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Abstract 

 

The ‘esca disease complex’ is a term used to identify several syndromes associated 

with a fungal infection of the wood of Vitis vinifera L. or other Vitis species. The 

pathogenic agents induce the appearance of internal symptoms in the perennial 

organs, such as brown wood streaking, wood necrosis and wood decay; and they are 

believed to be indirectly involved in the manifestation of external symptoms in annual 

organs as well. Overall, an esca infection induces lower vigor, productivity, quality of 

the yield and sorter life span of affected plants. Despite several points regarding the 

etiology and epidemiology of this disease complex remain controversial, due to the 

recent increase in the disease’s reports and worldwide incidence, there is an urgent 

need to find effective control strategies both to prevent the spread of esca-associated 

pathogens and to treat infected vines. To tackle this issue, three strategies were 

investigated upon: biological control, endotherapy and foliar spray with selected 

fungicides. In the first case, wood endophyte Epicoccum layuense was identified as a 

potential biocontrol agent. This ascomycete reduced the manifestation of wood 

symptoms and the wood colonization of two esca pathogens, under greenhouse 

conditions. Endotherapy, performed in rooted grapevine cuttings, using 

glutaraldehyde, hydrogen peroxide or silver nanoparticles proved effective in reducing 

the presence of pathogen Phaeomoniella chlamydospora, while it was less efficient 

against Phaeoacremonium minimum. Lastly, the inoculation of a consortium of wood 

endophytes (skopobiota) and the foliar spray using blad-containing oligomer were 

effective treatments against early infections by P. chlamydospora, reducing 

approximately 10-fold its abundance in wood, when compared with a positive control. 

A fourth line of research investigated the wood mycobiome of esca-infected plants, 

using next-generation sequencing. This study revealed the complexity of the fungal 

communities living in the wood, also introducing new genera and species not 

previously reported in grapevines, which is a prerequisite for understanding how 

control strategies affect the wood mycobiome, under field conditions. 

 

Key words Biological control, endotherapy, esca disease, fungicides, mycobiome. 
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Resumo 

 

O "complexo de doenças da esca" é um termo usado para identificar várias síndromes 

associadas a uma infeção fúngica da madeira de Vitis vinifera L. ou outras espécies de 

Vitis. Os agentes patogénicos induzem o aparecimento de sintomas nos órgãos 

perenes, como estrias castanhas na madeira, necrose e deterioração da madeira, e 

parecem estar também indiretamente envolvidos na manifestação dos sintomas em 

órgãos anuais. Em geral, uma infeção pela esca induz menor vigor, produtividade, 

qualidade da produção e tempo de vida das plantas afetadas. Apesar de vários pontos 

relativos à etiologia e epidemiologia deste complexo de doenças permanecerem 

controversos, o recente aumento da doença e incidência a nível mundial conduziu a 

uma necessidade urgente de encontrar estratégias de controlo efetivas, tanto para 

prevenir a disseminação dos agentes patogénicos associados à esca, como para tratar 

as videiras infetadas. Numa tentativa de abordar a questão do controlo da esca, três 

estratégias distintas foram investigadas: controlo biológico, endoterapia e pulverização 

foliar com determinados fungicidas. No primeiro caso, o endófito de madeira 

Epicoccum layuense foi identificado como um potencial agente de biocontrole. Este 

ascomicete reduziu, em condições de estufa, a manifestação dos sintomas da madeira 

e a colonização da madeira por dois agentes patogénicos. A endoterapia, realizada em 

estacas de videira enraizadas, utilizando glutaraldeído ou peróxido de hidrogénio ou 

nanopartículas de prata, mostrou-se eficaz na redução da presença do agente 

patogénico Phaeomoniella chlamydospora, mas foi menos eficiente contra o 

Phaeoacremonium minimo. Por fim, a utilização dum consórcio de endófitos da 

madeira (skopobiota) e a pulverização foliar com um oligómero contendo blad foram 

dois tratamentos eficazes contra a infeção precoce por P. chlamydospora, reduzindo 

aproximadamente 10 vezes a sua presença na madeira, quando comparado com um 

controle positivo. Uma quarta linha de pesquisa investigou o micobioma da madeira de 

plantas infetadas com esca, usando metodologias de sequenciação de última geração. 

Este estudo revelou uma enorme complexidade das comunidades fúngicas que vivem 

na madeira, introduzindo também novos géneros e espécies não referidas 

anteriormente em videiras, o que é um pré-requisito importante para a compreensão 



  

v 

do impacto das estratégias de controle sobre o micobioma da madeira em condições 

de campo. 

 

Palavras chave Controlo biológico, endoterapia, esca, fungicidas, micobioma. 

