
From IEEE Software, Special Issue on Software for Performance Analysis, September
1991. Preliminary Version. Version as appeared in journal was edited further.

PERFORMABILITY MODELING WITH UltraSAN
�

J. Couvillion, R. Freire, R. Johnson, W. D. Obal II, M. A. Qureshi,
M. Rai, W. H. Sanders, and J. E. Tvedt

Department of Electrical and Computer Engineering
The University of Arizona

Tucson, AZ 85721

(602) 621-6181
usan-project@ece.arizona.edu

ABSTRACT

Stochastic extensions to Petri nets have received growing attention during the past decade
as a model for evaluating the performance, dependability, and performability of computer
hardware, software, and networks. Their formal structure permits solution by analytic
means in many cases. When this is not possible, they can facilitate the automatic gen-
eration of a simulation program to estimate system behavior. This paper describes an
X-window based software tool for evaluating systems that are represented as stochastic
activity networks, a variant of stochastic Petri nets. The tool, known as UltraSAN, incor-
porates the results of recent research to signi�cantly reduce the size of state space that is
considered for analytic solution, as well as the number of event types that are considered
in simulation. Both of these results suggest that the tool will be able to solve signi�cantly
more complex models than previously possible. Throughout the paper, a simple local area
network model is used to illustrate the concepts, user interface, and model construction and
solution methods implemented in the package.

Keywords: Performance Evaluation, Dependability Evaluation, Performability Evalu-
ation, Stochastic Petri Nets, Stochastic Activity Networks

�This work was supported in part by the Digital Equipment Corporation Faculty Program: Incentives
for Excellence, Intel Corporation, Bell Communications Research, US West Advanced Technologies, the UA
Foundation and the O�ce of the Vice President for Research, and by an equipment grant from AT&T.

I Introduction

Modern computer systems and networks must be carefully evaluated in order to insure

acceptable performance and dependability during their use. This evaluation is needed in

many phases of the life-cycle of a system, including design, implementation, and modi�c-

ation. While engineering \rules of thumb" are su�cient for simple systems, they cannot

accurately predict the performance of today's complex systems, which may be made up

of many components, each complex in itself. Because of this, more sophisticated methods

have been developed to predict system performance and dependability. Broadly speaking,

two distinct approaches have evolved: testing and modeling.

While evaluation via testing has been used successfully to evaluate small to moderate size

systems, its sole use on large and complex systems is technically di�cult, and economically

infeasible. In particular, the size and complexity of modern computer software, hardware,

and networks limit the use of testing as an evaluation method. Not only does testing require

that the system be implemented, thus precluding testing during design, it may require that

the use of the system under test be interrupted. Modeling is a promising alternative to

testing. It can, in many cases, avoid the complexity problem by retaining important system

information (relative to the desired measures of performance) while abstracting unnecessary

details. Furthermore, the e�ect of design changes can be investigated easily by changing

the model. However, traditional performance and dependability modeling techniques are

limited in two ways: 1) they require that the performance and dependability of a system be

evaluated separately, disregarding any dependencies that exist between these two aspects

of system behavior, and 2) they can only be applied to small to moderate size systems.

While these limitations may not be severe for simple systems, they do make the evaluation

of complex systems, such as computer systems and networks, di�cult by traditional means.

The concept of \performability" [1] allows us to overcome the �rst limitation. Informally,

performability quanti�es a system's \ability to perform" in the presence of faults. This

ability is expressed formally by probabilities. A speci�c performability measure is obtained

by de�ning just what \performance" means for the evaluation in question. The choices

here are virtually limitless, including the binary-valued performance measures (success or

failure) considered in reliability evaluation, discrete-valued variables such as the number

of successful message transmissions during a �xed period of time, and continuous-valued

performances measures such as packet transmission rates, product yield probabilities, and

1

times to carry out a particular operations.

While the concept of performability allows the behavior of complex systems to be de-

scribed in general terms, it in itself does not suggest methods by which a performability

model may be constructed. Although simple models can be constructed at the process level,

realistic systems require more sophisticated representations to account for performance and

dependability in a uni�ed manner. Queueing networks, although useful in the context of

strict performance evaluation, do not su�ce since their structure is �xed and cannot account

for fault-related behavior. Stochastic extensions to Petri nets (SPNs), on the other hand,

permit the representation of both performance and dependability characteristics, depending

on the interpretation given to tokens in the model.

One particular variant of SPNs, known as \stochastic activity networks (SANs)," has

been used successfully to evaluate a wide variety of computer systems and networks. The

utility of SANs in evaluating complex distributed systems was proved by their implement-

ation in a software package known as METASAN1 [2]. METASAN allowed testing of both

the ease of representation of large systems as stochastic activity networks and the e�ciency

of current solution methods in solving the models. The experience gained has shown that

stochastic activity networks may be used to evaluate a wide variety of systems. In partic-

ular, applications have included computer-communication networks [3, 4, 5, 6], computer

systems [7], transaction processing systems, and automated manufacturing systems.

While each of these studies illustrated the utility of SANs in representing realistic sys-

tems, they also pointed out ine�ciencies of traditional stochastic Petri net solution methods.

Informally, the problem is, when traditional analytic solution techniques are used, that the

complexity of the solution (in this case the size of the resulting stochastic process) grows

extremely rapidly as the size of a system increases, quickly resulting in a situation where

solution is no longer practical. Similarly, if the intended solution is via simulation, the run

time necessary to obtain a statistically-signi�cant solution increases rapidly, resulting in

simulation run times that are unacceptable.

This motivated new work on construction and solution methods for SANs, and resulted

in several innovations in model construction and solution methods for stochastic Petri nets.

