C. 3826
CHANG, L. W. 1892
CHARGAFF, E. 179:17 2570
CHARLES-PALABOST, L. 5646
CHARLESWORTH, B. 217492229 22303583
CHARLESWORTH, D. 164:95135
CHARLESWORTH, P. 4036
CHASSAGNARD, M. T. 41155781 5784
CHATTERJEE, C. 4377
CHATTERJEE, R. N. 28084896 56335660
CHATTERJEE, S. N. 28082809 281048965597
CHATTOPADHYAY, S. K. 164:7
CHEKUNOVA, E. V. 2420
CHEN, P. S. 160:23 163:1 116 21614142414346404877
CHERBAS, L. 34075416
CHERBAS, P. 2091
CHERDANZEVA, E. M. 2559 3818
CHERNOKOZHEVA, I. S. 5234 5235
CHESNOKOVA, E. G. 29134800
CHIANG, W. 2683
CHIARUGI, V. P. 187
CHIGUSA, S. L. 2992
CHLHARA, C. J. 23745492
CHILDRESS, D. 2423880
CHINNICI, J. P. 97810232159 3730
CHIPCHASE, M. 4314
CHIU, J. -F. 4632
CHO, S. N. 5423
CHOI, A. 729
CHONG, Y. 3900
CHOO, I. Y. 5607
СНОО, J. K. 182:16 8571307 132813291330541856075608 5609
CHOOI, W. Y. 37253726
CHOPRA, V. L. 27013030
CHOVNICK, A. 170:25 178:25 431 5605617401129240534133600 3885446349425405
CHOW, H. -W. 1041
CHRISTLANSEN, F. B. 163:10 2254495
CH'U, C. 32543255
CHURCH, R. B. 192:29
CICCHETTI, R. 268748025224 5226
CLARK, A. M. 114716772426

45734791
CLARK, A. W. 1721
CLARK, E. J. 33674320
CLARK, H. S. 3600
CLARK, S. 876438849425426
CLARK, W. 186:9 5543
CLARKE, B. 363364
CLAYTON, D. A. 5725
CLAYTON, F. E. 174:24 3339 42784279
CLEGG, M. T. 25883401
CLINE, T. W. 3374
CLYDE, M. 1116111827282729 3134 DAVID, J. 159:16 161:22 165:3
CLYNES, R. 178:10 187:14 1601
COAN, M. 1943
COBEL-GEARD, S. R. 5692
COCKERHAM, C. C. 38563857

41335794

COGLEY, T. 4486
COHEN, E. H. 5574
COHEN, L. H. 293020542055 20564919
COHEN, M. (JT.) 5317
COHEN, W. D. $180: 93832$
COHET, Y. 159:16 351352353
20622286
COLGAN, D. J. 3304
COLLNS, L. 3737
COLLIS, P。 560
COLUZZI, M. 4537
CONDRA, C. 5200
CONGER, A. D. 1976
CONNOLLY, K. 187:24 229230
1610220133924165
CONRAD, S. 51485317
CONSCIENCE-EGLI, M. 179:2
CONSTANTINI, F. 4424
COOK, A. 317
COOK, F. 2975
COOK, R. 165:5 181:18
COOKE, F. 15281529
COOPER, M. M. 8182548
CORDEIRO, A. R. 191:25
CORDEIRO-STONE, M. 5806
CORTADELLA, J. 5648
COSBEY, E. S. 1402
COSENS, D. 4174
COSTA, R. 2976314934364415 $5228 \quad 5779$
COTTON-MENZL, B. 19923244
COULTER, F。 3672
COUNCE, S. J. 3976
COURGEON, A. -M. 1572143
3356429842995370
COWLING, G. 35615205
COZZI, R. 2302230323044283 4284
CRADDOCK, E. M. 3262563
CRAIN, W. R. 4424
CRIPPA, M. 363338175649
CROIZIER, G. 183:23 14042904 49925695
CROSS, D. P. 4032
CROSSLEY, K. L. 3326
CROSSLEY, S. A. 4614
CROUTE, F. 1403
CROW, J. F. 983111212353804 403851265744
CRUICE, S. 3130
CRUMMETT, D. D. 5318
CRUMPACKER, D. W. 8045159
CSEKO, Y. 27723093
CUELLO, J. 159:8 159:9
CUMMINGS, M. R. 37335747 5748
CUMMINGS, R. B. 16055263
CUNNINGHAM, G. N. 9492635
2636371337145587
CURTIS, C. F. 1526
CURTIS, S. K. 322
CYBUL, G. L. 1244
CZUPRYNSKI, C. J. 4172

DADHEECH, S. R. 3082
DAGAN, D. 19593352

DALGARNO, L. 1630
D'AMORA, D. 182:26 182:27 2211 287628773907
DANIE, N. J. 296
DANIEL, N. J. 2254
DANIELI, G. A. 227329763149 52255779
DANIELS, S. 446
DAPENA, J. 536537
DARWISHPUR, J. 915
DAS, A. 4897
DAS, M. 5634
183:23 191:3 31113611404140 183418351836186929043296 440148135241534354305695 5782578357845792
DAVIDSON, E.H. 228023863432 54125550
DAVIDSON, N. 112108815883794 51485317
DAVIES, R. W. 32154638
DAVIS, K. T. 5115
DAVIS, M. M. 4424
DAVIS, P. 2497
DAVIS, R. D. 4093
DAVYDOVA, S. N. 264
DAWID, I. B. 312036944156 5278
DAWOOD, M. M. 1777
DAY, J. W. 6293560
DEAK, I.I. 44485511
DEAN, D. R. 905
DEGRAEVA, N. 1228
DEIBLER, G. E. 167:11 2313
DETANNE, D. 5708
de JONG, G. 5098
de KINKELIN, P. 2204
DELAAGE, M. A. 2308
DELANEY, A. 356152055468
De La ROSA, M. E. 169:18 401648 2361
DELCOUR, J. 450103010312680
DELLA CROCE, L. 5562
del SOLAR, E. 12755491
DELTOMBE-LIETAERT, M. C. 1030103110322680
de MAGALHXES, L. E. 162:4 162:5 19011055110
De MARCO, A. 1963:21 163:22 1397 1830239623972398289942834284
De MARINIS, F. 2155
DEMICK, D. F. 791
DEMPSEY, B. 5696
den BOER, A. M. 1211
DENKER, P. 40305742
DENNIS, E. S. 3384
DENNIS, M. J. 4674
DENNIS, R. 5640
DENNY, E. 18253147
d'ENTREMONT, C. 2035
DERI, P. 241524163526
DERKSEN, J. 9985260
DERRIDJ, S. 5784
DERY, W. 1990
De SALLE, R. 4065
de SANABRIA, G. R. 173:28
de SCHEEMAKER-LOUIS, M.
161:22 441944205451
DEWHURST, S. A. 41516043019
54005401
DEY, A. 185:4
DIACHENKO, S. S. 171:2
DIAMOND, K. E. 4308
DICKE, A. W. 1751
DIEBLER, G. E. 394396
DIEHL, E. M. 179:22
DIGAN, M. E. 3482
Di PIETRA, A. M. 2172
Di TURI, N. 2965
Di TURI, V. 2965
DOANE, W. W. 204420454219
DOBIAS, J. 1279
DOBINA, A. I. 186:5 2979
DOBZHANSKY, Th. 17501428 14292361281937523975

DOLFINI, S. T. 2453
DOLKAS, G. 413
DOMOTO, T. 774775
DONADY, J. J. 187:17 187:18 187:19 3501350742954526 536954945495
DONALDSON, D. W. 174:3 752
DONELSON, J. E. 194125083827 5100
DONOFRIO, V. 3102
DORGAN, S. F. 9502637
DÖRING, R. 1496
DORSCHEK, E. 1398
DOUGHERTY, J. F. 3058
DOUGLAS, L. 3520
DOUGLAS, R. 2322
DOVER, G. 33315358
DOW, M. 21395259
DOWER, N. 2772
DOWNS, J. E. 2502
DOYLE, E. D. 569570
DREGOLSKAYA, I. N. 52345235
DROBNEY, V. K. 26892690
DROZDOVSKAYA, L. N. 1474
DRUGER, M. 181:20 4850
DÜBENDORFER, A. 16274934
DUBROVSKAYA, E. S. 24472448
DUBUR, G. Y. 607
DUCHINIKOVA, E. M. 4650
DUDAI, Y. 3952
DUGAICZYK, A. 4308
DUKE, E. J. 225722582991 3419
DUNCAN, I. W. 3665
DUNN, R. 194822983561
DUNSMUIR, P. 4967
DUQUETTE, D. 504
DURGO, J. A. 2427
DURTSCHI, M. B. 1217
DUTHOIT, J. -L. 14041405
DUTRILLAUX, B. 5614
DUTTA GUPTA, A. K. 160:15
164:10 172:17 179:12 179:13
180:22 181:8 270511656635700
DWORKIN, M. 5454
D'YACHENKO, L. F. 5130
DYER, K. F. 666667
DZHMUKHADZE, N. F. 56

EANES, W. F. 261450215578 5579
EASTWOOD, L. 33924165
EBIHARA, T. 3888
EBISUZAKI, M. M. 2693405
EBITANI, N. 2849
ECKSTRÁND, I. A. 69
EDEN, F. C. 22803432
EDENS, A. 1929
EDMUNDS, L. N. 2476
EDWARDS, J. S. 3092
EDWARDS, T. C. R. 43645405
EFREMOVA, G. I. 4913955
EHRENFELD, J. G. 87
EHRMAN, L. 101610171446 150221182424267526962846 388744164572544455205706 5759
EICHELBERG, D. 5805
EKLUND, T. 1109
El-ABIDEN SALAM, A. Z. 1704
El-DABBAGH, H. 1777
ELDER, R. 5188
ELENS, A. 375103010311032 18662680
ELGIN, S. C. R. 304530463047 48515124512556535821
ELLIOT, J. I. 2610
ELLISON, J. R. 11272735
ELMER, W. A. 169:19
EMANNS, A. 1696
EMMERICH, H. 203147185158
ENDOW, S. 4556
ENGHOFER, E. 941
ENGLEMANN, W. 164:8 2682224 4361

ENGSTROM, L. 13575176
ENKERLIN, D. S. 1107
EPLER, J. L. 265649294930
EPPER, F. 4934
ERIKSSON, A. 4823
ERK, I. 32694201
ERNST, S. G. 4424
EROKHINA, I. D. 36294564
ESKIN, A. 4854
ESPINET, S. A. 4109
ESPONDA, P. 1747
ESPOSITO, M. S. 3324
ESPOSITO, R. E. 3324
EVANS, M. K. 5033
EVGENIEV, M. B. 175:23 927928 4777
EWING, A. W. 2139
EWING, E. P. 3590

FAHMY, M. J. 4682350
FAHMY, O. G. 4484
FAIZULLIN, L. Z. 4041
FALES, H. M. 4379
FALK, C. 168:13
FALK, D. 181:16 8014077
FALK, H. 471
FALK, R. 192:3 2866
FAN, C. L. 2180
FARBER, S. 1198
FARDJAMI, S. 546
FARO, S. 54565708
FARQUHAR, M. N. 1131
FARROW, R. 216243315385
FAURON, C. M. -R. 4169
FEILER, R. 4715
FEKETE, E. 35004512
FELIX, R. 373374401648
FELLINGER, K. 5667
FELTON, A. A. 305334294410
FERGUSON, R. 1964
FERRO, A. J. 3733
FERRUS, A. 2388
FEUERBACH-MRAVLAG, H. 170346935155
FIGENSHOW, J. 5321565
FILIPPOVA, L. M. 168:4 4441475 2008
FINKEL, A. W. 185:24 1503
FINNEGAN, D. J. 59419412508 3999
FISCHBACK, K. F. 5288
FISHER, M. 3097
FLAVELL, R. B. 3977
FLEISCHMAN, J. A. 2464104
FLEMING, C. 166:24
FLEMING, M. 2963
FLETCHER, T. S. 3404
FLEURIET, A. 2173
FODOR, A. 2604
FOE, V. E. 3726
FOLEY, G. E. 1198
FONSHTEIN, L. M. 42065739
FORREST, H. S. 183:14
FOUILLET, P. 166:8 166:9 166:17 166:18 3463513523533542286 34394421442253435452
FOURCHE, J. 172:8
FOX, A. S. 1856
FOX, M. A. 167:17
FRACCARO, M. 4265
FRANCESCHINL, N. 4715
FRANCO, A. R. 28783907
FRANK, M. 5367
FRANKE, W. W. 5075
FRANKLIN-SPRINGER, E. 3932
FREIMANIS, Y. F. 1226
FREUND, R. 5625
FRIEDMAN, S. 183:25 3589
FRIEDMAN, T. B. 1270
FRIHART, C. R. 1948
FRISTROM, D. 105923592949 35004512
FRISTROM, J. W. 181:22 188:8 193:18 272516105810591486 164520152359260428344346

4637474149025828
FRITZ-NIGGLI, H. 5104
FROMME, H. G. 899
FRY, K. 4349
FUCCI, L. 2399
FUERST, P. A. 34034915
FUERST, R. 499541
FUJIKAWA, K. 737762525 465546564657
FUJITA, S. C. 4641
FUJITANI, H. 4632
FUKUDOME, H. 5194
FUKUNAGA, A. 285929933113 3114
FULLILOVE, S. 1194
FURSENKO, O. A. 2626
FUSTÉ, E. 5704
FUYAMA, Y. 310631073111 5191
FYRBERG, E. 232142954443

GADIROVÁ, F. A. 16624043
GAHREMANNEJAD, H. 547
GALAU, G. A. 4424
GALIN, R. 166:19
GALL, J. G. 183:25 458459616 13592875
GALLO, A. J. 18762132
GANDER, R. M. 1982
GANETZKY, B. 5302
GANS, M. 189:29
GARCIA, M. L. 4233
GARCLA, M. P. 5704
GARCIA-BELLIDO, A. 185:25 24315072998384844965045
GARDNER, E. J. 193:17 2014 32633994
GAREN, A. 187:31 14984742 5615
GARGANO, S. 61724303549
GARGUS, J. N. 1023
GARTNER, L. P. 188:26
GASPARIN, R. 2057
GATEFF, E. A. 22103010
GATTAVECCHIA, E. 2172
GATTI, M. 1397289929002901 3931498649875088
GAUDIO, L. 4514
GAUSE, G. G. 465
GAUZA, G. G. 14113938
GAVRINA, E. M. 651
GAY, H. 183:7
GEER, B. W. 392139694172 58115812
GEHRING, W. 163:3 183:25 156 195132243801424745895099 52765277555956425809
GELBART, W. 178:25 282283284 112922482249341035723600 43874388542454255426
GELPE, M. R. 2512
GELTI-DOUKA, H. 583838
GENEROSO, E. E. 3560
GENOVA, G. K. 3648
GEORGIEV, G. P. 36213622 43914654520255575558
GERACE, L. 130415963013
GERASIMOVA, T. I. 172:18 649 6506512444244524462447 24483568356945914592
GERDES, R. A. 2007
GERHART, J. C. 314541004101 4382
GERISCH, G. 2776
GERLACH, W. L. 4967
GERMERAAD, S. E. 4346
GERSH, E. S. 159:19 171:1
GERSH, 1. 159:19 170:27 170:28 170:29 170:30
GERSHENSON, S. M. 25
GERSON, I. 187:19
GETHMANN, R. C. 1301
GEURTS v. KESSEL, A. 2322
GEYER, A. 1587
GHIRAR DELLI, E. 619

GHOSAL, S. 5597
GHOSH, M. 5634
GIBSON, W. G. 2500
GIDDINGS, L. V. 806
GIESS, M. C. 1403
GILBERT, L. I. 57635814
GILL, K. S. 181:13 16143908
GILL, R. W. 2191
GILL, S. S. 665
GILLAM, I. 1948356144575205 5468
GILPIN, M. E. 85
GILULA, N. B. 1577
GINEVAN, M. E. 3590
GINGERAS, T. R. 562563
GINTER, E. K. 176:13 189:14 1 2249711740174117421807 21952196
GINZBURG, L. R. 37585619
GIORGI, G. 11975409
GIRARD, P. 6333105646
GIRTON, J. R. 142150765215
GIUNTA, K. 161:2
GJERSET, R. A. 3755
GJERSET-PARTRIDGE, R. A. 2149
GLASSMAN, E. 432
GLEBOV, O. K. 1067
GLEMBOTSKY, Y. L. 5466
GLOOR, H. 3177516051615162 51635762
GLOTOV, N. V. 187:23 18074747
GLOVER, D. M. 250846864687 5474
GODBOLE, N. N. 191:6 191:7 191:8
191:9 1854185531713172
GODWIN, E. A. 3447
GOITEIN, R. 45725520
GOLANTY, E. 2593
GOLDBERG, M. L. 4788
GOLDING, G. B. 3277
GOLDSCHMLDT-CLERMONT, M. 4246487648895099
GOLDSTEIN, D. J. 19093056
GOLDSTEIN, E. S. 20894803
GOIDSTEIN, R. B. 13782766
GOLIA, J. K. 1081
GOLINO, M. D. 216721682169
GOLOSHEIKINA, L. B. 39585027 50285714
GOLUBOVSKY, M. D. 175:22 175:23 924928239536293706 40544665
GOLZBERG, K. L. 1071
GONZÁLEZ, R. 5563
GONZALEZ-IZQUIERDO, M. C. 171:13 4568
GOOCH, V. D. 2837
GOODCHILD, D. J. 1382
GOODHEART, C. R. 2787
GOODMAN, H. M. 337834694082
GOODNIGHT, C. J. 2366
GOODWIN, R. H. 5247
GORDUNOVA, V. N. 3648
GORYUNOVA, N. F. 2532
GOSTIMSKY, S. A. 65124772448
GOSWAMI, B. $160: 15$
GOTHARD, T. 3497
GOTO, M. 17554899
GOTTLIEB, F. J. 7457465432
GÖTZ, K. G. 692
GOUX, J. M. 5123
GRABCO, V. I. 171:2 3408
GRAF, U. 1202199232443869 440849235304
GRAFODATSKAYA, V. E. 2028
GRANDOLFO, M. 163:21 163:22
GRANOBLES, L. A. 731
GRANT, B. 231
GRAY, M. A. 4713
GRAY, P. W. 2819
GRAZIANI, F. 239145354752
GRAZIOSI, G. 398548465053
GREEN, L. H. 2936
GREEN, M. M. 142598599600 148114821829198821092167

21682718271930743323 45654921
GREEN, S. M. 5604
GREENBERG, R. M. 5167
GREENLEAF, A. L. 36353934 4671
GREGG, T. G. 101
GREGG, T. L. 517
GRELL, E. H. 193:21 19131914 52185319
GRELL, R. F. 5662292
GRIFFITHS, A. J. F. 1764
GRIGLIATTI, T. A. 22985205
GRIGOR'EVA, N. N. 4704
GRILLO, S. L. 1757
GRILLY, M. E. 4042
GRIPENBERG, U. 26463067
GROMKO, M. H. 50155712
GROSSFIELD, J. 152926022880 29742975348550575058
GROZDOVA, T. Y. 591788789 79024205466
GRUNBERGER, I. 337
GRUWEZ, G. 178:4 10451046 1047
GUAZZOTTI, G. 22995562
GUBBINS, E. J. 3827
GUBENKO, I. S. 477744794480 GUERRA, D. 4952
GUIJON, A. M. 54575460
GUILLERMET, C. 37934830 5635
GUPTA, D. P. 181:13
GUPTA, J. P. 30245745
GUSCHLBAUER, W. 4835
GUSHULAK, B. 269
GUZMÁN, J. 169:18 4011554 2361
GVOZDEV, V. A. 4041424344 47010101155291138183819 4654472353475557

HAARS, R. 35544672
HACHTEL, S. 187:14 8342561 2562
HACKMAN, W. 176:24
HÄGELE, K. $174: 21$
HAGIWARA, S. 25203844
HALFER, C. 160:18 42655482
HALL, J. C. 25663325
HALL, L. 184:3482 23543011
HALL, R. H. 1207
HALLGREN, S. 504
HAMADA, S. E. 3112
HAMEISTER, H. 1725
HAMER, D. H. 1089
HAMES, B. D. 337543355388
HAMKALO, B. A. 2946
HAMPEL, H. 1399
HAMZA, H. A. 49134914
HANDLER, A. 265428195000
HANKS, M. J. 4848
HANLY, E. W. 2583
HANOCQ, F. 685
HANRATTY, W. P. 22704179
HANSON, C. V. 4616
HANSON, T. E. 3962
HARDELAND, R. 5199
HARDIGREE, A. A. 2656
HARDY, D. E. 163:28
HARDY, K. 4632
HARDY, R. 190:9 6116124102
HAREVEN, D. 4785
HARFORD, A. G. 32784211 5750
HARIRI, M. 4445
HARMON, J. 305
HARMSEN, R. 297515281529
HARRIS, D. C. 22683428
HARRIS, W. A. 14591899
HARRISON, B. 229
HARRISON, M. D. 36934719
HARTL, D. L. 258234063586
HARTMANN-GOLDSTEIN, I. J. 190819093200

HARTUNG, N. 2471
HASHIMOTO, A. 2608
HASTINGS, J. W. 2837
HATHAWAY, A. M. 144
HATSUMI, M. 4085
HAUSCHTECK-JUNGEN, E. 701
HAUSE MAN, J. 3093
HAY, D. A. 2880
HAYASHI, S. 35615468
HAYES, D. K. 3097
HAYES, M. J. 4635
HAYES, P. H. 5215
HAZRA, S. K. 4264
HEARST, J. E. 172:28 673033
403341594160416842694649 51175815
HEDGECOCK, D. 89
HEED, W. B. 174:24 186:4 103 805822839172418531905 254929872988308030893170 40704502
HEINS, B. 4540
HELINSKI, D. R, 30854067
HELMSING, H. D. 998
HELMSING, P. J. 1472679
HENDERSON, A. S. 46834684
HENDERSON, J. F. 36423643
HENIKOFF, S. 11442892
HENNIG, I. 173:12 173:13 696
HENNIG, W. 180:1 2753
HENRIKSEN, K. 3136
HERBST, E. J. 22052206
HERMAN, M. M. 2773
HERSHEY, C. 2506
HERSHEY, N. D. 5148
HERSPERGER, E. 402940305115 57415742
HERSPERGER, G. 40294030 57415742
HEVERT, F. 811932
HEWITT, N. E. 183:17 183:18
HEYNEKER, H. L. 4308
HIBARA, F. 967
HIEDA, K. 11201121
HIHARA, F. 9682643
HILL, R. J. 4513
HILL, W. G. 178:7 178:8
HILLIER, P. C. 363364
HILLIKER, A. 341343885426
HILLIKER, A.
HILLMAN, R. 186:7 15342862 3008
HINDERBERGER, E. 26033698
HIRAIZUMI, Y. 166416651666 273335843808404656445645
HIRN, M. H. 2308
HIRSHBEIN, L. 12
HISEY, B. N. 46215539
HO, T. 4477
HOCKADAY, A. 5197
HODGETTS, R. 179:16 32423799 39974395
HODGKIN, N. M. 5032
HODOSH, R. J. 5044
HOELTZLI, S. D. 45995535
HOFBAUER, A. 33954363
HOFFMANN, K. 2476
HOGNESS, D. S. 5956381941 257229853999449847884793 501753235324
HOLDEN, J. J. 171:22 192:21 192:22 192:23 192:24 5559
HOLEČKOVÁ, E. 16624043
HOLIKOVA, T. A. 5466
HOLLAND, L. 611612613
HOLLIGER, R. 2403
HOLLINGSWORTH, M. J. 357358 3215
HOLM, D. G. 164:3 169:21 173:1 4974987242500250136014499 HOLMANS, P. 2007
HOLMGREN, R. 5821
HOLMQUIST, G. 3428
HOOK, J. E. 1429
HOOPER, G. 3194
HOORN, A. J. W. 5098
HORCH, C. R. 3417

HORI, N. 766768
HORN, E. 1935
HOROVITCH, S. J. 5768
HOROWITZ, R. 5573
HOSAKI, M. K. 1634301
HOSTE, C. 104810494792
HOTCHKISS, F. H. C. 2696
HOTTA, Y. 779250326114721
HOUGH, B. R. 2386
HOUGH-EVANS, B. R. 4424
HOUSE, V. L。 13863473
HOWARD, B. 1152
HOWELLS, A. J. 34429904183
422354775478
HOYLAND, M. 2472
HSEI, B. W. 33854351
HSIEH, L. 2357
HSIEH, T. -S. 43494916
HUBBY, J. L. 161:7 188:18 1659
HUDSON, T. H. 45995535
HUDSPETH, A. J. 3580
HUGHES, W. L. 1435
HULES, H. 4716
HUMBEL, R. E. 116
HUNTER, A. 8632578
HUOT, L. 166:12
HURWITZ, D. R. 5761
HUSFIELD, R。 5577
HYDE, J. E. 4160

ICHIJO, N. 36845570
ICHINOSE, M. 41815310
IFONINA, V. M. 5417
пNO, A. 5194
IKEDA, K. 342369755805581
IKEN, H. H. 4762
ILINA, O. V. 5365
ILLMENSEE, K. 2702
ILYIN, Y. V. 439145445202
IMBERSKI, R. B. 2408
INMAN, R. B. 1772
INOUE, N. 4745
INOUE, Y. 277048725273
ISHI, T. 24742608
ISHIKAWA, E. 750
ISHIWA, S. 112320032051
2865325951935310
ISONO, K. 40845770
ITO, K. 265537314872
ITO, Y. 4882
ITOH, K. 1917
IVANITSKAYA, E. A. 1474
IVANOV, V. I. 171:9 171:12 224 584585586116318072195 219625752758366636673668 382343544355435646984861 48624863
IVANOV, Y. N. 6046054565
IVANYSHYN, A. M. 5167
IVES, P. T. 3680

JACOB, J. 176:19 176:20 974 9754553
JACOBI, W. 426
JACOBS, J. 2417
JACOBS-LORENA, M. 3817 51645550
JACOBSON, A. G. 5493
JACOBSON, K. B. 56519131914 191519651966196725133201 325852895290531853195320 5464a
JACOBY, M. 2352
JACQ, B. 2551
JAMRICH, M. 45794580
JAN, K. Y. 1041
JAN, L. Y. 467346745302
JAN, Y. -N. 23335302
JANCA, F. C. 159:1 20393743 4770
JANNING, W. 3343
JARRY, B. P. 4852
JAYAKAR, S. D. 2299
JAYASURIYA, V. U. 366367

JEANNERET, P. 5304
JEFFREY, D. E. 41215232
JENKINS, J. B. 2271
JESSUP, G. L. (Jr.) 4966
JEUCKEN, G. 5260
JTNKS, J. L. 2177
JOHANNISSON, R. 23674014
JOHANSSON, T. 7423609
JOHNSSON, C. B. 4782
JOHNSON, D. H. 237334984511
JOHNSON, F. M. 158440484133 525357515794
JOHNSON, G. 166:19
JOHNSON, T: K. 162:6 177:12 193:5
JOHNSON, W. 4209
JOHNSON, W. E. 2592602611731 1732221734303431
JOHNSON, W. R. (Jr.) 805
JOHNSSON, A. 164:8
JOHNSTON, J. S. 186:4 15002958
JOHNSTON, P. 5604
JONES, G. J. 5001
JONES, J. S. 2190
JONES, R. 2751
JONES, S. G. 5413
JORDAN, B. R. 213433484556 46695250
JOURDAN, R. 255133484669
JOUSSET, F. X. 183:23 14052904
JUAN, E. 5648
JUDD, B. H. 81685325473795 4197
JUDSON, C. L. 402
JUNGEN, H. 1056
JUNKER, A. K. 172:26
JÜRGENS, G. 4363
JURKOV, V. S. 492

KAFATOS, F. C. 233827762893 334137965636
KAIDANOV, L. Z. 175:17 894 134813492423303635434993 508950905730
KAISER, T. N. 4095
KAJI, S. 173:24 116611671168 2759316831694867
KAKPAKOV, V. T. 481652653 115512001239166123582793 29114996
KALICKI, H. G. 461
KALISCH, W. -E. 6593570
KALTHOFF, K. 199
KALVERDA, P. 426
KAMBYSELLIS, M. P. 562563 583
KAMIAK, S. N. 2401
KAMINSKALA, E. A. 2202
KAMPING, A. 1864186552385789
KAMRA, O. P. 185:8 14341463 14645516
KAMSHILOVA, E. M. 592
KAMYSHEV, N. G. 5731
KANEKO, A. 1817
KANESHIRO, K. Y. 178182462 246325483399
KANG, K. R. 5609
KANG, M. 3900
KANKEL, D. R. 172:25 24563572 48585282
KANO, M. J. 5184
KAPLAN, W. D. 191:2 192:30 342 76719593229
KARAKIN, E. 70
KARASIK, G. I. 4729
KARLSSON, B. -M. 1482
KARLSSON, L. J, E. 110
KARP, R. W. 4788
KASCHNTTZ, R. 50025698
KASS, T. L. 19031904
KASTRITSIS, C. D. 31913731374 41125773
KATANSKAIA, N. N. 2315
KAUFFMAN, S. A. 2776
KAUFMAN, T. 171:22 434633

17542298356137574077
KAUFMANN, B. P. 183:7
KAUMEYER, J. F. 2936
KAUVAR, L. 4534
KAWABE, M. 237635024515
KAWANISHI, M. 320841484149 41504151526952705273
KEDES, L. H. 13604956
KEIFER, B. I. 164:23
KEKIC, V. 179:19 1092
KELLER, E. C. (Jr.) 1193845
KELLEY, K. R. 557
KELLY, L. 23745728
KELMAN, A. 2058
KEMENY, G. 1535
KEMP, A. 999
KEPPY, D. O. 1940
KERÄNEN, L. 5629
KERKIS, A. Y. 929
KERR, S. 5639
KESAVAN, P. C. 42204221
KESSLER, S, 9322341
KHALIL, S. K. 1376
KHESIN, R. B. 100910112666
KHOLIKOVA, T. A. 7902420
KHOVANOVA, E. M. 4026
KIDD, K. R. 2401
KIDD, S. J. 4556
KIDWELL, J. F. 2968741385 217622542589259034173680 434447105428
KIDWELL, M. G. 29622544344 51865428
KIEFER, B. I. 9029116242251 2278309443934394
KIESS, M. 1754
KIGER, J. A. (Jr.) 18441845 442544265231
KISKILA゙, E. -L. 185:1
KIKNADZE, I. 261826253657 369937004725
KIKUCHI, T. 7817827831774 1775362840845770
KTM, C. 3256
KIM, E. S. 5608
KIM, J. W. 5610
KMM, U. 3255
KIM, Y. C. 177:8
KIMURA, M. 131418175219
KING, D. G. 5306
KING, D. S. 5828
KING, R. C. 175:11 8112587 2969353450525713
KING_{2} S. B. 3918
KIRSANOVA, R. V. 1852
KISS, I. 2359
KITAGAWA, O. 77718971898 247824792527310831093110 35853926400940854613
KITAJIMA, M. 15452992
KITAMURA, K. 3628
KITAYAMA, C. 8781843
KITCHENS, J. M. 2978
KITOS, R. J. 189:16 17571758 4076
KITTO, G. B. 2120483027 KIZEN, O. 2474
KLEIN, W. H. 4424
KLEINMAN, I. A. 13151316
KLEMM, E. 2832
KLOEK, G. P. 5042
KLOETZEL, P. 1186
KLUKAS, C. K. 34473448
KNAAP, A. G. A. C. 934935 263226335585
KNIZHNIKOVA, T. P. 3660
KNOPP, J. A. 4564898
KODA, M. 5193
KOEHN, R. K. 4461
KOEPFER, H. R. 191632034146 41475265
KOFKOFF, R. 4205
KOGAN, G. L. 244424453568 356945914592
KOHLER, N. 5459
KOIRTYOHANN, S. R. 3198

KOJMA, K. -I. 984
KOKOZA, V. A. 365536584692
KOLAR, M. M, 167:11 167:13
167:14 39439523132314
KOLCHINSKI, A. 44815479
KOLESNIKOV, N. N. 32735329
KOLIANTZ, G. 2472
KOLLAROVA, M. 1279
KOMMA, D. J. 46834684
KONINKX, J. F. J. G. 998999
KONOPKA, R. J. 4602
KONSTANTINOVA, L. M. 5251 5793
KOOLMAN, J. 5158
KOPECK, P. F. 1249
KOREF-SANTIBANEZ, S. 168:14
KORENEVA, L. G. 171:26
KOROCHKIN, L. I. 7072845970 112620492087208826442947 365536573659366036773707 395839595027502850295118 5714
KOROCHKINA, L. S. 175:24 930 365639594566469150275028 5714
KORSAKOVA, G. F. 189:19 1767 17684079
KORTSELIUS, M. J. H. 33663695 43175378
KOSHIMIZU, K. 3889
KOSTINA, I. V. 486348645652
KOTHARI, R. M. 181:6 191:9 18554557
KOVALEV, Y. M. 2446
KOZLOVA, M. A. 375337545315
KOZLOVSKAYA, E. B. 3540
KRAEMER, A. 2435
KRAEMER, H. C. 865
KRAKAUER, J. 2360
KRAM, R. 685
KRAMMER, A. 3555
KRAMERS, P. G. N. 906907908 9093366369643175378
KRATOSKA, M. 1175
KRAUSE, J. 2760
KRAUSS, M. 3886
KREBER, R. A. 349643195380
KRESLAVSKII, A. G. 1170
KRESS, H. 4474
KRIDER, H. M. 233434714460
KRIMBAS, C. B. 193:24 10621063 2036
KRISHNAMOORTHY, K. K. 1462
KRISHNAMURTHY, N. B. 1287 128814671468146914701471 147214901548154916401641 171417152488248929372939 294029422948304230815016 5023
KRISHNASWAMY, S. 802
KUBLI, E. 167:19 159042104236 4640
KUGOTOVA, M. V. 2315
KUHN, D. T. 2822
KUKUCHI, T. 3115
KULAKOV, L. A. 35414566
KULICHKOV, V. A. 4203
KULKARNI, A. D. 183:14
KUL'PINA, A. I. 647
KUMAR, M. 474955985599
KUNIYUKI, A. H. 35004512
KUNZ, W. 1492149415821583 29544015
KURISHKO, K. A. 48695246
KUROKAWA, H. 24954606
KUZIN, B. A. 175:23 71722088 26243659370437054729
KUZNETSOV, V. M. 16395119

LAAMANEN, I. 5151
LACHAISE, D. 191:456935829
LAIRD, C. D. 163:9 38913641846 2242264926505774
LAKHOTLA, S. C. 187:25 29843717 506755885589

LAKOVAARA, S. 168:14 178:17 186:20 186:21 10681069
LAM, P. 5172
La MANTIA, G. 4826
LAMB, M. J. 686
LAMBERT, D. 11161118
LAMBERTSSON, A. G. 4493
LAMPEN, N. 3832
LANE, D. D. 5513
LANGE, K. 1153
LANGE, P. 5155
LANGLEY, C. H. 58140484134 41354767525257515795
LANKINEN, P. 176:27 178:17 178:18 186:20 186:21976 3728 372947504988
LANOT, R. 1739
LAPPE, M. 168:15
LARIMER, F. W. 44774930
LARRAMENDI, P. 5573
LAUGHNAN, J. R. 528
LAURINAVICHIUS, R. S. 5466
LAVIGE, J. M. 219239294982
LAVRETSKAYA, E. F. 4206
LAW, S. 3932
LAWRENCE, P. 32912153849 385042484890
LAWTON, J. H. 3077
LAYFER, L. 1177
Le BERRE, M. 2204
LEBITIN, M. M. 895
LEE, A. S. 4424
LEE, C. S. 31831922694023 5524a 5607561156125806 5807
LEE, C. -Y. 3868
LEE, H. 2750
LEE, H. ${ }^{2750}$
LEE, L. -W. 4382
LEE, T. J. 43855418
LEE, W. H. 2869389838994948 527152725273
LEE, W. R. 159:1 161:18 179556 203820392040328032813636 4215421642174676
LEENDERS, HI. J. 91616485260
LEFEVER, H. M. 3766
LEFEVRE, G. (Jr.) 186:25 4020
LEGAY, J. -M. 5453
LEIBOVITCH, B. A. 8673676 4705
LEIGH, B. 3786
LEIGH-BROWN, A. J. 41355252
LEISTER, F. 1304
LEKARINA, L. P. 895
LEMAITRE, C. 5374
LEMEUNIER, F, 35520923440 4423
LEMOS, M. V. F. 3345
LENELLE-MONTFORT, N. 1030 2680
LENGYLE, J. A. 4955
LEONARD, N. J. 1948
LEONCINI, O. 173:12 173:13 696 697
LEPESANT, J. -A. 4534
LEPESANT, K. -L. 5615
LERNER, T. I. 365736584692
LEROY, Y. 4288
Le STOURGEON, W. M. 5427
LEVENBOOK, L. 4379
LEVIN, A. 44815479
LEVIN, V. L. 5315
LEVINE, A. 4482
LEVINE, B. I. 943
LEVINE, L. 401236139935058
LEVITAN, M. 184:19 14331852
LEVITES, E. V. 5118
LEVY W., B. 353043095375
LEWIS, E. B. 5412
LEWONTIN, R. C. 188:18 3053 4410
L'HERITIER, P. 2192
LI, W. Y. 4790
LIANG, T. T. 1034
LIBION-MANNAERT, M. 375
LICHTENFELS, J. 5577
.

LIE BOVITCH, B. A. 25852586
LILLY, L. J. 979
LIM, J. K. 105310542863
LIM, M. -C. 4436
LIMBORSKA, S. A. 4654
LIN, F. J. 5546
LIN, L. -T. 4610
LINDSLEY, D. L. 193:21 10371564
LINGENFELTER, P. 1164
LINK, B. 697

LINTS, F. 118155530633064 5758
LINZEN, B. 187:74474
LIPOW, C. 3871
LIPPS, L. S. 2774487748784879
LIPSON, E. D. 3580
LITTLEWOOD, T. 77
LITVINOVA, E. M. 828
LIU, C. P. 34963872
LIVAK, K. 5821
LJUNG, A. 185:16
LLEWELLYN, G. C. 9782159
224137304628
LO, M. -Y. C. 5101
LOCKER, D. 179:23
LOGVINENKO, E. G. 4026
LOHE, A. R. 4967
LOKKI, J. 176:27 186:21 9761068 37283729
LOMBARDOZZI, A. 26865224 5226
LONG, E. O. 5454
LONG, G. 1060
LOOMIS, M. R. 2523
LOPATINA, N. G. 2913
LOPEZ, M. I. 4234
LOPRIENO, N. 3332
LOSCHLAVO, S. R. 356
LOSINA, M. B. 829
LOUKAS, M. 20362230
LOUW, J. H. 5055
LOVERRE, A. 190:21 190:23 190:25 190:26 190:27 183118323150 3151315231535226
LOWENSTEIN, L. 33716021603
LUBEGA, S. 140139323933
LUBENNIKOVA, E. I. 466467
LUBSEN, N. H. 215341675150
LUCCHESI, J. C. 159:5 161:8 161:9 185:18 1115914871488 214529783615430046475060 5761
LÜERS, H. 1888
LUKASHNA, N. S. 5029
LUMME, J. 976977
LUNDGREN, P. R. 1681185
LUSE, D. S. 4587
LYCHEV, V. A. 202720292030 3272

MACA, J. 4761
McAVOY, S, 45725520
McCAMAN, M. W. 3774
MeCARRON, M. 170:25 282283284 56056122482249240534103885 43874388542454255426
McCARTHY, B. J. 40810241274 214926783360337834693530 375543084309440447825375
McCAUGHLIN, G. 4486
McCLANAHAN LUTES, C. 753
McCONNELL, W. B. 5413
McDONALD, J. 8850021004963 56875724
McFARLANE, J. 442
McGHEE, R. B. 269326942983
McGUTRE, P. R. 33024238
MACHADÓ, J. 1634301
MacINTYRE, R. J. 1363122065 208422672609309734263427 385250945464565657325826
MACK, J. 4473
MACKAY, L. 3949
MacKAY, T. F. C. 3277
McKECHNIE, S. W. 4815
3064

LOBECA

\qquad UKASHINA, N. S. 50

McKENNON, R. D. 5818
McKENZIE, C. S. 4619
McKENZIE, J. A. 178:21
McKNIGHT, S. L. 3393
McREYNOLDS, M. S. 3027
MAHOWALD, A. P. 30303770
206325222523316432974120 5799
MAIORE, D. Y. 2916
MAJOR, J. 4717
MAJUMDAR, D. 4896
MAJUMDAR, K. 167:22 167:23 28085663
MAKEEVA, E. N. 2202
MAKINO, T. 4884
MAKSIMOVSKY, L. F. 4198 47294945
MALAGOLOWKIN-COHEN, C. 376
MALAGRIDA, L. I. 5703
MALEEVA, N. E. 4654
MALINOVSKII, A. A. 43125331
MALIUTA, S. S. 159:13 171:2 25
MALIINSON, M. 230
MALPICA, J. M. 208
MALVA, C. 186617
MANCINL, M. 187:10
MANDAL, S. K. 5661
MANDARON, P. 5530
MANDEL, H. C. 3886
MANN, T. 175:3
MANNING, A. 18902139
MANNING, J. E. 1588
MANSFIELD, L. 18573175
MANTEUFFEL-CYMBOROWSKI, M. 5416

MANUELIDIS, L. 5106
MARINKOVIĈ, D. 859
MARGULIES, L. 25703673
MARKOW, T. A. 5817
MARONI, G. 178:14 37714807
MAROWSKY, G. 5037
MARQUES, E. K. 191:25 529
MARQUES, M. C. N. 4301
MARRAKECHI, M. 4799
MARSH, J. L. 5809
MARSHALL, D. R, 3218
MARSHALL, S. D. 5507
MARSHIN, V. G. 291348004801
MARTENSON, R. E. 167:11 394 3962313
MARTIN, A. 3802
MARTIN, D. W. 5645
MARUNOUCHI, T. 38435080
MARUYAMA, T. 127620064186
MARZARI, R. 2431
MASE, I. B. 168:30
MASHINSKII, A. L. 2420
MASNER, P. 990
MASON, W. H. 218343474538 a
MASRY, A. M. 5196
MASSIE, H. R. 15561557
MASSON, M. 189:29 533
MATEJIC, T. 1095
MATHENGE, W. M. 969
MATHER, K. 22094605
MATHER, W. B. 3134
MATHEW, C. 5079
MATSUBARA, K. 12551256 3863
MATSUBARA, M. 2819
MATSUDA, M. 314031414181 48915310
MATSUMURA, T. 83
MATSUO, Y. 968
MATTHEWS, H. R. 2776
MATTSON, M. P. 1376
MATVEEVA, N. M. 175:23
175:22 175:24919924925926
92792892993093126243677
370437054729
MAURER, B. 3587
MAURO, A. 5292
MAXIMOVSKY, L. 36593660
MAXWELL, B. L. 454
MAYER, A. 1603

MAYNARD SMITH, J. 1749
MEAGHER, R. B. 4082
MÉDIONI, J. 4130
MEDIONI, J. 4130
MEINWALD, J. $168: 22$
MEKSIN, V. A. 5739
MELTZER, P. S. 1612
MENDELSON, D. 1678
MENDEZ, J. 500
MENON, M. 185:12
MÉNSUÁ, J. L. 28834272
MENZL, B. 169:15
MERETOJA, T. 2646
MERGENHAGEN, D. 2837
MERKIS, A. I. 5466
MERRELL, D. J. 22833438
MERRIAM, J. 4838
MERRLAM, J. H. 174417451746
MERRIAM, J. R. 7552615
MERRIL, C. R. 1270
MERTENS, T. R. 540
MESELSON, M. 114421515541 5625
MESHUL, C. 755
METTLER, L. E. 41335794
MEYER, G. F. 173:13 4786
MEYER, H. U. 3286
MGLINETS, V. A. 187:23 585 586786787257536673668 36704698
MCALI, F. 620
MICHAE LIDIS, A. 5155
MICHEL, K. E. 4370
MCHELI, A. 178:9 17782686 31535226
MICHELI, M. 1830
MCHINOMAE, M. 174:17 831 403441015564
MICHOD, R. E. 3301
MLGLANI, G. S. 161439094957
MTKHEEV, V. S. 5246
MIKICHUR, N. I. 41984945
MIKLOS, G. L. G. 13801381 138241845823
MILBURN, O. 132
MILKMAN, R. 299656575729
MILL, A. J. 35735832154638
MILLER, C. 1963
MLLLER, D. D. 186:18 6021346 1378222536344228
MILLER, M. W. 172424874069
MLLLER, O. L. (Jr.) 6642742 27433784481648175632
MLLLER, S. G. 4898
MILOVANOVA, V. M. 176:2
MINAMI, N. 3684
MINATO, K. 3724
MIOLA, I. 178:9
MIOSGA, V. 1587
MQQUEL, J. 80413
MIRANDA, M. 172424874069
MIRAULT, M. -E. 42464889 5099
MTCHELL, H. K. 16121808 197426914380
MITRA, N. 167:22 167:23 181:3 181:4 181:5
MITROFANOV, V. G. 14113937 393849954996
MTTTLER, S. 1537
MIYAKE, T. 2818386249045080
MTYAMOTO, T. 5197747762377 23782379252546554657
MOCHI, M. 135343715409
MODIANO, G. 190:26
MOFFITT, S. M. 1518
MOHAMMED, A. A. 2475
MOHLER, J. D. 89016195743
MOLINA, J. 371
MOLLER, G. 4877
MOMMA, E. 214126013105
MONDAL, S. N. 2231
MONTAGU, A. 177:26
MONTELL, I. 185:17 50255026
MOODY, J. R. 480
MOORE, D. S. 3056
MOORE, R. C. 1001

MORAN, L. 424648765099 MORATA, G. 238937343735 4532
MORBINI, E. 22732274
MORGAN, K. 40755076
MORI, L. 1387
MORING, J. 4677
MORING, K. 4677
MORIWAKI, D. 314231433167
MORRIS, P. W. 4610
MORRISON, D. R. 3097
MORSORA, F. 5158
MOSKEVICH, L. P. 2630
MOSSE, I. B. 2340
MOSTAFA, Y. A. 38543855
MOURAD, A. M. 189:22 1776 17775196
MOUTSCHEN-DAHMEN, M. 1228
MUELLER, D. 3949
MUHS, H. 181:18 1273
MUKAI, T. 163:18 24519242001 200230003062310332513820 413341814399456746514746 488452535310532153225794
MUKHERJEE, A. S. 164:14 165:22 167:23 176:23 180:23 185:4 270 108522312232223327052798 437543764377482955975633 563456635700
MUKHOVATOVA, L. M. 652653
MULDOON, A. 1990
MÜLLER, G. 172:21
MUULLER, P. 5462
MULLEY, J. C. 2114
MULLINS, J. I. 5380
MUNDAY, M. R. 3775
MURATA, M. 1809
MURNIK, M. R. 193:20 1781
MURPHY, C. 2949
MURPHY, J. B。 7957961915
MURRAY, D. C. 5186
MYASNYANKINA, E. N. 6789 2043328232833284

NA, D. A. 5609
NADJAFI, Y. 548
NAFEI, H. 2475
NAG, A. 10854896
NAGANO, S. 4884
NAGEL, G. 1496
NAGURO, T. 5194
NAIR, P. S. 2602612622217 2218
NAKAI, S. 2994302135054517
NAKAJMMA, S. 38424882
NAKAMURA, K. 278857
NAKAO, Y. 73519759760910
119511961254125712891290
179117921848184923782379 283331664655465646574883
NAKASHIMA-TANAKA, E. 179:28 11192732350945275498
NAMBIAR, G. K. 277725
NARAHASHI, T. 3088
NARDI, R. V. 4919
NARDIN, H. E. 2040
NARISE, S. 40074008
NARISE, T. 206927612762 38244868
NASH, C. L. 4901
NASH, D. 169:1 169:8 453473
47425462815281636423997 4471
NASH, W. G. 34954951
NASSER, D. 3469
NATARAJAN, A. T. 41375255
NAVARRO, J. 5458
NAWA, S. 324853085309
NAZAROVA, N. K. 47304731
NEEDHAM, L. 365
NEEL, J. V. 101
NEI, M. 3403
NE MEC, P. 4442
NEUMYVAKIN, L. V. 1349
NEUWEG, M. 4380

NGUYEN, T. D. 210921672168 3323
NICKLA, H. 63012515168
NICOLETTI, B. 1778
NIELSON, N. C. 1685
NIESEL, D. W. 4898
NIKITINA, I. A. 4800
NIKITINA, N. I. 48123582913
NIKORO, Z. S. 4127
NILAN, R. A. 5575
NILSON, L. R. 194
NILSSON, C. A. 2067
NINNE MANN, H. 3691
NISHIDA, Y. 281729944002
NISHIMORI, T. 51923772378 2379
NISHIMURA, R. A. 2401
NISHINO, T. 2597
NISHIURA, J. T. 11312374
NISSANI, H. G. 4928
NIX, C. E. 43434477
NJOGI, G. D. E. 3542
NOKKALA, S. 5013
NORBY, S. 189:15 1679
NÖTHIGER, R. 167:19 170:23
180:12 187:22 190:5 192:8 1606
192819293512405940604061 57375738
NOUARD, D. 2890
NOVITSKI, E. 3313
NOVOSELOV, A. N. 5130
NOVY, D. S. 1082
NOWOCK, J. 5763
NUCZ, F. 4272
NUNDEL, M. 1587
NURLYEV, A. 61
NURTHEN, R. K. 4504
NUSS, D. L. 698
NUUTILA, M. 185:2
NYGREN, T. 185:2 14532930

OBE, G. 161:27 178:16
OBLAPENKO, N. G. 4206
O'BRIEN, S. J. 3782
OBUKHOVA, L. K. 5664
O^{\prime} CALLAGHAN, D. P. 2991
OCAÑA, J. 184:23 184:24 1438
53445703
O'CONNOR, J. D. 46335640
$O^{\prime} D^{\prime} N_{N A L D, ~ P . ~} 4694$
O'DONNELL, J. 28215963013 4388
OECHSLIN, A. 2237
OFTEDAL, P. 1109
OGAKI, M. 181:9 282035094527 5498
OHANESSIAN, A. 3970
OHBA, S. 2336325240884182 52035267
OHI, S. 34473448
OHKAWA, T. 19172529
OHNISH, S. 1920192341355252
OHRING, L. 185:17
OHTA, A. T. 2565
OHTA, T. 879
OIKARINEN, A. 97697710681069 4808
OISHI, K. 184:12 184:13 521522 119314232376311331143160 3502451552285810
OKADA, M. 256731674924
OKADA, T. A. 3428
OKUBO, S. 2816299329943505 40024517
OLDS, M. 772
OLEXA, S. 3008
OLIVER, M. J. 550658115812
OLIVERA, B. M. 2583
OLIVERAS, M. 5338
OLIVERIA FILHO, J. J. de 4285
OLIVIERI, G. 555230228992900 29014987
OLOFSSON, H. 493850255026
OLVERA, O. 169:18 4016482361
OMAR, A. 361

OMENN, G. 168:18
ONISCHENKO, A. 9314198
OREVI, N. 169:15
ORF, J. W. 431953765380
OSBORN, M. 5075
OSGOOD, C. 32754205
OSHIMA, C. 27928013101311
192132103739
OSMAN, I. A. 462
OSMOND, B. 224845995535
OSTER, I. I. 192:5 192:6 207 189518963195
OTT, G. 3396
OUWENEEL, W. J. 1867
OVAKIMOV, V. G. 592
OWAIS, W. M. 5575
OWENS, L. V. 162:25
OZAWA, S. 2520
OZERETSKOVSKAYA, N. G. 176:2

PAEK, Y. 4056
PAGES, M. 3298423342344805
PAHOMOV, A. N. 2625
PAIK, Y. K. 17334072
PAILLARD, M. 3547
PAK, W. L. 166:23 11841335 133619892771383347604797 479851015171528552925822
PAKONEN, C. Z. 1218
PALABOST, L. 6333103527 4554
PALENZONA, L. D. 3211972973 393039915022
PALKA, J. 3092
PAL'MBAKH, L. R. 24205466
PALOMINO, J. J. 4635
PANCHENKO, L. F. 1661
PANDEY, J. 2832845611129 224934103804
PANOURGLAS, J. N. 41145223
PANTOVIC, M. 1095
PAPASOGLI, G. L. 2417
PAPPAS, N. 2343
PARDUE, M. L. 171221572673 337240664328432943725768
PARISI, G. 2211
PARKASH, R. 1169
PARKER, D. R. 101310144163
PARKER, G. A. 2160
PARKINS, D. T. 4685
PARKS, R, 162:25
PARSONS, P. A. 178:21 192:14
1856361141114211432339
273033693946432343244325 440753835384
PARZEN, S. D. 2368
PASHKOVA, I. M. 52345235
PASS, P. 43955543
PASTERNAK, J. J. 4273
PASTEUR, G. 54635784
PATIL, S. F. 191:9 1855
PATKIN, E. L. 51405141
PATTERSON, R. M. 1983
PATTY, R. A. 6022766
PAVLOV, Y, I. 4870
PAVLOVSKY, O. 50402403404 18282319
PAY, T. L. 47
PEACOCK, W. J. 190:9 21842185 242233843530410242425349
PEARCY, R. W. 11791180
PEARSON, W. R. 22803422
PECORA, I. L. 180
PEGG, E. W. III 3827
PEHLMANN, H. 3966
PELECANOS, M. 20533253
329242265314
PELISSON, A, 3929
PELLEGRINI, M. 3794
PELLI, D. A. 3326
PELLICCIA, J. 3963
PELLING, C. 5769
PENMAN, S. 72810151712 26743751406647784779

PENTZ, E. S. 5742
PENTZOS-DAPONTE, A. 5155
PERASSI, R. 4025
PEREIRA, M. A. Q. R. 2300
PERELLE, I. 211844165471
PEREZ, M. 2750
PEREZ-CHIESA, Y. 3397
PEREZ-SALAS, S. 88
PERILLE, T. J. 4541
PERIQUET, G. 159:24 63641404 3310
PERIS, F. 5338
PEROTTI, M. E. 493494
PERRIN-WALDEMER, C. 2122 2123
PETERAJOVÁ, E. 4734
PETIT, C. 4554
PETITJEAN, A. M. 4294
PETRELLA, L. 2454
PETRI, W. H. 324537965626 5637
PETROVA, L. G. 190:4 1806
PETROVA, N. V. 3648
PETRUKHINA, T. E. 37904828
PETTY, K. 3949
PEZZOLI, C. 2872
PFEIFER, S. 1686
PFLEIDERER, W. 15322980 4092
PHAFF, H. J. 172424874069
PHELPS, J. 1964
PHILPOTT, D. E. 4875
PICARD, G. 21935395
PICHLER, G. 42834284
PIECHOWSKA, M. J. 4305
PIEKIELNIAK, M. J. 2726
PIGNAL, M. C. 5829
PIGNONE, D. 29002901
PIHLAJA, K. 185:1
PIMPINELLI, S. 230323962397 23983516453750885504
PINSKER, W. 170447585156 5601
PINTO, L. H. 3905
PIPKIN, S. B. 173:20 717
PITTENDRIGH, C. S. 2476
PITTS, D. 3497
PLA, E. 344144205451
PLAGENS, U. 35564580
PLANEL, H. 171:6
PLAUT, W. 179:21 693
PLUS, N. 8252553
POBEDONOSTSEVA, E. I. 5345
PODCHERNYAEVA, R. Y. 481 2358
PODGORSKI, E. M. (Jr.) 4210
PODOLNAYA, M. 5038
POGÁDY, J. 4734
POHJOLA, L. 3728
POHLMAN, T. H. 557
POKHOLKOVA, G. V. 2131
POLAN, M. L. 459
POLLANSKAYA, G. G. 3479
POLIKARPOVA, S. I. 4996
POLITO, C. 28844518
POLUEKTOVA, E. V. 4880
POLUKAROVA, L. G. 25572558
25593299330036225558
POLUKAROVA, L. Y. 653
POLYANSKAYA, G. G. 1055
PONCZ, M. 187:14
PONOMARENKO, V. V. 1055 134948004801
POODRY, C. A. 3761
PORUBA, J. 31013347
POSTLETHWAIT, J. H. 1607 265446034604
POTTER, D. 4372
POTTER, J. H. 140139334991
POULSON, D. F. 5810
POWELL, A. 813
POWELL, J. 50401405406407 23192361312132365189
PRAKASH, S. 177:27 22592739 334037783421
PRATT, N. R. 5721

PREOBRAZHENSKAYA, O. 4481 5479
PRESLEY, J. M. 202
PRESTIDGE, L. 4793
PREVOSTI, A. 159:8 159:9
171:13 339369456853445499
PRICE, T. M. 3598
PRIOLI, A. J. 4302
PROBBER, J. 5472
PROBECK, D. 1496
PROCUNIER, J. D. 186:23 192:29 1958
PROCWAT, R. A. 1803
PROUST, J. 1444
PROUT, T. 21912588
PRUD'HOMME, N. 179:23
PRUZAN, A. M. 101626962846 38875456
PULVERMACHER, C. 2760
PURO, J. 3674388149314936
PUTNAM, C. W. 2690
PUTNAM, R. L. 2079
PYATI, J. 5444

QUAID, M. 5639
QUINN, W. G. 2333
QURAISHI, M. S. 1376

RADCHENKO, L. 5038
RAE, A. L. 1395
RAE, P. M. M. 5359
RAFF, E. C. 2936
RAFF, R. A. 2433
RAGURAJ, R. 1462
RAHMAN, R. 108527052798
RAHMAN, S. M. Z. 808
RAJARAMAN, R. 841
RAJASEKARASETTY, M. R. 29483042
RAMBACH, A. 5370
RAMEL, C. 174:8 12862699 2700362748224823
RAMESH, S, R. 293829392940
RAMIREZ, J. L. 34473448
RAMOS, L. 168:20
RANDRIANANDRIANINA, L. 4764
RANGANATH, H. A. 16412634 29375016
RAO, D. C. 3853
RAO, K. D. P. 944
RAO, S. R. V. 187:25
RAO, T. K. 44774930
RAPOPORT, I. A. 42534653486 4447
RAPPA, C. 2067
RASHEVA, V. I. 4828
RASMUSON, A. 50255026
RASMUSON, B. 7428352067 309836094938
RASMUSON, M. 7820934252
RASMUSON, S. B. 174:1
RASTL, E. 5454
RATHNASABAPATHY, V. 608 5415
RATNAYAKE, W. E. 367803
RATNER, V. A. 451945204521 4522
RAWLS, J. M. 161:8 161:9 178:12 178:13 178:14
RAY-CHAUDHURI, S. P. 188:17
RAZIN, A. 5785
READY, D. F. 3580
REDDY, G. S. 1550
REDEKER-KUIJPERS, A. M. 4804
REEDER, R. H. 3393
REICHERT, H. 169646434644
REINGANUM, C. 4992
RENKAWITZ, R. 3968
RENO, D. L. 2402
RENSING, L. 13312501441
RENWICK, J. H. 3775
RESCH, K. 2009

REUHL, K. 1892
REVAZOVA, Y. A. 34945739
REVET, B. 3646
REYNOLDS, J. S. 2720
RHODES, C. 183:19 183:20
RIBÓ, G. 5338
RICH, A. 5768
RICHARDS, G. 331433155339
RICHARDS, J. 5577
RICHARDSON, M. E. 15012960 3972
RICHARDSON, R. H. 193:15 82319 200920102011201220972098 326032613789411341934194 $41954303430458275827 a$
RICHARDSON, R. L. 4648
RICHMOND, R. C. 8914303562 5527
RICKOLL, W. L. 1194
RIGGS, A. D. 4978
RIMBEY, M. H. 3613
RINGLER, R. 5367
RIPOLL, P. 538121621092389 33234260453145325500
RITOSSA, F. 2207227522822365 280150955096
RIZKI, R. M. 1514296729683981 398239835048504950505722 5723
RIZKI, T. M. 1510151115121513 296642395047
RIZZINO, A. 4781
ROBERTS, D. B. 545556183 207224323290529153395340
ROBERTSON, A. 2084091077 114521122320
ROBERTSON, F. W. 4574847
ROBINSON, L. H. 3989
ROCCHETTA, G. 135213541355 5022
ROCKWELL, R. 187:21 22652602 3563
ROCKWOOD-SLUSS, E. S. 4070
RODERO, A. 5705
RODIN, S. N. 395745204521 4522
RODINO, E. 22743436
RODIONOV, A. V. 5108
RODRIGUES-PEREIRA, M. A. Q. 2704
ROGLER, J. C. 13964983
ROIHA, H. T. 4556
ROJAS, G. G. 4635
ROKITSKY, P. F. 168:30 1226
ROMANS, P. 1565
ROSE, P。S. 26892690
ROSEN, J. 1943
ROSENSTEIN, F. 892893
ROSING, J. 999
ROSOVSKY, J. M. 35683569
ROSS, K. 3497
ROSSANT, J. 2390
ROSSI, A. $190: 25$
ROSSNICK, J. B. 3326
ROTHENBÜHLER, V. 190:5 1811
ROTHMAN, E. D. 5771a
ROWTON, E. D. 26932694
ROYCHOUDHURY, A. K. 1277
ROZENBLIUM, S. R. 5731
ROZHNOV, G. I. 5121
ROZOVSKII, Y. M. 45924723
RUBIN, G. M. 4498
RUDKIN, G. T. 2920542055 2056
RUIZ, G. 5459
RUSHING, D. R. 432
RUSSELL, J. S. 19054502
RUSSELL, M. A. 29224183414 35285215
RYALL, R. G. 29904183
RYALL, R. L. 7564642
RYSKOV, A. P. 45444654
RZEPKA, P. 1496

SACHSENMAIER, W. 2776

SAEZ，A． 731
SAFA，A．R． 549
SAGE，B． 46335640
SAIGO，K． 3843
SAIN，S．S．181：13
SAKAGUCHI，B． 183831583159 3160411852275228
SAKAKIBARA，R． 5193
SALAM，A．Z．E．－A． 2475
SALCEDA，V．M． 371401531 2361347844785497
SALCEDO，S． 5476
SALVERSON，H． 2368
SAN，R．H．C． 5172
SANDAL，P．C． 11251376
SANDER，K．173：19 33763763
SANDERS，T．G． 902463688 410441054106
SANDLER，L．179：15 2541365 33243762
SANG，J．H．173：23 200201427 42811811627169427693035 3453383044124413
SANGIORGI，S． 3930
SANJEEVA RAO，M． 14311452 18721880
SANKARANARAYANAN，K． 3005
SANTAMARIA，P． 35135501
SANTINI，G． 290135163931 453749864987
SANTOLAMAZZA，P．190：27
SAPOZHNIKOVA，F．D． 2404
SARAFIAN T． 4610
SARETSKY，S． 5471
SARKISOVA，E． 44815479
SASAKI，M． 4908
SASMOR，H．M． 5817
SATO，T．L． 3103
SATO，Y． 900
SAUERBIER，W． 3396
SAUPHANOR，B． 4764
SAURA，A．168：14 176：27 178：17 976372837294750
SAVOLAINEN，O． 2062
SAVORANI，S． 3991
SAVVATEEVA，E．V． 4800
SAWADA，N． 25183617
SAWICKI，J． 5826
SCACCHI，M． 5562
SCALENGHE，F． 220822752282 236529654362
SCAVARDA，N．J． 1101
SCHAEFER，G．B． 40965211
SCHAEFER，R．E． 5186
SCHAFER，U． 954955956957 37183719
SCHAFFER，H．E． 81441334188 5794
SCHALET，A．169：19
SCHARLOO，W．162：9 162：10 192 19312112295313552395548 55495790
SCHECHTER，M．S． 3097
SCHEDL，P． 42475277
SCHEDD，W．190：14 190：15 1833
SCHELLER，K． 4025
SCHERMEISTER，L．J． 1125 1376
SCHMID，C．W． 1088
SCHMIDT，T． 33274738
SCHMOLESKY，G． 3175
SCHNEIDER，I． 840
SCHNEIDERMAN，H．A． 552553 55413151316142229503049
3374393940404821
SCHNOS，M． 1772
SCHOONE，A．A． 3135
SCHORSCH，M． 1017
SCHRÖDER，F．J． 5222
SCHUBIGER，G。 182：45593092 3382
SCHUBIGER，M． 20795736
SCHULTZ，J．T． 969
SCHUPBACH，T． 4935
SCHWARTZ，M． 1679
SCHWEBER，M． 21515625

SCHWER，W．A． 5760
SCHWOCHAU，M． 1186
SCOTT，M．P． 5768
SCOTTI，P．D． 37644992
SCOURAS，Z．G． 41145223
SCOZZARI，R．190：26 190：27
1831314952255779
SEAMSTER，P．M．159：1 2039
SEDAT，J． 4834
SEDEROFF，R．178：10 173174 337277230933548
SEECOF，R．L．167：17 385415 3519497854005401
SEGA，G．A． 556997
SEGESSER，S．W．192：9
SEIGER，M．B．168：3 186：3 186：4 441
SEKERIS，C．E． 2571
SELANDER，R．K． 3634
SELIVANOV，S．B． 5121
SEMENOVA，V．A．180：4
SEN，S．K． 3588363042645538
SENE，F．M． 2602612621252
13872217221838614903
SENGEL，P． 108737934830
SENGUPTA，S．K． 1198
SERNAU，R． 3175
SEROV，O．L．175：24930 2624 3704
SERRA，L． 53375648
SERUNLAN，L．A． 44684851
SETIOW，R．B． 21692170
SEWELL，D． 43595399
SHAFER，S．J．173：23
SHAKARNIS，V．F。 2916
SHAKHBAZOV，V．G。 37324704
SHAMI，S．A． 2120
SHANNON，M．P． 853
SHAPIRO，I．M． 466467
SHAPIRO，N．I． 868
SHAPIRO，Y．L． 3486
SHARMA，A．K． 3910
SHARYGIN，V．I． 895
SHEAR，C．G． 1692
SHEARN，A． 344438024902
SHELDON，E．W． 40385744
SHEN，C．－K．J． 4616
SHEN，M．W． 853
SHEPPARD，D．E． 3610
SHERALD，A．F． 32413242
SHERMOEN，A．W．164：23 175：7 291
SHERUDILO，A．I． 2626
SHIBA，T． 38435080
SHIELDS，G．186：17 427428
SHILOV，A．A． 3481
SHIMADA，I． 5195
SHIMADA，Y．182：6 1302
SHIMIZU，A． 4872
SHINDO，S． 4867
SHIOMI，T． 8321015321
SHORROCKS，B． 42535364
SHTANNIKOV，E．V． 5121
SHUMEYKO，M．V． 3750
SHUPPE，N．G． 166118373157
SHUSTER，R．C． 1460
SHVARTSMAN，P．I．174：7 178：5 617711052253226454327
SHVARTZ，N．D． 2584
SHYMKO，R．M． 4696
SIBATANI，A． 1978
SICK，K．189：15
SIDDIQI，O． 5059
SIDHU，N．S． 1580
SIDOROVA，N．V． 11892348 33303480
SIDORSKY，L．R．P． 5102
SIEBER，S． $179: 2$
SIEGEL，J． 517
SILVER，L．M． 446844694470 4851
SIMMONS，J．A． 631
SIMMONS，J．R．162：18 170：20
SIMMONS，M．J． 3835
SIMMONS，P．A． 2530
SIMONENKO，N．P． 2404

SIMPSON，P． 2032
SINA，B．J． 43195380
SING，C．F．189：27 17891790
SINGH，B．K． 4588
SINGH，B．N．185：19
SINGH，J． 644
SINGH，R．S． 5658
SINGLER，L。 2751
SINHA，S．P． 1605243
SINIBALDI，R．M． 24393733 5603
SINNEGE，A． 2322
SIREN，M． 3942
SIROTA，T．V． 163718373157
SITTMAN，D．B． 285
SIZE MORE，S． 4101
SJOGREN，B． 3787
SKAAR，P．D． 5062
SKEHAN，P．J． 3589
SKHOLL，E．D． 52345235
SKINNER，D．M．5524a
SKINNER，P．M． 37434770
SKOOG，F． 1948
SKRINSKA，A．J． 2354
SKRIPSKY，T． 120319923244
SKURNICK，L．D． 1535
SLATKO，B． 52945645
SLOBODIANIUK，S．I． 26183700 4725
SMARAGDOV，M．G． 49655688
SMILLIE，R．M． 1685
SMIRNOV，L．D． 5664
SMIRNOVA，A．K． 28413882
SMIRNOVA，G．P． 29134800 4801
SMIRNOVA，V．A．160：3 4250
SMIRONOV，A．F． 30234047
49655108514051415688
SMITH，J． 1173
SMITH，L．G． 1535
SMITH，P．D．169：19 1460 2109
254233233472405040515146
SMITH，P．M．167：13 167：14 395
SMITH，R．J． 5286
SMTH，W．L． 2717
SMOLIN，S．J． 5410
SMOUSE，P．E． 150129592960 39723973
SMYTH，M．J． 2991
SNYDER，L．A．178：3 184：26 103 14481449292843195380
SOBELS，F．H．164：22 908909
101411471148400641384139 4177
SODJA，A． 5317
SOFER，W．H．191；27 13041596 301330143015318538863963
SOGRIN，B．V． 4801
SOKOLOSKI，E．A． 4379
SOKOLOV，N．N． 5122
SOKOLOVA，K．B． 606
SOKOLOVA，K．S． 2395
SOLEILHAVOUP，J．P． 1403
SOLER，A． 5704
SOLIMAN，M．H． 56235624
SOLOKHINA，T．A． 5121
SOLOMATIN，V．M． 1170
SOLONIN，A．S． 36225558
SOLUYANOVA，Z ．V． 28
SONDERMEIJER，P．J．A． 48055627
SONDORE，Z．A． 3012
SONE，N． 38885671
SONG，N． 39023903
SONNE NBICHLER，J． 1074
SORSA，M． 13922646
SORSA，V．188：28 5341
SOSLAND，M．A． 3390
SOURE－LEUTHOLD，A． 4510
SOWA，B．A． 11022715
SPANO，V． 1778
SPARROW，J．C．188：2
SPATZ，H．－C． 21463816
SPEAKE，L。 166：19
SPECTOR，C． 745746
SPERLICH，D．159：23 4988

SPERLING，K．178：15
SPIESS，E．B．188：6 19965327
SPIETH，H．T． 2565
SPRADLING，A． 72826744955
SPRINGER，E． 14013933
SREERAMA REDDY，G． 50045005
SRIVASTAVA，B．B．L． 5414
STAFFORD，D．W． 285
STAHL，G． 1859
STALKER，H．D． 101
STANGE，G． 669
STANKEVYCH，A．J． 1705
STANLEY，H．P． 32264593
STARK，W． 1899246635803581
4643464446455551
STARMER，W．T． 190524873170 4502
STEBBINS，G．L． 2318
STEFFENSEN，D．M． 14351968 28825188
STEIN，J． 3130
STEIN，W． 4540
STEINER，A．L． 5761
STEINER，E． 4144
STEINER，W．W．M． 8182413 25483903
STEINMETZ，H． 2665
STEPHENS，T．D． 807
STEWARD，R． 424750995277
STEWART，D．J． 2583
STEWART，F．M． 2588
STÓFFLER，G． 2247
STOLLAR，B．D． 4001
STONE，B．P． 655
STONE，J． 16032772
STORM，L．W． 155
STRAUS，N．A． 1744273
STRA USBA UGH，L．D． 2914394
STRA USBA UGH，L．S． 876
STUKIENE，R． 4774
STYA ZHKINA，T．V． 2584
SUBRAMANIAM，T．R． 1462
SUGIYAMA，Y． 2848
SULIIVAN，D．T． 38812121213
1375227830295111
SULLVVAN，M．C．189：16 1758 3096
SULZMAN，F． 2837
SUMMERS，K．M． 4642
SUMNER，M．166：20 22913445
SUMNER－SMITH，M． 28963928 4979
SUNDQVIST，G． 7423609
SUNG，K．C．192：23 13401341 1342134317334072
SUNNELL，L．A． 4336
SUORMALA，T．184：9
SURAIKINA，T．I． 4206
SUZUKI，D．T．163：17 169：21
171：22 172：26 175：4 179：29
184：3 189：26 192：21 192：22
192：23 192：24 90497498633 8548558602298
SVAHLIN，H． 493850245025 5026
SVED，J．A． 4710
SVIRDDOV，S． 7084536553656
3657365846914692
SVOBODOVA，M． 3347
SWAHLIN，H． 2067
SWEARINGEN，J．V． 4172
SWIFT，H．H． 2247
SYKIOTIS，M． 4299
SZABAD，J． 2604471748854935
SZABO，P． 1753
SZAUTER，P． 5086

TABERY，E． 3949
TABITH，K． 4501
TAIT，R．C． 3378
TAKABATAKE，F． 25183617
TAKAHASHI，J．S． 4854
TAKAMURA，T． 3926
TAKANISHI，M． 2573
TAKEUCHI，E． 3000

TANAKA, A. 52152228582859
TANAKA, H. 174:18
TANIMURA, T. 87736284663
TANTAWY, A. O. 180:27 361 38543855
TANZARELLA, C. 182:12 5552396 23972398
TAPPEL, A. L. 1617
TARANTUL, V. Z. 653
TARTOF, K. D. 107814421443 39475707
TASAKA, S. E. 855
TATENO, Y. 1278
TATES, A. D. 3695
TAYLOR, C. E. 4611
TAZIMA, Y. 4899
TCHURIKOV, N. A. 36213622 465455575558
TEJIMA, T. 2848
TEMPLETON, A. R. 16503306 40414368
TENER, G. M. 171:22 192:18 192:19 192:20 192:21 192:22 192:23 192:24 63319482298 356144575468
TEPLITZ, R. L. 187:17 187:19 3519
TERAMATO, L. T. 4368
TERANISHI, Y. 76018494655 4656
THACKER, J. 98
THATCHER, D. R. 42545486
THIRTLE, B. 1649
THIRUMURTHI, S. 1462
THODAY, J. M. 171:4 31283129
THOMAS, C. A. (Jr.) 6631089 24572516364542615003
THOMAS, S. 1804
THOMAS, T. L. 4424
THOMPSON, A. 4162
THOMPSON, J. N. (Jr.) 1451 198435933606401241714249 462150975294529555395540
THOMPSON, P. E. 193:12
THOMPSON, S. C. 357
THONGME EARKOM, P. 1117 11183806
THORIG, G. E. W. 5098
THROCKMORTON, L. H. 161:7 163:28 1659
TIKHOMIROVA, M. M. 183:12 139131844129
TILLITT PHILLIPS, B. 1334
TIMBERLAKE, W. E. 4243
TIMNER, K. 2929
TINDALL, K. R. 5062
TINTER, S. K. 1198
TISCHER, E. G. 3469
TISSIERES, A. 487648895099
TEXADOR, R. 1403
TOBARI, I. 1242124328125229
TOBARI, Y. 180:25 6566984 122012212077287031403141 410748494891522052675777
TOBLER, H. 6422443
TODA, M. J. 368542975570 5571
TOLCHKOV, E. V. 4047
TOMÅS, M. 5338
TOMIMURA, Y. 5220
TONEY, J. V. 4012
TONZETICH, J. 267234523750
TORDA, P. 1832
TORIOBIO-FIORIO, P. 187:18
TORTORA, F. 184:13 1423
TOTI, L. 163:21 163:22 2304
TÔYAMA, M. 2759
TRABERT, K. 4696
TRACEY, D. 1022
TRACEY, M. L. 868788893476
TRACY, U. M. 180826914878 4879
TRAUSCHT, R. 5577
TREAT, L. G. 754
TRIBE, M. A. 1927
TRIPPA, G. 178:9 26862687

TROUT, W. E. 844
TSACAS, L. 176:16 3553440 34424423
TSAI, L. J. 3329
TSAKAS, S. 20363456
TSAPYGINA, R. I. 1055
TSCHERBAKOV, D. 3677
TSENG, H. -C. 104110422683 4790
TSUBOTA, S. I. 4346
TSUCHIYAMA, S. 15511552
TSUJTA, M. 122212231224
TSUKUDA, H. 3122
TSURUHARA, T. 7667685555
TSUSUE, M. 9031771
TUCHINA, N. G. 26455119
TULJAPURKAR, S. D. 37585619
TURBINA, N. N. 2340
TURNER, D. 132
TURNER, F. R. 243327025493
TYSHCHENKO, G. F. 35454571

UCHIBORI, M. 77617922525 46564657
UEMATSU, S. 38423862
UGOLEV, A. M. 3836
UHLENBECK, O. C. 17535188
UHLMANN, J. 506
ULIZZI, L. 190:26 190:27
ULLRICH, A. 4025
ULRICH, H. 4178
UPHOLT, W. B. 34473448
URSPRUNG, H. 179:2 179:3
USENKO, L. I. 895896
UWASEKI, K. 13082849

VADYA, V. G. 181:6595 2421 4557
VAINIO, H. 5151
VAL, F. C. 184690
VALBONESL, M. 190:25
VALENCIA, J. I. 169:28 507
VALENTE, V. L. S. 5391
VALENTIN, J. 23185020
VALVAJTER, B. 5568
Van BREUGEL, F. M. A. 4277
Van DELDEN, W. 161:16 161:17 431146895545
Van den BERGH, W. 4123
van der HAUTE, J. 450
van der MEER, J. M. 182:22 1338
van DEUSEN, E. B. 3801
van DIJK, H. 1865
van DIJKEN, F. R. 12115098
van DYK, J. P. 1541
VANELLI, M. L. 13553930
van HERREWEGE, J. 166:17 166:18 4421
van SAMBEEK, M. J. 52395790
VANYAN, L. A. 1639
VARENTSOVA, E. R. 36784708
VARGHA, J. 4840
VASIL'EVA, L. A. 1285
VASLET, C. 3216
VASQUEZ, E. J. A. 4985
VASSEGHI, M, R. 550
VASSELI, M. E. 1826
VATTI, K. V. 379048284869
VAULINA, E. N. 24205466
VAYSSE, G. 3809
VEERKAMP Van BAARLE,
A. M. A. J. 2669

VENEZLA, O. 42834284
VENKATARAMAN, B. 43955543
VERMET-ROZEBOOM, E. 3177
VESELOVSKAYA, O. V. 4812358
VEYRUNES, J.-C. 5695
VIGUE, C. L. 4551
VIJANSKAJA, T. 4774
VIKULOVA, V. K. 4865
VINCZE, E. 4501
VIRRANKOSKI-CASTRODEZA, V.