 

 

Resumo alargado 

 

As doenças de tronco da videira (Grapevine Trunk Diseases; GTDs) constituem 

atualmente uma das principais ameaças à viticultura mundial. São causadas por uma 

matriz filogeneticamente diversa de fungos que, em geral, originam sintomas 

semelhantes nos órgãos perenes das videiras (Vitis spp.). As plantas afetadas pelas 

GTDs sofrem com menor vigor, qualidade e quantidade das uvas e menor tempo de 

vida, de que resultam perdas económicas consideráveis. O complexo de doenças da 

esca é uma das principais GTDs e inclui múltiplas síndromes causadas por três agentes 

patogénicos principais: Phaeomoniella (Pa.) chlamydospora, Phaeoacremonium (Pm.) 

minimum e Fomitiporia mediterranea. Os dois primeiros podem afetar a madeira das 

vinhas desde a mais tenra idade e induzir o aparecimento de sintomas, como 

descoloração, estrias castanhas, gomose e necrose. Contrariamente, o terceiro agente 

patogénico afeta principalmente as videiras adultas e é o principal responsável pela 

decomposição da madeira (podridão branca). Os sintomas de uma infeção 

permanecem invisíveis, no interior da madeira, até ao aparecimento ocasional de 

sintomas nas folhas (conhecidos por "tiger stripes") ou nos cachos, que indicam um 

estágio avançado de infeção. A invisibilidade dos sintomas internos e o nicho em que 

estes agentes patogénicos atuam, i.e., na madeira, dificultam quer a identificação quer 

a administração do tratamento às plantas infetadas. 

O saneamento do material de propagação em viveiros e a aplicação de tratamentos no 

campo são as principais abordagens para lidar com infeções. Têm sido identificados 

vários ingredientes ativos e agentes de controle biológico capazes de inibir o 

crescimento e / ou a germinação conidial de agentes patogénicos fúngicos envolvidos 

no complexo de doenças da esca, mas, até o momento, a sua aplicação in planta não 

levou à formulação de uma estratégia de controle sólida. 
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Os objetivos deste projeto de pesquisa foram investigar o potencial de três estratégias 

de controle no combate à Pa. chlamydospora e / ou Pm. minimum. A primeira 

estratégia envolveu o uso de um ascomicete, Epicoccum sp., como agente de controle 

biológico; o segundo envolveu a aplicação direta de tratamentos químicos na madeira 

de videiras jovens por meio de endoterapia; o terceiro objetivo pretendeu averiguar se 

a pulverização foliar de ingredientes ativos poderia ter um impacto no sucesso da 

colonização da madeira por Pa. chlamydospora. Na quarta linha de pesquisa recorreu-

se a uma metodologia de sequenciação de última geração para conseguir uma melhor 

compreensão do micobioma da madeira de videiras adultas infetadas por esca. Este 

conhecimento é um pré-requisito necessário para a compreensão do impacto das 

estratégias de controle sobre o microbioma da madeira, sob condições de campo. 

A estratégia de controle biológico centrou-se no estudo de Epicoccum, um género de 

ascomicetes frequentemente associado à endosfera da videira. Uma triagem realizada 

in vitro, por meio de cultura dupla, revelou que todos os testes com Epicoccum spp. 

inibiram o crescimento dos agentes patogénicos Pa. chlamydospora e F. mediterranea, 

enquanto apenas alguns deles inibiram Pm. minimum. Epicoccum layuense E24, 

identificado como o antagonista mais eficiente, foi testado em estacas de videira com 

raízes das cultivares Cabernet Sauvignon e Touriga Nacional, em condições de estufa, 

contra Pa. chlamydospora e Pm. minimum. Este estudo revelou que E. layuense E24 

poderia colonizar com sucesso a madeira das videiras, após a inoculação, e não 

prejudicou o crescimento da videira nem induziu o aparecimento de sintomas nas 

folhas ou madeira. Além disso, as videiras colonizadas por E. layuense E24 mostraram 

uma diminuição considerável na sintomatologia da madeira causada pelos agentes 

patogénicos inoculados (em 31 - 82%, dependendo do agente patogénico / cultivar de 

videira), bem como uma redução na sua frequência de re-isolamento (60 - 74%). Estes 

resultados sugerem que E. layuense E24 é um candidato promissor para utilização no 

controle biológico, devido à sua interação antagónica com alguns agentes patogénicos 

fúngicos associados à esca. 

A segunda estratégia de controle testada incidiu sobre controle químico. Neste estudo, 

cinco produtos químicos (prata elementar, fosetil-Al, glutaraldeído, peróxido de 

hidrogénio e oligómero contendo Blad) foram testados in vitro, sendo que os primeiros 

quatro também foram avaliados in planta, por meio de endoterapia, contra Pa. 
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chlamydospora e Pm. minimum. Os resultados mostram que todos os produtos 

químicos testados foram eficazes in vitro para evitar o crescimento de ambos os 

agentes patogénicos, embora em diferentes concentrações. A endoterapia das videiras 

(cv. Touriga Nacional) mostrou-se eficaz contra Pa. chlamydospora com todos os 

produtos químicos testados, com reduções na frequência de re-isolamento deste 

agente patogénico que variaram entre 90.9 e 94.7% (tratamento com glutaradeído), 

68.4 e 95.5% (peróxido de hidrogénio), 68.4 e 77.3% (prata elementar) e 57.9 e 59.1% 

(fosetil-Al), quando comparados com o controle (tratamento com água). O único 

tratamento significativamente eficaz contra Pm. minimum foi o glutaraldeído, 

proporcionando uma redução de 75.0 – 83.3% na frequência de re-isolamento do 

fungo. Esses resultados sugerem que a endoterapia de videiras jovens, durante os 

estágios iniciais da infeção, pode ser uma estratégia de controle eficaz, especialmente 

contra o agente patogénico da madeira, Pa. chlamydospora. 