In particular, the work included:

1. De�nition of a class of SAN-level performability variables that are common to both

1METASAN is a registered Trademark of the Industrial Technology Institute.

2

analytical and simulation-based solution methods [8],

2. Development of methods that make use of the performance variable choice and struc-

ture of the SAN to greatly reduce the size of the stochastic process required for an

analytic solution [9], and

3. Development of methods that make use of the performance variable choice and struc-

ture of the SAN to reduce the number of activities that must checked on each state

change and, hence, speed up solution by simulation [10].

In order to be useful, however, these techniques must be implemented in program form.

This paper describes a recently developed software tool for evaluating systems represented

as stochastic activity networks. The tool, known as UltraSAN, incorporates the results cited

above in an easy-to-use, graphical, X-window based package. In the discussion that follows,

Section 2 reviews the modeling framework used by the tool, including a brief discussion

of stochastic activity networks, composed models, and associated performability variables.

Section 3 presents an overview of the organization of the tool, while Section 4 discusses

the user interface. This is followed, in Section 5, by a discussion of the implementation of

model construction and solution methods, for both analysis and simulation. Finally, Section

6 o�ers conclusions and suggestions for future work. Throughout the paper, a simple local

area network model is used to illustrate the concepts, user interface, and model construction

and solution methods implemented in the package.

II Modeling Framework

Before describing UltraSAN, we describe the modeling framework on which the tool is

based. This framework de�nes, in precise terms, the models and performability variables

available to a user of the package.

A Stochastic Activity Networks

The models, known as stochastic activity networks (SANs) [11, 12, 13], are a stochastic

extension to Petri nets. Structurally, they consist of activities, places, input gates, and out-

put gates. Activities are of two types: timed and instantaneous. Timed activities represent

activities of the modeled system whose durations impact the system's ability to perform.

3

size

arrival

A

access

intra

channel

C

B
finish

sense_channel

Figure 1: Station Submodel

To illustrate SAN components, we consider a simple model of a CSMA/CD station2 In this

model, as shown in Figure 1, timed activities are used to represent the following events:

arrivals of frames from a higher-level protocol to be transmitted (activity arrival, in Figure

1), attempts to access the channel (activity access), and the time to transmit packets (activ-

ity �nish). Instantaneous activities, on the other hand, represent system activities which,

relative to the performability variables in question, complete in a negligible amount of time.

Cases associated with activities (not used in this example, but represented as small circles

on one side of an activity) permit the realization of uncertainty concerning what happens

when an activity completes.

Places are used to represent the \state" of a system (e.g., places A, B, C and channel)

and may contain tokens (e.g., the small black dot in A is a token). For example, the number

of tokens in A represents the number of frames awaiting transmission. When an activity

completes, one token is removed from each of the places directly connected to the input

of the activity (e.g., place C is connected to the input of activity access), and one token

added to each of the places directly connected to the output of the activity (e.g., place A is

connected to the output of activity arrival).

Input gates and output gates permit greater exibility in de�ning enabling and comple-

tion rules. Input gates have enabling predicates and functions, while output gates have only

2Note that is this is a simple model, intended only to illustrate the functioning and use of SANs. More

detailed CSMA/CD models exist.

4

Gate Type Enabling Predicate Function

size input MARK(A) < 2 identity

intra output { if (MARK(channel)==0) f
MARK(channel) = 1;
MARK(B) = 1; g

else if (MARK(channel)==1) f
MARK(channel) = 3;
MARK(C) = 1;
MARK(A) = MARK(A) + 1; g

else if (MARK(channel)==2) f
MARK(C) = 1;
MARK(A) = MARK(A) + 1; g

else if (MARK(channel)==3) f
MARK(C) = 1;
MARK(A) = MARK(A) + 1; g

sense channel input MARK(channel)==2 jj MARK(channel) = 0;
MARK(channel)==3

Table 1: Gates for Station Submodel

functions. The enabling predicate can be either true or false and, as seen in that which fol-

lows, controls the enabling of an attached activity. The function describes an action (change

in marking) that will occur upon completion of the activity. Activities are enabled if there is

at least one token in each of the places directly connected to the activity and if the predicate

of each associated input gate is true (i.e., holds). For example, in the CSMA/CD model

(see Table 1), input gate size holds, and hence activity arrival is enabled, when there are

less than two tokens in place A. Note that the keyword MARK(place) is used to represent

the number of tokens in place. Input gate size is thus used to model a �nite queue on the

interface between the media access and logical link control sublayers.

Output gates, together with directly connected output places, are used to specify the

action to be taken upon completion of an activity. For example, the output gate (intra)

connected to activity access represents the result of the attempt to access the channel. In

this case, di�erent numbers of tokens in place channel are used to represent the status of the

bus; zero tokens represents an idle bus, one token an unpropagated frame (a frame which,

due to the propagation delay of signals on the media, cannot yet be detected by all stations

on the bus), two tokens a propagated frame, and three tokens a collision. Propagation of

5

the frame on the bus is a global action, and hence handled by a separate SAN submodel,

which will be discussed later. As can be seen in Table 1, the status of the bus and station

model is possibly changed by gate intra upon completion of activity access, depending on

the marking of place channel at the time.

B Variable Speci�cation

The formalism used to represent variables at the stochastic activity network level is

an extension of the idea of a \reward model." Traditional reward models consist of three

components: a stochastic process, a reward structure, and a performance variable de�ned

in terms of the stochastic process and reward structure. The reward structure typically

consists of two types of rewards: an impulse reward that is associated with each state

change, and a rate reward that is associated with the time spent in a state. We extend

this idea to the SAN level, where impulse rewards can naturally be assigned to activity

completions, and rate rewards can be assigned to particular numbers of tokens in places.