VISHNIAKOVA, N. M. 3465
VLACH, B. 2080
VOELKER, R. A. 28062807 373138204757
VOGEL, E. 178:16 26273709 40524053413141774258 4318473351475379
VÖGELI, G. 4236
VOLOSHCHENKO, T. I. 4327
Von BORSTEL, R. W. 4599 5535
von PRAHL, H. R. 732
von SCHILCHER, F. 4192139
VOOGD, C. E. 935
VOROBTSOVA, I, E. 1071
55175518
VYSE, E. R. 50625666

WACHTER, S. 3563
WADDINGTON, C. H. 165:14
WADDLE, F. R. 162:25
WADSWORTH, S. 43084309
WAHLI, W. 5454
WAITZ, M. 5404
WAKAHAMA, K. 40094085
WALIYAR, F. 5829
WALKER, F. C. 37154740
WALKER, G. W. R. 19
WALKER. J. A. 2466
WALKER, L. 54575460
WALKER, V. K. 5506
WALLACE, G. 26033698
WALLS, N. A. 3598
WALT, H. 6422443
WANDOSELL, F. 4533
WANG, C. Y. 5576
WANG, J. C. 91
WANG, To -C. 1042
WARD, B. L. 298729883203
WARD, C. L. 190:10 190:11
143918253147
WARD, O. G. 1853
WARGENT, J. M. 2473
WARING; G. 20633297
WARNER, C. K. 796797798
WARREN, G. 5062
WASSERMAN, G. 189:11 1722 1723
WASSERMAN, M. 163:28
WATABE, H. 5571
WATABE, S. 5643
WATANABE, T. 192219232576 28503209321041524187
WATANABE, T. K. S. 12351236 123713311332266136253740 374132894659466046614662 4700470147024768
WATT, F. 451346264627
WEBB, D. A. 5358
WEBB, J. V. 3584638
WEBER, K. 5075
WEBER, L. 1542142
WEBER, M. 2839
WEBER-von GROTTHUS, E. 81
WEBSTER, G. C. 43155242
WEBSTER, S. L. 5804
WEHNER, R. 747
WEHRHAHN, C. F. 3965
WEIHE, P. 2822
WEILLENMANN, W. 1204 27952796
WEINBERG, E. 13604956
WEINBERG, Z. 5785
WEINER, A. J. 3482
WEISBLUM, B. 1772
WEISBROD, E. 3873458
WELCH, G. 802773
WELLAUER, P. K. 4429
WELSHONS, W. J. 2579
WENKING, H. 171:16
WENSINK, P. C. 25085625
WESSING, A. 811932
WEST, C. 4818
WESTOVER, C. J. 3052
WETTER-SCHATZMAN, D.

172:22
WHEELER, L. 319
WHEELER, M. R. 163:28 164:1
193:15 193:16 29520092012
WHISTLER, R. L. 4378
WHITCOMB, R. F. 19553227
WHITE, B. N. 171:22 6334173
477652985299530057205818
WHITE, J. 22782654
WHITE, R. A. 33895398
WHITE, R. L. 59425084093
WHYTOCK, S. 5123
WIEBERS, J. L. 5574
WIENDENHEFT, K. B. 1004
WIESCHAUS, E. 240338014841
49355641564257375738
WIESEHAHAN, G. P. 4649
WILCOX, M. 4760
WILDER, K. 191:1
WILKERSON, R. 4929
WILKES, M. M. 173:30
WILKINSON, L. E. 3726
WILL, H. 5584
WILLART, E. 2309
WILLIAMS, C. M. 34075416
WILLIAMS, D. H. 4254
WILLIAMS, J. S. 335336804 5159
WILLIAMS, N. 173:20 183:19 183:20717
WILLIAMS, W. R. 3672
WILLIAMSON, D. L. 19433221
WILLLAMSON, J. H. 13631900 207321792400274533813911
4539536655065647
WILLIAMSON, J. W. 5679
WILLIAMSON, R. 3154
WILLOUGHBY, R. 3989
WILSON, A. C. 21443357
WILSON, F. D. 1942
WILSON, K. J. 116
WILSON, M. 1336
WILSON, T. J. 798
WIMBER, D. R. 3232
WINFREE, A. T. 2476
WINFREY, C. 162:25
WINGE, H. 165:11
WISSNER, A. 168:22
WISTRAND, H. 142950145699
WÖHRMANN, K. 1934
WOLD, B. J. 4424
WOLF, B. E. 178:15
WOLF, J. 5340
WOLF, T. M. 2767
WOLFE, J. 32905054
WOLLENZIEN, P. 4269
WOLSTENHOLME, D. R. 2355
2356449045585484
WONG, F. 5303
WONG, Y. -C. 5821
WOOD, A. M. 1636
WOOD, W. J. 40225103
WOODRUFF, R. C. 162:6523
306135933606409646215208
52095210521155395540
WOODS, R. A. 216243315385
WOODWARD, C. G. 5507
WOOL, I. G. 2247
WORCEL, A. 3353
WRIGHT, C. P. 748
WRIGHT, R. 320
WRIGHT, T. R. F. 167:20 167:21 169:16 188:2 47747816221695 2664360346315352
WU, C. E. C. 44705125
WU, C. -F. 1184277138335292
WU, J. R. 162:1
WU, M. 5317
WULF, E. 4672
WUNDERLICH, E. 826
WÜRGLER, F. E. 163:11 180:20 180:21 1202120512062428 386939534408457449235522 55235524
WYMAN, A. R. 289128922893
WYMAN, R. J. 4608

XUFRE, J. 1820	YENIKOLOPOV, G. N. 4654	YUR'EVA, N. A. 1891	ZHANDOV, Y. A. 971
XUONG, N. H. 672	YEOMANS, T. C. 2500	YUROV, Y. B. 32993300	ZHIMULEV, I. F. 22139140
	YEUNG, A. 180318043136		100910102049213121332580
	YI, C. 3257		2619266637165365
YAKOBOVITZ, N. 4787	YI, H. 3904	ZACHARIAS, C. E. 170:21	ZHURKOV, V. S. 1475
YAMADA, M. -A. 321141534910	YIM, J. J. 5464a	ZACHAROPOULOU, A. 2053	ZIJLSTRA, J. A, 4258
491149125274	YOKOYAMA, S. 2362	3292	ZILLER, C. 1647
YAMAGUCHI, O. 123612371238	YONGE, C. 5416	ZAIN-E1-ABIDIN, A. 5156	ZIMDAHL, M. 3787
19242576	YOON, J. S. 3974	ZAKHAROV, I. A. 36784126	ZIMINA, L. N. 4312
YAMA MOTO, H. 5190	YOON, S. B. 23683496	4708	ZIMM, H. 175:2
YAMA MOTO, K. 780	YOSHIKAWA, I. 21013037	ZAKHAROV, I. K. 171:12604605	ZIMMERING, S. 100510062711
YAMAZAKI, T. 81082311131114	YOSHIKAWA, L. 163116321633	ZAKIEV, R. K. 593	271227133553
112011211122192532123805	YOSHIKAWA, T. 83	ZAKOUR, R. A. 3390	ZITZMANN, W, G* 3087
YANG, M. K. 14783956	YOSHIOKA, T. 5565	ZALOKAR, M. 189:29 1039	ZORNETZER, M. 216
YARDLEY, D. 5033024016	YOST, H. T. (Jr.) 2494	ZANDSTRA, I. Z. 4635	ZOUROS, E. 2906
YARKIN, R. J. 1271	YOUNG, M. W. 4498	ZAPF, B. 1587	ZOWARKA, B. 159:15
YAROSHYUS, A. V. 5466	YOUNG, S. S. Y. 851	ZARAZAGA, I. 5705	ZUCHOWSKI, C. I. 35794609
YEDVOBNICK, B. 19313216	YOUVAN, D. C. 5815	ZEI, G. $190: 26$	ZULETA, B. M. 3333
YEE, S. 3853	YU, H. -F. 17061707	ZEIGER, E. 4917	ZWE1DLER, A. 30303
YEH, H. J. C. 4379	YUAN, R. 5277	ZEITLER, R. 117611772764	ZWOLINSKI, R. 166:24
YEMM, S. J. 5572401	YUND, M. A. 5182375	ZEUTHEN, E. 2776	

TITLE INDEX

Abbreviations

X	$=$	\mathbf{X} chromosome
\mathbf{Y}	$=$	Y chromosome
II	$=$	II chromosome
II	$=$	II chromosome
IV	$=$	IV chromosome
beh	$=$	behavior
co	$=$	crossing over
dev	$=$	development
\exp	$=$	experimental
inv	$=$	inversion

iz	$=$	isozyme
lv	$=$	larva
l	$=$	lethal
mu	$=$	mutation
nat	$=$	natural
plm	$=$	polymorphism
pop	$=$	population
pu	$=$	pupa
temp	$=$	temperature
t	$=$	translocation

PART I. GENERAL INDEX
abdomen, adult, lv salivary gland in 159:26 172:22 3271
bristles 193:13 51123714651 compartments 5604
denticle belts 5257
defect and microcautery 2165 dev 172:3
histoblasts 5064 pigmentation 186:2 5055
accessory gland 167:10 *23113599 497449754977
acclimation, heat 52345235 acetamide 8302155316841225787 acetate in chromatin 3755
acetic acid 6543846
acetylcholine 385
receptor 459950715535
acetylcholinesterase 23322456 3407429844515658
acetylsalicylate 4619
acid phosphatase 160:24 451096
12722049206520842759 *2940
32954034 * 4112 *4113 4976
565657325826
-1 30035094
in ovary 46587
acridine orange 48595651
acrylamide gel 124148775334
actin 3507521757685774
actinomycin D 173:14 3734151198 *33773727 4986525153585793
action pattern, sequential 2511 3611
action potential 5184 action spectrum 189:10 *3691
activator, photopigment 5166 of sex chr 1037
active ion transport 3830
activity, daily \& seasonal 18141815 dispersive 8974
extra hyper-, of X 5634
gene control of 58
locomotor, measured 60
motor, pattern 5554
\& mu 230
rhythm 4473
\& sexual behavior 2201
acylation 37554640
acyltransferase 3589
adaptation 3776
\& ADH temp stability 5083
\& alanine 792
biochemical DNA 4714
\& circadian rhythm $35 * 2059$
co- *2937 32123582
color 5433
\& crab *5261
desert 820
\& enzyme level 2737
functional 2541
genetic strategy of 3176
latitudinal 35022844419
\& load 731
\& photopigment 30875166
$\& \mathrm{plm}$ *162:2 20
\& repeated mating 50155712
resistance 5786
\& speciation genetic unit 3398
temp 3669
virus 3380
\& vision 40684174
adaptedness, evolution of 141
adaptive, evolution regulation 4812 4813
foci 2104
flexibility of pops *5189
radiation *185 2799
rhythm 2507
value 3714004 *5475
adaptiveness, species *2634
of II mu 1874
adenosine 172:4 2127
nucleotides 172:4 172:5 172:6 643
adenosyl-L-methionine decarboxylase 236
ADH (see alcohol dehydrogenase)
adipose tissue 163:15 5049 5722
ADP 999
adult, abdomen, development 172:3
with lv salivary chr 159:26 172:22 3271
activity \& low temp 307
\& alcohol 20852415792
allozymes 1180
antifeeding compound 356
behavior, temp \& humidity 3946
body weight 851
cAMP 2307
catacholamine 3021
defects \& blastoderm pricking 2752
\& embryo treatment 200201 2165
density 160:19 48924893
dev \& ommochrome 1542
diapause *1069
\& embryo satellite DNA 2935
emergence 133228673739
esterases *926
feeding 18885571
fecundity, \& productivity 160:19
flightless 1620
GOT 3130
induction \& lv 1578
inner organs 174:13
killed by CO_{2} 166:12
lifespan \& radiation 170:15 188:26
lipid storage 353
locomotion \& mu 184:3
longevity 159:16 30922642426
\& lv GPDH 27684898
marked *334 1227
metabolism \& age 4027
midgut 170:9 170:11 2392
mortality \& ADH 4689
muscle 23924448
nervous system 5282
number \& environment 164:2
nutrition 5791
optic center 2395
pharate 176:9 176:10959
physiology \& temp 308
pre-, viability *777
\& preadult environment 164:26 164:28
progenitor cells 5306
repeated DNA in 183:8
reproductive potential 4230
reserves 3522286
RNase 4086
\& SEM 5544
structures \& polygenes 3602 4630
sub-, dev time 3394
\& sugar 191:16
survival \& caffeine 4205
viability \& adult density 4893
yolk in 2400
Aedes 33714326
aerobism \& mu 790
AF-2 43175378
aflatoxin 9782159224137304628
afterpotential 41744797
age, \& adult metabolism 4027
\& amino acid acylation 4640
BuDR, \& puffs *4880 *4995
\& chaeta number 118
-dependent substances 3989
diet, \& longevity 2081
\& drosopterin 3139
egg, \& sperm mu 228
\& enzymes 21103326
estimation 191:21 1872
female, and X-ray mu 10791080
\& heart 5149
\& heat tolerance 177:1
\& heritability 10431044
male, \& segregation 725
maternal, effect 1282
\& mating 317 *1446 3692
\& meiotic drive 574
\& mitochondria 16805242
\& muscle function 4381
parental, \& fecundity 4792
pigment, fluorescence 4315
\& protein pattern 5350
\& ribosomes 33274210
\& ring chr 1737
\& sex ratio 608947
\& sexual selection *1445 *2927
structured pops 2228
\& tumorous head 947948
variation, \& selection 2120
\& viability genetic load 179:18
\& w- 144
water content, and radiation 2647
aging $27151435356 \quad 660056225685$
\& accelerated particles 80
\& ADH 1032
\& antioxidants 1933
\& bananas 2094
bibliography 30645758
cell growth, \& differentiation 1598
\& disc growth \& differentiation 3016
\& female sterility 2193
\& flight muscle 1927
\& fluorescence 1617
\& histones 1110
\& inbreeding 5372
\& longevity 5670
\& lysosome 5804
\& midgut 170:11 170:12
\& mitochondria 1110
\& molecular genetics 5081
\& musculature 3514
\& neoplasm 4997
\& "nuil" alleles 182:6
$\& \mathrm{O}_{2} 1070$
\& pigmentation 1847
\& protein errors 7363379
\& radiation 170:14 170:15
$\& \underline{S D} 720$
\& weightlessness 4875
agglutinin, wheat germ 1513 agglutination 4239
aggression \& mating success 420 agroecosystems 392
air-dried sperm 172:19
air, pollution 3913523
X rays \& mu 2584
alanine 72979236324667
aminotransferase 170:21 2235
alcohol *166:3 208114318702285
$3439 * 36384959524154525792$
dehydrogenase (ADH) 171:26
172:1 191:26 2021111170171
363364365455456568715
717772813130313041594
159519542610348538835563
\& alcohol 34394815
\& aging 1032
alleles 188140954389
allozymes \& electrophoresis 4091
\& beh 175:3
\& chr substitution 4267
cline 3932
cytogenetics 3886
\& detoxification 4417
\& electrophoresis 31354091
\& frequency-dependent selection 5322
\& gene dosage 183:18
heterogeneity *3429
iz 18663013301430153640
\& l(3)tr 2161
level 37984839
mu 3185327952085486
N-terminus 4254
in nat pops 1906 *4568 5082 50835630
\& phototaxis 449
plm 161:15 *171:13 183:20 183:21 140120483933 4418 *4568 48155789 in pops 254446895238
\& position effect 3606
purification 4090
\& selection 161:16 18641865 2048284437474939
\& species hybrids 183:19
\& species variation 2737
specificity 2738
\& temp 183:20 183:21 4551
thermostability 29965082 5083
tryptic protein profile 3963 variation in pops 3777 metabolism 441744215240
\& sperm dehydration 172:19
aldehyde oxidase 179:2 432716
206821792276263526362738
$3381371337143715 * 41164421$
443847405587564758115812
\& discs 174:12 2408
alkali-urea \& chr 189:5 3075
alkaline phosphatase (APH) 175:3
67567667712311233 *1373
*2940
alkaloid pyrrolizidone 5263
alkylating agents, monofunctional
239741375255
\& mu 17910382397
\& sperm 3214
alkylation, \& cytology 3909
DNA 363646754676
\& mu 32803281374342154216 421742504770
all or none rule 4561
allele, ADH 188140954389 alkaline phosphatase 675676 677
of chr $1 \quad 189: 17$
cline \& gene flow 4505
contracomplementation 184:4
diversity in nat pops 2614
electrophoretic 19364681
esterase 208720885225
\& fitness 185:16
heat-sensitive, \& neterosis 188:18
heterogeneity *2739 *3778 interaction 1415141648604861
iso- 196431264227
iz, and selection 1584
1 , in desert pops *3387 rate, \& protein plm 4187
\& malate dehydrogenase 684 2483
multiple 4030415457425803
neutral 174:16
new, \& recombination *513
"null" 182:6 1594647
number in finite pop 4073
polygene, frequencies 3129
rare, \& heterozygosity 2614 4461
-specific repressor 4487
stabilization of esterases 1628 1629
supermutable 4564
temp 5820
-sensitive 402940534486
transient 5135
unstable 4665
variation, hidden 5746
viability 3648
XDH *3944
allelism 5493543
in pops 1530 *2188 *2189 4385
allelozymes \& electrophoresis 203
allergy 177:22
allometry 10405612 a
allomones 3490
allopatric sibling species 193:14
allopurinol 3495
allozyme 159:8 159:9 1726*4758
*5499 *5601
ADH 4091
adult 1180
amylase, \& selection 4623
\& chr similarities 2602612217
clines \& inv 4133
in different species *3301
differentiation *2548
\& electrophoresis *2739*3778
esterase-6 4252
\& fitness *169:22 $810823 * 1093$ *1094*4837
GPDH 11791180 *2824 3426 $4871 * 4908$
\& iny *4988 5794
\& iz in embryo 4225
Lap-A 4252
loci 41144135
Mdh *3865
marking flies 1827
\& mating time 3317
plm *260 500209333174251 4252
in pops *186:4 50047565751
\& selection *1093 *1094 4208
similar $3025 * 3026$
systems *5704
\& temp 1179
thermostability 5729
\& variance 40485751
variation *185:24 738*817*818 3076
alpha-glycerophosphate dehydrogen
ase (GPDH) 161:8 161:9 171:25
171:26 172:1 175:19 182:6
185:20 185:21 186:21 312569 5706371008205222672737
2768 *2824 * 302738684390
4750475148985463
allozymes 1179118034264871 *4908
evolution 34243427
iz 158214543004871
altitude $857 * 1467 * 1490 * 1715$ *4780
amanitin 6241203453943754979 5633
amatoxin 4610
amides and amines 173:24 3989
5377
amino acid $192 \cdot 2734414783989$
\& aging 2714640
free, \& inbreeding 22663956
-tRNA synthetases 28623008 3895
aminoethylisothiuronium bromide (AET) 591
amino indenes 122653165473
aminopeptidase iz *4111
aminotransferase 170:21941
amitrole 26463067
AMP 999
amplification 179:23*458
amylase *393 $394 * 395 * 3961307$
22952310 *2311 *2314 44404441
allozyme \& selection 4623
\& ci 1386
iz 167:11 167:13 *167:14 2313 *4088*5203
\& selection 5825
midgut 204420452312
plm *2848 *2849 *4088 *4222
*5203 55485549
in pops *2848*2849*4188
regulation 4219
tissue-specific 5465
anaerobism 79016482028
anal organ 162:28 163:1 164:15
analog, actinomycin D 1198
DNA base 3982
hormone 162:14 162:15 4180 44924539 *5721 5730
hycanthone 26322633
inhibitor 1622
nucleoside \& mu 185:8
nucleotide base 607
androcidal 184:12 *184:13 *1423
anesthesia 166:12 188:9 167764 2385523954985790
aneuploidy 185:18 190:15 1488
18333920483452215222
\& radiation 187:23 593
segmental 1301174317441745
anisotropy, molecular 2432
anlage (see imaginal discs)
anoxia 5292
antenna 171:95595845862758
3667435654805767
-eye disc 5525543994
anthracine 5432
antibiotics 186:28 31683248
antibodies 43604469
anticonvulsant drugs 4206
antigens $\quad 183845151615182822$
2970365736584692
antimutagen 169:18 591
antioxidants 19333032
antisera 7020844299
Apis 46284801
apoptosis in oogenesis 2415
appendage sensory neurons 3092 5173
Arabidopsis 1807
architecture 182:18 5296
Arrhenius activation energy 1685 arsenite *5260
aryl geranyl ether juvenoids 665 aryl hydrocarbon hydroxylase 4258 asfaetida 4221
ascorbic acid \& longevity 2726
aspartate, aminotransferase 170:21 2436
carbamoyltransferase 181:24 167944914637
aspartic acid tRNA 192:18 5300
aspirator 209
assay 173:15 188:2 14183675
417744035147
assimilation, genetic 3128
associative, balance *2902
conditioning 3809
learning 1696
assortative mating 784694
assortment, random 1963
asymmetry 2112271127125088
asynapsis 1371568291230233570 4759
asynchronous, cell culture RNA 3157
DNA replication *2231
A-T rich region in mitochondrial DNA 4169
atavic mu 35114829
atomic absorption 260331983698
ATP 172:4 180:14 758 999 1010
atrazìne 4901
atrophy, gonadal 3922
attached-X, inverted 528
attached XY 1754
attenuation \& symbiosis 2178
attractants 3675
attraction to flowers 2467
attractiveness 3163175431
attractivity 4540
audition \& courtship 31913192
Auerbach, C. 1676
aurodrosopterin 153215993017
autonomy of gene effects 190:6
autoradiography 466467 *639 *640
944974975101925803468 *3564
*3565 5227
\& dosage compensation 179:21
\& egg protein \& RNA 3268
EM 3525
heterochromatin 5403
\& nicotinic receptor 4453
of ovary 1306
scintillation 5660
autosome, auxotrophy 2815
$\& \mathrm{bb}{ }^{*} 4274$
in cages 496497498
chromatid exchange 5011
complement, Tricomplex 184:27
compound 169:20 169:21 173:1
177:13 185:1496497498724
7397401012101434433608
co 1414
ERG mutants 2615
gene, \& dosage compensation
2978
\& sex heterochromatin 4005 \& G6PD 3930
heterochromatin 25013601
-heterosome t *4013
male l 4802
meiotic, \& radiation 4548
modifiers of ci 752754 \& mutagen sensitivity 5146
nondisjunction 164:22 288289
132116775093
puffing pattern 2023
recombination 1895
regulatory loci 1485
\& sugar response 782
t \& pop fitness 3965
temp, Ax and ci 3613
-X ratio 169:7 470
-X t 29784436
\& X transcription 41
-Y t 2288
auxotrophy $169: 847318522815$ 281636423643
avidin 3794
axenic 4713
axon 187:18 4615555
azaguanine 12482794
azide 55165575

Bacillus 1248
backerosses \& inbreeding 186:5
bacteria 2266678789351608 184334083574
bacteriophage-D. recombinant clone 3621
bait 822256542974325
balance, associative *2902
balanced pIm, t, \& pop 5056
balancer 12183800
balancing selection, no 3276
bananas \& aging 2094
band, N- 4596
banding *2514 3931
barbiturate 4822
base, analog, DNA 39825048
nucleic acid, added to medium 4471
sequence of stable RNA 4155
basement membrane 1510
basic features 2476
bats 631
BCNU \& mu 36954732
BD-cellulose 192:20
beads of chromatin 4057
Beauvaria 8958961852
bee venom phospholipase 2691
beetles 30773082
behavior 1762
adaptive, temp \& humidity 3946
assay of attractants \& repellants 3675
of asymmetric dyads 193:22
\& baiting 822
bioassay 1291
chemotactic 5724103
choice 187:5
of chr axes 1682
chr, in species hybrids 2348
cleaning 1051
clues for oviposition 5057
complex 2621
conditioned 1459
courtship 163:12 165:5 165:7
*173:27 *173:28 11031708
*3057 5259
diagnostics 690
diapause *3104
disadvantageous 177:15
dispersive 12661267 *1500 2069 2827386638675491
\& temp 2761276238244868
\& distribution 5459
diurnal 185:22 1393
divergence \& related species 5044
diversity in nat pop 1937
\& drugs 4734
\& ecological genetics 438
\& electric field 5417
of embryo cells in culture 176:8
emigration response *3992 3993 5058
\& enzymes 175:3
\& evolution 39135448
\& fate maps 1153
\& gene 2140
genetics 161:3 168:18 183:6
184:10 184:15 58591452339 28064833
geotactic 183:273686 48385711
gregarious 5459
homosexual 2037
host 3383
humidity *3194
of irradiated disc 180:24
\& isogenicity *4368
jousting 1505 *3978
jumping 179:28 84411191256 273228193763
lv digging 45594560
lv feeding 161028544359
lek 39153917 *5680
light *404634*762 1527 *1528 *1529 *1713 3411
locomotive, \& anesthesia 5239
mating 185:15 315316317330 68320932481 *2488 2760 *2870 3476
\& maze design 4614
meiotic 13644184
modified 862
\& mosaicism 74925695523
\& mu 174:26 2463426352363 2510361048004801
nervous system 2913
\& olfaction 2382238323844524 biometrics 932100731253464 origins 3335
oviposition 2528310631073111 5191
\& paralysis mu 1684
pattern, \& environment 418 evolution 2370
genetics of 18031804
phenocopied 229
phenotype 2481
\& pheromones 10163490
photo-, \& sex *2975
phototactic 183:27*1091*1092
10981099110011012244
*271747244838*54195421 5422
\& color 5102
\& light 5288
pleiotropy 4165
pop *402
pyokori 1255
\& random mating 59
reproductive, \& central nervous system 4598
rhythm 185:22
of ring $X 1565$
\& selection 145121772244
\& sex combs 4406
sex *762 $828829 * 3617 * 4652$
*4984 5470
\& activity 2201
of Drosophilidae 5616
\& gymander 12934927
\& light *174:5
\& mu 230
precocious *5721
\& single genes 3018
social 173:5 4634
\& social isolation *5738a
somatic cell, in 13979
spatial discrimination 1245
species *1506
of the stentors 2982
\& stress-sensitive mutant 482
to sugar 783
\& tapping 2050
temp-sensitive mu 30653066
visual 35925433
\& w 144
waTking 132922453899
\& wavelength 1592
Benlate \& mu 979
benomyl *2083
benzene \& mu 4938
benzidine 4484
berberine 1228
betatron 26
bhendi fruits 1462
bibliography 700249230643595 5758
bilateral symmetry 5343
binary epigenetic code 25744695
bioassay, behavior 1291
biochemical, aspects of synthetic 1 181:21
endocrinology 5763
evolution 483652125213
mu 20074757
variation, noise or signal 1649
biochemistry, of gene manipulation 3235
of interphase genome 4290 of mu 577
bioelimination 218221834347 45384539
biogenesis, mitochondrial 3447
biogeography 177:20*2533 3196 *5782
bio-indication 1681
biological clocks 196919711972 197330094947
biology, conference 827
evolutionary 869
\& genetics 3313
molecular 4543
reproductive 505

4419

bionomics *5219 *5570
biorhythm 1325
biosphere pollution 4214
biosystematics 8153653 *5565a 5565b
biotic residues *2175 21945708
blotin 3794
bisexual hybrid sterility 3423
bistable pigment 5654
black pigment spots 3520
blastema $172: 213831$
blastoderm 169:15 2002011498
216526502742275231703871 53065632
blind 1721
block, genetic, \& neurons 3043 neuromuscular 5728
blue-adaptation 41745433
blue light *267 2832
body, pattern 173:19 36505085
size, cell size, \& selection

4847

\& selection 162:8 162:9
162:10 19219321124847
\& sperm length *968
\& temp 159:22 1426
spots on 3
weight 169:23 8508512301
Boesiger, E. 2889
books 165:14 168:18 173:18 175:14 183:6 187:1 3884388878891702 210322712318233924292707 3313
text- (see textbooks)
boron 4224231474
bottleneck effect 1276
boundary conditions 5682
bracken 462
bract differentiation 190:5
brain 24252773346841964453
46034857 *5588
lv *992 2395
breeding ${ }^{4} 4678$
in computer 2451
cross- 543
on decayed leaves 2601
in flowers 2860
potential \& temp 306
soil- 4618
site 2799 *3671 4253 *5364
55715734
bridge, intercellular 4552
bristles or chaetae 165:22 118
270828832915295329714605 484848645343
mutant 174835355652
number *177:8 185:15 193:13 4651
organ formation 1811
pattern 4620 5393b *5393c
growth, \& joints 31454100 \& polygenes 5112371 scutellar 178:21 2756
\& selection 187:11 187:12 5648 sternal 294 *4606*5611 sternopleural \& abdominal 46515343
bromodeoxyuridine (BuDR) 171:7 *942 *1411 1511151521663019 3377 *3937 *3938 * 4880 *4995 5284
bromouracil in DNA 2966
brood, pattern 184942644656 postmelotic, \& fractional mu 4829
\& SD 173:3
brown rot of stone fruits 189:20
brushfires 176:15
bungarotoxin 3467346844504453 5467
buoyant density *22695695
Burla, anti-, rule 5676
butylated hydroxyanisole 1434 2787
butylated hydroxytoluene (BHT) 174:22 174:23 6487918411434 3032

C band 3931
cactus *821 1667368740694266 4618
\& yeast 17242487
cadmium 168646594661
caffeine 168:4 169:18 625781152
16783275390442054933
\& co 4442008
\& MMS 38694923
\& mu 187:26 193:20 11094220 42214914
\& repair 1146114711482748 321438154946
cages 4964971174117511771526 21913291
calcium *712 15375283
calf *1074 132428643393
Calliphora 972149222662954
40255167
calliphorin 4025
Calycanthus 2467
CAMP 25923484430544265231 5731
canalization 187:12 5033
capsid polypeptides 4992
captan $175: 25$ 180:18 934
captured, number 4285
carbamate \& mu 218
carbamylphosphate synthetase-
aspartate transcarbamylase-
dihydroorotase 4346
carbohydrate 39215507
dietary 24014172
metabolism 165:19 53
carbon, -14 9972662
dioxide 179:27972 27295239 anesthesia 166:12 5790 response 113311341135 sensitivity 163:14 *1756 22033779
furnace atomic absorption 2603 3698
carcinogen 462468235031124052 44844658514751725526
\& mu 28384136413941414258 489949174932493351835254
carnitine 170:19
carrying capacity, fitness, and competition 1934
casein 191:18 1869
catabolism, tryptophan 4074
catalase *529 155627253767
catalog 29547905677
catecholamine 173:26 3021
catheptic $\&$ acid phosphatase 181:6
cave-dwelling 839
cell, adult epidermal 534
affinity 2556386449075564
-autonomous 185:25 29894376
blastoderm, number 3871
cerebral ganglion 1688
clones 250539955404
clustering *1860
colony formation 156
culture 174:19 188:20 15892714
\& acetylcholine 385
\& acetylcholinesterase 4298
asynchronous 18373157
axon to myocyte contacts in

187:18

cell fusion in 48824904
cell synchronization 5051
chr changes in 54815482
\& concanavalin 2558
contamination 2504
\& ecdysterone 11554298 5640
embryo 352653
\& fused 2642
\& glycoprotein 38183819 haploid 4433
cell, culture--cont.
heat shocked 1712
\& hnRNA 2673
individual embryo 44124413
pattern in 427
\& pyrimidine dimers 191:1
\& repetitive DNA 411
\& ribosomes 35764291
RNA 8243750
\& RNA polymerase 429
\& time of gene action 2639
\& viruses 180:28 4812358
cycle 88699129002924
cyst 718
death 163:12 181:7 2921246
241629143312
\& B 831116748664867
defective, cultured 963
deformation 2706
degeneration \& morphogenesis 1739
determination 175:8 25913512
differentiation 537 *704 2893 55095598
dispersion in blastoderm 5306
dissociated 428
division 391121631673422
3954440046155282
egg chamber 175:16
embryo 106207129113723 42394526
fine structure, 3D 3573
follicle 28912892
fusion 15132452245425573862 48824904
germ, differentiation 4763
grown in vitro 53
growth 652653159828033016 4997
haplo-X 4376
heat shock, \& mRNA 4066
imaginal, rings of 5587
immune response 5408
inter - -, bridges 4552 communication 1577
interaction 398143504382
intra-, parasite 2694
junctions 2950
l 159:25 687793720
line 4104121499281834613842 437450505411553256945723
\& ecdysone 50655416 embryo 25595050
lineage 3395373538705500 5808
location of ADH 1954
marker mutants 536
membrane 179:14 1086
micromanipulation 2968
number, disc primordial 5650
nurse, in oogenesis 2417
\& organ culture \& endocrinology 2714
organelles, microscopy 3795
organization and pattern 3222
ovarian follicle 35254552
patterns of circadian rhythm 1441
phenotype 3349
pole 193:19 144420635031
pops and karyotype evolution 2453
post-meiotic, \& radiation mu 185:7
primordial disc 3224
proliferation in triploid intersex gonad 2619
rearrangement \& evagination 3499
replication intermediate 4320 reproduction \& cell cycle 2924 retinula 118422723592 salivary gland *639 *6404198 secretory 2886
single, microdissection 2967
size \& number 4574847
somatic 6606613979
stem 4935
subcultures \& virus 2358
surface 531155381838195047 survival in tissue culture 961 962963
synchronization in culture 5051 tetraploid 4597
types in culture 176:11
cellar 211727414189 *4270
cellular periodic systems 2776
central nervous system 2994547 48345071
centrifugation 307533824334 centromere 623156530514582
heterochromatin 249824992500
\& nonrandom disjunction 1097 2753
centrosome \& nucleus 4593 cephalic abnormalities 193:17 cephalo-pharyngial skeleton 5735 cereal fields 3077
cerebral ganglion 16884867
Ceresan M \& mu 2730
cervical connective 173:9694
cesium chloride or sulfate $* 2514$ 3968
cGMP 5761
chaetae (see bristles)
chamber, egg 241635263633
chameleons 1083
Chandipura virus 2203
character, displacement 333*5265
metric, \& assortative mating 78
quantitative 44204422
threshold 4971
chavicol 3889
chemical, control of mites 241
genetics in evolution 4257
mutagenesis 167116721673 1676374250775521
mutagens 160:3 180:21 180:23 2191005318732744769
\& radiation mutagenesis 996 26635753
\& salivary gland chr 1169
\& somatic mu 23962397
waves 5134
chemoreception of sucrose 191:23
hemosensory, mu 24625952596
25974105
pathway 5059
chemotaxis 5724103
chiasma map 3853
chichizima 2051
chimera 177241245556
Chinese hamster 41375255
Chironomus 4596
chitin 4667
chitinase 19744062
Chlorella 5250
chloramphenicol 12903528
chlorinated, phenoxy acids 4823

5018

phenoxyphenols predioxins 2067 water *863
chlorine ion *712
chlormequat 9352297
chloroethylnitrosourea 4732
chloroform resistance 3509
chlorophos \& mu 217
chloroquine \& no mu 1983
choice \& rare males 5472
cholestanol-cholesterol 4713
choline 170:19 169424024445
cholinergic 37745467
cholinesterase 1349
chorion 836233837965809
chromatid, exchange 17842900
50115709
interference 35922874398
mu, X rays, \& colchicine 4434
sister 17844987522952845481
chromatin, acetate and phosphate 3755
assembly \& embryo 4916
associated fibers 189:2 3726
beads 4057
brain cell *5588 *5589
comparisons 2072
crosslinking 41594160
\& DNA *5807
eu- and hetero-, and chr
control 42
fractionation 408
\& gene regulation 1207
\& heat shock 43095375
\& histone 174:1 36094360
48164919 *5262
\& immunology 1517
interphase 2735
lv 173:8 55
main-band and satellite DNA 5117
molecular architecture 5296
\& nonhistones *3428
non-replicating 176:17
polytene *1074
replication, embiyo 5632
satellite *3736 5117
self-adhering 2735
\& SEM 5194
\& specific genes 5821
\& spermatid nucleus 172:29
structure 1130113135303784
$4160437246164649 * 4766$
5117
template active \& not 5091
\& transcription 120721494816
chromatography 192:17 192:20
1945196642365289
chromobiology 3009
chromocenter 173:10 176:17
176:1942297532604931
chromomeres 169:3 189:6 1520
152325542682306830693070
3071307230733987 *4819
chromosome *3416
aberration 230123982748
324939864957
somatic 55523962397 28992901
spontaneous 200020012002
action controlled $* 10352681$
activity \& temp 424
\& allozyme similarity 2217
arms *11 *2809 *2810
arrangement, \& distances
*184:24 *1438
mating, \& selection *3034
of repeated genes 3999
\& sterility 5577
asc vs. FM6 178:28
asynapsis 1406140735704759
attached-X 186:25
autoradiographed 5660
axes 16821690
B \& E *3825
band *1596 3766
\& beads 4057
C \& Q *3737
\& chromomeres 3070
\& complementation 2131
DNA 1909*41995358
differential 48595651
\& genes 100210031004
genes, \& nonessential sequences 4197
\& intragenic deletion 1940
\& M suppression 2971
patterm 3272 *5220
\& phylogeny 2671
\& proteins 4402
\& replication unit 1689
sequences, and genes 2013
\& thymidine 25612562
variation 20275328
behavior 121023484184
\& boron 422423
break, \& caffeine 11471148
167832754946
\& chromatin type 1586
$\&$ dichlorvos 644
\& EMS 179
factor 177:21 5295
\& male recombination 3593
51855540
maternal repair 3275
no, but 1 mu 3186
persistence 1674
-points 177:11 1752
\& pops 5210
\& rejoining 169:9 16784946
repair 5504
\& replication 4203
restitution 3786
somatic, \& ó recombination 4096
spontaneous, \& recombination 3593
\& X rays 32755816
\& BuDR 21663377
C, new iny *2765
changes, spontaneous, in cultures 5482
in CNS 4834
coadaptation in *2937
compound 164:19 2424141958
*2125 2409266927413402
37833880
condensation 1688
conjugation in species hybrids *2344
constraints in CNS 4834
content \& sperm morphology 670671
control of mating *188:6
-cytoplasmic interactions 874
damage \& saccharin 1990
$\&$ DDT 22833438
detachment 1014
differential activity of 921
differential DNA replication 5152
diploid \& polytene, \& rDNA 16991700
disjunction 170:24 177:13 183:2 25157542605710
distributive disjunction 2513558
DNA 9731904397444675069 *5807
replication in culture 3299 3300 sequences 146119412508
\& dosage compensation 1746
dot *2873 5748
drive, pseudo-Y 3772
E *1063
electron microscopy (EM) 2198 219951945341
elimination 4641182
\& enzyme plm *3121 32094152
evolution 193:16 *3261 *3919 4194
exchange, \& duplication 832
\& nondisjunction 3878
\& pairing 14174373
extra-, element 180:10 785
27704872
ribosomal genes 3278
suppressor of co *726
fibrils 172:20 654
fitness 40385744
fluorescence 32212282971 56025614
fragment 169:11 2138
frequency \& karyotypic distance *184:24
function \& structure 1064
\& gene 3877
action and inaction sites 5510
grant, compared *3939
hetero-, C - and N -banding 3931
heterochromatic *319*1942
heterologous pairs \& nondisjunction 3878
\& highly repeated DNA 4967
homologous, \& asynapsis 137
chromosome, homologous, \&
asynapsis--cont.
9513023
\& mutagen 5
pairing *3167
regulation 5392
imprinting 5392
inactivation 99
individuality during Interphase 159:19
integration of rDNA 5332
interband transcription 5131 5132
inter-, arrangement *3450
effect 164:18 174:20 165 *1810 *2231 24383559 376852945788
interchange 183:2 1900 4548
interphase, ultrastructure 2946
intra-, effects 164:18 2560
inv plm *1437 3409
iso-164:6 287
isogenic 2589
joining 993
labelling 181:4 181:5
lampbrush 702*704*1035 1687 26813780
late replicating regions *3564 *3565 *3566 4777
lateral asymmetry 5088
length \& aneuploidy 593
lesions in fertilized egg 5304
1, allelism 189:17*2188*2189
in pops $180: 11 * 3387$
linear integrity 189:1
loci pattern 3775
locus, for constitutive hetero-
chromatin *3337*3338
of highly repeated DNA 5692
loop *704 *1035 * 4185
loss, \& chemicals 193:20 759 76012033927
paternal 97125427843078 44964999
radiation 37483927
\& spermiogenesis 670671
luminescence 51405141
lv 3271*5599
map *1042
marker, \& viability 4399
metabolism in embryo 4817
metaphase 172:28 2951562 $2458 * 3737 * 5281$
micro- 5827a
$\begin{array}{lll}\text { mitotic } & 159: 20 & 189: 310411863\end{array}$
*2502 2946411749865614
\& moderately repetitive DNA 4234
molecular face of 5689
morphism \& altitude *1467
morphology, alteration *4071
$\mathrm{mu}, \&$ male meiosis 5313 \& radiation 187:23 5293
repair \& caffeine 4946
spontaneous 32503251
mutagen-treated 5
neuroblast $641 * 3338$
new types, cytogenetics 3881
nondisjunction 177:13
nonessential sequences 2013
nonhistone protein 44684469 4470
nonhomologs, associated 183:29 *1410 1523
pairing 2632646741417 22212222222334024373
one gene- one band 3746 oocyte, \& X rays $178: 20$ organization 394547495598
pairing 171:20 193:11 8321297
2304348135585669
distributively 1957
ectopic 37164196
\& t 222122222223
partial loss, by X rays 2352
patterns in species *3825
\& pesticide 367
photomap *2984
phylogeny *2009 4755
polymorphism *162:2 *162:3
*162:23 * $163: 5$ *166:22 *184:22
*162 *260 *336 *369 *520 *804
*1341 *1342 *1472 *1614*1656
1917 *2683*2942*4301*5023
*5344*5455
adaptive *190:10 *1823
\& altitude *1490
ancient 163:25 2214
\& biotic residues *2175
\& ecology *5444
\& evolution 5702
\& female receptivity *5326 *5327
\& female sterility 3672
\& fitness *1454
\& geography *2174
\& heterochromatin 21085008
interspecific 1949
maintenance *181:20
in Mediterranean Islands *5703
\& nat pops *1898*3503 43834384
reversed *4056
\& temp *488*489*490 *5326 *5327
\& time 167:16 *3902
polytene 177:14
\& actinomycin 3727
asynapsis map 3936
bands 2013
breaksites 4203
chromomeres 169:3
codification 193:14
cytology 4437
\& DNA organization 389
\& DNA replication *639 *640 833
DNA sequences 3578
DNA synthesis in 181:2 192:8
\& dosage compensation *164:13 164:14
\& ecdysone 74
function 2023
immunofluorescence 29
inv 2672
lv, cultivated in adult 3271
N -banding 4596
-nonpolytene transition zone 3987
organization 42024671
pairing 3732
photographed 3745
physiology 1073
\& proteln 181:4 181:5*452 20552056
puffs 4403
(see chromosome, puff)
\& puromycin 4377
region 20 genes 186:26
regulation of 42
replication 364944794480 4482
RNA polymerase 3635
\& RNA synthesis 178:10 2666
\& sodium arsenate 425
structure \& function 2026
synapsis 3479
transcription 43285596
transformed 169:28
pronuclear structure 4664
proteins 184:14 301302451
*452 *2081 226234224400
463251245125
in situ 304530463047
localized 205520564626
puff 161:4 *164:13 164:14 *170:26
172:17*175:26 186:15 186:28
7576133 *382 423454858
*938*940*1187*1188 2330

29075547
age, \& BuDR *1411*4880 *4995
\& anaerobism 2028
\& arsenite *5260
\& boron 1474
\& cadmium 1686
\& cAMP 3484
\& circadian rhythm 1250
\& deletion 2275
\& development *2910
\& ecdysone 159:26 160:1
*180:22 *443 14952957 *3475
\& ecdysterone *210
in fat body *4819
in female 138
\& fluorouracil 3465
\& glutamic acid 5461
in Hawaii *2535
\& heat 1495458049965095 5096
homologous, in different species *183:28*184:1 184:2
induction 3355
\& ions 2091
\& lv enzyme 2074
lv and prepu 5462
\& lv saliva 47264727
\& mitochondria 3050
\& nonhistone protein *4282
\& nuclear digestion 4851
pattern 188:278065351 54625547 *5700
\& endocrines 47304731
in salivary gland 2022 2023
phenocopied 1553
\& polyribosomes 11443474
\& protein synthesis 1808 26222679
respiration-dependent 2955
\& RNA polymerase 4580
\& RNA synthesis 2133 *2153
\& RNP *2309
size 139140
X, cytogenetics 5365
rearrangements, in cultured cell
line 412
eu-heterochromatin 42
\& fertilization 3749
\& fertility factors 4287
\& mating *1625
mechanism 41955827
in oocytes 183:1
\& radiation 180:14 370
\& radioresistance *3749
\& repetitive DNA 993
replication \& morphology 3199
\& sperm 374947724773
\& storage effect 4017
\& transcription 1294
of visible mu 3689
region, dose-sensitive 2306
triple-letbal 379
repeats 193:16 13582011
repetitive DNA location 411
replacement in pops 169:20 496
497
replication 2814447948965602
ring 189:13 10253237483797
4629
variability 173417351736 17371738
\& RNA hybridization 5188
\& RNA polymerase 39345584
RNA synthesis 187:14 1725
rotational constraints 5750
salivary gland *160:15 167:22
170:27 170:30 *172:9 *182:11
466467
\& antibody assay $173: 15$
\& boron 422423
\& breaks 644
\& chemicals 1169
compared *193:10
fibrils 172:20 189:2*189:4 654
\& high temp *2578
\& in situ hybrid *39
"native" 4627
puffs 159:26 160:1 185:6 75 76806
(see chromosome, puff
\& rapidly labeled proteins 2774
RNA synthesis 179:12
5S rRNA locus 189:7
\& transformation 507
\& uridine 202420252580
segments 2011222754135428
segregation 183:3 14793325
50135020
semil, in nat pops 180:11
sex, activation 1037
chromatin \& histones 174:1
\& dosage compensation 5769
loss in oocyte 163:11
\& meiotic drive 574
mitotic recombination in heterochromatin 5045
mutability and sex type 62
nondisjunction and loss 62
pairing 1172
system 13811382
t \& speciation 4109
\& sex differentiation 1192
similarities \& allozymes 260261
somatic $508 * 3567$
spatial organization, \& dysgenesis 4076
species *2651
spermatogonia 7
squashed 899
stability 99721663377
staining 173:12 7438972676
*41074869
strandedness of mitotic 1863
structure 189:1 189:2 189:3
*189:4 189:5 189:6 189:7 328
135951065602
\& EM 1509
\& function 17613378
\& functional unit 1379
\& gene function 703
histones, \& gene activity 25853676
\& r and non-rDNA 4609
substitutions 253133944267 5711
survival value *3168
synapsis \& EDTA 5108
terminal asynapsis 3936
termini 1406
type 152015233987
\& transmutation 997
types in cages *1840
ultrastructure 16873766
unineme 175:2
variability $325 * 401 * 23802911$
of wild pops 1716
chronometer, circadian 193:1
chrysalis 177:28 952
chymotrypsin inhibitor 843
cinematography 176:8 5635
circadian, clocks 193:1 2903
control \& ecdysone *443
oscillator transplanted 4602
pacemakers 4854
rhythm (see rhythm, circadian)
systems \& membranes 2836
circle 15814067
circuit, neural 1994
circular dichroism *616 2086 5524a
cis-trans 394743875707
cistron 190:7 190:8*942 12941818
279334713488379744594460
Citrex S-5 2631
classification, ecological 4035
cleaning behavior 105
cleavage 15601561328232833284 4999
climate *837*1905 2487
cline 1317393245055310 allozyme 41335794
inv, in pops *3470 3820
latitudinal 3493296
\& mating discrimination 231232
clock, biological 196919711972
19734947
circadian 2903
mutants 2181
-shops \& phase resetting 3234
clone, analysis 322332243874 53555695
\& antisera 4299
cell 250533955404
cuticle 3954
\& dev 19383049 *4510
\& ecdysterone-induced proteins 2143
\& head dev 4262
\& histones 2572
hybrid plasmid 36214247
\& mu 4220
in nervous system 4432
protein, \& ecdysone 33564409
recombinant 5558
segregation, position, \&
ommatidia 4363
selection *3306
\& tergite dev 4425
X-ray sensitivity 3970
cloned DNA 638225224573378 346940524308436745554687 510052775317
cloned genes 594
cloning 156157
technique 2740
clues, beh, for oviposition 5057
coadaptation *189:27 8192855
*2937 32123582
Coccidiascus 2694
code, binary epigenetic 8522574 36634695
of mRNA 4742
sequence 39995323
coefficient of variation 44205451
coenzyme 607 *4339 *5390
coexistence, competitive 160:20 5016
cofactor \& subunit binding 4682
cohabitation, survival, \& $\mathrm{O}_{2} 5042$
coiling during spermiogenesis 190
coincidence 623
colcemid 190:15 1833
colchicine 24594434
cold-sensitive mu 169:16 179:29 189:25 1128
cold shock 8131244
collecting \& day hours 3345
colonization $* 3208 * 4148 * 4149$
colony 6382818
color 159:14*186:11*39105102
5195 *5800
vision 187:5 187:6 24653816 4677
Colwell-Futuyma method 187:10
combination fraction 4344
combinational control 38644907
communal display *2964
communication, intercellular 1577
community 34014132959
compartments 329121523882635 330736633713373437353850 403946954696489051525215 5393a 5604
disc 238823894832
competence \& discs 180:12 187:4
competition 681*8471468*1469
*1471 3180
\& biogeography *2533
chr 178:28
\& coexistence 160:20 1468
communities 582
courtship 5639
\& dev 1351
ecological, \& rare types 2890
environment, \& variation 5014
\& fitness *181:20 1934
\& genetic variation 5699
\& induced mu 1071
interspecies 180:26 189:21
*190:12 1288130517771873
19012003280444954892 4893
intra-species 1901
\& inv plm 5016
lv 9484359
\& maternal effect 178:27
\& plant-specific species 4831
preadult 163:5 163:6 163:7
\& reproductive isolation 2696
sexual 191:24 1866
sperm 21605456
strain, \& temp *1826
\& X arrangement *1826
complement, micro-, fixation 3427
complementary l system 2449
complementation 166:25 173:2 181:24
184:4 187:30 188:1 65110381053
1054141639574743
\& band 2131
ecological 2959
interallelic 816
124992669
negrative 5023941
\& W 28
\& XDH 3529
complex loci as genetic unit 3647
compound autosomes 496497498 3608
computer 641963245129433036 3489
concanavalin 2454255725585047
concrements *713*1975
condiment \& mu 42204221
conditional heterosis 870
conditional N l 5743
conditionally expressed mu 4075
conditional beh 1459
conditioning 86238094130
conductance \& light 5292
conduction, nerve 5302
congealing, genome 4612
conjugation 169:3 463*465 4759 5246
connective fibers, cervical 694
consanguinity 161:10 164
conservation, evolutionary, \&
repeated DNA 4967
conservation of sequences 2406
consistency, lateral 5471
constitutive heterochromatin *3337 *3338
contamination 250425063693
contractile proteins 2268
control, circuits for determination 174:27 174:28
combinational 3864
element 22484387
gene 191:11 191:12 4441
of gene action 387
of mutagenesis 552355245525
of sex determination 5641
convergent evolution 3915
conversion 6233487
proteolytic 4340
copper-accumulating granules 5197
copulation 1951961973101330
*1377 *4244 5430
cordycepin 5633
cornea 5170
corpus allatum 4603
correlation \& 2-trait selection 188:3 188:4
cosmetics 5526
cosmic rays 171:5
cosmopolitan *442349635687
Cothonaspis 340043695407
countercurrent-defective mu 4838
coupling, electrical 4994
courtship 161:1 31511031708

*3057 5259

\& audition 31913192
frequency, diurnal *3239
latency, male 4462
\& light *1398
male 23295534
\& mating 3018
\& mosaics 25113611
\& paragonia 163:12
pattern \& evolution *5157
\& pheromone 4255
processing 165:7 165:8 165:9
song 1890 *2518 31913392 44835258
sounds *602*1378 25643617
male *2225*2766*3826
stimuli 2139
success \& mating experience 5639
\& vibration 1135
\& vision 163:13*3506
wings vs. pheromones 2098
CNBr 192:17
CNU-ethanol \& mu 3695
coxal chaetae 46054848
crab 164:1*5261
cricket 4992
critical period, dev 1768
croaking 1907
crop yield 250
cross, -breeding 5431394
intra- \& interspecies *4754
\& ovariole number 1795
-reaction \& histones 3393
reciprocal 53135314
crossability, hybrid 26605273
of species 24782479
crossing, interlinear 1683
crossing over, \& aflatoxin 2159
2241
\& c(3)G 3630
\& caffeine 168:4 444 2008
\& chr structure \& function 1761
\& compound autosomes 739
\& duplication 4345
\& electrostatic \& magnetic fields 390
E EMS 167:25 436
epistasis, \& inv *1703
fecundity \& sweetners 2239
in female 192:5 116212813459
heat-induced 166:21
in male 167:25*180:25 192:1
*726 11591160 * 1220 * 1222
*1223 *1224 1666 *4891 *4897
meiotic 184:93452
mitotic, \& male recombination 5185
\& MMS 233
\& MSG 273274275
\& mutability 5246
\& nitrosomethylurea 1247
\& nitroso- N -dimethylurea 3955
\& nondisjunction 15793002 *3557 5093
in pops *180:25
\& raying 180:3 115911601162
157930025093
reduced 2
SD, \&fertility 3604
\& selection 2
\& selenocystine 19
\& sodium monohydrogen arsenate 19
somatic 43653165473
spanning centromere of III 3051
in species hybrid *2345*2346
\& $t 37904828$
\& temp 2761414
unequal 4504
\& urethane 19
\& wis 5538
X-Y 185:26
IV \& recombination-defective mu 5086
crosslinking 4033415941604616 *4766
cross-reacting material 56475811 5812
crowding 164:24108
crystal 22783576
culling, automatic 5797
culture, cell (see cell culture)
conditions 173:5 2349
ecdysone effects on 5367
\& magnetic field 2720
mass, of embryo cells 4443
medium 159:14 191:10
optimal 191:16 191:17 191:18
organ 958271428912892
suspension 3843
transplantable 1661
cuticle 7291102142016932004
206622932571271531783264
363239544513466754025697
cyanazine 4901
cyanogen bromide 1945
cyclamate \& mu 9089091887
cycle, geophysical 2507
glycerophosphate 4300
pentose 4591
AMP 380381184418452307
firing sequences 4607
nucleotide phosphodiesterase
25922593
processes 1156
cycloheximide *181:8 374*640
cyclophosphamide \& mu 3186
cysts *506 7182367
cytochemistry, protein 171:1*4278
of chr 322
of nucleic acids 170:26 170:27 170:30
of ovarian chambers 3526
RNA *4279
cytochlasin B 1086
cytochrome 4258
cytogenetics *160:10 160:14 374
1055 *1625 2579388142044697
5365
of acid phosphatase 38525656
of X region 244624472448
cytokinesis 4245
cytology, \& alkylation 3909
of chr replication 4896
comparative 805
of crossovers 115911601162
of deficiencies 853
\& DNA hybridization 2875
of female meiosis 34453446
map of asynapsis 3936
\& maternal effect 2931
of nucleic acid hybridization 1359
polytene chr 4437
\& sexual isolation *4147
of transformation 507
cytoplasm, -chr interactions 874
continuity between cells 2962
egg polar, \& UV 2431
fluorescence 5037
-gene interaction 3505
genetics 2085
GPDH *2824
injury photoreactivated 3753
\& malate dehydrogenase $* 1264$
microtubules 19532433

3226

organization of egg 189:29
polar 620
\& reciprocal cross 5313
\& RNA 2678375047794781
$47824803 * 4805$
\& sterility 4517
transplanted 131513162521 33743620
cytosolic enzyme 2992

2-4-D 5024
daily activity \& microdistribution 1815
damage, lipid, \& aging 1617
dark 159:16 162:6 22127713544
Darwinian fitness 4585
daytime *1056 3345
DDT 29034381822823438
death 1174153524162626 adult 166:12 4689 cell 2416291448664867 time of 47304731
decades of genetic change *50
decarboxylases \& polyamines 2205
decomposition of eye pigment 1843
defect, abdominal \& cautery 2165
deficiency ${ }^{*} 167: 5$ 181:23 853876
151923952499257932423744
398447054920
dietary 24023969
enzyme 39845252
dehydrogenases *1373 1609
(see specific dehydrogenases)
delay shift in emergence *3691
delayed-recovery in pop cage 3779
deletions 185:27 23319402275
delta 180:10 78478527704872
deme, desert 3386
demilitarized zone 56055606
demography *159:21 4411
denaturation 1659338933904033 52245398
Dendrobates 1907
density 180:26 180:27 132 *441 *2129 2324344943135201
denticle belts 5257
deoxyguanosine 5307
deoxyribonuclease 162:19 2437
2864288448515464
deoxy ribonucleic acid (DNA)
\& acetamide 830
acid treated 1603
actin-related 5217
in active and inactive regions *170:26
alkylation 363646754676
\& band 1909 *2514 5117
base analog \& dev 39825048
base composition 164:7
binding 8665276
biochemical adaptation 4714
bromouracil in 2966
calf thymus 13242864
chimeric 1772
chromomere 3071
\& chr $97319042508 * 3974$ *5806 replication 32993300 ribosomal genes free of 4211 4212
cleavage 663
cloned 594638245725723378 346938274082510052775317
coding sequences 5323
content 10152064 *3298
crosslinking $4372 * 47665117$
cyclic synthesis 1538
damage \& repair 4842
denaturation 33893390
-dependent RNA polymerase 429 24354683
distribution, spermatid 3586
duplex \& circular dichroism 2086
EcoR1-, fragment 4308
ethylated 159:1
eukaryotic fragment in plasmid 4082
exogenous, \& dominant 1 mu 3293
folded rings 2516
fractionation 6750035358
fragments 177:3 245734694654
heat-shock 448150995479
highly repeated 242233844242 434849675692
histone 13604956
homologies 2652664481
hybridization $3719302875 * 3091$
31024001402340935069
incorporation into, in B 4122
-induced, mu 171:2 3408 transformation 169:28
injected 57137604795
insertion mu 45774578
inverted repeat sequences 4261
\& isotope incorporation 174:18
\& l mu 1531
magnification \& 1 bb 2801
metabolism $1059 \overline{33} 23$
methylase 5785
mitochondrial 163:9 183:26 856 224234485725
evolution 20193390
in genus 23552356
heteroduplex *3267
heterogeneity 35334490
mapped 3694
and mitochondrial RNA 4720
replication 45585514
\& restriction enzymes 5484
transcription 4328
molecules, chr sized $175: 2$
nematode 4273
nonrepetitive 173:12 10882280 23863432
nonribosomal 2579
non-satellite 685
organization 170:29 3895278
origin \& mutagen 3454
patterns in discs 170:28
poly A in 4233
polymerase 179:17 14603472 4342
embryo 257043404341
polypyrimidine 160227723093
premeiotic synthesis 2292
-protein binding 5277
\& psoralin 3033
reassociation *2269
recombinant 458652795558
renaturation 685
repair 28314920511253895752
repeated *173:10 *173:11 183:8
*300 411993108814611581
21842185228023862882
34323481 *5034 *5035 5280
moderately 4234
replication 181182466467
*2232 2233 *3265 *3266
asynchronous *2231
in bands \& satellites *4199
control 4377
\& dev anomalies in hybrid 2744
differential 181:2 181:5 3810 40585152
\& dosage compensation 164:14 4376
in eggs 193:4
inhibited 4375
\& mu 117
in oocyte 626629
origins 2154
patterns 172:23 174:21 4243 443649
\& polytene chr *639 *640833
in puffs 164:14
\& recombination 171:22
\& repair 202
sites 176:20
\& X rays 176:23
restrictionsites 1089
ribosomal (r) 1869429432790
357941564429 *5129
\& bb 1106 *3719 *4015
chr integration 5332
circular 35494535
cloned 430845554687
in compound chr 1958
content \& use 4073
deficiency 188:5 87616231624
disproportionate replication 39475707
enrichment 3794
excess testes 4799
\& gene interruptions 4268
growth \& dev 27892791
heterogeneity 3457
independent replication 2954
\& magnification 185:26 186
6731084178017842884 2965457547524826
missing 167:17
multiple genes for 16971698 16991700
\& mu 468
nonfunctional 1958
non-inserted, free, or unintegrated 44285333 5474
\& non-r structure 4609
\& position effect suppression 3950.
\& protein synthesis 164:23
redundancy 23915278
replication 1491 *1492 2334 *3718
\& ring chr 3797
sequences 46875359
\& spermiogenesis 175:7
transcription 23342430 33964810
\& unequal co 4504
unusual sequence 3645
5S *38 30430514421443 *3232 *3968 *5035 5148 5747
$5.8 S$ \& 2S 46864687
18S 46865747
$26 S 4686$
28S 5747
in X or Y 192:30 *954 *955 *956 *957 3120
rings 758
\& RNA, organelle, \& secretion
4945
satellite 161:21 165:15 173181
*318 *319 *458 459 *530 *616
*1596 *2269 *3091 *5035
5524a
adult \& embryo 2935
\& band 5117
\& chromatin *4766 *5262
cloned 22124367
evolution 4242
gene near 5406
\& heterochromatin *4319 43665823
\& histone *4319 *5262 *5380
location *5429
metaphase *5806
polytene 4269
protein-binding 4241
replication *4199
in species 5358
underreplicated *1493*1494 4168
variation 3331
IV 40334472
sequence 459108814612280
403343484349
\& chromatin 2735
\& fragments 4654
homology 5280
inverted \& repeated 4261
\& late replication 4482
mapping 1941
middle repetitive 5280
organization 4424
\& polyteny 3578
repetitive or not 3432
simple 6851064
telomere 5068
single-copy, hybridization 4023
small circular 30844067
somatic, metabolism 21093323
superhelical 5725
synthesis, asynchronous 834 \& drugs 858
in eye discs 3169
in isolated nuclei *162:20
\& lv brain *992
premeiotic 166:21 362
random deviations in 834
replication subunit 3367
\& sex 659
\& starvation 192:8 19281929
in vitellin nuclei 5403
\& X 659
transcribed spacer 4686
transfer (t) 2298356144564467
473853175468
\& transformation 23682407
\& transmutation 997
variation in dev 1978
viruses and mu 25
4 S , cloned 5100
deoxyribonucleotides 2128
desalination, water 5121
description, D., in $1754 \quad 38583859$
desiccation 11421727
desert 820 *2188 *2189 *2549 3386

> *3387
detergent 5334
determination 8524542
cell 175:8 25913850
control circuits 174:27 174:28 2574
disc 5581214351235185508
early 170:22 1497239040225103
germ plasm 37884824
homoeosis, \& compartment 3850
\& pattern formation 4019
\& polygenes 36024630
preblastoderm 169:15
\& replicative patterning 3225
sex 336241245641
stepwise 3518
thorax 4224
trans- 177:5 116116475531
detoxification \& ADH 4417
development 6327351330
abnormalities 179329943269
ac-sc 35135501
\& acid phosphatase 5826
\& actin 5768
\& adenylic nucleotides 172:5 172:6
adult abdomen 172:3
\& aging 1598
\& aldehyde oxidase 2179
\& amylase 2044
anomalous, in hybrid 27443810
\& antioxidant 3032
arrest reversed 3761
asymmetry in 203
\& bithorax 2433848
book 187:1
\& brain cells 5588
\& cadmium 1686
\& caffeine 3904
\& CAMP 3812307
\& cell growth 1598
\& cell lethal 159:25
\& chitinase 1974
\& chromatin 3609
\& chr nonhomologous association
*183:29 *1410
\& chr substitution 3394
\& cinnamon 3381
clone $3049 * 4510$
\& compartments 32923893307
373548325182
\& competition 1351
of compound eye 5404
control of $160: 11$
\& cosmic rays 171:5
critical period 17684077
curves 1991
cuticle 1693
\& deoxyribonuclease 5464
dise 171:8 182:3 182:4 186:9
187:315355525545841422
$3322 * 4510483048435793$
development, disc--cont
B eye 1165116611671168 27594866
\& mu 3837402840304286 4902511457405742
\& DNA, base analog 39825048 polymerase 14603472 variation 1978
\& drosopterin 5478
duration of 178:4 10451046 10475528
early 171:11 179:17601 1938 29363268
\& ecdysone *4464 4633*4737 4834
eclosion, longevity \& noise 2869
\& ecology 2404
egg 183:10 187:27
embryo 186:18 186:23 165198199 279333763422430744005227 5372537353745493
\& endocrines 5763
\& environment 167:8
\& enzymes 192:22 192:23 386 568 *1373 *1374 2100
\& esterases *1575 2623
eye facet 1768
fat body 26182619
of female reproductive system 175:12 175:16
focus 3229
\& fused 4179
gamma rays, viability 3845
\& gene action pattern 1802
gene expression 96426402641
\& genetic load 3477
genetics 167:21 174:13 174:14 25018513517360342634631
of genital disc 1773
\& glue proteins 3341
\& gluful-2 1987
\& Glyful-1 3237
growth \& rDNA 27892791
\& GTP cyclohydrolase 5478
gynander 8002534
\& haltere 3031
head 42625355
\& hemolymph protein 5054
\& hexokinases 2119
\& histoblasts 4821
\& histones 11103609
\& homoeosis 28002871
homeostasis 185:10
homology of wing $\&$ haltere dises 182:19
\& hormones 167:6 179:1
\& hydroxykynurenine 4642
\& hydroxyproline 1477
\& immunochemistry 4699
\& immunoelectrophoresis 3655
of interspecific hybrids *162:24
\& ionizing radiation 2032
in vitro 428
\& 1 Z 161:9
\& kojic acid 4442
\& kynurenine hydroxylase 1758
of leg 1433939
length of 2299
light, \& noise 22505420
1v 311657165717
of mating propensity *1996
\& methyl mercury 1892
of microchaetes 2253
\& mitochondria 31165039
\& mosaics 171:9 7791421
\& mu 3602503326940034105 415844554969 *5161 (see development, disc, $\underline{\underline{\alpha}} \mathrm{mu}$