No terceiro estudo, usámos a metodologia de sequenciação de última geração 

Illumina® para avaliar os efeitos da pulverização foliar de videiras com fungicidas 

inorgânicos (oxicloreto de cobre e enxofre), sintéticos (penconazol e fosetil-alumínio) e 

naturais (oligómero contendo blad), comummente usados contra o míldio e o oídio. Os 

objetivos desta investigação foram: (i) o micobioma residente da madeira, (ii) a 

colonização precoce por um consórcio de endófitos da madeira (skopobiota), (iii) o 

sucesso da colonização da madeira por Pa. chlamydospora e (iv) a interação in planta 

entre Pa. chlamydospora e skopobiota, em condições de estufa, em estacas de videira 

Cabernet Sauvignon enraizadas. Os resultados obtidos sugerem que o micobioma 

residente é resiliente, permanecendo quase inalterado após cada um dos tratamentos 

fungicidas. Por outro lado, o sucesso precoce da colonização dos endófitos que 

compõem o skopobiota variou em resposta aos fungicidas, com abundância relativa de 

alguns táxons super- ou sub-representados, quando comparados com o controle. A 

colonização da madeira por Pa. chlamydospora envolveu mudanças significativas na 

composição do micobioma e, além disso, foi muito afetada pela pulverização foliar 

com o oligómero contendo blad, o que diminuiu a abundância relativa daquele agente 

patogénico em mais de 12 vezes (4.9%), quando comparado com o controle (60.7%) e 

outros tratamentos. A presença do agente patogénico também diminuiu 

consideravelmente quando co-inoculado na planta com o skopobiota, alcançando 
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abundâncias relativas entre 13.9 e 2.0%, dependendo do tratamento fungicida 

aplicado. Este estudo mostra que os fungicidas pulverizados para prevenir infeções de 

oídio e míldio têm efeito sobre fungos não-alvo, incluindo alguns que colonizam a 

endosfera das videiras, com consequências imprevisíveis para o ecossistema do 

micobioma da madeira. São sugeridas duas possíveis estratégias de controle para 

combater Pa. chlamydospora, a saber, a pulverização foliar com oligómero contendo 

blad e o uso de skopobiota, apesar de mais estudos serem necessários para confirmar 

esses resultados. 

No último estudo, foi utilizada uma metodologia de sequenciação de última geração 

Illumina® para investigar o micobioma da madeira de videiras de uma vinha com um 

historial de esca. Os três principais objetivos foram: (i) caracterizar a composição do 

micobioma; (ii) compreender a dinâmica espacial das comunidades fúngicas em 

diferentes áreas do tronco e das varas; (iii) avaliar a possível relação entre micobioma 

e sintomas foliares. Foi detetada uma diversidade inédita de fungos (289 taxa), 

incluindo cinco géneros descritos pela primeira vez em associação com a madeira da 

videira (Debaryomyces, Trematosphaeria, Biatriospora, Lopadostoma e Malassezia) e 

numerosas espécies. Os fungos associados à esca, Pa. chlamydospora e Fomitiporia sp. 

dominam a comunidade fúngica, e numerosos outros fungos associados com 

síndromas lenhosas também são encontrados (por exemplo, Eutypa spp., Inonotus 

hispidus). A análise espacial revelou diferentes abundâncias de taxa, a presença 

exclusiva de determinados fungos em áreas específicas das plantas e uma 

especificidade nos tecidos. Por fim, a composição do micobioma do tecido lenhoso nas 

proximidades das folhas que manifestavam sintomas foliares de esca, bem como nos 

ramos contendo folhas sintomáticas, foi muito semelhante à das plantas que não 

exibiram sintomatologia foliar. Esta observação apoia o consenso atual de que os 

sintomas foliares não estão diretamente relacionados com a comunidade fúngica na 

madeira adjacente. Este trabalho contribui para o entendimento da ecologia 

microbiana da madeira da videira, oferecendo insights e uma visão crítica sobre o 

conhecimento atual da etiologia da esca. 

Em conclusão, as três estratégias de controle testadas revelam potencial para 

combater infeções causadas por fungos traqueomicóticos, in planta, em condições de 

estufa. Os tratamentos mais promissores são o uso de Epicoccum layuense E24 contra 
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Pa. chlamydospora e Pm. minimum; a endoterapia em videiras jovens para combater 

Pa. chlamydospora; e a pulverização foliar com oligómero contendo blad e / ou 

skopobiota no controle de infeções precoces pelo mesmo agente patogénico. É agora 

necessário prosseguir com a investigação para aprofundar o entendimento sobre estas 

estratégias de controle quando aplicadas sob condições de campo e em viveiros, 

examinando também se uma abordagem integrada, na qual uma combinação de duas 

ou mais dessas estratégias, pode levar a um controle ainda mais efetivo. 
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Figure List 

 

Figure 1.1. Grapevine stems affected by wood pathogens. A- Central necrosis, 

symptom associated with the Botryosphaeria dieback syndrome; B- Sectorial ‘wedge-

shaped’ necrosis, associated with Eutypa lata infection; C- Necrosis and wood rot, 

symptoms of the esca disease. 