Performance, dependability, and performability variables can then be easily de�ned in

terms of these rewards. In particular, we have de�ned a family of variables, distinguished

by the intervals of time on which they depend (see Figure 2). Three categories of variables

are distinguished: instant-of-time variables, which represent the status of the SAN at either

a particular time t or in steady state, interval-of-time variables, which represent the total

accumulated reward obtained from executing the SAN for a particular interval of time, and

time-averaged interval-of-time variables, which represent the time-averaged accumulated

reward obtained from executing the SAN for a particular interval of time. For the second

and third categories, three types of variables are considered. The �rst type represents the

total or time-averaged reward accumulated during some interval [t; t+ l]. The second type

corresponds to an interval of length l as t goes to in�nity, and is useful in representing

the reward that is accumulated during some interval of �nite length in steady state. The

�nal variable type corresponds to the total or time-averaged reward accumulated during an

interval starting at t and of length l as l!1.

Together, these variables and the reward structure discussed previously give us the

ability to represent many traditional and non-traditional measures of performance, including

queueing time, queue length, processor utilization, steady-state and interval availability,

reliability, and productivity. In addition, if some high-level measure of \worth" is de�ned,

it can be expressed as a particular reward structure of this type. For more details, and

6

Reward Structure

t

[t,l] [t,l] [t,l]

[t,l] [t,l] [t,l]
lim as t goes
to infinity

Time-Averaged Interval-of-Time

Interval-of-Time

lim as t goes
to infinity

lim as t goes
to infinity

Instant-of-Time

lim as l goes
to infinity

lim as l goes
to infinity

Figure 2: Types of Variables Considered

examples of the construction of several variables using this structure, see [8].

C Reduced Base Model Construction

Given the SAN and variable speci�cation formalism just described, it is possible to

investigate construction of small stochastic process representations that permit solution for

a speci�ed variable or variables. This is known as model construction. More precisely, it is

the process of identifying a performance variable and determining a base model (stochastic

process) that permits solution of that variable. Model solution, in turn, is the determination

of the probabilistic nature of the selected performance variables.

Excellent progress in the development of model construction methods has been made

by taking a more general view in the base model construction process, in which knowledge

of the structure of the network and performance variable is used to determine the notion of

state to use in the resulting stochastic process [9]. Traditional model construction methods

for stochastic Petri nets and extensions do not use this approach. They typically obtain

the base model stochastic process by choosing the reachable stable markings of the network

to be the states of the process. To distinguish between these two approaches, a stochastic

7

process which supports a large class of variables is referred to as a detailed base model, while

a stochastic process constructed speci�cally to support a designated performance variable

is a reduced base model.

The reduced base model construction methods developed in [9] are applicable for a

restricted, but common class of stochastic activity networks and performance variables.

This class includes stochastic activity networks that have some replicated components,

such as processors in a multiprocessor or nodes in a computer network, and variables that

are regular in the sense that they assign equal rewards to identical events and markings in

di�erent replicated components. These methods abstract unnecessary information from the

base model without rendering it unsolvable.

Similarly, work has been done by the authors to speed up simulation. In discrete event

simulation, a \future events list" is typically used to keep track of the timings of events

which may occur some time in the future. The approach in [10] uses the structure of the

SAN to manage a dynamically varying number of future event lists. In particular, since

activities within replicated submodels are equivalent with respect to both their enabling

conditions and associated rewards, they can be considered as a single event type in the

simulation. This greatly reduces the amount of time spent updating the future event list.

To use this approach, a complete (or \composed") model is built from one or more

SAN submodels using \replicate" and \join" operations. Formally, the resulting model is

known as a composed SAN-based reward model (SBRM). The replicate operation replicates

a SAN and associated reward structure a certain number of times, holding some subset of

its places, called its \distinguished places" in [9], common to all resulting submodels. It

is through these distinguished places that the replicated submodels interact. Each replica

will have values for the impulse and rate rewards speci�ed as in the original submodel. The

replicate operation allows one to construct composed models that consist of several identical

component submodels.

The combination of several di�erent submodels is accomplished using the join operation.

Informally, the e�ect of the operation is to produce a composed model which is a combin-

ation of the individual submodels. Again, distinguished places play an important role in

the construction operation. In this case, however, a list of places is associated with each

component submodel. The �rst place in each of the lists is merged to form a single place,

the second place is merged to form another place, and so on. We allow particular elements

on the lists to be null, permitting the case where certain places are created from a proper

8

prop_delay_intra

pda_gate

channel

Gate Type Enabling Predicate Function

pda gate input MARK(channel)=1 MARK(channel)=2;

Activity Distribution Type Parameter (Rate)

prop delay intra exponential 20

Figure 3: Network Submodel

subset of the submodels joined. This extension (from that in [9]) presents no problem with

either solvability or support, but provides more exibility in de�ning composed models.

In terms of our running LAN example, a model for the entire network is built by �rst

de�ning a SAN submodel to represent the propagation of signals on the bus, as shown in

Figure 3. We then use the replicate and join operations just de�ned to construct a complete

composed model. In particular, Figure 4 shows a composed model for a CSMA/CD network

with n identical stations. The leaf nodes represent the individual submodels, together with

their reward structures (each C is a function representing the impulse rewards for the model;

each R represents the rate rewards). The station submodel is replicated n times with the

place channel held common among all replicas. This submodel is then joined to the network

submodel by joining the place named channel in each submodel to form a single new place.