\& N 1618

\& neoplasms 553
of neuron connections 4863
\& ommochrome 1542
ommatidial 4363
optic dises \& actinomycin 5251
ovary 14485801
\& periplasm 2164
\& phosphatase 181:6
\& photoperiodism 3171
\& polyclines 329
\& polygene number 5207
\& polyol 177
\& pop flexibility 4814
\& positional information 3179 4818
pastembryonic 23074633
potential leg disc cells 5179 5181
program for 170:4 518
\& protein patterns 5350
\& protein synthesis 171:11 5768
\& puffs *2910
pu 4717
\& pyrimidines 4852
rate *163:5 1233123418751891 *1466 35983925
retina 39613962
\& ribosomal proteins 980981
\& RNA, t 192:24 192:25
\& salivary gland 26182619 *4464
\& satellite DNA 181
\& selection 20312331234
of sensory bristle 2915
sex dimorphism 4794
\& sex-specific 12858
\& sorbitol dehydrogenase 176
species hybrid *3330 4304
of sperm 875
stage, \& 5 S rRNA sequence 3348
\& ring chr 1734
stem cells \& homeostasis 4935
\& synthetic 1 181:21 4594
systems 165:14
\& 2, 4,5-T ester 2290
\& temp 164:26 164:27 164:28 165:3987 208944554814
low 306307308
tergite, \& clones 4425
\& thymidylate synthetase 255
time 2853303233945420
\& transcription *4737
\& transplantation 171:8
\& tryptophan 4074
$\&$ tubulin 4576
\& tumorous head 43335387
of Tyrproless 748
\& uricase 170:3
visual system 4858
\& weightlessness 4875
wing 53565565623222772 299830314158
wingless 3849
\& xanthommatin 2607
\& XDH 4942
X rays \& embryo 4336
\& III 14003
\& III proximal segments 5128
deuterium 1402145215571880 3639
Dexon \& mu 5062
dextro-amphetamine sulfate 1760
diapause 168:14 839 *977 *1068
*1069 2404 *3104 3171 *3684
*4808 526656205628 *5629
diazomethane \& mu 1473
dicephalic embryo 3763
dichloroethane 4938
dichlorvos 167:246445585
dictionary 885
dicyandiamide, puffing, \&
transcription 172:17
dielectric waveguide effects 4489
diepoxybutane 4436
diet 31720812402301539694647 4892
\& carbohydrate 29314172
vitamin A, \& vision 30863087
diethyl sulfate 179:22 13835662
differentiation 706 *710
\& active transport 3830
allozyme *2548
bracts 190:5
cell 415537 *704 9915500 55095598
\& chimeras 5556
dise 187:4 1181 1239 *1541
15983016302938293830
51115565
\& ecdysone 118112393830
embryo 45255401
ethological *170:7
\& fluorouracil 2539
genetic 181:2 190:13 *193:23
*86 *87 892099 *3975
genital organs 958
\& geographical pops *188:17
310831093110
germ, \& gene interaction 4622
\& growth 3016
haltere 182:20 13381867
induced gene pool 4226
\& insulin 1604
interpop vs. interspecific *524
in vitro *169:27 4154281627
38294448
leg \& win 3829
micro- *176:1 1143
microgeographical *3121
molecular 1732
muscle 23214448
myoblast 45255495
neuroblast 187:17
\& nuclear apparatus 4945
ovary 3458864763
photobehavioral 1527 *1528
*1529
\& protein 2893302946325111
puff *4880 *4995
quantitative analysis *4085
\& rDNA lack 167:17
reproductive *87
in salivary gland 3341
sex, and chr 1192
\& sibling species 178:26
of sister chromatids 5284
\& sodium pump 2769
\& speclation 190:13*193:23 892099
temp-sensitive 5400
testes *169:27
\& yolk 172:21
diffusion model \& pattern 4012
digestion 166:12 174:2 4851
digging, lv 45594560
dihydrograyantoxin 3088
dihydroneopterin triphosphate 5318
dihydroorotase 4491
dihydropteridine derivative 1771
dihydropyridine 6072703
diidrobiopterine 182:27
dill plants 1033
dimers 191:1 *298
dimethyl-N-nitrosourea 4465
dimethylsulfoxide 187:29 12021249 38464619
$4^{\text {' }}$ (3, 3-dimethyl-1-triazeno)
acetanilide 356
dimethyltyrosine 229
dimorphism *3910 4794
dinactin 1495
dinitrophenol 4547901495
dioxins 5018
dipeptidase 5795
diphenyloxidase 2920
diploid, bisexual, selection \& mu
172:24
cells cultured 481
\& dosage compensation 1104
eggs 34024747
\& GPDH 1008
intersex 2351
speciation of 2215
\& free ribosomal genes 4212
tissue \& extrachr ribosomal
genes 3278
Dipyridyl 1476
disc 170:23 215292516517988
abnormal, \& mu 4969
aging and cell growth 1598
\& aldehyde oxidase 174:12 2408 37135587
antennal 171:9 584
asymmetrical \& symmetrical, \& patterns 3385
B 174:17 2759316848665564 5787
\& blastoderm cell number 3871
cell, death \& gene action in 181:7 division 39544615
in vitro 428
primordial 3224
remain determined 3512
clonal analysis 3874
competence 180:12 187:4
cultured 177:5 1645
\& cuticle 5402
defect \& tumorous head 1283
determination 55835185508
dev 174:14 182:3 182:4 186:9
14224830484357405742
\& actinomycin 5251
control of 187:31
\& mu 3837402840304286 49025114
differentiation *1541
\& active transport 3830
\& ecdysone 118112393830 5565
\& protein pattern 30295111
\& DNA 170:28 1059
dorsal mesothoracic 182:20 1214 2635
dorsal metathoracic 13381867
duplication 21862187
\& ecdysone 181:22 188:8 193:18 16452015201621572375 2638337238283829
\& ecdysterone 48445828
electrophoresis 159:3
endoevagination 5530
evagination 179:14 1086 1087 235927063499350045125492 5635
eye 176:12 176:13 97127593168 52515564556557875793 \& aldehyde oxidase 3715 -antennal 5525553994 cell affinities 2556 \& DNA synthesis 3169 mosaics \& MMS 4885
\& tumorous-head 4740
freeze conserved 163:2
genital 989177347945737
gonadal, transplanted *5073
growth 3016344444584821
haltere 182:19 182:22 18673714
head 29433954
\& homoeosis 5335
\& hormones 164:17 2834
interaction in regeneration 5286
in vitro 170:5 3793
irradiated, behavior of 180:24
leg 10862450379143825635 5736
reaggregates 517851795180 5181
\& lethal polyploid *3622
mass isolated 181:22
\& mermithids 4176
metamorphosis in vitro 2331
morphogenesis 4528
\& mu 124657405742
\& nucleotide metabolism 2583
\& patterns 184:11 24842485 29173049395444585178 517951805181
peptide elongation \& ecdysone 4741
\& poly A 1058
primordial cell number 5650
proliferation 1647
protein synthesis 26383791
protein sythesis 2638 3791
disc--cont.
regeneration 187:321862187 2484248529505286
ribosomal proteins 4493
RNA 33723791
\& RNA polymerase 2834
symmetrical \& not 182:4 4351
tergum, \& clone dev *4510
transcription 181:22 2157
transdetermination 5582450
438251155178517951805181
transplantation and dev 171:8
wing 182:19 2950371344584615 484450325635
compartments 238823894832 dev 5353322
differentiation 38283829
wound healing 29505032
\& X rays 4615
discrimination 2312321245
disease 168:153079
disjunction 163:23 25127222723
nonrandom 1096109727102713
dispersal 819 *820 8218221500
28272974386638673996
active 397
cell, in blastoderm 5306
density *2129 5201
\& desert adaptation *2549
\& distance 5201
\& ecology 173:7
experiments 4832
\& fitness 12664868
\& gene frequencies 1265
\& genetic heterogeneity 1267
\& immigration 2069
in nat pops 1816
\& pop density 12672825
rate *405*1428*1429
\& spatial distribution 5487
\& temp 2761276238244868
displacement, character *5265
display 195 *2964
disruptive selection 171:4 1103991 5022
dissection, mutational 4028 dissociation of disc cells 3512
distamycin A 5358
distance 68943305201
distribution $881 * 137031053682$
$388448865459 * 5655$
\& dispersal 21295487
micro- 1814181621292141 42965775
spatial $1275 * 545854595487$
\& stream 214133544296
distributive, disjunction 163:23
pairing 164:3 192:29 19573558
disulfon 1462
diurnal behavior 1393 *3239
divergence, DNA \& chr 3974
evolutionary pop *4850
phenotypic, \& selection 32
\& quantitative inheritance 1355
diversity, components of 33
genetic \& environmental 1183
of RNA sequences 191:5
Dobzhansky, Th. 3001. 33193321 51535469
domestic species 16353345
dominance 171472473511614662
11231354 *1471 *2779 28723207 3661
nucleolar 34714460
over- 1962 *3168 5357
partial 40895771
dominant, behavior character *1713 gene reversion 377
dopa 16211622
carboxylase 16215301
decarboxylase 188:2730 1622
169532413242417543955820
methyl- 16931695
dopamine 179:16 36223799
doraocentral macrochaetes 1384
dosage compensation *159:5 * $160: 15$
*167:23 169:6 176:23 178:11
178:12 178:14 1066110413341746
*2809 28103362376943764806 5713
\& bristle polygenes 2371
evolution *10 5177
\& gene competition 1593
\& G6PD 179:20
incomplete 5769
\& mitomycin C 181:3
\& mutants 162:18 1812
\& puffs *164:13 164:14
\& t to X 2978
\& transcription 5060
in triploids 179:20 179:21
dosage, effect \& sigma 5665
\& nondisjunction 1012
\& tumors 433
dose-sensitive chr region 2306
dosimetry of mutagens 32803281 4769
double matings 2929
DRB, temp, \& RNA synthesis *4167
drift 1662111401647844944 5646
drive, meiotic (see meiotic drive)
drosopterin 187:10 $17552876 \quad 2877$ $2980409252145464 a 54785643$
drugs 49275585821724734
\& mu 14752475349439124206 5038
dryness, longevity, \& geotaxis 2934
Dubinin, V. B. 1626
Duda, O. *3334
duplication 5389461711
\& abnormal bebavior 1210
antennae 559
band, \& M suppression 2971
chr segments 193:16
in disc 215186721862187
DNA, evolution 5349
\& evolution 3988
\& gamma rays 180:4
gene, value 35213781
\& homoeotic mu 1591
\& leg shaking 192:31
long, breakpoints 1752
mirror-image, of orbit 3329
multiple tandem 14801481
program, \& evolution 4338
\& selection 2542
\& 5S rRNA 181:23
tandem 174:20 174:21 8321480 14812542256043454680 4793
wing 19503223
"Durchbrenner" 1861
dusk 2797
dusts *334 1227
dyad, asymmetric 193:22 27112712
dye *81 5139
hair, \& mu 33655248
dynamogenic effect of ocelli 191:24
dysgenesis, gonadal 1251
hybrid 30993679407647094710
ecdysone 176:10 *235 652846
23084180
\& acetylcholinesterase 3407
active transport 3830
analogs 34834492
beta $164: 17$ *443
\& cAMP in lv 4305
\& cell line 50655416
\& cuticle 2571
\& dev 46334834
\& differentiation 38283829
\& dises 181:22 193:18 10591181 12392015201621572375 26383372382838293830
\& fat body 5615
\& gene activation 7433143315 39715719
\& neonatal lv cells 840
\& peptide elongation in discs 4741
\& puparium *939
proteins, \& clones 33564409 \& morphology 5367
synthesis 188:8 5171645 2638
\& puffs 159:26 160:1 *180:22 *938 14952957 *3475
\& RNA synthesis 4329
\& salivary gland dev *4464
\& transcription *4737
ecdysterone $157 * 210321653$
\& antisera 4299
\& cell culture 11554298
\& discs 48445565
\& glycoprotein 38183819
oxidation 5158
\& proteins in clones 2143
receptor 56405828
\& vitellogenin 4604
eclosion 161:5 94898623413898
*369154235708
rhythm 178:18 179:1 2246 *4361 4473
ecolocation 631
ecological, classifjcation 4035
competition and rare types 2890
complementation 2959
genetics 183:6 43822523399
*5444 *5560
imprinting 4762
isolation 176:15
operons 501
specialization 29582959
value of duplicated genes 3781
ecology 182:8 18053425 *4099
*5430a 5567
breeding site 2799
community 340
\& dev 2404
\& dispersal 173:7
\& distribution 4886
\& esterases *1841
\& fauna 2106
\& inv frequency 2053
Korea 560556065609
\& linkage disequilibrium *1841
lv, \& meiosis 1439
of pop 805
species, new *5655
rare 5406a
sibling 470047014702
\& water balance *69
yeast 4069
ecophysiology *5796
EcoRl 41694308
ecosystem 1934
ectopic cuticle 2293
ectopic pairing 371641965827
editor 129628403879
DTA 160:17 12575108
educational policy 168:18
effective
egg 986
-adult survival \& X 2226
age \& sperm mu 228
\& anterior-posterior body pattern 3650
\& cAMP-binding protein 1845
chambers $162 ; 26 \quad 175: 16$ *1705
36335164
coverings 31703525
from cultured egg chambers 5164
cytoplasm, mu affecting 189:29
destruction, fecundity, \& lv 2804
dev, \& almondex 187:27 genetics 2792
\& starvation 1470
diploid 3402
DNA injected into 3760
DNA replication in 193:4
early, protein \& RNA 3268
fertilized 39855304
form 5612a
fragmentation \& partial lv 5257
hatchability 3512062 *2118 4892
\& heat 47
laying (see oviposition)
length \& selection 3435
membrane electrical properties 3844
\& microwaves 47
mitosis \& DNA organization 170:29
morphology 904
nucleus transplantation 2997
old, in harvest 4846
permeabilization of 1039
\& pheromones 190
polar plasm 2020243125814200
poles 770
pricking 619
production 162:13 162:14 162:15 3464952062218222274347

45384539

protein 5277
ribosome 171:11
RNA complexity 5550
shape \& size 100754535642
shell 183:10 2893324556255636 5637
sterilized, repaired 1316
somatic region 2522
unfertilized 52765277
\& UV 171:3 19924122431
ejaculate 2160
ejaculatory bulb $3659 * 3703 * 3705$
Elastica process 167:18
electric field 291654175553
electric, coupling 4994
properties of egg membrane 3844
response to sugar 783
electricity, DC, \& mu 4648
electromagnetic, fields 172:27 2238
radiation \& mu 180:15
electromorph 5486
electron microscopy (EM) 2580
\& active gene 664
\& anal organs 164:15
autoradiography 176:17 3525
\& chromatin replication 5632
\& chromomeres 3068
\& chr 9741509
crosslinked DNA 4372
\& DNA replication *3266 *4199
\& embryo transcription 4817
of female meiosis 2213
of ganglion cells 1688
high voltage 15083573
immuno- 4816
mapping of X 188:28
\& parasites 2693
of salivary gland chr 189:5 189:6
scanning (SEM) 182:18 6421773
2443296729683170
\& seminal vesicle 16425120
of sperm 5120
\& spermatid nuclei 672
\& spermiogenesis 3807
stereo transmission 5765
whole mount 219821993391 5341
electrophoresis 269 *772 *924
*1240 1314 *1501 173117335658
\& ADH 31354091
\& alleles 1936
\& allozymes 2034 *2739 *3778
comparative species $* 3973$
\& deuterium oxide 3639
\& enzyme mu 5118
\& esterase *175:22 2260*2545 *5021
gel 981982
\& gene organization 22493410

electrophoresis--cont.

in Hawaiian species *3903
\& heterogeneity 4681
\& histones 30432643585334 *5376
immuno- 3655
\& island pops *4072
iso- 2686
\& lv organ 2993
\& lv substrate *2960
\& linkage disequilibrium 3277
\& mannosephosphate isomerase 3860
mobility evolution *3972
mRNA 4358
\& nonenzyme proteins 1607
\& ODH 1659
\& phosphoglucomutase 4514
\& plm 11143218
protein 2618318237004725 5244
eye 43704641
\& selection 2658
\& semispecies *3634
sites mapped 178:25
\& stepwise mu *3641
variants 284
\& XDH 1129 *3053
electrophysiology $2841 \quad 36283882$ 464346444748
electroretinogram (ERG) 175:4 189:11 860911118413351717 172326155303
electrostatic field $390 \quad 4439$
element, control 4387
transposing 362636275025
embryo, abnormal pattern \& X rays 1952
\& acetylcholine 385
\& acid phosphatase 3003
activity and chromatin assembly 4916
alkylation 46754676
assembly of substances \& structures in 188:25
blastema 3831
blastoderm microcautery 2165
cell, \& concanavalin 2558
culture 174:19 176:4 176:6
176:7 176:8 176:11 106
\& actin 3507
\& fused 2642
differentiation 1627
dev in culture 186:18
dissociated 428
in vitro 9609623723
line surface 50505723
lines 25594239
lineage 5808
mass cultured 4443
myoblasts 4295
\& neoplasm 680
pattern in vitro 427
photoreactivated 177:16
rudimentary 4744
surface properties 2071
transplantable 2911
\& viruses 481
\& yolk sac 2962
\& centrifuged female 4334
\& chemical mutagen 1082
chr proteins 451
chromatin replication 5632
cleavage 15601561
collection 1270
defects 1992002013382
determination 170:22 2390
dev 186:23 165279333763422
4307440052275493
\& dor 965966
\& inbreeding 537253735374
dicephalic monster 3763
differentiation 172:21*446 16045401
diploid cells subcultured 2358
dissociated 2331
DNA, alkylations 3636
injected 5714795
polymerase 257043404341
early 27433167322440224201 5103
\& cAMP-binding 18441845
\& ecdysone 652
\& ether 2820
forms 988
fragments in vitro 461
fused 26423720
\& genital disc 5737
growth \& insulin 2803
histones 303034919
individual, \& cell culture 4412 4413
interphases 188:25
irradiation \& discs 184:11
late, 1 178:5
1 186:61052 281728983997 4118441349825662 cultured 961962963
\& maternal effects 2148
\& membrane formation 3589
metaphase chr 1562
microtubule proteins 2433
midgut 1194
mitosis 166:20 180:9
\& molecular anisotrophy 2432
morphogenesis 5041
\& muscle differentiation 4448
\& myoblast 452545265495
myogenesis 35194918
myosin 5369
nuclei, rRNA in 2896 nucleic acid synthesis 944
pattern, formation 4937 specification 50845085
\& peptide pattern 4002
photographed 198
photoreactivation \& UVsensitivity 5315
polar granules 179:6 179:7 179:84232
pole, cells 144419114232 plasm 19102702
\& poly A 2648264926504803
post-, \& amylase 4441 dev \& ecdysone 4633
protein, kinase 5231 synthesis 5053
\& punctured periplasm 2164
radiosensitivity 4178
radiolabelled 186:24
radioresistance 181:9
regionalization 173:195256
\& ribosomal proteins 981
RNA polymorase III 3928
RNA synthesis 14493660
rudimentary 3722
satellite DNA 2935
\& SEM 31704120
of species hybrid *3330
\& temp 987
transcription \& EM 4817
\& translation 5515
UV 6181018191019113753 5315
X-rayed 551241124124336 embryogenesis 165:13 5187 emergence 160:25*3691
rhythm 134133228673739 emigration response beh *3992 39935058
EMS (see ethyl methane sulfonate) endemic 17291730 *4962 4963 species 325287928803563 440756865687
endochorion 3796
endocrine, \& chr puff pattern
47304731
complex, noncerebral 196
\& esterase *2947*3959
\& fat body 5001
in vitro 2047
(1(2)gl 26263707
organs 1419
systems \& variations 3040
\& vitellogenesis 460146034604
endocrinology 27145763
endoevagination 5530
endonuclease 6637584472
endophenotypic variability *1547
*1548
enhancer 9502637
entomophagous fungus 1107
environment, \& beh 168:18 418
competitor 5014
cues for navigation 171:15
\& dev 167:8 203
\& egg production 4538
fluctuating, \& selection 579
\& genetic diversity 1183
-genotype interaction 186:4
189:22 22092727
heterogeneity 113635905249 5699
\& iz 23
marginal, \& phenotype 4371
monitored 26033698
mutagens 1672230230203274 336657545755
\& nat selection 4873
$\&$ number captured 4285
optimal \& stressful 5685
\& polygenes 164:4
\& plm 21.43590
preadult, adult effect 164:26 164:28
pressures 164:2
radiation, high levels of $* 191: 25$
\& spontaneous mu 2655
stochastic, size \& survival 5061
stresses 1366
use by nat pops 1141
\& variation 461750145699
enzyme, actívity, \& age 3326
in triploids 178:12 178:13
genetics of 1111485
in pop 4267
regulated 1487
variation in 170171
\& aneuploidy 1488
\& chr plm *3121 32094152
co-, \& transcription *4339
cuticle 2066
cytosolic 2992
deficiency 39845252
\& dev *1373 *1374 2100
distribution \& function 4186
expression, control 4438 \& dev 386
\& segmental aneuploidy 185:18
\& frequency-dependent selection 3851
function \& plm 2543
-gene systems 38822773782
\& heat 188:18 5224
\& heterosis 1427
in interspecific hybrids 625
\& inv 327641175337
level \& adaptation 2737
loci 4117 *4209
\& longevity 16624043
malic 47675506
map 2219
maternally derived 5732
midgut membrane 3836
modifying tRNA 192:22 192:23
mu \& electrophoresis 5118
\& ornmochrome 1757
oxidative NADP 4172
pattern \& age 2110
plm 241728159851728
\& desiccation 1727
\& environment 214
\& gene frequencies $177: 2$
\& linkage disequilibrium 2802
in nat pops 3527 *4516
\& selection 1219 *2440 2657 26584313
stable *5156
temp, density, \& genotype 4313
\& time 167:16
\& pterins 2180
pyrimidine biosynthesis 3637
\& rare male 4466
regulation 1488
repair 5112
reproduction in nat pops *3083
restriction 54685484
\& segmental aneuploidy 185:18 1745
s spontaneous mu rate 38563857
substrate specificities 2738
starch-degrading *167:10
subunit size 5578
systems \& insecticides 5691
tissue specificity 44384440
instability 4090
variability *160:5 14241425 *2413 2524
in nat pops 5811657 *1658 16672850377745504554 5630
enzymology, long time study 2090 epidermis 5341458222029143864 4907
epidemiology 30795172
Ephestia 2424457249115520
epigenetic 3093108522264
code, binary 257436634695
timer 2373
epigenetics of neoplasms 4536
epimorphic fields 4350
epistasis 2771691 *1703 35225022
epithelium, midgut 1779
Epon 5174
equilibrium 172:24266137404415
ERG (see electroretinogram)
ergostadien or ergostane 892893
erratum 128717221818
error, protein, \& aging 7363379
Erwinia 205836934719
Escherichia coli 177235743827
501752505317
esterase *168:1 *168:2 *151919
*2078 *5027 *5028 *5029 *5230
activity 440
alleles in species hybrids 2087 2088
allele stabilization 16281629
anodal 161:5 *3397 *4240
\& cage pop 1809
compared *3677
\& dev 568
in different species *2259
\& endocrine *2947 3959
\& fitness *2335
\& gel sieving *2545
\& gene arrangements *177:27
\& gene interaction 4729
genetics of $* 175: 22 * 175: 23$
\& immunology 2999
isozymes *177:7 *181:14 *918
*920 *923 *924 *925 *926
*927 *928 *929 1231 1233
*1262 * 1575 * 1576 *2577
*2623 *2624 2625 *3169 *3256
37023703 *3704 *4111 *5610 MW 40074008
\& linkage disequilibrium *1839 *1840*1841 *3168*47025779
in male genitals 970
\& mu 4119
\& ontogeny *1126 *5005
organ-specific *4729
in pops *2336 4192 *4568*5519
plm *171:13 190:17 1348 *3336 4192 *4410 * 4568
quantified 159:3
\& selection *2947
slow *922 *3704
\& temp *2947 *3959 *5714
esterase--cont.
variants *439
-5 *298*5704
$-6 \quad 7071722260226126442976$ 34364252 *5021
ethanol 3483541030103118702602 $26803918 * 4070 * 41164707$
\& ADH 284431854815
tolerance 48155450
ether 18622820480152395790
ethionine \& wings 655656
ethogram 5191
ethological, differentiation *170:7 isolation *17 330448*1398 *2846 *3654 *3887 *5671c study of courtship *3057
ethology \& speciation 4352
ethyl methane sulfonate (EMS) 49 436124939275744
caffeine, \& mu 4914
dose, fractionation 5119
\& mu rate 328032814215 42164217
\& heterochromatin 161:18
\& heterozygote fitness 4038
vs. ICR-70 mu 3960
1 complementation 2499
\& M 2515
\& male mu 4327
\& mitotic recombination 3282
\& mosaics 2662
\& mu 178:3 187:29 178 179 in giant-white region 2863 in homo- and heterozygous pops 4693
\& maleic hydrazide 4913 4914
polygenic, \& fitness 2775 \& quantitative characters 2851
rate \& genome size 4019 sperm \& temp 5119 suppression 189 \& viability 130938903891 3892408945675771 visible 4250 \& X-ray tolerance 17911792
\& nondisjunction 3927
rearrangements \& storage effect 4017
refused as food 2038
\& somatic co 167:25
\& temp-sensitive 1 mu 2989 4455
X mu fitness 38343835
Y loss 759
ethyl-6-methyl-3-oxypyridine hydrochloride 5664
ethylation, DNA 159:1
ethylenediaminetetraacetic acid
(EDTA) \& mu 160:17 12575108
ethylene-thiourea \& mu 180:19 2795
ethylenimine \& mu 160:16 160:17 174:7 178:5 188:7 617711052
16381639253226454327
ethylmercurichloride 4774
euchromatin 193:1642 1586 *5589
eukaryotic chromatin or DNA 67 1131
evagination 516108610875492 cell 2706
dise 170:5 179:14 23593499 350045125635
endo- 5530
\& hormones 37934830
eversion of leg \& wing discs 3829
evolution 399231831903321
accelerated by sex 1801
\& beh 23703913
of adaptedness 141
adaptive, regulated 48124813
biochemical 483652125213
chemical genetics in 4257
of chromomere 30713073
chr 2011 *3919 4194
tips 15201523
\& circadian rhythm 34
comment on *479
comparative 1369
\& compartments 5393a
\& competition *190:12
\& conditional 1 mu 4501 convergent 3915
\& courtship pattern *5157
of diapause *977
direction 52695270
\& DNA enzymatic repair 5112
of DNA 3043052386
mitochondrial 20193390 3448
satellite 42425349
of dosage compensation *10 5177
\& drift 5646
Drosophilldae 5827a
\& duplication 3988
\& electrophoresis *1501 *3972
of exp cultures *5668
$\exp \&$ simulated 64
genes, \& iz 4011
\& gene regulation 3230
\& genetic plm 573
\& genetics 178:15
genome 201141935112
of geographic races 348
of GPDH 312342434274751 5463
\& feeding 5448
in Hawaii 3261
of hemolymph protein 3357
\& heterochromatin *2509 4194
\& histone 4788
\& hybrid inviability 323
\& iz *3728 39434011
karyotype 2349245334615532
\& lv mitochondria 5717
\& molecules 87988013122103 260028564712
\& mutator gene 5209
of nat pops 19395447
non-Darwinian 3943
organic 2429
\& oviposition 5448
parallel 258
\& plm 57328565702
\& polypyrimidines 3373434
\& pop genetics 2600
of pops, statistics of 1285
by program duplication 4338
protein 21044256
rapid 15201523
rate \& heterozygosity 3805
\& recombination 4852361
of regulation 5177
\& rRNA 1057 *2263
\& selection 193647125646
of similar alleles 1936
\& slightly harmful mu 1313
\& speciation $41935565 c 5671$ b
in species group *176:27
strategy 5681
in subgroup *777
\& systematics 4712
\& tip chromomeres 3987
value of duplicated genes 3781
\& Y 3688
evolutionary, biology 869
conservatism \& repeated DNA 4967
divergence, pop $* 4850$
excision 21695536
exchange, in heterozygous inv 1524
\& nondisjunction 5669
sister chromatid 189:13 1784 5481
excitability, neuromuscular 5092 excitation, neuron 4010
excretion 5805
exosome 1856
exotic 1729
exotoxin 1248
experience \& mating advantage

*1446

expressivity 189:19 3007 extraretinal photoreception 3155 extrachr ribosomal genes 3278 extrakaryotic inheritance 2085 extrusion 315
eye, -antennal disc 5525543994
black spots 3520
-brain interactions 4857
color 185:17 189:10756 2887
28883017355246424964
mu 187:10 189:11 11012749 3096 *4009 5760
compound 509175120142369
326346415404
photoreceptor 24663395
disc 176:12 176:13 22102556
31683715474048855793
B 8311165116611671168 21555787
\& drosopterin 3139
facet 11191768
-less 1
lozenge 127128
mosaics 2505
mutant 8421751
neural superposition 3090
opaque- 20143263
pigment 176:12 176:13 187:7
187:9 187:10 8489711023
15321723175917701771
18421843273235714092
protein 43704641
\& pteridine 486
reduction \& thermal shock 1768
size, molecular control of 166:24
spotted 778
ultrastructure 5765
white *1860 2272
\& XDH 112
facilitation 433146735385
family catalog *4790
family, repeated gene 4498
farnesol 179:2
fat body 163:15 163:16 26184725 *4819500152335615
fate map 169:15 115323882534
256627523328348937353940
5561
fatty acid 39214541
fauna 11592106
fecundity *181:20 182:17 191:17
306480 *1466 *1653 18492239
2804430747925331
\& inbreeding 43075373
\& pops 160:19 31093925
feeding 176:14212356979 1636
34085221 *53645448
beh, lv 187:24 161028544359
habits 10835571
vs. injection 188826273708
recombination, \& mosaics 46215539
through respiration 52415792
female, abdomen pigmentation
5055
activity 2327
age \& sperm 107910802160
aneuploidy \& colcemid 1833
asynapsis in 1568
attractiveness 3175431
beh \& paragonia 163:12
body spots 3
chr, disjunction 5710
late replication *3565
pairing 674
combination fraction 4344
co 192:5 1162128134593630
copulation 5430
dispersion \& selection 5491
DNA synthesis 659
dominant l mu 4129
fed colcemid 190:15
fed FUdR 5221
fertility gene \& genetic rescue 3997
fertility mu 3153
genetic variability 5497
genital disc 1773
germ cell, mu affecting 5573
germ line, \& mosaic 48555738
\& sigma 5393
GPDH 637
interchanges \& mitomycin C 1900
iso-, strain 27294958
longevity \& temp 165:3
mated or not, \& ovary function
162:13 162:14
mating reluctance *763
meiosis 2521414221322912945
37623873 *450645484936
cytology 34453446
metabolism \& casein 191:18
mortality \& TEM 3847
mosaic 1121.
mu \& caffeine 187:26
nondisjunction 132126673878 5669
nonrandom disjunction in 2713
puffs in X of 138
radiation mu 24803137
rayed 11624548
receptivity *1162323*5326 *5327
recombination 184:47843679 4709
rejection response $165: 5$
remating \& paragonia 4624
repeated mating 170:65015 5712
reproductive physiology 197
RƠ I 181:25 181:26
segregation in 287
\& sexual isolation *460
SF \& RSF 49804981
size 5453
somatic, mosaicism 4870 recombination 4869
\& sorbitol dehydrogenase 2152
-specific mutant 297
SR *1105*3358
starvation \& DNA synthesis 1928
-sterile mu 180:17533596 1396
21352357265432695000
54465809
\& oogenesis 29695052
sterility 74474513613672 nonmendelian 219221932897 49684980498149825395
sugar-fed 187:3
\& temp 310 *5326 *5327
triploid 3670
without sons 5749
X loss \& nondisjunction 3927
X replication pattern 4344
XXY 263
Y fragments induced in 2073
fertility 180:26 1095
\& chemicals 233124722412290
co \& SD 3604
factors 170:1 27534287
genes 182:16 192:7 3596 3997 5820
\& heterosis 5529
hybrid 18 *2527
inter-, species 5236
male 173:2 480117215332496 27453350
\& maternal effect 3405
mutants 48031534345
of pops 19213359
\& pars intercerebralis 2163
restored 13161910
\& selection *51
\& sex ratio $2687 * 5360$
$\operatorname{span} 1787$
temp-sensitive 3924
\& UV rays 1910
fertility--cont.
\& viability 1850
\& Y $708 * 7094287$
fertilization 166:20 183:7 11642885
37495613
\& sperm chr rearrangements 47724773
Feulgen 5174
fibers 177:19 29969437265580
chr 189:2 189:3 *189:4 189:5
Ficus 55925593
fidelity in transcription 2149
field studies 164:19 242
fields, electrostatic \& magnetic 390
filaments, motile or not 1643
fine structure, analysis 170:25 egg shell 5637
$\mathrm{O}_{2}-\mathrm{N}_{2}$ effect on 1185
salivary gland cell 5773
of $\underline{w} 3074$
X region 2447244837595621
fingerprinting 187:9 1599
firing pattern 36974607
fish rhabdoviruses 2204
Fisher and Wright systems 1878
fitness, \& alleles 185:16
\& allozymes 169:22 810823
*1093 *1094 *4837
carrying capacity 1934
\& chr plm 181:20 *1454
\& chr segments 22275413
components 3521366238555566
competitive 181:20 1934
Darwinian 4585
\& dispersal 12664868
\& EMS mu 277538343835
\& esterase 168:2 *2335
flight 1939
genotype, \& heterosis 3100
\& hemizygosity 3835
\& G6PD \& 6PGD plm 4310
\& heterogeneity 1197
\& heterozygosity 334738345744
hybrid 5192
karyotype *1916
\& lv feeding rate 5399
\& male mating speed 1367
\& mating 209342514252
pop 39655110512651925275 5797
\& pop density 13102853
reproductive, \& artificial selection 3951
\& selection 5110
\& temp 131028535275
total 5312
\& yeast races $168: 27$
of III homozygotes 1766
flameless atomic absorption 3198
flies, control of 969
flight 22119391977254129193610
37384768
-less mu 26114721
muscle 177:19 768 16801927 2925369744835555
\& neurons 1020102119944607 2461
neurophysiology 177:17 177:18
pattern \& temp 7652519
founder-flush speciation 5698a
flower 2467 2860 *5553a
fluorescence 193:9 74310191617
1788 *3717 43155037
chr 322508122856025614
granules 1997199819993246 3247
fluorescent dusts *334 1227
fluoride 2202200
fluoro-, compounds 544993189 -deoxyuridine (FUdR) 169:1 4535221
-uracil 22582539 *3177 3419 3465
flush, founder-, speciation 5698a
fly 747878306041574540
focus, developmental 3229

7792503
sex-specific 25113611
follicle, cells 2891289235254552 ovarian 345
folpet \& mu 175:25
food 174:2 *939 203831363291
41234369454051955526
additive 14343542
ethanol as 103010312680
preference *609 1634
foreign, recognition of 1260
foreleg, male 6422443
forest *193:2 1813368543234325 5354 *5680 5775
form instability 3803
formaldehyde 179:5 160
formamide 44274877
founder 3359
effect *1050 135314304422
frameshift mutagens 193:5
free radical 1617
freeze, etch replica 5765 -fracturing 5101
frequency \& competition 180:26
frequency-dependent, mating 2300 plm 159:24
selection 181:18 178134493851 5322
frequency-property -environment relationships 1881
fruit 176:16 189:20*130 14624325 53915734
fruitflies 4157
fumerase 179:3 1400 4989
fumidyl B *2083
functional, adaptation 2541 response 4125
unit in chr 1379
fungi 8958961107127916361709 185236833730 *4036 *5384 yeastlike 2694
fungicide 189:20 97927305062
furazolidone 43175378
furrow membrane formation 1560 1561
furylfuramide 46594661
fusion, cell 1513245224543862
galactosidase 5370
galactoside 4379
Gambel oak *1853
gamete 4361182
gametogenesis 175:15 47864787
gamma rays 180:4 188:26 191:9 192:14 4135928418641190 124312591284185527813333 38454921
ganglion 187:17 168823984284 44344867
gardens, zoological 4123
gases \& mu 4995411473
gastrula 76929624120
Gause principle 1468
gel, polyacrylamide 5334 -sieving *2545 36393641
gender 5155706
gene (see also mutation)
action, autonomous 181:7 1246 control 181:17563871746 34604729
differential 175:20 4243
\& ecdysone 74
\& electron microscope 664
\& heat shock 5603
histones, \& chr structure 25853676
independent, of linked related loci 3458
\& nonhistones 5124
in ontogeny 48624863
pattern \& dev 1802
\& protein pattern 4243
sequence \& ecdysone 160:1 5719
site in chr 5510
time 86826392757
variation 4848
X 37714807
\& X-autosome ratio 470
$\& Y$ changes $* 707$
in action 2956
activation, \& ecdysone 3314
331539715719
$\&$ in situ chr proteins 3047
\& mitochondrial respiration 3744
arrangement, \& esterases
*177:27 *184:19
\& mating speed *5159
in nat pops 185:5
sex ratio *2906
standard *1432*2906
\& time *1343
\& beh 2140
blocking lampbrush loop propagation 2681
\& chromomeres 2554
\& chromosome 3877
action control *1035
bands 100210031004
vs. chr variation *2036
classification 779
cloned 594
closely linked 387
clusters *3232
competition \& dosage compen-
sation 1593
complex 285536645618
conservation \& sampling 1108
control 167:22 181:2 7413458 4813
\& amylase 4441
of beh 58
\& chromatin 1207
element 2248
\& evolution 3230
in hybrids *4303
mechanisms 1902
for recombination 191:11 191:12
regions 19033197
\& tumorous head 949 in triploids 1104
conversion 164:20 178:25 3487
-cytoplasm interaction 3505
deleterious, in cages 32043741
\& genetic load 1258
in pops 56075608
differentiation \& speciation *193:23
dispersed repetitive 5202
dominant, reversion 377
dosage, \& ADH 183:18
\& dopa decarboxylase 730
\& G6PD \& 6PGD 187:20
\& regulation 1487
duplicate 3521
duplication value 3781
effects, autonomous or not
190:6
of specific 5772
enhancer 950
-environment interaction in nat pops 189:22
-enzyme systems 38822773782
exchange, interspecific *167:15
in nature 262
expression 177:28 944163756
40754876554357325761
\& dev 96496526402641
\& eye color phezotype 4964
flow 158916634505
fractured 192:12
frequency, in different species
2006
\& dispersal 1265
\& enzyme plm 177:2
\& iz 757
\& lead smelting 2688
\& Markov process 1111
\& mu 985
in pops 162:4*120 18094235 *4611
\& season 1229
\& selection 159:7 9851139 4685
\& taxa 85
\& wings 159:7 159:8 159:9
function, \& chr structure 703
localization 1968
regulation 178:12 178:13
Gowen 1735
high mutator 4044
histone 4788
inactivation 172:1899649650
inactivity site in chr 5510
individual 247
induction \& protein synthesis *3701
instability 62230984497
interaction 182:15 7538553823 3473
autosomal, \& heterochromatin 4005
Ax and ci 3613
\& daughterless 4396
\& esterase 4729
\& germ differentiation 4622
\underline{z} and su-f 4050
\& temp 46974998
interruptions 4268
intra-, recombination 190:7
190:8 237240734272
$i \mathrm{iz}$, \& evolution 4011
kept in order 2956
1, equilibrium in cages 3740
\& light *404
linked \& selection 2005
localization 1435 *2347
manipulation chemistry 3235
mapping 3430
\& Mendelian unit 247
modification \& plm 2360
modulation 162:18
multi-, family topography 4636
multiple, scattered 4391
mu \& X rays 4018
mutable \& mutator 621
mutator 171:10597598599600
nonessential sequences and chr
bands 4197
nonrepeated, assayed 1846
number 182:5 18010251084 4831
regulated 189:23 189:24 4827
one, -one band 3746
organization 28228422493410
35684386438843915425
54265454
\& organization 5659
poly-, 35713602366138574094
463052075325
plm *2922 *2923 372937585619

1601:27 6054226

position \& EMS mu 178
product, primary 384
redundancy 178217853118
regulation (see gene control)
regulator 3541
repeated or reiterated 3999
449852785347
replication, control 15391540 5070
ribosomal, excised 42114212 4213
RNA, t 171:24
sequence \& function 3552
sllent 1229
single, \& beh 3018
structural 62546545324
structure \& function 164:21 1783
1786311940875198
substitutions \& geotaxis 865
super- 501
systems selected 400
tandemly repeated 4793
temp \& longevity 5684
gene--cont.
temp-sensitive, \& chr loss in hybrid 5122
temporal 5465
transfer 50747955489
unit 5046
unstable 787353535363537 35393540362945614562 45644565457745784665
variation, low *184:16 in nat pops 63
generations 69
overlapping 11973522
genetic, activity \& chr staining

2676

architecture 192:14 2177
assimilation 3128
background 8108235715 \& recombination 733734
balance and transcription 4041 42
blocks \& neurons 3043
change over decades *50
changes, rhythmic 731
constitution \& SR 1838
control, \& immigration 3783 of male co $192: 1$ of pops 169:20 169:21
correlation analysis 3789
damage assessed 331
differentiation *86 *87 *812 *3975
\& speciation 190:13 2099
disease, screening for 168:15
distance 127712782830
divergence in body size 1426
diversity 4783
drift 170:2 2111 .
effects of vibration 119
element, equivocal 431
engineering 167:71660
enhancement 127128
\& environmental diversity 1183
fine structure 651
hazard 31235263
heterogeneity, \& fitness 1197 nat pop 4422
information transfer \& inv heterozygote 164:20
instability 148014811482
linkage theory 4398
load 168:24 179:18 191:25 1258
*1322 1828187620512865
29953000347734783990
43844478 *4635 *5155 5476 549657155726
map of enzymes \& proteins 2219
material organization 5557
mosaics 1421
neoplasms 2394
organization, species *4507 *4508
of X tip 3759
patterning 12691271
plm 160:6573 3590*5638
program for dev 518
regulatory mechanism evolution 5177
rescue 36153997
response to environment 1136
similarity \& distance 689
strategy of adaptation 3176
structure, Y 4771
suppression 127128
systems, correlated 22545428 multi-locus 471
\& selection 296
topography 4519452045214522
toxicology 1006
unit 339834883647 of selection 16504041
variability 37291313142653 *3236 54975699
in pops 88123815431544
variance 2442451235
genetics 2112981 *3294 *3597
beh 161:3 183:6 184:10 184:15 145438233928264833 pattern 18031804
\& biology 3313 of D. 5352
chemical, in evolution 4257
conference 827
cytoplasmic 2085
dev 18513517360342634631
ecological 183:6 43822523399 *5444 *5560
of egg production 495
environment, and beh 168:18
of enzyme activity 170171
\& evolution 178:15
gender 5706
\& medicine 161:24
molecules, \& aging 5081
of molecular plm 5705
\& morphology *3257
nat pop 1922192319245447
nervous system 4289
neuro- 52645305
neurophysiological 767
notes 332
pheno- 1289942079
physiological 23372555
pop 170226003197
quantitative 29451123714550
radiation 166930054006
reductionist research 5063
somatic cell 187:22 16063370
of speciation 22153320
of sperm 2121
Y 4161
(see also gene; mutation)
genital, disc 16989177347945737
external *5612
of intersex 165:22
male 172:12 9702644
organs cultured 958
primordia 4934
size \& sperm length 2495
genome 162:1 1588327640194169
45565130
change model 3260
congealing 4612
\& DNA sequences 10884424
evolution 201141935112
interphase 33534290
organization 173:30603741 37164590
genotype 161:25 43134894
-environment interaction *186:4 81422092727
fitness, \& heterosis 3100
\& longevity 4312
\& migration 1776
paradoxical 25914425
to phenotype 5449
\& puffs 2907
-temp interaction 169:23 4313
genus heterogeneity in mitochondrial
DNA 23552356
geographic, differentiation of nat
pops *188:17
gradient \& inv plm *1905
micro-, differentiation *3121
distribution 5459
races *1654 442054515453
geography 1805
\& bristle pattern 5393c
\& chr plm *2174
\& diapause *3684*4808
\& mating 3926
\& nonmendelian sterility 3929
\& photoperiodism *3684
\& pop growth 3252
\& protein plm 163:8
\& serotype 1405
\& temp 3252 *4182
\& wing length 29933259
geophysical cycle 2507
geotaxis 183:27 * $402865 * 2070$
$293229343686 * 37514838$
5711 *5817
\& oviposition 14552933
\& selection $891 * 14091456$ 3207 *3303 3751
germ cell, doses of chemical mutagens 4769
\& egg pole 770
lineage 3870
male, \& microtubule *5075
mu 422951045573
ovary, differentiation 4763
primordial, mapped 2403
X rayed 4229
germ, differentiation \& gene
interaction 4622
line 56415642
-dependent sterility 5809
DNA ethylated 159:1
\& duplication 9461210
\& maternal effect 38014841
mosaicism 412442294885 49265738
\& sigma 1393
transplantation 769
plasm 3788
determination 4824
egg 2522
ontogeny 2523
\& pole cell 4924
gerontology protector 5664
Giemsa 5284
ginger 4221
glands, accessory *167:10 *2311
3599497449754977
lymphatic *5163
paragonial 22352236 *2237
prothoracic 5547
ring 5090
salivary 2220213341
acid phosphatase in 452065
glucosamine *175:26 185:10 4474
glucose, medium 15661873
-6-phosphate 24442445
dehydrogenase (G6PD)
170:20 187:20 *1704 2150
35213930459146394767
\& dosage compensation 169:6 179:20
plm 161:17 33614310 4311
receptor 781
glucosidase 31155549
glue proteins 32733341
glutamate 4722
dehydrogenase 22084361
oxalacetic transaminase 171:19 31303401
synthetase 5096
glutamic acid 1947 *2237 5461
glutamine-fructose-6-phosphate-
aminotransferase 941
glutamine tRNA
1947
glutaraldehyde 5133
glycerophosphate dehydrogenase
(see alpha-glycerophosphate dehydrogengse)
glycerate 5507
glycerophosphate cycle 13024300
glyceryl, ethers 192:11
methacrylate 3923
glycolytic intermediate 3052
glycoprotein 2123381838193923 4974
glycosidase 8772597
Golgi 5872105
gonad 5511251215224032659
4764 *5073 5176
atrophy 392249714973
mosaic 8112120432662
rudimentary 23422343
Gowen gene 1735
G6PD (see glucose-6-phosphate
dehydrogenase

GPDH (see alpha-glycerophosphate dehydrogenase)
gradient, geographic *1905 sucrose 408
grain 3082
granule, fluorescence 193:9 1997
1998199932463247
microtubular 21222123
polar 179:6 179:7 179:8 193:19
protein, \& fat body 5233
ground beetles 3077
growth, abdomen 5604
\& aging 30164997
\& aflatoxin 2241
in culture 176:4 176:6 176:7
176:8 176:11
dev \& rDNA 27892791
disc 30164458
embryo, \& insulin 2803
\& endocrines 41805763
factor, nerve 461
joints, \& bristles 31454100
lv 38894359
lesion \& BuDR 15111515
\& longevity 226456235624
patterms 43504458
rate \& lifespan 3063
\& temp 30922643252
on yeast 2162
GTP-cyclohydrolase 185:175478
guanosine 5307
triphosphate cyclohydrase 2353 2354
guanylation of tRNA 5818
gustatory stimulation 4073
gynandromorphs 800129323882403
283533283690394139504927
4934499952285561
\& dev 174:13 174:14 2534
gyratory shaker 3843

H-193 43175378

H factor activity, regulation *4707
habit, food 4369
sex 5142
habitat 88113304970
selection 186:12582 29585681
Habrobracon 16052506
hair dyes \& mu 336544845248
hairs, labellar 7811774
halogenated 185:8 15114658
halothane 4527
haltere $182: 19$ 192:26 133713383031 disc 1867291737145335
handbook 887888889
haploid cell culture 4433
Hardy-Weinberg 2842
harvest, old egg in 4846
hazard, occupational 3765
head 176:3 193:17 181948905204 5289
dev 42625355
disc 29433954
healing wounds 5032
heart \& age 5149
heat, absorption 2238
-activated loci 5559
\& ADH 813
denaturation 16595224
\& egg survival 47
-induced protein 5559
-induced puffs \& RNA polymerase 4580
\& interchr effects 24383559
lv 5076
\& recombination 3622438
resistance 4237523452355657
-sensitive 189:25 14953922
shock 10264246
chromatin, \& transcription 4309
DNA 44815479
\& gene action 5603
\& gene expression 4876
heat, shock--cont. \& isolated nuclei 4404
loci 5625 *5627
peptides *5150
protein 4365488848895095 50965099
\& puffs *4996
\& RNA 2158267328912892 2985406648895375 m 1712
site 4793
\& transcription 33605541
stable esterase 2261
tolerance \& radiation 177:1
heating, microwaves, \& reproductive capacity 4966
heavy metal 269032624440
height, light \& emigration 5058
HeLa 26915250
helical wall-free prokaryotes 3221 3227
hematopoiesis *51635502
hemizygosity \& fitness 3835
hemocytes 1260
hemolymph *275*1932 28294725 4760
lv 214424105291
protein 2144335750545340
hempa 5414
herbicide 178:2 103428133067 49004901
hereditary, infectious 184:12 184:13
heritability $191: 12118$ *1061 1090 3181320742374293 *5314 5315
\& age 10431044
hermaphroditism 5127
herpetomonas 296329835724
heterochromatin 159:20 187:25
*1344 *1346 *19423516 4595
50075008
alpha- *5035 5595
autoradiography 5403
autosomal 250136014629
beta- *5034
brain *5589
$\mathrm{C}-$ and N -banding 3931
\& chr, breakage 1586
control 42
evolution 4194
constitutive 160:18 11242108
*3337 *3338
control of 1563
-deficient 13824065
\& differential staining 5688
\& DNA, nonrepeated 173:12 repeated *173:10 183:8 sequence 4349
dyed 5139
\& ectopic pairing 41965827
\& EMS 161:18
-free duplication 1173
\& gene inactivation 172:18
heterogeneity 1397
\& histone 7424319
\& inactivation 649650
increased 5532
intercalary 5347
\& inv 9596
\& meiotic behavior 4184
\& microchr 5827a
mitotic recombination 5045
\& nondisjunction 163:21
non-replicating *3717
\& nucleolar dominance 3471
organization \& evolution *2509
\& 6PGD 172:18
\& position effect 33433363
\& proteins 2268
\& satellite DNA *319 43194366 5823
sex, \& autosomal genes 4005
\& speciation 4537
X 13654983
Y 3343
II proximal 249824992500
IV 4265
heterochromatization 19093363 heteroduplex mitochondrial DNA *3267
heterogeneity, \& dispersion 3866
of DNA, r 3457
of electrophoretic alleles 4681
in heterochromatin 1397
of lv to MMS 3953
nuclear RNA 4779
heterologous chr pairs 5669
heterosis 188:18 *222 *804 870
13501427 * 165217943100
42074909533053315529
\& gene plm 37585619
overdominance 3308
heterosome-autosome t *4013
heterozygosity, \& evolution rate 3805
\& fitness 3834
\& heterosis 1350
\& mutability 15681572
in nat pops *164:10 63
\& neutral plm 1113
\& nondisjunction 164:3
radiation, \& viability 3048
\& rare alleles 26144461
\& SD 1830
\& viability 13563048
heterozygote, advantage and plm 161:25
3-band 2273
\& chr aberrations 3249
fitness 3347366240385744
load 1646
mu \& dev rate 1891
\& somatic mosaicism *4706
superiority 4207
t and co 4828
viability 1646366238045566
hexokinases 2119 *3340 *4078
hexose monophosphate 4646
HGPRT 5363
hibernation 901902
Hibiscus 4407
histidine tRNA 192:18
histoblast 4820482150645587 5650
histochemistry 45206530034431
histology 145847644821
histolysis 5001
histone 742866111025722582
339336763755435843604582
470547885175
\& chromatin 174:1 36094816
4919 *5262
comparisons 33714326
DNA 13604956
\& electrophoresis 5334 *5376
embryonic 303034919
non-, protein *3428
operon 43144357
\& satellite DNA *5262 *5380 visualized 292054
history 2472482493896
hitchhiking \& recombination 1749
Hoechst $33258 \quad 74335165139$ *5281
Holometabola 988
holometabolism 1802
holo- and hemimetabolic 2100
homeostasis 185:10 *3751 4935
homoeosis 166;25 189:14 224378
78613371421145315912195
219622932755275829303511
366538214353435644354697 4698
\& allelism 1740
\& antennae 5767
\& atavic mu 4829
\& bithorax 5722
compartment, \& determination 3850
\& dev 2871
\& discs 5335
\& gene, complex 3664
interaction 366736684860

4861
\& halteres 3714
interacting mu for 3756
\& lv adipose tissue 5049
mu 58511633823
interaction 4354
wingless 3849
\& pleiotropy 2754
\& regeneration 187:2
\& sensory neurons 5173
\& taste 4073
\& temp 2575275836663667 36684861
-sensitive period 4862
\& tumorous head 95026375386
homogenates, whole-fly *1373
homokaryotypes *1706 *1707
homologs 167:18 951
homologous, DNA's 2652665280
gene-enzyme system 190:18
homology 182:19 33485479
homosequential 3245430 a
homosexual beh 203751135534
homozygote, competing *2075
fitness 1766
selection against 3747
viability 277
zygotic 13979
honeybee 4801
hormone 164:17 167:6 177:28 183:25
2222710592049283432704337
48405370
\& evagination 37934830
juvenile 164:17 179:1 272321
8398461418141915872172
*502956205719*5721 5814
analogs 20805730
\& discs 2374
lv *4718
\& vitellogenesis 2918
\& ovary function 162:14 162:15
\& puffing 7476
\& vitellogenesis 83836514688
host 89589634004369
-parasite relations 2252
plants 248740694831
range 25524992
recognition 1260
response 3383
specificity 5671 a
house, mushroom 4711
housing, posteclosion 2341
hovering 1939
human loci 4845
humidity, beh *3194 3946
\& temp 190:11 *1370 1825 28793147
hunger effect 1253
hybrid, anomalous dev in 3810
breakdown *3006
chr loss in 5122
\& chr pairing 3732
courtship song \& mating speed in 1890
crossability 26605273
DNA replication in 27443810 3811
DNA-RNA chr 5069
dysgenesis 309936794076 470947105185
ethogram \& oviposition 5191
fertility *2527
fitness 5192
\& histones 1110
intersemispecific *2118
interspecific 162:24 169:2 169:4
169:5 13 18 *222 *223 *355
$464 * 465466625808923$
*928 1150146516061829
2334 *2381 27504322 *4754 \& ADH 183:19
\& asynapsis 2912
\& chr beh *2344 23483479
\& chr replication *3566 4479
\& coadaptation *2937
\& co *2345 *2346 3557
\& esterases 7220872088
\& exposure to other species 4475
\& gene regulation *4303*4304
\& iz 165:11 2436
\& male genitalia 172:12
\& male sterility 3440
male viability 4153
\& mitosis 3480
morphology \& dev *4304
natural 4690
3 nondisjunction 3557
\& rDNA 4460
\& rRNA 3471
\& somatic cell genetics 187:22
\& sterility 5087
\& telomeres *2909
viability 5374
\& III 2941
inviability $323 * 4416$
maternal effect, \& temp 1644
molecules \& heterosis 4207
in nature 2622218 *2527 5192
partial 171:19
plasmid 42475099
poly rA:dT 1753
sterility *398 3304 3423 *4098 *5216 *5733
vigor (see heterosis)
hybridization, \& acid phosphatase
1076
colony 638
\& heterosis 5529
in situ 164:25 37 *39 17123372
$4738 * 4805495551885747$
nucleic acid $37 * 46513591930$ 3102
\& phototaxis 1100
\& sperm storage *2987
\& walking beh 2245
\& X effects 4703
hycanthone 90690726323711
hydratase, fumarate 179:3
hydration, \& respiration 18253147
hydrocarbon, fluorinated, \& mu 499
hydrogen peroxide 1556
hydroponic 4123
hydroxy acid 1885218
hydroxyacyl dehydrogenase 170:21
hydroxy -alpha-ketobutyric acid 5643
hydroxyanthranilate 1999
hydroxykynurenine 4642
hydroxylammonium sulphate 4957
hydroxyproline 185:10 14771478
294439545764
hygeine 5121
hyperkinetic mu 3030
hyperploidy 274533504499
hypersensitive mu to ionizing radiation 3678
hyperthermia \& radiation mu 3838 38393840
hypoderm 4878
hypolipidemic 2725
hypomorph 4031
hypothesis, 1 gene -1 band 3746 prepattern 5776
hypoxanthine-guanine
phosphoribosyltransferase 1200 hypoxia 180:8 357

ICR-70 \& mu 19823960
idiogram 159:20
ifosfamide \& mu 3186
illumination 133013311332
Imadate, G. 5672
imago, cell pattern in vitro 427
cultivating disc $1 \overline{76: 13}$
cultivating 1v salivary gland 3271
irradiation of 168
\& preimago biology \& habitat 4970
\& sigma resistance 3594

[^13]\qquad

\qquad

\qquad
\qquad

colony 638 5529
-

?
\qquad

$$
1
$$

>

.

\square

[^14]imago--cont
structure \& lv fate map 2534 (see also adult)
immigration 20693783
immunity *188:10 22649055408
immunoadsorption 2068
immunochemistry 84536564392 46914699
immunoelectronmicroscopy 4816
immunofluorescence 20542055
205829713556393440015075 5427
immunogenetics 4338
immunology 56107615172068
21442822339335295291
of esterases *1576 2999
implanted eye discs 2210
imprinting 47625392
impulses 173:9
inactivation of genes and chr 99 inbreeding 161:11 186:5 2691385 214721482266303637324703 53725374
\& fecundity 43075373
\& mating beh 6832481
\& mu 175:17 894
\& viability *37104306
incorporation, disproportionate 1010
indenes 168:28 168:29 168:30 1226 5473
inducer, of female sterility 4968 of male recombination 1896
induction 1578272533554830 50095370
infection 1193160819433079 3089 *4572
interorder *2424 *5520
\& longevity 2081 *2082
ingestion, hydroxyproline 3956
inheritance, of differentiated traits 313
extrakaryotic 2085
of infection 3079
inhibitor 84346375719
injection 180:20 3061
DNA 240737604795
vs. feeding $1888 \quad 2628 \quad 3708$
innervation, motor 768
insect, control 166:26 4499 -plant interaction 1376
insecticide 178:1 178:2 366367 96910331034127930624189 \& mu 2181885
resistance 3435691
insemination $195 \quad 2961$ *3431 multiple *49 1164*4397
insertion, multiple, mu 4565 mu, DNA 45774578
in situ, chr proteins 30453046 3047
DNA -DNA duplex *3091
DNA-RNA hybrids 4001
hybridization *465 17123372
$4738 * 4805495551885747$ localization 1064 wing disc differentiation 3828
instar 556751420
insulin 114916042803
integration, chr, of rDNA 5332
integument 551 *4062
intelligence 1028
intensity spectra 5166
interaction, eye-brain 4857 gene $48604861 * 5200$ sub-phenotype 994
intercalary regeneration 2484 2485
interchange, heterologous 192:29 1957
interchromosome effects 3768
interference 35962722872325 318035594398
interphase 188:25 2735
chr 159:19 2946
genome 33534290
interpulse-interval 2564
interrupter sequences 4556
intersemispecific hybrid *2118
intersex 165:22 178:13 1193 2351 3670
\& triploidy 180:16 2659
interspecific, competition *1469 *1471
hybrid (see hybrid, interspecific) in intestinal parasites 26932694
introgression 183:17
imagination 1194
inverse effect regions 3362
inversion 184:26 185:9 95264
466679 *1063 1099 *1433 1652
*1703 *1715 205322962672
*2938 *2942 3103 *3806 4117
483352205666
clines in pops *3470 3820
\& enzymes *257741174133 53375794
\& heterochromatin 95962108
heterozygous, \& exchange 1524
\& gene conversion 164:20 in pop *1339
\& recombination *188:12
\& ring chr 17351736
superiority of $192: 7$
loss from pop 2526*4679
Payne 181:18 1273
in Philippines *2728*2729
plm 159:23*176:1 *182:23
*184:20 1392 *1437 *1466
2092 *2651 *2988 34094660
4662 *5023
\& allozymes *4988
\& chr plm 2108
\& competition 5016
elimination 3625
\& enzyme plm 3276 *5156
\& geography *1905
\& iz plm in pops 31403141
\& 1 mu 19253212
\& seasons 2018
\& selection *3562 *5527
selection coefficient 3624
in pops *1472*1640 20172018
cages 2053
exp 2529
marginal 5196
natural *171:13 188:10 2243 46604662
\& position effect variegation 2473
II *162:3*103 3674
III *2921 *5232
inverted repeats 1588
invertebrate viruses 3764
in vitro, cell chr 172:28
cell culture 106321
cell \& vitamin B12 2128
culture 2337
\& heterochromatin 5532
iz 368
metabolism in 125
\& virus 205
cuticle formation 2715
dev 84037934830
differentiation *169:27 4153828 38294448
dise 164:17 170:5 5171239
2374237537934830
evagination 10861087
growth 3444
\& hormone 2374
leg 37913792
metamorphosis 2331
wing 38283829
ecdysone analogs 4492
ecdysterone-induced proteins 2143
embryo cells 186:18 960962 207137234443
endocrines 2047
myogenesis 187:18 187:19 3519
ovaries 1306
puffing 4403
RNA, double-stranded 4294
synthesis 178:10 17252666
spermatogenesis 176:5 *506 *2367 2670
systems 5813
transcription 480948105375
transdetermination 5115
vivo, cell culture 680
cultured egg chambers 5164
RNA synthesis 2666
testes culture 5074
iodine 1435346844535205
ions *712 20914760
iron 434745384539
irradiation (see radiation)
islands 258173331964670
isoacceptor 4668
isoalleles 170:25 4337158331964
*3053 31263152413244635342 isocitrate dehydrogenase 1648
isodrosopterin 4092
isofemale strains 13684958
isogenic 258926302703 *4368
isolation, \& aa 148149
cell line $\overline{1499}$
desert pops *2188 *2189
ecological 176:15
ethological 180:617330448
*1398 *2846 *3654 *3887
*5671c
mechanism 181:12 3585
reproductive 160:5*161
445 *2077 3585 *4302 * 4416
4613
\& competition 2696
enhanced *2319
incipient 2316
\& mixed culturing *4991
\& selection 168:6*460 1170 22404476
or selection, sexual 5259
semi-, pops 4235
sexual *177:6*460 22404476
between species $* 2442$
character displacement for *5265
\& cytology *4147
\& hybrid sterility *4098
of pops *2035
\& viability 900
social *5738a
isopods, terrestrial 442
isostich, pyrimidine 1512
isotopes incorporated in DNA
174:18
isoxanthopterin 1449
isozyme *4190
acid phosphatase *4113
\& ADH 375159518663013 301430153640
alleles \& selection 1584
\& allozymes, of GPDH 4871
in embryo 4225
aminopeptidase *4111
amylase 167:11 167:13 *167:14 $3942313 * 2848 * 2849 * 4088$ *5203 5825
in cell line 43745411
esterase *177:7*181:14*918
*920 *923 *924 *925 *926
*927 *1262 *1575 *1576
*2577 *2623 *2624 2625 *3256
37023703 *3704 *4111 *5610
MW 40074008
null \& active *186:1
variation *3169
\& evolution *3728 39434011
expression regulation 1252
flexibility 4682
\& genotype identification 4894
\& GPDH 161:8 161:9 *185:20
$185: 21158214543004871$
glycosidase 25973115
\& inv plm in pops 31403141
in vitro culture 368
lactate dehydrogenase 175:24 930
malate dehydrogenase *1263
\& mutagen 2436
\& mu rate 15463857
in nat pops *2114
octanol dehydrogenase *206 1065
\& ontogenesis *185:20
patterns 2161
\& phylogeny *5223
plm $105363364365 * 1307 * 1308$
$3908 * 5203$
in nat pops 5267
regulation 38614903
in pop cage 23
\& pop size 757
regulation 5583
\& selection 142414255825
long-term 123112321233 1234
pressure 19614164
\& species hybrids 165:11 2436
variability $191: 26$ *65 *66 814 24892544
Ives, P. T. 3993
joint formation 31454800
jousting beh 1505 *3978
jumping 179:28 84411191256
273228193863
junctions, permeable 2685
juvenile hormone 162:14 162:15
179:1 27232183984610591418
141915872172 2374*4718*5029
56205719 *5721 5814
analogs 2080418045395730
\& vitellogenesis 29184604
juvenoids, aryl geranyl ether 665
kairomones 3490
karyotype 174:19 *1853 *1916
4009 *5701
distance *184:23*184:24
evolution 2349245334615532
homo- *1706 *1707
key, species 5165
Kidwell, reply to 1960
killing and SR 315831605228
kinase, protein, \& embryo 5231
kinetics, of death 1535
of DNA-RNA hybridization 4093
linear quadratic 48554856
of mu induction 1120
parameters, isoallele 4463
reaction 5255
of RNA synthesis 18373157
of stable RNA 2142
kojic acid 4442
Kosmos $573 \quad 2420$
Kroeger hypothesis 2091
kynurenine 5092
formamidase 121212134887
hydroxylase 189:16 13751758
labellar, hairs 7811774
taste organs 5483
laboratory, \& concealed variability 3854
cultures pop size 5798
multiple mating in 3101
spontaneous mu in 2655
studies of compound chr 164:19
Lacerta 426
lactic dehydrogenase (LDH) 175:24
5695709302161
lambda 36215558
lampbrush chr 3780
Lansing effect 104810494792
LAP (see leucine aminopeptidase)
larva, acid phosphatase 3295
adipose tissue 50495722
\& adult GPDH 27684898
\& aflatoxin 9783730
larva--cont.
\& alcohol reaction 4959
alkaline phosphatase 675
amino acids 192:27
anal organ 162:28 163:1 164:15
antifeeding compound 356
antigens 36573658
Aph 12311233
B, \& DNA 4122
biotic residues 223 *2175 2194 *5397
body wall 4722
brain *992 239555885589
\& caffeine 4923
\& cAMP 4305
catacholamine 3021
cell, \& ecdysone 840 from embryo cells 1627 \& SEM 3983 type differentiation 1627
chr, banding variation 5328 puff and Glu 5461
chromatin 173:8 55
competition 163:5948
cuticle 1420
death-causing inhibitor 4637
defect, after pricking blastoderm 2752
\& embryo cautery 2165
dev, and low temp 308 \& mitochondria 57165717
\& rRNA 3116
\& dichlorvos 5585
digestion \& food type 174:2
digging 45594560
DNA replication \& repair 202 *639 *640
\& ecdysone 23084305
ecology \& meiosis 1439
onzyme \& puff 2074
esterases *926
ethanol discrimination 3918
facilitation 43315385
fat body 163:15 163:16 *4819 500152335615
fate maps 2534
fecundity, \& egg destruction 280
feeding 187:2416102854 4359 5399
ganglia 23984434
gene action \& anaerobiosis 1648
glycerol-3-PD 3868
growth 38894359
gynanders 800
heat, \& pattern formation 5076
hemocytes 2410
hemolymph 21445291
histoblast 48204821
\& hormones 2172
instar 552917
juvenile hormone *4718
1 tumorous 1861
lactate dehydrogenase 175:24 930
late, \& RNA synthesis 2029
locomotion \& mu 184:3
medium \& adult 1578
melanotic tumors *2823
metamorphosis 2049
midgut 5197
mitochondria 5039
\& MMS 44084923
morphology 1314
mosaics, prepu 2604
muscle 44485184
mu 34083709
neuroblast chr *5599
niche *4036
nutrition \& adenylic nucleotides 172:4
olfaction 39485010
organ \& electrophoresis 2993
organ fate map 169:15
ovaries freeze-conserved 163:2 163:3
partial, \& egg fragmentation

5257
\& phospholipase 2691
polyamines \& decarboxylases 2205
primary urine *713
protein 2172261952915339 5340
puff pattern 5462
radiated 184:11 2917
reaction to parasite *181:10
respiration 177:10
RNA and polyamines 2206
\& RNA polymerase 624698
24343555
RNase 4086
saliva 47264727
salivary gland, cell 189:12 cultured in adult 3271
lysis 22
secretion 20214692
starvation \& DNA synthesis 19281929
selection of synchronous 5329
sensitivity to chemicals 453 3953
single, analysis 4117
skeleton 5735
substrate \& electrophoresis *2960
survival \& medium supplements 4471
temp 164:28 308*2780
tissue antigen 183
translation of mRNA of 4025
urine *1975
laser 14635037
latency, male courtship 4462
lateral consistency 5471
latitude 228432964419
lattice, neurocrystalline 3962
lead smelting 2688
leafhoppers 3227
leaping 1959
learning 1696187123333466
4097 *5348 5537
maze- 68221462482
leaves, decayed, \& breeding 2601
lectin 4239
leg 165:22 143213741014353
disc 187:3 187:4 10863791
382956355736
in vitro 37913792
pattern 517851795181
reaggregate 51785181
transdetermination 2450 4382
fore-, microscopy 2443
morphogenesis 4356
mu \& temp 4697
polarity \& mu 3939
pu, ultrastructure 2949
regeneration 2418
shaking 192:31 3229
lek, beh $391539175430 a * 5680$ species 4634
Lepidoptera 2552
lesbian phenotype 314
lesions, discontinuous, in X 169:10
growth \& BuDR 15111515
LET, high-, particles and brain 2773
lethal, effect of fused 2642
triplo-, region 379
(see also mutation, 1)
lethality, \& chemical mutagens
5396
\& colchicine 2459
of FUdR reversed 169:1
maternal effect 414
of pollution 5418
\& ring chr 1736
\& t 854
leucine aminopeptidase (LAP)
123212341272 *257742514252
5336 *5704
Liapunov function 582
lifespan 309357104911852264
24263063454945735664
\& radiation 170:14 170:15 188:26
\& temp 1911555
Lifschytz-Lindsley model 4436
ligase, tyrosyl-tRNA 565797 1915
Hight, and beh 174:5 6341527 *1528*1529 *3410 *3411
blue, absorption 2832
\& circadian rhythm 164:8
*267 20602224
\& conductance 5292
\& courtship *1398
-dark cycles 35444571
\& dev time 5420
\& dusk 2797
\& egg, hatchability 2062 production 2062
\& genes *404
height, \& emigration 5058
-induced oscillation 5285
intensity 109213711970
\& jumping 179:28 12551256 3863
\& locomotion rhythm 3897
\& male homosexuality 5113
\& mating *762 *1091 *1436 *4228
preference *341
speed $2716 * 3616$
monochromatic \& pops 504
\& nitrosoguanidine mu 2700
noise, \& dev 2250
\& oviposition 271628524231 4943
\& phototaxis 137127165288
preference *859
pulses, circadian rhythm 2224
\& pyokori 179:28 12551256 3863
\& reproduction *1092 4230
response 2608
\& retinula cell 11842272
\& serotonin 2366
temp \& mating success 2328
\& vision 320
\& voltage noise 5822
line, N.A. 5730
lineage, germ cell 3870
linear, redundancy *1931
regression 1413
linkage 193:21 1963439846165562
disequilibrium 164:9 177:25
*186:1 *193:24 *100 723983
984 *1063 143014321820 32925779
\& cline 5310
decay 3417
detection 3277
\& ecology *1841
\& esterase *1839 *1840
*1841 *3168 *4702
in pops 12361237 *2230
280628073522 *4780
5338
nat 373141814895
\& related enzyme loci *4209
\& sex-linkage 5357
in III 1692802
equilibrium \& radiation 2895
in pops 177:24 177:25
lipid 165:19 186:17 192:11 35:
161724013921
load 73116462229
genetic *1322 $2865 * 4635$
in nat pops 187629953000 3477347839904478 *5155 5726
\& polygenes 2051
\& viability 164620514384 *5155 5476

$$
\text { X } 54965715
$$

localization of gene function 1968
locomotion 171:17 6020523028
\& anesthesia 52395790
mu 172:26 184:3662
\& noise 38994948
rhythm 6691326286738973899
locus, allozyme 41144135
closely-linked, expression 3458
complex 51977485511961486

3647

electrophoretic 269
GPDH, evolution 4751
heat-activated 5559
heat shock $479355415625 * 5627$
heterozygosity \& evolution rate
3805
homologous 175:20 3570
human 4845
linked, \& polygenic trait 2653
meiotic, used in mitosis 4260
mutator \& mutable 3550
number of sterile 5272
pattern, on chr 3775
polygenic 17981799
\& ribonucleoprotein *167:1 3451
specific, mutability 4227
structure of 1158
two-, system 1663
unstable 4561456245644565
X mutagen-sensitive 3059
(see also gene; mutation)
longevity 3572847 *3888 3998
adult 159:16 2264
age, \& diet 2081
\& aging 5670
\& antioxidant 3032
\& ascorbic acid 2726
bibliography 30645758
\& casein 1869
\& chr plm *181:20
dryness, \& geotaxis 2934
eclosion, \& noise 28693898
\& rhythm *4361
\& enzymes 16624043
\& ethanol *4070
female 165:3
genes *56715684
\& genotype 4312
\& growth rate 56235624
heterosis 5331
\& medium 191:17 4312
in nat pops $* 4960$
\& proteins 191:17
\& radiation 171:5 180:8 183:23 192:14
\& radioprotection 171:6
\& sex activity 5512
\& temp 165:3 1331 *2082 2264 *4960 5684
\& virginity 1641
luminescence of chr 51405141
lymphatic glands *5163
lymphoma 174:22
Lyndiol \& mu 1431
lysate, mitochondrial 2242
lysine tRNA 6331947
lysis 22
Lysolecithin \& cell fusion 2452
lysosome 11661168341445535804
macrochaetes 11321384
macromolecules 176:76526531587
magnetic field 390272034593546
4439 x rays \& mu 1191
magnetism, X rays, \& mu 1191 magnification 185:26 192:30 186187

61717801784296545174826
61717801784296545174826
4953
\& bb 161:28 26842801
\& circular rDNA 35494535
of rDNA 673108424302884 457547524799
maize 15933362
malaria 19491983
malate dehydrogenase 160:27684
*1263 *1264 1299 *1704 2483
malathion 30825691
e 160:27 684
.

\qquad
\qquad
p4
?