 

Figure 1.2. Cultures of Phaeomoniella chlamydospora (A) and Phaeoacremonium 

minimum (B) grown for 14 days on potato dextrose agar medium. 

 

Figure 1.3. Symptomatology associated with the syndromes brown wood streaking of 

rooted cuttings and Petri disease. Longitudinal sections of a 2 years old rooted cutting 

presenting brown wood streaking (A). Cross sections showing scattered (B) or 

clustered (C) black dots. 

 

Figure 1.4. Wood and leaf symptomatology associated with grapevine leaf stripe 

disease. Cross section of a trunk, the wood presents extensive necrosis, black dots and 

brown streaking (A). Foliar symptoms, described as ‘tiger stripes’, expressed on cv 

Cabernet Sauvignon in July (B), or on cv Fernão Pires in October (C). 

 

Figure 1.5. White rot agent Fomitiporia mediterranea grown on potato dextrose agar 

medium (A). Trunk of grapevine presenting extensive white rot (top arrow) and a 

fruiting body of F. mediterranea (bottom arrow; B). Section of wood examined under 

the stereo microscope, top arrow indicates healthy wood, bottom arrow indicates 

white rot (C). 

 

Figure 1.6. Trunk-splitting technique, also know as ‘metodo Armano’ (from the Italian: 

‘Armano’s method’), performed on grapevines affected by esca proper. Treated 

grapevines in a vineyard in northeast Italy (Friuli), in December (A) and July (B). 

 

Figure 2.1. Schematic representation of the inoculation and re-isolation areas in 

grapevine rooted cuttings. (A) E24 inoculation via mycelium plug; (B) pathogen 
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inoculation via spore suspension; (C) re-isolation area 15 mm below the pathogen 

inoculation; (D) re-isolation area 45 mm below the pathogen inoculation. 

 

Figure 2.2. Phylogenetic tree inferred from a Maximum likelihood analysis based on a 

concatenated alignment of ITS, rpb2 and tub2 sequences of 25 isolates of Epicoccum 

and one isolate of Didymella. The RAxML bootstrap support values (MLBS) and 

Bayesian posterior probabilities (BPP) are given at the nodes (BPP/MLBS). The tree was 

rooted to Didymella exigua (CBS 183.55). Ex-type cultures are emphasised in bold type. 

The scale bar indicates 0.1 expected changes per site. 

 

Figure 2.3. In vitro inhibition of esca-related fungi by Epicoccum spp. isolates. Growth 

was measured 14 days post-inoculation on PDA medium in dual-culture with (A) Pch, 

Phaeomoniella chlamydspora; (B) Pmin, Phaeoacremonium minimum and (C) Fmed, 

Fomitiporia mediterranea. ‘Control s’ and ‘Control d’ indicate the colony area of the 

pathogen in single culture or dual culture, respectively, and ‘E’ indicates the Epicoccum 

isolate. Error bars represent the standard deviation from the mean; different letters 

indicate statistically significant differences (Tukey post hoc test, p ≤ 0.05). 

 

Figure 2.4. Interaction pathogen – antagonist or pathogen — pathogen after 14 d of 

incubation on PDA. (i) Phaeomoniella chlamydospora (a), Phaeoacremonium minimum 

(b) and Fomitiporia mediterranea (c) inoculated on the left side, against Epicoccum 

layuense strain E24 inoculated on the right; (ii) the same pathogens against E. mezzettii 

strain E17, (iii) dual cultures of each pathogen. 

 

Figure 2.5. Morphological changes of vegetative structures of esca-associated fungi 

upon interaction with Epicoccum layuense isolate E24 in dual culture plates. 

Phaeomoniella chlamydospora isolate CBS 161.90 (left side) and E. layuense (right side) 

at interaction area at day eight (A); hyphae of P. chlamydospora with swollen 

chlamydospores (arrow) and an increasing of sporulation in the contact line with E. 

layuense (B-D) when compared to P. chlamydospora growing alone (E) at day ten. 

Phaeoacremonium minimum isolate CBS 110713 (left side) and E. layuense (right side) 

at the interaction zone at day eight (F); intermingled hyphae of both fungi at day ten 
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(G) after the hyphae of P. minimum have tried to change their growth direction (left 

arrow) to avoid the contact with the antagonist (right arrow) at day six (H); 

agglomerates of P. minimum hyphae intermingled with the antagonist hyphae (I), 

conidia of P. minimum from the interaction zone (J) when compared to conidia from 

the P. minimum single culture (K), and hyphae of P. minimum growing alone (L), all at 

day ten. Fomitiporia mediterranea (left side) and E. layuense (right side) at the 

interaction zone at day eight (M); agglomerates and strands of F. mediterranea hyphae 

in an attempt to block the advance of E. layuense (N); hyphae of F. mediterranea 

denoting plasmolysis (arrow) (O) and clamp connections (arrow) (P); mycelium of F. 

mediterranea growing alone (Q). Scale bars represent A, F, M = 1 mm; B, G, H, L, N =50 

µm; C, E, I, O-Q = 20 µm; D, J, K = 10 µm. 