The resulting composed model can then be solved by both analysis and simulation, as will

be seen in the following sections.

III UltraSAN Organization

UltraSAN was developed for the UNIX operating system for DEC, Sun, and AT&T

9

J
[channel],[channel]

R
n
{channel} NETWORK Z Z(S , C , R)

STATION st st(S , C , R)

Figure 4: Composed Model

workstations, using the X window interface for portability. The software was developed in

a modular manner, as shown in Figure 5. In this �gure, the boxes represent executable

programs, and the ovals represent data �les which are either generated by, or serve as

input to, the constituant tools. Broadly speaking, the tools can be classi�ed as either

model speci�cation or model construction and solution tools. The model speci�cation tools

were written in C++ and utilize the InterViews object oriented library interface to X. The

model construction and solution routines were written in C. In all, UltraSAN consists of

about 70,000 lines of code.

Model speci�cation is often the most tedious part of the modeling process, so every

attempt was made to simplify and expedite this task in UltraSAN. Three main tools are used

for model speci�cation: the SAN editor, the composed model editor, and the performance

variable editor. The SAN editor expedites the speci�cation of SAN submodels by allowing

the user to enter the SAN graphically, almost exactly as he would draw it on paper. The

composed model editor is used to draw a tree representing the connection of the submodels.

Each node in the tree is a replicate or join operation, and each leaf a submodel. Finally, the

performance variable editor is used to specify reward variables. Rewards may be speci�ed

for activity completions or may be based on speci�c markings of the model.

The model construction and solution modules require no direct interaction from the

user. All of the information needed for the solution of a model is generated from the

user's speci�cation. If an analytic solution method is chosen, the reduced base model

10

Reduced
Base Model
Constructor

Steady State
Simulator

Terminating
Simulator

Direct
Steady State

Solver

Iterative
Steady State

Solver

Transient
Solver

SAN
Editor

Composed
Model
Editor

Performability
Variable

Editor

Composed Model
Description Variable

Description

Performability

Model Description

SAN
Description

SAN
Description. . . .SAN

Description

Reduced Base
 Model

. . . .

Figure 5: Organization and Data Flow of UltraSAN

11

constructor is used to generate the reduced base model for the model. Following the model

construction, the selected solver is executed on the generated process. Two analytic solvers

for steady-state (or long-run) variables are provided: a direct solver based on the LU-

decomposition technique and an iterative solver based on successive over-relaxation. If a

value for a performance variable at some particular time is desired, the transient solver

may be employed. If simulation is preferred or model characteristics make analytic solution

impossible, the simulation solvers can be used. The terminating simulator solves for variable

values at speci�c points or intervals of time, while the steady state simulator functions

exactly as its name implies. Each of these solvers will be discussed in more detail in Section

V.

UltraSAN was constructed in a modular manner, thereby facilitating addition or re-

placement of package components. The major components are coupled only through a set

of �les with a speci�ed format, as shown in Figure 5. By adhering to these speci�cations, it

is possible to add to or replace any of the main components in the tool. For example, since

the output of the reduced base model constructor is known, additional analytical solvers are

easily added to the package. If alternative speci�cation tools were desired, any or all of the

current tools could be replaced as long as the description �les retained the same format.

IV User Interface

The user interface provides a simple method for describing the system to be evaluated as

well as the performance, dependability, and/or performability measures to be determined.

The system is described as one or more stochastic activity network modules, organized in a

hierarchical manner using replicate and join operations. Using this method, the user refers

to a given modeling study as a \project," which may consist of one or more \subnets." Each

subnet is a stochastic activity network together with a performance variable speci�cation.

These subnets are then combined together to form a \composed model."

At the highest level, a user interacts with the system through three user interfaces: the

SAN editor, the composed model editor, and the variable editor. Each of these editors is

described in more detail in the following.

12

Figure 6: SAN Editor

A SAN Editor

The SAN editor (sanedit) is used to specify subnets. Input to the SAN editor is graph-

ical. Figure 6 depicts the editor representation of the station submodel described earlier.

As shown here, a user of sanedit simply draws a SAN corresponding to the subsystem he

wishes to model, using the prede�ned model primitives on the left of the �gure. Zooming

and panning are supported (via the magnify button and the zoom and pan arrows near the

lower left corner of the screen). Attributes for each of the model components can be edited

by clicking the mouse on the de�ne tool and then clicking on the component itself. When

this is done, the appropriate form will pop up. For example, if the user selected the activity

�nish, the form shown in Figure 7 would appear on the screen. As can be seen, attributes

for an activity can be easily speci�ed. In particular, the activity time distribution for the

activity can be selected by clicking on a particular distribution. When this is done, the

appropriate parameters for the distribution will appear in the window (in this case, rate,

since the exponential distribution was selected), and the user may enter values for these

parameters. Next, if there had been more than one case for this activity, there would be

13

Figure 7: Timed Activity Editor

14

Figure 8: Output Gate Editor

a text editor for each case, to allow speci�cation of its probability. These probabilities can

be a simple value, or a complex marking dependent function. Reactivation functions are an

advanced aspect of SANs (see [13] for information, if desired). They are speci�ed in a man-

ner similar to activity time parameters, by entering predicates de�ning activation markings

and reactivation markings in the text windows shown. If no entry is given in either of these

windows, the system assumes the default situation where an activity is never reactivated.

Input gates and output gates are speci�ed in a similar manner, i.e. by applying the de�ne

tool to pop up a speci�cation form. For example, consider the output gate intra, which

updates the state of the channel after an access attempt. Figure 8 shows the code that is

entered to specify intra's output function. The speci�ed code can be any valid sequence of

C statements, where the keyword \MARK" is used to refer to the marking of a place.