\qquad
$$
1
$$

male, accessory gland 167:10 *2311 3599497449754977
age \& segregation 725
attractiveness 317
autosome l to 4802
chr late replication *3565
\& chr pairing 2304
chronically gamma rayed 592
co $180: 25$ 192:1 *726 *1220 * 1222
*1223 *1224 16664891 *4897
courtship, among 5534
beh 165:5
latency 4462
sounds *1378*2225 2564 *2766 *3826
density \& mating 2324
DNA synthesis 659
dominant 1 mu 4129
dyad in 27112712
\& female collecting 3345
fertile period 2496
fertility, \& chr pairing 1172
mu 1533
$\&$ SD 2687
\& \bar{Y} *709 27453350
foreleg 642244351795181
galactoside 4379
gametogenesis 4787
genital disc 16
genitals 172:12 9702644
germ cell, \& microtubules *5075
mu 5104
mu affecting 5573
GPDH 637
heterozygous, \& SD 1830
\& histone transition 2582
homosexuality \& light 5113
-induced t and co 3790
irradiated, caffeine, \& mu 2748
isolated from females 460
-killing SR 5228
longevity 5512
mating, advantage \& y 4110
experience 5639
\& radiation 83
\& selection 1385
speed 1367
meiosis 163:21 163:22 193:22 575
\& recombination 5540
ultrastructure 2945
meiotic, breaks 5295
chr mu 5313
drive 13801382
prophase 1682
-sterile mu 4786
meta- 3771
mitotic recombination 3282 32833284
multiple courtship 2329
mu, \& EMS 4327
\& laser 1463
\& nucleic acid precursors 1464
in postmeiotic cells 27
nonhomolog beh 4373
paragonia *116 288631934144
radiation \& offspring 5518
rare, and choice 5472
mating advantage $* 168: 22$ *14462842446649415759
rayed \& co 11591160
recombination 87216641665
189418951896198436043605
40454046 *4170 417151365137
5138554056445645
\& chr breakage 3593
\& dysgenic hybrid 5185
element 38073808
\& extracts 5186
factor 5824
\& feeding 5539
gene 27333055
\& hybrid dysgenesis 4710
inducer 192:5 192:6
\& injection 3061
\& interchr effect 5294
\& mosaics 4621
\& mu rate 175:6 1765 *3142 *3143
in pops 162:25 53135314
\& selection 2590
somatic 409648695211
spontaneous 2589
refuses to eat EMS 2038
$s^{4 c^{4}}-\mathrm{sc}^{8 R} 2124$
segregation in 1173
sex activity 8288294993 5090
sexually competing 191:24
somatic, ganglion 4284
mosaicism 4870
-specific, amylase *393
1183831133114
\& SR 3158 *3587
-sterile mu 40324787
sterility, in species hybrid
3440
\& temp 164:271754
sternite bristles $* 177: 8$
treated, mosaics after 2662
wingless \& courtship 167:7 167:8
zygote, 1 for 5223158
X 43441334
X/0 *2125 *4014
Y function in 4928
IV nondisjunction 5012
maleic hydrazide 491349144957
malic, dehydrogenase *1433
enzyme 47675506
malignancy 553239455025503
Malpighian tubules 193:97131282
*1860 *1932 199719981999
237324723246324746665805
timer 34974511
mammals 728
man 176:2 38775263
man $176: 23877{ }^{2}$
manganese 2990
mannosephosphate isomerase 3860
map, chiasma 3853
chr *1042 *2651 *2984 *3132
cytogenetic, of III 434
cytological, of asynapsis 3936
EM of X 188:28
enzyme \& general protein 2219
fate 169:15 1153 218723882534
25663328342937353940 53355561
functional manifestation 4521 4522
gene 3430
mitochondrial DNA 4169
mitotic recombination 123
organ 182:22 1338
photo- *1714 *2984
stereotaxic, of muscle fibers 177:19
\& temp 4520
thermal recombination 628
mapping, \& antibodies 4469
cytological 625
fate 750
fine structure 175
5 S rDNA in plasmids 5148
germ cell 2403
intercistronic, of electrophoretic sites 178:25
mitochondrial DNA \& RNA 36944720
\& mosaics 749750
repeated DNA's 2882
structural genes 5324
marginal overdominance 1962
markers, 25693051
marking \& recapture 1827
Markov process 167:18 1111
maternal, age 608947
derived enzyme 5732
effect $464674 * 1187 * 1189$
1282145722562931
\& dispersal 178:27
\& embryo 279328173997
\& fertility 3405
\& germ line 38014841
\& hybrid dy sgenesis 3099
hybrids, \& temp 1644
\& inbreeding 2148
1414 *2779 281734183997 40294922530853095741
\& light 5168
\& mosaics 5667
\& MMS 4574
mutants 179:15 2971497
1498348249375749
\& radioresistance 181:9
repair by transplantation 3374
\& sex ratio 176:3
in species hybrid *2777 *2779
on sperm mu 10791080
\& tumors 4335386
esterase *925*1126
influence on mutant 186:6
inherited chr breakage factor 177:21
\& paternal chr lesions in egg 5304
repair 38133815
\& caffeine 114816783275 4946
\& sodium fluoride 2747
mathematics, egg production 346
model 4712830
of mortality 413
mating, activity \& selection *1625
advantage 41105760
rare-male *168;22 *1446 2842446649415759
\& age 3173692
assortative 160:12 784694
beh 185:15 315316317330683
*2488*2870 3476
\& inbreeding 2481
\& strains 2760
\& biometrics 932
breeding test for 2115
chr arrangement, \& selection
*3034
competition \& eye color mu 161:2
controls *188:6
\& courtship 30185639
\& diet 317
discrimination 231232
distinguishing 2115
double 2929
\& egg-laying 2716
\& ethological isolation *3887
\& evolution direction 5270
experience *2846 5639
\& fitness 209342514252
frequency-dependent 23003692
\& geography 3926
interference 2325
\& light *341 *1091 *1436 *1713 27164228
male, \& radiation 83
\& selection 1385
multiple 170:6 3101
of opposite extremes 193
\& pars intercerebralis 2163
pattern $82 * 4238$
\& pheromone 20952097 *4238
\& pop density *441
preference *341 *3887 *5270
\& speed 26052606
propensity dev *1996
random 168:13 597232588
rate \& pop density *168:3
re-, \& paragonia 4624
reluctance 174:6 *763*4652
repeated *15025015 5712
scheme \& inbreeding 161:11
selective $162: 5$ 179:4 1683
selection \& pheromone 4255
\& sex, selection *1445*2927
type $* 1706 * 1707$
\& sorbitol dehydrogenase 2152
\& sound 2095
speed $1367 * 1705 * 25172716$
29323463 *3616 *5159
status 2160
stimulation 195196197
success, \& aggression 420
\& density 2324
in large exp pop *4238
\& selection 23262605 26063464
temp \& light 2328
time, \& allozymes 3317
\& receptivity *3238
\& vision *1399
maximum permissible levels 4444
maze 214631364614
beh 14551456293229332934
5711
\& learning 6822482
medicinals \& mu 3912
medicine 161:24 5526
medium, conditioned 2818
conditioning 2320
defined 4471
food, in cage 3291
\& longevity 4312
microorganism 1001
\& mu 160:161873
radiated 86415661873
\& selection 409
meiosis 185:9 70539773984
beh 13644184
\& chr *2502
compound 173:1740
segregation 5013
co 184:9 3452
control 4786
\& detached X *4509
\& drive 184:25 57413801381
1382 *1408 3772 *5360
\& duplication 832
female 166:20 25214143762 cytology 34453446 early prophase 2291 EM 2213
theories 4936
genetic control of 25315643324
\& heterologous interchange 183:2
loci used in mitosis 4260
\& lv ecology 1439
\& magnification 2965
in male 163:21 163:22 193:22 575229653135540 \& breaks 5295
\& mitotic pairing 2304
mutant 163:23 251253254360 5751858185927222723 28313325 \& compound autosomes 3443 \& recombination 24555086 5361
\& mutator gene 599
\& nondisjunction 164:3 193:7 5525a
\& oocytes 175:13 1013
\& parthenogenesis *1790
pre-, cells \& mu 1464 DNA synthesis 2292 of spermatogenesis 3058
prophase, female 38734506 male 1682
recombination 1444 control 2109332333243325 \& Inv 4833
loci 4260
male, \& chr breakage 3593
\& selection *1790
single phase pairing theory 1297
\& synapsis 463
time \& duration 3351
\& t heterozygotes 171:21
ultrastructure in male \& female 2945

\qquad

aximum pormissible

2818
\qquad
\qquad

39773984
\qquad

\author{[^15]}

\author{[^16]}

meiosis－－cont
\＆UV 3753
X rays，inv and $t 2296$
melanization＊181：10
melanogaster subgroup＊191：4
melanoma 5371
melanotic tumors（see tumor， melanotic）
Mellaril 1567
melting temp＊2269
membrane，basement 1510
\＆circadian systems 2836
egg 3844
excitable or not 3088
fine structure 1577
glycoprotein 38183819
midgut，enzymes 3836
mitochondrial 13011788
models 2836
\＆phospholipase 2691
photoreceptor 5285
potential 1788
rapid，formation 3589
yolk platelet 588
memory 34663952
Mendelian unit 247
Meprobamate \＆mu 178：16
mercaptopurine resistance 2794
mercuric acetate 322
mercury 4774
fungicide Ceresan M \＆mu 2730
meristem，root 3542
meristic trait 13
mermithids 4176
meroistic ovaries $1491 * 14922954$
mesoderm 9892403
mesothorax 12143735
metabolism，active，in dev 172：5
adult，\＆age 4027
alcohol 441744215240
carbohydrate 165：1953
\＆carcinogenesis 4136
of catecholamine 173：26
DNA 21093323 ＊5806
embryonic chr 4817
\＆emergence rhythms 160：25
ethyl alcohol 1870
eye pigment 1842
glucosamine 4474
holo－ 1802
juvenile hormone 5814
\＆lipid 165：19
\＆microsomes 4343
\＆mutagenicity 3030
\＆nonphysiological compounds 3966
nucleotide 454
\＆＂null＂alleles 182：6
nutritional requirements 191：18
\＆pentose phosphates 24442445
\＆polyol 177
protein，\＆gamma rays 191：9 1855
pteridine 244953185477
purine 1252127
pyridine nucleotide 2583
pyrimidine 3419
respiratory 998999
rhythm 134
RNA 22515569
sperm 557
tryptophan 193：9 5092
tyrosine 173：26 2571
metabolites \＆mu 162：27
metafemales 178：14
metal，\＆chr segregation 1479
heavy 2690269832624446
trace 3198
metamales 37714807
metamorphosis＊159：17 172：6
180：12 181：6 64395214191420
199820492331273429143270
4725
\＆respiration 169：26 172：8
metaphase，chr 172：28 2951562
2458 ＊3737＊5280
configurations 3415
heterochromatin＊1344
heterochromosome 96
meiotic 3446
metarhodopsin 5170
metathoracic disc，dorsal 1867
methamphetamine hydrochloride
1760
methods
acid phosphatase 452084
administering test compounds 3220
age estimation 1872
alkali－urea 2672
anaerobiosis puff induction 2028
analyzing competition 681
anestbesia 1672385
antiserum against esterase－6 70
assaying，chemical mutagens 556
cricket paralysis virus 5105 nonrepetitive genes 1846 plant extracts 1125
bait trap 31444297
bottle filling device 3010
cell，lineage \＆fate mapping 3735
organelle microscopy 3795
chemical，injection 788 mutagen 180：21 12011204 12051206124920393148
chromatin fractionation 408 12745091
chr，autoradiography 2808 banding，metaphase＊5281 compound，construction 3876
isolation \＆fractionation 2460
staining 74389723094749 4965
cloning 27403970
collecting 219036904162
Colwell－Futuyma 186：10
compound X construction 2207
computer breeding 2451
computing first neighbor DNA frequencies 4835
countercurrent device 4104
cross breeding 543
culture medium 156484510 915122526923841
＂dead＂medium 129
detecting environmental mutagens 3366
detecting quantitative genes 1145
detection of pyranosidase $* 1240$
dev speed measurement 1875
disposable containers 3787
distinguishing matings 2115
disulfon assay 1462
DNA，fractionation 5003 recombinant 4586
sequence mapping 1941
trioxsalen crosslinked 5117
drosopterin 3139
dumper to remove flies 2305
dyeing heterochromatin 5139
ecdysone application 2308
egg，chamber mass fractionation 3633
permeabilization 1951
synchronous，collection 3085
electron microscope 8993075
enzyme detection＊1062
establishing embryo cell lines 4978
esterase activity 153
ether alternative 686
fate mapping foci 2363
feeding water insoluble compounds 2786
field survey 1817
fine focusing \＆dissecting microscope 3154
fixing nuclei 5133
fly trap 3591
freeze conservation of parts 163：2 163：3
gas exposure 2414
gaseous chemical mutagens 234
gene，enrichment 3794 localization 2347
generating visible fertile autosomal recessive mu 3228
genotype identification through iz 4894
Giemsa stain＊1344
golfball for fly writing 2668
GPDH 312
hemolymph 28293652
hereditary coefficient determina－ tion 2979
hexokinase variation＊3340
histone 2930
immunofluorescence 295125
eye imprint 2613
injecting 160518624804
in situ chr proteins 3046
in situ hybridization＊39
isolating，adult DNA 1127
flightless adults 1620
many heads 2767
lab culture 42495798
labeled RNA preparation 2695
labeling with 35 S \＆ 32 P 239
large，pop culture 2497 scale culture 2427
light source \＆driver for vision studies 3240
lineal microphotometric scanning 898
liquid consumption measured 1857
lv，access to mutagens 2796 separation 545
maintaining small continuous pops 3437
Malpighian tubule pigment 2472
mapping structural genes 5324
marked Y \＆mutagen tests 4789
marking adults 1227
mass isolation of pole cells 3296
maze design 4614
measuring locomotor activity 1211
media for tissue \＆cell culture 1601303534535247
microbial control 207
mite control 7724111522751 3404
mouth aspirator 126
movement analysis 44145445
mushroom bait 2565
mutagen，\＆carcinogen detection
18865183
testing 327203327963098
mutagenizing feeding chamber 1616
mu screening 1263814
neuroblast chr 641
neurogenetics 5305
nucleic acid hybridization 37
＊39 13594427
olfactometer 527
ovitron 1270
phase－contrast microscopy 3178
pheromone bioassay 1017
plugs 2751
pole cell isolation 2063
polysome preparation 2695
polytene chr，cytology 4437
from isolated nuclei 4047
pop cage 20762191
preparing culture vials 3060
quick preparation for microscopy 4079
raying imagos 168
rearing fungus feeders 1709
ring chr of autosomal hetero－ chromatin 4629
RNA polymerase 124684
salivary gland chr 20122468
screening autosomal recessive 1 3501
screening，eggs 2843
insecticides 1279
regulatory mu 1375
segmental aneuploidy 13011743
separating RNA＇s
setting up lab \＆kitchen 1151
simulation of nat selection in lab 2709
sister chromatids stained 5284
squashed spermatocyte permanent
slides 2540
staining 4739
accessory gland 4975
starch gel electrophoresis 1230
successive enzyme staining 1241
suspension culture 2674
synthesis labeled tRNA＇s 5205
teaching pop genetics 64
testing，carcinogenesis 4026
ecdysone analogs in vitro 3483
thermal gradient bar 3493
timing rhythmic \＆cyclic
processes 1156
trap 2689
trapping 165：25
treating adults with chemical
mutagens 2040
tRNA 344565
＂unknown＂laboratory stocks 1075
virginator stocks 1988
visual mutant investigation 2568
washing glassware 4833548
X male－sterile mu 41424143
XDH 52240
zymograms Xeroxed 1387
methyl，dopa 1622169316954175 5301
－hypersensitive mu 32413242
－2－benzimidazole 3846
mercury 1892
methane sulfonate（MMS）159：2
188：22 32334885
\＆caffeine 38694923
\＆mu 1053105419923244 4049
sensitivity 169224283244 3953440845745522
－ $\mathrm{N}^{\mathbf{\prime}}$－nitro－ N －nitrosoguanidine 5079
methylase，DNA 5785
methylation，rRNA 4778
methyldemeton \＆mu 18841885
methylthioadenosine 37375603
metofane 167
metrifonate 4753
microbial contamination 2504
microcautery 2002165
microchates 109022535648
microcomplement fixation 3427
microdensitometer 3056
microdifferentiation＊176：1
microdissection of single cells 2967
microdistribution 14633543682 microgeographical differentiation
＊3121
micromanipulation 29683982
micromycetes 5829
microorganisms 10012598
microphotometry 898
microscopy，cell organelle 3795
denaturation 4033
electron（see electron
microscopy）
fluorescence＊3717
phase contrast \＆scanning
－ sive
\qquad

```
教
```

\qquad
\qquad
\qquad
\qquad

$$
1
$$

microscopy --cont.
electron 3831
microsomes 425843434791
microtopography 1514
microtubule 19533226 *5072
*5074 *5075
granules 21222123
protein 24332936
microwaves 474966
midgut 170:9 170:10 170:11 170:12
170:13 11941779239238365197 amylase 204420452312
migrant selection in nat pop 4502
migration 170:2 171:4 181:15 1067 17764201
minerals in medium \& mu 160:16
mirror-image duplication of organ 192:26
mites 7724116261152
mitochondria 183:7728
\& age 111016805242
biogenesis 3447
DNA 163:9 183:26 8562019
*32673390344841694558
55145725
in genus 23552356
heterogeneity 35334490
enzymes 916
\& flight muscle 1680
\& histones 1110
\& isocitrate dehydrogenase 1648
lv 5039
dev 57165717
lysates 2242
membrane 13011788
midgut 170:13
-nuclear interactions 998
\& poly rA:dT 1753
\& puffs 3050
reduced NAD dehydrogenase 2620
respiratory metabolism 3744
\& RNA 856
RNA \& DNA mapped 3694
\& sperm 13881643
mitomycin 167:22 173:14 179:12
181:3 181:5 1085181119002705
27984829
mitosis, chr 1041 *2502 \& actinomycin 4986
disjunction 170:24
in species 5614
strandedness 1863 ultrastructure 2946
cleavage, \& chr loss 4999
co \& male recombination 5185
egg, \& DNA organization 170:29
in embryo 166:20
in interspecific hybrid $169: 4$ 169:5
\& magnification 2965
\& meiotic pairing 2304
prophase 1688
rate \& mosaic 4040
rate \& temp-sensitive mu 4040
recombination 123124487861 334253615362
\& cleavage 328232833284 heterochromatic 5045 \& mutator 2718 \& UV 2719 \& X rays 657
regulation 169:4 169:5464
sister chromatid exchange in 189:13
\& somatic pairing *3567
in species hybrids 3480
spindle 180:9 38313832
uses meiotic loci 4260
mixed culturing \& reproductive isolation *4991
MMS (see methyl methane sulfonate) model, of community structure 1413
computer 1963
\& egg production 346
frequency-dependent 173:6
for genome change 3260
Lifschytz-Lindsay 4436
membrane 2836
neutral 4461
pop genetics 4694
statistical genetics 1285
of subdivided pops 5345
two locus, of SD 3583
modifiers 174:3 190:1752754
1797180018321893 *5696
modulation, gene 162:18
RNA metabolism 225143934394
molds 1279
molecular, analysis of Y 3688
anisotropy 2432
biology 4543
differentiation 1732
dosimetry, EMS 421542164217
of mutagen 32803281
evolution 87988021034712
face of chr 5689
genetics \& aging 5081
mutagenesis 5778
plm genetics 5705
speciation 2317
variability 3318 *3973
weight, DNA 67
molting 142032644840
molybdenum 4322991
monitor, heavy metal 4446
monitoring environment 26033698
monochromatic light \& pops 504
monogamy *503
monosodium glutamate 273274275 1537
Morgan, T. H. 1131504
morning glory *5553a
morphine \& mu 3696
morphogenesis, \& cell degeneration
1739
\& chemicals 2202
\& dihydropyridines 2703
disc $4528 * 5073$
embryo 5041
loss 2721
patterns 192:4
\& polygenes 36024630
spermatid 4785
\& time 1047
ultrastructure 3976
wing 4218
morphology, abnormalities \&z
hormone 5730
\& aflatoxin 3730
\& ecdysone 33565367
of embryogenesis 5187
\& genetics *3257
interfertile species $52365787 a$
intersex 165:22
loss 2721
lv 14
\& nat pops 4940
\& plm 3310
\& replication of rearranged chr 3199
species hybrids *4304
SR embryo 4118
transcription unit 3725
mortality, female, \& TEM 3847
\& hempa 5414
kinetics 413
prey 3077
mosaicism 190:65855867791421
36904485
analysis 216
\& beh 172:25 172:26 7495533
\& cand 3078
\& cell differentiation 5509
\& complete mu 2646
\& courtship 25113611
eye 2505
\& fate maps 2566
\& feeding 5539
female 1121
genital disc 5737
germinal 49265738
gonadal \& somatic 82043
induced 171:9584
1, \& chemical 5079
\& 1 mu 17012503
\& male recombination 4621
\& mapping 749750
markers 2569
\& maternal effect 5667
minute 4496
\& mitotic rate 4040
\& MMS 4855
\& mutagens 26624925
mu , repair of 773
\& mutant 4716
\& pattern formation 5776
position effect 336334944063
prepu lv 2604
salivary glands 5634
\& SR 3160
somatic $3012 * 47064870$
systems 3572
\& X rays 159:15 25254655
\& Y 25254655
mosquito 255833714326
mothers, daughterless, rescued 3374
motor activity, patterned 764766 36185554
motorneurons 24614607
motor output 191:2
mouse 29034284767
mouth parts, modified $2462 * 5565$ a
movement, pattern \& neurons
173:9
mucopolysaccharide 183:25
mucoprotein *939 261932703273
Muller, H. J. 2491292
multi-locus genetic systems 471
multiple, alleles 57425803
-choice tests 5760
multivariate analysis of wing 2972
multivesicular bodies 4976
Musca 296350645167
muscarinic receptor 4454
muscle 4430443155805581
cell \& actinomycin D 415
differentiation 232144485401
effects of disuse 2294
fibers, lv 5184
flight 177:19 $768 \quad 1680 \quad 1927$
369744835555
function, declining 4381
midgut, adult 2392
sense organs, \& flight 2925
muscular, neuro-, excitability
5092
junction 46734722
musculature, visceral 5423514
mushroom 25654711
mustard, acridine \& mu 1982
mutable, genes 621622
\& mutator loci 3550
tandem duplication 14801481
transposable system 3631
mutability, of chemicals vs.
radiation 996
conjugation, \& co 5246
\& heterozygosity 1568
of M 25153614
radio-, of loci 5342
of recessive 13614
\& selection 4952
\& sex 191:22 625246
of unstable alleles 4665
mutagen, anti- 169:18 591
\& carcinogenesis 42585183
chemical, assaying 556
\& chr 219
concentration \& mu pattern

3187

dosimetry 4769
gaseous 234
lethality 5396
permissible levels 4444
storage effects of 188:21
treatment fractionated 4327
contaminating 2506
detection 188640524177
\& DNA origin 3454
effect in homolog 5
environmental 167223023274
57545755
evaluation 2838
frameshift 193:5 1981
indirect 192:2 1883 37094733
interacting 3020
\& iz 2436
\& mitotic recombination 124
\& mosaicism 26624925
\& organ ultrastructure 1333
reaction kinetics 4137
selectivity 2350
-sensitive, loci, X 3059 mu 21672168457451445144 5146
sensitivity 188:22 166821692170 24023969404940515752
specificity \& somatic chr aberrations 2901
\& teratogens 3038
testing 3273067478952375254 \& gene instability 3098 \& transposition 5025 \& unstable X 5026
\& whole \& fractional mu 180:23
mutagenesis 5415
carcinogenesis, \& nutrition 4917
chemical 1671167216731676 37425521
\& radiation 5753
comparative 2598265626633708 39604477575357555756
differential 4952
drug, comparative 5038
environmental 30203366
genetic control of 55235524
injections for 788
\& metabolites 162:27
prolonged, \& repair 4449
\& recombination 2833
screening 317331743175
somatic 4026
mutagenicity, comparative 2627
3695
of delta 785
of drugs 3494
\& metabolism 3030
tests 2033
mutant
abnormal abdomen 173:21 173:23 148149153417933007
abnormal oocyte 179:15 943
Abruptex (Ax) 184:6 7531415
14163613394139424998
achaete (ac) 35135501
acid phosphatase-1 1351362609 3852
adiposef8 165:19
alcohol dehydrogenase (Adh)
191:27 202083653757151864
186518811995266530143185
327934293439348536403886 45055208
aldox 40594421
almondex 187:27
Amylase (Amy) 167:5 23143460 *418844404441
antennapedia 1740219521963092 3757407343544355
Antennopedix (Apx) 189:14 1740
17411742
apterous 4166
aristaless (al) 275627583667
aristapedia 2245855867861163
14211741275427552757
366636683821382343544356
asc 178:28
$\overline{\operatorname{Bar}}$ (B) 166:24 173:24 528831
116511661167116821552759
316840344122486648675564
5787
dev 174:17
mutant, Bar--cont
in exp pop 5040
-Stone ($\underline{\mathrm{B}}^{\mathrm{S}}$) 164:18 3004
Beadex (Bx) 2998
bicaudal 4937
bithorax 175:8 2438553714 38484224504952155335 54125722
black (b) 2222
bobbed (bb) 161:28 178:6 186:25 121187617 *945 11061199 239123842801 *3719 3980 *4015 *4274 *427645184827
Bristle 2477
brown (bw) 1694 *1897 22113018
c(3)G 186:8 2455289929453630
C21R 4969
C(2R)RM 1014
caramel 5718
cardinal (cd) 182:26
carnation-light 4922
cin 2276
cinnabar (cn) 176:13 182:26 187:7 7337343018
cinnamon 160:11338142214951 53665667
claret nondisjunctional (cand 190:2 30784999
contrabithorax 12142800
costal 1950
crossveinless 162:21
cubitus interruptus (ci) 174:3 416752754101913862136 2137251236123613 -dominant (ci$\left.{ }^{\mathrm{D}}\right) \quad 7533473$
Curly (Cy) 174:9 185:9263 264 247736613724
cut (ct) 177:12 81625472998 3644
D 586
da 321141535374
dachs 382346984861
daughterless 179:15 2971115 22562898337434184396
Dde $^{4983} 5820$
deep orange (dor) 175961963 965966372338013949
delta 180:10 1182
Dly 11342736
dm 1711
$\overline{\mathrm{Dm}} 25543915202$
Dpdh 1995
dumpy (dp) 519774775776 11961209175023782379 46574883
dunce 2333
ebony (e) 173:26 330338375 44810301031103222822300 236526803632
engrailed 7511215
Enhancer 2887
Esterase (Est) 168:1 168:2 970 1094 *2078 20872088 *2259 22733311 *3420 *3421 *3641 44155225
extra bristles 2953
Extra sex comb 1740
eyeless 189:19 17684370 -dominant 12079
femaleless *2629
female-sterile (fs) 25812587 296931535052
FM6 178:28
forked (f) 982176719793551
four-jointed 3823410146984861
fused 19932642372041795485
garnet 1599
giant 175:1 2863
glued 2254
gluful-2 19861987
Glyful-1 3237
gonadal atrophy 5690
Gpdh-1 1362
grandchildless $3124 * 45894924$
gum drop 842
hairless 190:5
hairy (h) 25362756
Hairy -wing 744
high mutator 3054
$\mathrm{Hk}^{2} \quad 3229$
I 2897
$\begin{array}{ll}\operatorname{In}(1) \mathrm{sc}^{4} \mathrm{sc}^{8} & 163: 222304\end{array}$
In(1) $w^{m 4} 4065$
In(2L)Cy 5337
委 3674
Killer prune (Kpn) 182:15 2449 4594
1(1)1074ts 5446
1(1)su(f) ${ }^{\text {ts }} 67 \mathrm{~g} \quad 167: 20167: 21$
lethal(2)giant larvae (l(2)gl) 6062395262629573538 36563707405346914730 4731
lethal(2)meander (l(2)me) 167:19 192:27
1(2)Stm 26653747
l(3)c43hs1 3802
lethal(3)giant larvae (1(3)gl) *5160 *5162
lethal(3)translucida (1(3)tr) 162:28 192:27 2161
lethal polyploid (lpl) 1541 *3622 *5072 *5073 *5074 *5075
lethal tumorous larvae (ltl) 2023202720303272
lao 58115812
light-3 5168
Lobe (L) 24774370
lozenge (lz) 190:7 190:8 127 12818181913243335354050
Male recombination element (Mr) 2733
maleless 52152228583113 3114
malformed 3329
maroon (ma) 2068
maroon-like (mal) 166:19
182:26430431 22113872 39074841
Mat(3)1 5031
mat 363976
Mdh 1094 *2902 3865
mei 18582169228928314920 5536
miniature (m) 622
Minute (M) 487121613231324 19441946251528872888 $297134523614 * 4276 * 4277$ 5116
Moiré (Me) *1093
ms(1)6S 4593
mu 598
Multiple sex comb 1741
multiple wing hairs (mwh) 538
Na 3670
Nasobemia (Ns) 166:25 378786 11631740174117424862
norp 13351336494949505058
Notch (N) 169:25 188:1 502 16181619171125792664 *3177 3219403149985743
ocelliless (oc) 811
Octanol dehydrogenase (Odh) *1094 *2171 22743485
Out-coldts 168416553065
orientation disrupter (ord) 27222723
parats-1 3229
paternal loss (pal) 97
Payne inv 181:18
Pgm *1093 3149
phosphogluconate dehydrogenase (Pgd) 162:18 35693615
Plum (Pm) 3661
Polycomb (Pc) 185:2 2241453 17401741219521962930 3670435443554435
postbithorax 5335
proboscipedia (pb) 25753665 3667366846974698
prune (pn) 182:14 182:15 1599 244928664594
puffed *2777
purple (pr) 1965196722222586 32313258529053195320
radius incompletus (ri) 1877 187831813473
$\mathrm{rec}^{-} \quad 566$
red Malpighian tubules (red) 4060
refractaire (ref(2)P) 5665
R(l)2,yf 169:12
rosy (ry) 170:25 94560561 11292107224836003885 5424
Rough eye (Roi) 4134
rudimentary 181:24 189:15 472 4738011295139616792357
25673722396043464485 44864491463747434744
sal *170:26
scarlet (st) 182:26756
scute (sc) 193:13 29523513 40774519452045214522 503352065501
$\mathrm{sc}^{4 \mathrm{~L}} \mathrm{sc}^{8 R} 2124$
Segregation Distorter (SD)
178:9 180:17 190:23 190:25
193:11 28667872010721381
13821778183023872687
31953584
co \& fertility 3604
components 3510
DNA distribution 3586
\& histones 2582
Korean 3900
\& male co 4897
modifier 719189331503151
plm 3406
in pops 24692471
\& sex drive *2704
\& spermiogenesis 4102
suppressor 4145
two-locus model 3583
\& III 1832
sepia (se) 166:19 807849878
18423308
Sex Ratio (SR) *826*1105 1193 14233211
shaker 191:2
shiberets1 54005401
shibire 172:26 184:3 36975581
silent gene (LAP Do) 1229
singed (sn) 171:9 150584586
78735363537353935403629
mutable 4665
unstable 4561456245644565
son killer 5749
sonless 13962898
spapol 23223520
speck 1914
spineless 275527573821
-aristapedia (ss ${ }^{2}$) 171:9 22932758375638224353 48604861
stripe 2953
stubbloid (sbd) 4061
Suppressor 2887
suppressor of f (su-f) 169:19 158535284050
suppressor of hairy-wing 175:18
suppressor of Hairy -wing -2 2609
suppressor of rudimentary 189:15
suppressor of sable (su(s))
192:22 192:23 7947982513
2697
Su(ss) ${ }^{2} 48635652$
su-tu 1694
Suppressor-of-variegation 4064
syde 1811
thread (th) 174127583667
tilt (tt) 1750
tra-20TF 23763502
Transposing Element (TE) 36233627
Tricomplex 184:27
tu 1694
tumorous head (tuh) 433947948 94912832931337339944940 53865387
Tyrproless 7481985
Ultraabdominal 4425
veinlet (ve) 179618003473
vermilion (v) 163:17 176:13 182:26 187:7 238614655656 181231393495354739074668 49125299
vestigial (Vg) 330361733734 39305123
white (w) $144320 * 51310001023$ *2372 2863301830743552
363142644642
-blood 4581
\& complementation 28
-coral 169:174487
\& ERG 1723
-ivory 197935885538
in lab pops 162:5
position effect 4705
\& vision 4174
wingless (Wg) 161530313849
withered (whd) 1750
Xa 2633670
Xanthine dehydrogenase (Xdh) $5605613413 * 3456 * 3944$
yellow (y) 171:9 181:17 229584 58612691271152123232324 23262327282834643476 mosaics *4706
pleiotropy 4165
position effect 34944110
zeste 83585528872888
Zw 162:18 3521
Y66d 1956
mutation, \& abnormal disc 4969
accumulation 244
\& acetic acid 3846
\& acetylsalicylate 4619
\& acridine mustard 1982
\& AF-2 43175378
affecting egg cytoplasm 189:29
affecting germ cell 5573
\& alkylation 3743413742504770 5255
all-or-none 3539
amber 175:9
amines, amides, \& nitrite 5377
\& amitrole 26463067
assaying 4177
\& atrazine 4901
\& attached-X 668
autosomal 171:12 604
\& electroretinogram 911
male 14802
\& vision 691
\& zeste 835
auxotrophic 4734741852
\& azaguanine 1248
balanced by selection 172:24
\& barbiturate 4822
\& BCNU 4732
beh 172:25 172:26 246342635 25103610
\& benzene 4938
\& BHT 791841
biochemical 13004757 \& fluoro-compounds 54 induced 2007
biochemistry of 577
bristle 17485652
brood pattern 4264
cadmium \& furylfuramide 4659 4661
\& caffeine 187:26 193:20 1109 422042214914
\& calcium cyclate 1537
mutation - -cont
\& calf thymus DNA 2864
\& captan 175:25 934
\& carcinogens 283841364139
4141465848995254
cell-autonomous 2989
cell-1, \& lysosome 3414
cell, differentiation 537 marker 536
chemosensory 259525962597 41054106
\& chemotaxis 5724103
\& chloramphenicol 1290
\& chlorinated phenoxyacetic acid 4823
\& chlormequat 935
\& chloroethylnitrosourea 4732
\& chlorophos 217
choline \& nicotinic acid 2402
chromatid, X rays \& colchicine 4434
chromosome, \& radiation 187:23
X rays, in sibling species 5293
\& chronic gamma rays 592
\& chronic X rays 18211822
\& circadian rhythm 917
\& Citrex S-5 2631
\& clocks 2181
clove, and caffeine 42204221
cold-sensitive 169:16 179:29 193:6 193:74774781128
complete \& mosaic 188:21 2646 42295661
\& condiment 42204221
conditional 480407645015743
\& control of dev 160:11
controlling chr disjunction 170:24
countercurrent-defective 4838
\& courtship song 5258
\& cyanazine 4901
\& cyclamate 9089091887
$\& 2-4-D$ and $2-4-5 T 5024$
\& DC electric field 4648
delayed-action 4764
\& deoxyribonucleosides 2864
\& DES 179:22
detection in lv ganglia 2398
\& deuterium 1452
\& dev 4969
\& Dexon 5062
\& dextro-amphetamine sulfate 1760
\& diazomethane 1473
\& dichloroethane 4938
\& dichlorvos 167:24 6445585
dietary rescue of 14647
\& diethyl sulphate 1383
\& dimethyl sulfoxide 187:29 1202 38464619
\& dinitrophenol 790
direct \& back 3536
dis- and reappearing 6
disc defect 3802
\& disc dev 4286511457405742
disjunction-defective 27222723
DNA-induced 171:2 3408
DNA insertion 45774578
\& DNA replication 117
\& DNA, r 468 -deficient 3159
dominant \& X rays *179:13
\& dopa decarboxylase 4395
\& drugs 1475247542065038
\& EDTA 160:17
egg, injected with DNA 3760 shell 5625
\& electroretinogram 911
\& electrostatic \& magnetic 172:27 180:15 39044395553
\& EMS 178:3 187:2949178179 436
\& caffeine 4914
vs. ICR-70 3960
in pops 4693
\& quantitative characters 2851
\& viability 389038913892 4089
\& X-ray tolerance 17911792
X, fitness 38343835
in Y insertion 2863
\& enzyme electrophoresis 5118
ERG autosomal 2615
\& esterase 4119
\& ethylene-thiourea 2795
\& ethylenimine 160:16 160:17 174:7 178:5 188:7617711052 1638163925322645
\& ethylmercurichloride 4774
excision deficiency 5536
expression 60317971800
eye color 187:10 3017
\& mating 161:2
in nat pop 2748
\& phototaxis 1101
\& transport defects 3096
female-fertility 3153
female sterile 180:17 187:27
5331396213523572654
44915809
\& dev defects 3269
\& oogenesis 258729695052
\& vitellogenesis 5000
\& fertilization 5613
fine bristle 3535
flight 7652519261136104721
fluorouracil-resistant 2258 3419
focal 1750
\& folpet 175:25
\& formaldehyde 160
forward \& back 4562
fractional 48295661
\& radiation 185:4 2377
\& whole 2798
X rays, \& mitomycin 2705
\& fungicide 979
\& furazolidone 43175378
\& gamma rays 84112594921
\& gas 4991473
\& gene frequency 985
genetic control of 5525
\& glucose-6-phosphate 2444 2445
dehydrogenase 4591
\& H-193 43175378
\& hair dyes 336544845248
heat-sensitive *3837
\& herbicide 281349004901
heterozygous, \& competition 1071
\& radiation mu 1891
\& viability 1112
high frequency, in nat pops 2749 spontaneous 2423
\& homoeosis 55958511633823 3849351137564354
homoeotic, \& atavic 4829 \& temp 36663667
homosexuality 5113
\& hybrid dysgenesis 4710
\& hycanthone 90690726323711
hyperkinetic 3030
hypersensitive to ionizing radiation 3678
in inbred strains 175:17 894
\& indirect lv mutagens 4733
induction kinetics 1120
by industrial compounds 3765
\& injected DNA 571
\& insecticide 1885
insertion 1482
interacting on homoeosis 3756 4354
interactions 786
\& irradiated medium 1566
isoalleles 42275342
\& isogenic chr 2589
\& juvenile hormone 5620
\& laser 1463
latent, \& chemicals 160:3
leaky fertility factor $170: 1$
lethal 175
\& Adh 2665
allelic 1531
in Amherst 2530
\& antigens 1515
\& beh, fate mapping 2363
cell autonomous 185:25
\& chloramphenicol 1290
conditional 45015743
in culture 37233724
delayed 159:15
\& dev 198725034003
\& diethyl sulfate 5662
\& disc 181:71246 3049
on distal X 2697
\& DNA 1531
dominant, \& chemicals 1638
\& exogenous DNA 3293
expression \& ontogenesis 3184
\& hormone 5730
in oocyte 174:7*514771 1889
\& peanut oil 4557
\& radiation 183:12 1391
\& spermatogenesis 2532
spontaneous 41264129
in stored sperm 188:7
temp-sensitive 173:29 38005547
\& Trenimon, PDMT \& sodium monofluorophosphate 3388
\& X rays 157115731574
\& dp 1209
\& eclosion rhythm 2246
embryonic 178:5 186:6 2817
fate map 3940
\& gene number 1025
\& genetic load 1258
heterozygous, \& fitness 3347
homozygous, in zygote 3979
in inbred stocks 175:17
in inv plm 19253212
late 178:5 187:30
male-specific 5215223113
3114
\& mosaic 216112125035079
to opposite sexes 4396
\& O_{2} consumption 19851986
\& phosphogluconate dehydrogenase 35683569
position-effect 674
recessive 371841
\& adaptive value 371
in Barbados 1824
\& DDT 818
In exp pops 2812
\& indene 168:30
lost from model pops 191:28
mutability 3614
\& radiation 183:13 790 1390
\& segregation 725
suppression of 189
\& X rays 168:30 *512 1191 2584
X 182:13 $187: 26 \quad 1038$
rescued by transplantation 3374
\& SD 190:25
seasonal frequency 3253
semi- 175:17 190:25 8941821
2782
sex-linked 180:2 8411257
sex-selective 2898
sex-specific 2858
site of action, \& mosaics 1701
spontaneous 162:641264129
\& sterile 32554385
suppressed 674
synthetic 181:21 11574594 4922
temp-sensitive 169:21 193:5 5232989325340325741
dominant 173:29 38005547

\& EMS 4455

lv heat, \& pattern formation 5076
time of action 86813833942 4353
tumor 2270
viability of 1389
\& visibles in nat pop 4385
\& viruses 1531
without chr breakage 3186
\& X rays 180:2 112218214229
zygotic 193:7 40295741
X embryonic 4413
in II 12421243
\& leg polarity 3939
\& life shortening 2426
linked polygenes, \& variability 2653
locomotor 662
low recombination 18581859
lv , \& indirect mutagen 3709
temp and pop density *2780
\& Lyndiol 1431
male, \& EMS 4327
fertility 1533
meiotic-sterile 4786
recombination 1664 -sterile 166:26 403247875534
maleic hydrazide, \& EMS 4913 4914
manifestation in sc homozygotes 45194520
maternal effect 29714971498
34824937503156675749
\& medicinals 3912
meiotic 163:23 183:4 97251360 57513642722272328313325 \& compound autosomes 3443
\& recombination 24555361
\& mercury 4774
fungicide Ceresan M 2730
\& methanephetamine hydrochloride 1760
\& methyl-2-benzimidazole 3846
\& methyldemeton 18841885
\& methyl-dopa 169316953241
\& metrifonate 4753
\& mitomycin 10852798
\& MMS 159:2 188:22 10531054
1992242832445522
\& molecules 879
\& morphine 3696
\& mosaicism 159:15 4716
\& motor activity 36185554
\& MSG 1537
multiple insertion 4565
muscle 229423214430
mutagen-sensitive 21672168
4574514451455146
neoplastic 22555502
\& nerve conduction block 5302
neurological 174:26 2304800 4801
neuron 2841
neutral 12784944
\& nevigramon 491
new 170:1654423935154
\& nitrilotriacetic acid (NTA) 2631
\& nitrocompounds 37124736
\& nitrofurans 5576
\& nitroso compounds 2350
\& nitrosoethylurea 789
\& nitrosofluorene 1981
\& nitrosoguanidine 2700
\& nitrosomethylurea 191:22 1247
\& nitrosopiperidines 49294930
no, after chloroquine 1983
nonrandom 174:10 475
nonsense 2609
\& nontreated homolog 5
\& nucleic acid precursors 1464
"null" 13513613021594 *3456 3615
\& nutrition 169:8 186:16
\& organic bases 607
mutation--cont.
\& organophosphates 667
\& Orval 1431
outburst 35373540
ovarian tumor 3534
\& oviposition site 5460
\& oxygen 1571
para- 4563
paralysis 8603044
paternal, maternally repaired 3275
pattern \& chemical mutagen concentration 3187
\& pentose cycle 4591
\& pesticide 3674698031887 3039
\& petrol 4938
PGDH 4591459224442445
\& phenothiazines 1475
\& phenoxyacetic acid 5019
\& 1-phenyl-3, 3, Dimethyltriazene 220
\& phosphamides 3186
phototransduction 166:23 1335 13363581
\& phylogeny 176:2
\& pion bean 5104
\& piperonyl butoxide 4791
point, \& radiation 27
polar, \& suppressors 615
\& polychlorinated biphenyls 1286
polygenic, EMS, and fitness 2775 \& viability 130938913892 pop fitness 5126
in post-meiotic male germ cells 27
prepu 1, \& dise dev 4902
preservation 3254
pressure 1312
\& procarbazine 43185379
process, physiological theory 3935
\& propriolactone 3708
\& psychotropics 4423486
\& pterins 177:28
purine nucleoside-requiring 2546
\& pyrimidinium salts 647
pyrimidine-requiring 181:16
\& quinolines 2656
\& quinoxidine 5739
\& radiation 27245778
aftereffect 183:12 183:13
1390139118063137
\& competition 1071
dose 3285
in female 2480
\& hyperthermia 38383839 3840
\& nucleic acid precursors 185:7 185:8
repair 5766
sensitivity 447
temp 2599
\& radiowaves 278327854881
rapid, \& male recombination 1765
rate, comparative 3005 \& EMS 328032814019
iz 1546
\& male recombination *3142 *3143
modified 185:7 185:8 oogonial, \& X rays 48554856 radiation, species 1976 \& sperm storage 61 uniformity of 1976 \& X rays *512 3166
\& rayed glucose medium 1873
recessive, sex-linked, \& gamete storage 61 visible deficiency 2579
recombination 73254 *4508 -defective 272227234583 5086
recovery of radiation 1574
regulatory 1375
repair 171:3 77311461147
research 16701675
resistance to radiation 2839
reverse 192:3
ribosomal, protein 982
assembly 4774782664
\& saccharin 93319904735
salt receptive 1774
\& Sevin 218
sex-linked, \& gases 541
\& selective mating 179:4
sex-transformation 32054515
\& sigma 4954
\& simazine 4901
slightly harmful, \& evolution 1313
\& sodium deoxycholate 160:17
somatic, \& body weight 2301
\& chemicals 23962397
recombination 180:21
\& X rays 555
\& sorbitol 2041
\& space flight 2420
specific loci 263689
spectrum 178
in sperm 159:2
in spermatids 159:2
in spermatogonia 2340
spontaneous 5468428722000 20012002
in cell cultures 54815482
detrimental 3543
\& environment 2655
high rate 175:5 175:6
nonreciprocal 3680
rate, \& enzymes 38563857
temp-sensitive 2951
\& viability 163:18 13092423 389038913892
\& static electric field 2916
stepwise $1114 * 2545 * 3641$
sterile 52715272
sterol 5385
stocks, conservation of $163: 3$
storage-effect absence 3785
in stored sperm 1638
stress-sensitive 482
structural 560561
\& styrene \& its oxide 5151
sublethal 6
subvital, and adaptiveness 1874
\& sugar, reception 8771775 3115
response 782
suppressor 7947957964863 \& tRNA 237
\& symaptic transmission 2520 4674
\& synthetic fuel technology 4477
taste 794763628
\& TEM 178:3
temp, \& nitrosoethylurea 3316
temp-sensitive 163:17 169:25
179:29 *180:13 182:14 184:13
189:25 189:26 191:27 90292
854860 *1187 * 11881763
*2779 31243312 *3837 5728
\& aberrant segregation 3967
\& cAMP 5731
in cell culture 4904
\& cell fusion 3862
cell-lethal 68292
\& chemicals 12893711
\& clone dev 3049
female-sterile 5965446
locomotor 175:4 662
\& mitotic rate 4040
paralytic 3352
in pops 497
of sigma 165:6
v 238
\& yolk 4335
X 2594

\mathbf{X}	
\mathbf{Y}	

teratogenesis, \& carcinogenesis 49324933
\& theophylline 4221
\& thioridazine hydrochloride 1567
toxicity, \& Captan 180:18 \& ethylene-thiourea 180:19
\& tranquilizer Meprobamate 178:16
transducer defect 4874
\& transmutation 177:9
\& Trenimon 2201201
\& triazine 192:2 2617
\& trichlorophenoxyacetic acid 10811082
\& triethylphosphate 167:24
\& trifluralin 4900
\& trimethylphosphate 435
\& tryptophan pathway 5092
tumorous head 4333
\& Tween 60953
\& ultrasound 98
unstable 19791980 gene 4561456245644565
\& UV 171:3
\& variability maintenance 4784
venation 31275097
viability 3648
\& EMS 45675771
\& gamma rays 1190
heterozygous effects 3804
\& nitrosoethylurea 11902781
\& quantitative genetics 4550
spectrum of 1190
radiation-induced 27
\& vinyl chloride 269933324131 4822
\& viruses 159:13 171:2 254546
visible 9519152118223689 4250
\& vision 69069169213472568 49495288
walking, \& t 3011
whole, body 773
vs. fractional 180:23 1085 5119
\& wing 171:23 190:1 192:26 4158
X-ray, brood pattern 4656 compared to neutrons 1631 16321633
\& deuterium 1880
dp 1196
\& EDTA 1257
\& formaldehyde 179:5
fractionation 1085
in ganglia 4284
\& lifespan 4573
in oocytes 1195
\& oogonia 3286
in sibling species 5816
in spermatocytes 42834284
\& spermatogenesis 4657
\& TEM 3847
tolerance 18481849
yeast sterol 2162
X, maternal effect I 53085309
\& MMS 4049
II, L tip 37064566 most frequent 13538
mutator 245 *727 8718728731882
30543250
gene 171:10597598599600621 5209
\& mitotic recombination 2718
\& mutable loci 3550
in nat pops 4044
new 1980
pops 141142
stock 1546
mycoplasma 168:20*4572*5520
mycotoxins 4825
myoblast 4295452545265495
myocyte 187:18 187:19
myogenesis 187:19 301935194024
4818510754945768
myophily *15 2046
myosin mRNA 5369
myotubes 187:19

N band 3931
NAD 18816482152262022463364
NADP 240141725507
napthoxyacetyl ester 192:17
narcosis 31384801
natural population (see population, natural)
natural selection (see selection, natural)
navigation 171:15 6102425
nebenkern 3146
negative complementation 502
nematode 41764273
neodrosopterin 1532
neoplasm 2394225535154536
\& aging 4997
\& dev 553
invasive 680
malignant 55025503
neopterin 8492573
nerve 461530255115555
nervous system 377439054196
acetylcholine receptor 5071
adult 5282
central 45474598
clones in 4432
fate map 2566
fibers 299
\& flight 177:17 177:18
genetics 4289
mapping 172:26
phenogenetics 2079
\& phylogeny 2913
\& regulation 1055
nests, histoblast 4821
network 30435305
neural, activity pattern 4653
circuits 1994
network 3043
superposition eye 3090
neuroblast 187:17 641 *3338*5588 *5589 *5599
neurocrystalline lattice 3962
neurogenesis 4024
neurogenetics 510752645305
neurological traits \& mu 48004801
neurology \& beh 230
neuromuscular, apparatus 4010
basis of song 4483
block 5728
excitability 5092
junction 46734722
neuron 187:17 3882
\& actinomycin D 415
cholinergic 3774
circuitry 3812
connection pattern 4853
cooperation \& vision 3964
differentiation 5401
\& flight 1020102119944607
giant 10211022
inter-, visual 2490
motor- 10224607
\& motor activity 766
\& movement 173:9
"mutant" 2841
second-order 5170
sensory 2293309245475173 5767
neurophysiology 3044
of flight 177:17 177:18 2461
Neurospora 290
neurotropic drugs 755
neutral, model 4461
mu 12784944
or selective 2295
theory of pIm 11131114
neutralist-selectionist controversy 1902
neutrality, hypothesis 2006
selective 882102
neutrons, \& mu 1254180723782379
RBE of 163116321633
nevigramon \& mu 491
niche 174:24 333 1635*4036 5169
breadth 186:10 15431544
niche--cont.
overlap 186:10 *847
nicotine 5423
nicotinic, acid 2402
receptor 3467346844504452 44535467
nicotinyl amino acetic ester 3966 night phases \& circadian rhythm *267
ninhydrin \& sex specificity *160:23
nitrilotriacetic acid 2631
nitrite \& mu 5377
nitro compounds \& mu 37124736
nitrofurans 5576
nitrogen 181:25 181:26 9971185
11962584
nitroso, compounds, carcinogenic,
\& mu 2350
-N-dimethylurea \& co 3955 -ethylurea 789119022022781 33164250
fluorene \& mu 1981
-guanidine 27005079
-methylurea 191:22 7912472202
-piperidenes 49294930
-urea \& mu 3695
nocturnal activity 165:25
nodule, recombination 2213
noise 133013311332
\& dev 2250286938985420
\& locomotion 38994948
photoreceptor voltage 2771
nondisjunction 177:13
\& actinomycin D 373
autosomal 164:22 2882891321 1677.
ca $^{\text {nd }} 3078$
\& caffeine 187:26 193:20 62
\& co 15793002 *3557 5093
\& distributive pairing 164:3
\& electrostatic \& magnetic fields 390
\& EMS 3927
\& exchange 38785669
in female 26673878
\& fractionated radiation dose 188:23
\& heterologous interchange 1957
induced 1012
in male 163:21 5012
meiotic 5525a
\& nonhomologous pairing 164:5
in oocytes 192:29 1677
\& radiation 190:4 13622667
screening 2784
secondary 1414
in species hybrid *3557
\& vibration 213
\& X rays 164:22 62910 *3557 39275093
\& zygotic lethal 193:7
\& X loss 1806
X, \& radiosensitivity 4126
IV 5012
nonfunctional alkylating substances
\& mu 2397
nonhistone 1472768 *3428 4282
43924468446944705124
nonhomologous pairing \&
interchanges 4373
nonmendelian, sterility 28973929 5395
female 2192219349684980 49814982
variability \& selection 4494 nonrandom, disjunction 27102713 segregation 2409
northern D. and diapause 168:14
Nosema 2081 *2082 *2083 *4244
nuclease, activity 417
restriction 5468
nucleic acid, bases added to medium
4471
hybridization 13592875
\& hydrogen peroxide 1556
precursors \& mu 185:7 185:8

1464
in salivary gland 170:27 170:30 4198
n spermatogenesis *122
synthesis *167:23 944
nucleolus, \& bobbed $* 94$ b
$\&$ boron 422
dev 165:20
dorainance 34714460
EM 21983391
extra, \& EDTA 5108
Feulgen-positive 5174
morphology 175:18
organizer 169:24 182:12 *697
*4303 5666
free DNA of 4428
heterochromatin-deficient 4065
\& Y *1582*1583
RNA \& cycloheximide *181:8
spermatocyte *180:1 1747
two regions for, in Y 1956
nucleosides 2546281639664471
minor 192:19
purine, \& pteridine 5477
Q 5298
toxicity 5307
nucleotidase 5363
nucleotide 172:4 188:25 454607
6432583
sequence 16022406
\& late replication 4482 *4777
repetitive $4482 * 4777$
of 5S rRNA 2134
tritiated 1010
nucleus, apparatus \& differentiation
4945
binding ecdysone 2016
\& centrosome 4593
cycles in embryo 188:25
\& cytoplasmic, RNA 26784782
transplantation 3620
digestion \& puffs 4851
DNA content *3298
division \& migration in embryo 4201
EM 3391
fluorescence 5037
fusion *5348a
gastrula, transplanted 769
isolated *407144034404
membrane 159:19 188:25 974
-mitochondrial interaction 998
\& periplasm 2164
polyhedrosis virus 4812358
polyploid *1493
polytene *162:20 176:17 176:20 974975
pro-, chr structure \& radiosensitivity 4664
proteins $2268 * 3428$
recoil \& mu 177:9
\& respiration 999
RNA 106420302896 *4071
4779 *4805
polymerases 297739284979
salivary gland 693
sperm, length 1580
spermatid 172:29 672
structure \& organization 5597
synchronization 5663
transcription system 5653
transplantation 202025212997
36204200
vitellin 5403
null, \& active iz *186:1
mutants 1594
aullosomy 2592
number of genes 1804831
numerical changes in nat
pops 1141
nurse cells 164:20 24173102
nutrition 352
adult 5791
carcinogenesis, \& mutagenesis

4917
\& dev rate 3598
manipulation 170:21
\& mutants 186:16
optimal 191:16 191:17 191:18
\& radiation damage 2303
requirements 1868
selection \& oviposition 4650
substitution 207
under- \& antimutagens 169:18
nymph dev \& low temp 308

O chr *5499 *5704
oak, Gambel *1853
object distance \& pattern preference 1935
occupational hazards 3765
ocelli 191:24 2708464346444748 5648
octanol *2171
dehydrogenase (ODH) 179:2 *206568716 *772 10651659 *2171 2274273834854132 5789
octanucleotide sequence 1630
ocular, inter-, microchaetes 1090
odorant 23844524
offspring of radiated parents 5517 5518
olefine, halogenated 4658
olfaction 175:10 5255265273400
3681 *3978 4054436945234124
lv 39485010
response 238223832384
oligonucleotides, pyrimidine 2966 omega protein 91
ommatidia 22104363
ommochrome 182:26 182:27 187:7
154217572211287729903907
41835283
"onion" nebenkern 3146
ontogeny 175:20 189:19 94224853
1812252331844801
\& chr activity 921 *925
\& enzymes 185:20 71715 4316 *5005
\& gene action 275738213822
435548624863
oocyte 746
\& actinomycin D 373
\& caffeine 1146114732143815
centrifugation \& embryo defect 3382
chromatid interchanges 5709
chromocenter 4931
chr, segregation 5013
\& X rays 178:20
\& cold 1013
\& detachment 1014
\& DNA replication 166:21 171:22 6266292292
\& dominant l mu 174:7 *514 1889
\& ethylenimine 771
\& heat-induced co 166:21
immature 15731957
meiosis 1013
mRNA 4742
mu repair 5766
\& nondisjunction 192:29 1012 1677
nucleus \& ring canal *175:11
poly A 4803
polysomes 5649
protein 171:11*4589
\& radiation mu 157215731574 5011
rearrangements in 183:1
\& recombination 171:22 362 62635604583
repair systems 274727483214

ribosomes 171:11

segregation \& aberrations 3911
\& sex chr loss 163:11
\& sodium fluoride 2747
stage-7 181:25 181:26 16771889 2839
\& synaptinemal complex 166:21
\& translation 5515
\& X rays 178:20 180:2 11951677 4883
\& yolk 588
oogenesis *175:11 175:12 175:13
175:15 196 *882 8903619
\& acid phosphatase 3003
apoptosis in 2415
\& centrifuged female 4334
\& chr pairing 171:20 263264
cytogenetics 160:14
cytology of 165:17 165:18
defect repaired 13151316
early, chemical effect on 2290
\& female-sterile mu 25872969 5052
\& germ plasm 2523
\& hairy-wing suppressor 175:18
lysosomes \& yolk platelets 4553
\& microclimate *837
nondisjunction in 164:5
\& nurse cells 2417
\& ocelliless 811
\& radiation 186:8 *4506
\& ribosome gene number 3817
\& RNA synthesis rate 3817 oogonia \& X-ray mu 328648554856
opaque-eye 20143263
operon 501268243144357
Opius concolor 5402
optic, center 5512395
disc dev \& actinomycin 5251
lobe 38124857
optomotor 171:14610691
orange adaptation 41745433
orbit 3329
orchard 5552
order, inter--, mycoplasma transfer
*4.572
regon strain 1787399347304731
organ, culture 61328912892
-specific, esterase 37043705 *4729 protein *5029
ultrastructure \& mutagens 1333
organelle DNA \& RNA \& secretion 4945
organic, bases \& mu 607
evolution 2429
species formation 2317
organization, chr 3945
of coding sequences 5323
\& evolution of heterochromatin *2509
\& gene 5659
genetic material 5557
genome 4590
space \& time 2881
spatial, of genome 3716
organo-nercurials \& puff pattern 188:27
organophosphates 6665691
origin of species (see speciation)
ornithine 236
orotate phosphoribosyltransferase 5030
orotidine monophosphate 5030
orotidylate decarboxylase 5030
oscillators 2881447346025285
osmoregulation 713
ouabain *81 19324281
outcrossing \& phenotype 2322
ova, diploid 4747
ovariole number 161:22 13571795
2531
ovary, \& acid phosphatase 46587 5094
cell, culture 176:9 959 cycle \& differentiation 886
chambers, cell death in 2416 3526
dev 5801
ovary--cont.
follicle 34535254552
function in mated and virgin females 162:13 162:14 germ cell differentiation 4763
\& hormone 839
lv, freeze-conserved 163:2 163:3
nurse cells 3102
production 195196197
rDNA replication in $1491 * 1492$ 14942954
\& RNA 13061448
transplantation *3117
tumors 3534
overdominance 181:1 1962*3168 33085357
overwintering 5552
oviposition 351133025285057
\& circadian rhythm 34 *35 36
\& ethanol 2602
\& evolution 5448
\& food preference *609
\& geotaxis 14552933
\& gonadal atrophy 49714973
\& hybrid ethogram 5191
\& light *1056 271628584231 4943
\& mating speed 2716
\& medium color 159:14
\& nutrient selection 4650
\& paragonia 46245089
rank 5690
rhythm 166:1 166:9 1311 *2059 236432964500
season \& temp-sensitivity 183:16
site 6301455293331063107 311154575460
\& sucrose 166:18
suppressed, \& aneuploidy 5222
\& temp 986
ovipositor 3156
ovogenesis \& spermathecae 4332
Ovral \& mu 1431
ovulation rhythm 20602061
oxidases $188 * 1373$
oxidation 4646
oxidative NADP-enzyme 24014172
oxydemetonmethyl \& mu 1885
oxygen, \& aging 1070
cohabitation, \& survival 5042
consumption by l mu 19851986
\& mu 11961571
$-\mathrm{N}_{2}$ effect on lifespan 1185
\& radiosensitivity 181:25 181:26
pacemaker 48545209
pachytene in female 2213
packing, phyletic species 2959
paddy field 2612
Pagurus 5524a
pairing, component 657
distributive 164:3 192:29 1957
mitotic \& meiotic 2304
nonhomologous 164:5 3402
palindrome 2682
Pandanus 176:16
panmixis in nat pops *162:3
papillae, rectal 5805
paradiagram, Iearning 4097
paragonia *160:22 163:12*114*115
*116 2122212322352236 *2237
2886392346245089
proteins 31934144
paralysis 860195933524992
mutant 168416853044
parameter 16354411
paramutation 4563
parasite 895896126112681558
18712252 *2823 327534003543
424443694570471949065407
intestinal 26932694
parental age 2120306447925758
pars intercerebralis 2163
parthenogenesis *163:26 *170:8

189:27 *763 *1789 *1790 1943
*2491*5348a *5771a
partial-target mutagenesis 4141
particle, accelerated, \& aging 80 virus-like 5080
paternal, age \& sex ratio 608 chr loss 97
esterase *925*1126
gene expression 5732
\& maternal chr lesion interaction 5304
mu repair in mother 4946
paternity, concurrent multiple 11761177
pathogens 32213693
pathway, chemosensory 5059 tryptophan 5092
pattern, abnormalities \& X rays 1952
amylase activity 20452312
beh, \& evolution 2370
body, and egg 3650
bristle 294410046205393 b *5393c
brood 184942644656
cell division 39545282
\& cell, clone 33955404 organization 3222
chemical 36634695
chr banding 256126525220
courtship, \& evolution *5157
cuticular 5697
denaturation 5398
\& diffusion model 4012
disc 184:11 218724842485 29173049338543515178 517951815394
of distribution *5458
division, \& computer 2943
DNA replication 3649
embryo 427422550845085
enzyme, \& age 2110
flight, \& temp 2519
formation 184:11 12712505 39394019493750645076 5776
in disc 218724842485
free amino acid 3956
of gene variation in pops *184:17
growth 43504458
of interchr effect 5788
iz 2161
1, \& sbd 4061
labeling 2025
of loci or chr 3775
of molecular variation *2960 *3973
of morphogenesis 192:4
motor activities 7647663618 5554
muscle firing 5581
neural 199446534853
ommatidial 2210
oviposition, \& light 28524943
peptide gel 4002
pigmentation, \& Y 2828
pre- 5776
preference \& object distance 1935
protein 2235424351115494 5495
puff 202220235351
\& rate of chr evolution *3261
recognition 192:9 3217
in regeneration 2418
replicative, \&
determination 3225
sequential action 25113611
spatial 12751559
speciation 2214
vein 401250975485
PDMT \& mu 3388
peanut oil 4557
penetrance 174:3 193:6 16614754
94835474971
peninsula 3042
pentenol 4939
pentose 170:20 244424454591
pentyne-1-ol 1304
peptidases 159:7 159:8 159:9
peptide *26274002 4741 *5150
periodate 192:17
periplasm 2164
permeability 2685
persistence 182:16 361
esticides $366367 \quad 469803$
18873039
pests 169:21 1525
petrol \& mu 4938
pH 191:18 693
phage lambda 5558
phanerochasy 5402
pharate adults 959
pharmacogenetics 177:23
pharyngial, cephalo-, skeleton 5735
phase, memory 3952
microscopy 3795
resetting in clockshops 3234
phene 1861
phenobarbital 4933
phenocopies 186:15 189:15 229
2431553 *3577 390746375243
phenogenetics 177:4 1289942079
3702 *3837 46464728
phenol oxidase 161219131914 2004
phenology 5628
phenothiazines \& mu 1475
phenotype, cell 23349
expression in culture 176:6
eye color, \& genes 4964
gender 515
genotype to 5449
instability 416
lesbian 314
\& marginal environments 4371
\& outcrossing 2322
\& selection 32
phenoxazinone synthase 183:15 29904183
phenoxy acid 4259482350185019
phenoxyphenols 2067
phenylalanine, \& eye pigments 187:9
tRNA synthetase 285
phenyl-3, 3, -Dimethyltriazene \& mu 220
phenylthiocarbamide 4055
pheromones *168:22 821901016
101712912095209720983490

4255

Phormia 2110
Phortica 3773
phosphatase, acid 160:24
phosphate in chromatin 3755
phosphoglucomutase (PGM) 1831
23992686451452265779
plm 190:21 190:26 190:27
phosphogluconate dehydrogenase
6PGDH or 6PGD) 161:17 169:6
172:18 187:20 1596496502150
244424453361356835693615
431043114591459246394647
4723
phosphoglycerate kinase 164:16
2845
phospholipase, bee venom 2691
phosphonacetyl-L-aspartate 4637
phosphorus 177:9 23926624892
phosphorylated, chr proteins
*2031
histone $3755 * 5380$
phosphotungsten 23094974
photoaddition 41604649
photobehavior \& sex *2975
photochemistry 13364033
photochrome 5819
photoexcitation 3832
photography 1983745
photoperiodism 36 *1068 3171
3544 *3684 4571 * 48085628 *5629
photopigment 1720308735805166 5167
photopreference 32884701
photoreactivation 177:16 10183753 37545315
photoreceptors 197219892466
277131553243339540684715
476047964797479851015167
52835285529256545822
photorepair 202
photoresponse *186:3 187:21
photostable pigment 4715
phototaxis *179:19 182:17 183:27
186:3 186:4 *402 449 *1092 1325
*1328 2246 *2717 320647244838
beh 1098109911001101
\& color 187:5 5102
\& light 137127165288
positive and negative $1801 * 5568$
\& receptors 4645
recombination \& selection 1801
\& selection 279 *280 *1409 2244
2616 *3751521454195421 5422
\& spectrum response 1719
phototransduction 166:23 13351336
32433581
Phryne 4664
phyletic species packing 2959
phylogenetics 41285213
phylogeny 176:2 181:11 18052643
26712913 *3654*4146*5223
*5638 *5671c
chr *2009*4755
physical habitat factors 4970
physiological, characters, genetics
of 2555
genetics 2337
theory of mu 3935
physiology \& polytene chr 1073
phytodrugs 2172
picornavirus $825 \quad 1405$ *2553 2904
picture-winged *2535 25372799
Pieris 5620
pigment 971128229824581
abdomen 186:2 5055
age, fluorescence 4315
bistable 5654
eye 187:7848 153217591770
177127323571383239074092
granules 183:15 187:7 5283
modification \& aging 1847
pattern \& y 2828
phenocopied 229
photo- 17203087358051665167
photostable 4715
pterin \& ommochrome 2211
red 971
spots, black 3520
tobacco brown 3112
pion beam \& mu 5104
piperonyl butoxide 4791
Piry virus 2203
plant 1033112513761681 *1905
248727342832322748315130
undergrowth 8813682
plasm, pole 7702702
plasma membrane particles 5101
plasmid, bacterial 40825277
chimeric 1772
hybrid 42475099
recombinant 35745148
plateau, selectional 4127
platelets, yolk 588
plating efficiency 3842
pleiotropy 166:19 183:15 184:3
$193: 67511618 * 186019932754$
41655743
ploidy \& GPDH 1008
polar, cytoplasm 13162431
granules 179:6 179:7 179:8
193:19 5799
polarity, leg, \& mu 3939
pole, cells 193:19 *446 14441911
2063423249245031
oytoplasm 620
pole--cont.
plasm 7701910202025812702 4200
posterior of embryo 618619
pollution 391352342145418
Poly A 7281058264826492650 42334779478148035720
polyamines 23622052206
poly dA \& poly rR replication 4342
polychlorinated biphenyls (PCB)
178:1 1286
polyclones 329
polycyclic hydrocarbons 468
polygenes 162:21 164:4 173:22
186:7 190:1 2653312935715207
\& bristles 5112371
\& morphogenesis 36024630
\& selection 17981799
viability 1123130920513661 38575325
\& wing venation 4094
polymorphism 161:26 *57
of abdominal pigmentation 186:2
\& adaptation 20
ADH 161:15 *171:13 183:20
183:21 2021140120483933
4418 *4568 468948155238 5789
aldehydeoxidase *4116
allozyme *260500 20933317 42514252
amylase *2848 $28494088 * 4222$ *5203 55485549
balanced, t, \& pop 5056
in cage \& also nat pop 3492
chr *162:2 162:3 162:23 163:5 163:25 *166:22*181:20 184:14 *184:22 190:10 162 *260 *336 *369 *520 *1341 *1342 *1472 *1490 1656 *1823 19172214 *2683*2942*4301 5023*5344
*5444 *5455 57025703
\& biotic residues *2175 \& female sterility 3672
\& fitness *1454
\& geography *2174
heterochromatin \& inv 2108
intraspecific 1949
in pops 1614
nat *1898 *3503 4152
43834384
reversed *4056
\& temp *488 *489 *490 *5326 *5327

\& time *3902

dipeptidase 5795
distribution in genome 3276
e 10311032
enzyme 177:2 24172214815 98517271728254333104186 43135156
\& chr *3121
\& linkage disequilibrium 2802 in nat pops 3527 *4516 \& selection $1219 * 24402657$ 26574313
esterase *171:13 190:17*298 13482976 *3336 4192 *4410 *4568
fecundity 580
frequency-dependent 159:24
gene, \& heterosis 37585619 in pops *2922*2923 3729
genetic 160:6573 3590*5638
\& G6PD \& 6PGD 161:17 2150 336143104311
GPDH 186:21 1180
\& heterozygote advantage 161:25
hexokinase *4078
inv *159:23 *176:1 *182:23 *184:20 1392 *1437 *1466 *1905 20182092 *2651 *2988 3409 *3562 36243625 *4988
50165023 *5156 *5527
\& 1 mu 19253212
in pops 3140314146604662
iz $105363364365 * 1307 * 1308$ 3861390849035267
karyotype 4009
maintenance $2021 * 4837$ *5527
modifier 2360
\& molecular evolution 2856
molecular, genetics of 5705
multi-locus 169
\& mu pressure 1312
neutral theory of 11131114
ODH 5789
phosphoglucomutase 190:21
190:26 190:27 1831 21502399
45145226
phosphoglycerate kinase 164:16
pop *1810 52345235
protein 163:8 181:1 11131114
3403 *342141874330
\& selection 85882931828 4330
\& selective neutrality 174:16 200621023218
statistics 28573893
SD 3406
\& selection 17233095109
time change in 167:16
$\&$ trehalose taste 4663
$\&$ virus resistance 3491
polyol 177
polypeptide, heat-shock, \& 93D
puff 50955096
synthesis \& ecdysterone 1155
virus 49925695
polyploid *458 *1493 2557 *3968 *5035
polypurine 1731064
polypyrimidine 1731743371064
1602277230933434
poly rA:dT 1753
polyribosomes 114422422695
34745649
polyteny $167: 1$ *173:11 961473278 4212
polytrophic-meroistic ovaries 2954
pooter 209
population 4884
\& aa 148149
adaptation \& environmental heterogeneity 5249
ADH plm 254446895238
age-structured, \& selection 2228
allelism in \& between 1530
allozyme *169:22 190:16 190:17
altitudinal *1343
\& amylase plm *2848*2849
artificial 23
balanced, \& pollution 4214
banding profile *2514
beh 59 *402 1804
biometrical traits 4419
cactiphilic *821
cage 169:20 *169:22 185:19 190:12 117413482053 *2075
*2336 2526257826612764
32043291374037413772
37795110 *5455
\& esterase $1809 * 1840$
cell 24535338
centrel vs. marginal *184:17 *186:22 *5155 5189
changes \& gamma rays 1284
\& chr, breaks 5210
plm *166:22 1614 *1656
clines in 3493296
coadaptation 3582
\& DDT 8183438
density $160: 19 * 168: 3 * 335 * 441$
1067 1310*1450 17763925
*4280 4670
\& dispersal 12672825
\& temp *2780 2853
desert \& l chr *3387
desiccation resistance 1142
different base 13941395
dispersion *335 12672825 38675487

distances \& chr arrangements

 *1438distribution \& constitution 31055487
divergence \& temp 5409
dynamics 166:8 298334065266
eastern 40485751
elimination 497
\& environmental stress 1366
\& enzyme, activity 1114267
variants 142414251657 *1658
esterases *2336 2976 *3420 5225
evolutionary divergence *4850
exp, \& allozyme plm 500
\& amylase *4188
\& B 5040
equilibrium \& radiation 2895
evolution in 1411425645
\& founders *1050 1430
genetic load 3000
G6PD \& 6PGD 4311
habitat selection in 186:12
\& heterosis 1427
\& inv frequency 2529
large, \& mating *4238
\& linkage disequilibrium 14303417
\& meiotic drive 3772
\& phosphoglucomutase 2399
\& plm *1810 3309
\& radiation mu 1243
\& recessive I mu 2812
selection *3302*3303 3309
from single pair 3359
viability 2101
fate of new mu 5154
finite, allele number 4073
simulation of 1314
fitness 396551265797
flexibility, \& temp 4814
gene, arrangement \& mating
speed *5159
variation in *184:17 186:22 326
genetic load *4635
genetically controlled 169:20 169:21
geneticists \& evolution 5009
genetics $164 * 40191310271702$
*1789 *2126 260029264635
4694483653575546
\& gene control regions 3197
of meiotic drive suppressors 184:25
parthenogenesis 5771a
geographical *2527 28653108
3109311032525192
\& geotaxis $* 2070$
growth 32525275
heterogeneity \& sexual selection 2156
heterozygous inv in *1339
hibernating 901902
homogeneous, \& learning 5537
homo- and heterozygous, \& EMS 4693
inv *176:1 *182:23*184:20 1340
*1472*1640 201720183140
31413820
island *1733*4072
isolated, gene frequencies *4611
iz plm 31403141
karyotypic distance between *184:23 *184:24
1 mu from 868
lab 160:20 162:5 1197*1450
$2315 * 3305458547655226$
5545
\& plm 36243625 *5156
\& quantitative trait 178:7 178:8
uni- \& bisexual *5348b
large \& isoalleles 883
latitudinal cline 3296
linkage in 177:24 177:25*4780
\& linkage disequilibrium 164:9
723 *2230 2806280735225338
local 12351236123712381850 1924
\& Iow temp 1140
lv, \& MMS sensitivity 3953
mainbody \& isolated $* 2922$
malarial vector 1949
male, co in *180:25
recombination 53135314
\& Marcov process 1111
marginal 169137293854
Mendelian, \& variability 1963
micro- 2874
model \& loss of recessive 1
191:28
\& monochromatic light 504
morphological and enzymatic
plm 3310
\& multiple, insemination 3431
paternity 11761177
\& mutator 141142873
Nagasaki 5321
nat $* 100$
adaptive value *5475
\& ADH 19062996 *4568 4815 50825083
\& alcohol 1143
\& allele diversity 2614
allozymes in *186:4
\& allozyme associations 4756
amylases *4222
\& baiting 822
\& beh diversity 1937
biology \& habitat 4970
bristle number 4651
chr, breakage factor 5295
dehydrogenases in 171:26 172:1
\& deleterious genes 4385 56075608
dispersal in 1816
effective size *3344
\& enzyme, deficiency 5252
enzymes, \& reproduction *3083
enzyme subunits 5578
enzyme variability 5811667
28503777455045545630
*4568 *5519 *5610
eye color mu 2749
female receptivity *5326 *5327
\& fertility 182:16 192:7 1921
finite evolution 1936
\& gene, arrangements 185:5 -environment interaction 189:22
exchange *167:15
frequency \& selection 4685
pools of 605
variation *186:20 63
\& genetic, changes 3210
drift 170:2
heterogeneity 4422
load $18281876 \quad 29953477$ 3478399044785476 54965726
variability concealed 4385
variation 88
genetics *50 123819221923 192454475727
geographical differentiation *188:17
heterozygosity in 164:1063
hidden allele variation 5746
\& interspecies competition
180:27 1777
interspecific hybrid in 1150
inv *181:13*188:10 2243
*3470 46604662 *4679 5196