 

Figure 2.6. Effects of Epicoccum layuense E24 on grapevines. Measurements of the 

shoot length (A) and brown wood streaking length (B), in cv. Touriga Nacional, four 

months after inoculation. Error bars represent the standard deviation from the means. 

 

Figure 2.7.  Brown wood streaking length in inoculated grapevine potted plants. 

Grapevines were inoculated with water (control) or with Epicoccum layuense strain 

E24, Phaeoacremonium minimum (Pmin) and Phaeomoniella chlamydospora (Pch) 

alone, or combined with E24 (E24 x Pmin and E24 x Pch). Bars followed by the same 

letter do not differ statistically according to the Tukey’s test (p > 0.05). 

 

Figure 2.8. Frequency of Epicoccum layuense re-isolation from two grapevine cultivars 

and two areas of re-isolation (C 15 mm and D 45 mm). E. layuense was inoculated 

alone (E24) or in combination with Phaeoacremonium minimum (E24 x Pmin) or 

Phaeomoniella chlamydospora (E24 x Pch). Different letters on the top of the bars 

represent statistical differences according to the Tukey’s test (p ≤ 0.05).  

 

Figure 2.9. Frequency of re-isolation of inoculated pathogenic fungi. Phaeoacremonium 

minimum (Pmin) and Phaeomoniella chlamydospora (Pch) were either inoculated 

alone, or in combination with Epicoccum layuense E24 (E24 x Pmin, E24 x Pch). Re-

isolations occurred at 15 mm (C) and 45 mm (D) below the pathogens’ inoculation 
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point in cultivars Cabernet Sauvignon and Touriga Nacional. Different letters indicate 

statistically significant differences after a Tukey’s post hoc test (p ≤ 0.05) 

 

Figure 3.1. Schematic illustration of rooted grapevine cuttings (cv Touriga Nacional). 

Pathogen inoculation, via mycelium plug or conidia suspension, occurred in point (a). 

For endotherapy, a drill-made wound (b) was performed 3 cm below point (a) and a 

modified syringe was placed in (c) forcing the chemicals into the xylem.  

 

Figure 3.2. Frequency of re-isolation (%) of the pathogens Pa. chlamydospora (Pch; A, 

B) and Pm. minimum (Pmin; C, D), one month after endotherapy with either water 

(negative control), elemental silver (BioBac), hydrogen peroxide (H2O2), glutaraldehyde 

(Glut) or fosetyl-Al (Aliette). Experiments conducted in year 2016 (EXP 1) used a 

mycelium plug inoculum (A, C), while the one conducted in 2017 (EXP 2) used a conidia 

inoculum. Bars with the same letter do not differ statistically according to the Tukey’s 

test (P ≤ 0.05). 

 

Figure 4.1. A  – Grapevine rooted cutting of cv Cabernet Sauvignon. (a) Inoculation 

point of a conidia suspension of P. chlamydospora, skopobiota, P. chlamydospora and 

skopobiota, or water. (b) Two cm of wood, located one cm below the inoculation 

point, were sampled three months post-inoculation and its mycobiome was examined 

through metabarcoding. B – Experimental setup. Each circle represents a set of eight 

plants that underwent the same treatment. Same colors in the circles represent the 

same inoculum type, while rectangles  represent different treatments. All possible 

combinations of inoculum and fungicide application by foliar spray are shown. 

 

Figure 4.2. Grapevine rooted cuttings were examined revealing different degrees of 

brown wood streaking symptomatology. Category 1, absence of symptoms (A) 

departing from the inoculation point (a) downwards; Category 2, presence of mild 

symptomatology (B); Category 3, extensive symptomatology (C). In (D), each category 

is presented in a different scale of gray, as an average of the observations (n = 3) for 

each treatment - inoculum, where Category 1 is shown in light gray, Category 2 in gray 

and Category 3 in dark gray. 
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Figure 4.3. Box plots of diversity indexes (Shannon, Pielou’s evenness) of the fungal 

community present in grapevine cuttings added with water (No Inoculation), or 

inoculated with P. chlamydospora (Pathogen), a consortium of fungal wood 

endophytes (skopobiota), or both P. chlamydospora and skopobiota. Inoculated plants 

were sprayed with either blad or potassium permanganate (Control) or copper 

oxychloride and sulfur (CuS) or penconazol and fosetyl-aluminium (Systemics). n= 5 for 

each combination inoculum/treatment. The black, horizontal brackets at the top of the 

figures denote statistical comparisons of the two treatments at each end of the 

bracket, calculated using one-way ANOVA with Tukey’s HSD post hoc. Statistical 

differences are shown by asterisk, where P ≤ 0.05 = *. 