B Composed Model Editor

After input of each of the subnets, the user then speci�es the composed model structure.

This is also done graphically, using the composed model editor (compedit) as pictured in

Figure 9. As depicted in the �gure, the composed model graph consists of the three types of

nodes described earlier: replicate nodes, join nodes, and subnet nodes. Recall that subnet

nodes refer to the subnets the user has already created. Similarly, a replicate node operates

on the submodel that it is connected to, producing a new submodel that consists of a

speci�ed number of copies of the original submodel, holding a subset of places common

15

Figure 9: Composed Model Editor

16

Figure 10: Join Editor

to all the replicas. Finally, join nodes are used to merge two or more dissimilar models,

connecting some subset of places in each submodel with places in the other submodels. It

is important to note that both the join and replicate operations can be applied multiple

times in an iterative manner. In other words, the result of an operation on a submodel is

itself a submodel on which further operations can be performed.

As in sanedit, a user of compedit speci�es the composed model by simply drawing the

graph corresponding to a model, using the composed model primitives on the left of the

�gure. Speci�cation of the distinguished places associated with each replicate and join node

is done with pop-up forms, similar to the method in which SAN components are speci�ed.

In particular, the de�ne tool is applied to a node, and the appropriate node editor pops

up. For example, to specify the details of the join node in Figure 9, the join editor shown

in Figure 10 is used. To identify a place in one subnet with a place in another, one clicks

the mouse on the boxes next to the place names. For example, Figure 10 indicates the join

editor con�guration if the place channel in the station subnet is to be identi�ed with the

place channel in the network subnet. Multiple connections between di�erent subnets are

allowed by the join editor but a particular place can only be used in one connection. Like the

join editor, the replicate editor uses check boxes to allow simple denotation of places that

are to be common among the replicas. This structure description method makes it easy to

represent large, complicated systems composed of heterogeneous subsystems. Furthermore,

it provides the formal structure necessary for the e�cient solution of the models using either

mathematical analysis or simulation.

17

Figure 11: Performability Variable Editor

C Performability Variables and the Performability Variable Editor

In UltraSAN, variables are speci�ed through the use of the performability variable editor

(varedit). As shown in Figure 11, the initial screen of varedit provides variable manage-

ment functions. Two classes of variables are supported: the reward variables disucessed

earlier, and variables which estimate the time between completions of activities (called

\activity variables," in the following). The top portion of the editor screen is used to add,

delete, edit, and specify simulator statistics for the reward variables, while the bottom is

used to add, delete, and specify simulator statistics for activity variables.

As reviewed earlier, reward variables have rates and impulses associated with them,

18

Figure 12: Rate and Impulse Reward Editors

and can be obtain either by analysis or simulation, depending on model characteristics. To

specify an impulse reward associated with the completion of an activity, the user simply

clicks on the \Edit Impulse" button to pop up the impulse reward editor. The impulse

reward editor displays all of the activities in the composed model, organized by submodel.

Adjacent to each activity is a box where the impulse reward may be entered. For example,

if the number of times a particular activity, say arrival, completed during some interval is of

interest, an impulse reward of one should be assigned to that activity. Rate-based rewards

are entered through the rate reward editor, shown in Figure 12. Rate rewards are speci�ed

as pairs consisting of a predicate and a rate function. If the predicate of a given pair is

true for a marking, the rate determined by the rate function is earned while the model is

in that marking. For example, in Figure 12, a rate reward equal to the marking of place

A is earned at all times. In terms of the LAN example, this variable corresponds to the

queue length of a station. Note that the speci�ed predicate is 1, indicating that the rate

reward will be earned for all markings. Multiple pairs can be de�ned; they are accessed

by pressing the \Next Rate" and \Prev Rate" buttons near the top of the form. The total

rate earned while in a marking is then the sum of the rates for all pairs whose predicates

are true in that marking. Since rate rewards are speci�ed on a per subnet basis, the \Prev

Subnet" and \Next Subnet" buttons are provided to allow the user to scroll through the

19

Figure 13: Simulator Statistics Editor

subnets in the composed model. The \Edit Stats" button is used to specify characteristics

of the variables that are speci�c to simulation. As seen in Figure 13, the desired estimators

for a variable can be speci�ed, along with a desired con�dence level and relative con�dence

interval width. Furthermore, for steady state simulation, the initial transient and batch

size are speci�ed. For the terminating simulation, the type of variable, along with the time

point or interval associated with the variable are speci�ed.

Activity variables are speci�ed in the lower portion of the main varedit screen, and

can currently only be estimated via simulation. They are speci�ed in a manner similar to

the reward variables, except that no rate or impulse need be speci�ed. Instead, the user

simply gives the subnet and activity name of the activity for which the estimation of the

time between completions is desired. This information is then passed to the simulator,

which collects the necessary data to estimate the mean or variance of the time between

completions of the activity.

V Model Construction and Solution

After input of the system description and measures, the solution can be obtained by

either analysis or simulation, depending on system characteristics. Informally, stochastic

20

activity networks can be solved via analytic methods when all activity time distributions

are exponential, activities are reactivated often enough to ensure that their rates depend

only on the current state, and the state space is not too large relative to the capacity of the

machine.