[^17]
\qquad
\qquad 198
\qquad

\qquad
\qquad
\qquad
\qquad
1

\& esterase 134834364192

\square

population, nat--cont.
\& iz $2 3 2 4 \longdiv { 1 0 5 * 2 1 1 4 5 2 6 7 }$
$1 \&$ semil chr in 180:11
linkage disequilibrium *193:24 9841820373141814895 5310
longevity 5684
\& male, recombination 162:25 38085644
sexual selection *4397
migrant selection 4502
migration 170:2 1776
\& morphology 4940
multiple insemination in *49 2961
\& mutator 30544044
number changes in 1141
\& odorant 4524
\& panmixis *162:3
\& pollution 5418
polygene allele frequencies 3129
\& plm 167:16
chr *1898 3209 *3503
415243834384
onzyme *171:13 3209 35274152 *4516 PGM 190:21 190:26 190:27 protein 340343304915
productivity 191819191920 1921
quantitative traits $166: 51372$ 4958
radiation high level *191:25
radioresistance *167:10 1368
radiosensitive strains in 187:13
reproductive ability 5268 5802
SD in 190:25 286
\& selection 170:2 4001777 265843305718 disruptive 104
species composition 3855
\& sterility *3455 5608
temp \& longevity *4960
variability $161: 7 . * 1547 * 1548$ *2036 *2948 30224940
\& vg 361
viability 47464895
wing length 5193
\& II 733734
neighboring *336
nonequilibrium 1285
nonrandom 1 mu in 174:10
normal, viruses in 183:24
northern 5628
\& organophosphate resistance 666
\& overlapping generations 3522
pest 169:21
phenotype \& marginal environments 4371
physiology \& resistance 5786
plm 349252345235
PGM 1831
preadult viability in *777
\& protein variation 5579
radiated 18211822
X-ray response of 168:23 168:24 168:25
radiosensitive or -resistant
181:25 181:26 44715701600 2839
\& radius incompletus 18771878
\& random mating 723
rapid experiments with 1217
redwood *1707
\& repair of mu 15691570
replacement 497
seasons \& l frequency 3253
\& SD 107224692471
\& selection 850851 I139 1394
139541275545
semi-isolated, \& gene frequency

4235
\& sexual isolation $* 2035 * 4147$
\& singed 150
size 162:4 1107577991821
*5668 5798
small *1450 5545
SR in *1105
structure *335 1077
subdivided 126551355345
survival \& temp 1557
sympatric 15431544
synthetic, selection from 721

\& t 5056

\& temp 159:22 4974983252
523452355275
unstable *403
\& unstable genes 3537
urban 5727
viability 28054306
variability 181:15 12762821

$$
45595253
$$

vineyard 1138
\& virus resistance 3491
wild 171644155801
\& wild fruits 5391
\& wing size 1545
position effect *170:26 658674807 101925363343336336064110
suppression 144729283950
variegation 160:21 19082473
34954063470553335362
positional information transduction 4818
posttranscriptional regulation of protein 3412
potassium ion *712 *1932
potato 510205822973693 potential 189:12 178847604797
precursor incorporation \& pH 693
predation 177:15 44212533077
predioxins, chlorinated
phenoxyphenols 2067
preening 58
preference, food 1634
fungus 3683
spectral 5551
mutational 1312
pricking blastoderm \& defects 2752
primordia 5514934
probe, chromatin structure 4649
proboscis 5182
procarbazine 43185379
procion yellow 4965
procuticle 4513
productivity 189:21 133117774108
pop 160:19 1918191919201921
progenitor cells, adult 5306
progeny, of interspecies competi-
tion 1873
production 3605
yield \& magnetism 3546
programmed dev 170:4
prokaryote 1943195532213227
proliferation in dises 1647
proline 1478
prophase, chr fibril 189:3
meiotic $229134463873 * 4506$
mitotic 1688
synapsis 6606614597
propriolactone \& mu 3708
proprionic acid 4707
protease inhibitors 174:25
protection, from bacteria 1608
\& indenes 1226
vs. spermatogonia mu 2340 protein 2878
\& aging 271
anti-, synthesis antibodies \& puffs 186:28
basic *122*3339 *4278
-binding satellite DNA 4241
calliphorin-like 4025
cAMP-binding 18441845
chr 301302451 *452 22623422
44005125
chr, in differentiation 4632 in situ 304530463047
localized 4626
nonhistone 446844694470
phosphorylated *2031
\& chr banding 4402
vs. chr plm 184:14
compound eye 4641
contractile 2268
-DNA binding 5277
ecdysone, \& clones 33564409
ecdysterone, \& clones 2143
egg-shell 28933245
electrophoresis 2618
errors \& aging 7363379
evolution 21044256
eye, electrophoresis 4370
fat-body 47255233
gel-sieving 36393641
glue 3341
glyco- 2123381838193923 4974
granule 52335799
heat-induced 5559
heat shock 436548884889 50955096
hemolymph 214433574725
505452915340
insulin-like 1149
kinase \& embryo 5231
labeling, amanitin \& juvenile
hormone 4539
lv 3290472647275339
map 2219
metabolism \& gamma rays 191:9 1855
microtubule 24332936
muco- *939 2619
nonenzyme, detected 1607
nonhistone 1472268 *3428 428243925124
\& norp 1335
nuclear $2268 * 3428$
omega 91
oocyte, \& grandchildless *4589
\& optimal diet 191:17 191:18
organ-specific *5029
paragonial 31934144
pattern 2235511153505494 5495
polar granule 5799
plm 163:8 181:1 1131142006 4187
in nat pops 34034330
\& selection 85884330
\& selective neutrality 2102 3218
statistics 28573893
r- 3182
rapidly labeled 2774
released by DNase 4851
ribonuclear, formation 3451
ribosomal 161:6152 281905 980981982159018792247 31833188321641284140 44935244
salivary gland 171:1 26182619 4725
secretion 3699
semiconduction 4994
synthesis 164:23 171:11 173:22
175:1856315768
\& cycloheximide *640
\& differentiation 2893
in discs 263830293791
\& early dev 601
\& ecological imprinting 4762
\& ecdysone 188:8 5171645 26385367
in egg 3985
in embryo 5053
\& gene induction *3701
\& hormone 2172
inhibited 742374
\& mutants 169:19 173:23
\& plasmid 4082
\& puffs 180826222679
regulation 3412
tissue, \& electrophoresis 3700
tubulin 4576
from unfertilized egg 5277
urea-soluble 4513
variation in pops 49155579
yolk 165:17 *562 5635832400
33753524357543354600
516153885762
proteolysis 35544090
proteolytic conversion 43404341
prothoracic gland 5547
Prototheca 3089
PS-1, PS-2 *114 *115 *116
Pseudeucoila *181:10 15581871
*2823 490654105582
pseudo-chromocenter 3260
pseudoconditioning 4130
Pseudomonas 5250
pseudopupil 50947964797
pseudo-Y drive 10723772
psoralen 303346165815
psychotropics 49234804206
pteridine 166:19 46815321771
196619672449325842235289
5290531853205477
pterin 177:28 182:26 182:27 2180
2211235439075620
Pteromalidae 35434570
puff (see chromosome puff)
puffed character *2777 $\frac{\text { *2778 }}{}$
pugged *180:13
pulse \& sine song 3191
pupa, catacholamine 3021
duration of *1061
\& ecdysone *939 2308
esterase *5027
formation *939 4717
\& GOT 3130
hypoderm transcription 4878
leg ultrastructure 2949
mid- \& gene activation 3971
\& nucleotides 643
pre- 423425 *639 23302604
*4819 4840487949025462
survival to, \& hyperploidy 4499
\& temp, high 990
\& humidity *190:11
-sensitive 14865
\& vibration 213
puparium $421 * 443$
pupation 24975423
pupil 509
pseudo- 50947964797
purine, auxotrophs 36423642
metabolism 1252127
\& mu 607
nucleoside 254628175477
poly- 1064
synthesis in cultures 5363
puromycin 4377
putrified flies 878
pyokori 1119125527322819
pyranosidase *1240
pyrethroids 4189
pyridinium salts \& mu 647
pyridoxal oxidase 3381
pyridoxine *5390
pyrimidine, auxotrophy 473
biosynthesis 148637214851
dimer repair 191:1
isostich 1512
in medium 1396
\& mu 607
nucleosides 185:8 1315 2816
nucleotide metabolism 2583
oligonucleotides, DNA 2966
poly - 10643434
-requiring mutants 181:16
requirements in vitro 4744
salvage 225722583419
sensitivity 1750
synthesis 3637372144854852
pyrrolizidine alkaloid 5263
\qquad
\qquad

.
\qquad

都

Q-containing tRNA 529752985300
quadratic analysis of mu 3286 qualitative genotype \& wing length 5325
quantitative, allele \& esterase 5225
analysis of differentiation 4085
characters 182:18*280 4420
442254515562
biometry 3125
\& EMS mu 2851
\& enzymes 5337
genes for 1145
\& geography 3259
\& isoalleles 3126 \& phototaxis *1328*5419
in pops, lab 178:7 178:8
2315
nat 166:5 4958
variance for 1060
variation 5193
genetics 511135523714550
variation 13724504
quantum bumps 3832
queretaroic acid 3687
quinacrine $3516 * 41075614$
quinolines \& mu 2656
quinoxidine 5739
quinucildinyl benzilate 4454
race 177:634414070
geographic 348165433044420 54515453
radiation, adaptive 2799
after-effects 183:12 183:13
190:2 190:3 139013911806 3137
age, \& water content 2646
\& aneuploidy 187:23593
caffeine, \& chr mu 2748
\& chemicals as mutagens 996 5753
\& chr, mu 187:23 27483748 segregation 183:3
chromatid exchange in oocyte 50115709
\& co 180:3 11591160
damage, repair 3587371569 4638
of somatic cells 170:18
\& detachment 1014
\& dev rate 1891
discs 180:24
\& dp 774775
effects enigma 3875
exchanges \& meiotic autosomes 4548
\& female meiotic prophase *450 \& fertilization 4773
\& fractional mu 2377
fractionation \& mu 188:23 1573
gamma \& mortality 413
\& genetic load *191:25
genetics 166940065757
hazards, genetic 3005
\& heat tolerance 177:1
\& heterozy gosity 135618913048
high background 191:25 *936
ionizing, vs. chemicals \& mu 2663
damage \& nutrition 2303
\& dev 2032
hypersensitivity 36784708
\& longevity 183:23
\& midgut mitochondria 170:13 RBE 16311632163323782379 \& stimulation 1403
\& lifespan 170:14 170:15 357 4549
\& linkage equilibrium 2895
longevity, \& hypoxia 180:8
low frequency electromagnetic, \& mu 180:15
v, \& wing disc pattern 2917
of male or female 8311591160 1574
\& meiotic autosomes 4548
\& melanoma 5371
mu 27245778
\& caffeine 1109
dominant 1 *514 4129
\& dose 188:23 3285
in female $2480 \quad 3137$
\& hyperthermia 38383839 3840

- 79012421243
\& nucleic acid precursors 185:7 185:8 1464
point 27
rate, species 1976
repair 5766
\& spermatogonia 2340
suppression 189
nondisjunction 13622667
\& oogenesis stages 186:8 1014
pops 18211822
protection 171:6 174:11 183:23
rate \& mu 1573
rearrangements \& ATP 180:14
resistance 168:24 168:26 179:22
181:9 648*936 13681570
*3749 *5586
\& catalase *529
\& EMS mu 17911792
\& pops 167:10 181:25 181:26 2839
\& Robertsonian t 1362
\& segregation 1363
sensitivity $174: 22$ 174:23 175:16
183:11 192:13 447 *514 1434
38404126470853425518
\& C(3)G 2899
comparative 4664
embryo 4178
of hyperkinetic mu 3030
\& indene 168:28 168:29 168:30
pops 181:25 181:26 187:13 16002839
of stages 16321633
\& sex 4549
\& spermatogenesis *45074773
\& stimulation 1403
subl \& repair 3215
\& survival 5517
temp mu 2599
ultrasound, \& mu 3123
\& viability 13563048
\& whole \& fractional mu 180:23 \& Y marker loss *4275
radiobiochemistry 2172
radioimmunoassay of ecdysone 2308
radioisotopes 905
radiolabeling embryo 186:24
radiomutability, specific loci, \& isoalleles 4227
radionuclide 218221832662
radiowaves \& mu $2783 \quad 27854881$
rain forest $43234325 * 5384 * 5680$
random, assortment \& linkage 1963
drift 47844944
range \& plm *1437
rape 419
rare, alleles \& heterozygosity 4461
males \& choice 5472
type, advantage of 183:9 2890
rat $557 * 10741496$
rate \& pattern of chr evolution *3261
reaction, kinetics \& mutagen 4137 optomotor 171:14
reaggregate, leg disc 5178
rearing \& sexual selection *1445 2927
rearrangements (see chromosome rearrangements)
recapture after marking 1827
receptivity \& mating time *3238 receptivity of y female 2323
receptors 4454459950715285 54805535555156405828 nicotinic 3467346844504452 44535467
photo- 4715476047964797 47905101516752835285 529256545822
\& phototaxis 4645
recognition \& sexual selection 2675
recombinant, DNA 458652795558 plasmid 35745148
recombination 185:92832042 *4849
advantage 4852361
\& Bar 528
in cage pops 2764
\& clonal selection *3306
crowding, \& productivity 4108
defective 254185927222723 3462
\& delta 27704872
\& DNA 171:22 3624842
\& dp 1209
\& enzyme deficiency 3984
female 183:4 7843679
fraction 2176
frequency 191:11 191:12 191:13 191:14
gene-controlled 191:11 191:12
\& genetic background 733734
\& heat 362103624383559
heterochromatin, \& sex chr 5045
\& heterozygous inv *188:12
high-frequency, centromere, \& histones 4582
\& hitchhiking 1749
\& hybrid dysgenesis 47094710
intergenic 629
intragenic 190:7 190:8 8611818 *237240734272
lambda-D. 3621
load 2229
ow, \& X-ray 1 mu 1858
male 16641665189418951896 19843604360540454046
4096 *4170 417151365137
51385211553955405644
5645
\& chr breakage 3593
\& dysgenic hybrid 5185
element 38073808
\& extracts 5186
factor 5824
gene 27333055
inducer 192:5 192:6
\& injection 3061
\& interchr effect 5294
\& mosaics 4621
\& mu rate *3142 *3143
in pops 53135314
\& rapid mu 1765
\& selection 2590
\& spontaneous mu 175:6
map, mitotic 123
meiotic 1444245542604833
control 2109332333243325
mitotic 48786133425045
53615362
\& cleavage 328232833284
\& mutator 2718
\& radiation 6572719
\& mu 180:2173 $2542833 * 4508$
\& new alleles *513
\& nitrosourea 4465
nodule 2213
non-reciprocal 861
oocyte 6263560
SD, \& selection *4897
\& selection 912180123613131 4272
sex 4872
somatic 180:21 190:7 190:8 1818
409648425211
\& chemicals 120412051206

3846
\& sex 4869
test 2796
\& UV 2719
spontaneous male 2589
suppressor 26972899
thermal, map 628
time in oocyte 4583
\& transformation 3495
unequal \& sister-strand 124
\& W 1000
X-Y 4163
recording \& ocelli 4748
rectal papillae 5805
redox coenzymes 607
reductionist research 5063
redundancy 18719314827
gene 178217853118
rDNA *942 2391
redwoods pop *1707
reflex, tarsal 38094130
regeneration 21555915915215
5286
in discs 187:3 186721862187 2950
\& homoeosis 187:2
intercalary 24842485
leg 2418
regionalization in embryo 173:19 5256
regions, inverse effect 3362
regulation, differentiation $* 710$
of enzymes 1488
\& gene dosage 1487
of gene, expression 5543
number 189:23 189:24
of iz expression 1252
of mitosis 169:4 169:5464
\& nervous system 1055
osmo- 713
of pattern formation 1271
of transcription 290
\& tRNA 793
of uricase activity $170: 3$
regulator, gene 14853541
mechanism in feeding 212
rejection 315
rejoining, break 169:9 2900
renaturation rate 685
repair 5504
caffeine, \& oocyte 3815
-deficient strain 3815
DNA 53895752
of embryo damage 2411
excision 2169
of oogenesis defect 13151316
mu 171:3 191:1 321455365766
of prolonged mutagenesis 4449
of radiation damage 358737 4638
replication 20228314920 post- 2170
synthesis inhibition 5661
system, maternal 2747
temp-dependent, \& radiation 3215
repeats 15882011
repellants 36754523
repetitive, dispersed genes 5202
DNA *300 411
sequence \& late replication *4777
replica, freeze etch 5765
replication 658
\& break site 4203
chr 447944804482
\& chr organization 2814
\& chromatin 37845632
\& chromocenter 176:17 176:19
controlled 42
differential *458 16985152
disproportionate 195839475707
DNA 458283132993300 *3968

5152

mitochondrial 5514
origins 2154
r 2334 *955 1491 *1492 2334
replication, DNA, r--cont. *3718
intermediate, size 4320 late *3564*3565 *3566*4777 \& morphology of rearranged chr 3199
\& nuclear membrane 974
pattern 4243443225
of poly dA and poly rA 4342
post-, repair 2170
preferential 5474
rate 2064 *2809 *2810
repair $202 \quad 217028314920$
subunit 3367
synchrony in sister salivary glands *5067
\& transcription 23342742
\& transcription control 2986 40005070
under-, of satellite DNA 4168
unit \& bands 1689
replicon 268233003367
reply to Kidwell 1960
report, group 2476
reproduction $* 761$
cell, \& cell cycle 2924
\& central nervous system 4598
\& different species 324
enzyme *3083
fitness \& selection 3951
heating, \& microwaves 4966
\& housing 2341
isolating mechanism 3585
\& light *1092 4230
in nat pops 308352685802
regulation 5572
\& temp 3103111140
\& time *2130
reproductive, biology 505
diapause in pops 5266
differentiation *87
isolation *160:5 $161445 * 2077$
*4302 *4416 4613
\& competition 2696
enhanced *2319
incipient 2316
\& mixed culturing *4991
\& selection 168:6 1170
potential *809 99042304401
rate 2183
system, female 175:12 175:16 value 2160
rescue, genetic 3997
research, mu 16701675
reductionist 5063
reserpine 1361
resistance 172720803594
adaptation 5786
anesthesia 5498
to chemicals 188418852258
279432624527
DDT 22833438
heat, \& selection 5657
insecticide 5691
MRF 5824
radiation- (see radiation resistance)
temp, \& esterase *5714
resource utilization 495953835682
respiration 172:8 177:10 9991825
314752415792
\& metamorphosis 169:26 172:8
\& mitochondria 9983744
\& puffs 1332955
response, functional 4125
preservation *5348
resting potential 189:12
restitution of sperm breaks 3786
restriction, enzymes \& mitochon-
drial DNA 5484
nuclease 663245744725468
sites in DNA 1089
retina 18993155358139613962 40684677
retinula cells 118422723592
reversions 166:25 178:6 3773551

45184561
reward, food, \& maze 3136
rhabdomeres 4489471547985101
rhodopsin 1336197249494950 5170
rhythm 20425075199
biological 11561325
circadian 176:15*183:22*267
*268 669917125013261441
149627462836 *4361
\& light 164:8 197020602061 2224
\& oviposition 166:1 166:9 34 *35 36 *2059 32964231 \& photoperiod 35444571
daily 185:22 4231
eclosion 178:18 *179:11 2246 4473
emergence 160:25 13413322867 3739
endogenous 13272868
locomotion 2867389738994948
metabolic 160:25 134
oviposition 166:1 166:9 1311 23644500
ribonuclease, adult \& lv 4086
ribonucleic acid (RNA)
base sequence 4155
c *39
in cell culture 18373157
cytoplasmic, stability 3750
\& dosage compensation *160:15
-DNA hybrid 37193031024001 40935069
\& DNA, organelle, secretion 4945
double-stranded 42945368
egg, complexity 5550
gel separation 4877
heat-shock 5375
identical sequences 1630
iodinated 1435
labeling \& amanitin \& juvenile hormone 4539
in ltl 2030
messenger (m), complexity 10242677
cytoplasmic 4779
foreign, translated in D. 4025
\& heat shock 171228912892 40664889
histone 13604358
myosin 5369
oocytic 4742
pre- 4544
translated or not 5515
metabolism *159:17 13062251 439343945569
mitochondrial 85636944720
nuclear, \& cytoplasmic 2678
$4782 * 4805$
\& gene regulation 741
heterogeneous 10152673 4779
\& polar granules 179:8
poly A 7281058264826492650 4233439347794781
polymerase 181:19 183:14 187:14
126241009101010112241
35543556
\& a matoxin 4610
B or II 4579458046725584
chr distribution 3934
DNA-dependent 24354683
E. coli 866867
hormones, \& discs 2834
localized in chr 3635
\& lv 69824343555
nuclear 2977
\& transcription 45874809 4810
III 39284979
from polysomes 1144
processing 3189454446694778
ribosomal (r) 189:23 189:24
*38 8241078 *1492 1637
1661
\& chr hybridization 5188
cistrons 44594460
cleavage of 2551
cloned genes for 594
compared 3216
crosslinked 5815
deficiency \& SR killing 3159
in embryonic nuclei 2896
in evolution $1057 * 2263$
genes for (see DNA, r)
\& lv dev 3116
methylation 4778
mitochondrial 3694
\& position effect 14472928
processing 4778
\& protein 31884140
redundancy *942
sequences 567
\& species hybrid 3471
synthesis 1842:26 188:5 1448
16232928439453465633
transcription 1294
5S 181:23 189:7*38 304305
1199144214432134 *2263
29853348466943935250
18S 11991630
26S 25502551
28S 188:20 119916612406
sequence 191:5 4236
in spermatogenesis $*_{4} 279$
stable 21424155
synthesis 100910101011
in chr 1725
\& circadian rhythm 1441
in disc \& ecdysone 3372
\& drugs 858
in ejaculatory bulb *3659
in embryo $2743 * 3660$
\& heat shock 2158
\& hormone *210 21724329
inhibited 14493733 *4167
in vitro 178:10
in isolated nuclei $1064 * 4071$
kinetics 18373157
in late lv 2029
in leg disc 3791
\& magnification 1780
\& mitomycin C 179:12
\& nucleolus 175:18
observed cytologically 187:14
\& polyamines 2362206
\& puffs 2133 *2153
rate in oogenesis 3817
\& RNA polymerase 867
in salivary glands *159:18
\& spermadine 698
\& spermiogenesis 613
transfer (t) 633194719482298
4456
aminoacyl, synthetase 2862 30083895
aminoacylation 1534
\& amber mu 175:9
aspartic acid 5300
charging \& polygenes 186:7
\& chr 4467
hybridization 164:25
chromatographed 192:17
192:20 1945
containing Q 529752985300
\& dev 192:24 192:25
genes for 175:24 4456
(see also DNA, t)
Glu 4236
guanylation 5818
isoacceptor 1186
in M \& suppressors 1944 1946
modification \& suppression
modifying enzymes 192:22
patterns 344

4173 192:23
patterns 344
tterns
pre- 3189
precursors 2197
purification \& properties
192:18 192:19 192:21
\& regulation 793
synthetase 285
tyrosyl 2377947957962513
44685299
ligase 7971915
synthetase 19123200
Val 4457
4S 4393
thermolability 236
viruses \& mu 25
2S 8242551
5. 8S 2551
ribonucleoprotein *167:1 383 *2309 3451
localized 5427
ribonucleosides, purine \& pyrimidine
2816
ribonucleotides 2128
ribosome 171:11 1521548761637

31834291

\& age 33274210
assembly 169:16 4774782664
compared 3216
crystal array 3576
DNA (see DNA r)
genes $3278 \mathbf{3 8 1 7} 421142124213$
magnification 3549
poly - , \& puffs 3474
protein 161:6 281905980981
98215901879224731884128
414044935244
RNA (see RNA r)
subunits 1590
rifampicin, genetic effects of $161: 27$
ring 177:3 189:4 189:5 10225165090
canal *175:11
Ringer pH 693
rings of imaginal cells 5587
risk, assessment of genetic damage
331
mutational 5756
Rogor dynamics 1681
root meristem 3542
rot, brown, of stone fruits 189:20
rotational constraints, chr 5750
rudimentary gonad 23422343
rule, anti-Burla's 5676
saccharin $9331990 * 3825 * 4464$
47354879 *5067
saguaro-breeding *2549
saliva, lv 47264727
salivary gland 159:18 162:19 171:1
172:22 177:10 1379169314474
462747255634
cell 183:25 419850375773
chr (see chromosome, salivary

gland)

proteins 26182619 *3701 4725
puffing 133202220235547
secretion *940 365836994337
46924945
Salmonella 5739
salt receptive mu 1774
salvage of pyrimidines 22572258
Salyut-4 5466
sampling strategy 1108
Sarcophaga 14922954
satellite, chromatin *3736
DNA 173181 *318 *319 *458
459 *530 *1493 1494 *2269
*3091 53495358 *5524a

*5574

\& chromatin *47665117 *5262
cloned 22124367
evolution 4242
gene near 5406
\& heterochromatin *4319
43665823
59153495358 *5524a
$\begin{array}{cc}\text { svolution } & 4242 \\ \text { gene near } & 5406\end{array}$

$$
\text { istones } 4319 * 5262 * 5380
$$

histones 4319 *5262 *5380

元
都
satellite, DNA--cont.
location *5429
lv \& adult 2935
metaphase *5806
polytene 4269
protein-binding 4241
underreplicated 4168
variation 333I
IV 40334472
sayannas 176:14 176:15 176:16
559155925693
SC, aberrant 5190
scanning electrom microscope
(SEM) 1773379539834120
503251945544
Schultz, J. 48
sclerotization 42120662571
screening, mutagenesis 27843173 31743175
teratogen 5813
scutellar bristles 178:21 187:12 2756
Scutigera 177:15
season, activity 176:15 1814
color \& temp *186:11
\& diapause 2404
\& gene frequency 1229
\& inv plm 2018
laying \& temp-sensitivity 183:16
\& microdistribution 3682 variation 8578813731 *5800
secretion, antigens 36584692
cells 2886
of mucoproteins 32703273
paragonial 212221234624
proteins 3699
\& puffs *940
salivary gland 202136584337 4945
segmental aneuploidy 13011743 17441745
segmentation 2412412043535256 5618
segregation 193:19 287464576
136339113967 *4009 42044363
autosomes 185:1739
chr 213850135020
distortion *165:21 173:2 173:3
173:4 178:9678 679719720 23872582
\& male co *4897
in pops 24692471
(see also mutant, SD)
in male $725 \overline{1173}$
nonrandom 167:18 2409
seizure, temp-induced 5728
selection 2965490
\& Acph 1272
\& $\overline{\text { Adh }} 161: 16186418652048$ 28443185374740954939 5238
advantage of heterozygotes 161:25
\& alcohol 54505452
\& allozymes *1093 *1094 4623
\& amylase 46235825
artificial, \& assostative mating 160:12
\& dominance 2872
intensity of 4503
\& pops 1077
\& reproductive fitness 3951
for asymmetrical bias 1451
automatic 2112
balanced 172:24 3276
\& beh 132914512245
\& body, size 1921932112 weight 850851
\& bristles 178:21 187:11 187:12 193:13 1384270828835648 in cell culture 4882
\& cell size and number 4847
\& chemotaxis 572
chr arrangement, \& mating *3034
\& ci 3612
clonal *3306
\& co 2
coefficient of inv plm 3624
components 163:10 225
\& computer 3036
constraint 2856
continuous, \& radius
incompletus 3181
\& courtship $167: 8 \quad 1135$
\& coxal chaetae 4605
\& crossbreeding 1394
cyclical 5545
\& DDT resistance 22833438
\& demography *159:21
density-dependent 3449
\& dev rate 12331234
differential, sex, \& random mating 2588
directional 192:13 3435
\& dispersive beh 2762
disruptive 162:8 162:9 162:10
171:4 32104110192193
39915022
or drift 4016
\& egg length 3435
\& electrophoresis 1230
\& enzyme plm 1219 *2440 2657 2658
\& epistasis 5022
for ethnological isolation 180:6
\& evolution 1936
exp analyzed 722
in exp pops $* 3302 * 3303$
\& female dispersion 5491
\& fertility *51
\& fitness in pop cage 5110
frequency-dependent 181:18 84 40912732005316833083449
38514584
\& ADH 5322
\& inv 3103
\& medium 2320
\& fungus 1852
\& gene, flow 11391663
frequencies 159:7 159:8 159:99854685
of gene systems 400
genetic undt 16504041
\& geotaxis $891 * 140914551456$ 3207 *3303
\& glued 2254
\& G6PD \& 6PGD 4311
group *1408
habitat 186:12 58229585681
\& heat 52355657
\& high productivity 1777
homeostasis *3751
against homozygotes 3747
ineffective, \& sexual isolation 2240
intensity 110
intermediate optimum phenotype 5109
\& interspecies competition 4495
\& intragenic recombination 4272
\& inv plm *3562 *5527
\& isoalleles 1964
or isolation, sexual 5259
\& iz 14241425158419614164
1 , \& chr segments 5428
\& LAP 1272
\& leucine aminopeptidase 4251
\& light beh 3411
limits 937
\& linked genes 2005
\& linkage disequilibrium *193:24
long-term 9373346
\& iz 1231123212331234
\& lv digging 4560
for male recombination 2590
\& mating 179:4 1625
preference 26052606
reluctance *174:6 *763 *4652
speed $* 1705$ *2517 26052606 *5159
success 23263464
\& meiosis *1790
migrant, in nat pop 4502
multiple-choice *859
\& mutability 4952
nat, in age-structured pops
2228
\& artificial 1352
\& beh 2177
\& cactus 4266
\& electrophoretic loci 269
\& environment 4873
\& genetic drift 2111
\& GPDH 4750
\& inbreeding 269
in lab 160:20 2709
\& plm 160:685 2931828
\& protein 85
systematics, \& molecular evolution 4712
\& VSV mutants 180:28
in nat pops 170:2 400
\& neutral polymorphic alleles
174:16
neutrality 8871521023218 4208
no, \& unstable sn 3629
\& nonmendelian variability 4494
nonrandom, of mates 1683
nutrient, \& oviposition 4650
\& ODH 4132
optimum, intensity 4503
\& oviposition site 31073111
\& parthenogenesis *1790
\& penetrance 174:3
periodic 177:24
\& phototaxis 179:19 279 *280
1099 *1409 180122444724
*541954215422
\& drosopterin 5214
\& marked X 2616
plateau 4127
\& plm 218816917233094430 5109
\& polygenes 17981799
\& pop evolution 5646
pressure, iz 19614164
for productivity $189: 21$
\& protein 884330
$\mathrm{r}-$ and K - 1060
\& radius incompletus 18773181
\& recombinant clone 36215558
\& recombination 191:14 912
$180123613131 * 4897$
\& reproductive isolation 168:6 1170
of resistance to analogs 2080
response 13941395
\& SD *4897
\& sex response 182:24
sexual 4941
\& assortative mating 4694
frequency-dependent *1445
1781 *2927
male, in nat pops *4397
\& pheromone 1017
\& pop heterogeneity 2156
\& recognition 2675
\& sexual vigor 450
\& speciation 5406 b
\& species number 5043
\& sexual isolation *460 4476 simulated 2486
size, \& enzymes 5336
of spontaneous tandem duplication 2542
stabilizing 162:8 162:9 162:10
192193228134353995
\& dev 203
\& environment 579
of synchronous lv 5329
in synthetic lines 174:4
from synthetic pops 721
\& taxis *402 *3751
temp, density, genotype, \&
enzyme plm 4313
esterases \& endocrines *2947
-shock 2763
\& temp 12311232
preference 1503
resistance *3959
theory 160:26
2-trait, \& correlation 188:3 188:4
unit *1790
value 3755718
\& variability maintenance 4784
\& variation 372
variation, \& age 2120
\& vibration 1135
\& walking beh 13292245
\& wings 159:7 159:8 338339 1995
X-linked 6876884724
selectionist-neutralist controversy 1902
selective or neutral 2295
selenocystine 195413
self-luminescence 5141
simazine 4901
semiconduction, protein 4994
seminal vesicle 16425120
semitranslocation 22212222
senescence 3515421556
sense organs, muscles, \& flight 2925
sensitivity, to carbon dioxide *1756
hyper-, to ionizing rays 4708
methyl dopa 4175
to mutagens 166821692170
3969404940515752
to pyrimidines 1750
to radiation 44741264549
of retina 4068
sensory, bristle dev 2915
neurons 2293309245475173 55115757
sepiapterin 182:27 8489031718
177128945319
sequence, DNA 218421854033
4261
firing 4607
\& heat shock loci 5625
interrupter 4556
inverted repeat 1904
nonessential 20134197
rRNA 56721342406
tRNA 1948
serology, histone 5175
serotonin \& light 2366
serotype 1405
serum proteins 329052915340
Sevin \& mu 218
sex, accelerating evolution 1801
activity, \& longevity 5512
male, \& ring gland 5090
attraction 1291
beh *762 828829 *3617 *4652
*498454705616
\& activity 2201
\& gymander 12934927
precocious *5721
chr, \& dosage compensation
5769
heterochromatin \& autosomes 4005
\& meiotic drive 574
mitotic recombination in
heterochromatin 5045
pairing 1172
partial X-ray loss 2352
system 13811382
t \& speciation 4109
combs *165:164406
competition \& ADH 191:24 1866
determination 33625641

in chimeras 4124

differences *4191
differential selection, \& random
mating 2588
ion, \& random
sex--cont.
differentiation \& chr 1192
dimorphism $33624794 * 5700$
drive \& SD *2704
\& genital primordia 4934
\& GPDH 637
\& G6PD \& 6PGD 4639
habit 5142
homo-, male, \& light 5113
\& homokaryotype mating *1706 *1707
inter- 3670
\& X replication pattern 4344 isolation *177:6
between species *2442
character displacement for *5265
cytology *4147
\& hybrid sterility *4098
of pops *2035
\& selection 22404476
or selection 5259
\& viability 900
\& light beh *1529
limited effect \& load 5715
-linked, auxotrophy 474
bristle polygenes 2371
expression \& intersex 2351
gene action \& X-autosome ratio 169:7
genes in region 20 186:26
\& geotaxis *5817
mu, \& cold 1128
female sterile 533
\& gases 541
1 \& low X-ray dose 180:2 recessive cold-sensitive 179:29
\& selective mating 179:4
\& pop genetics 5357
male, activity in LA line 4993 \& mutability 62
radiation, \& lifespan 4549
ratio *1280 * $1408 * 14321838$
*2906 *5360
\& age 947
anomaly *2628 *2629
\& antibiotics 3248
\& da \& hybrid viability 3211
\& embryo dev 5227
females *3358
fertility \& SD 2687
\& gynanders 5228
\& hybrid viability 41535374
infection 184:12 *184:13
1 embryo 4118
\& magnetism 3546
male \& sperm dysfunction *3587
\& males selectively killed 3158
\& maternal effect 176:3
modifiers *5696
\& mosaics 3160
\& pop density 1067
pop genetics *2126
\& SD *826 2687
secondary 608
spirochete *1551*1552
spiroplasma 5810
\& temp 165:3
\& tumorous head 947948
\& Tween 60953
receptivity \& paragonia 163:12 recombination, \& delta 4872
response to selection 182:24
\& ring chr 17341736
selection 4941
\& assortative mating 4694
frequency-dependent *1445 *1781 *2927
male, in nat pops *4397
\& pheromone 1017
\& pop heterogeneity 2156
\& recognition 2675
\& speciation 5406b
\& species number 5043 selective 1 mu 2898
\& sex chr nondisjunction 62
$\&$ somatic, mosaicism 4870 radiation damage 170:18 recombination 4869
specific, foci 25113611
$1 \quad 2858311331143418$
maternal effect 2256 ninhydrin reaction *160:23
transformation 237628593205 35024515
type mutability 191:225246
uni- \& bi-, lab pops *3305 *5348b
vigor \& sexual selection 450
\& X-ray 1 mu 1171
shadow stimulus 58
shadowing 5765
shaker, gyratory 3843
shaking effect on walking 3899
shikimic acid 462
shock, heat 10264246 \& RNA 17122158
temp 2871767
shunt, hexose monophosphate 4646
sibling species 35013691391
3440 *3826 4331 *4423
\& alcohol 2285
allopatric 193:14
differences 2279
\& ecology 470047014702
\& ethanol 3918
\& latitude 2284
light beh 1527 *1528
phylogeny *4146
\& r-proteins 3182
sympatric, detection 3789
\& X-ray mu 52935816
sigma virus (see virus, sigma) silkworm 4899
silver 3968
simulated selection 2486
simulation study 5135
S.I.N. 5104

Sindbis virus (see virus, Sindbis)
sine \& pulse song 3191
sister chromatid exchange 189:13 178449875229
site, breeding *3671
heat shock, \& duplication 4793
size, body, \& selection 162:8
162:9 162:10
effective, pop *3344
eye, control of 166:24
\& pop density 3925
of pop estimated 799
\& survival in stochastic environment 5061
skeleton, cephalo-pharyngial 5735
Slizynska, H. 5353
smelting, lead 2688
social, beh \& lek 4634
implications of engineering 167:7
isolation *5738a
sodium, arsenate 425
azide 5516
deoxycholate \& mu 160:16
fluoride 22022002747
ion *712*1932
monofluorophosphate 3388 monohydrogen arsenate \& co 19
periodate 1945
phenobarbiturate 4822
phosphate 2200
pump \& differentiation 2769
saccharin \& mu 1990
tungstate 2037
soil; breeding 4618
disulfon in 1462
insecticides in 969
pollution 391
somatic, breaks \& male
recombination 4096
cell, beh in 13979
genetics 187:22 16063370
radiation damage 170:18 sister chromatids 5284
chr, aberrations 28992901 banding variation $* 5220$ \& fluorescence 508 locus of highly repeated DNA 5692 stained *4107
chromatid exchanges \& X rays 2900
co (see crossing over, somatic)
DNA metabolism 2109
effects, of vibration 119
of X rays \& neutrons 1807
ganglia, male, \& X-ray mu 4284
ine 56415642
mosaicism 85863012 gonadal 2043
\& sex 4870
\& y heterozygote *4706
mu, \& chemicals 23962397 \& X rays 555
mutagenesis 4026
pairing \& mitosis *3567
recombination 18184842 \& chemicals 3846 intragenic 190:7 190:8
male 5211
\& mu 180:21
\& sex 4869
test 2796
\& UV 2719
region of egg 2522
resistance to X rays $168: 24$
synapsis 660661
sonagrams *1378
song 42885480
courtship 1890*2518 3392 44835258
pulse \& sine 3191
sorbitol, dehydrogenase 1762152 33644316
\& mu 2041
sound, courtship *602 2564 *3617
male courtship 1378 *2225
*2766 *3726
\& mating 2095
ultra-, \& mu 98
space, \& disequilibrium *100
flight 2420
\& gene action 4441
station 5466
studies 3097
time, \& allozyme variation 3076
\& time organization 2881
spacer DNA 4686
spatial, discrimination 1245
distribution $1275 * 54585487$
patterns 1559
speciation $89 * 847900 * 9952099$
22142605260634424037
\& adaptation genetic unit 3398
\& ethology 4352
\& gene pool 163:27
\& genetic differentiation 190:13
genetics 22153320
\& genome evolution 4193
\& heterochromatin 4537
mathematical model 2830
\& molecules 2317
organismic 2317
\& sex chr $t 4109$
\& sexual selection 5406 b
in subgroup *193:23
sympatric 184:4
theory 5698a
species, adaptiveness *2634
allopatric sibling 193:14
annual distribution 3884
catalog of 5677
compared by DNA hybridization 4023
composition of nat pop 3855
cosmopolitan 3492874 *4962 49635687
crosses 24782479 \& male viability 4153
diversity 39164323
DNA base composition 164:7
domestic 163533454285 breeding site 4253
endemic 3254325 *4962 4963 504456865687
Australian 3563 or not 3415
evolution 5565c 5671b
fungus feeding 1636
gene frequencies 2006
\& heat-shock DNA 5479
\& heterochromatin 5595
histone differences 3371
homologous DNA in 265266
homology \& heat-shock DNA 4481
homosequential 174:24 3243287
hybrid *4322*475452735274
\& asynapsis 2912
\& chr, beh 2348 conjugation *2344
replication *3566 4479
synapsis 3479
\& co *2345 *2346 3557
\& coadaptation *2937
crossability 2660
dev *3330
\& exposure to other species 4475
\& gene regulation *4303 *4304
male sterility 3440
\& mitosis 3480
morphology \& dev *4304
natural 4690
\& puffed *2777
\& rDNA 4460
\& rRNA 3471
\& somatic cell genetics 187:22
\& sterility 5087
viability 3211
\& П1 2941
incipient, \& courtship *173:28
inter-, competition 163:5
180:26 180:27 189:21 1777
19012003280448924893
\& progeny 1873
\& selection 4495
gene exchange *167:15
hybrid *162:24 165:11 169:2
169:4 169:5 172:12 *2381
\& rDNA 2334
interfertile $520452365787 a$
intra-, competition *163:5 1901
iz variability 2489
key 5165
lek 4634
mitotic chr 5614
new *5655 *5686 5782
newly introduced 5674
nuclei transplanted between 2997
number \& sexual selection 5043
picture-winged *2535 2537
plant-specific 4831
rare 5406a
related, \& beh divergence 5044 \& evolution direction 5269
\& ribosomal proteins 1879
\& salivary gland cells 5773
semi- *403*2319*2766 *3634 *3975
sexually-isolated *2442
sibling 350136913713440 *3826 4331 *4423 5535a
\& alcohol 2285
\& bristles 5343
species, sibling--cont.
differences 2279
dispersal 178:26
ecology 470047014702
\& ethanol 3918
identifying ${ }^{* 165: 16}$
\& latitude 2284
\& light beh 1527
photoresponse 187:21
phylogeny *4146
\& X-ray mu 52935816 -specific protein pattern 2235 sub- *160:5 *160:7
super- *1502
sympatric 176:15 2624690 crossing 2218
sibling, detection 3789
time of origin 2216
tropical *166:3
variability \& satellite DNA's 165:15
variation in enzyme levels 2737 woodland 3041
specification of body pattern 3650
specificity \& beh origin 3335
spectra, circular dichroism 2086 intensity 5166
spectral, preference 5551
sensitivity, photoreceptor 1989
spectrophotometry 188:2
spectrum, puff *2910
response \& phototaxis 1719
Spencer, W. 101
sperm 183:7 92
aberrations \& fluorides 2200
air-drying \& alcohol dehydration of 172:19
alkylation 321446754676
break restitution 3786
\& chemical mutagens 159:2
chr, loss 163:11 2352 mu in 220
competition 2160 *5456
dev 875
\& diethyl sulfate 5662
displacement 2926
DNA alkylations 3636
dysfunction \& SR *3587
\& EDTA 1257
\& EMS 178:3 43675942154216 42175119
fractional mu in 185:4
\& gamma rays 3333
genetics 2121
head size \& shape 670671
length *186:19 611612 *968 2495
mature, \& dominant 1 mu 1571
metabolism 557
\& mitochondria 1388
movement 16433689
mu, \& magnetism 4439
\& temp 5119
\& neutrons 23782379
nucleus length 1580
orientation in seminal vesicles 5120
radiation damage repaired 1569
radiosensitization 1434
\& sigma 2173
size *4745
storage 188:7 611638 *2987
tail filaments 1643
\& TEM 178:3 7603847
transfer, storage, \& use 505
treatment \& chr rearrangements 3749
use 182:12 4332
X-rayed 228107910802525 328232833847
X-bearing, \& cold shock 1244
Y loss 2525
spermadine 698
spermathecae 4934944332
spermatid 1382
\& acid phosphatase 160:24
\& caffeine 1678
\& chemical mutagen 159:2
DNA distribution 3586
\& EMS 436
morphogenesis 4785
\& mu, dominant 11571
fractional in 185:4
repair 773
nuclei 172:29 672
X rays, \& mitotic recombination 3283
spermatocyte, \& acid phosphatase 4976
crystals 2278
\& mitotic recombination 3283
\& nondisjunction 910
nucleolus 180:1 1747
number 967
\& phylogeny 2643
pro- *3167
rayed, \& Y marker loss *4275
\& saccharin 1990
transcription *590 24193531
\& X-ray mu 355342834284
Y *3532
spermatogenesis *506 *696 *710
\& basic protein *4278
cells \& basic proteins *3339
\& chloramphenicol 1290
choline, \& carnitine 170:19
\& chr breaks 1674
\& cycloheximide 374
\& cyst cells 718
\& dominant 1 mu 2532
\& dp mu 7764657
\& indene 168:28 168:29
in vitro 176:5 2670
Lifschytz-Lindsley model 4436
\& mitotic recombination 3284
\& MMS 233
\& nitrosomethylurea 1247
premeiotic stages 3058
\& radiation *4507
radiosensitivity of 168:28 168:29
\& RNA 1623 *4279
\& sex chr activation 1037
single-cyst *2367
\& synthesis 1208
in tissue culture 176:10
\& X-rays 4657
in X0 *4014
spermatogonia, \& acid phosphatase 4976
chr 7
radiation protection 2340
X rays 30373282
spermiogenesis 175:7 190:9 720
18192582314641024593
\& chr loss 670671
\& cytoplasmic microtubules 1.953

EM 3807
\& Golgi 2105
\& meiotic drive 1380
\& RNA synthesis 613
\& vinblastine 3226
spiders 2612
spindle, mitotic 180:9 38313832
spiracles 1514
spirochete $1193 * 1551 * 15523159$
spiroplasma 52875810
spontaneous mu 242332503251
stability, loss of, in structure 3803
of mRNA 4742
thermal, \& thermal shock 1767
stabilizing selection 57922813995
stage \& protein pattern 5350
stain 185:11897 1476
staining, accessory glands 4975
differential, \& heterochromatin 5688
selective Y loop *4185
starch-degrading enzyme *167:10
*2311
starvation 192:8 352353 *1470 2286
\& DNA synthesis 19281929 static electric field 29165553
statistics 191:12 21412854016
of protein plm 285734033893
stem cells 4935
stentors 2982
stepwise, determination 3518
mutation model *2545
sterility, bisexual hybrid 3423
chemical-induced 2506
\& colchicine 2459
\& cytoplasm 4517
due to interacting cytoplasm \& gene 3505
\& egg pricking 619
female 180:17 187:27596 744
7455446
\& chr plm 3672
nonmendelian 21922193
4968498049814982
genes 182:16 325552715272 5446
\& hempa 5414
hybrid *398*52165733
\& race 3304
\& sexual isolation *4098
$\&$ hybrid dysgenesis 4710
male, \& low temp 164:27 mu 4032

meiotic 4786

\& species hybrid 3440
\& tem-sensitivity 1754
\& MLO *5520
mu, \& gonads 4864
in pops 43855608
in nat pops *3455
nonmendelian 289739294980 498149825395
\& nonreciprocal mu 3680
partial 5577
\& pollution 5418
\& reserpine 1361
\& species hybrid 5087
in strain crosses 3680
sterilization, mass 179:26
sternal bristles *177:8 *4606
4651 *5611
sterol 89221625385
stigmastane 892
stimulants, taste 5770
stimulation \& radiation 1403
stimulus, courtship 2139
shadow 58
stochastic environment 5061
stocks, crossed, \& heterosis
5529
LA \& HA 175:17 894
lab 752107512292023
transformed 2368
virginator 1988
stone fruit brown rot 189:20
storage, \& chr loss 163:11
effect, of chemical mutagens 188:21 4017
\& Y loss 759760
sperm, \& hybridization *2987
strain 717872
compound chr 242
crosses \& sterility 3680
differences 1884
isofemale 136827294958
isogenic, beh *4368
LA 24234993
male recombination 4171
mating beh 2760
mixed, \& dispersion 2827
norp-A 5058
Oregon 1787399347304731 5058
short-and long-lived 1662
stable \& unstable, \& mu 5024
triple balancer 1218
streams 146214133544296
stress 179:27 4821366 *4961 5685
structural element, XDH 2405
structure, loss of 27213803
study 2474
styrene \& its oxide 5151
subcosmopolitan species *4423
substrate, color \& oviposition
54575460
lv, \& electrophoresis *2960
specificities of enzymes 2738
subunit, \& cofactor binding 4682
size, enzyme 5578
succinate-cytochrome \underline{c} reductase 16853066
sucrase 5679
sucrose, chemoreception of 191:23 gradients 408
\& oviposition 166:18
temp \& fatty acid synthesis 4541
sugar, as adult nutrient 191:16
-fed females 187:3
mutant 87717753115
reception 1775259525973115 4084
response 782783
taste \& food color 5195
suicide combinations 678
sulfonate \& mu 23
sulphur 239
dioxide 35235513
summer \& gene frequency 1229
supergenes 501
superhelix mitochondrial DNA
5725
suppression 7957967983200
\& band 2971
of host beh 3383
male recombination 4046
mechanism 1914466852905319
position effect 29283950
of tarsal reflex 3809
temp of $1 \mathrm{z} \quad 3433$
\& tRNA modification 4173
\& tryptophan pyrrolase 4910
v 181249125299
of variegation 4064
suppressor 169:17 169:19 2609
3329356835695652
aliele-specific 4487
dominant, of Curly 174:9
extrachr *726
gene 6152513288728884592 4863
of M 19441946
of meiotic drive in pops 184:25
of position effect 160:21
of purple 19651967
recombination 2899
of sable 2697
of $\underline{S D} 31954145$
super- 177:4994
of tumor 1694
of veinlet 1796
surface features, cell line 5723
survey, species 368236833685
survival, adult, \& caffeine 4205
\& alcohol 1870
\& BuDR 4880
cohabitation, \& O2 5042
\& low temp 1140
lv, on supplemented medium 4471
pu, \& temp and humidity * $190: 11$
\& radiation 5517
\& size in a stochastic environment 5061
\& temp 1557
\& X 2226
susceptibility to hydroxyproline 2944
suspension culture 3843
sweet taste blindness 5770
sweetners, co, \& fecundity 2239
symbiosis *446 2178
symmetry, bilateral 5343
sympatric 176:15 184:4 18262
sympatric--cont.
154315442218302537894690 5535a
synapsis, \& conjugation 463
of polytene chr 3479
prophase, Y 4597
somatic 660661
\& species hybrid *2344
weak 699
synaptic, transmission 25204674 visual structure 1721
synaptonemal complex 166:21 252 253629 *1222 *1223 * 1224 148314842292
synchronized, start of DNA replication 4376
cells, in culture 5051
nuclei 5663
sister salivary gland *5067
syncytial blastoderm 2650
syncytiun 2220
synthesis, of mucoprotein 3273 protein (see protein synthesis) of pterins 2354 pyrimidine 3637372144854852
RNA (see RNA synthesis)
tRNA 794795
thymidylate 163:24
synthetic fuel 4477 14594
systematics 1597 *3024 31713399 5612a *5782
\& evolution 471252125213
systems, cellular periodic 2776 mosaic 3572
Szeged 4248

2,4,5-T 15522905024
tail-head alignment 1819
tandem duplication 2560
tanning 4214667
tapping 2050
tarsal, chemoreception 191:23 reflex 38094130
tarsi, thoracic leg 4353
taste 2528407346635195
blindness, sweet 5770
mu 794763628
organs, labellar 5483
taxa \& gene frequency 85
taxonomy *182:7 182:8 182:9 257 1320 *3728
Tedion 77
telomere 1522 *2908 *2808 *3937 5068
TEM 178:3 $124 \quad 76037953847$
temperate regions 5682
temperature, acclimation \& preference *4182
adaptation 3669
\& adaptive beh 3946
\& adenylic nucleotides 172:6
\& ADH 183:20 183:21 45515082 5083
\& adult number 164:2
\& alcohol *3638
\& allozymes 1179
autosomes, \& Ax and ci 3613
\& body, size 1426
weight 169:23
$8 \mathrm{ca}^{\text {nd }} 3078$
\& chr plm *488*489 *490 \& female receptivity *5326 *5327
\& circadian rhythm *267 *183:22
\& co 12811414
cold, \& hibernation 902 \& oocytes 1013
resistance to *804
stress in pops *4961
\& complete or mosaic mu 2646
\& copulation 3105430
density, selection, genotype, \& enzyme plm 4313
-dependent, cell lethal 159:25
repair 3215
\& dev 164:26 164:27 164:28 165:3 9872089
\& dispersion 276127624866
\& dominance 1123
DRB, \& RNA synthesis *4167
\& eclosion 179:11 986
EMS, \& whole or mosaic mu 5119
\& esterase *5028
\& expressivity 189:19
\& fitness 13102853
\& flight 76525193697
\& gene interaction 169:23 3473 46984998
genes, \& longevity 5684
\& gonadal atrophy 3922
\& growth 3092264
high 9901036 *2578 resistance *3958*3959
\& homoeosis 78625752758 4861
mu 366636673668
\& humidity on pu *190:11 *1370 182528793147
hybrids, \& maternal effect 1644
\& inbreeding 5374
-induced, dev arrest 3761 seizure 5728
$\&$ interspecific competition 180:27
lability of rRNA 1661
\& leg mu 4698
\& lifespan 1555
light, \& mating success 2328
\& locomotion 3028
\& longevity 1331 *2082 *4960
low 306
\& adult activity 307
\& lifespan 191
\& male sterility 164:27
\& pops 1140
\& resource use 5682
shock 287
\& male recombination 5314
\& map 4520
melting *2269
\& migration 1776
\& muscle firing pattern 5581
\& mu manifestation 45194520 4521
mu, radiation 2599
nitrosoethylurea, \& mu 3316
\& nondisjunction 1414
$\&$ oviposition 986
\& paralysis 860
pop, \& body size *159:22 growth, \& fitness 5285
\& pop, density, 1 v , \& mu *2780 divergence 5409
flexibility 4814
plm 52345235
pre-adult, \& reproductive potential 4401
preference 15033122 *5311
\& productivity 1331
\& puffs 454 *2778
\& radiation damage 737
\& reproduction 310311
\& reproductive potential 990
resistance *3504 *3508*3958 *5586
\& esterase *5714
growth, \& geography of pops 3252
to high 3914
\& selection *3959
\& respiration 172:8
\& ring chr 17351738
\& salivary gland chr activity 424
\& sc manifestation 45194520 4521
\& selection 12311232
selection, esterases, \& endo-
crines *2947
\& seasonal color *186:11
-sensitive, allele 40294053
differentiation 54005401
expression of $\underline{\mathrm{kz}} 3433$
fertility 3924
gene \& chr loss in hybrid 5122
during laying season 183:16
male sterility 1754
maternal effect 2256
mu 163:17 166:23 169:25
179:29 * 180:13 182:14
184:3 189:25 189:26 191:27
$90297854860 * 1187 * 1188$
16851763 *2779 29513044
3124
beh 30653066
\& cAMP 5731
\& cell fusion 3862
cell-1 68
\& chemicals 12893711
\& clone dev 3049
\& cold 1128
deep orange 3949
disc defect 3802
dominant $1 \quad$ 173:29 5547
female-sterile 596
homoeotic 1591
1 169:21 193:5 5233528
394240325741
\& disc pattern 3049
\& EMS 29894455
leaky 170:1
locomotor 172:26-175:4
maternal effect 3482
\& mitotic rate *4039 4040
\& mutagen 1982
N 16181619
pn 2866
recombination-deficient 4583
\& segregation 3967
sigma 165:6
su-f 167:20 167:21 982
v 238
wing 171:23
yolk 4335
X 2594
Y *4775
nerve conduction block 5302
paralysis 30443352
period 3821382248614863
5743
phenotype 3349
pul 4865
sterility 5446
suppression of lz 3433
wild type alleles 4486
\& sex ratio 1280
shock, selection 2763
\& sperm 1244
\& spotted eye 778
stability 1767299631525082
508357295820
of 28 S rRNA 188:20
\& strain competition *1826
sucrose \& fatty acid synthesis
4541
\& survival 1557
tolerance 1402
\& toromere *2439
waking,\& anesthesia 188:9
\& X co 276
template active \& not chromatin 5091
temporal, genes for amylase
5465
relationships *939
tepa 179:26
teratogen 171:7189230384619 5813
teratogenesis, carcinogenesis, \& mu 49324933
tergite 5344425
tergum disc \& clone dev *4510
terrarium 426
territoriality 10833496
test, breeding, for mating 2115
testis, differentiation in vitro *169:27
excess rDNA 4799
\& microtubules *5074
organ culture 613
rRNA synthesis in 188:5
spermatocytes 967
tetrads, no exchange 2710
tetrahydrofolic acid 5620
tetraploid cell 4597
tetrazoliumoxidase 194
textbook 173:16 173:17 177:26 332 539540802884115415361764 192624702493249425383095
319032133233448845695066 5169
theophylline 4221
thermal, gradient bar 3493 recombination map 628 shock \& thermostability 1767
thermodynamics of death 1535
thio-D-glucose 29204378
thioridazine hydrochloride \& mu 1567
Thomas circles 1581
thoracic leg tarsi 4353
thorax, determination 4224 macrochaetes *1132 selection 162:10
threshold character 4971
thymidine $1511 * 35653570$ \& band patterns 25612562 radioactive 181:4 181:5*639 *640
thymudylate synthetase 163:24 255256
tier approach oversimplification 5078
time, \& biological clocks 1969 \& chr plm *3902
\& disequilibrium 177:25 *100
of gene action 44404441 \& reproduction *2130 series, demographic 4411 space, \& allozyme variation 3076
of species origtn 2216
timer, autonomous 4666 epigenetic 2373
in Malpighian tubules 34974511
tissue, adipose 163:15 5722
antigens 183
culture 176:10 2707
of 1 embryo 961962963
of ovarian cells 959
homeostasis 4935 micromanipulation 2968 protein \& electrophoresis 3700 \& protein pattern 5350
in SEM 3983
-specific, amylase 5465 defects 37223723 protein pattern 4243
-specificity, in culture 176:4 \& enzyme 44384440
titer, ecdysone 4633
tobacco brown pigments 3112
tolerance to ethanol 354
tomatoes 392
topography, genetic 45194520 45214522
of multigene families 4636
toromere *2439 *4042
toxicity 428146594661
of alcohol 166:3 2285
amitrole 2646
caffeine 3869
of chemicals 167:24
$\&$ heavy metals 2698
mu, \& Captan 180:18
\& ethylene-thiourea 180:19 2795
nucleoside 5307
toxicity --cont. of pesticides 803
toxicology, genetic 1006
testing 4138
toxins 160 myco- 4825
trace metals 3198
traits, biometrical, in pops 4419
continuous 173:21
differentiated 313
meristic 13
phenotypic quality 4293
trans 3715707
trans-9-keto-2-decenoic acid 1613
transfer of mutagens 2506
transcribed spacer region 4686
transcription 281
chromatin, \& histone 4816
\& chromatin 12073784
structure 3531
\& chromocenter 975
\& circadian rhythm 1496
of cloned DNA 3827
\& coenzyme *4339
control 40414215391540
disc, \& ecdysone 2157
\& dosage compensation *164:13 5060
\& ecdysone 181:22*4737
fidelity 2149
\& heat shock 336043094365 55415625
interband 51315132
in vitro 480948105375
\& 1 1 (3) tl 3272
in living cell 1009
nuclear, system 5653
polytene \& mitochondrial chr 43285596
post-, regulation of protein 3412 \& pu hypoderm 4878
puffing, \& dicyandiamide 172:17 transmission, frequency 3605
regulation 290
X 4806
on X 37693770
\& Y 30944073
\& replication, in blastoderm 2742
control 298640005070
of rDNA 2334
\& rDNA 107824303396 \& RNA polymerage 45874672 in spermatocyte *590 3531 suppression 1294
unit 26823725
visualized, spermatocyte *2419 of X *270 2064
transdetermination 174:27 174:28
177:5 852116116475531
\& cell interaction 4382
control circuits 2574
of dises 5585115
leg 2450438251785180
transducer defect mu 4874
transduction 4818
photo- 3243
photoreceptor 5654
vision, mu 49494950
transfer, gene 507
by injection 4795
of infection *2424
transformation 5074545 antennae 5767 dise 53355736 \& DNA 169:28 23682407
dorso-ventral 3312
gynandromorph 2403 of hemocytes 2410 homoeotic 2575 \& recombination 3495 sex-2376 285835024515 v 1812
trañsient, alleles 5135
equilibrium 4415
translation, cell-free 53885698 of cloned DNA 3827
control 5631
in E. coli 5017
of foreign mRNA in D. 4025
or not in embryo \& oocyte 5515 \& polygenes 173:22
translocation, autosomal, \& pop fitness 3965
\& balanced plm in pop 5056
Bar-Stone 164:18
in eages 1526
\& chloramphenicol 1290
\& co induced in male 3790
\& DNA replication 467
\& EDTA 1257
to heterochromatin 649650
heterosome-autosome *4013
heterozygotes \& meiosis 171:21 heterozygous, \& co 4828
\& lethality 854
\& pest control 1525
\& position effect 1019
reversion 2288
Robertsonian 1362
sc V1 to Y 1507
semi- 2221
sex chr, \& speciation 4109
spontaneous 222122222223
\& nonhomologous pairing 3402
\& walking mu 3011
X rays, \& meiotic stage 2296
\& spermatogonia 3037
\& X-rayed oocytes 15721574
versatile 1988
X-autosome 58629784436
$X-Y, \& X$ rays 3553
Y-autosome 2288
I-III, \& chemical 4292
IIIR on X tip 2464
nsmissible factor \& male
recombination 1895
of gonadal atrophy 5690
of parasite 4719
transmitter 4722
transmutation 177:9997
transplantation, \& chr variability

2911

circadian oseillator 4602
of cytoplasm 131513163374
disc 171:8 5073
eye 1599
of gastrual nuclei 769
germ cell 5642
interspecies, of pole plasm 2702
nuclear 20202997
\& cytoplasmic 25213620
into polar plasm 4200
ovarian *3117
paragonia 5089
of polar plasm 770
pole cell 5031
transport, active ion 3830
defects 3096
passive 397
transposable mutable system 3631
transposing element (TE) 174:8
215136263627
transposition 185644975025
tranquilizer \& mu 178:16
trap, bait 4297
trehalase 5679
trehalose 4663
Trenimon \& mu 22012013388
triazine 192:2 26174901
Tribolium 306356235624
trichlorophenoxyacetic acid 1081

108110821298

triethylamine 2385
triethylphosphate toxicity \& mu 167:24
trifluralin 4900
trimethylphosphate 435
trimethylpsoralin 41594160 43724649
trioxsalen *3736 5117
triphenylstibine 4447
triplo-lethal region 379
triploid, \& dosage compensation
179:20 179:21 1104
enzyme activity in 178:12 178:13
females 3670
\& GPDH 1008
\& intersex 180:16 4423512659
tris-(2, 3-dibromopropyl) phosphate 4292
trisomy, whole-arm 4499
triterpene glycosides 3687
tritiated, nucleotides 1010
thymidine 25612562
uridine 20242025
tritium 25803168 *3565 3570
37274122445448444986
trofospharnide \& mu 3186
tropics 176:14 432346355693

5829

pop genetics in *173:27
*173:28 731
species *166:3
truncated distribution 3463
trypsin, \& evagination 2359
protein profile, ADH 3963
tryptophan, \& dev 4074 \& fluorescence 19983247
metabolism 193:9 5092
-NAD pathway 3246
pyrrolase 1186141249104911
tubulin 4576
tumeric 4221
tumor 175:27 226433
head 193:17
\& hormone 227
\& immunity 4905
l, lv 1861
mu 2270
lipids 192:11
melanotic 189:8 57812611510
16942410 *2823 35343981
49065432
tumorigen 3112
tumorous head 176:3 16947948 9499502822
\& aldehyde oxidase 26363715
\& homoeosis 2637
Tween 60952953
tyrosine 421564565
aminotransferase 5199 *5390
derivative 2234
glucoside *4380
metabolism 173:26 2571
-O-phosphate 677
tRNA 192:18 4668
ligase 5651915
synthetase 19123200
ultrachorion, 3D 3796
ultrasound \& mu 983123
ultrastructure 4934945421759 245828852946294935143179
37923976 *4464 490549185494
ultraviolet (UV) 171:3 191:1
\& eggs 19924122431
\& embryo 19961862014443376
\& fertility 1910
of meiosis or zygote 3753
\& MMS sensitivity 1692
\& photoreactivation 10183753
photoreceptor 4068
\& recombination 2719
\& segmentation 2412
sensitivity 41734625315
\& virulence 896
undergrowth 18153682
underreplication of satellite DNA
*1493*1494
unintegrated rDNA 421142124213
5333
unit, charge model *3421
gene 5046
replication, \& bands 1689
of selection *1790
unstable genes 197919803535
353635373539354036294561
456245644565
uranyl acetate *2309
urate oxidase 23733497
urbanization 1330
urea 189:54513
urethane \& co 19
uric acid \& X 914
uricase \& dev 170:3
uridine 10101250202420252580
4844
urine *713
valine tRNA 4457
Van der Waals bonds 5729
variance 163:18 106012351277
226528054048465147464895 5751
variation, allele 5820
allozyme *185:24
altitudinal 857
biochemical, noise or signal 1649
body color *5800
bristle 1748
coefficient 44205451
competition, \& environment 5014
concealed genetic 3854
ecogeographical *1341
\& endocrine systems 3040
endophenotypic *1547*1548
egg 1007
environmental, \& genetic variation *3236
enzyme 2524
in pops $1657 * 1658$
nat 5811667
functional aspects 5098
gene, action 4848 in pops 186:20*186:22 326
genetic, age, \& selection 2120 architecture 192:14
\& computer 3036 concealed 5497 in local pop 1238 \& model 173:6
\& heterogeneous environment 46175699
hidden, in alleles 5746
interlocus 1278
of isogenic line 2630
iz 191:26 2489
in lab pops 4765
low gene *184:16
maintenance factors 4784
\& marginal pop 3854
in Mendelian pops 1963
molecular *2960 3318
mu, \& linked polygenes 2653
in nat pops *2948 30224940
\& niche width 5169
nonmendelian, \& selection 4494
phenotypic 186:5 32
pop, \& migration 181:15 nat 161:71372
protein, in pops 49155579
in puff size 139140
in ribosomal proteins 1879
in ribosomes 154
quantitative 13725193
in recombination frequency 191:13
seasonal 8573731
\& selection 32
variegation 1711190824733343
4063406447055333
(see also mosaicism)
veins $17963 \overline{127} \overline{361240944830}$
50975485
venom, bee 2691
535
\qquad
\qquad
urine *71
vs. chr *2036
\qquad
altitudinal 857
coefficient 44205451
ronmental, \& genetic varia

$$
20
$$

> $-$

正
vertebrate viruses 2358
vesicle, seminal 1642
vesicular stomatitis virus 180:28
viability, \& aflatoxin 22413730
alleles 3648
\& biotic residues *5397
\& chr plm *181:20
differential, \& sex-linked mu 179:4
\& duplication 4345
\& electrophoretic variants *439
\& EMS mu 38344089
\& epistasis 277
\& fecundity of geographic pops 3109
\& fertility 1850
gamma rays, \& dev 3845
\& genetic load 179:18 20514384 51555476
\& heterozygosis 111213553048 36625566
in-, hybrid *4416
\& inbreeding *3710
of interspecific hybrids *162:24 of 11389
load, heterozygous; \& X rays 1646
\& lv, biotic residues 2194 competition *163:5
\& marker chr 4399
\& MSG 273
\& mu 244245130938903891 38924550 spontaneous 175:5 1309
pop, derived from 1 pair 3359 \& inbreeding 4306
in pops, $\exp 2101$ nat 4746
\& octanol *2171
polygenes 1123130920513661 385738913892
preadult *777 2853
\& productivity 1921
\& sexual isolation 900
short-term changes in 189:18
species hybrid 321141535374
\& variance 163:18 2442451235 28054895
\& white 162:5
vibration 1192131135
Viburnum 3889
Vicia 3542
Vickers M-85 integrating
microdensitometer 3056
vigor, sexual \& sexual selection 450
vinblastine 3226
vineyard 11382741
vinyl chloride 2699333241314822
virginator stocks 1988
virginity \& longevity 1641
virions, X virus 5368
virulence 8961852
virus 102914042682
\& aberrant SC 5190
C 255236464992
contamination 2504
cricket paralysis 49925105 endogenous, in cell lines 5694
entomopathogenic, \& mu 159:13
icosahedral 183:24
interacting 481
isometric 3764
-like particles 170:10 5080
\& mu 171:2 15314546
nonvirulent 25
nuclear polyhedrosis 2358
P, C, \& A 5695
picorna-2553 2904
resistance in pops 3491
rhabdo- 220322043491
\& sex ratio 5810
sigma 165:6 173:14 185:23 1134 144014992173359449545393 550555425665
Sindbis 162:22 2053380
transmission 825
vesicular stomatitis 163:14 1440 X 42945368
vision 192:9320 309032405433 color 187:5 187:6 24653816
\& compound eye 2369
control of locomotion 171:17
\& courtship 163:13*3506
diet, \& vitamin A 30863087
\& mating *1399
mu 69069169213472568 transduction 49494950
\& neurons 249039644853
pattern 694747
pigment 3832
processing 2905
receptor spacing 192:9
response \& spectrum 1720
\& retinula cell 3592
smell \& jousting *3973
synaptic structure 1721
system 48585303
vital stain 185:11 1476
itamin, A 308630873580
B12 2128
vitelline 165:18 5403
vitellogenesis 165:17 165:18 838
2563433546885000
\& endocrine 291836514601 46034604
rhythm 20602061
vitellogenin 477650025698
VLF-magnetic fields 3546
voltage noise 27715822
von Gleichen, W. F. 3859
walking 182:17 132919352245 2788328937383899
wall-free prokaryotes 19431955
wasp 1871 *2823 4906
water, balance *69
chlorinated *863
content, age, \& radiation 2647
desalination 5121
heavy, \& circadian system 183:22
wavelength 159217233863
waves, chemical 5134
weed-cover 3077
weightlessness 4875
wheat 15132297
wild, DNA in mutant egg 3760
pops \& chr 1716
type, antigens 15161518
ovariole number 161:22
\& sexual selection 1781
wine cellars 4189
wing 4101
abnormal 2567
anterior, duplicated 3223
cell size \& number 4574847
compartment 4039
in courtship 2098
dev 297229984158
disc 21872388248529172950
37133828382946154832
484350325635
compartments 23882389
dev 5353322
display 2096
duplications 192:26 1950
\& ethionine 655656
expansion \& $\mathrm{CO}_{2} 972$
\& gene frequencies 159:7 159:8 159:9
\& haltere 182:19 3031
\& homoeosis 1337
indices $1040 * 5611$
\& leg \& ci 2137
length $3 \overline{3} 339104019952993$
325951935325
-less 25643849
morphogenesis 4218
movement 3352
mu , temp-sensitive 171:23
picture- 185:6
rudimentary 235744864637
scalloping mu 2998
\& selection 159:7 159:8 159:9
size in pops 1545
venation 190:1 179918004012 409448305485
winter collections 636
wintering, over- 5552
woodiand species 3041
wound healing 29505032
Wright \& Fisher systems 1878
xanthine dehydrogenase (XDH)
159:7 159:8 159:9 186:2352 112
2404321129161120682248
22762405 *3053 33813413
*34563529 *394443644463
494253365405
xanthommatin 183:15 22112607 4183
xanthopterin 903
Xenopus 5278
X ray(s), \& Amylase deficiency *167:5
\& antioxident 3032
break 32753786
brood pattern \& mu 4656
caffeine, \& nondisjunction 62 3275
chemical protection vs. 174:11
chronic, \& mu 1821
\& chloramphenicol 1290
\& chr loss 1254
\& co $1579 \quad 300250935316$ 5473
deuterium \& mu 1880
\& disc proliferation 1647
\& DNA replication 176:23
dose \& l mu 1122
\& embryo 551241124124336
EMS, X loss, \& nondisjunction 3927
formaldehyde \& mu 179:5
fractionation \& mu 185:4 1085
\& gonads 551
\& heterozygous viability load 1646
\& indene \& sperm 168:29
\& integument 551
inv \& t and meiotic stage 2296
lesions, paternal \& maternal, in egg 5304
low dose, \& oocyte 1 mu 180:2
magnetism, \& mu 1191
\& male mitotic recombination 32823283
\& maternal repair 3275
microanalysis of epithelium 1779
mitomycin, \& fractional mu 27054829
\& mitotic recombination 124 657
\& MMS sensitivity 1692
\& mosaics 77325252662
mu *512

Adh 3279

\& caffeine 114711484946
chr, in sibling species 5293
chromatid, \& colchicine 4434
delayed 1 159:15
direct \& indirect effect on 1 182:13
dominant *179:13 1157115731574
\& dumpy 51977646574883
duplication 1196
\& EDTA 1257
fractional \& whole 2798
in ganglia 4284
gene 4018
l, complete \& mosaic 4229
\& recombination 1858
\& sex 1171