 

Figure 4.4. Non-metric multidimensional scaling (NMDS) plots based on Jaccard’s 

index. Fungal communities present in grapevine cuttings added with water 

(No_inoculation), P. chlamydospora (Pathogen), a consortium of wood endophytes 

(Skopobiota), or both P. chlamydospora and skopobiota. Inoculated plants were 

sprayed with either Blad-containing oligomer (Blad) or potassium permanganate 

(Control) or copper oxychloride and sulfur (CuS) or penconazol and fosetyl-aluminium 

(Systemics). Ellipses illustrate the multivariate normal distribution of samples within 

the same fungicide (A) or inoculum (B) group.  

 

Figure 4.5. Barplots of the relative abundance of the 20 most abundant taxa (A) 

identified to species (s_), genus (g_) or family (f_) level, found in rooted grapevine 

cuttings non-inoculated (No inoculation), or inoculated with P. chlamydospora 

(Pathogen) or a consortium of wood endophytes (Skopobiota) or a combination of 

both (Pathogen + Skopobiota). Grapevines were treated with either blad-containing 

oligomer (Blad) or potassium permanganate (Control) or copper oxychloride and sulfur 

(CopperSulfur) or fosetyl-aluminium and penconazol (Systemics). ‘Unassigned’ are taxa 

identified to a lower taxonomic level than family or non-identified, ‘Others’ are taxa 

not included in the 20 most abundant. In (B) the 20 most abundant taxa within the 

‘Others’ group of (A), are shown. 
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Figure 4.6. Differential heat tree matrixes depicting the change in species abundance 

between different tissue groups, represented in the dataset with a RA > 0.1%. The size 

of the individual nodes in the grey cladogram depicts the number of taxa identified at 

that taxonomic level. The smaller cladograms show pairwise comparisons between 

each treatment, with the colour illustrating the log2 fold change: a red node indicates 

a lower abundance of the taxon in the tissue group stated on the abscissa, than in the 

tissue group stated on the ordinate. A blue node indicates the opposite. A black star 

next to a node represents the statistical differences according to DeSeq2 (p < 0.05). 

 

Figure 5.1. Sampling points in the perennial wood or annual wood of grapevine cv 

Cabernet sauvignon. (GU) Graft union, (T) Trunk, (UT) Upper trunk, (A1) Arm 1, (S1) 

Spur 1, (A2) Arm 2, (S2) Spur 2, (SA) Symptomatic arm, (SS) Symptomatic spur. Cordon 

(1) presented canopy with healthy leaves in all ten sampled plants, while cordon (2) 

presented foliar symptoms in the canopy, departing from SS, in five of the sampled 

plants (circles and letters in red). (A) Sampling points used to characterize the 

mycobiome of perennial wood – objective 1-; (B) Sampling procedure involved using a 

gimlet to drill the wood and extract wood cores; (C) Cores of wood extracted with a 

gimlet (red arrows indicate wood symptomatology). From right to left:  brown wood 

streaking, wood necrosis, extensive wood necrosis, wood decay-white rot-wood 

necrosis. (D) Sampling points used to test the spatial distribution of fungal 

communities – objective 2-; (E) Sampling points used to examine the mycobiome 

present in the wood in proximity of the canopy with foliar symptomatology (AS, SS) 

and healthy (A1, S1) – objective 3-; (F) From left to right: symptomatic canes, 

asymptomatic canes sampled from plants with no foliar symptoms in neither of the 

cordons or with foliar symptoms in one of the two cordons, the sampling area for each 

cane is indicated by the blue rectangle. 

 

Figure 5.2. Box plots of diversity indexes (Shannon, Pielou’s evenness) of the fungal 

communities present in different sampling areas of the perennial wood (Graft Union, 

Trunk, Upper trunk, Arm 1, Spur 1, Arm 2, Spur 2) and canes. Vertical boxes denote the 

median, the upper and lower quartiles, and the extremes of data. The black, horizontal 

brackets at the top of the figure denote statistical comparisons of the two tissues at 
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each end of the bracket, calculated using a one-way ANOVA with post-hoc Tukey’s 

HSD. Statistical differences are shown by asterisks, where P < 0.05 = *. 

 

Figure 5.3. Non-metric multidimensional scaling (NMDS) plots based on Jaccard’s 

index. Fungal communities present in different tissue types in grapevine. (A) Shows all 

samples in ordinated together, while (B) is the same data, split up per tissue group. 

Ellipses illustrate the multivariate normal distribution of samples within the same 

tissue group. The groups are colour-coded to correspond with Figure 5.2. 

 

Figure 5.4. Barplots of the relative abundance of the 20 most abundant taxa identified 

to species (s_) or genus (g_) level, found in different sampling areas of the stem and in 

the canes of grapevine. ‘Unassigned’ are taxa identified to a lower taxonomic level 

than genus, ‘Others’ are taxa not included in the 20 most abundant. 

 

Figure 5.5. Differential heat tree matrix depicting the change in taxa abundance 

between different tissue groups, for ascomycetes, represented in the dataset (RA > 

0.01%). The size of the individual nodes in the grey cladogram depicts the number of 

taxa identified at that taxonomic level. The smaller cladograms show pairwise 

comparisons between each tissue group: an orange node indicates a higher abundance 

of the taxon in the tissue group stated on the abscissa, than in the tissue group stated 

on the ordinate. A blue node indicates the opposite. Taxa identified as statistically 

differently represented, according to the Wilcoxon test, are tagged with a black star. 