A Reduced Base Model Construction

If analysis is the intended solution method, the internal representation of the system is

passed to the reduced base model constructor (see Figure 5). As outlined in the Section II,

this module takes a description of a composed model, including one or more SAN submodels

and performability variables, and builds a state-level representation of the model. The state-

level representation consists of a set of states, rates to transition between each pair of states,

and a set of impulse and rate rewards for each state. The notion of state employed is variable

and depends on the structure of the composed model. One can think of the state as an

impulse and rate reward plus a state tree [10], where each node on the state tree corresponds

in type and level with a node on the composed model tree. Furthermore, each node in a

state tree has associated with it a subset of the distinguished places of the corresponding

node in the composed model diagram. These places are those that are distinguished at the

node, but not at its parent node.

Nodes are connected by directed arcs. An arc that connects a parent node i to a node

j has associated with it an integer ni;j, which represents the number of occurrences of the

submodel j in the current state of the composed model. By de�nition, each outgoing arc

from a join node has ni;j equal to one, since there is one copy of each submodel in the

join operation. Arcs originating from replicate nodes may have values greater than one.

Furthermore, the sum of the values of all arcs from a replicate node is the number of times

that submodel was replicated in the composed model.

The initial state tree for the LAN example is shown in Figure 14. Initially, all three

station submodels are in the same marking (where the marking of channel is 0, the marking

of A is 1, B is 0, and C is 1). Places A, B, and C are at the leaf node corresponding to the

network model, since they are local to that model. Place channel is at the root node, since

it is common to all station submodels and the network submodel. Note that each leaf on

the state tree represents a submodel type in a particular marking. In this case, since the

tree represents the initial marking, all submodels of a given type are in the same marking.

After the initial state is constructed, generation of the reduced base model proceeds as

21

1 1

3

R NETWORK

STATION (1,0,1)

J (0)

Figure 14: Initial State Tree for LAN Model

follows. First, each activity that may complete in the initial state is completed, generating

a new state tree and impulse reward corresponding to each possible next state that may

be reached from the initial marking. If a potential next state already exists, a non-zero

rate from the original state to the reached state is added to the list of rates to other states

for the originating state. If the reached state is new, then it is added to the list of states

which need to be expanded. A rate from the original state to the new state is then added to

the list of rates for the original state. Generation of the reduced base model then proceeds

by selecting states from the list of unexpanded states and repeating the above operations.

The procedure terminates when there are no more unexpanded states (signifying that the

state space is �nite and has been generated), or when the capacity of the machine to store

additional states is exhausted. In this case, the state space is in�nite or too large to be

computed. For a more precise description of this algorithm, see [9].

The result of the procedure, if it terminates successfully, is a set of reduced base model

states, rates between these states corresponding to activity completions in the stochastic

activity network, and for each variable de�ned, an impulse and rate reward for each state.

This state-level reward model serves as input to the analytical solvers.

22

B Analytical Solvers

After a reduced base model is constructed, solution for the desired variables proceeds us-

ing known stochastic process solution techniques to obtain the appropriate state-occupancy

probabilities. These probabilities, together the impulse and rate reward calculated for each

state while generating the reduced base model, are then used to generate the mean, vari-

ance, probability density function, and probability distribution function for each variable.

An understanding of the workings of these techniques is not necessary to use the package.

However, for those familiar with such techniques, we briey review the choices we have

made in their implementation as well as the options available to users at run time. Three

analytical solvers are provided: a direct steady-state solver, an iterative steady-state solver,

and a transient solver. The two steady-state solvers can be used to determine the long-run

behavior of a system. Examples of variables in this category include the average response

time of a computer network, the utilization of a computer network or machine, and the

availability of a network node or machine. The transient solver solves for system charac-

teristics at particular times. For example, one may be interested in the probability that a

network node or machine is up at a particular time, or the status of a process at a given

time.

The direct steady-state solver is based on a technique known as LU decomposition. It

permits the calculation of the expected value, variance, probability density function, and

probability distribution function of steady-state instant-of-time variables. Two methods are

used to reduce the �ll-in of the matrix during solution. The �rst is the improved generalized

Markowitz strategy, which selects a next pivot element based on an heuristic that can reduce

�ll-in. The second is a technique advocated by Osterby and Zlatev, in which elements that

are less than some value (the drop tolerance) are set to zero during the solution algorithm.

Iterative re�nement is then used to obtain a correct �nal solution. The drop tolerance can

be speci�ed by the user at run time, and can be set to zero if use of the technique is not

desired. Likewise, the pivoting mechanism can be turned o� if desired. In any case, an

estimate of the error in the �nal solution is given. When iterative re�nement is used, the

norm of the residual is used as the error estimate. When it is not used, a method by Cline

is used to estimate the condition number and, in turn, estimate the error of the solution.

Output from this, and all of the analytic solvers, is both textual and graphical. The mean

and variance of each variable is given in textual form, while the probability density and

23

distribution functions are given in graphical form.

The iterative steady-state solver is based on the successive over-relaxation technique.

This method is applicable to state-spaces much larger than the direct technique, due to

its more modest space requirements, but is not guaranteed to converge for all reduced

base models and initial conditions. As with the direct steady-state solver, it is intended

to be used to solve for steady-state instant-of-time variables. The optimal acceleration

factor is impractical to compute, even for a given problem, and hence left to the user to

select. Values that are approximately optimal can by determined by trial and error or

by monitoring the rate of convergence and adaptively changing the acceleration factor. A

second solver parameter that may be set by the user is whether to attempt to make the

process matrix diagonally dominant. Although not proven, Golub implies that the more

dominant the diagonal elements, the faster the solution will converge. If turned on, this

option will attempt to make the process matrix close to diagonally dominant. A method

must also be used to terminate the solver if divergence is suspected. As implemented, the

solver is terminated if the maximum number of iterations is exceeded or if the error between

the iterates gets very large. Each of these values have defaults which can be overridden by

a user. As with the direct solver, an estimate of the error in the solution is provided, by

computing the norm of the di�erences between the last two iterates.