\& lifespan 2426467

M 1323
in oocytes 1195
\& oogonia 3286
rate, oogonial 48554856
repair 7734946
semi-1 2782
in sibling species 5816
\& somatic effects 1807
at specific loci 26
\& sperm 10791080
in spermatocytes 42834284
storage effect on 163:11
\& viability 1112
\& nondisjunction 164:22 910 1579
167730025093
\& oocytes 178:20 16774883
\& optic centers 551
\& partial loss of chr 2352
\& pattern abnormalities 1952
pulsed \& prolonged, air, N2, \& mu 2584
RBE 163116321633
\& rearrangements 370
response of rayed pops $168: 23$
168:24 168:25
reversions 3551
sensitivity 600303239704549
small doses \& mu 1574
\& somatic chromatid exchanges 2900
\& somatic mu 5552301
\& sperm 2283847
\& spermatogenesis 4657
\& storage effect absence 3785
t in spermatogonia 3037
tolerance \& mu 17911792
184818493166
\& transdetermination 1647
viability mu, heterozygous effects 3804
\& wing disc cell divisions 4615
\& $X-Y$ exchanges 3553
\& Y mosaics 4655
yeast 168:27 31*129 21622694
317040694707525053855693
\& cactus 17242487
yellow pigment 1282
yolk 172:21 58829624553
protein 165:17*562 563583 24003375352435754335
4600516153885762

inc sulfate 5413

zone, demilitarízed 56055606
zoological gardens 4123
zygote, l 193:7522 39794029
5741
male, selectively killed 3158
\& photoreactivation 37533754
zymograms 13874034

X chromosome *1432
activity, \& histone deficiency 4705
regulation 3770
\& alkylating agents 1038
\& altitude *4780
aneuploidy 59352215222
arms \& dosage compensation *2809 *2810
arrangement \& competition *1826
asynapsis 951
attached- 186:25 668 inverted 528
-autosome, ratio 169:7470 t 4436
\& dosage compensation
2978

[^18]
$$
56
$$
\qquad
\qquad
6
\qquad
4284
$$
000
$$
$$
30
$$

$$
9
$$

\qquad
\&

X chromosome--cont
balancers \& gonadal dysgenesis 1251
band ultrastructure 3766
basal heterochromatin 4184
base, organization 5621 recombination in 1036
breakage \& rejoining 169:9 177:11
chromatid interference 2287
cold-sensitive mu 193:6
compound *2125 2207
\& compound chr 3880
co 185:26 275276
cytogenetics of 2D3-2F5 244624472448
deficiency 853
\& delta 785
detached \& meiosis *4509
\& diapause *5629
disjunction \& nondisjunction 177:13
distal region *701 2697
DNA replication 65938103811 4376
\& dosage compensation *11 *164:13 *167:23 *2809 *2810
duplication 946117312101752
ecdysone 180:22
\& egg production 2227
EM map 188:28
embryonic l 4413
enlargement 1334
\& enzyme activity levels 178:13
extra-hyperactive 5634
fine structure 5621
fragments 169:11
gene, arrangements periodically selected 177:24 activity 47037714807
genetic, load 54965715 variability 5497
haplo~, cells 4376
heterochromatin 13654983
hyperactive male- *167:23
induced discontinuous lesions of 169:10
inv 184:26 *2765
1 fate map 3940
labelling pattern 2025
\& linkage disequilibrium 177:25
-linked selection 687688
loss 190:4 37318063927
marked, phototaxis, \& selection 2616
maternal effect 1 mu 53085309
\& meiosis 173:1
\& metamales 3771
\& mitomycin C 181:3 181:5
\& MMS 105310544049
mu, fitness, EMS 38343835 gamma ray-sensitive 4921 \& male gametogenesis 4787
mutagen sensitivity 21672168 30595144
nondisjunction 164:5 187:26 4126
nucleic acid synthesis *167:23
\& nucleolus organizer 169:24
pattern in species *3825
polygenes \& EMS mu 2775
proximal region 4020
puffing *180:22 1385365 *5700
rDNA 3120
recombination \& temp 1036
region, 1A1-3C8 2064
1E-2A \& 3A-3B 1489
2D3-2F5 651
3A1-3C6 853
replication *701 *2709 *2810 pattern 4344
\& resistance to inbreeding \& hybridization effects 4703 ring 12031565
\& RNA synthesis 10115346
rRNA 1078
$\mathrm{sc}^{4} \mathrm{sc}^{8} 1382$
sc$\overline{\mathrm{V} 1} \mathrm{t}$ to Y 1507
secondary nondisjunction 1414
section 20 genes 186:26
segmental aneuploidy 1744
selection 24864724
sex ratio \& standard arrange ment *2906
in sperm \& cold shock 1244
\& survival 2226
tandem metacentric compound532
temp-sensitive mu 2594
tip 5383759
transcription $4041 * 2703769$ 37704806
ultrastructure, $1 \mathrm{~A}-10 \mathrm{~F} 3766$
unstable, \& mutagen testing 5026
\& uric acid 914
viability mu 1190
whole \& fractional body mu 1085
X -ray-induced recessive 1 182:13
\& Y lampbrush *1035
022784014
-Y 263264414175429653120 347635534163

-II pairing 263264
-HR t 2464

Y chromosome *173:13*1345
*1346 3688
-autosome t 2288
\& bobbed 161:28*121
changes \& gene activity *707
chr \& magnification 186
\& compound chr 3880
co with X 185:26
\& daughterless 1115
\& DNA, adaptation 4714 repeated 3596
extra, \& autosomal nondisjunction 1321
\& fertility 708*70935964287
fragments induced in female 2073
function in males 4928
genetic structure 4771
genetics 4161
giant-white insertion 2863
heterochromatic 183:8 3343
hyperploidy \& male fertility
27453350
lampbrush *704 *1035 2681
loops stained *4185
loss 7597602525
magnified at bobbed 161:28
marker loss \& radiation *4275
mosaics \& X rays 4655
\& mutagen testing 4789
\& nucleolus organizer 169:24
*1582 *1583 1956
\& position effect 160:21 3343
prophase synapsis 4597
pseudo-, drive 10723772
\& rDNA 192:30 *954 *955 *956
*957 3120*3718
rRNA 1078
$\mathrm{sc}^{\mathrm{Vi}} \mathrm{t}$ to 1507
\& sperm length 611612
spermatocyte *3532
\& transcription 4073
regulation 3094
-X 26326441417542965
347635534163
$\mathrm{L}_{-Y} \mathrm{~S}_{\mathrm{X}} \quad 4110$
-II pairing 263264
-II t 576198822212222

II chromosome, allelism for
detrimental mu on 3543
compound, \& 1 complementation
2669
\& segregation 2409
\& X-ray nondisjunction 164:22
deleterious genes in pops 5608
disjunction \& meiotic drive 575
\& esterase alleles $* 184: 19$
gene arrangement, \& esterase
*177:27
in pop cages *185:19
genetic variability 5497
heterozygosity \& SD 1830
hyperploidy, insect control, \& pu survival 4499
inv *103
isochr 164:6 287
1, in Amherst 2530
\& dev 4003
frequent in nat pops 3538
\& radiation 12421243
\& semi-1 1821
L, puff pattern 5351 tip mu 37064566
\& male \& female recombination 5138
marker \& aberrant segregation 3967
melanotic tumor genes 189:8
$\mathrm{mu}, \&$ adaptiveness 1874
\& diethyl sulphate 1383
\& mutagen sensitivity 4051
from nat pops 733734
nondisjunction 164:5
proximal 7242500
heterochromatin 24982499 2500
R, asynapsis 4759
inv 3674
labelling pattern 2025
recessive l mu 371
\& SD 190:23 190:25 719
sex-transforming gene 3205
spontaneous viability mu 2423
T-007 5138
\& vg 361
-X pairing 263264
-Y pairing 263264
-Y t 57622212222
-HI t 15724292

III chromosome, arrangements
1655 *4121
balancer with dominant tempsensitive l 3800
chr, plm *1454
suppressors 3195
co spanning the centromere 3051
compound 740
cytogenetics 4344697
dominant temp-sensitive 1 173:29
genetic variability 5497
heterozygosis \& nondisjunction 164:3
homozygote fitness 1766
inv *2921 *5232
L, \& asynapsis 4759
labelling pattern 2025
RNA synthesis in 1v 2029
linkage disequilibrium 169
modifier of SR 3151
plm \& linkage disequilibrium 2802
proximal segments \& dev 5128
puffs in different species
*183:28 *184:1 *184:2
R, \& homoeosis 3664
t to X tip 2464
rosy region 3600
\& Sc regulation 2952
\& $\overline{S D} \quad 18324145$
in species hybrid 2941
spontaneous chr mu 20012002
temp-sensitive mu 173:29
189:25 189:26 596
variability in pop 19242821
-II t 15724292
-IV interaction 3473

IV chromosome 173:25 5931019 347336074265428749685012 50865710

PART II. GEOGRAPHICAL INDEX

Africa *4115 4419559356935829 *57815796
America *4067314635
tropics *173:27 *173:28 5546
Argentina, Tucuman 1268
Asia, Southeast *180:25 1769 *3105
Australia *185 636*1370*2811 287828803368336934853563
$39163917 * 4321432343254407$
*496253815383 *5384 *5680
56835686
Barbados 1824
Bonin Islands 182:8 182:9780 2051 *4099
Borneo 5672
Brazil *936 18762132
Cameroun 5783
China 5546
Central Europe *4988
Colombia 731*7324635 5546
Crete 4543
East Malaysia 1769
Europe *97740354419*4761
Far East 34413535
France 34923926
French Antilles 166:2
Great Britain 1323041
Greece *176:1 190:16 190:17 2324
20172018325353135314
Guadeloupe 165:25
Holland 5552
Hossein-Abad 548
Hungary 3906
India 172:15*181:13 188:10 191:6 191:7 191:8 93645 *1472 1549
1651 *1854 2421304230813171 45885745
Ghats, western *1640
Mysore *186:13
Orissa *172:10 *172:11
Uttar Pradesh 646

Indian Ocean, Christmas Island 164:1
Indonesia $109184 * 2113$
Iran 547549
Kashan City 550
Israel 172:1
Ivory Coast 176:14 176:15 176:16 *191:45591
Japan *182:7 *182:10 278347857 13181319 *1322 191728652992 *3208 3209325232593926 *4148 *4149 *4150 *415141814884 531053215674
Hokkaido 146881181318173682

368336854296 *5219 5266

*5370 5775 *5800 5801
Sapporo 181436835571
Kana National Park 160:8
Kauni Island *1340
Korea 286 *1339 224339004383 438443854389439056055606 5609
Madeira Island *184:22
Mahabaleshwar 595
Malaysia *1118*2752 3105*3133
Maurice Island *191:3*1834 1835 1836
Mauritius 3442
Mediterranean Islands *5703
Mexico *401 53114011554 *2361 299534773932393339904004 450557265727
Culiacan, Sinaloa 34785476 Sinaloa 4478
Neotropical 184:12 35444570
Oceana 17693105
Oriental 2860*41155673
Orinoco *403
Palarctic 3773 *4811
Panama 183:17
Peru 4985 *5245

Philippine Islands 842 *1116 *1117
*1118 *2652 *2728 *2729 *4083
Portugal 4990
Puerto Rico, Palominitos Island 177:20
Reunion Island 183518363442
Rio Grande do Sul 5391
Samoa *170:7 *170:8
San Pedro Nolasco Island 805
Scandinavia 178:17*186:20 976
South America *193:2
Andes *3975
South Morocco 166:4
Spain 166:22 *184:20 4886 *5655
Sri Lanka 366367 *5777
Sweden 4259
Switzerland 160:9*120 21065354
Taiwan 4790
Tasmania 5686
Thailand *3806
Tsusima Islands 5674
United States, Amherst, South
174:10 2530
Arizona *1853
California *1428
Colorado 3201*5444
Eastern 814
Hawaii 163:25 165:15 173:7 174:24 *182:23 185:6 193:14 193:15 193:16 *17 18 *259 324325806 *818 *1341 *1342 *1343 1505150617101726 17271728172917301731 20092010201132873399 *3577 $3974419351695393 a$ 5393b 5393c 5406a 5406b 5430a 5535a 5565a 5565b 5565c 5671a 5671b 5671c 5738a 5827a \& allozyme differentiation

*2548

\& ancient chr plm 2214 coadaptation 2855
Drosophilidae 2964 ecological specialization 29582959
electrophoresis *3903
endemic species 5044
evolution in *3261
gene mapping 3430
\& head shape 5204
interfertile species 5236
Kilauea Forest *326
lek species 4634
Mauna Loa 3901 *3902
metaphases 3415
mouth parts 2462
nat species hybrid 4690
new species 2463
phylogeny *3654
picture-winged species
*2535 25372799
species, number 5043 sympatric 3025 *3026
Jowa 162;21
Maine *1178
New Jersey 392
New Mexico 3201
New York *2117 3425 *4270
North Carolina 162:25 2544
Oregon, Great Basin *5232
Sonoran Desert 24874069
Texas, stock center 3170
South 273338085644
Utah *4121
Virginia 738
Western 5253
U.S.S.R. *162:2 5165

Venezuela *3203
Yugoslavia 3673

PART III. SYSTEMATIC INDEX

Amiota 377348115676
Antopcerus 201032613577
Chymomyza 18543894
Dettopsomyia 408350065701
Drosophila 247248249
adiastola 5157
affinidisjuncta 5354a
affinis $185: 24186: 19341809$
17262225253328233825
aibomicans 777104226522683 albostriata 5382
aldrichi 2811
algonquin 181:10 4228
ambigua 1399
americana americana 2413
ananassae $180: 225241221$
altitude, \& inv 1715
\& plm 1490
chr 2502
pairing 3167
photomap 1714
plm 1656
competing with D. 프. 1288
dosage compensation 160:15
ethology differentiation 170:7
exp pops 1810
fecundity 1653
Ghats 1640
heterosis 16521654
inv 188:10 188:12 4679
isolated from D. pallidosa 4991
male, co 180:25 726 1220 12221223122448914897
recombination \& mu rate 31423143
mutator 727
nat pops 164:10 188:10 188:17 2948
parthenogenesis 170:8
puffs 180:22 5700
recombination 4849
segregation distortion 165:214897
species subgroup 181:12

X-ray dominant mu 179:13 II in pop cages 185:19 III 1655
andamanesis 3024
anomalipes 1710
arizonensis 430343045265 5475
athabasca 812117813772765 3634382538265560 courtship sounds 6021378 2766
sex ratio 1280
Y 13451346
auraria 177:6 177:7 177:8995 325736845611
acid phosphatase 4112
aminopeptidase iz 4111
diapause 3104
genitalia 5612
iz 41114190
isolated from D. quadraria 2442
sex differences 4191
sternal bristles 4606
austrosaltans 163
azteca 3826
bifasciata 186:20 193:10 968
bipectinata 181:12 65668082077
248828704098410742404322
52165220
brncici 4984
bromeliae 166:3
brummea 4115
busckii 181:13 184:16 9451614
223439924380
buzzati 12402114
cameraria 4036
carinata 163:28
confusa 4036
crassifemur 2009
disticha 2116
dunni dunni 3397
eohydei 4185
equinoxialis 8715511552
euronotus 3083
flavopilosa 2174
fraburu 5796
funebris $160: 22$ 160:23 162:2 162:3 114115116488489490 5458
gaucha 162:24 2222235006
gibberosa 4819
grimshawi 150617323978 5671b 5671c 5721
guanche 5701
heteroneura 3026 5430a
hydei 711193235975390 ADH \& ODH 772 amylase 167:5 167:14 393 3953962314
arsenite puffs 5260 bb 121401542744276 chr proteins 4522031 competing with $\underline{\text { D }}$. simulans 190:12
disc differentiation 1541
DNA, r 38149237183968 4015
\& Y 954955956957 synthesis in 162:20
DNases in 162:19
dosage compensation 164:13
ecdysone \& puffs 3475
egg dominant I mu 514
esterase, \& leucine
aminopeptidase 2577
\& linkage disequilibrium 4702
eyes \& Malpighian tubules 1860
genetic load 1322
\& heat-shock 26275150
heterochromatin 33385034 5035
heterosome-autosome t 4013
hybrid with D. neohydei 3006 35575733
induced puff \& RNA 2153
in situ hybridization 394805
integument 4062
ion regulation 712
l(3)gl 51605162
lampbrush Y 704
Ipl 3622507250735074
lv, \& ecdysone 235 juvenile hormone 4718
lymphatic glands 5163
M 42764277
male meiosis 4509
microtubules 507250745075
mu , recombination, \& genetic organization 4508
nuclear DNA content 3298
nucleolus organizer 697
ouabain \& dyes 81
phenocopies 3177
polytene, chr structure 189:4 chromatin 1074
puffs 38223094282
radiation, \& oogenesis 4506 \& spermatogenesis 4507
repetitive DNA 173:10 173:11
ribonuclear protein 167:1 3451
RNA, metabolism 159:17 r 2954
in salivary glands 159:18 synthesis, inhibition 4167 synthesis in isolated nuclei 4071
salivary gland protein 3701
spermatocyte, nucleolus 180:1
transcription 590 Y 3532
spermatogenesis 506696 7102367
starch degradation 167:10 2311
temp-sensitive Y mu 4775
tergum disc 4510
testis differentiation in vitro

169:27
transcription, regulation 4339
visualized 2419
urine 7131975
\& $\underline{w} 5132372$
X -ray mu 512
X0, male 2125
spermatogenesis 4014
Y 173:13 70770910354185 4275
nucleolus organizer 1582 1583
imaii 193:10
imeretensis 9209333659
immigrans $182: 23$ 183:24 57
8631343263439034182
5311
chr plm 1341134239024056
island pops 17334072
inv 13391340
picornavirus 8252553
inornata 13704962
iri 5796
jambulina 3910
kikkawai 160:10 29844423 50675782
kohkoa 265227283806
latifshahi 172:9 172:13
lebanonensis 4434464
leontia 4423
littoralis 928106810691187 11892777277933303480 4508
longicornis 4146
lowei 165:16
lummei 43940424529
lutea 520
luteola 2859
lutescens 2380238135033504 4516
malerkotliana 181:12 808
mauritiana 191:3 35518343440
melanica 190:10 190:11 1823 1826
mercatorum 163:26 163:28 174:5
174:6 189:27 2577617621790
2075330533064652 5348a
5348b 5348c 5771a
courtship sound 25183617
isogenic strain beh 4368
mating speed 25173616
parthenogenesis 7631789 1790
metzii 206
micromelanica 1853
mimica $83715005565 a$
miranda 10406225933013421
mojavensis 821203540704209 5265
montana 186:1 1001194
montium 189:9 41135223
mulleri $193: 23150129603972$
397343034304
nannoptera 29872988
nasuta 7771117154718971898
29373133313440094085
558855895599
chr 1467265129393238
4755
plm 147229425023
competition 14691471
dev 14661470
diurnal courtship frequency 3239
geographic pops 2527
heterochromatin 3717
intra- \& inter-species crosses 4754
iz 2940
nasuta nasuta 29372938
nasutoides 3183199921942
22693736373747665281
$580658075524 a$
nebulosa 529936110527045586
neohydei 3006355741855733
neonasuta 186:13 146914711548
nigricolor 4608
nigricornis 211741474270
nigromaculata 3057
nigromelanica 2237
nigrospiracula 2549
nipponica 5219
obscura 176:27 129130479826
13442130236136714280 5364
ochrobasis 259
orena 5783
orissaensis 172:11
oshima 5567
ovivovorum 176:24
pachea 186:4 82119053470
36384678
pachuca 4146
pallidosa 170:7 170:8 4991
paramercatorum 376
parasaltans 4302
paulistorum 173:27 173:28 403
4468471502211823192424
24402846356238873975
4416457255205527
pavani 162:23 162:24 163:5
163:6 163:7 217535085397
pellewae 206
persimilis 167:15 186:3 406
14091528199622592906
29233121330133403421
342953265327
mating activity 17051706 1707
phalerata 4036
pictipennis 5384
pinicola 3080
planitibia 17818253525483614 5157
polypori 5680
propachuca 4146
prosaltans 33584301
pseudoananassae 5777
pseudomercatorum 376
pseudoneohydei 589695
pseudoobscura 40652005444
ADH 3429
allozymes 169:22 10931094
2739330137784837
amylase 4188
banding profile of pops 2514
body size in pops 159:22
chr plm 181:20 8041454
circadian rhythm 183:22 267 268
\& cold temp 804
competing with D. virilis 1305
desert pops 21882189
dispersal 40514281429
DNA replication 22312232 2233
dosage compensation 159:5 167:23 101128092810
dust marked 334
eclosion 179:11 3691
environmental \& genetic variation 3236
enzymes, in dev 13731374 variation in pops 1658
esterases 15129822592545 34203421364144105021
founder effect 1050
gene exchange with D .
persimilis 167:15
genes \& light 404
genetics nat pops 50
geotaxis $2070 \quad 5817$
Great Basin 5232
group selection 1408
heterosis 804
hexokinase 3340
homoeosis, selection, \& taxis 3751
humidity beh 3194
hybrid 222223
sterility 398
isolated pop gene frequencies 4611
karyotype fitness 1916
1 chr in desert pops 3387
large exp pops \& mating 4238
learning 5348
light beh 109115281529
longevity, eclosion \& rhythm 4361
mainbody \& isolated pops 2922
male sexual selection in pops 4397
mating, control 188:6 1625 speed selection 5159
meiotic drive 1408
Mexican pops 401
multiple insemination 49
new II inv 103
octanol \& ODH 2171
pheromone 168:22
photo- and geotaxis 186:3 4021092
pop, density \& mating 168:3 441
divergence 4850 genetics of SR 2126 plm 336
structure 335
rare-male mating advantage 1446
sal 170:26
selection, \& demography 159:21
by fertility 51 mating, \& chr 3034
in pops 33023303
sex, \& photobeh 2975 combs 165:16 -ratio 140853605696 selection 14452927
sperm 47455456
water balance \& ecology 69
XDH alleles 30533944
X 2701432
III 29214121
pullipes 1506
putrida 186:11
quadraria 2442
quadrilineata 2113
rajasekari 5005
recticilia 3416
repleta 24913203
robusta 177:27 181:11 184:17
184:19 4780
saltans 161162311743014302 seguyi 108
setosimentum 259
silvestris 32656281730263431
5393c 5430a 5738a
simulans 4331
\& alcohol 22855452
allozymes in pops 190:16 190:17
\& asynapsis 2912
chr mu compared to D. m . 5293
CO_{2} exposure 2729
cold temp stress 4961
colonization 320841484149
compared to D.m. 1369
competing, with D. hydei 190:12
with D.․․ $180: 26$ 180:27 189:21 177720034892 4893
with D. willistoni 163:6 163:7
crossed to D. ․ㅡ. 24782479 5273
desiccation resistance 1142
dispersal 178:26
ecology 47004701
\& electrophoresis 3903
esterase 190:1871723336

Drosophila simulans--cont.
fertility compared 180:26
food \& oviposition 609
\& geography 41504151
H factor 4707
hybrid, with D. m. $169: 2$
171:19 1362511501465
18291890208720882436
26602750291229413211
4153447544765274
with D. mauritiana 3440
inbreeding \& viability 3710
interspecific hybrid 355
inv plm 2092
island pops 17334072
isolation from D. m. 3585 4613
lv morphology 14
oviposition \& ethanol 2602
photopreference 4701
phototaxis 13712717
pop, adults 160:19
iz plm 5267
radioresistance 13683749
ribosomes 3183
rRNA \& cycloheximide 181:8
sex combs \& beh 4406
sexual isolation 460
spontaneous male recombination 4170
temp \& pop 48144960
vineyard 1138
X-ray mu 5816
y mosaics 4706
\& yeast 315385
subobscura 13050321292130
51565704
aldehydeoxidase \& ethanol 4116
allozymes 475849885601
breeding site 3671
chr plm 166:22 3691437 534454755703
daytime oviposition 1056
dot chr 2873
effective pop size 3344
enzyme, detection methods 1062
plm 171:13
epistasis, co, \& inv 1703
feeding \& breeding sites 5364
gene variation in pops 186:22
genetic, load \& viability in central \& marginal pops 5155
plm \& phylogeny 5638
grandchildless 4589
heritability 1061
hexokinase 4078
interchr arrangement 3450
inv 159:23 14374988
iz plm 1704
karyotypic distance 184:23 184:24
lab pop density 1450
light, dependence 1398
-independent mating 1713
\& mating 1436
\& selection 859
linkage disequilibrium 193:24 2230
lv niche 4036
Mdh 2902
null-XDH 3456
O chr 5499
phototaxis 5568
pop, esterases 5519
density 4280
distances 1438
genetics 176:1 1063
plm 184:20 184:22
size fluctuations 5668
sterility genes 3455
SD 3587
selection for phototaxis 179:19
Swiss 120
variation in nat pops 2036
X replication 701
yeasts 129
sulfurigaster 111611182728 3132
suzukii 3506
takahashii 23813504
testacea 55705800
texana 184:2 92892923452346
transversa 4036
tumiditarsus 512957475748
virilis 176:24 4880
amylase 1307284828494088 5203
association of nonhomologs 183:29
band \& satellite DNA
replication 4199
BuDR 39373938
chr conjugation 4652344
chromatin 5262
competing with D. pseudoobscura 1305
crab adaptation 5261
DNA, adaptation 4714 r 94232325359 repetitive 300 replication 6396403265 3266
satellite 161:21 458531 6161596293530914319 5262538054295574 underreplicated 1493 1494
edysone \& transcription 4737
electrophoretic variants of esterase 439
emibryo RNA synthesis 3660
esterase 168:1 168:2 175:22 175:23 181:14 922923924 925926931112613082078

31683169331136775027
502850295230
\& endocrine systems 2947
\& fitness 2335
iz 918126215751576 2623262426253256 37033704
\& linkage disequilibrium 183918401841
\& temp resistance 5714
European 977
gene localization 2347
genetics 3294
glucosamine \& puffs 175:26
glycerol phosphate dehydro-
genase 185:20 28243027
4908
group \& homologous puffs
183:28 184:1 184:2
heterochromatin 2509
constitutive 33373338
\& high temp 25783912
histones 526253765380
hybrid, with D. littoralis
2777277933303480
with D. texana 23452346
juvenile-hormone-esterase 5029
late replicating regions 3564
35653566
linear redundancy 1931
longevity 38885671
macrochaetes 1132
malate dehydrogenase 1263 1264
Mdh allozyme 3865
mitotic somatic pairing 3567
mu \& lv temp and pop density 2780
nonhistones \& chromatin 3428 nonhomologs associated 1410
ODH 1659
oogenesis 175:11882
phototaxis 28013285419
pop 3168
amylases 4222
esterases 23365610
pu formation 939
puffs 938940141127772778
291049954996
pugged 180:13
repetitive sequences \& late
replication 4777
ribosomes 3216
$5 S$ rRNA evolution 2263
salivary puffs 250
sex ratio anomaly 26282629
spermatogenesis, basic
protein, \& RNA 4278 4279
spermatogenic cells 122
telomeres 290829093937
temp, \& geography 4182 -sensitive mu 180:13 1187118827793837
-resistance 39583959
yolk protein 3524
willistoni $160: 5$ 167;10 193:2
86407732208242445189
competing with D. simulans 163:6 163:7
dosage compensation 159:5 1011
genetic load 191:25 4635
\& Nosema 208120822083
SR 184:131423
subspecies 160:5 160:7
Drosophilidae 160:8 160:9 172:15
176:14 182:8 182:9 182:10
191:6 191:7 191:8 191:9595 636
176918351855200920104321
48865004516553545780
Asian \& Oceania 3105
Australian 538153835384
Bonin Islands 4099
Borneo 5672
breeding \& fruits 5734
British 3041
catalog of 5677
chromatin 2735
circadian rhythm 2059
\& decayed leaves 2601
\& dusk 2797
forest 5775
GPDH 475047515463
Hawaiian 2964326136535565 b
Hokkaido 5219
Indian 9364564631713172
Indonesian 109
\& iz 3728
lvory Coast 55915592
Japan 85736823683
Korea 5609
myophily 152046
Oriental 5673
oviposition 3156
Peru 5245
Portugal 4990
\& streams 3314
Swiss 2106
Taiwan 4790
Tsusima Islands 5674
Victoria 56835686
Exalloscaptomyza 5553 a
Hirtodrosophila 16513917
Leucophenga 2421
Lissocephala 55935781
Liodrosophila 1320
Lordiphosa 4761
Phortica 5676
Pseudostegana 5678
Scaptodrosophila 18515504324 5744
Scaptomyza $182: 9333433683369$ 52195383
Scutellum 4115
Sophophora 2782671
Sphaerogastrella 1320
Stegana 182:7 31725678
Zaprionus 182:11 351071836
20593919534356165784

Aaron, C.S. Leiden, Netherlands
Aaselstadt, H. Philadelphia, Pennsylvania
Abdalla, M.H. Assuit, Egypt
Abou-Youssef, A.M. Alexandria, Egypt
Abraham, I. Atlanta, Georgia
Abrahamson, S. Madison, Wisconsin
Adler, P.N. Charlottesville, Illinois
Agnew, J.D. Johannesburg, South Africa
Aguadé, M. Barcelona, Spain
Ahearn, J.N. Honolulu, Hawaii
Akaboshi, E. Storrs, Connecticut
Alahiotis, S. Patras, Greece
Albornoz, J. Oviedo, Spain
Aldinger-v Kleist, R. Tubigen, West Germany
Alexander, M.L. San Marcos, Texas
Alfini, A. Padova, Italy
Allemand, R. Villeurbanne, France
Alonso, C. Madrid, Spain
Altorfer, N. Brussels, Belgium
Alvarez, G. Santiago, Spain
Amitaba, I.B. Bangkok, Thailand
Anderson, W.W. Athens, Georgia
Andjelković, M. Belgrade, Yugoslavia
Angel, P. Cambridge, Great Britain
Angus, D. Newcastle, Australia
Antonovics, J. Durham, North Carolina
Anxolabéhere, D. Paris, France
Aotsuka, T. Tokyo, Japan
Apostolakas, D. Tempe, Arizona
Appels, R. Canberra, Australia
Applebaum, B. Pittsburgh, Pennsylvania
Arantes, P.C. Rio de Janeiro, Brazil
Arking, R. Detroit, Michigan
Artavanis, S. Basel, Switzerland
Ash, W.J. Canton, New York
Ashburner, M. Cambridge, Great Britain
Aslund, S-E. Umeå, Sweden
Atherton, J. Brighton, Great Britain
Atkinson, W. Leeds, Great Britain
Auerbach, C. Edinburgh, Great Britain
Averhoff, W.W. Austin, Texas
Ayaki, T. Nagasaki, Japan
Ayala, F.J. Davis, California Bächli, G. Zürich, Switzerland Bahn, E. Copenhagen, Denmark Baimai, V. Bangkok, Thailand Baird, M.B. Utica, New York
Bajraktari, I. Belgrade, Yugoslavia
Baker, B. LaJolla, California
Baker, E.P. Sydney, Australia
Baker, S. Jerusalem, Israel
Baker, W.K. Salt Lake City, Utah
Balwin, G. Brisbane, Australia
Band, H. East Lansing, Michigan
Bando, K. Sakado, Japan
Baran, A. Haifa, Israel
Bargiello, T. New York, New York
Barigozzi, C. Milan, Italy
Barker, J.S.F. Armidale, Australia
Barnes, B.W. Birmingham, Great Britain
Barr, L. Davis, California
Baselga, M. Valencia, Spain
Battaglia, B. Padova, Italy
Bauer, G. Düsseldorf, W.Germany

Baxa, H. Vienna, Austria
Beardmore, J.A. Swansea, Great Britain
Beck, H. Geneva, Switzerland
Beck, M.A. Newcastle, Great Britain
Beck-Kurz, A. Tübingen, W.Germany
Beckendorf, S.K. Berkeley, California
Becker, G.L. München, W.Germany
Becker, J.H. München, W.Germany
Beckman, C. Montreal, Canada
Beermann, W. Tübingen, W.Germany
Beimont, C. Lyon, France
Bell, A.E. West Lafayette, Indiana
Bell, J.B. Edmonton, Canada
Belote, T. LaJolla, California
Bender, H.A. Notre Dame, Indiana
Benedik, J.K. Brno, Czechoslovakia
Bengston, R. Northridge, California
Benner, D.B. Johnson City, Indiana
Bennett, C.J. DeKalb, Illinois
Benson, S. Baton Rouge, Louisiana
Benzer, S. Pasadena, California
Berg, R. Madison, Wisconsin
Bernard, J. Gir-sur-Yvette, France
Bernhard, H.P. Basel, Switzerland
Bewley, G.C. Raleigh, North Carolina
Bhat, P.M. Izatnagar, India
Bhatia, N. Calcutta, India
Bicudo, H.E.M. Sao José, Brazil
Biederich, U. München, W.Germany
Bijlsma-Meeles, E. Haren, Netherlands
Birley, A.J. Birmingham, Great Britain
Bischoff, W.L. Toledo, Ohio
Bishop, J.A. Liverpool, Great Britain
Bishop, J.o. Edinburgh, Great Britain
Blanco, G. Oviedo, Spain
Blijleven, W.G.H. Leiden, Netherlands
Bock, I.R. Bundoora, Australia
Bodmer, M. Cambridge, Great Britain
Boender, P.J. Nijmegen, Netherlands
Boer, M.H. Utrecht, Netherlands
Boerema, A.C. Haren, Netherlands
Bonner, J. Bloomington, Indiana
Borack, L.I. Newark, New Jersey
Borner, P. Zürich, Switzerland
Bos, M. Haren, Netherlands
Bouletreau-Merle, J. Villeurbanne, France
Bourgois, M. Louvain-La-Neuve, Belgium Bournias-Vardiabasis, N. Duarte, California
Bowman, J.T. Logan, Utah
Bownes, M. Colchester, Great Britain
Boyce, J.T. Bronx, New York
Boyd, J.B. Davis, California
Bozcuk, A.N. Ankara, Turkey
Brachet, J. Brussels, Belgium
Bradley, B.P. Catonsville, Maryland
Bras, F. Gif-sur-Yvette, France
Braver, G. Norman, Oklahoma
Bregliano, J.C. Clermont-Ferrand, France
Breugel, F.M.A.van Leiden, Netherlands
Brink, N.G. Adelaide, Australia
Brittnacher, J. Maddison, Wisconsin
Brncic, D. Santiago, Chile
Brown, E.H. Urbana, Illinois
Brown, W.P. Marietta, Ohio

Brun, G. Gif-sur-Yvette, France Bryant, ML. Macomb, Illinois Bryant, S.H. Macomb, Illinois Bucheton, A. Clermont-Ferrand, France Budnik, M. Santiago, Chile Bull, A.L. Roanoke, Virginia Bünemann, H. Duisseldorf, W.Germany Burdette, W.J. Houston, Texas Burdick, A.B. Columbia, Missouri Burke, J.F. London, Great Britain
Burnet, B. Sheffield, Great Britain
Burton, W.G. Notre Dame, Indiana
Butterworth, F.M. Rochester, Michigan
Buzin, C.M. Duarte, California
Cabré, 0. Bellaterra, Spain
Caligari, P.D.S. Birmingham, Great Britain
Calvez, C. Lyon, France
Camfield, R.G. Clayton, Australia
Cann, L. Adelaide, Australia
Carfagna, M. Naples, Italy
Carlson, E.A. Stony Brook, New York
Carmody, G.R. Ottawa, Canada
Carpenter, A.T.C. LaJolla, California
Carpenter, J.M. Lexington, Kentucky
Carpenter, R. Norwich, Great Britain
Carracedo, M.C. Oviedo, Spain
Carson, G. La Jolla, California
Carson, H.L. Honolulu, Hawaii
Carton, Y. Gif-sur-Yvette, France
Casares, P. Oviedo, Spain
Castro, L.E. Bogota, Colombia
Caten, C.E. Birmingham, Great Britain
Cet1, I. Brno, Czechoslovakia
Cha, M.S. Seoul, Korea
Chapco, W. Regina, Canada
Charlesworth, B. Brighton, Great Britain
Charlesworth, D. Brighton, Great Britain
Charton-Strunk, U. Bochum, W.Germany
Chassagnard, M.T. Gif-sur-Yvette, France
Chatterjee, C. Calcutta, India
Chen, P.S. Zürich, Switzerland
Chen, T. Kingston, Canada
Chia, B. Cambridge, Great Britain
Chigusa, S.I. Tokyo, Japan
Chihara, C.J. San Francisco, California
Chikushi, H. Fukuoka, Japan
Chinnici, J.P. Richmond, Virginia
Choi, Y. Seoul, Korea
Choo, J.K. Seoul, Korea
Chooi, Y. Bloomington, Indiana
Chopra, V.L. New De1hi, India
Chovnick, A. Storrs, Connecticut
Christopoulou, A. Patras, Greece
Chun, S.B. Kwangju, Korea
Chung, C.U. Kwangju, Korea
Chung, Y.J. Seoul, Korea
Chung, Y.R. Seoul, Korea
Church, K.K. Tempe, Arizona
Clark, A.M. Adelaide, Australia
Clark, A.M. Newark, Delaware
Clark, B. Eugene, Oregon
Clark, S. Storrs, Connecticut
Claxton, J.H. Armidale, Australia
Clayton, F.E. Fayetteville, Arkanasas

Clise, R.L. Cleveland, Ohio
Clyde, M.M. West Malaysia,
Cochrane, B. Chapel Hill, North Carolina
Coe, E.H.,Jr. Columbia, Missouri
Coggshall, J. New Haven, Connecticut
Cohan, F. Cambridge, Massachusetts
Cohen, E.H. Princeton, New Jersey
Cohen, L. Philadelphia, Pennsylvania
Cohet, Y. Villeurbanne, France
Cole, T.A. Crawfordsville, Indiana
Collet, J. Brighton, Great Britain
Comendador, M.A. Oviedo, Spain
Connolly, K. Sheffield, Great Britain
Contamine, D. Gif-sur-Yvette, France
Cooke, J. Cambridge, Great Britain
Cordeiro, A.R. Porto Alegre, Brazil
Cornejo, P. Valencia, Spain
Corwin, H.O. Pittsburgh, Pennsylvania
Costa, R. Padova, Italy
Coulon, P. Gif-sur-Yvette, France
Counce, S.J. Durham, North Carolina
Coyne, J. Cambridge, Massachusetts
Craddock, E.M. New York, New York
Craíg, G.B. Notre Dame, Indiana
Craymer, L. Pasadena, California
Crespí, S. Bellaterra, Spain
Creus, A. Bellaterra, Spain
Cross, D. Vancouver, Canada
Crossley, S.A. Clayton, Australia
Crow, J.F. Madison, Wisconsin
Cummings, M.R. Chicago, Illinois
Cunha, A.B. Sao Paul, Brazil
Daggard, G Sydney, Australia
Danieli, G.A. Padova, Italy
Dapples, C.C. Billings, Montana
Das, A.K. Calcutta, India
David, J. Gif-sur-Yvette, France
Davidson, N. Pasadena, California
Davis, B. Blacksburg, Virginia
Davis, D.G. Tuscaloosa, Alabama
Davis, E.A. Chapel Hill, North Carolina
Dawood, M.M. Alexandria, Egypt
Dawson, P. Corvallis, Oregon
Day, A. Calcutta, India
Day, J.W. Holland, Michigan
De la Rosa, M.E. Mexico City, Mexico
Déak, I. Zürich, Switzerland
Debouzie, D. Lyon, France
DeGaray, A.L. Mexico City, Mexico
DeJongh, C. Madison, Wisconsin
Del Solar, E. Valdivia, Chile
Delcour, J. Namur, Belgium
Deltombe-Lietaert, M.C. Namur, Belgium
DeMarco, A. Rome, Italy
DeMarinis, F. Cleveland, Ohio
Denell, R. La Jolla, California
Denell, R. Manhattan, Kansas
Deneubourg, A. Gif-sur-Yvette, France
Dennis, E.S. Canberra, Australia
Detwiler, C. Cambridge, Great Britain
Dezelee, S. Gif-sur-Yvette, France
Dickerman, R.C. Cleveland, Ohio
Dickinson, W.J. Honolulu, Hawaii
Dickinson, W.J. Salt Lake City, Utah

Dimopoulos, N. Patras, Greece
Divelbiss, J. LeMars, Iowa
Doane, W.W. Tempe, Arizona
Dodd, C.K. Knoxville, Tennessee
Doira, H. Fukuoka, Japan
Dominguez, A. Oviedo, Spain
Dominguez, M. Santiago, Spain
Donady, J.J. Middletown, Connecticut
Dover, G. Cambridge, Great Britain
Downes, S. Cambridge, Great Britain
Dratz, F.L. Porto Alegre, Brazil
Druger, M. Syracuse, New York
Dübendorfer, A. Zürich, Switzerland
Duncan, I. Pasadena, California
Duyn, A. Leiden, Netherlands
Dwivedi, Y.N. Varanasi, India
Dyer, K.F. Clayton, Australia
Eanes, W. Cambridge, Massachusetts
East, P.D. Armidale, Australia
Eastwood, W.L. Sheffield, Great Britain
Ebitani, N. Nurumizu, Japan
Eeken, J.C.J. Leiden, Netherlands
Ehrman, L. Purchase, New York
Elens, A. Namur, Belgium
Ellison, J.R. Pittsburgh, Pennsylvania
Elmer, W.A. Atlanta, Georgia
Emeny, J. Cambridge, Great Britain
Emerson, C.P. Charlottesville, Virginia
Endow, S.A. Durham, North Carolina
Engels, W.R. Madison, Wisconsin
Englert, D.C. Carbondale, Illinois
English, D.S. Flagstaff, Arizona
Engstrom, L.E. Muncie, Indiana
Erbas, G. Ankara, Turkey
Erickson, J. Bellingham, Washington
Erk, F. Stony Brook, New York
Espinet, S.A. Miami, Florida
Espinós, A. Valencia, Spain
Fabergé, A.C. Austin, Texas
Faccio-Dolfini, S. Milan, Italy
Fahmy, M.J. Chalfont St. Giles, Great Britain
Fahmy, O.G. Chalfont St. Giles, Great Britain
Falk, R. Jerusalem, Israel
Farish, D.J. Columbia, Missouri
Farmer, J.L. Provo, Utah
Farnsworth, M.W. Buffalo, New York
Fattig, W.D. Billings, Montana
Fausto-Sterling, A. Providence, Rhode Isl.
Félix, R. Mexico City, Mexico
Felton, A. Cambridge, Massachusetts
Fenner, H. Santiago, Chile
Ferré, J. Lyon, France
Ferro, W. Leiden, Netherlands
Ferrus, A. Pasadena, California
Feuerbach-Mravlag, H. Vienna, Austria
Filgueiras, L. Rio de Janeiro, Brazil
Finley, D.W. Tempe, Arizona
Fleuriet, A. Clermont-Ferrand, France
Fontdevila, A. Santiago, Spain
Forbes, C. Moscow, Idaho
Fornili, P. Bloomington, Indiana
Forrest, H.S. Austin, Texas
Fourche, J. Lyon, France
Foureman, P.A. Madison, Wisconsin

Fowler, G. Ashland, Oregon
Fox, A.S. Madison, Wisconsin
Fox, D.J. Knoxville, Tennessee
Fox, D.P. Aberdeen, Great Britain
Frankel, A.W.K. Iowa City, Iowa
Frankham, R. Sydney, Australia
Franklin, I.R. Sydney, Australia
Frei, Hj. Geneva, Switzerland
French, W.L. Baton Rouge, Louisiana
Frey, F. Gif-sur-Yvette, France
Frias, D. Santiago, Chile
Friedman, L.D. St. Louis, Missouri
Friedman, T.B. Bethesda, Maryland
Friedman, T.B. Rochester, Michigan
Fritz-Niggli, H. Zürich, Switzerland
Frutos, R. de Burjaset, Spain
Frydenberg, 0. Aarhus, Denmark
Fuchs, M.S. Notre Dame, Indiana
Fujii, H.M. Fukuoka, Japan
Fujii, S. Kobe, Japan
Fujita, S.C. Tokyo, Japan
Fukatamai, A. Sakado-Machi, Japan
Fukunaga, A. Osaka, Japan
Fullilove, S.L. Austin, Texas
Fuscaldo, K.E. Philadelphia, Pennsylvania
Futch, D.C. San Diego, California
Fuyama, Y. Tokyo, Japan
Fyrberg, E. Pasadena, California
Gabay, S.J. Urbana, Illinois
Gale, J.S. Birmingham, Great Britain
Gall, J.G. New Haven, Connecticut
Gallo, A.J. Sao Jose de R.P., Brazil
Gamo, S. Sakai, Japan
Ganetzky, B. Madison, Wisconsin
Garcia, F.A. Bogota, Colombia
Garcia, M. Bellaterra, Spain
Garcia, P. Barcelona, Spain
Gardner, E.J. Logan, Utah
Garen, A. New Haven, Connecticut
Garen, S. New Haven, Connecticut Gartner, L.P. Baltimore, Maryland
Gärtner, S. Basel, Switzerland
Gateff, E. Freiburg, W.Germany
Gatti, M. Rome, Italy
Gay, H. Ann Arbor, Michigan
Gay, P. Gif-sur-Yvette, France
Gayathri, M.V. Mysore, India
Geer, B.W. Galesburg, Illinois
Gehring, W. Basel, Switzerland
Gelbart, W.M. Cambridge, Massachusetts
Gepner, J.I. Cambridge, Massachusetts
Gerresheim, F. München, W.Germany
Gersh, E.S. Philadelphia, Pennsylvania
Gertson, P.N. Salt Lake City, Utah
Gethmann, R.C. Catonsville, Maryland
Ghosh, M. Calcutta, India
Ghosh, R. Calcutta, India
Ghosh, S. Calcutta, India
Gibson, P.K. Urbana, Illinois
Gill, K.S. Ludhiana, India
Gill, R.W. Riverside, California
Girard, P. Paris, France
Glanzman, F. Tempe, Arizona
Glätzer, K.H. Düsseldorf, W.Germany

Gloor, H. Geneva, Switzerland Godbole, N.N. Poona, India Godoy, R. Santiago, Chile Goldstein, E. Tempe, Arizona González, A. Burjaset, Spain González, F.H. Lima, Peru González, F.W. Upton, New York González, R. Barcelona, Spain Gopalan, H.N.B. Nairobi, Kenya Gottlieb, F.J. Pittsburgh, Pennsylvania Gottlieb, J.F. Purchase, New York
Götz, K.G. Tübingen, W.Germany
Gould, A.B. Newark, Delaware
Gouz, J.M. Paris, France
Grabiki, E. New Haven, Connecticut
Grace, D. Eugene, Oregon
Graf, U. Zürich, Switzerland
Grainger, R.M. Charlottesville, Virginia
Granobles, L.A. Bogota, Colombia
Grant, B.S. Williamsburg, Virginia
Green, L.H. Cambridge, Massachusetts
Green, M.M. Davis, California
Greenleaf, A.L. Durham, North Carolina
Gre11, E.H. Oak Ridge, Tennessee
Grell, R.F. Oak Ridge, Tennessee
Gromko, M. Bowling Green, Ohio
Grossfield, J. New York, New York
Grünberg, H. London, Great Britain
Gubb, D. Cambridge, Great Britain
Guest, W.C. Fayetteville, Arkansas
Guevara, P.M. Lima, Peru
Guillet, C. Lyon, France
Gupta, A.P. Rio de Janerio, Brazil
Gupta, J.P: Varanasi, India
Guzmán, J.M.S. Mexico City, Mexico
Hackman, W. Helsinki, Finland
Hackstein, J. Nijmegan, Netherlands
Haendle, J. München, W.Germany
Hägele, K. Bochum, W.Germany
Hagguist, K. Umea, Sweden
Hale, G. New York, New York
Halfer, C. Milan, Italy
Halfer-Mosna, G. Milan, Italy
Hall, J.C. Waltham, Massachusetts
Hall, L. Bronx, New York
Hames, B.D. Colchester, Great Britain
Hamks, G.D. Gary, Indiana
Hammerschmidt, H. München, W.Germany
Hampel, H. Vienna, Austria
Han, J.H. Seoul, Korea
Han, S.R. Seoul, Korea
Handler, A. Pasadena, California
Hanly, E.W. Salt Lake City, Utah
Hannah, S.M. York, Great Britain
Hannah-Alava, A. Turku, Finland
Hansson, L. Umeå, Sweden
Hara, K. Fukuoka, Japan
Hardy, D.E. Honolulu, Hawaii
Hardy, R. La Jolla, California
Harford, A.G. Buffalo, New York
Harrington, G. Cambridge, Great Britain
Harrison, B.J. Norwich, Great Britain
Hartl, D.L. West Lafayette, Indiana
Hartmann-Goldstein, I.J. Sheffield, Gt. Brit.

Harvengt, J. Louvain-La-Neuve, Belgium Hauschteck-Jungen, E. Zürich, Switzerland Hay, D.A. Bundoora, Australia
Haynie, J.L. Seattle, Washington
Hazelrigg, T. Bloomington, Indiana
Hedrick, P.W. Lawrence, Kansas
Hegde, S.N. Mysore, India
Heim, W.G. Colorado Springs, Colorado
Heisenberg, M. Würzburg, W.Germany
Hengstenberg, R. Tübingen, W.Germany
Hennig, W. Nigmegan, Netherlands
Herforth, R.S. Minneapolis, Minnesota
Herskowitz, I.H. New York, New York
Hess, O. Düsseldorf, W.Germany
Hexter, W.M. Amherst, Massachusetts
Hihara, F. Matsuama, Japan
Hildreth, P.E. Charlotte, North Carolina
Hill, R. Sydney, Australia
Hilliker, A.J. Canberra, Australia
Hillman, R. Philadelphia, Pennsylvania
Hinton, C.W. Wooster, Ohio
Hiraizumi, Y. Austin, Texas
Hiroyoshi, T. Osaka, Japan
Ho, M.W. Milton-Keynes, Great Britain
Hochman, B. Knoxville, Tennessee
Hodgetts, R.B. Edmonton, Canada
Hoekstra, R.F. Haren, Netherlands
Hoenigsberg, H.F. Bogota, Colombia
Hoffman, M.F. Bronx, New York
Hollingsworth, M.J. London, Great Britain
Hollis, R.J. Williamsburg, Virginia
Holm, D. Vancouver, Canada
Holmgren, P. Umeå, Sweden
Homyk, T. Vancouver, Canada
Hooper, G.B. Poughkeepsie, New York
Hoorn, A.J.W. Utrecht, Netherlands
Hotta, Y. Tokyo, Japan
Hsieh, T. Durham, North Carolina
Hubby, J.L. Chicago, Illinois
Hubert, U. Marburg, W.Germany
Hughes, M.A. Newcastle, Great Britain
Hunt, D.M. London, Great Britain
Huth, A.C. Tübingen, W.Germany
Ichikawa-Ryo, M. Osaka, Japan
Ikeda, H. Matsuyama, Japan
Ikeda, K. Duarte, California
Ikenaga, M. Osaka, Japan
Ilannak, G. St. John's, Canada
Imberski, R.B. College Park, Maryland
Inagaki, E. Hiroshima, Japan
Ingham, P. Brighton, Great Britain
Inocencio, B. Purchase, New York
Inoue, H. Osaka, Japan
Inoue, Y. Misima, Japan
Ish-Horowicz, D. London, Great Britain
Ishii, Y. Osaka, Japan
Israelewski, N. Bochum, W.Germany
Iturra, P. Santiago, Chile
Ives, P.T. Amherst, Massachusetts
Ivy, J. La Jolla, California
Iwamoto, R.N. Pullman, Washington
Izquierdo, E. Santiago, Spain
Izquierdo, J. Oviedo, Spain
Jacobs, M.E. Goshen, Indiana

Jacobson, A.G. Austin, Texas
Jain, H.K. New Delhi, India
James, F.W. Sydney, Australia
Janning, W. Münster, W.Germany
Jarry, B. Marseille, France
Jeffery, D.E. Provo, Utah Jelisavcić, B. Belgrade, Yugoslavia Jenkins, J.B. Swarthmore, Pennsylvania Jha, A.P. Bhagalpur, India Jinks, J.L. Birmingham, Great Britain Johns, M. Eugene, Oregon
Johnsen, R.C. Garden City, New York
Johnson, G.B. St. Louis, Missouri
Johnson, K. London, Great Britain
Johnson, W.W. Albuquerque, New Mexico
Johnston, J.S. Austin, Texas
Jones, G.H. Birmingham, Great Britain
Jong, G. Utrecht, Netherlands
Jordan, B. Marseille, France
Jowett, T. Eugene, Oregon
Juan, E. Barcelona, Spain
Judd, B.H. Austin, Texas
Jungen, H. Zürich, Switzerland
Kaji, S. Kobe, Japan
Kalicki, H. Garden City, New York Kalisch, W-E. Bochum, W.Germany Kambysellis, M.P. New York, New York
Kamping, A. Haren, Netherlands
Kaneka, A. Tokyo, Japan
Kaneshiro, K.Y. Honolulu, Hawaii
Kang, E. Seoul, Korea
Kang, Y.S. Seoul, Korea
Kang-Song, S.J. Seoul, Korea
Kankel, D. New Haven, Connecticut
Kaplan, M.L. New York, New York
Kaplan, W.D. Duarte, California
Karanja, S.N. Nairobi, Kenya
Karlik, A. Vienna, Austria
Karp, R. Cambridge, Great Britain
Karpin, G. Seattle, Washington
Kastritsis, C.D. Thessaloniki, Greece
Kato, T. Osaka, Japan
Katoh, S. Sakado-Machi, Japan
Kaufman, T.E. Bloomington, Indiana
Kaufmann, B.N. Philadelphia, Pennsylvania
Kauver, L. Pasadena, California
Kawabe, M. Kobe, Japan
Kawanishi, M. Misima, Japan
Kawanishi, M. Misima, Japan
Kayano, H. Nagasaki, Japan
Kearsey, M.J. Birmingham, Great Britain
Keith, T. Cambridge, Massachusetts
Kekić, V. Belgrade, Yugoslavia
Keller, E.C.Jr. Morgantown, West Virginia
Keller, H.E. Morgantown, West Virginia
Kemphues, K. Bloomington, Indiana
Kennison, J. La Jolla, California
Kenny, R. Huntsville, Texas
Keppy, D.O. Ames, Iowa
Keränen, L. Oulo, Finland
Kercher, M.D. Lexington, Kentucky
Kertesz, J. Dayton, Ohio
Khan, F. Pakistan
Khishin, A.F. Assuit, Egypt

Kidwell, J. Providence, Rhode Island
Kidwell, M. Providence, Rhode Island
Kiefer, B.I. Middletown, Connecticut
Kiger, J.A. Davis, California
Kijken, F.B. Utrecht, Netherlands
Kikkawa, H. Osaka, Japan
Kim, B.Y. Seoul, Korea
Kim, H.S. Seoul, Korea
Kim, K.W. Kwangju, Korea
Kim, S.H. Seoul, Korea
Kimura, M.T. Sapporo, Japan
Kindle, K. Pasadena, California
King, R.C. Evanston, Illinois
Kirshbaum, W.F. Buenos Aires, Argentina
Kitagawa, 0. Tokyo, Japan
Klapwijk, P.M. Leiden, Netherlands
Klug, W.S. Crawfordsville, Indiana
Knipple, D. Ithaca, New York
Kobayashi, Y. Hiroshima, Japan
Kobel, H.R. Geneva, Switzerland
Koch, P. Marburg, W.Germany
Koenig, J.E. Duarte, California
Kohler, N. Valdivia, Chile
Köhler, W. Berlin, W.Germany
Kondo, S. Osaka, Japan
Konopka, R. Pasadena, California
Koo, D. Vancouver, Canada
Korge, G. Sakado-Machi, Japan
Kotarski, M. Ithaca, New York
Krakauer, E. Bogota, Colombia
Kral, L. East Lansing, Michigan
Kramers, P.G.N. Leiden, Netherlands
Krause, E. South Orange, New Jersey
Kreber, R.A. Madison, Wisconsin
Kreitman, M. Cambridge, Massachusetts
Kress, H. München, W.Germany
Krider, H. Storrs, Connecticut
Krimbas, C. Athens, Greece
Krishnamurthy, N.B. Mysore, India
Krivshenko, J.D. Rochester, New York
Kroeger, H. Saarbrücken, W.Germany
Kroman, R.A. Long Beach, California
Krunic, M. Belgrade, Yugoslavia
Kubli, E. Zürich, Switzerland
Kunz, W. Düsseldorf, W.Germany
Kuo, G. New Haven, Connecticut
Kurihara, J. Honolulu, Hawaii
Kuroda, Y. Misima, Japan
Kurokawa, H. Sakdra-Mura, Japan
Kusuda, K. Sakado, Japan
Kwrokawa, Y. Nagasaki, Japan
Lachaise, D. Gif-sur-Yvette, France
Laird, C. Seattle, Washington
Lakhotia, S.C. Varanasi, India
Lakhotia, S.C. Ahmedabad, India
Lakovaara, S. Oulu, Finland
Lamb, M.J. London, Great Britain
Lambertsson, A. Umeå, Sweden
Landers, M.H. Burlington, Vermont
Langley, C. Res. Triangle Pk., N.C.
Lankinen, P. Oulu, Finland
Lathe, R. Cambridge, Great Britain
Latorre, A. Burjasot, Spain
Laughnan, J.R. Urbana, Illinois

Laurent, J. Gif-sur-Yvette, France Lavige, J.M. Clermont-Ferrand, France Lawlor, T. La Jolla, California Lawrence, M.J. Birmingham, Great Britain Lechien, J. Namur, Belgium
Lechner, J.F. Philadelphia, Pennsylvania
Lee, C.C. Seoul, Korea
Lee, C.S. Austin, Texas
Lee, M.S. Seoul, Korea
Lee, T.J. Seoul, Korea
Lee, W.R. Baton Rouge, Louisiana Leenders, H.J. Nijmegen, Netherlands Lefevre, G.Jr. Northridge, California
Legay, J.M. Lyon, France
Leibenguth, F. Saarbrücken, W.Germany
Leigh, B. Leiden, Netherlands
Leigh-Brown, A.J. London, Great Britain
Leister, F. Baltimore, Maryland
Lemeunier, F. Gif-sur-Yvette, France
Leonard, J.E. Purchase, New York
Levan, G. Göteborg, Sweden
Levitan, M. New York, New York
Lewis, E.B. Pasadena, California
Lewis, M. Cambridge, Great Britain
Lewis, R. Bloomington, Indiana
Lewontin, D. Cambridge, Massachusetts
L'Hélias, C. Gif-sur-Yvette, France
Libion-Mannaert, M. Namur, Belgium
Liebrich, W. Duisseldorf, W.Germany
Lindquist, S. Chicago, Illinois
Lindsley, D.S. La Jolla, California
Lints, C. Louvain-La-Neuve, Belgium
Lints, F. Louvain-La-Neuve, Belgium
Livak, K. La Jolla, California
Ljung, K. Umeå, Sweden
Lloyd, L. St. Andrews, Great Britain
LoCascio, N. Buffalo, New York
Logan, J. Cambridge, Massachusetts
Lokki, J. Helsinki, Finland
Lokki, M. Helsinki, Finland
Louis, C. St.Christol-1-A., France
Louis, J. Gif-sur-Yvette, France
Louis, M. Gif-sur-Yvette, France
Loukas, M. Athens, Greece
Loveland, M.J. Sydney, Australia
Loverre, A. Rome, Italy
Lowy, P.H. Pasadena, California
Lubsen, N.H. Nijmegen, Netherlands
Lucchesi, J.C. Chapel Hill, N.C.
Luce, W.M. Urbana, Illinois
Liuers, H. Berlin, W.Germany
Lumme, J. Oulu, Finland
Lüning, K.G. Stockholm, Sweden
Lyttle, T.W. Honolulu, Hawaii
MacIntyre, R. Ithaca, New York
Magalhaes, L.E. Sao Paulo, Brazil
Maher, E.P. Aberdeen, Great Britain
Mahowald, A. Bloomington, Indiana
Mainx, F. Vienna, Austria
Maitra, S.N. Calcutta, India Majumdar, S.K. Easton, Pennsylvania Malogowkin-Cohen, Ch. Haifa, Israel
Mandal, S.K. Calcutta, India
Maniatis, T. Pasadena, California

Manna, G.K. Kalyani, India Manseau, L. Madison, Wisconsin Marcos, R. Bellaterra, Spain Margulies, L. New York, New York Marien, D. New York, New York Marinkovic, D. Belgrade, Yugoslavia Markow, T.A. Tempe, Arizona Maroni, G.P. Chapel Hill, North Carolina Marques, E.J. Mato Grosso, Brazil Marques, E.K. Porto Alegre, Brazil
Marsh, L. Basel, Switzerland
Martin, A.O. Cleveland, Ohio
Martinez, M.J. Burjasot, Spain
Martinez, M.N. Porto Alegre, Brazil
Martinez, R.M. Hamden, Connecticut
Maruyama, T. Misima, Japan
Massie, H.R. Utica, New York
Mather, K.C.B.E. Birmingham, Great Britain
Mather, W.B. Brisbane, Australia
Matsuda, T. Asamizodai, Japan
Matsumura, T. Nagasaki, Japan
Mayeda, K. Detroit, Michigan
Mayfield, J.E. Pittsburgh, Pennsylvania Mazar-Barnett, B. Buenos Aires, Argentina
McCarron, M. Storrs, Connecticut
McCarthy, P.C. New Wilimington, Pennsylvania
McCormack, M.K. New Brunswick, New Jersey
McCrady, E. Greensboro, North Carolina
McCrady, W.B. Arlington, Texas
McDonald, J.F. Ames, Iowa
Ménsua, J.L. Burjasot, Spain
Mercader, J. Mexico City, Mexico
Merrell, D.J. Minneapolis, Minnesota
Merriam, J. Los Angeles, California
Merritt, R. Rochester, New York
Merten-Huber, M. München, W.Germany
Meyer, G.F. Tübingen, W.Germany
Meyer, H.U. Madison, Wisconsin
Meyerowitz, E.M. Pasadena, California
Michalopoulou, E. Patras, Greece
Mícheli, A. Rome, Italy
Michinomae, M. Kobe, Japan
Miglani, G.S. Ludhiana, India Mikasa, K. Sakado-Machi, Japan Miklos, G.L.G. Canberra, Australia Milkman, R.D. Iowa City, Iowa Miller, D.D. Lincoln, Nebraska Miller, O.L.jr. Charlottesville, Virginia Milner, M.J. St. Andrews, Great Britain
Minamouri, S. Hiroshima, Japan
Minato, K. Misima, Japan
Mindek, G. Zürich, Switzerland
Miranda, M. Rio de Janeiro, Brazil
Mishra, A. Varanasi, India
Mitchell, C. Duarte, California
Mitche11, H.K. Pasadena, California
Mittler, S. DeKalb, Illinois
Mohler, J.D. Iowa City, Iowa
Mohon-Acharya, P. Calcutta, India
Moisand, R. Buffalo, New York
Momma, E. Sapporo, Japan
Monclus, M. Barcelona, Spain
Monks, G. München, W.Germany
Montelente, G. Rome, Italy

Montell, I. Umeå, Sweden
Montijn, C. Utrecht, Netherlands
Morea, M. Bari, Italy
Moree, R. Pullman, Washington
Mori, S. Nagasaki, Japan
Moriwaki, D. Tokyo, Japan
Mortensen, M. Copenhagen, Denmark
Moskwinski, T. Notre Dame, Indiana
Mossige, J. Oslo, Norway
Mourad, A.O. Alexandria, Egypt
Mourao, C.A. Sao Jose de R.P., Brazil
Moya, A. Burjasot, Spain
Muckenthaler, F. Bridgewater, Mass.
Mukherjee, A.S. Calcutta, India
Mukherjee, T. Varanasi, India
Münster, R. Münster, W.Germany
Muñoz, E.R. Buenos Aires, Argentina
Muona, O. Helsinki, Finland
Murakami, A. Misima, Japan
Murata, M. Chiba, Japan
Murnik, M.R. Macomb, Illinois
Myszewski, M.E. Des Moines, Iowa
Nagaraj, H.J. Mysore, India
Nagna, F. Naples, Italy
Najera, C. Burjasot, Spain
Nakai, S. Osaka, Japan
Nakamura, Y. Tokyo, Japan
Nakashima-Tanaka, E. Sakai, Japan
Nalcaci, O.B. Ankara, Turkey
Namkoon, Y. Seoul, Korea
Narise, S. Sakado-Machi, Japan
Narise, T. Sakado-Machi, Japan
Nascimento, L. Rio de Janeiro, Brazil
Nash, D. Edmonton, Canada
Nash, W.G. Bethesda, Maryland
Natsubara, K. Sakai, Japan
Nauaud, D. Paris, France
Navarro, J. Santiago, Chile
Nawa, S. Misima, Japan
Neeley, J.C. Portland, Oregon
Newman, S. Seattle, Washington
Nicolosi, R.J. Utica, New York
Niizeki, S. Tokyo, Japan
Ni1kan, C. Bangkok, Thailand
Nilsson, J. Umeå, Sweden
Nishida, Y. Osaka, Japan
Nissani, M. Madison, Wisconsin
Nix, C.E. Oak Ridge, Tennessee
Nokkala, S. Turku, Finland
Nomura, T. Osaka, Japan
Nöthel, H. Berlin, W.Germany
Nöthiger, R. Zürich, Switzerland
Novitski, E. Eugene, Oregon
Nuez, F. Valencia, Spain
Nusslein-Volhard, C. Heidelberg, W.Germany
Nuviiak, P. St. John's, Canada
Nygren, J. Umeå, Sweden
O'Brien, S.J. Bethesda, Maryland
Oelshlegal, F.J. Ann Arbor, Michigan
Oftedal, P. Oslo, Norway
Ogaki, M. Sakai, Japan
Ogita, Z. Osaka, Japan
Oguma, Y. Sakura-Mura, Japan
Oh, S.K. Seoul, Korea

Ohanessian, A. Gif-sur-Yvette, France
Ohba, S. Tokyo, Japan
Oishi, K. Kobe, Japan
Okada, M. Sakura-Mura, Japan
Okada, T. Tokyo, Japan
Oksala, T.A. Turku, Finland
Olivieri, G. Rome, Italy
Oller, R. Tübingen, W.Germany
Olvera, O.M.S. Mexico City, Mexico
Ondrej, M. Prague, Czechoslovakia
Ortiz, E. Madrid, Spain
Osborn, R. Berkeley, California
Oshima, C. Misima, Japan
Oster, I.I. St. John's, Canada
Oster, P. Bowling Green, Ohio
Ostrowski, R.S. Charlotte, North Carolina
Pages, M. Madrid, Spain
Paik, Y.K. Seoul, Korea
Pak, W.L. West Lafayette, Indiana
Pal, T.K. Calcutta, India
Palabost, L. Paris, France
Palka, J. Seattle, Washington
Papaceit, M. Barcelona, Spain
Paradi, E. Budapest, Hungary
Parente, A. Detroit, Michigan
Parisi, G. Naples, Italy
Park, M.S. Kwangju, Korea
Parkash, R. Amritsar, India
Parker, D.R. Riverside, California
Parris, R. Newcastle, Australia
Parsons, P.A. Bundoora, Australia
Pasteur, G. Montpellier, France
Pasteur, N. Montpellier, France
Paterson, H.E. Nedlands, Australia
Paul, C.P. Ann Arbor, Michigan
Pavan, C. Sao Paulo, Brazil
Paz, C. Buenos Aires, Argentina
Pazman, G.J. Lancaster, Great Britain
Peacock, W.J. Canberra, Australia
Peers, E. New York, New York
Pelecanos, M. Patras, Greece
Pelisson, A. Clermont-Ferrand, France
Pentzos-Daponte, A. Thessaloniki, Greece
Peñefiel, T. Bellaterra, Spain
Pereira, M.A.Q.R. Sao Paulo, Brazil
Pereira, S.M.F. Mato Grosso, Brazil
Perez, M. Bellaterra, Spain
Pérez-Salas, Caracas, Venezuela
Periquet, G. Paris, France
Petanović, R. Belgrade, Yugoslavia
Peterson, N. Pasadena, California
Petit, C. Paris, France
Petković, D. Belgrade, Yugoslavia
Petri, W. Cambridge, Massachusetts
Petrovich, S.B. Catonsville, Maryland
Pfriem, P. Tübingen, W.Germany
Phelps, R.W. San Diego, California
Phillips, J. Austin, Texas
Picard, G. Clermont-Ferrand, France
Pierce, D. Chapel Hill, North Carolina
Pilares, G.L. Lima, Peru
Pinchin, S.M. London, Great Britain
Pinsker, W. Tübingen, W.Germany
Piñeiro, R. Oviedo, Spain

Pipkin, S.B. Washington, D.C. Plá, C. Bellaterra, Spain Pleign, Chr. Bochum, W.Germany Plus, N. St.Christol-1-A., France Poodry, C.A. Santa Cruz, California Portin, P. Turku, Finland Postlethwait, J.H. Eugene, Oregon Potter, J.H. College Park, Maryland Potter, S.S. Middletown, Connecticut Poulson, D.F. New Haven, Connecticut
Powell, J.R. New Haven, Connecticut
Prakash, H.S. Mysore, India
Prakash, S. Rochester, New York
Prasad, J. Calcutta, India
Preston, C. Madison, Wisconsin
Prevosti, A. Barcelona, Spain
Priviterra, E. Milan, Italy
Prout, T. Davis, California
Pruzan, A. Purchase, New York
Puro, J. Turku, Finland
Pyle, D. Raleigh, North Carolina
Quinn, W.G. Princeton, New Jersey
Rae, P.M.M. New Haven, Connecticut
Rafael, H.V. Lima, Peru
Raff, E. Bloomington, Indiana
Raff, R. Bloomington, Indiana
Raham, R. La Jolla, California
Rahat, A. Jersualem, Israel
Rahman, S.M.Z. Bhagalpur, India
Rai, K.S. Notre Dame, Indiana
Raisbeck, J.A. Newcastle, Australia
Rajasekarasetty, M.R. Mysore, India
Ramel, C. Stockholm, Sweden
Ramesh, S.R. Mysore, India
Ramirez, L. Sydney, Australia
Ramshaw, J. Cambridge, Massachusetts
Ranganath, H.A. Mysore, India
Ransom, R.J. Milton-Keynes, Great Britain
Rapport, E. Burnaby, Canada
Rasmuson, A. Umeå, Sweden
Rasmuson, B. Umeå, Sweden
Rasmuson, M. Umeå, Sweden
Ratnayake, W.E. Gangodawila, Sri Lanka
Ratty, F.J. San Diego, California
Ray, C. Atlanta, Georgia
Razzini-Bonifazio, A. Milan, Italy
Reddi, O.S. Hyderabad, India
Reigosa, A. Santiago, Spain
Relton, J. Sheffield, Great Britain
Remondi, D.J. Bethesda, Maryland
Rendel, J.M. Sydney, Australia
Renkawitz, R. Diisseldorf, W.Germany
Renkawitz-Pohl, R. Düsseldorf, W.Germany
Ribó, G. Barcelona, Spain
Ribolini, A. Bloomington, Indiana
Richard-Molard, Ch. Gif-sur-Yvette, France
Richards, G.P. Cambridge, Great Britain
Richardson, R.H. Austin, Texas
Richmond, R. Bloomington, Indiana
Richmond, R.C. Raleigh, North Carolina
Rick, J.T. Sheffield, Great Britain
Rico, M. Valencia, Spain
Rinehart, R.R. San Diego, California
Rios, R.I. Rio de Janeiro, Brazil

Ritossa, F. Bari, Italy
Rizki, R.M. Ann Arbor, Michigan
Rizki, T.M. Ann Arbor, Michigan
Robbins, L. East Lansing, Michigan
Roberts, D.B. Oxford, Great Britain
Roberts, P.A. Corvallis, Oregon
Roberts, S. Colchester, Great Britain
Robertson, A. Edinburgh, Great Britain
Robertson, F.W. Aberdeen, Great Britain
Roca, A. Oviedo, Spain
Rockwell, R.F. New York, New York
Rodinó, E. Padova, Italy
Roehrdanz, R. Chapel Hill, North Carolina
Rogge, A. Berlin, W.Germany
Rokop, S. La Jolla, California
Romans, P. La Jolla, California
Rose, M. Madison, Wisconsin
Rose, R.W. Glenside, Pennsylvania
Rosenfeld, A. Seattle, Washington
Rosset, R. Marseille, France
Rouault, J. Gif-sur-Yvette, France
Roy, S. Ahmedabad, India
Roy, S. Varanasi, India
Rubenstein, E. New York, New York
Rubin, G.M. Baltimore, Maryland
Rubio, J. Oviedo, Spain
Ruderer-Doschek, E. Vienna, Austria
Rudkin, G.T. Philadelphia, Pennsylvania
Ruiz, A. Santiago, Spain
Ruiz, G. Valdivia, Chile
Russell, M.A. Edmonton, Canada
Rutherford, P. Aberdeen, Great Britain
Sagarra, E. Barcelona, Spain
Sakaguchi, B. Fukuoka, Japan
Sakoyama, Y. Osaka, Japan
Salceda, S. Chapingo, Mexico
Sampsell, B. Chicago, Illinois
Sánchez, A. Bellaterra, Spain
Sánchez, J.A. Oviedo, Spain
Sánchez, M. Oviedo, Spain
Sander, K. Freiburg, W.Germany
Sanders, T.G. Princeton, New Jersey
Sang, J.H. Brighton, Great Britain
Sanjeeva, R. Hyderabad, India
Sankaranarayanan, K. Leiden, Netherlands
Santos, M. Santiago, Spain
Sarker, D.N. Varanasi, India
Sasaki, M. Sakado, Japan
Saura, A. Helsinki, Finland
Saura, M. Helsinki, Finland
Savić, S.M. Belgrade, Yugoslavia
Savontaus, M-L. Turku, Finland
Sayers, E.R. Tuscaloosa, Alabama
Scalenghe, F. Bari, Italy
Schabtach, E. Eugene, Oregon
Schäfer, U. Düsseldorf, West Germay
Schaffer, H.E. Raleigh, North Carolina
Schalet, A. Leiden, Netherlands
Scharloo, W. Utrecht, Netherlands
Sched1, P. Basel, Switzerland
Schilcher, F.v. München, W.Germany
Schneider, A. Heidelberg, W.Germany
Schneider, I. Washington, D.C.
Schouten, S.C.M. Utrecht, Netherlands