 

Figure 5.6. Differential heat tree matrix depicting the change in taxa abundance 

between different tissue groups, for basidiomycetes, represented in the dataset (RA > 

0.01%). The size of the individual nodes in the grey cladogram depicts the number of 

taxa identified at that taxonomic level. The smaller cladograms show pairwise 

comparisons between each tissue group: an orange node indicates a higher abundance 

of the taxon in the tissue group stated on the abscissa, than in the tissue group stated 

on the ordinate. A blue node indicates the opposite. Taxa identified as statistically 

differently represented, according to the Wilcoxon test, are tagged with a black star. 
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Figure 5.7. Barplots of the relative abundance of the 20 most abundant taxa identified 

to species (s_), genus (g_) or family (f_) level. ‘Unassigned’ are taxa identified to a 

lower taxonomic level than family, ‘Others’ are taxa not included in the 20 most 

abundant. (Left) Communities found in the wood in proximity of symptomatic canopy 

(‘Symptomatic_arm’) or of asymptomatic canopy, either in symptomatic plants 

(‘Asymptomatic_arm symptomatic_plant’) or in asymptomatic plants 

(‘Asymptomatic_arm asymptomatic_plant’). (Right) Communities found in the canes 

with manifested foliar symptoms (‘Symptomatic_cane’) or asymptomatic, but coming 

from a symptomatic plant (‘Asymptomatic_cane symptomatic_plant’) or in 

asymptomatic plants (‘Asymptomatic_cane asymptomatic_plant’). 

 

Figure 5.8. Differential heat tree matrix depicting the change in species abundance 

between different tissue groups, represented in the dataset with a (RA > 0.01%). The 

size of the individual nodes in the grey cladogram depicts the number of taxa identified 

at that taxonomic level. The smaller cladograms show pairwise comparisons between 

each tissue group: a red node indicates a higher abundance of the taxon in the tissue 

group stated on the abscissa, than in the tissue group stated on the ordinate. A blue 

node indicates the opposite. 

 

Figure S5.9. Box plots of diversity indexes (Shannon, Pielou’s evenness) of the fungal 

community present in (A) perennial wood or (B) annual wood. (A) Communities found 

in the wood in proximity of symptomatic canopy (‘Symptomatic_arm’) or of 

asymptomatic canopy, either in symptomatic plants (‘Asymptomatic_arm 

symptomatic_plant’) or in asymptomatic plants (‘Asymptomatic_arm 

asymptomatic_plant’). (B) Communities found in the cane with manifested foliar 

symptoms (‘Symptomatic_cane’) or asymptomatic, but coming from a symptomatic 

plant (‘Asymptomatic_cane symptomatic_plant’) or in asymptomatic plants 

(‘Asymptomatic_cane asymptomatic_plant’). 

 

Figure S5.10. Non-metric multidimensional scaling (NMDS) plots based on Jaccard’s 

index. Fungal communities present in different tissue types in grapevine. (A) 

Communities found in the wood in proximity of symptomatic canopy 
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(‘Symptomatic_arm’) or of asymptomatic canopy, either in symptomatic plants 

(‘Asymptomatic_arm symptomatic_plant’) or in asymptomatic plants 

(‘Asymptomatic_arm asymptomatic_plant’). (B) Communities found in the cane with 

manifested foliar symptoms (‘Symptomatic_cane’) or asymptomatic, but coming from 

a symptomatic plant (‘Asymptomatic_cane symptomatic_plant’) or in asymptomatic 

plants (‘Asymptomatic_cane asymptomatic_plant’). Ellipses illustrate the multivariate 

normal distribution of samples within the same tissue group. 
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Table List 

 

Table 2.1. Isolates of Epicoccum layuense and related species used for phylogenetic 

analyses. Ex-type isolates are shown in bold type. 

 

Table 2.2. Percent growth inhibition of esca-associated fungi by Epicoccum spp. 

 

Table 2.3. Shoot length (cm) of grapevine potted plants inoculated with water (control) 

or with Epicoccum layuense strain E24, Phaeoacremonium minimum (Pmin), 

Phaeomoniella chlamydospora (Pch) and the combination of E24 with Pmin (E24 x 

Pmin) or Pch (E24 x Pch). Measurements were taken three months after the 

inoculation of the pathogens.  

 

Table 3.1. Chemicals tested against Phaeomoniella chlamydospora (Pch) and 

Phaeoacremonium minimum (Pmin), the range of concentrations of active ingredient 

(a.i.) tested in vitro and the minimum inhibitory concentration (MIC) of each chemical 

 

Table 3.2. Effect of injected chemicals on rooted grapevine cuttings cv. Touriga 

Nacional inoculated with Phaeomoniella chlamydospora (Pch) or Phaeoacremonium 

minimum (Pmin), assessed by the plant shoot length, brown wood streaking, wood 

discoloration and reduction in frequency of the re-isolation of pathogens 

 

Table 4.1. Chemical treatments sprayed fortnightly on grapevine rooted cuttings. Six 

applications were performed during three months. Each active ingredient was sprayed 

separately. 