The transient solver provides solutions for instant-of-time variables at particular times,

using randomization. The technique used is a computationally stable version of one by

Gross and Miller. The method is based on the idea of subordinating a Markov process to a

Poisson process. This method is well suited to processes such as these for several reasons,

including computational e�ciency, preservation of matrix sparsity, and the ability to solve

to user-speci�ed tolerances. Simultaneous solution for multiple time points is supported.

This approach is signi�cantly more e�cient than solving for multiple time points iteratively.

The technique, as implemented, is very memory e�cient. In particular, by computing the

probability for each time point one state at a time, only one column of the state transition

probability matrix, raised to various powers, need be kept in memory at any time. As

with the other two analytic solvers, the transient solver yields means, variances, probability

density functions, and probability distribution functions for each variable solved.

24

C Simulation Solvers

When system characteristics preclude mathematical analysis, simulation can be used

as the solution method. Simulation is performed directly using the internal SAN, com-

posed model, and performance variable representation created by the user interface module.

Again, as with the stochastic process generator, the constructed simulation program makes

use of the structure of the SAN and choice of performance variables to speed up solution

of the system. Two simulation solvers are available: a terminating (transient) simulator

to solve for variables that are a function of the behavior of a SAN at a particular time or

interval of time, and a steady-state simulator to solve for long-run measures of perform-

ance, dependability, and performability. Both simulation solvers provide estimates of the

accuracy of the result, using an iterative method (batch means, in the steady-state solver,

and replication in the terminating solver) for estimating the con�dence interval at a user

speci�ed level.

As with the reduced base model constructor, the simulators operate on state trees.

Recall that each leaf on the state tree represents one or more submodels in a particular

marking. This fact can be used to reduce the number of activities that are checked for

a change in their \status" (i.e., enabled or disabled) from one state to another. This is

possible, since, if an activity a has a particular status in some marking, then all replicas of

this activity whose input places in the same marking as the input places of a will have the

same status as a.

Building upon this idea, we de�ne a representative activity as an activity that \repres-

ents" the set of replicated activities a1 2 A1, a2 2 A2, : : :, ai 2 Ai, : : :, an 2 An, where Ai

is the set of activities of a submodel i, and i is one of a set of n replicated submodels of a

particular type in identical markings. Each representative activity is an event type in the

new simulation technique, whereas activity completions are events.

As seen earlier, the state tree is organized in a manner that allows for identi�cation

of sets of replicas in a particular marking, as well as the number in that marking. During

simulation, instead of checking every replicated activity for its status in the current marking,

we use the representative activities. These checks are then reduced to a single check per set

of replicated activities for a set of submodels in identical markings. The events for each of

these replicated activities can be grouped into a list related to the representative activity.

We call this list of potential completion times a \compound event". More formally, we de�ne

25

a compound event, ea, for representative activity, a, as the list of potential completion times

ft1; t2; : : : ; tng, where n is the number of activities represented by a.

The number of submodels in a particular marking (n) can be found for every leaf, using

the state tree, by multiplying the numbers on the arcs on the route to the leaf. The set

of compound events can be then built from the list of enabled activities for each set of

submodels represented by a leaf node.

The LAN example is useful to illustrate a possible state tree and corresponding multiple

future events lists. Speci�cally, consider the composed model of Figure 4, where STATION

is the submodel of Figure 1. STATION is replicated three times holding place channel as

common. The result is then joined with the network submodel of Figure 3, holding the

same place, channel, as common.

Figure 14 illustrates the initial state tree for the LAN model. The vectors beside nodes

represent the marking of the set of places at the nodes. Figure 15 shows the multiple future

events lists associated with this state. The compound events are represented by the names of

the corresponding representative activity. One leaf is associated with the set of compound

events E1 and the other with E2. E1 has two compound events scheduled, arrival and

access. The �rst number of the subscript of t relates it to a particular set, and the second

identi�es it with a representative activity in SAN submodel of type STATION. Since there

are three replicas of type STATION in the same marking, the result of multiplying the

integers at each arc on the route from the node at the highest level to the leaf, arrival

has three potential completion times. The compound event access similarly has the same

number of times. E2 has no compound events, since there are no activities enabled in

NETWORK in this marking.

Figure 16 shows a possible state tree resulting from the completion of activity access in

one of the submodels of type STATION. Because this caused a change in the marking of

a place at the lowest level, there is one more leaf. Each leaf represents a set of submodels

of the same type in identical markings. For instance, the leftmost leaf is representing a set

of two submodels of type STATION in identical markings. The compound events for the

future events list associated with this leaf have, therefore, two elements each.

Precise algorithms for generating new state trees and future event lists can be found in

[10]. From the example, however, one can see that multiple future event lists are employed,

each corresponding to one or more submodels of a particular type in a speci�c marking.

This makes it possible to use compound events to represent the completion times of several

26

1 1

3

R NETWORK

STATION (1,0,1)

J (0)

E1: {arrival, access}

arrival: {t111, t112, t113}

access: {t121, t122, t123}

E2:

Figure 15: Future Events Lists for Initial State Tree

1 1

R NETWORK

STATION (1,0,1)

E1: {arrival, access}

STATION (0,1,0)

J (1)

2 1

arrival: {t111, t112}

access: {t121, t122}

E3: {arrival}

arrival: {t113}

E2: {prop_delay_intra}

prop_delay_intra: {t2}

Figure 16: Future Events Lists for a Possible Next State Tree

27

activities of a single type. In the common situation where the composed model has replicate

nodes, the algorithm achieves a signi�cant reduction in the number of event types (i.e.,

activities) that must be managed.