Schubiger, G. Seattle, Washington Schubiger, M. Seattle, Washington Schweizer, P. Zürich, Switzerland Schwinck, I. Storrs, Connecticut Schwochau, M. Düsseldorf, W.Germany
Sears, D. Eugene, Oregon
Sederoff, R.R. Eugene, Oregon
Seiger, M. Rio de Janeiro, Brazil
Seiger, M.B. Dayton, Ohio
Semeonoff, R. Leicester, Great Britain
Sene, F.M. Sao Paulo, Brazil
Sepulveda, J. Valdivia, Chile
Serban, S.N. Belgrade, Yugoslavia
Serra, L. Barcelona, Spain
Shafer, S.J. Oakdale, New York
Shakoori, A.R. Pakistan
Sharma, G.P. Chandigarh, India
Sharma, R.P. New Delhi, India
Shear, C. Atlanta, Georgia
Shearn, A. Baltimore, Maryland
Sheldon, B.L. Sydney, Australia
Shellenbarger, D. Vancouver, Canada
Shelton, M. Newcastle, Great Britain
Shen, M.W. Austin, Texas
Shiomi, T. Nagasaki, Japan
Shirk, D. Eugene, Oregon
Shorrocks, B. Leeds, Great Britain
Shukle, P.T. Edinburgh, Great Britain
Sick, K. Copenhagen, Denmark
Siddaveere-Gowda, L. Mysore, India
Sidhu, N.S. Isatnagar, India
Silva, A.B.C. Sao Jose de R.P., Brazil
Simmons, J.R. Logan, Utah
Singh, A. Chandigarh, India
Singh, B.K. Varanasi, India
Sirotkin, K. Pasadena, California
Skibinski, D.E.F. Swansea, Great Britain
Skripski, T. Chapel Hill, North Carolina
Smit, S.Z. Belgrade, Yugoslavia
Smith, B.R. Aberdeen, Great Britain
Smith, D.A. Birmingham, Great Britain
Smith, P.D. Atlanta, Georgia
Sobels, F.H. Leiden, Netherlands
Södergren, A. Umeå, Sweden
Sofer, W. Baltimore, Maryland Sokoloff, A. San Bernardino, California
Soliman, M.H. Armidale, Australia
Soll, D.G. New Haven, Connecticut
Sondermeijer, P. Nijmegen, Netherlands
Sonnenblick, B.P. Newark, New Jersey
Sorsa, M. Helsinki, Finland
Sorsa, V. Helsinki, Finland
Sourdis, J. Athens, Greece
Sparrow, J.C. York, Great Britain
Speers, L. Ottawa, Canada
Spence, G.E. Bundoora, Australia
Spencer, J. Cambridge, Great Britain
Sperlich, D. Tübingen, W.Germany
Spiess, E.B. Chicago, Illinois
Spieth, H.T. Davis, California
Spoeral, N. Cambridge, Great Britain
Spofford, J.B. Chicago, Illinois
Spralding, A. Bloomington, Indiana
Sprechman, L. Austin, Texas

Sprey, Th.J. Leiden, Netherlands
Springer, R. Vienna, Austria
Srdic, Z. Geneva, Switzerland
Sreerama-Reddy, G. Mysore, India
Sroczynski, A. Birmingham, Great Britain
Stalker, H.D. St. Louis, Missouri
Stanley, S.M. Bundoora, Australia
Stark, W.S. Baltimore, Maryland
Steffensen, D.M. Urbana, Illinois
Stein, H. Tübingen, W.Germany
Steiner, E. La Jolla, California
Steiner, W.W.M. Urbana, Illinois
Stern, G. Berkeley, California
Stewart, B. Los Angeles, California
Stewart, D. Waltham, Massachusetts
Stögerer, K. Tübingen, W.Germany
Stone, J. Eugene, Oregon
Storteur, E. Montpellier, France
Strickberger, M.W. St. Louis, Missouri
Stroman, P. Copenhagen, Denmark
Strommen, C. Eugene, Oregon
Strub, S. Stony Brook, New York
Ståh1, G. Stockholm, Sweden
Suchopova, N. Brno, Czechoslovakia
Sulerud, R.L. Minneapolis, Minnesota
Sullivan, D.T. Syracuse, New York
Suomalainen, E. Helsinki, Finland
Suyo, T. Lima, Peru
Suzuki, D. Vancouver, Canada
Svah1in, H. Umeå, Sweden
Sved, J.A. Sydney, Australia
Swift, H.H. Chicago, Illinois
Szuchmacher, R. Rio de Janeiro, Brazil
Tadei, W.J. Sao Jose de R.P., Brazil
Tadei, W.P. Sao Jose de R.P., Brazil
Takada, H. Sapporo, Japan
Takamura, T. Misima, Japan
Takanashi, E. Tokyo, Japan
Taketani, J. Sakado-Machi, Japan
Takikawa, S. Asamizodai, Japan
Tallentire, A.C. Kampala, Uganda
Tanouye, M. Pasadena, California
Tantawy, A.O. Alexandria, Egypt
Tartof, K.D. Philadelphia, Pennsylvania
Tavares, L.L. Rio de Janeiro, Brazil
Taylor, C.E. Los Angeles, California
Temin, R. Madison, Wisconsin
Templeton, A.R. St. Louis, Missouri
Tener, G. Vancouver, Canada
Teninges, D. Gif-sur-Yvette, France
Teramoto, L.T. Honolulu, Hawaii
Thalmann, G.J. Oakdale, New York
The, D. Sydney, Australia
Thirtle, B. Ann Arbor, Michigan
Thoday, J.M. Cambridge, Great Britain
Thomopoulos, G. Thessaloniki, Greece
Thompson, C. Johnstown, Pennsylvania
Thompson, J.N. Norman, Oklahoma
Thompson, S.R. Ithaca, New York
Thörig, G.E.W. Utrecht, Netherlands
Throckmorton, L.H. Chicago, Illinois
Tigerstedt, P. Helsinki, Finland
Tiivola, A. Helsinki, Finland
Tischendorf, G. Düsseldorf, West Germany

Tobari, I. Chiba, Japan
Tobari, Y.N. Tokyo, Japan
Tobler, H. Fribourg, Switzerland
Tokunaga, C. Berkeley, California
Tokuyasu, K. La Jolla, California
Tonomura, Y. Tokyo, Japan
Tonzetich, J. Lewisburg, Pennsylvania
Torres, M.E. Bogota, Colombia
Torroja, E. Madrid, Spain
Tosić, M. Belgrade, Yugoslavia
Tracey, M.L. Miami, Florida
Tracey, M.L. St. Catherines, Canada
Traut, H. Münster, W.Germany
Treat, L.G. Tempe, Arizona
Triantaphyllidis, C.D. Thessaloniki, Greece
Trippa, G. Rome, Italy
Trout, W.E.III Duarte, California
Tsacas, L. Gif-sur-Yvette, France
Tsakas, S. Athens, Greece
Tsubota, S. Cambridge, Great Britain
Tsuji, H. Chiba, Japan
Tsuno, K. Sakado-Machi, Japan
Tsusue, M. Asamizodai, Japan
Tucić, N. Belgrade, Yugoslavia
Tucker, C. Milton-Keynes, Great Britain
Tucker, J.B. St. Andrews, Great Britain
Tuinstra, E.J. Utrecht, Netherlands
Tung, P.S-C. University Park, Pennsylvania
Turner, F.R. Bloomington, Indiana
Twardzik, D.R. Bethesda, Maryland
Ulber, M. Madison, Wisconsin
Ulubay, F. Ankara, Turkey
Un1ü, H. Ankara, Turkey
Ushioda, Y. Kobe, Turkey
Vacek, D. Armidale, Australia
Vaidya, V.G. Poona, India
Valadé, E. Santiago, Spain
Valencia, R. Madison, Wisconsin
Valentin, J. Göteburg, Sweden
Valporto, V.M. Rio de Janeiro, Brazil
Van Delden, W. Haren, Netherlands
Van den Haute, J. Namur, Belgium
Van Herrewege, J. Villeurbanne, France
Van Valen, L. Chicago, Illinois
Varga, J. Budapest, Hungary
Vartanian, G. Sao Jose de R.P., Brazil
Vasquez, E. Oviedo, Spain
Vasquez, E.J. Lima, Peru
Vasudev, V. Mysore, India
Velissariou, V. Cambridge, Great Britain
Vepsäläinen, K. Helsinki, Finland
Vergini, Y. Athens, Greece
Viinikka, Y. Turku, Finland
Vijayan, V.A. Mysore, India
Vilageliu, L. Barcelona, Spain
Vincent, W.S. Tempe, Arizona
Voelker, R.A. Res. Triangle Pk., N. C.
Vogel, E. Leiden, Netherlands
Vogt, H.P. Nigmegen, Netherlands
Vreezen, W.J. Leiden, Netherlands
Vyse, E.R. Bozeman, Montana
Wada, R. Osaka, Japan
Waddle, F.R. Fayetteville, North Carolina Wakahama, K-I. Matsue, Japan

Wakimoto, B. Bloomington, Indiana Walker, V. Cambridge, Great Britain Wallace, B. Ithaca, New York Wallace, H. Birmingham, Great Britain Ward, C.L. Durham, North Carolina Wargent, J. Sheffield, Great Britain Warren, M.E. Swansea, Great Britain Wasserman, M. New York, New York Watabe, H. Sapporo, Japan Watanabe, T.K. Misima, Japan Watson, W.A.F. Aberdeen, Great Britain Wehner, R. Zürich, Switzerland
Weide, R. Tempe, Arizona
Weideli, H. Basel, Switzerland
Welshons, J. Ames, Iowa
Welshons, W.J. Ames, Iowa
Welter, R.J. Ames, Iowa
Wendisch, I. Nijmegen, Netherlands
Wensink, P. Waltham, Massachusetts
Westerberg, B.M. Umeå, Sweden
Westra, A. Leiden, Netherlands
Wheeler, L. Austin, Texas
Wheeler, M.R. Austin, Texas
White, B.N. Kingston, Canada
White, K. New Haven, Connecticut
White, V. Amherst, Massachusetts
Whittinghill, M. Chapel Hill, N.C.
Whittle, J.R.S Brighton, Great Britain
Whitty, R.W. Canberra, Australia
Wieschaus, E. Heidelberg, W.Germany
Wijsman, E. Madison, Wisconsin
Wildeboer-du Pui, M. Haren, Netherlands
Wilkerson, R.D. Oak Ridge, Tennessee
Williamson, D.L. Stony Brook, New York
Williamson, J.H. Calgary, Canada
Williamson, R.L. Duarte, California
Willkomm, P. Bochum, W.Germany
Wimber, D. Eugene, Oregon
Wing-Cordeiro, H. Porto Alegre, Brazil
Winkler, F. Valdivía, Chile
Wong, P.T.-C. Duarte, California
Woo, I.H. Seoul, Korea
Woodruff, R.C. Austin, Texas
Woodruff, R.C. Bowling Green, Ohio
Woolf, C.M. Tempe, Arizona
Wright, C.P. Cullowhee, North Carolina
Wright, T.R.F. Charlottesville, Virginia
Wu, C-F. Iowa City, Iowa
Wui, I.S. Kwangju, Korea
Würgler, F.E. Ziirich, Switzerland
Wyers, F. Gif-sur-Yvette, France
Wyman, A. Cambridge, Massachusetts
Wyman, R.J. New Haven, Connecticut
Yamada, M.A. Misima, Japan
Yamamoto, T. Sakai, Japan
Yamazaki, H.I. Tokyo, Japan
Yanders, A.F. Columbia, Missouri
Yang, C.Y. Seoul, Korea
Yannopoulos, G. Patras, Greece
Yeh, F. Halifax, Canada
Yoon, Bowling Green, Ohio
Yoon, J.S. Austin, Texas
Yoon, Y.S. Seoul, Korea
Yoshikawa, I. Nagasaki, Japan

Yost, H.T. Amherst, Massachusetts
Young, J.P.W. Brighton, Great Britain
Younis, S.A. Assuit, Egypt
Zacharopoulou, A. Patras, Greece
Zapata, C. Santiago, Spain
Zarate, E. Santiago, Chile
Zijlstra, J. Leiden, Netherlands
Zimm, G. La Jolla, California
Zimmering, S. Providence, Rhode Island
Zonneveld, B.J.M. Leiden, Netherlands
Zouros, E. Halifax, Canada
Zubeldia, A. Valencia, Spain
Ziust, B. Fribourg, Switzerland

ARGENTINA

Buenos Aires: Comisión Nacional de Energía Atómica, Departamento de Radiobiología, División Genética. Avda. Libertador 8250. Tel 70-7711 Ext 331

Kirschbaum, W.F. B.Sc.Agr.,Research Associate Salivary cytology
Mazar Barnett, B. Ph.D. Radiation genetics and chemical induction of mutations
Muñoz, E.R. M.D. Radiation genetics
Paz, C. Curator of Stocks
AUSTRALIA
Adelaide, S.A. 5042, Flinders Univ. South Aust., Sch. of Biol.Sci., Bedford Park. Tel 275-3911
Brink, N.G. Ph.D., Senior Lecturer Development
Cann, L. Curator of Stocks
Clark, A.M. Ph.D., Professor Mutagenesis
Armidale, New South Wales, 2351: University of New England, Department of Animal Science.
Tel. (067) 72-2911
Barker, J.S.F. B.Agr.Sc., Ph.D. Professor of Animal Science and Head of Department. Population and quantitative genetics.
Claxton, J.H. B.Sc.,Ph.D. Senior Lecturer Developmental genetics.
Soliman, M.H. M.Sc.,Ph.D. Tutor. Behavioural and population genetics.
Vacek, D.C. B.A., M.S., Ph.D. Research Associate Population genetics, Drosophila-yeast interactions.
East, P.D. B.Sc. Research Fellow. Population and biochemical genetics
Brisbane, Queensland 4067: Univ. of Queensland, Department of Zoology, Genetics Laboratory.
Balwin, G. B.Sc., (Hons), Graduate Student
Mather, W.B. Ph.D.,Head of Laboratory Chromosomal polymorphism, isolating mechanisms, speciation.
Bundoora, Victoria 3083: La Trobe University, Department of Genetics and Human Variation
(Australian Drosophila Research Unit) Tel. (03) 478-3122
Bock, I.R. P.D., Senior Lecturer Taxonomy, cytology and zoogeography of Drosophilidae, especially of the Australian region.
Hay, D. A. Ph.D., Senior Lecturer Behavior genetics
Parsons, P.A. Sc.D., Professor Behavior and ecological genetics; zoogeography of Australian Drosophilidae
Spence, G.E. B.Sc., Curator of stocks
Stanley, S.M. Ph.D., Senior Research Assistant Ecology; Australian Drosophilidae.
Canberra, A.C.T. 2601: Australian National University, Department of Population Biology
Miklos, G.L.G. Ph.D., Research Fellow Chromosome pairing, yeast mitochondrial genetics, repeated DNA
Whitty, R.W. Senior Technical Officer Electron Microscope Unit Electron microscopy of Drosophila
Canberra, A.C.T. 2601: Commonwealth Scientific and Industrial Research Organization,
Division of Plant Industry
Appels, R. Ph.D.,Research Scientist Chromosome structure - 5981
Dennis, E.S. Ph.D., Research Scientist Molecular biology of Drosophila highly repetitive DNA - 5434
Hilliker, A.J. Ph.D., Research Fellow Chromosome structure and function; recombination; gene regulation; mutagenesis - 5434
Peacock, W.J. Ph.D., Chief of Division Chromosome organization - 5250, 5610
Clayton, Victoria 3168: Monash University, Department of Genetics
Camfield, R.G. Ph.D.,Senior Teaching Fellow Biochemical and development genetics, particularly temperature sensitive mutants
Dyer, K.F. Ph.D.,Lecturer Population genetics, mutagenesis
Clayton, Victoria 3168: Monash University, Department of Psychology
Crossley (nee Pearce), S.A. Ph.D.,Senior Lecturer Behaviour genetics
Nedlands, Western Australia 6009: University of Western Australia, Department of Zoology
Paterson, H.E. Ph.D.,Senior Lecturer Speciation
Newcastle, N.S.W. 2308: Univ. of Newcastle, Department of Biological Sciences Tel (049)85535
Angus, D.S. Ph.D.,Senior Lecturer Population Genetics
Parris, R. B.Sc.,Hons., Curator of Stocks
Raisbeck, J.A. B.Sc.,Hons., Graduate Student

Sydney, N.S.W.: Commonwealth Scientific and Industrial Research Organization, Genetics
Research Laboratories, P.0. Box 184, North Ryde, N.S.W. 2113. Tel 880221
Franklin, I.R. Ph.D. Population genetics
Hill, R.J. Ph.D. Molecular genetics
Lovelock, M.J. B.Sc. Developmental genetics
Rendel, J.M. Ph.D. Population, developmental genetics
Sheldon, B.L. Ph.D. Quantitative, developmental genetics
Sydney, N.S.W. 2113: Macquarie Univ. Sch. of Biological Sciences, North Ryde Tel 889129
Daggard, G. B.A., (Hons.), Graduate student ADH
Frankham, R. Ph.D.,Senior Lecturer Quantitative genetics
Ramirez, L. M.Sc.,Graduate student Developmental genetics
Sydney, N.S.W. 2006: Univ. of Sydney, Dept. of Agricul, Botany, Fac. of Agric. Tel 660-8941
Baker, E.P. Ph.D. Cytogenetics
The, D. M.Sc.Agr.,Teaching Fellow
Sydney, N.S.W. 2006: Botany Building, A72 Tel (02) 692-2298
Sved, J.A.
Sydney, N.S.W. 2006: University of Sydney, Department of Animal Husbandry Tel 692-2184
Barker, J.S.F. B.Agr.Sc., Ph.D.,Associate Professor Animal Genetics, population and quantitative genetics
East, P.D. B.Sc.,Research Assistant Population genetics
Sydney, N.S.W. 2033: University of New South Wales, School of Wool and Pastoral Sciences
Tel 662-2294
James, F.W. B.A.,Senior Lecturer Quantitative genetics
AUSTRIA
A-1090 Vienna IX: Institut für allgemeine Biologie, Schwarzspanierstr. 17 Tel 0222-42 2767
Baxa, H. Ph.D. Population genetics
Feuerback-Mravlag, H. Ph.D. Population genetics
Hampel, H. Ph.D. Behaviour genetics
Karlik, A. Ph.D. Population genetics
Mainx, F. Ph.D.,Retired Professor
Ruderer-Doschek, E. Ph.D. subobscura, sexual behaviour
Springer, R. Ph.D. subobscura, sexual behaviour
BELGIUM
Brussels: Université Libre de Bruxelles, Départment de Biologie moléculaire, Laboratoire de
Cytologie et Embryologie moléculaires
Altorfer, N. Dr.Sc.
Brachet, J. Dr.Méd., Professor
B - 1348 Louvain-la-Neuve. Université de Louvain, Faculté des Sciences agronomiques, Laboratoire de Gẻnétique, Place Croix du Sud 2. Tel 010/418181 Est 3667

Bourgois, M. Ph.D., Student Natural selection
Harvengt, J. Assistant Longevity mutants
Lints, C.V. Research Assistant Curator of stocks
Lints, F.A. Ph.D.,Professor,Head of Laboratory Population and physiological
genetics, longevity and aging
B-5000 Namur: Facultês Universitaires N.D. de la Paix, Laboratoire de Génétique,
rue de Bruxelles 61
Delcour, J. Ph.D., Lecturer Molecular genetics
Deltombe-Lietaert, M.-C. M.D.,Senior Assistant Enzyme polymorphism
Elens, A. Ph.D.,Professor Behavior genetics
Lechien, J. Curator of Stocks
Libion-Mannaert, M. Grad.Chem., Senior Technical Assistant Molecular genetics
Van den Haute, J. B.Sc., Assistant Molecular genetics
BRAZIL
Mato Grosso: Universidade Estadual de Mato Grosso, Departamento de Morfologia - Cidade
Universitária - Caixa Postal 649-79.00-Campo Grande - Mato Grosso
Marques, E.J. M.Sc. Population genetics $\&$ "sex-ratio" in natural populations of Drosophila
Pereira, S.M.F. M.Sc. Population genetics and polymorphism in natural populations
Pôrto Alegre: Universidade Federal do Rio Grande do Sul, Instituto de Biociencias,
Departamento de Genética, Caixa Postal 1953 Tel 240794
Cordeiro, A.R. Ph.D.,Professor Chromosome development \& polymorphism, enzyme polymorphism

Dratz, F.L. M.Sc., Professor,Inst. Ciências Biológicas UFGO
Marques, E.K. Ph.D.,Head of Department, Associate Professor of radiation and radioresistance
Martinez, M.N. B.Sc.Lic.,Assistant Professor Color polymorphism in Drosophila, enzyme polymorphism
Winge-Corderio, H. B.Sc.Lic.,Assistant Professor Animal genetics, speciation in D. Willistoni cryptic group, enzyme polymorphism
20.000 Rio de Janeiro - RJ: Cidade Universitária UFRJ, Departamento de Genética, Cx.P 68011

Arantes, P.C. Assistant Professor Isoenzymes in natural populations of D. capricorni
Cordeiro, A.R. Dr., Chairman Genetic and evolution of protein polymorphism and gene regulation in Drosophila and Cavia; experimental populations
Filgueiras, L. Assistant Professor Drosophila taxonomy; experimental populations of Drosophila
Miranda, M. Dr., Professor Regulatory gene crossing in Drosophila and Rynchosciara
Nascimento, L. Technical Assistant Stockkeeper
Rios, R.I. Assistant Professor Drosophila protein polymorphism related to environmental conditions
Seiger, M. Dr., Visiting Professor Behaviour genetics of Drosophila
Szuchmacher, R. MS Cand. Behaviour genetics of Drosophila
Valporto, V.M. Aux Ensino Ontogenetic and tissue distribution of isoenzymes in Tripunctata group of Drosophila
Tavares, L.L. Admin. Assistant
21.941 Rio de Janeiro-RJ: Cidade Universitária UFRJ, Departamento de GenéticaInstituto de

Biologia, Cx.P. 68011
Gupta, A.P. Dr. Visiting Assistant Professor. Population and Developmental Genetics. 15100 São José do Rio Preto, SP: Universidade Estadual Paulista, Instituto de Biociências,
Letras e Ciências Exatas (IBILCE), Departamento de Biologia. Tel 32-6500 Est 57
Mourão, C.A. Sc.D. Population and ecological genetics
Bicudo, H.E.M. de C. Sc.D. Cytogentics, gene action and speciation
Gallo, A.J. Sc.D. Genetic load and taxonomy
Vartanian, G. Sc.D. Population genetics
Tadei, W.J. Sc.D. Population genetics
Tadei, W.P. Sc.D. Cytogenetics and speciation
Silva, A.B.C. Sc.D. Population and ecological genetics
São Paulo: Universidade de São Paulo, Departamento de Biologia, Instituto de Biociências,
Cidade Universitária - Caixa Postal 11.230 Tel 286-0011 Ext 215
Cunha, A.B. Ph.D., Professor Polymorphism in natural populations
Magalhães, L.E. Ph.D. Population genetics
Pavan, C. Ph.D., Professor Polymorphism in natural populations
Pereira, M.A.Q.R. MS. Evolutionary biology
Sene, F.M. Ph.D. Evolutionary biology
CANADA
Burnaby 2, Brit. Col. V4A 1S6: Simon Fraser Univ., Dept. of Biological Sciences Tel291-4475 Rapport, E.
Calgary, Alb. T2N 1N4: Univ. of Calgary, Dept. of Biology Tel 284-6794
Williamson, J.H. Ph.D. Chromsome mechanics, radiation genetics
Edmonton, Alb. T6G 2E9: Univ. of Alberta, Dept. of Genetics Tel 403-432-3290
Bell, J.B. Assistant Professor Isolation of suppressors
Hodgetts, R.B. Associate Professor Genetic control of enzyme regulation
Nash, D. Professor The genetics of nucleoside biosynthesis
Russell, M.A. Assistant Professor Genetics of development
Halifax, Nova Scotia B3H 4J1: Dalhousie University, Dept. of Biology
Yeh, F. Ph.D.,Research Associate
Zouros, E. Ph.D.,Assistant Professor
Kingston, Ont. K7L 3N6: Queen's University, Dept. of Biology Tel (613) 547-6675
Chen, T. Molecular and developmental genetics
Holden, J.J.A.
White, B.N. Molecular genetics
Montreal 262: Loyola of Montreal, Dept. of Biology Tel (514) 482-0320 Ext 445
Beckman, C. Ph.D.,Assistant Professor Behavior
Ottawa, Ont. K1S 5B6: Carleton Univ., Dept. of Biology Tel Office (613)231-4451;
Lab (613)231-3683
Carmody, G.R. Ph.D.,Assistant Professor Population genetics
Speers, L. B.Sc.,Stockkeeper, Research Technician

Regina, Saskatchewan S4S 0A2: Univ. of Regina, Dept. of Biology Tel (306) 584-4478
Chapco, W. Associate Professor Population genetics
St. Catherines, Ont. L2S 3A1: Brock Univ., Dept. of Biological Sciences Tel (416) 684-7201
Tracey, M.L. Assistant Professor Population genetics and recombination
St. John's, Newfoundland A1C 6C8: Genetic Consulting Associates, Ltd., Harvey Road Post
Office, P.O. Box 4546 Tel (709) 726-2409
Ilannak, G. B.Sc.,Curator
Nuviivak, P. M.A., Research Assistant
Oster, I.I. Ph.D., Director Genetic schemes for mutational and developmental analyses
Vancouver, B.C.: Univ. of British Columbia, Dept. of Zoology (Z) and Biochemistry (B)
Tel (604) (Office) 228-3381, (Lab) 228-3382, $-4276 *,-2792^{*}$
Cross, D. Ph.D.,SRC,Postdoctoral Fellow (Z) Cell culture
Holm, D. Ph.D.,Associate Professor (Z)*
Homyk, T. Ph.D., Postdoctoral Fellow (Z) Behavior
Koo, D. M.Sc.,Curator of Stocks (Z)
Shellenberger, D. Ph.D., Postdoctoral Fellow (Z) Development
Suzuki, D. Ph.D.,Professor (Z)
Tener, G. Ph.D., Professor (B) $\div \div$
CHILE
Santiago: Universidad de Chile, Sede Norte, Departamento de Biología Celular y Genética,
Avda. Alberto Zañartu 1042 - Casilla 6556 (Correo 4)
Brncic, D. Professor Evolutionary genetics, cytogenetics
Budnik, M. Associate Professor Evolutionary and ecological genetics
Fenner, H. Curator of Stocks
Frías, D. Instructor Cytogenetics
Godoy, R. Instructor Behavior
Iturra, P. Instructor Behavior
Navarro, J. Instructor Cytogenetics
Zárate, E. Curator of Stocks
Valdivia: Universidad Austral de Chile, Institute of Ecology and Evolution, P.0. Box 57-D Del Solar, E. Head of Institute Ecological - Genetics and behavior
Sepulveda, J. Curator of Stocks
Ruíz, G. Instructor Ecological - genetics
Kohler, N. Instructor Behavior - genetics
Winkler, F. Graduate Student Ecological - genetics
COLOMIBIA
Bogotá, D.E.: Universidad de los Andes, Instituto de Genética
Castro, L.E. M.Sc., Instructor Population genetics
Garcia, F.A. B.Sc.,Technician - Curator
Granobles, L.A. M.Sc.,Assistant Professor Population genetics
Hoenigsberg, H.F. Ph.D., Professor Population genetics
Torres, M.E. Technician, Curator
Krakauer, E. M.Sc.,Research Assistant Population genetics

CZECHOSLOVAKIA

Brno: J.E. Purkyne Univ., Faculty of Science, Dept. of Genetics, Kotlárská 2 Tel 511 12/34 Benedík, J.K. Dr. Population genetics Cetl, I. Dr.,Associate Professor,Head of Department General genetics Suchopová, N. Curator
Prague: Czechoslovak Academy of Sciences, Institute of Experimental Botany, Department of Botany, Department of Genetics, Flemingovo námestí2 Ondréj, M. Research Worker

DENMARK
8000 Aarhus: University of AArhus, Department of Genetics Tel 06127642 Ext 262
Frydenberg, 0. Professor Population genetics
DK-1353 Copenhagen: Univ. of Copenhagen, Inst. of Genetics, 2A Oster Farimagsgade
Tel (01) 148671
Bahn, E. Ph.D. Nutritional requirements
Mortensen, M. Curator of Stocks

Sick, K. Ph.D. Complementation
Strpman, P. Ph.D. Phenocopies
EGYPT
Alexandria: Alexandria University, Faculty of Agriculture, Department of Genetics
Abou-Youssef, A.M. Ph.D.,Lecturer Population genetics
Dawood, M.M. Ph.D.,Professor Competition
Mourad, A.M. Ph.D.,Assistant Professor Population and ecological genetics
Tantawy, A.O. Ph.D.,D.Sc., Professor Population and ecological genetics
Assuit: University of Assuit, Department of Genetics Tel 3000
Abdalla, M.H. Dipl.Agric.,Stockkeeper
Khishin, A.F. Ph.D.,Professor Radiation and chemical mutagenesis
Younis, S.A. Ph.D.,Associate Professor Population studies
FINLAND
SF 00100 Helsinki 10: Univ. of Helsinki, Dept. of Genetics, P. Rautatiekatu 13 Tel (90) 40271
Hackman, W. Ph.D., Research Associate Systematics
Lokki, J. Ph.D.,Research Associate Population genetics
Lokki, M.-L. M.Sc., Research Associate Population genetics
Muona, 0. M.Sc.,Research Associate Population genetics
Saura, A. M.Sc.,Research Associate Salivary chromosomes
Saura, A. Ph.D.,Assistant Teacher Enzyme polymorphism
Sorsa, M. Ph.D.,Senior Lecturer Salivary chromosomes
Sorsa, V. Ph.D.,Research Associate Salivary chromosomes
Suomalainen, E. Ph.D., Professor Head of Department
Tigerstedt, P. Ph.D.,Professor Evolution
Tiivola, A. Curator of Stocks
Vepsäläinen, K. Ph.D.,Assístant Teacher Ecological genetics
SF 90100 Oulu 10: University of Oulu, Dept. of Genetics Tel (981) 345411
Keränen, L. M.Sc.,Stockkeeper
Lakovaara, S. Ph.D.,Professor Enzyme polymorphism, evolution
Lankinen, P. M.Sc. Enzyme polymorphism, circadian rhythms
Lumme, J. Phil.lic. Photoperiodism, phenology, circadian rhythms
SF 20500 Turku 50: Univ. of Turku, Institute of Biology, Dept. of Genetics Tel (921) 335599
Hannah-Alava, A. Ph.D.,Research Associate
Nokkala, S. M.Sc.,Research Associate
Oksala, T.A. Ph.D., Professor Emeritus
Portin, P. Ph.D.,Assistant Teacher
Puro, J. Ph.D.,Associate Professor
Savontaus, M.-L. Ph.lic.,Assistant Teacher Curator of Stocks
Viinikka, Y. Ph.lic.,Assistant Teacher Salivary chromosomes
FRANCE
Aubière 63170: Université Clermont-Ferrand II, Lab. de Génétique, B.P. 45 Tel (73)92 2226
Fleuriet, A. Maître Assistant Polymorphism in natural populations
Bregliano, J.C. Maître de Conférences
Bucheton, A. Attaché de Recherches
Lavige, J.M. Assistant
Hybrid dysgenesis in
Pelisson, A. Assistant
Drosophila melanogaster
Picard, G. Chargé de Recherches
(I - R system)
Gif-sur-Yvette 91190: Laboratoire de Biologie et Génétique Evolutives du Centre National
de la Recherche Scientifique Tel 907-78-28
Carton, Y. Ph.D. Maître de Recherches Interactions Drosophila - hymenopterous parasites
Chassagnard, M.T. Curator of Stocks
David, J. Professor, Head of Dept. Genetic polymorphism and geographic variation
Frey, F. Curator of Parasite Stocks
LaChaise, D. Ph.D. Attaché de Recherches Adaptative strategies and coevolution
in afrotropical Drosophilids
L'Helias, C. Ph.P., Maître de Recherches Cytoplasmic DNA studies in Drosophila
lethal, mutagenic action of pteridines
LeMeunier, F. Ph.D.,Maître Assistant Chromosomes of African Drosophilidae
Louis, M. Curator of Stocks

Louis, J. Ph.D., Chargé de Recherches Ecology and natural populations
Rouault, J. D.spec. Influence of hymenopterous parasites in the competition melanogaster - simulans
Tsacas, L. Ph.D.,Maỉtre de Recherches Systematics of Drosophilidae Gif sur Yvette: Laboratoire de Génétique des Virus du Centre National de la Recherche Scientifique Tel 907-78-28

Brun, G. Professor,Head of Department The Piry virus genetics, in D. melanogaster
Bernard, J. MaîtreAssistant Drosophila X virsu: virion associated RNA polymerase
Bras, F. Maître-Assistant Sindbis virus multiplication in different strains of D. melanogaster
Contamine, D. Attaché de recherche Genetics of Drosophila Sigma virus
Coulon, P. Student Genetics of Drosophila Sigma virus
deNeubourg, A. Assistant Study of non permissive alleles of ref genes in D. m.
deZelee, S. Chargée de recherche VSV multiplication and its control in Drōsophila cell cultures
Gay, P. Chargé de recherche Study of ref genes in D. melanogaster
Laurent, J. Assistant G protein modification during adaptation of VSV to Drosophila
Ohanessian, A. Maître de recherche In vitro D. cell cultures, study of carrier state establed in D. cell lines by VSV
Richard-Molard, Ch. Assistant Biochemistry of Sigma virus
Teninges, D. Chargée de recherche Molecular biology of Sigma virus, viral RNA metabolism
Wyers, F. Chargé de Recherche VSV multiplication and its control in Drosophila
cell cultures
Lyon: Université Claude Bernard, Biologie Gén. et Appl., 43, Boulevard du 11 Novembre 1918
Biemont, C. Attaché C.N.R.S. Inbreeding in Drosophila
Calvez, C. Assistant Drosophila oogenesis
deBouzie, D. Assistant Genetics of population
Fourche, J. Maître de Conférences Respiratory metabolism in Drosophila
Guillet, C. Assistant Energetic metabolism in Drosophila
LeGay, J.-M. Professor Morphogenesis and biometry of insects eggs
Marseille: Centre de Biologie Moléculaire, GLM 31, Chemin Joseph Aiguier 13274
Jarry, B.R. Attaché de Recherches
Jordan, B.R. Chargé de Recherches
Rosset, R. Professor Biochemistry of Drosophila and of Drosophila cell lines
34060 Montpellier: Ecole Pratique des Hautes Etudes, Section Génétique, place Eugene-
Bataillon Tel (67) 639144 poste 742 , or 631136
Pasteur, G. D.Sc., Directeur Zaprionus ecological genetics and cytotaxonomy
Stordeur, E.de D.Spéc.,Stagiaire Zaprionus enzyme polymorphism
34060 Montpellier: Université des Sciences et Techniques, Laboratoire de Génétique du CEREM Tel (67) 639144 poste 628

Pasteur, N. Ph.D.,D.Sc., Chargé de Recherche Enzyme polymorphism
Paris: Université Paris 7, Laboratoire de Génétique des Populations, 12 rue Cuvier Tel 336.25.25 Poste 36.59

Anxolabéhere, D. Maître-Assistant Larval selection, frequency dependency
Girard, P. Assistant Enzymatic polymorphism in natural populations
Goux, J.M. Professor Demographical genetics, penetrance
Nauaud, D. Stockkeeper
Palabost, L. Assistant Larval competition and enzymatic polymorphism
Periquet, G. Maître-Assistant Expressivity, penetrance and natural polymorphism
Petit, C. Professor Sexual selection frequency dependency
30380 St. Christol-les-Alès, Gard: Station de recherches cytopathologiques Tel (66)52 2017
Plus, N. Maître de recherches Endemic virus of Drosophila populations and cell lines
Louis, C. Chargé de recherches Multiplication of invertebrate intracellular Procaryotes injected into D. melanogaster
Villeubanne 69621:- Université Claude Bernard, Laboratoire d'Entomologie expérimentale et de Génétique, 43 Boulevard du 11 Novembre 1918

Allemand, R. Attaché de Recherche, CNRS Oviposition and circadian rhythms, light effects
Bouletreau, M. Maître-Assistant Parasitic wasps of Drosophila
Bouletreau-Merle, J. Chargée de Recherche, CNRS Female reproduction
Cohet, Y. Attaché de Recherche, CNRS Temperature effects
David, J. Professor Ecological and population genetics
Van Herrewege, J. Maître-Assistant Adult nutrition

```
GERMANY, WEST
    D-1000 Berlin 33(Dahlem): Inst. für Genetik der Freien Univ. Berlín, Arnimalle 5/7
    Tel 030/838 3640
        Köhler, W. Dr.Assistant Professor Behavioural and population genetics
        Nöthel, H. Dr.Professor Mutagenesis and population genetics
        Rogge, A. (Miss) Curator of Stocks
    D-463 Bochum: Ruhr-Universität, Inst. für Genetik, MA 5, Postfach 102148 Tel (0234)700 3839
            Charton-Strunk, U. Intrachr. effects 7003008
            Hägele, K. Dr. Replication 7003845
            Is raelewski, N. Dr. Radiation genetics, chromosome structure 7003843
            Kalisch, W.-E. Dr. Replication, recombination 7003008
            Plehn, Chr. Technician, Curator of Stocks 7003008
            Willkomm, P. Recombination 7003008
    D-4000 Düsseldorf: Institut für Genetik der Universität, Universitätsstrasse 1,
    Tel(0211)311-2276/2279
            Bauer, G. Technician , Curator of Stocks 311-2406
            Bünemann, H. Dr.Assistant \(Y\) chromosome of D. hydei, molecular genetics 311-3421
            Glätzer, K.H. Dr.Assistant \(Y\) chromosome of D. hydei, electron microscopy,
                microspreading 311-2296
            Hess, 0. Dr.Professor Y chromosome of D. hydei, cytogenetics 311-2276
            Kunz, W. Dr.Assoc.Professor rDNA of D. hydei 311-2333
            Liebrich, W. Dr.Assistant \(Y\) chromosome of D. hydei, organ and cell culture 311-3422
            Schwochau, M. Dr.Assoc.Professor Y chromsome of D. hydei, molecular genetics 311-2358
            Schäfer, U. Dr.Assistant \(Y\) chromosome of \(D\). hydei Organ and Cell culture 311-4541
            Tischendorf, G. Dr.Assistant Y chromosome of D. hydei Y-specific proteins, immunological
                methods 311-3423
    6900 Heidelberg: European Molecular Biology Laboratory, P.0. Box 102209
            Nüsslein-Volhard, C. Ph.D. Developmental genetics
            Schneider, A. Stockkeeper
            Wieschaus, E. Ph.D. Developmental genetics
    78 Freiburg I Br.: Biologisches Institute I (Zoologie) der Universität, Schänzlestr. 9
            Gateff, E. Dr.
            Sander, K. Dr.
    355 Marburg: Zoologisches Institute der Universität, Ketzerbach 63 Tel (06421) 693405
            Hubert, U. Curator of Stocks
            Koch, P. Ovogenesis and development of insects
    8000 München 2: Zoologisches Institute der Universität, Luisenstrasse 14 Tel (089) 5902359
            Becker, G.L. Ph.D. Lethals
            Becker, H.J. Professor Mitotic recombination, neurological genetics
            Biederich, U. Curator of Stocks
            Gerrescheim, F. Genetics of chemotaxis
            Haendle, J. Dr. Mitotic recombination
            Hammerschmidt, H. Curator of Stocks
            Korge, G. Dr. Salivary gland function
            Kress, H. Dr. Puff induction
            Mertens-Huber, M. Nuclear transplantation
            Mönks, G. Mitotic recombination
            v. Schilcher, F. Ph.D. Genetics of mating behavior
    4400 Münster: Institute für Stralenbiologie der Universität, Hittorfstr. 17 Tel (0251) 835301
            Traut, \(H\). Professor Radiation genetics and chemical mutagenesis
    4400 Münster: Zoologisches Institute der Universität, Badestr. 9, Tel (0251) 833847
            Janning, W. Dr. Developmental genetics
            Münster, R. Curator of stocks
    66 Saarbrücken: Universität des Saarlandes, Institut für Genetik
            Kroeger, H. Dr.Professor Gene activation in giant chromosomes, pattern formation
            Leibenguth, F. Dr.Professor
    D-74 Tübingen: Institute für Biologie II, Lehrstuhl für Populationsgenetik, Auf der
    Morgenstelle 28 Tel (07071) 292611
            Aldinger-v. Kleist, R. Behavioral genetics
            Pfriem, P. Dr. Population and radiation genetics
            Pinsker, W. Dr. Population and behavioural genetics
            Sperlich, D. Dr.Professor,Head of Department Population genetics
            Stögerer, K. Stockkeeper
```

D-74 Tübingen: Max-Planck-Inst. für Biologie Abt. Beermann, Spemannstr. 34 Tel(07071)601201
Beermann, W. Dr.Professor Chromosome structure and function
Meyer, G.F. Dr.Professor Electron microscopy of spermiogenesis and ribosomal cistrons
Stein, H. Dr. Transcription, isolation of DNS-dependent RNA polymerases of D. hydei
D-74 Tübingen: Max-Planck-Institute für Biologische Kybernetik Tel (07122) 26014
Götz, K.G. Ph.D. Visual perception
Hengstenberg, R. Ph.D. Electrophysiology of the visual system
Hutch, A.C. Curator of Stocks Locomotion
8700 Würzburg: Institut f. Genetik u. Mikrobiologie der Universität, Röntgenring 11
Heisenberg, M. Dr.Professor
GREAT BRITAIN
Aberdeen, Scotland: University of Aberdeen, Department of Genetics, 2 Tillydrone Avenue
Fox, D.P. Dr. Cytogenetics: heterochromatin in insects
Maher, E.P. Dr. Biochemical genetics: properties of DNA
Robertson, F.W. Professor Population and biochemical genetics
Rutherford, P. Stockkeeper
Smith, B.R. Dr. Recombination in Neurospora
Watson, W.A.F. Dr. Recombination and repair
Birmingham B15 2TT: The University, Dept. of Genetics Tel 472-1301 Ext 2031
Barnes, B.W. Ph.D., Lecturer Genetical architecture and natural selection in Drosophila
Birley, A.J. M.Sc., Ph.D., Research Fellow Population genetics of D. melanogaster
Caligari, P.D.S. Ph.D., Research Fellow Population genetics of Drōsophila
Caten, C.E. Ph.D.,Senior Lecturer Genetic systems of fungi
Croft, J.H. Ph.D.,Lecturer Genetic systems of fungi
Gale, J.S. Ph.D., Lecturer Biometrical genetics of Papaver
Jinks, J.L. Ph.D.,D.Sc.,F.I.Biol.,F.R.S., Professor Systems of variation of fungi, extra chromosomal inheritance, biometrical genetics
Jones, G.H. Ph.D.,Lecturer Genotypic control of chromosomal behaviour
Kearsey, M.J. Ph.D., Senior Lecturer Genetic architecture in Drosophila and natural selection
Lawrence, M.J. Ph.D.,Senior Lecturer Experimental studies with higher plants
Mather, Sir Kenneth Professor,C.B.E.,D.Sc.,F.R.S.,Honorary Professor and Senior Fellow Population genetics of Drosophila
Smith, D.A. Ph.D.,Senior Lecturer Methionine synthesis in Salmonella typhimurium
Sroczynski, A. Technician,Stockkeeper
Wallace, H. D.Phil.,D.Sc.,Lecturer Cytogenetics
Brighton BN1 9QG: University of Sussex, School of Biological Sciences Tel 0273-66755 Ext 466
Atherton, J. Stockkeeper
Charlesworth, B. Ph.D. Population genetics
Charlesworth, D. Ph.D. Population genetics
Collett, J.I. Ph.D. Biochemical genetics, peptidases
Ingham, P. B.A. Homoeotics and determination
Sang, J.H. Professor Tissue and cell culture, biochemical genetics
Whittle, J.R.S. Ph.D. Homoeotics, disc growth and genetic mosaics
Young, J.P.W. Ph.D. Population genetics
Cambridge CB4 1XH: University of Cambridge, Downing Street Tel (0223) 69551
Angel, P, Stockkeeper
Ashburner, M. Reader
Bodmer, M. Graduate Student
Chia, B. Postdoc
Detwiler, C. Postdoctoral Fellow
Dover, G. University Lecturer
Emeny, J. Postdoc
Gubb, D. Research Assistant
Harrington, G. Assistant
Karp, R. Postdoctoral Fellow
Lathe, R. Postdoc
Lewis, M. Research Assistant
Spencer, J. Research Assistant
Spoerel, N. Postdoc
Thoday, J.M. Professor
Tsubota, S. Postdoctoral Fellow
Walker, V. Postdoctoral Fellow

Chalfont St. Giles, Bucks, England: Chester Beatty Research Institute, Institute of Cancer Research, Pollards Wood Research Station, Department of Genetics Tel Little Chalfont 2530

Fahmy, M.J. D.Sc. Mutagenesis
Fahmy, O.G. D.Sc. Cytogenetics
Colchester C04 3SQ: University of Essex, Department of Biology
Bownes, M. Ph.D., Lecturer Determination \& devel. genetics, analysis of yolk proteins
Hames, B.D. Ph.D., Lecturer Analysis of yolk proteins
Roberts, S. Stockkeeper
Edingurgh EH9 3JN: Univ. of Edinburgh, Inst. of Animal Genetics, West Mains Rd.
Tel 031-667-1081
Auerbach, C. D.Sc.,F.R.S., Professor Mutagenesis
Bishop, J.D. Ph.D., Reader Cloning of DNA corresponding to larval messenger RNA
Robertson, A. D.Sc.,F.R.S., Professor Quantitative and population genetics
Robertson, E. Research Assistant Embryology
Shukla, P.T. Ph.D. Radiation and chemical mutagenesis
Lancaster, England: University of Lancaster, Department of Biological Sciences
Paxman, G.J. Ph.D.,Senior Lecturer Biometrical and population genetics
Leeds, England: University of Leeds, Department of Pure and Applied Zoology
Atkinson, W. B.Sc. Population biology of domestic species, r and kelection
Shorrocks, B. Ph.D. Population biology of European species, particularly the fungal
breeding species, competition studies
Leicester LE1 7RH: University of Leicester, Department of Genetics Tel 0533-50000
Semeonoff, R. Ph.D.,Lecturer Population genetics
Liverpool, L69 3BX; University of Liverpool, Department of Genetics Tel. 951-709-6022
Ext. 3110.
Bishop, J.A. Dr.
London W.C.1: Birkbeck College of University of London, Department of Zoology, Malet Street
Tel 01-580 6622 Ext 432
Johnson, K. Stockkeeper
Lamb, M.J. Ph.D., Lecturer Mutagenesis, aging
London, E.C.l: Medical College of St. Bartholomew's Hospital, University of London
Charterhouse Square Tel 01-253 0661 Ext 103
Hollingsworth, M.J. Ph.D. Aging, somatic effects of radiations
London NW1 2HE: University College London, Department of Animal Genetics, Wolfson House
4 Stephenson Way Tel 01-387 7050 Ext 730
Grünberg, H. D.Sc.,F.R.S., Professor
Hunt, D.M. Ph.D. Developmental genetics
London, NW7 IAD: Mill Hill Laboratories, Burtonhole Lane, Tel. 01-959-3236
Burke, J.F., Ph.D. Postdoctural Fellow Molecular Genetics
Ish-Horowicz, D.
Pinchin, S.M., B.Sc. Research Officer Molecular Genetics.
Newcastle upon Tyne NE1 7RU: Univ. of Newcastle upon Tyne, Dept, of Genetics
Tel(0632)28511 Ext 3737
Beck, M.A. Stockkeeper
Hughes, M.A. Dr. Cyanogenesis
Shelton, M. B.Sc. Developmental genetics
Milton Keynes MK7 6AA: The Open University, Walton Hall, Department of Biology
Ransom, R.J. Developmental genetics of the compound eye of Drosophila melanogaster
Ho, Mae-Wan Evoluionary and population studies of Drosophila spp
Tucker, C. Technician,Stockkeeper
Norwich, England: John Innes Institute, Colney Lane Tel 52571
Harrison, B.J.
Carpenter, R.
Oxford 0X1 3QU: University of Oxford, Dept. of Biochemistry, Genetics Laboratory Roberts, D.B. Ph.D.,University Lecturer Developmental genetics
St. Andrews, KY16 9TS, Fife, Scotland: Univ. of St. Andrews, Dept. of Zoology, Bute Bldg.
Lloyd, L. Stockkeeper
Milner, M.J. Ph.D.,Lecturer Tissue culture of imaginal discs
Tucker, J.B. Ph.D.,Reader Imaginal disc ultrastructure
Sheffield S10 2TN: Univ. of Sheffield, Behaviour Genetics Grp., Depts. of Genetics and
Psychology Tel 78555
Burnet, B. Ph.D.,Reader Behaviour genetics

Connolly, K. Ph.D.,Professor Behaviour genetics and evolution
Eastwood, W.L. B.Ed., Research Associate Genetic analysis of courtship behaviour and auditory stimuli
Relton, J. Curator of Stocks Larval behaviour
Rick, J.T. Ph.D.,Lecturer Behaviour genetics, psychoparmacology
Sheffield S10 2TN: University of Sheffield, Department of Genetics Tel 78555
Hartmann-Goldstein, I.J. Ph.D., Lecturer Cytology, heterochromatin
Wargent, J. Ph.D., Research Associate Salivary gland chromosomes, heterochromatin
Swansea, Wales: University College of Swansea, Department of Genetics
Beardmore, J.A. Ph.D.,Professor Stabilising selection, parental age effects
Skibinski, D.O.F. Ph.D.,Lecturer Selection
Warren, M.E. Stockkeeper
York Y01 5DD: University of York, Department of Biology, Heslington Tel 090459681
Hannah, S.M. B.Sc.,Graduate Student Developmental/biochemical genetics
Sparrow, J.C. Ph.D., Lecturer Developmental/biochemical genetics
GREECE
Athens: Agricultural College of Athens, Department of Genetics, Votanicos Tel 3460680
Krimbas, C.B. Professor, Head of Dept. Inversion and protein polymorphism of D. subobscura
Loukas, M. Lecturer Inversion and enzyme polymorphism of \underline{D}. subobscura
Sourdis, J. Ecological and populational mathematical models
Tsakas, S. Ph.D. Enzyme polymorphism of D. subobscura
Vergini, Y. Ph.D. Enzyme polymorphism of ${ }^{-}$. subobscura
Patras: University of Patras, Department of Genetics Tel 429-721, 429-853
Alahiotis, S. Dr.,Research Assistant Population and ecological genetics
Christopoulou, A. Stockkeeper
Dimopoulos, N. Research Assistant Population genetics
Michalopoulou, E. Stockkeeper
Pelecanos, M. Professor Mutagenesis, population genetics
Yannopoulos, G. Dr., Chief Research Assistant Population and biochemical genetics
Zacharopoulou, A. Research Assistant Population genetics and cytogenetics
Thessaloniki: University of Thessaloniki, Laboratory of General Biology Tel 23922448
Kastritsis, C.D. Dr., Chairman Developmental and cell biology, evolution
Pentzos-Daponte, A. D.Sc. Population genetics of \underline{D}. subobscura
Thomopoulos, G. D.Sc. Developmental and cell biology
Triantaphyllidis, C.D. D.Sc. Isoenzymes in natural populations of Drosophila and mouse, nucleic acid hybridization in situ

HUNGARY
1088 Budapest: Eötvös Lóránd University, Department of Genetics, Muzeum krt 4/a Tel 141-020
Parádi, E. Dr. Developmental genetics, chemical mutagenesis
Varga, J. Stockkeeper
INDIA
Ahmedabad 380 009: Gujarat University, Univ. School of Sciences, Dept. of Zoology Tel 42362 Lakhotia, S. Ph.D., Lecturer Polytene chromosomes, heterochromatin, mitotic chromosome banding
Roy, S. M.Sc., Graduate Student Replication ín polytene chromosomes
Amritsar 143005: Guru Nanck Dev University, Department of Biology
Parkash, R. Ph.D., Lecturer Isozyme polymorphism in Drosophila
Bhagalpur-7, Bihar: Bhagalpur University, Dept. of Zoology, Drosophila Laboratory Tel 1054
Jah, A.P. Ph.D.,Head of Laboratory
Rahman, S.M.Z. Ph.D.,Senior Research Scholar
Calcutta 19: University of Calcutta, Department of Zoology, Cytogenetics Laboratory
35, Ballygunge Circular Road Tel 47-3681
Acharya, P.M. J.R.F. DNA biosynthesis and salivaries
Bhatia, N. J.R.F. Mutagenesis
Chatterjee, C. J.R.F. Control of replication and transcription
Chatterjee, R.M. S.R.F. Dosage compensation and regulation
Chatterjee, S.M. Dr.,Res.Ass. Salivaries, DNA biosynthesis
Das, P. J.R.F. Genetic fine structure
Day, A. J.R.F. Glue protein

Duttagupta, A.K. Dr.,Reader Genetic fine structure, DNA biosynthesis
Ghosh, M. S.R.F. Nucleor-chromatin organisation
Ghosh, R. Do Replication cytology
Ghosh, S. J.R.F. Cell physiology and dosage compensation
Maitra, S.N. J.R.F. fluorescence banding, replicative cytology
Majumdar, D. S.R.F. Control of replication, organ culture
Mandal, S.K. Dr.,Teacher Fellow Mutagenesis
Mukherjee, A.S. Dr.,Professor Salivaries, dosage compensation, DNA biosyntehsis, mutagenesis
Pal, T.K. Do DNA biosynthesis
Prasad, J. J.R.F. Dosage compensation
Chandigarh, Union Territory: Panjab University, Department of Zoology
Sharma, G.P. Ph.D.(Pb.),Ph.D. (Edin.) Professor,Head Cytology, cytogenetics, genetics
Singh, A. Ph.D.,Lecturer Cytology, cytogenetics and taxonomy
Hyderabad 7, A.P.: Osmania University, Department of Genetics
Reddi, 0.S. Professor
Sanjeeva Rao, M. Dr., Reader
Izatnagar, U.P.: Indian Veterinary Research Institute, Division of Animal Genetics
Bhat, P.M. Dr.,Head of Division Population genetics
Sidhu, M.S. Dr.,Professor Genetics of gametes, quantitative inheritance
Kalyani, West Bengal: University of Kalyani, Department of Zoology Tel 220 Ext 2
Manna, G.K. Ph.D., Professor, Head
Ludhiana, Punjab: Punjab Agricultural University, Department of Genetics
Gill, K.S. Ph.D.,Professor Developmental genetics, systematics
Miglani, G.S. M.S.,Research Assistant Mutagenesis
Mysore 570006: Univ. Mysore, Dept. Postgrad. Studies \& Research in Zoology, Manasa Gangotri
Gayathri, M.V. M.Sc., Research Fellow Chemical mutagenesis
Hegde, S.M. M.Sc., Senior Research Fellow Cytotaxonomy, behavioural and biochemical genetics
Krishnamurthy, N.B. M.Sc.,Ph.D(Texas), Professor Cytotaxonomy, population genetics, biochemical, behavioural and developmental genetics, chemical mutagenesis
Nagaraj, H.J. M.Sc.,Research Fellow Cytotaxonomy and population genetics
Prakash, H.S. M.Sc., Research Fellow Cytotaxonomy, biochemical, population and developmental genetics
Rajasekarastty, M.R. M.Sc.,A.M.,Ph.D(USA),F.A.Sc.,F.N.A.,Professor,Head of Department Drosophila, mouse and human genetics
Ramesh, S.R. M.Sc., Research Fellow Cytogenetics and biochemical genetics
Ranganath, H.A. M.Sc.,Ph.D., Lecturer Population genetics, cytogenetics, biochemical genetics and developmental genetics
Siddaveere Gowda, L. M.Sc.,Lecturer Population and biochemical genetics
Sreerama Reddy, G. M.Sc., Ph.D., Lecturer Cytotaxonomy, biochemical, population and developmental genetics
Vasudev, V. M.Sc., Research Fellow Chemical mutagenesis
Vijayan, V.A. M.Sc., Research Fellow Chemical mutagenesis
New Delhi: Indian Agricultural Research Institue, Division of Genetics
Chopra, V.L. Professor
Jain, J.K. Head of Division
Sharma, R.P. Assistant Geneticist
Poona 411 004: Maharashtra Assn. for the Cultivation of Science, Zoology Dept. Tel 56357
Godbole, N.N. M.Sc. Taxonomy and genetics
Vaidya, V.G. M.Sc.,Ph.D. Taxonomy and genetics
Varanasi-221005: Banaras Hindu Univ., Dept. of Zoology, Drosophila Genetics Laboratory
Dwivedi, Y.N. M.Sc.,Research Fellow Ecology and cytogenetics
Gupta, J.P. Ph.D., Lecturer Systematics, ecology and evolutionary genetics
Sarkar, D.N. B.Sc., Curator of Stocks
Singh, B.K. Ph.D.,Post-doctoral Fellow Systematics and cytogenetics
Varanasi 221005: Banaras Hindu Univ., Dept. of Zoology, Cytogenetics Laboratory
Lakhotia, S.C. Ph.D.,Reader Polytene and mitotic chromosome organization
Mishra, A. M.Sc., Research Scholar X-chromoxome activity
Mukherjee, T. M.Sc., Research Scholar Induced puffing
Roy, J.K. M.Sc.,Research Scholar Mitotic chromosome organization
Roy, S. M.Sc., Research Scholar Replication in polytene nuclei
Sinha, P. M.Sc.,Research Scholar X-chromosome activity

```
ISRAEL
    Haifa: Univeristy of Haif, Department of Biology, Mount Carmel Tel 254411
        Baran, A. Ph.D.,Research Assistant Biochemical genetics
        Malogolowkin-Cohen, Ch. Ph.D.,Professor Genetics, population genetics
    Jerusalem: The Hebrew University, Department of Genetics Tel 02-35291
        Baker, S. Research Technician
        Fal, R. Ph.D.,Professor
        Rahat, A. M.Sc.,Stock Curator
ITALY
    Bari: Istituto di Genetica Universitádi Bari, Via Amendola 165/5
        Morea, M. CNR Fellow
        Ritossa, F. Professor
        Scalenghe, F. CNR Fellow
    20133 Milan: University of Milan, Institute of Genetics, via Celoria, 10 Tel 230.823
        Faccio Dolfini, S. Dr.Sc.,Assistant Cultivation in vitro of Drosophila cells
        Halfer, C. Dr.Sc.,Assistant Cultivation in vitro of Drosophila cells
        Halfer Mosna, G. Dr.Sc.,Technical Assistant Cultivation in vitro of cells
        Privitera, E. Dr.Sc.,Research Assistant Cultivation in vitro of cells
        Razzini Bonifazio, A. Technican,Curator of Stocks
    Naples: Univ. Istituto di Biologia gen. e Genetica ed Ist. di Zoologia, via Mexxocannone 8
        Carfagna, M. Professor Population genetics
        Megna, F. Curator of Stocks
        Parisi, G. Professor Biochemical genetics
    35100 Padova: Universitá di Padova, Istituto di Biologia Animale, Sezione di Genetica,
    via Loredan 10 Tel 662900, 662851
        Alfini, A. Technician,Curator of Stocks
        Battaglia, B. Ph.D.,Professor of Genetics Population genetics
        Costa, R. B.Sc.,Research Assistant Allozymes
        Danieli, G.A. B.Sc.,Assistant Professor,Lecturer in Genetics Salivary glands, allozymes
        Rodinõ, E. B.Sc.,Assistant Professor,Lecturer in Genetics Biochemical polymorphism
    00185 Rome: Istituto di Genetica, Facoltá di Scienze, Cittã Universitaria Tel 4956205
        De Marco, A. Research Associate Mutagenesis
        Gatti, M. Research Associate Mutagenesis
        Loverre, A. Research Associate Segregation distortion and biochemical genetics
        Micheli, A. Curator of Stocks,Assistant in Research
        Montalenti, G. Professor General genetics
        Olivieri, G. Professor Mutagenesis and gametic selection
        Trippa, G. Associate Professor Segregation distortion and biochemical genetics
JAPAN
    Asamizodai, Sagamihara City, Kanagawa Prefecture 228: Kitasato Univeristy, School of Liberal
    Arts, Biological Laboratory
        Matsuda, T. Instructor Biochemistry
        Takikawa, S. Instructor Biochemistry
        Tsusue, M. Dr.,Professor Biochemistry
    Chiba: National Inst. of Radiological Sciences, Division of Genetics Tel 0472-2111 Est 271
        Tobari, I. Dr.,Head of Laboratory Mutagenesis and population genetics in D. melanogaster
        Tsuji,H. Mr.,Research Member Mutagenesis and cytogenetics in D. melanogaster
    Fukuoka 812: Kyushu Univ., Fac. of Agriculture, Dept. of Biology Tel(092)64-1101 Ext4324-6
        Chikushi,H. Dr.,Professor Morphological and biochemical genetics
        Doira, H. Dr.,Associate Professor Gene analysis and biochemical genetics
        Fujii, H.M. Research Associate Biochemical genetics
        Hara, K. Curator of Stocks
        Sakaguchi, B. Dr.,Assoc. Professor Devel. and biochemical genetics, hereditary infections
    Hiroshima: Hiroshima University, Faculty of Science, Zoological Institute, Higashisendamachi
    1-1, Hiroshima City Tel (0822) 41-1221 Ext 428, 448
        Inagaki, E. Dr.,Research Assistant Mechanisms of mutation productions induced by
            radiations and chemicals
        Kobayashi, Y. Dr.,Lecturer Biochemical studies on bacterial sporulation
        Minamouri, S. Dr.,Assistant Professor Populational studies of an extrachromosomal element
    Kobe (Okamota) 658: Konan University, Dept. of Biology Tel (078) 431-4341 Ext 286
        Kaji, S. Dr.,Professor Developmental genetics
```

Michinomae, M. Dr.,Instructor Developmental genetics
Ushioda (Hirose), Y. Dr.,Instructor Developmental genetics
Kobe, Rokko-dai: Kobe University, Faculty of Science, Department of Biology, Rokko-dai, Nada-ku, Kobe-shi 657 Tel (078) 881-1212

Fujii, S. Dr.,Professor Emeritus Cytogenetics Ext 4459
Kawabe, M. Dr.,Associate Professor Developmental genetics Ext 4458
Oishi, K. Ph.D.,Associate Professor Developmental genetics Ext 4457
Matsue: Shimane University, Faculty of Science, Dept. of Biology Tel (0852) 21-7100 Ext 386
Wakaham, K.-I. D.Sc., Associate Professor Cytogenetics, evolution
Matusyama: Ehime University, Biological Institute Tel (0899) 41-7111 Ext 3870,3873
Hihara, F. Dr.,Associate Professor Evolutionary genetics
Ikeda, H. Dr.,Associate Professor Behaviour genetics
Misima, Shizuoka-ken 411: National Institute of Genetics, Departments of Morphological(M),
Physiological(P), Biochemical(B) genetics, and Genetic Stock Center(S) Tel (0559) 75-0771
Inoue, Y. Dr., Research Member Population genetics, salivary (S)
Kawanishi, M. Curator of Stocks, Research Assistant Taxonomy and ecology (P)
Kuroda, Y. Dr., Head of Department Developmental genetics, tissue culture (M)
Minato, K. MS,Research Member Developmental genetics, tissue culture (M)
Murakami, A. Dr.,Head of Laboratory Mutagenesis and gametogenesis (M)
Nawa, S. Dr., Head of Laboratory Transformation and DNA (B)
Oshima, C. Dr.,Head of Department Behavior genetics, biorhythm (P)
Takamura, T. MS,Graduate Student Behaviour genetics, oviposition (P)
Watanabe, T.K. Dr., Head of Laboratory Evolutionary biology, simulans (P)
Yamada, M.A. MS,Research Member DNA, SR and differentiation (B)
852 Nagasaki: Nagasaki Univ., Fac. of Liberal Arts, Inst. of Biology Tel(0968)47-1111 Ext556
Kayano, H. Dr.,Professor Cytogenetics and population genetics
852 Nagasaki: Nagasaki Univ., Sch. of Medicine, Dept. of Genetics Tel(0958)47-2111 Ext2385-2387
Ayaki, T. M.Sc., Research Assistant Radiation mutagenesis and population genetics
Kurokawa, Y. Technical Assistant
Matsumura, T. Research Assistant Cytogenetics
Mori, S. Technical Assistant Curator of Stocks
Shiomi, T. Dr.,Professor Radiation and chemical mutagenesis, physiological genetics, human genetics
Yoshikawa, I. Dr.,Assistant Professor Population and quantitative genetics
Nurumizu, Atsugi 243: North Shore College, Biological Laboratory Tel (0462) 24-3131
Ebitani, N. Dr., Associate Professor Population genetics Ext 222
Osaka 530: Osaka Univ., Faculty of Medicine, Dept. of Fundamental Radiology Tel(06)443-5531
Ichikawa-Ryo, M. Radiation genetics
Ikenaga, M. Ph.D. Radiation biochemistry
Ishii, Y. Ph.D. Radiation cytogenetics
Kato, T. Ph.D. Biochemical genetics
Kondo, S. D.Sc. Molecular radiation biology and molecular evolution
Nomura, T. Ph.D. Developmental genetics
Osaka, Nakanoshima 4-3-57, Kita-ku: Osaka University Medical School, Department of Genetics
Tel 443-5531 Ext 269-270
Fukunaga, A. M.Sc.,Graduate Student Developmental genetics
Hiroyoshi, T. Dr.,Instructor Musca genetics, population genetics
Inoue, H. M.Sc.,Graduate Student Chemical mutagenesis, developmental genetics
Kikkawa, H. Dr., Emeritus Professor Biochemical genetics, developmental genetics
Nakai, S. Dr.,Research Associate, Curator of Stocks Developmental genetics
Nishida, Y. Research Associate Developmental genetics
Sakoyama, Y. Research Associate Biochemical genetics, developmental genetics
Wada, R. Curator of Stocks
Sakado-Machi, Saitama-ken: Josai Dental Univ., Dept. of Biochemistry Tel (0492) 85-5511
Arai, Yayoi
Taketani, Terumi
Sakao, Saitama 350-02: Josai Dental Univ., Dept. of Biology Tel(0492)85-5511 Ext 215
Bando, K. Assistant Behavior genetics
Fukatami, A. Dr.,Assistant Professor Speciation
Mikasa, K. Assistant Behavior genetics
Narise, T. Dr., Professor Behavior genetics
Tsuno, K. Dr.,Lecturer Enzyme polymorphism

Sakado, Saitama 350-02: Josei Univ., Fac. of Science, Biological Laboratory Tel(0492)82-2233
Kosuda, K. Dr.,Associate Professor Population genetics
Narise, S. Dr., Professor Biochemical genetics of isozymes
Sasaki, M. Assistant Biochemical genetics of isozymes
Sakai 591: Univ. of Osaka Prefecture, Dept. of Life Sciences Tel(0772)52-1161 Ext 2732
Gamo, S. Dr.,Assistant Anesthetics resistance, biochemical genetics
Nakashima-Tanaka, E. Dr., Instructor Behavioral genetics, developmental genetics
Ogaki, M. Dr., Professor Anesthetics resistance, developmental genetics
Yamamoto, T. Postgraduate Student Mutagenesis, anesthetics resistance
Sakura-Mura, Ibarakí, 300-31: Univ. of Tsukuba, Inst. of Biol. Sciences Tel(0298)53-4691
Kurokawa, H. Dr., Professor Spermatogenesis, population genetics
Oguma, Y. Dr. Speciation, spermatogenesis
Okada, M. Ph.D.,Associate Professor Developmental biology, cytoplasmic factors
Sapporo: Hokkaido University, Faculty of Science, Zoological Institute Kimura, M.T. Instructor Evolutionary ecology
Momma, E. D.Sci., Professor Geographical distribution
Watabe, H. Graduate Student Evolution of domestic species
Sapporo: Sapporo University, Department of General Education Tel. 011-852-1181 Ext. 335
Takada, H. Dr., Professor Taxonomy, ecological genetics
Tokyo 113: University of Tokyo, Faculty of Science, Department of Physics, Drosophila
Genetics Laboratory Tel 03-812-2111 Ext 2797
Fujita, S.C. Research Associate Biochemical genetics
Hotta, Y. Asoociate Professor Behavior genetics
Tokyo 112: Ochanomizu University, Department of Biology, Genetics Laboratory Tel 03-943-3151
Niizeki, S. D.Sc., Professor Biochemical and developmental genetics
Chigusa, S.I. Ph.D.,Assoc. Prof. Population genetics (genetic load and polygenic systems)
Takanashi, E. M.S., Instructor Evolutionary genetics (speciation, coadaptation)
Tokyo 158: Tokyo Metropolitan Univ., Dept. of Biology Tel 03-717-0111 Ext 360, 371
Aotsuka, T. Dr., Instructor Population genetics, enzyme polymorphism
Fuyama, Y. Dr.,Instructor Behavioural genetics
Kaneko, A. Dr., Guest Investigator Taxonomy, ecology
Kitagawa, 0. Dr.,Associate Professor Population genetics, speciation
Moriwaki, D. Dr., Professor Emeritus Population genetics, male crossingover
Makamura, Y. Stockkeeper
Ohba, S. Dr.,Professor Population genetics, longevity and aging
Okada, T. Dr., Professor Emeritus Taxonomy
Tobari, Y.N. Dr., Instructor Population genetics, recombination
Tonomura, Y. Dr.,Guest Investigator Cytogenetics
Yamazaki, H.I. Dr.,Postdoctoral Fellow Biochemistry
KENYA
Nairobi: University of Nairobi, Botany Department, Genetics Unit Gopalan, H.N.B. Dr. Karanja, S.N.

KOREA
Kwangju, Chunnam: College of Liberal Arts and Sciences, Dept. of Biology Tel (2) 4261-7 Chun, S.B. Instructor Biochemical genetics Chung, C.U. Instructor Drosophila taxonomy Kim, K.W. Associate Professor Drosophila taxonomy, cytogenetics Park, M.S. Associate Professor Biochemícal genetics Wui, I.S. Associate Professor Cytogenetics
Seoul: Chung-ang University, College of Liberal Arts and Science, Department of Biology Choo, J.K. Dr.,Associate Professor Behavior genetics
Han, J.H. Research Assistant Curator of Stocks
Kim, B.Y. Research Assistant Behavior genetics
Lee, C.S. Instructor Population genetics
Lee, T.J. Dr., Professor Population genetics
Seoul: Ewha Womans University, College of Education, Dept. of Science Education,
Laboratory of Genetics Tel 33-0151 Ext 520
Chung, Y.J. Ph.D., Professor Population genetics
Chung, Y.R. Graduate Student Human genetics

Han, Y.S. Instructor MS Mutagenesis
Kang(Song), S.J. Assistant professor, Ph.D. Electrophoresis
Kim, H.S. Graduate Student Biochemical Genetics
Lee, M.S. Research Assistant Curator MS Population genetics
Yoon, Y.S. Graduate Student Biochemical genetics
Seoul: Seoul National University, Department of Zoology Tel 87-6180
Kang, Y.S. D.Sc.,Professor Cytogenetics
Lee, C.C. D.Sc.,Assistant Professor Genetics
Namkoong, Y. Research Assistant Genetics
Seoul 120: Yonsei Univ., College of Science, Dept. of Biology Tel 35-5071 Ext 430
Choi, Y. Ph.D.,Assistant Professor Population genetics
Kim, S.H. Research Assistant
Sungdong-ku, Seoul 133: Hanyang Univ., School of Medicine, Dept. of Genetics Tel 254-8131
Cha, M.S. Laboratory Helper
Oh, S.K. B.Sc.,Research Assistant
Paik, Y.K. Ph.D., Professor, Head of Department Population genetics and human genetics
Woo, I.H. M.D., Graduate Student Human genetics
Yang, C.Y. M.D.,Graduate Student Human genetics
Malaysia, West: Universiti Kebangsaan Malaysia, Unit Genetik, Jalan Pantai Baru, Kuala Lumpur 22-12.

Clyde, M.M., Dr.
MEXICO
Chapingo: Excuela Nacional de Agricultura, Colegio de Postgraduados, Rama de Genetica
Salceda, S. V.M.,Dr.Sc. Population genetics
Mexico City: National Institute of Nuclear Energy, Department of Genetics and Radiobiology, Insurgentes Sur $\$ 1079$ Mexico 18, D.F.

