LC-MS/MS analysis of lipophilic toxins in Japanese *Dinophysis* species

Toshiyuki Suzuki ¹, Akira Miyazono ², Yutaka Okumura ¹, Takashi Kamiyama ¹

 ¹ Tohoku National Fisheries Research Institute, 3-27-5 Shiogama, Shiogama, Miyagi, 985-0001, Japan.
 ² Hokkaido Hakodate Fisheries Experimental Station, 1-2-66 Yunokawa, Hakodate, Hokkaido, 042-0932, Japan.

Dinophysis species in Japan

D. mitra

Toxic Dinophysis

D. caudata Photomicrographs by Yasuwo Fukuyo WESTPAC-HAB, IOC Harmful Algal Bloom Programme T0016 D. fortii, D. acuminata, D. mitra, D. tripos, D. rotundata etc.

Carrier species: Bivalves (Scallops, Mussels, etc.)

		R1	R2		R3	R4
	okadaic acid (OA)	н	CH ₃	н	Н	
free toxins	dinophysistoxin-1 (DTX1)	Н	CH ₃	CH_3	Н	
	dinophysistoxin-2 (DTX2)	Н	Н	CH ₃	Н	
7-O-acyl-esters	dinophysistoxin-3 (DTX3)	acyl	CH ₃	CH	Н	
1-diol-esters	OA diol esters	R1	R2		R3	R4
	OA D8	Н	CH3		Н	а
	DTX4	H	CH3		Н	b

LC-MS/MS of peak #1 (OA D8)

T. Suzuki et al., Rapid Comm. Mass Spectrom. 18, 1131-1138, 2004

Proposed MS/MS fragmentation for OA-diol ester

Pectenotoxins (PTX)

R	C7	
	R S	MW
CH ₃	PTX2	858.5
CH ₂ OH	PTX1, PTX4	874.5
СНО	PTX3	872.5
СООН	РТХ6, РТХ7	888.5

R			
	R	S	MW
CH ₂ OH		PTX8	874.5
СООН		PTX9	888.5

- Hepatotoxic
 - Depolymerization of actin

Structure of a novel PTX elucidated by NMR

PTX11 (34-OH PTX2)

T. Suzuki et al., Chem. Res. Toxicol. 19, 310-318, 2006

Lipophilic toxin profiles in Dinophysis species in Japan

Species	Toxins
D. fortii	DTX1, PTX2
D. acuminata	OA
D. mitra	DTX1
D. tripos	DTX1
D. rotundata	DTX1

J.S. Lee et al., J. Appl. Phycol. 1, 147-152, 1989
T. Suzuki et al., J. Appl. Phycol. 8, 509-515, 1997
T. Suzuki et al., Toxicon 37, 187-198, 1999
T. Suzuki et al., J. Chromatogr. A 815, 155-160, 1998

Dinophysis samples

No	Date	Site	Species	Cell numbers
1	2005/ 1/ 18	Yakumo	D tripos	12
2	2005/ 1/ 18	Yakumo	D. ovum	2
3	2005/ 4/ 26	Yakumo	D norgevica	100
4	2005/ 4/ 26	Yakumo	D. norvegica	111
5	2005/4/26	Yakumo	D. acuminata or ovum	35
6	2005/ 4/ 26	Yakumo	D. norvegica	120
7	2005/ 4/ 26	Yakumo	D. acuminata or ovum	56
8	2005/ 5/ 10	Yakumo	D acuminata or ovum	53
9	2005/ 5/ 10	Yakumo	D. acuminata or ovum	153
10	2005/ 5/ 19	Abashiri	D. acuminata	223
11	2005/ 5/ 19	Abashiri	D. acuminata	200
13	2005/ 6/ 20	Yakumo	D. acuminata	18
14	2005/ 6/ 20	Yakumo	D fortii	7
15	2005/ 6/ 20	Yakumo	D acuminata	142
16	2005/ 6/ 20	Yakumo	D. fortii	32
17	2005/ 6/ 20	Yakumo	D. rudgei	11
18	2005/ 6/ 20	Yakumo	D. infundibulus	
19	2005/ 7/ 20	Yakumo	D. fortii	149
20	2005/ 7/ 20	Yakumo	D_rudgei	16
21	2005/ 8/ 22	Yakumo	D. mitra	100
22	2005/ 8/ 22	Yakumo	D. mitra	100
23	2005/ 8/ 22	Yakumo	D. rotundata	88
24	2005/ 8/ 22	Yakumo	D. tripos	73
25	2003/5/20	Yamada	D fortii	200

Solid phase extraction (SPE) of toxins

T. Suzuki et al., J. Appl. Phycol. 8, 509-515, 19

LC-MS/MS chromatogram of lipophilic toxins obtained from D. fortii in Hokkaido Japan

		R1	R2		R3	R4
	okadaic acid (OA)	н	CH ₃	Н	Н	
free toxins	dinophysistoxin-1 (DTX1)	Н	CH ₃	CH_3	Н	
	dinophysistoxin-2 (DTX2)	Н	Н	CH_3	Н	
7-O-acyl-esters	dinophysistoxin-3 (DTX3)	acyl	CH ₃	СӉ	Н	
1-diol-esters	OA diol esters	R1	R2		R3	R4
	OA D8	Н	CH3		Н	а
	DTX4	H	CH3		Н	b

LC-MS/MS chromatogram of 7-O-acyl-DTX1 esterified with several fatty acids detected in scallops 16:0-DTX1

Column: Hypersil-BDS-C8 (50 mm x 2 mm i.d) Flow rate: 0.2 mL/min Mobile phase: A water, B 95% MeCN both containing 2 mM HCOONH₄ and 50 mM HCOOH

Step 1: 20 % B to 100% B for 10 min Step 2: 100 % B for 20 min

 $\mathbf{0}$

Toxin profiles of Dinophysis species in Japan

Conversion of PTX2 in bivalves

Suzuki, T., Mackenzie, L., Stirling, D., & Adamson, J. (2001). <u>Toxicon</u> 39, 507-514.

Production areas where harvesting was ceased due to contamination of shellfish with lipophilic toxins in 2005

Summary

- In our previous study, several OA diol-esters and a novel pectenotoxin, PTX11, were discovered in *D. acuta* collected in New Zealand. These toxins were not detected in any *Dinophysis* strains in Japan.
- PTX2 was the dominant toxin in *D. acuminata, D. norvegica* and *D. infundibulus* whereas both DTX1 and PTX2 were the principal toxins in *D. fortii.*
- D. mitra and D. tripos did not produced any toxins.