For example, consider the case, as is shown in Figure 16, where one station has just

begun to transmit, and the two other stations have a packet to transmit (i.e., activity

access is enabled), but have not yet attempted transmission. In this case, a collision will

occur if either of the two other stations begin transmission before packet being transmitted

is propagated (i.e., activity prop delay intra completes). This possibility can be represented

by the single compound event access in the left-most future event list on the tree, instead of

two separate events, as would be needed if this approach was not used. While the savings

in this case is modest, since our example is small, the savings will increase dramatically as

the number of replicated submodels in the composed model increases.

These algorithms provide the basis for the state-change mechanism for both terminating

and steady-state simulation. They are used, together with iterative batch and replication

methods, to generate the trajectories necessary to estimate the speci�ed performance vari-

ables. In all cases, the user speci�es a desired con�dence interval size and level, and the

simulators attempt to reach the speci�ed accuracy.

VI Conclusions

As argued in the introduction, stochastic Petri nets and extensions are a truly useful

model class for representing distributed systems. In particular, they can be used to evaluate

the performance, dependability, and performability of a design within a single modeling

framework. Furthermore, because of their formal structure, they can provide analytic as

well as simulation-based solutions. However, traditional model construction and solution

methods for these models limit their usefulness, due to the extremely rapid growth of the

size of the stochastic process used in model solution. Likewise, simulation times can be

extremely long due, in part, to the large number of event types that are typically considered.

This paper reports on a new software package that alleviates these problems, using

recently developed model construction and solution techniques for stochastic activity net-

works. As currently implemented, the package has two main purposes. The �rst is to serve

as a test-bed during the development of new model construction and solution methods.

In this spirit, we are currently investigating methods to analytically solve for interval-of-

28

time variables, using an extension of the randomization technique proposed by De Souza

e Silva and Gail, as well as investigating new base model construction techniques that are

applicable to a wider class of variables. The second purpose is to provide an easy-to-use,

graphical, X-window based software package, which can be used by systems engineers and

researchers to evaluate the performability of speci�c systems. This has been accomplished,

and the package is now being used in both industry and academia to evaluate new and

existing computer hardware, software, and network designs.

Acknowledgement

The authors would like to thank Mike Woodbury, of Bellcore, Rose Mary Owen, of

Intel, and Hemal Shah and Abijhit Kudrimoti, of the University of Arizona, for using early

versions of this tool, and providing feedback that has guided its future development. Their

suggestions have been invaluable in improving the tool.

REFERENCES

[1] J. F. Meyer, \On evaluating the performability of degradable computing systems,"
IEEE Trans. Comput., vol. C-22, pp. 720{731, Aug. 1980.

[2] W. H. Sanders and J. F. Meyer, \METASAN: A performability evaluation tool based
on stochastic activity networks," Proc. ACM-IEEE Comp. Soc. 1986 Fall Joint Comp.
Conf., Dallas, TX, November 1986.

[3] J.F Meyer, K.H. Muraldihar and W.H. Sanders, \Performability of a token bus network
under transient fault conditions," in Proc. 19th Int. Symp. on Fault-tolerant computing,
Chicago, June 1989.

[4] B. E. Aupperle and J. F. Meyer, \Fault-tolerant BIBD networks," in Proc. Int. Symp.
on Fault-tolerant Computing, Tokyo, Japan, 1988.

[5] W. H. Sanders, R. Martinez, Y. Alsafadi, and J. Nam, \Performance evaluation of a
picture archiving and communication system using stochastic activity networks," to
appear in IEEE Trans. on Medical Imaging.

[6] K. H. Prodromedes and W. H. Sanders, \Performabilty evaluation of CSMA/CD and
CSMA/DCR protocols under transient fault conditions," presented at the 10th Inter-
national Symp. on Reliable Distributed Systems, Pisa, Italy, Sept. 30 { Oct. 2, 1991.

[7] J.F. Meyer and L. Wei, \Inuence of workload on error recovery in random access
memories," in IEEE Transactions on Computers, Vol. 37, No. 4, April 1988.

[8] W. H. Sanders and J. F. Meyer, \A uni�ed approach for specifying measures of per-
formance, dependability, and performability," in Dependable Computing for Critical

29

Applications, Vol 4: of Dependable Computing and Fault-Tolerant Systems (ed., A.
Avizienis and J. Laprie), Springer-Verlag, 1991.

[9] W. H. Sanders and J. F. Meyer, \Reduced base model construction methods for
stochastic activity networks," IEEE Journal on Selected Areas of Communications,
Jan. 1991.

[10] R. S. Freire, \A technique for simulating composed SAN-based reward models," Mas-
ter's Thesis, Dept. of Electrical and Computer Engineering, University of Arizona, Dec.
1990.

[11] A. Movaghar and J. F. Meyer, \Performability modeling with stochastic activity net-
works," in Proc. 1984 Real-Time Systems Symp., Austin, TX, Dec. 1984.

[12] J. F. Meyer, A. Movaghar, and W. H. Sanders, \Stochastic activity networks: structure,
behavior, and application," in Proc. International Workshop on Timed Petri Nets,
Torino, Italy, July 1985, pp. 106{115.

[13] W. H. Sanders, \Construction and solution of performability models based on
stochastic activity networks," Computing Research Laboratory Technical Report CRL-
TR-9-88, The University of Michigan, Ann Arbor, MI, August 1988.

30