DeGaray, A.L. Professor, Head of Department of Human Cytogenetics Radiobiology and human population genetics
Félix, R. Dr. Radiobiology and genetics of Drosophila, spontaneous and induced mutagenesis and its repair, non-disjunction
Guzmán, J.M.S. Mutagenesis in Drosophila
Mercader, J. Curator of Stocks
Olvera, O.M.S. Cytogenetics in Drosophila
de la Rosa, M.E. Mutagenesis in Drosophila

NETHERLANDS

Haren, Groningen: University of Groningen, Department of Genetics, Biological Center,
P.0. Box 14 Tel 050-115781

Bijlsma, R. Research Scientist Population genetics
Boerema, A.C. Research Assistant Population genetics
Bos, M. Ph.D.,Research Scientist Population and evolutionary genetics
van Delden, W. Ph.D.,Lecturer Population and evolutionary genetics
Hoekstra, R.F. Ph.D., Research Scientist Theoretical population genetics
Kamping, A. Research Assistant Population genetics
Wildeboer-du Pui, M.L.L. Curator of Stocks
Leiden: State University, Genetisch Laboratorium, Kaiserstraat 63 Tel 071-148333 Ext 7609
Breugel, F.M.A. van Dr.,Senior Research Scientist Developmental genetics (Drosophila)
Sprey, Th.J. Dr.,Senior Research Scientist Developmental genetics (Drosophila)
Vreezen, W.J. Research Scientist Developmental genetics (Drosophila)
Westra, A. Dr.,Research Scientist Developmental genetics (Drosophila)
Zonneveld, B.J.M. Dr., Senior Research Scientist Developmental genetics (Aspergillus, Fungi)
Leiden: State University, Department of Radiation Genetics and Chemical Mutagenesis,
Wassenaarseweg 72 Tel 071-148333 Ext 6150-6151
Aaron, C.S. Ph.D., Senior Research Scientist Chemical dosimetry and Adh
Blijleven, W.G.H. Drs., Research Scientist Environmental mutagenesis
Duyn, A. van Senior Technical Assistant, Curator of Stocks
Eeken, J.C.J. Ph.D.,Research Scientist Radiosensitivity and repair, mutator effects
Ferro, W. Drs.,Research Scientist Radiosensitivity and repair
Klapwijk, P.M. Ph.D., Research Scientist Activation of mutagens
Kramers, P.G.N. Drs.,Research Scientist Environmental mutagenesis
Leigh, B. Ph.D., Senior Research Scientist Repair and fixation of radiation damage

Sankaranarayanan, K. Ph.D.,Associate Professor Radiosensitivity and repair
Schalet, A. Ph.D., Senior Research Scientist Genetic analysis of spontaneous lethals in Drosophila
Sobels, F.H. Ph.D.,Professor,Director of the Laboratory Repair deficiencies and analysis of mutator effects
Vogel, E. Ph.D.,Senior Research Scientist Chemical mutagenesis mechanisms Zijlstra, J. Drs., Research Scientist Activation of mutagens
Nijmegen 6525 ED: Genetisch Lab., Katholieke Universiteit, Toernooiveld, Tel 080-55 8833
Boender, P.J. RNA synthesis in D. hydei
Hackstein, J. Genetics of D. hydei
Hennig, W. Chromosome structure and function
Leenders, H.J. Heat shock puffs and protein in D. hydei
Link, B. Electron microscopy of spermiogenesis
Lubsen, N.H. Heat shock puffs in D. hydei
Sondermeijer, P. Technician
Vogt, H.P. Nucleic acids of D. hydei
Wendisch, I. Technician
Utrecht: Genetisch Inst. van de Rijksuniv., Transitorium III, Padualaan 8 Tel 030-533138
Boer, M.H.den Ph.D., Research Scientist Ecological genetics, Bupalus piniarius (L.)
Kijken, F.R.van M.Sc.,Research Scientist Quantitative inheritance, selection for behavioral characters, reproductive isolation
Hoorn, A.J.W. M.Sc., Research Scientist Physiological genetics
Jong, G.de M.Sc.,Research Scientist Natural selection, isozymes
Montijn, C. Technical Adviser
Scharloo, W. Professor Evolutionary genetics, developmental genetics
Schouten, SC.C.M. Ph.D., Research Scientist Adaptation, developmental genetics
Thörig, G.E.W. M.Sc.,Research Scientist Physiological genetics, isozymes
Tuinstra, E.J. Research Scientist,Curator of Stocks

NORWAY

Oslo: Norwegian Radium Hospital, Norsk Hydro's Institute for Cancer Research, Laboratory
for Genetics Tel 554080
Mossige, J. Radiation of sperm
Oftedal, P. Professor Spermatogonial sensitivity

PAKISTAN

Khan, F.M. Ph.D(Brisbane) Chromosomal aberrations and radiation induced mutations in Drosophila, chromosomal mapping
Shakoori, A.R. D.Sc.(Stuttgart) Developmental abnormalities induced by chemicals like thioacetamide in Drosophilidae

[^19][^20]González, A. Assistant Professor Lethals in populations Latorre, A. Stockkeeper
Martinez, M.J. Graduate Student Artificial selection, chromosomal polymorphism Ménsua, J.L. Professor, Head of Department Population genetics Moya, A. Assistant Professor Frequency dependent selection Nájera, C. Assistatn Professor Adaptation, color mutants in Drosophila

SRI LANKA

Gangodawila, Nugegoda: Vidyodaya University, Department of Biological Sciences Ratnayake, W.E. Ph.D., Lecturer

SWEDEN

S-414 63 Göteborg: University, Inst. of Genetics, Stigbergsliden 14 Tel $+46 \quad \emptyset 31 \quad 14 \quad 57 \quad 31$
Levan, G. Ph.D., Professor, Head of Department Cancer cytogenetics Valentin, J. Ph.D. Recombination, meiotic regulation
S-113 86 Stockholm: Univ. of Stockholm, Inst. of Genetics, Box 6801 Tel 08/34 0860 Ext 267 Lüning, K.G. Ph.D., Professor,Director of Institute Population genetics Stahl, G. Fil.Kand., Research Assistant, Curator of Stocks Recombination
S-104 Stockholm: Envir. Toxicology Group at Wallenberg Lab., Lilla Frescati Tel 08/15 7883 Ramel, C. Ph.D., Professor, Head of Group Genetic effects of pesticides, recombination
S-901 87 Umea: University of Umea, Institute of Genetics Tel 090/16 5000
Aslund, S.-E. Ph.D., Curator of Stocks Behaviour genetics, population genetics
Hagguist, K. Fil.kand. Physiological genetics
Hansson, L. Fil.kand. Biochemical genetics
Holmgren, P. Ph.D.,Lecturer Physiological genetics
Lambertsson, A. Ph.D. Biochemical genetics
Ljung, K. Fil.kand. Physiological genetics
Montell, I. Fil.lic. Biochemical genetics
Nilsson, J. Fil.kand. Ecological genetics
Nygren, J. Fil.kand. Ecological genetics
Rasmuson, B. Ph.D., Professor, Head of Department Biochemical genetics, mutable genes
Rasmuson, M. Ph.D., Professor Population genetics, quantitative genetics
Rasmuson, A. Fil.kand. Mutagenesis
Svahlin, H. Fil.lic.,Assistant Physiological genetics, mutagenesis
Södergren, A. Fil.lic.,Assistant Population genetics
Westerberg, B.-M. Fil.kand. Mutable genes

SWITZERLAND

4056 Basel: Biocenter, University of Basel, Klingelbergstr. 70 Tel (061) 253880
Artavanis, S. Postdoctoral Fellow Developmental genetics
Bernhard, H.P. Assistant Professor Cell cultures
Gärtner, S. Stockkeeper
Gehring, W. Professor Cell determination and differentiation
Marsh, L. Postdoctoral Fellow Developmental genetics
Nüsslein, Ch. Postdoctoral Fellow Developmental genetics
Schedl, P. Postdoctoral Fellow Biochemistry
Weideli, H. Research Associate Biochemistry
Freibourg: University of Freibourg, Institute of Zoology Tel(037) 213302
Tobler, H. Ph.D.,Professor Developmental genetics
Züst, B. Ph.D. Imaginal discs
CH-1224 Geneva: Univ. of Geneva, Dept. of Genetics, 154 bis rte de Malagnou Tel(022)35. 30.36
Beck, H. Ph.D. rRNA methylation (on leave)
Frei, Hj, Ph.D. Half-translocations, mosaics
Gloor, H. Ph.D., Professor,Head of Department
Kobel, H.-R. Ph.D. Mutants of D. hydei
Srdić, Z. Ph.D. Imaginal discs, lymph gland
CH-8008 Zürich: Strahlenbiologisches Institute der Universität Zürich, Postfach 8029
Fritz-Niggli, H. Ph.D., Professor,Head of Department Radiation effects (dependence on LET + Milieu, ultra structure)
Hauschteck-Jungen, E. Ph.D.,Research Associate Cytogenetics
Mindek, G. Ph.D., Research Associate Embryonic systems, cytology
Schweizer, P. Ph.D.,Research Associate Radiation effect on embryonic systems

CH-8006 Zürich: Zoologisches Inst. u. Museum der Univ., Künstiergasse 16 Tel 326241
 Bächli, G. Ph.D. Taxonomy of Drosophilidae
 Borner, P. Ph.D. Enzymes
 Chen, P.S. Ph.D., Professor Physiology and development
 Déak, I. Ph.D., Professor Development genetics in muscles
 Dübendorfer, A. Ph.D. Tissue culture in vitro, imaginal discs
 Jungen, H. Ph.D. Inversion polymorphism in Drosophila subobscura
 Kubli, E. Ph.D. Transfe-RNA precursors, gene localization
 Nöthiger, R. Ph.D., Professor Imaginal discs
 Wehner, R. Ph.D., Professor Pattern recognition
 CH-8603 Schwerzenbach bei Zürich, Swiss Federal Institute of Technology; and Univ. of Zürich,
 Institute of Toxicology, Schorenstr. 16 Tel (01) 8251010
 Graf, U. Ph.D., Research Associate Genetic control of mutagenesis, DNA-repair, maternal effects, mutagenicity testing
 Würgler, F.E. Ph.D., Professor Chemical mutagenesis, DNA-repair, mutagenicity testing, metabolism of mutagens and carcinogens
 THAILAND
 Bangkok 4: Mahidol University, Faculty of Science, Department of Biology, Rama 6 Road
 Amitaba, I.B. D.V.M.,Visiting Investigator Radiation genetics
 Baimai, V. Ph.D.,Lecturer Cytogenetics and evolution
 Nilkan, C. B.Sc., Research Associate Cytogenetics

TURKEY
Ankara: Genetics Dept. Inst. of Biology, Hacettepe Univ., Beytepe Campus Tel $235130 / 1366$
Bozcuk, A.N. Ph.D.,Head of Genetics Unit
Erbaş, G. M.S.,Research and Teaching Assistant
Nalçaci, 0.B. M.S. Research and Teaching Assistant
Ünlü, H. Ph.D., Research and Teaching Assistant
Ulubay, F. Technician, Stockkeeper
UGANDA
Kampala: Makerere University, Botany Department, P.0. Box 7062 Tel 42471 Ext 385,28, 19 Tallantire, A.C. Senior Lecturer Systematics

UNITED STATES
Albuquerque, New Mexico 87131: Univ. of New Mexico, Dept. of Biology Tel 505-277-5140
Johnson, W. W. Ph.D.,Assoc. Professor Population genetics
Ames, Iowa 50011: Iowa State University, Dept. of Genetics Tel 515-294-3908
Keppy, D.O. Ph.D. Postdoctoral Associate
McDonald, J.F. Ph.D. Assistant Professor
Welshons, J. Stockkeeper
Welshons, W.J. Ph.D. Professor
Welter, R.J. Ph.D. Visiting Assistant Professor
Amherst, Massachusetts 01002: Amherst College, Dept. of Biology,
Tel 413-542- (see individual numbers below)
Hexter, W.M. Ph.D., Professor Genetic fine structure -2063
Ives, P.T. Ph.D., Faculty Research Associate Ecological genetics -2087
White, V. (Mrs.) Stockkeeper -2087
Yost, H.T.,Jr. Ph.D.,Professor Cytogenetics -2462
Ann Arbor, Michigan 48104: University of Michigan, Dept. of Human Genetics(H), Dept. of
Zoology (Z) Tel 313-764-5499 (H), 764-1492 (Z)
Gay, H. Ph.D., Professor (Z) Cytobenetics, chromosome structure and function
Oelshlegel, F.J. Ph.D., Senior Research Associate (H) Biochemical genetics, isozymes
Paul, C.P. M.S., Research Assistant and Stocckkeper (Z) Cytogenetics
Rizki, R.M. Research Associate (Z) Developmental genetics
Rizki, T.M. Ph.D.,Professor (Z) Developmental genetics
Thirtle, B. Research Assoc., Stockkeeper (H) Biochemical and population genetics, isozymes
Arlington, Texas 76019: University of Texas at Arlington, Dept. of Biology Tel 817-273-2871
McCrady, W.B. Ph.D., Professor CO_{2} responses
Ashland, Oregon 97520: Souther Oregon State College, Dept. of Biology Tel 503-482-6341
Fowler, G. PH.D.,Associate Professor Cytogenetics, gene regulation

Athens, Georgia 30602: University of Georgia, Dept. of Zoology Tel 404-542-5342 Anderson, W.W. Ph.D., Professor Population genetics, D. pseudoobscura stocks
Atlanta, Georgia 30322: Emory University, Dept. of Biology Tel 404-377-2411 Ext 7516
Abraham, I. Assistant Professor Developmental genetics
Elmer, W.A. Associate Professor Developmental genetics
Ray, C., Jr. Professor Population genetics
Shear, C.G. Research Specialist
Smith, P.D. Associate Professor Recombination, mutagen sensitivity
Austin, Texas 78712: Univ. of Texas, Dept. of Zoology, Genetics Foundation Tel 512-471-4128
Averhoff, W.W. B.A.,NIH Training Grant Predoctoral Fellow -5844
Faberg', A.C. Ph.D., Lecturer,Researcher General genetics, fine structure analysis -7442
Forrest, H.S. Ph.D.,Professor Biochemical genetics -1639
Fullilove, S.L. Ph.D.,Research Associate Ultrastructure of early D. development
Hiraizumi, Y. D.Sc., Professor Population genetics, meiotic drive -5735
Jacobson, A.G. Ph.D., Professor Morphogenic movements and ultrastructure of early D. embryos
Johnston, J.S. Ph.D.,NIH Training Grant Postdoc. Fellow Dispersal, ecology of D. -5844
Judd, B.H. Ph.D., Professor Gene organization and function -5044
Lee, C.S. Ph.D.,Assistant Professor Molecular cytogenetics -4362
Phillips, J. Ph.D.,Assistant Professor Biochemical genetics -7443
Richardson, R.H. Ph.D.,Associate Professor Evolution, population genetics, ecology -4128
Shen, M.W. M.S.,Research Associate Cytology
Sprechman, L. Ph.D.,NIH Training Grant Postdoctoral Fellow Population genetics -5844
Wheeler, L. Ph.D., Research Associate Cytogenetics, evolution -1263
Wheeler, M.R. Ph.D., Professor Taxonomy, evolution -5579
Woodruff, R.C. Ph.D.,NIH Training Grant Postdoctoral Fellow
Yoon, J.S. Ph.D.,Research Associate Evolution, cytogenetics
Baltimore, Maryland 21210: Carnegie Institution of Washington, Department of Embryology,
115 West University Parkway Rubin, G.M.
Baltimore, Maryland 21218: Johns Hopkins University, Dept. of Biology Tel 301-338Leister, F. B.A.,Stockkeeper
Shearn, A. Ph.D.,Associate Professor Developmental genetics, imaginal discs -7285
Sofer, W. Ph.D., Associate Professor Developmental genetics, ADH -7283
Baltimore, Maryland 21201: Univ. of Maryland, School of Dentistry, Dept. of Anatomy Gartner, L.P. Ph.D.
Baton Rouge, Louisiana 70803: Louisiana State University, Dept. of Zoology and Physiology,
Tel 504-388-1132 and 388-6736
Aaron, C.S. Ph.D.,Postodoctoral Fellow Mutagenesis
Benson, S. B.A.,Stockkeeper
French, W.L. Ph.D.,Associate Professor Molecular and physiological genetics Lee, W.R. Ph.D., Professor Mutagenesis
Bellingham, Washington 98255: Western Washington State College, Dept. of Biology
Tel 206-676-3640
Erickson, J. Ph.D., Associate Professor Meiotic drive
Berkeley, California 94720: University of California, Dept. of Molecular Biology Beckendorf, S.K.
Berkeley, California 94720: University of California, Dept. of Zoology Tel 415-642-2919 Osborn, R. M.A.,Stockkeeper
Stern, C. PH.D.,Emeritus Professor General
Tokunaga, C. D.Sc., Research Zoologist Developmental genetics
Bethesda, Maryland 20014: Genetics Study Section, Division of Research Grants (SRB),
National Institute of Health Tel 301-496-7271
Remodini, D.J. Ph.D. Developmental genetics, temperature sensitive mutants
Bethesda, Maryland 20014: National Institutes of Health, National Cancer Institute (C),
National Institue of Mental Health (M)
Friedman, T.B. Ph.D. Developmental genetics (M)
Nash, W.G. Ph.D. Genetics (M)
O'Brien, S.J. Ph.D. Biochemical genetics (C)
Twardzik, Ph.D. Biochemical genetics (C)
Billings, Montana 59102: Rocky Mountain College, Dept. of Biology Tel 406-245-6151 Ext 218
Dapples, C.C. Ph.D. Comparative oogenesis and cytogenetics
Birmingham, Alabama 35233: Univ. of Alabama, Dept. of Biology Tel 205-934-4262
Fattig, W.D. Ph.D.,Associate Professor Developmental genetics

Blacksburg, Virginia 24061: Virginia Polytechnic Inst., Dept. of Biology Tel 703-951-5469 Davis, B.K. Ph.D., Assistant Professor Cytogenetics
Bloomington, Indiana 47401: Indiana University, Dept. of Biology Tel 812-337-
Bonner, J. Ph.D.,Assistant Professor Molecular cytogenetics -7322
Chooi, Y. Ph.D.,Assistant Professor Ribosome biogenesis during development -0630
Fornili, P. B.S.,Research Associate Y chromosome genetics -7674
Hazelrigg, T. B.S., Graduate Student Developmental genetics -7674
Kaufman, T.C. Ph.D.,Assist. Prof. Cytogenetics, genetics of homeosis, spermiogenesis -3033
Kaufman, T.E. Curator of Stocks -3033
Kemphues, K. B.S., Graduate Student Developmental genetics -7674
Lewis, R. M.A., Graduate Student Developmental genetics -7674
Mahowald, A. Ph.D., Professor Dogenesis and early development -3057
Raff, E. Ph.D.,Assistant Professor Molecular embryology gametogenesis -5287
Raff, R. PH.D., Associate Professor Molecular embryology gametogenesis -2791
Richmond, R. Ph.D.,Associate Professor Population genetics -6871
Spradling, A. Ph.D.,Research Fellow Molecular cytogenetics -2894
Turner, F.R. Ph.D., Research Associate Ultrastructure embryology gametogenesis -2894
Wakomoto, B. M.A., Graduate Studetn Developmental genetics -7674
Bowling Green, Ohio 43403: Bowling Green State University, Dept. of Biological Sciences
Tel 419-372-2332
Gromko, M. Assistant Professor Ecological genetics
Oster, P. Curator of Mid-America Drosophila Stock Center
Woodruff, R.C. Assistant Professor, Director of Mid-America Drosophila Stock Center
Developmental genetics, genetics of natural populations, mutagenesis
Yoon, J.S. Associate Professor Evolution, cytogenetics
Bozeman, Montana 59715: Montana State University, Dept. of Biology Tel 406-994-2441
Vyse, E.R. Assistant Professor
Bridgewater, Massachusetts 02324: Bridgewater State Coll., Dept. Biol. Sci. Tel 617-697-8321
Muckenthaler, F.A. Ph.D.,Assistant Professor Oogenesis and development
Bronx, New York 10461: Albert Einstein College of Medicine, Dept. of Genetics, 1300 Morris
Park Avenue Tel 212-430-2824
Boyce, J.T. Curator of Stocks
Hall, L.M. Ph.D.,Associate Professor of Genetics and Neurosciences Neurogenetics
Hoffman, M.F. Dr.
Buffalo, New York 14222: State University College at Buffalow, Dept. of Biology,
1300 Elmwood Ave. Tel 716-862-5008
LoCascio, N. Ph.D.,Assistant Professor Genetica analysis of isoenzymes
Moisand, R. Ph.D., Associate Professor Population genetics and behavior
Buffalo, New York 14214: State University of New York at Buffalo, Dept. of Biology
3435 Main Street Tel 716-831-2624
Farnsworth, M.S. Associate Professor
Harford, A.G. Assistant Professor
Burlington, Vermont 05401: University of Vermont, Dept. of Zoology
Landers, M.H.
Cambridge, Massachusetts 02138: Harvard University Biological Laboratories Tel 617-495-
Gelbart, W.M. Ph.D., Assistant Professor -2906
Gepner, J.I. Ph.D., Postdoctoral Fellow -2906
Green, L.H. Ph.D.,Postdoctoral Fellow -2906
Petri, W.H. Research Fellow Developmental genetics -3292
Ribolini, A. Ph.D., Postdoctoral Fellow -2906
Wyman, A.R. Research Fellow Developmental biochemistry -3292
Cambridge, Massachusetts 02138: Harvard Univ., Museum of Comparative Zoology Tel 617-495-2419
Cohan, F. Selection studies in D. melanogaster
Coyne, J. Biochemical and ecological genetics, allozymes
Eanes, W. Biochemical genetics, enzyme kinetics
Felton, A. Allozyme studies, stock curator
Keith, T. Developmental genetics of allozyme loci
Kreitman, M. Biochemical genetics, allozymes
Lewontin, R. Theoretical and experimental population genetics
Logan, J. Molecular biology of DNA in D.
Ramshaw, J. Protein structure and biochemistry of D.
Canton, New York 13617: St. Lawrence University, Dept. of Biology Tel 315-379-5295
Ash, W.J. Dr. Physiological genetics

Carbondale, Illinois 62901: Southern Illinois University, Dept. of Zoology Tel 618-536-2314
Englert, D.C. Ph.D., Professor Population genetics
Catonsville, Maryland 21228: University of Maryland Baltimore County, Dept. of Biological
Sciences Tel 301-455-2261
Bradley, B.P. Ph.D.,Assistant Professor Population and quantitative genetics -2244
Geethmann, R.C. Ph.D.,Assistant Professor Chromosome behavior -2245
Petrovich, S.B. Ph.D.,Assistant Professor Behavioral genetics -2365
Chapel Hill, North Carolina 27514: University of North Carolina, Curriculum in Genetics and
Dept. of Zoology Tel 919-933- (see below)
Cochrane, B. Ph.D.,NIH Postdoctoral Trainee Biochemical genetics -1332
Davis, E.A. Curator of Stocks -1332
Lucchesi, J.C. Ph.D.,Professor Developmental genetics, molecular cytogenetics -1332
Maroni, G.P. Ph.D.,Assist. Prof. Developmental genetics, chromatin biochemistry -1343
Pierce, D. Ph.D.,Research Assoc. Developmental genetics, chromatin biochemistry -1343
Roehrdanz, R. Ph.D., Research Assoc. Developmental genetics, dosage compensation -1332
Skripski, T. Ph.D.,Swiss Nat. Found. Postdoctoral Fellow Developmental genetics, sex limited lethality -1332
Whittinghill, M. Ph.D.,Emeritus Professor Mutagenesis, crossing over, cytogenetics -2266
Charlotte, North Carolina 28213: University of North Carolina at Charlotte, Dept. of Biology
Tel 704-597-2315
Hildreth, P.E. Ph.D., Professor Developmental genetics
Ostrowski, R.S. Ph.D.,Assistant Professor Developmental genetics
Charlottesville, Virginia 22901: University of Virginia, Dept. of Biology Tel 804-924-7118
Adler, P.N. Ph.D.,Assistant Professor Determination and positional information in imaginal discs 924-3294
Emerson, C.P. Ph.D.,Associate Professor Gene regulation and myogenesis 924-7067
Grainger, R.M. Ph.D.,Assistant Professor Fate and localization of maternal macromolecules during development 924-7993
Miller, O.L.,Jr. Ph.D., Professor Ultrastructural analysis of transcription, translation and replication 924-3909
Wright, T.R.F. Ph.D., Professor Genetic regulation of dopa decarboxylase activity during development 924-3856
Chicago, Illinois 60628: Chicago State University, Dept. of Biological Sciences
Sampsell, B. Assistant Professor Population genetics, enzyme polymorphisms
Chicago, Illinois 60637: University of Chicago, Dept. of Biology Tel 312-753-2715
Hubby, J.L. Ph.D., Professor Proteins in Drosophila -2717
Lindquist, S. Ph.D.,Assistant Professor Heat shock proteins -2189
Spofford, J.B. Ph.D.,Associate Professor Position-effect, duplications -2715
Swift, H.H. Ph.D., Professor Cytogenetics, molecular biology -2714
Throckmorton, L.H. Ph.D.,Professor Protein differences in Drosophila, systematics and biogeography of the Drosophilidae, -2704
Van Valen, L. Ph.D., Professor Evolution -8106
Chicago, Illinois 60680: University of Illinois at Chicago Circle, Dept. of Biological
Sciences Tel 312-996-2576 (Spiess Lab), 996-2259 (Cummings Lab)
Cummings, M.R. Ph.D.,Associate Professor Developmental genetics
Spiess, E.B. Ph.D., Professor Population-behavior genetics
Cleveland, Ohio 44106: Case Western Reserve University, Dept. of Biology Tel 216-368-3610
Martin, A.O. Ph.D., Instructor Human population genetics and evolution
Cleveland, Ohio 4415: Cleveland State University, Dept. of Biology and Health Sciences,
Euclid Avenue and 24th Street Tel 216-687 2440
Clise, R.L. Ph.D., Professor Population genetics
DeMarinis, F. Ph.D.,Professor Gene action
Dickerman, R.C. Ph.D.,Associate Professor Mutagenesis
College Park, Maryland 20742: University of Maryland, Dept. of Zoology Tel 301-454-
Imberski, R.B. Associate Professor Developmental and biochemical genetics -5159
Potter, J.H. Associate Professor Behavioral and ecological genetics -5410
Colorado Springs, Colorado 80903: Colorado College, Dept. of Biology Tel 303-473-2233 Ext 304
Heim, W.G. Ph.D., Professor General genetics
Columbia, Missouri 65211: University of Missouri, Dept. of Genetics and Cytology,
205 Curtis Hall Tel 314-882-3393
Burdick, A.B. Ph.D., Professor Gene structure and function, spermatogenesis

Coe, E.H.,Jr. Ph.D.,Professor Gynandromorphs
Farish, D.J. Ph.D.,Associate Professor Behavioral genetics
Yanders, A.F. Ph.D., Professor and Dean Cytogenetics, meiotic drive, spermatogenesis
Stark, W.S. Ph.D.
Corvallis, Oregon 97331: Oregon State University, Dept. of Zoology Tel 503-754-
Dawson, P. Ph.D., Associate Professor Population genetics -1128
Roberts, P.A. Ph.D., Professor Cytogenetics, developmental genetics -1648
Crawfordsville, Indiana 47933: Wabash College, Dept. of Biology Tel 462-1400
Cole, T.A. Associate Professor Ext 261
Klug, W.S. Assistant Professor Ext 350
Cullowhee, North Carolina 28723: Western Carolina Univ., Dept. of Biology Tel 704-227-7244
Wright, C.P. Ph.D.,Associate Professor Developmental genetics
Davis, California 95616: University of California, Dept. of Genetics Tel 916-752-
Ayala, F.J. Ph.D.,Professor -2209
Barr, L. Stockkeeper -0406
Boyd, J.B. Ph.D., Associate Professor -3070
Cottle, Celia Stockkeeper -2197
Green, M.M. Ph.D. Professor -1189 or -6295
Kiger, J.A. Ph.D.,Assistant Professor -2059
Prout, T. Ph.D., Professor -2197
Davis, California 96716: University of California, Dept. of Zoology Tel 916 752-1220
Spieth, H.T. Ph.D., Professor Mating behavior
Dayton, Ohio 45431: Wright State University, Dept. of Biological Sciences Tel 513-873-2106
Kertesz, J. B.S.,Stockkeeper
Seiger, M.B. Ph.D.,Associate Professor Genetics of behavior
DeKalb, Illinois 60115: Northern Illinois Univ., Dept. of Biol. Sciences Tel 815 753-0433
Bennett, C.J. Ph.D., Professor Population, behavior
Mittler, S. Ph.D., Professor Mutagenesis
Des Moines, Iowa 50311: Drake University, Dept. of Biology Tel 515-271-3765
Myszewski, M.E. Ph.D.,Assistant Professor Chromosome mechanics, mutagenesis
Detroit, Michigan 48202: Wayne State University, Dept. of Biology Tel 313-577-2873
Arking, R. Ph.D.,Assistant Professor Developmental genetics 577-2891
Mayeda, K. Ph.D.,Professor Cytogenetics 577-3529
Parente, A. Research Technician, Graduate Student, Stockkeeper
Duarte, California 91010: City of Hope Research Institute Tel 213-359-8111
Dept. of Behavior Genetics Ext 2466
Kaplan, W.D., Ph.D., Research Scientist Neurological mutants, aging
Trout, W.E., III Ph.D.,Assistant Research Scientist Neurological mutants, aging
Williamson, R.L. M.A., Research Associate Behavior genetics
Wong, P.T-C. Ph.D.,Assistant Research Scientist Neurophysiology Dept. of Developmental Biology Ext 2473
Bournias-Vardiabasis, N. Ph.D., Research Fellow Developmental genetics
Buzin, C.M. Ph.D.,Assistant Research Scientist Developmental genetics Division of Neurosciences Ext 2782
Ikeda, K. Ph.D.,Research Scientist Neurophysiology
Koenig, J. Ph.D.,Assistant Research Scientist Neurophysiology
Durham, North Carolina 27706: Duke University. Tel (919) 684Department of Botany
Antonovics, J. Ph.D., Professor Population Genetics -3571 Department of Zoology
Ward, C.L. Ph.D., Professor Speciation, chromosomal polymorphism -3270
Durham, North Carolina 27710: Duke University School of Medicine Tel (919) 684Department of Anatomy
Counce, S.J. (Mrs. Bruce Nicklas) Ph.D., Professor Developmental genetics. -2018 Department of Biochemistry
Greenleaf, Arno L. Ph.D., Assistant Professor Transcriptional regulation and RNA-polymerase mutants. -4030
Hsieh, T. Ph.D., Assistant Professor Molecular genetics, chromosome structure -5519 Department of Microbiology/Immunology
Endow, S.A. Ph.D., Assistant Professor Genetic regulation of replication and transcription, chromosome structure -4311
East Lansing, Michigan 48824: Michigan State University, Dept. of Zoology Tel 517-
Band, H. Ph.D. Population genetics, ecological genetics 351-7941

Kral, L.G.
Robbins, L. Ph.D. 355-0337
Easton, Pennsylvania 18042: Lafayette College, Dept. of Biology Tel 215-253-6281 Ext 286
Majumdar, S.K. Ph.D.,Assistant Professor Cytogenetics, chemical mutagenesis and developmental genetics
Eugene, Oregon 97403: University of Oregon, Dept. of Biology Tel 503-686-4502
Clark, B. Graduate Student ODH Locus -4524
Grace, D. Ph.D.,Research Associate Dumpy locus, chromosome behavior -4524
Johns, M. Graduate Student Gene regulation -4495
Jowett, T. Postdoctoral Fellow Developmental genettics -4495
Novitski, E. Ph.D., Professor Chromosome behaviour -4525 or -4524
Postlethwait, J. Ph.D.,Associate Professor Devlopmental genetics -4438
Sears, D. Research Assistant, Stockkeeper -4495
Shirk, P. Ph.D., Postdoctoral Fellow Developmental genetics, molecular biology and endocrinology -4495
Stone, J. Graduate Student Nature of filicidal effect, ring chromosomes -4524
Strommen, C. Ph.D.,Research Associate Antennipedia locus, devel. genetics -4524
Wimber, D. Ph.D., Professor DNA-RNA hybridization -4514
Evanston, Illinois 60201: Northwestern University, Dept. of Biol. Sci. Tel 312-492-3652
King, R.C. Ph.D.,Professor Comparative oogenesis
Fayetteville, North Carolina 28301: Fayetteville State University, Dept. of Biological
and Physical Science Tel 919-483-6144 Ext 352
Waddle, F.R. Ph.D.,Assistant Professor melanogaster
Fayetteville, Arkansas 72701: University of Arkansas, Dept. of Zoology Tel 501-575-3251
Clayton, F.E. Ph.D., Professor Cytogenetics
Guest, W.C. Ph.D., Professor Cytogenetics
Flagstaff, Arizona 86001: Northern Arizona University, Dept. of Biology Tel 602-523-3538
English, D.S. Ph.D,Associate Professor Chemical mutagenesis, developmental genetics
Galesburg, Illinois 61401: Knox College, Dept. of Biology Tel 309-343-0112
Geer, B.W. Ph.D.,Professor Metabolism, reproduction
Garden City, New York 11530: Adelphi University, Dept. of Biology Tel 516-817-2200
Johnsen, R.C. Ph.D.,Assistant Professor Chromosome mechanics and cytogenetics
Kalicki, H. Ph.D.,Associate Professor Physiological and developmental genetics
Gary, Indiana 46408: Indiana University Northwest, Dept. of Biology Tel 219=887-0111 Ext 396
Hanks, G.D. Ph.D.,Associate Professor,Acting Head Meiotic drive, sex ratios, biological effects of radiation and chemicals
Glenside, Pennsylvania 19038: Beaver College, Dept. of Biology Tel 215-884-3500 Ext 435
Rose, R.W. Ph.D.,Assistant Professor Biochemical genetics, nucleic acids
Goshen, Indana 46526: Goshen College, Dept. of Biology Tel 219-533-3161
Jacobs, M.E. Ph.D., Melanization in D. melanogaster
Greensboro, North Carolina 27412: University of North Carolina at Greesboro, Dept. of
Biology Tel 379-5387
McCrady, E.,III Ph.D.
Hamden, Connecticut 06518: Quinnipiac College, Dept. of Biology, Mount Carmel Avenue Martinez, R.M. Ph.D.,Assistant Professor Crossing-over, interference
Holland, Michigan 49423: Hope College, Dept. of Biology Tel 616-392-5111
Day, J.W. Ph.D.,Assistant Professor Recombination, cytogenetics, ovarian development
Honolulu, Hawaii 96822: University of Hawaii, Dept. of Entomology(E), Dept. of Genetics(G)
Tel 808-948-
Ahearn, J.N. Ph.D.,Assistant Researcher Developmental genetics (G) -7662
Carson, H.L. Ph.D.,Professor Evolutionary genetics (G) -7662
Dickinson, W.J. Ph.D.,Visiting Investigator Developmental genetics (G) -7662
Hardy, D.E. Ph.D., Professor Systematics (E) -6745
Kaneshiro, K.Y. Ph.D.,Assistant Researcher Biosystematics (E) -6739
Kurihara, J. M.S.,Curator of Stocks (E) -6740
Lyttle, T.W. Ph.D.,Assistant Professor Population genetics, meiotic drive (G) -7860
Teramoto, L.T. B.A., Research Technician (G) -6740
Houghton, Michigan 49931: Michigan Technological Univ., Dept. of Biol. Sci. Tel 906-487-2025
Remondini, D.J. Ph.D. Genetics fo tumouous head (tu-h)
Houston, Texas 77030: University of Houston College of Pharmacy
Burdette, W.J. Ph.D.,M.D.,Adjunct Professor Mutations, tumors, hormones, electron microscopy
Kenny, R. A.M.,Research Associate Electron microscopy

Huntsville, Texas 77340: Sam Houston State Univ., Life Sci. Dept. Tel 713-295-6211 Ext 1677
Dewees, A.A. Ph.D., Professor Population genetics and genetic control of recombination
Iowa City, Iowa 52242: University of Iowa, Dept. of Zoology Tel 319-353-5751
Frankel, A.W.K. Ph.D.,Fellow
Milkman, R.D. Ph.D., Professor Evolutionary genetics -5706
Mohler, J.D. Ph.D., Professor Developmental genetics, oogenesis -4893
Wu, C.-F. Ph.D.,Assistant Professor Physiological genetics, behavior -4116
Ithaca, New York 14850: Cornell University, Section of Genetics, Development and
Physiology Tel 607-256-
Knipple, D. Graduate Student Genetics of β-glactosidase
Kotarski, M. Graduate Student Fine structure of α GPDH
MacIntyre, R. Professor -3018 Biochemical and evolutionary genetics
Wallace, B. Professor -5291 Population and ecological genetics
Ithaca, New York 14850: Ithaca College, Dept. of Biology Tel 607-274-3166
Thompson, S.R. Ph.D.,Associate Professor Natural variation and canalization
Johnson City, Tennessee 37601: East Tennessee State U., Biol. Dept. Tel 615-926-1112 Ext 358
Benner, D.B. Assistant Professor
Johnstown, Pennsylvania 15904: University of Pittsburgh, Division of Natural Sciences
Thompson, C.
Knoxville, Tennessee 37916: University of Tennessee, Dept. of Zoology Tel 615-974-2371
Dodd, C.K. M.S.,Stockkeeper
Fox, D.J. Ph.D.,Assistant Professor Developmental and enzyme genetics
Hochman, B. Ph.D.,Professor Genetics, cytology and developmental effects of chromosome 4
La Jolla, California 92037: University of California-San Diego, Dept. of Biology
Tel 714-453-2000 Ext 2195
Baker, B. Ph.D.,Assistant Professor
Belote, J. Ph.D.,Postdoctoral
Carpenter, A.T.C. Ph.D.,Assistant Professor
Carson, G. Graduate Student
Denell, R. Ph.D.
Hardy, R. Ph.D., Research Biologist
Ivy, J. Graduate Student
Lawlor, T. Graduate Student 452-4807
Lindsley, D. Ph.D.,Professor
Livak, K. Postdoctoral
Rokop, S. Curator of Stocks
Romans, P. Graduate Student 452-3109
Tokuyasu, K.T. Ph.D.,Professor-in-Residence 452-2185
Zimm, G. Ph.D.,Research Associate
Lawrence, Kansas 66045: University of Kansas, Div. of Biol. Sci. Tel 913-864-3763 or 4305
Hedrick, P.W. Associate Professor Population genetics
Le Mars, Iowa 51031: Westmar College, Dept. of Biology Tel 712 546-7081 Ext 319
Divelbiss, J. Ph.D., Professor Complex loci, pteudines, brown mutants
Lewisburg, Pennsylvania 17837: Bucknell University, Dept. of Biology Tel 717-524-1124
Tonzetich, J. Ph.D.,Assistant Professor
Lexington, Kentucky 40506: University of Kentucky, Dept. of Zoology Tel 606-258-8771
Carpenter, J.M. Ph.D., Prof. Gene ecology, radiation eco-genetics, reproductive potenetial
Rawls, J.M., Jr. Ph.D.,Assistant Professor
Ossgood, C.J. Ph.D. Visiting Assistant Professor
Lincoln, Nebraska 68508: Univ. of Nebraska-Lincoln, Sch. of Life Sciences Tel 402-472-2720
Miller, D.D. Ph.D., Professor D. affinis subgroup intro- and interspecific variation
Logan, Utah 84322: Utah State University, Dept. of Biology Tel 801-752-4100 Ext 7868
Bowman, J.T. Ph.D.,Associate Professor Gene action
Gardner, E.J. Ph.D., Professor Developmental genetics of head abnormalities
Simmons, J.R. Ph.D.,Professor Biochemical genetics
Long Beach, California 90840: California State University, Dept. of Biology Tel 213-498-4805
Kroman, R.A. Professor Developmental genetics, melanogaster
Los Angeles, California 90024: Univ. of Calif.-Los Angeles, Biology Dept. Tel 213-825-2256
Hardy, R. Ph.D., Postdoctoral Fellow Behavior mutants
Merriam, J. Ph.D.,Associate Professor Neurogenetics
Stewart, B. Ph.D.,Postdoctoral Fellow Cytogenetics
Taylor, C.E.

Macomb, Illinois 61455: Western Illinois Univ., Dept. Biol. Sci. Tel 309-298-1546
Bryant, M.L. Stockkeeper Mutagenesis
Bryant, S.H. Assistant Professor Population genetics
Murnik, M.R. Associate Professor Mutagenesis, behavior genetics -1374
Madison, Wisconsin 53706: University of Wisconsin, Laboratory of Genetics (G) and Dept. of
Zoology (Z) Tel 608- (see below)
Abrahamson, S. Ph.D., Professor (Z,G) 262-2506
Berg, R. Ph.D.,Associate Scientist (G) 262-3896
Brittnacher, J. Ph.D., Postdoctoral Fellow (G) 262-3896
Crow, J.F. Ph.D., Professor (G,Z) 263-1993
DeJongh, C. M.S.,Research Specialist (Z) 262-3328
Engels, W.R. Ph.D., Postdoctoral (G) 262-3896
Foureman, P.A. A.B.,Graduate Student (G) 262-3896
Ganetzky, B. Ph.D.,Assistant Professor (G) 262-3896
Kreber, R.A. M.S., Research Specialist (G) 262-3896 (Project Specialist)
Manseau, L. B.S.,Graduate Student (G) 262-3896
Meyer, H.U. Ph.D.,Senior Scientist (Z) 262-3328
Preston, C. B.A. (G) 262-3896 (Project Specialist)
Rose, M. Ph.D.,Postdoctural Fellow (G) 262-3896
Temin, R. Ph.D.,Assistant Scientist (G) 262-1993
Ulber, M. B.A.,Graduate Student (G) 262-3896
Wijsman, E. B.S., Graduate Student (G) 262-3896
Valencia, R.M. Ph.D.,Senior Scientist (Z) 262-2701
Manhattan, Kansas 66506: Kansas State University, Division of Biology
Denell, R. Ph.D. Homoeotic mutants, genetic control of aspects of sex
Marietta, Ohio 54750: Marietta College, Dept. of Biology Tel 614-373-4643 Ext 240
Brown, W.P. Ph.D., Associate Professor Population genetics
Miami, Florida 33199: F.I.U., Dept. of Biological Sciences
Espinet, S.A. M.Sc. Behavioral genetics, speciation
Tracey, M.L. Ph.D. Population genetics, recombination
Middletown Connecticut 06457: Wesleyan University, Dept. of Biology Tel 203-347-9411
Donady, J.J. Assistant Professor (X496) Developmental genetics, myogenesis, gene regulation
Kiefer, B.I. Professor (X365) Developmental genetics, spermiogenesis, regulation of RNA synthesis
Potter, S.S. Assistant Professor (X608) Genome organization, repeated sequences, gene regulation
Minneapolis, Minnesota 55404: Augsburg College, Dept. of Biology Tel 612-332-5181
Herforth, R.S. Ph.D.,Assistant Professor CO_{2} sensitivity
Sulerud, R.L. Ph.D.,Professor CO_{2} sensitivity
Minneapolis, Minnesota 55455: University of Minnesota, Dept. of Zoology Tel 612-373 3645 Merrell, D.J. Ph.D., Professor Population genetics
Morgantown, West Virginia 26506: West Virginia Univ., Dept. of Zoology Tel 304-293-4380 Keller, E.C.Jr. Professor of Biology
Keller, H.E. Storekeeper
Moscow, Idaho 83843: University of Idaho, Dept. of Biological Sciences Tel 208-885-6280 Forbes, C. Associate Professor Mutation
Muncie, Indiana 47306: Ball State University, Dept. of Biology Tel 317 285-5480
Engstrom, L.E. Ph.D.,Assistant Professor Developmental genetics
Newark, New Jersey 07102: Rutgers University, Dept. of Zoology and Physiology
Tel 201-621-1766 Ext 4286 \& 4482
Borack, L.I. Ph.D.,Associate Professor
Sonnenblick, B.P. Ph.D., Professor Radiation effects
Newark, Delaware 19711: Univ. of Delaware, Dept. of Biological Sciences Tel 302-738-2669 Clark, A.M. Ph.D.,Professor Developmental genetics Gould, A.B. Ph.D., Instructor
New Brunswick, New Jersey 08903: Rutgers University, Dept. of Biological Sciences McCormack, M.K. Ph.D.,Assistant Professor Biochemical genetics
New Haven, Connecticut 06520: Yale University, Dept. of Biology (B); Dept. of Molecular
Biophysics \& Biochemistry (MB) Tel Nos. 203- 436-0417 (B); 436-4819 (MB)
Coggshall, J. Ph.D.,Research Associate \& Lecturer Neurophysiology (B)
Gall, J.G. Ph.D.,Professor Chromosome structure, nucleic acids (B) 436-1676

Garen, A. Ph.D.,Professor Developmental genetics, gene and protein (MB) 436-4819
Garen, S. Ph.D.,Research Associate Developmental neurogenetics (B)
Grabicki, E. Curator of Stocks,Assistant in Research (B) 436-0417
Kankel, D. Ph.D.,Associate Professor Developmental neurogenetics (B) 436-1292
Poulson, D.F. Ph.D., Professor Physiological and developmental genetics, hereditary infections (B) 436-0416
Powell, J.F. Ph.D.,Associate Professor Population and evolutionary genetics (B) 432-2497
Rae, P.M.M. Ph.D.,Associate Professor Molecular cytology (B) 436-2648
Söll, D. Ph.D., Professor Molecular genetics, development (MB) 436-3611
Wyman, R.J. Ph.D.,Professor Neurophysiology, developmental genetics (B) 436-2575
New Wilmington, Pennsylvania 16142: Westminster College, Dept. of Biology Tel 412-946-8761
McCarthy, P.C. Ph.D.,Assistant Professor.Curator Biochemical genetics
New York, New York 10031: City College of New York, Dept. of Biology, 137th Street and
Convent Avenue Tel 212-690-8472
Bargiello, T. Stockkeeper
Grossfiled, J. Ph.D.,Associate Professor Behavioral and population genetics
Rockwell, R.F. Ph.D., Postdoctoral Fellow Population and behavior genetics
New York, New York 10021: Hunter College, Dept. of Biological Sciences Tel 212-570-5321
Herskowitz, I.H. Ph.D., Professor Molecular and developmental genetics
Margulies, L. Ph.D.,Instructor Molecular and developmental genetics
New York, New York 10029: Mt. Sinai School of Medicine, City University of New York,
Dept. of Anatomy Tel 212-650-7268
Levitan, M. Ph.D., Professor Population genetics, chromosome breakage
New York, New York 10003: New York University, Dept. of Biology, 952 Brown Building
Tel 212-598-7545
Craddock, E.M. Ph.D., Associate Research Scientist Hawaiian Drosophila population genetics, cytoevolution, vitellogenesis
Kambysellis, M.P. Ph.D.,Associate Professor Developmental genetics, tissue culture, oogenesis, reproductive strategies
Rubenstein, E. Ph.D., Postdoctoral Fellow Vitellogenesis, ovarian proteins
New York, New York 11367: Queens College, Dept. of Biology Tel 212-415-7500 Est 418
Hale, G. M.S., Lecturer Cytogenetics
Kaplan, M.L. Ph.D., Professor Drosophila tumors
Marien, D. Ph.D., Professor Population genetics
Peers, E. B.A., Science Assistant, Curator of Stocks
Wasserman, M. Ph.D., Professor Cytogenetics
Norman, Oklahoma 73069: Univ. of Oklahoma, Dept. of Zoology Tel 405-325-6998
Braver, G. Ph.D., Professor
Thompson, J.N.Jr. Ph.D. Quantitative genetics
Northridge, California 91324: California State University, Dept. of Biology
Bengston, R. Curator of Stocks
Lefecre, G.Jr. Ph.D., Professor
Notre Dame, Indiana 46556: University of Notre Dame, Dept. of Biology Tel 219-283-
Bender, H.A. Ph.D., Professor -7075
Burton, W.G. Ph.D.,Assistant Professor -6435
Craig, G.B. Ph.D.,Professor -7366
Fuchs, M.S. Ph.D.,Associate Professor -7739
Moskwinski, T. Curator of Stocks -7075
Rai, K.S. Ph.D.,Professor -6584
Oakdale, New York 11769: Dowling College, Dept. of Biology Tel 516-589-6100 Ext 274
Shafer, S.J. Ph.D.,Assistant Professor Biochemical genetics
Thalmann, G.J. Ph.D.,Research Scientist Developmental genetics
Oak Ridge, Tennessee 37830: Oak Ridge National Laboratory, Biology Division, P. O. Box Y
Tel 615-483-8611 Ext 3-7472
Grell, E.H. Ph.D. Biochemical genetics
Grell, R.F. Ph.D. Recombination and chromosome behavior
Nix, C.E. Ph.D. Nucleic acids
Wilkerson, R.D. Curator of Stocks
Pasadena, California 91109: Calif. Inst. of Technology, Div. of Biology Tel 213-795-6811
Benzer, S. Ph.D., Professor Ext 1963
Craymer, L. Ph.D., Curator of Stocks Ext 1925 or 1905
Davidson, N. Ph.D., Professor Ext 2055
Duncan, I. Ph.D., Helen Hay Whitney Foundation Fellow Ext 1925

Ferrus, A. Ph.D.,Research Fellow Ext 2476
Fyrberg, E. Ph.D.,Research Fellow Ext 2047
Handler, A. Ph.D.,Research Fellow Ext 2800
Kauvar, L. Ph.D.,Research Fellow Ext 2476
Kindle, K. Ph.D.,Research Fellow Ext 2047
Konopka, R. Ph.D.,Assistant Professor Ext 2811
Lewis, E. Ph.D.,Professor Ext 1941
Lowy, P. Doctorandum,Senior Research Fellow Ext 1950
Maniatis, T. Ph.D,Assistant Professor Ext 1916
Meyerowitz, E.M. Ph.D.,Assistant Professor Molecular genetics Ext 2889 or 2895
Mitchell, H. Ph.D.,Professor Ext 1948
Petersen, N. Ph.D.,Senior Research Fellow Ext 1950
Sirotkin, K. Ph.D., Research Fellow Ext 2054
Tanouye, M. Ph.D., Research Fellow Ext 2476
Philadelphia, Pennsylvania 19102: Hahnemann Medical Coll., Genetics Div. Tel 215-448-8201/03
Asselstadt, H. Ph.D.,Research Assistant, Professor
Fuscaldo, K.E. Ph.D.,Associate Professor
Kaufmann, B.N. M.D.,Professor
Lechner, J.F. Ph.D.,Assistant Professor
Philadelphia, Pennsylvania 19111: Inst. for Cancer Research, 7701 Burholme Avenue
Tel 215-342-1000
Cohen, L. Ph.D.,Associate Member
Rudkin, G.T. Ph.D.,Associate Member
Tartof, K.D. Ph.D.,Assistant Member
Philadelphia, Pennsylvania 19122: Temple University, Dept. of Biology Tel 215-787-8857
Hillman, R. Ph.D., Professor Developmental genetics
Philadelphia, Pennsylvania 19104: Univ. of Pennsylvania, Dept. of Biology, Biol. Bldg. 212/G5
Gersh, E.S. Lecturer Chromosome structure and function
Pittsburgh, Pennsylvania 15213: Carnegie-Mellon University, Mellon Institute of Science,
Dept. of Biology Tel 412-621-1100
Ellison, J.R. Ph.D. Chromosome structure
Mayfield, J.E. Ph.D. Eucaryotic genome organization
Pittsburgh, Pennsylvania 15213: University of Pittsburgh, Dept. of Biology Tel 412-624-
Applebaum, B. -4688
Corwin, H.O. Ph.D.,Assistant Professor Chemical mutagenesis -4256
Gottlieb, F.J. Ph.D.,Associate Professor Developmental genetics -4257
Portland, Oregon 97203: University of Portland, Dept. of Biology 5000 N . Willamette
Neeley, J.C. Ph.D.,Assistant Professor Aneuploidy Tel 503-286-7129
Poughkeepsie, New York 12601: Marist College, Dept. of Biology Tel 914 471-3240
Hooper, G.B. Ph.D. Drosophila ecology, behavior
Princeton, New Jersey 03540: Princeton University, Dept. of Biology Tel 609-452-3850
Cohen, E.H. Ph.D.,Assistant Professor DNA sequence organization and evolution -3850
Quinn, W.G. Ph.D.,Assistant Professor Behavior genetics and learning -3850
Sanders, T.G. Ph.D.,Assistant Professor Developmental and molecular genetics -3852
Providence, Rhode Island 02912: Brown University, Div. of Biololgy \& Medicine Tel 401-863-
Fausto-Sterling, A. Ph.D.,Associate Professor Developmental genetics -2109
Kidwell, J.F. Ph.D.,Professor Quantitative and population genetics -2808
Kidwell, M.G. Ph.D.,Assistant Professor (Research) Population and evolutionary genetics and mutator mechanisms -3923
Zimmering, S. Ph.D., Professor Mutagenesis and cytogenetics -2620
Provo, Utah 84602: Brigham Young University, Dept. of Zoology Tel 801-374-1211
Farmer, J.L. Ph.D.,Associate Professor Biochemical genetics Ext 2153
Jeffery, D.E. Ph.D.,Assoc. Prof. Developmental \& evolutionary genetics Ext 2155
Pullman, Washington 99163: Washington State Univ., Zoology-Genetics Tel 509-335-3553
Iwamoto, R.N. M.S.,Research Associate Population genetics 335-3311
Moree, R. Ph.D.,Professor Population genetics
Purchase, New York 10577: State Univ. of New York, Division of Natural Sciences
Ehrman, L. Ph.D.,Professor Reproductive isolating mechanisms, infectious heredity, frequency dependent selection; in feneral, behavior genetics, paulistorum \& pseudoobscura
Inocencio, B. B.A., Curator of Stocks, Teaching Assistant
Gottlieb, J.F. Research collaborator, Symbients

Raleigh, North Carolina 27607: North Carolina State University, Dept. of Genetics, Tel 919-737- (see below)

Bewley, G.C. Ph.D.,Assistant Professor Biochemical-developmental genetics - 2285
Pyle, D. Ph.D.,Research Associate Population and behavioral genetics -2295
Richmond, R. Ph.D.,Associate Professor Population genetics -2295
Schaffer, H.E. Ph.D., Professor Population genetics, mathematical and quantitative genetics -2294
Reading, Pennsylvania 19603: Albright College, Dept. of Biology Tel 215-921-2381
Bell, E.L. Ph.D., Chairman, Curator of Stocks
Research Triangle Park, North Carolina 27709: Population Genetics Section, Environmental
Mutagenesis Branch, NIEHS Tel 919-459-8411 Ext 3434, 3435
Langley, C.H. Ph.D. Population genetics and evolution
Voelker, R.A. Ph.D. Cytogenetics, population genetics and evolution
Richmond, Virginia 23220: Virginia Commonwealth University, Dept. of Biology Tel 703-770-7231
Chinnici, J.P. Ph.D.,Assistant Professor Recombination, evolution of dominance, sexual isolation in D. melanogaster
Riverside, California 92502: University of California, Dept. of Biology Tel 714-787-5904
Gill, R.W. Assistant Professor Ecology of Drosophila -3609
Parker, D.R. Professor Meiotic interchange -5912
Roanoke, Virginia 24020: Hollins College, Dept. of Biology Tel 703-362-6547
Bull, A.L. Ph.D.,Associate Professor Developmental genetics
Rochester, Michigan 48063: Oakland University, Dept. of Biol. Sci. Tel 313-377-3555 or 3550
Butterworth, F.M. Ph.D., Professor,Acting Chairman Developmental genetics, in vitro cultures of larval fat body
Friedman, T.B. Ph.D.
Rochester, New York 14627: University of Rochester, Dept. of Biology Tel 716-275-3847
Krivshenko, J.D. D.Sc.,Senior Research Associate Cytogenetics \& population genetics
Merritt, R. Ph.D., Postdoctoral Fellow Population genetics
Prakash, S. Ph.D.,Assistant Professor Allozyme polymorphism and its significance
St. Louis, Missouri 63121: University of Missouri SL, Dept. of Biology Tel 314-453-5811
Friedman, L.D. Ph.D.,Associate Professor Behavior
Strickberger, M.W. Ph.D., Professor Population genetics
St. Louis, Missouri 63130: Washington University, Dept. of Biology Tel 314 889-
Johnson, G.B. Associate Professor Enzyme polymorphism -6805
Stalker, H.D. Professor Inversion polymorphism, ecology -6839
Templeton, A.R. Associate Professor Multi-locus selection, speciation, developmental genetics -6868
Salt Lake City, Utah 84112: University of Utah, Dept. of Biology Tel 801-581-
Baker, W.K. Ph.D., Professor Developmental and population genetics - 3885
Dickinson, W.J. Ph.D.,Associate Professor Gene regulation -6289
Gertson, P.N. Ph.D.,Postdoctoral Fellow Esterases of D. montana -5720
Hanley, E.W. Ph.D., Professor Developmental genetics -6569
San Barnardino, California 92407: California State College, School of Natural Sciences,
Dept. of Biology, 5500 State College Parkway Tel 714-887-7376
Sokoloff,A. Ph.D. Ecological and population genetics of Tribolium
San Diego, California 92182: San Diego State Univ., Dept. of Biology Tel 714-265-6442
Futch, D.G. Ph.D.,Associate Professor Speciation
Phelps, R.W. M.S., Curator of Stocks
Ratty, F.J. Ph.D.,Professor Cytogenetics
Rinehart, R.R. Ph.D., Professor Mutagenesis
San Francisco, California 94117: U. of San Francisco, Dept. of Biology, Harney Science Center Chinara, C.J. Ph.D., Assistant Professor
San Marcos, Texas 78666: Southwest Texas State Univ., Dept. of Biology Tel 512-245-2288
Alexander, M.L. Ph.D., Professor of Biology
Santa Cruz, California 95064: University of California, Thimann Labs
Poodry, C.A. Ph.D. Developmental genetics
Seattle, Washington 98195: University of Washington, Dept. of Genetics Tel 206-543-
Goldstein, L. B.A., Graduate Student -1707
Hawley, R.S. B.S., Graduate Student -1707
Lindsley, D.E. B.A.,Graduate Student -1707
0'Tousa, J. B.S., Graduate Student -1707
Rosenfeld, A. B.S., Curator of Stocks -1707

Sandler, L. Ph.D., Professor -1622
Sved, J.A. Ph.D.,Visiting Investigator -1707
Szauter, P. B.S., Graduate Student -1707
Seattle, Washington 98195: University of Washington, Dept. of Zoology Tel 206-543-
Endow, S.A. Ph.D.,Postdoctoral Fellow -6894
Haynie, J. Ph.D.,Research Associate -8158
Karpin, G. Research Technician -8158
Laird, C. Ph.D.,Associate Professor -6894
Newman, S. Ph.D.,Research Associate -8158
Palka, J. Professor -8889
Schubiger, G. Associate Professor -8158
Schubiger, M. Ph.D.,Research Associate
Rosenfeld, A. B.S.,Curator of Stocks -1707
South Orange, New Jersey 07079: Seton Hall Univ., Dept. of Biology Tel 201-762-9000 Ext 439 Karuse, E. Ph.D. General and population genetics
Stony Brook, New York 11794: State Univ. of New York, Dept. of Anat. Sci. Tel 514-444-2432
Williamson, D.L. Ph.D.,Associate Professor Maternally inherited infections
Stony Brook, New York 11794: State Univ. of New York, Dept. of Cellular and Comparative
Biology Tel 516-246-
Carlson, E.A. Ph.D., Distinguished Teaching Professor Mutagenesis and mosaicism -7685
Erk, F. Ph.D.,Professor Developmental genetics -5045
Storrs, Connecticut 96268: University of Connecticut, Biological Sciences Group, Genetics and Cell Biology Section Tel 203-486-
Akaboshi, E. Ph.D.,Postdoctoral Fellow Gene organization, regulation -2842
Chovnick, A. Ph.D.,Professor Gene organization, regulation $-3810,3043$
Clark, S. Ph.D, Postdoctoral Fellow Gene organization, regulation -2257, 3043
Krider, H. Ph.D., Associate Professor Regulatory mechanisms -4860
McCarron, M. Ph.D.,Research Associate Gene organization, regulation -2266
Storrs, Connecticut 96268: University of Connecticut, Biological Sciences Group, Regulatory
Biology Section, Box U-42 Tel 203-486-4325
Schwinck, I. Dr.rer nat., Assistant Professor Biochemical and developmental genetics, drosopterins
Swarthmore, Pennsylvania 19081: Swarthmore College, Dept. of Biology
Jenkins, J.B. Ph.D.,Associate Professor Mutagenesis and population genetics
Syracuse, New York 13210: Syracuse University, Dept. of Biology Tel 315-476-5541
Druger, M. Ph.D., Professor Selection, evolutionary genetics Ext 3820
Sullivan, D.T. Ph.D.,Assistant Professor Biochemical \& developmental genetics Ext 3984
Tempe, Arizona 85281: Arizona State University, Dept. of Zoology Tel 602-965-3571
Apostolakos, D. M.S. Research Assistant Developmental genetics -7172
Church, K.K. Ph.D.,Associate Professor Meiotic chromosome behavior -6929
Doane, W.W. Ph.D.,Professor Developmental and biochemical genetics -7172
Finley, D.W. Ph.D.,Professor Developmental and biochemical genetics -7172
Glanzman, Fe. B.A.,Research Assistant, Curator of Drosophila Stocks -7172
Goldstein, E.S. Ph.D.,Associate Professor Molecular and developmental genetics, recombinant DNA -7176
Markow, T.A. Ph.D.,Assistant Research Professor Behavioral and evolutionary genetics -4376
Treat, L.G. Ph.D., Research Assoc. Devel. genetics and cytoplasmic inheritance -7172
Vincent, W.S.III M.S., Graduate Student Developmental genetics -7176
Weide, C.M. M.S., Graduate Student Developmental genetics -7176
Woolf, C.M. Ph.D.,Professor Developmental genetics of Drosophila, human genetics -7279
Toledo, Ohio 43606: University of Toledo, Dept. of Biology Tel 419-531-5711
Bischoff, W.L. Ph.D.,Assistant Professor Developmental genetics Ext 2118 \& 2549
Tuscaloosa, Alabama 35486: University of Alabama, Dept. of Biology Tel 205-348-5960
Davis, D.G. Ph.D.,Associate Professor Chromosome behavior and developmental genetics
Sayers, E.R. Ph.D.,Associate Professor
University Park, Pennsylvania 16802: Pennsylvania State University, Dept. of Biophysics, 618 Life Sciences Bldg. Tel 814-865-2538

Tung, P.S.-C. Ph.D. Effect of radioisotope decays of development of Drosophila
Upton, New York 11973: Brookhaven Nat. Laboratory Medical Dept. Tel 516-924-6262 Ext 7220
Gonzalez, F.W. PH.D. Radiation genetics

```
Urbana, Illinois 61820: University of Illinois, Dept. of Botany (B), Dept. of Zoology (Z)
``` Tel 217-333-2919 (B); 333-4944 (Z)

Brown, E.H. Ph.D., Assistant Professor (Z) Developmental genetics, oogenesis
Gabay, S.J. Ph.D.,Research Associate (B) Recombination
Laughnan, J.R. Ph.D., Professor (B) Cytogenetics, complex loci, developmental genetics
Luce, W.M. Ph.D., Professor Emeritus (Z) Bar series, effects of environmental agents
Steffensen, D.M. Ph.D.,Professor (B) Ribosomal proteins and transfer RNA
Urbana, Illinois 61820: University of Illinois, Dept. of Genetics and Devel. Tel 217-333-4836
Gibson, P.K. Graduate Student Relationship of population structure to migration in \(D\).
Steiner, W.W.M. Ph.D.,Assistant Professor Adaptive significance of allozyme variation, ecological and population genetics
Utica, New York 13501: Aging Program, Masonic Medical Research Laboratory Tel 315-735-2217
Baird, M.B. Ph.D.,Resident Research Staff
Ext 20
Massie, H.R. Ph.D.,Resident Research Staff
Nicolosi, R.J. Ph.D., Research Fellow
Waltham, Massachusetts 02154: Brandeis University, Dept. of Biology Tel 617-647-2737
Hall, J.C. Ph.D.,Assistant Professor Behavior genetics
Steward, D. Ph.D.,Assistant Professor Developmental genetics
Wensink, P. Ph.D.,Assistant Professor Molecular genetics
Washington, D.C. 20001: Howard University, Dept. of Zoology Tel 202-636-6958
Pipkin, S.B. Ph.D. Genetic basis of regulation of alcohol and octanol dehydrogenases
Washington, D.C. 20001: Walter Reed Army Institute of Research, Dept. of Entomology
Schneider, I. Ph.D. D. Tissue culture, developmental genetics Tel 202-576-3049
West Lafayette, Indiana 47907: Purdue University, Dept. of Animal Sciences Tel 317-494-4890
Bell, A.E. Ph.D., Professor Population genetics
West Lafayette, Indiana 47907: Purdue University, Dept. of Biological Sciences
Hartl, D.L. Ph.D.
Pak, W.L. Ph.D.,Associate Professor Physiology of behavior
Williamsburg, Virginia 23185: College of William and Mary, Dept. of Biology
Tel 703-229-3000 Ext 284
Grant, B.S. Ph.D.,Associate Professor Population genetics, behavior
Hollis, R.J. M.A., Graduate Student Allozyme variation in natural populations
Wooster, Ohio 44691: College of Wooster, Dept. of Biology Tel 216-264-1234 Ext 379
Hinton, C.W. Ph.D., Mateer Professor Chromosome behavior

\section*{VENEZUELA}

Caracas: Univ. Central de Venezuela, Inst. de Zool. Tropical, apart 59058 Tel(02) 761948 Ext57
Pérez-Salas, S. M.S., Aggregate Professor Enzyme polymorphism, population genectics, willistoni group

YUGOSLAVIA
Belgrade: Institute for Biological Research, Department of Genetics
Marinkovic, D. Ph.D.,Head of Department Population and behavioral genetics
Andjelković, M. Dr. Res. Assoc.
Bajraktari, I. Dr. Assist.Prof
Jelisavčić, B. Technician
Kekić, V. Dr. Assist. Prof
Savić, S.M. Assist.
Serban, S.N. Assist.
Smit, S.Z. Assist.
Tošić, M. Dr. Assist. Prof.
Belgrade: University of Belgrade, Faculty of Science, Department of Zoology
Krunic, M. Ph.D., Assistant Population genetics, cold hardiness
Marinković, D. Ph.D.,Docent Population and behavioural genetics
Petanović, R. Assist.
Petković, D. Technician
Tucić, N. Dr.```

[^0]: ${ }^{1}$ R.A. Brink dropped in one morning to talk about his current studies on maize, and Hiraizumi distinctly recalls an extended discussion about the chromosomal basis of the departure from equality of the human sex-ratio. As can be seen, Drosophilists in those days were rather more tolerant of work on other, less tractable, organisms than they are today.

[^1]: ${ }^{2}$ This story appears in Human and Mammalian Cytogenetics, An historical perspective by T.C. Hsu (1974). It is interesting that the Drosophila Conferences took on an official name, and, concomitantly, a certain measure of independent reality, in order to satisfy ORNL's bureaucracy!
 ${ }^{3}$ It is probably worth reprinting here a section of the letter Dan Lindsley sent out on September 19, 1961 as the invitation to the Fourth Annual Drosophila Conference held at Oak Ridge:

[^2]: *Average of seven samples collected over a l0-month period.

[^3]: * $\mathrm{p}<0.05$

[^4]: * Bears a r1+ duplication of 2R.
 ** Bears a $1 t^{+}$duplication of 2 L .

[^5]: *,**Present addresses: *CSIRO, Canberra City, ACT, Australia; **Harvard University, Cambridge, Massachusetts.

[^6]: * $\mathrm{p}<0.05$
 $* * p<0.01$

[^7]: *For description, see Lindsley and Grell (1968).

[^8]: *Average $\mathrm{K}=$ the proportion of wild-type among total progeny (excluding crossovers).

[^9]: P = probability; N.S. = not significant

[^10]: *From Mather (1941)
 **A laboratory stock from Texas, USA

[^11]: *One saguaro sample, 77-30 (Arizona no.), and two organ pipe samples, 77-31 and 77-32, collected at Sil Nagya, Arizona in September 1977; and two agria samples, 77-33 and 77-34, collected at Punta Arenas in Sonora, Mexico in November 1977.
 **Expressed as \% ethanol (v/v) x 10^{3}, minimum value-maximum value.

[^12]: See Clone Seeks Tenure, page 4

[^13]: \qquad
 \qquad

[^14]:

[^15]:

[^16]:

[^17]: .

[^18]: \&

[^19]: PERU
 Lima: Universidad Nacional Mayor de San Marcos, Departamento de Ciencias Biológicas, Sección de Biologia y Genética, Apartado No 10338-Sucursal 51, La Colmena

 Gonzales, F.H. Associate Professor Cytogenetics in Peruvian Anopheles
 Pilares, G.L. Associate Professor Evolution genetics, cytogenetics in Drosophila
 Rafael, H.V. Instructor, Biologist Genetics in Drosophila
 Suyo, T.M. Instructor,Biologist Genetics in Drosophila
 Vasquez, E.J. BIologist,Professor Genetics in Drosophila
 SOUTH AFRICA
 Johannesburg, Tvl 2000: Univ. of the Witwatersrand, Dept. of Genetics Tel 724-1311 Ext 775
 Agnew, J.D. Lecturer Population genetics, speciation, African Drosophilidae

 ## SPAIN

 Bellaterra (Barcelona): Autonomous University of Barcelona, Faculty of Sciences, Department of Genetics Tel (93)6920200 Ext 1341-1348

 Cabré, 0. Professor, Head of Department Molecular genetics
 Crespí, S. Graduate Student Molecular genetics
 Creus, A. Assistant Professor Fitness in quantitative characters

[^20]: García, M. Stockkeeper
 Marcos, R. Associate Professor Quantitative genetics, selection
 Peñafiel, T. Assistant Professor Quantitative genetics, asymmetry
 Pérez, M. Assistant Professor Variability in natural populations
 Plá, C. Assistant Professor Quantitative genetics, canalisation
 Sánchez, A. Assistant Professor Enzymes polymorphism
 Barcelona-7: Univ. of Barcelona, Faculty of Biology, Dept. of Genetics Tel 3182085
 Aguadé, M. Assistant Professor Allozyme and quantitative traits
 García, P. Assistant Professor Leucine aminopeptidases in D. subobscura
 Gonzáles, R. Associate Professor Biochemistry of allozymes
 Juan, E. Assistant Professor Biochemistry of ADH
 Monclús, M. Research Associate Ecology and systematics of Drosophila
 Papaceit, M. Assistant Professor Cytogenetics of Drosophila
 Prevosti, A. Professor, Head of Department Population genetics
 Ribó, G. Assistant Professor Natural selection
 Sagarra, E. Assistant Professor Allozyme of D. subobscura
 Serra, L. Assistant Professor Allozyme and quantitative traits
 Vilageliu, L. Assistant Professor Biochemistry of ADH
 Madrid 6: Centro de Investigaciones Biológicas, C.S.I.C., Instituto de Genéyica y
 Antropologia, Valazquez, 144 Tel 2611800
 Ortiz, E. Ph.D., Professor Speciation, chromosomal polymorphism
 Torroja, E. Ph.D., Research Member Population genetics, genetic load and selection
 Madrid 34: Centro de Biologia Molecular, C.S.I.C., Facultad de Ciencias, C-X, Universidad
 Autonoma de Madrid Tel 7340100
 Alonso, C. Structure and function of chromosomes
 Garcia-Bellido, A. Ph.D. Developmental genetics
 Pagés, M. Structure and function of chromosomes
 Oviedo: Univ. de Oviedo, Fac. de Ciencias y Medicina, Dept. de Genética Tel(98524 1026
 Albornoz, J. Teaching Assistant Quantiative genetics
 Blanco, G. Teaching Assistant Population genetics
 Casares, P. Assistant Professor Fitness
 Carracedo, M.C. Teaching Assistant Interspecific competition
 Comendador, M.A. Dr.,Associate Professor Population and ecological genetics
 Dominguez, A. Teaching Assistant Population genetics
 Izquierdo, J. Teaching Assistant Population genetics
 Piñeiro, R. Assistant Professor Population genetics
 Roca, A. Teaching Assistant Salivary chromosomes
 Rubio, J. Ph.D., Professor, Head of Department Population and evolutionary genetics
 Sánchez, J.A. Teaching Assistant Enzyme polymorphisms
 Sánchez, M. Teaching Assistant Behaviour genetics
 Vásquez, E. Teaching Assistant Quantitative genetics
 Santiago De Compostela: Univ. de Santiago, Fac. de Ciencias, Dept. de Genética Tel(981)592827
 Alvarez, G. Assistant Professor Population genetics of D. subobscura
 Dominguez, M. Research Associate Linkage disequilibrium in humans
 Fontdevila, A. Professor, Head of Department Biology of populations of Drosophila
 Izquierdo, E. Research Associate Yeasts of Drosophila buzzatii
 Reigosa, A. Research Associate Competition in Drosophila
 Ruiz, A. Teaching Assistant Chromosomal polymorphism in Drosophila buzzatii
 Santos, M. Research Associate Adh polymorphism in Drosophila buzzatii
 Valadé, E. Assistant Professor Mutators in Drosophila melanogaster
 Zapata, C. Teaching Assistant Experimental populations of Drosophila subobscura
 Valencia: High Technical School of Agriculture, Genetics Dept., Paseo al Mar, 19 Tel 694858
 Baselga, M. Assistant Professor Population genetics
 Cornejo, P. Research Assistant, Curator of Stocks
 Espinos, A. Assistant Professor in charge of Laboratory General and human genetics
 Nuez, F. Assistant Professor Population genetics
 Rico, M. Ph.D., Professor, Head of Department Population genetics
 Zubeldia, A. Ph.D.,Professor
 Burjasot (Valencia: Unviersity of Valencia, Faculty of Biological Sciences, Department of Genetics Tel (96) 3630011 Ext 254-257

 Ferré, J. Graduate Student Pigments in Drosophila
 Frutos, R.de Associate Professor Polytene chromosomes.