 

Table 4.2. Measurements of shoots length (cm). Grapevines were inoculated with a 

control (Water), P. chlamydospora (Pathogen), a consortium of wood endophytes 

(Skopobiota), and a combination of both (Pathogen + Skopobiota). Grapevines were 

also treated with a foliar spray of potassium permanganate (Control), copper 

oxychloride and sulfur (Copper – Sulfur), fosetyl-Al and penconazol (Systemics), blad-
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containing oligomer (BCO). Numbers followed by the same letter are not statistically 

different according to Tukey’s post hoc test (P < 0.05). 

 

Table 4.3. Taxonomic classification of the most abundant taxa identified to genus or 

species level in the wood of grapevine rooted cuttings. The relative abundance of the 

listed taxa was equal or greater than 0.1%. Species between parentheses were 

determined using BLAST. 

 

Table 4.4. Relative abundance of inoculated fungi. Grapevine cuttings were non-

inoculated (No inoculation), inoculated with P. chlamydospora (Pathogen inoculation) 

or a consortium of wood endophytes (Skopobiota inoculation) or a combination of 

both (Pathogen + Skopobiota inoculation). Grapevines were treated with a control 

(potassium permanganate; C) or copper oxychloride and sulfur (CuS) or fosetyl-

aluminium and penconazol (Sys) or blad-containing oligomer (BCO). Different colors 

represent different intervals of relative abundance. 

 

Table S4.5. Fungal taxa identified to genus or species level in the wood of grapevine 

rooted cuttings, at relative abundances (RA) inferior to 0.1 % or 0.01% of the total. 

 

Table 5.1. List of most abundant taxa, identified to genus or species level, found in 

grapevine wood. The list includes the 30 most abundant taxa found in perennial wood 

and the 12 most abundant in annual wood, for a total of 32 taxa. The numbers 

between brackets represent the relative abundance of that Phylum or Family in the 

perennial wood or annual wood (PW% - AW%) based on the table created to address 

objective (1). The ecology of the identified taxa in wood of grapevines or of other 

plants is shown based on available literature (E= endophyte, S= saprophyte, P= 

pathogen, na= unknown ecology). The presence of taxa in different tissue types is 

based on the table created to address objective (2), (+) indicates presence (RA ≥ 0.1%), 

(-) indicates absence or presence in RA < 0.1%.  
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Table S5.6. One-way ANOVA with post-hoc Tukye’s HSD of woody tissue types to 

assess differences in the Alpha diversity (Shannon index, Pielou’s evenness) of fungal 

communities. For each row, column (A) is significantly different from column (B). 
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BCA  Biological Control Agent 
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1.1 Past and present challenges in grapevine pathology 

 

Viticulture, as we know it today, went through several challenges since its birth, dated 

between 6000 and 4000 BCE, in the Southern Caucasus region. Nevertheless, the 

cultivation of grapevine, Vitis vinifera (L.), for wine or table grapes production has 

spread over the millennia to almost all continents, and it is nowadays considered one 

of the most important crops  (Terral et al., 2010; Maghradze et al., 2016).  

The recent book “Compendium of Grape Diseases, Disorders, and Pests, Second 

Edition” (Wilcox et al., 2015), lists twenty-nine diseases caused by fungi and 

oomycetes, three caused by bacteria, six caused by phytoplasmas, seven caused by 

viruses or virus-like agents, eight nematode-transmitted virus diseases, seven 

nematode parasites and five insects that cause disease-like symptoms, for a total of 65 

diseases. Moreover, the introduction of grapevines in non-native environments, the 

vast areas of monocultures and the clonal reproduction, have all together contributed 

in complicating the approach to pathogens and pests control. It is evident how 

scientists, in the forefront phytopathologists, microbiologists and agronomists, have 

been making extensive efforts in order to support viticulture in the endless fight 

against grapevine’s old and new challenges. 

In recent history, three major outbreaks of grapevine pathogens put at serious risk 

viticulture: Erysiphe necator, causal agent of powdery mildew; Plasmopara viticola, 

causal agent of downy mildew; the Phylloxera (Daktulosphaira vitifoliae) invasion 

(Ferreira et al., 2006). These pathogens and pest were introduced in Europe from 

America in the mid-19th century and found in V. vinifera a susceptible host. Over the 

following decades, these pathogenic agents spread unrestricted and caused extensive 

damage to vineyards, leading to huge crop losses and nearly wiping out grapevines 

from some European regions (Granett et al., 2001; Gessler et al., 2011). Nevertheless, 

thanks to research, the threat of these pathogens is nowadays kept in check, mainly 

using fungicides and other agronomical practices such as grafting. 

However, while science was focusing on the aforementioned dangers, new clusters of 

pathogens have silently emerged, becoming what, by some, is considered the fourth 

major outbreak in grapevine pathology’s history: the pathogens responsible for 

grapevine trunk diseases (Bertsch et al., 2013; Bruez et al., 2013; Fontaine et al., 2016). 
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1.2 Grapevine trunk diseases 

 

Grapevine trunk diseases (GTDs) are the next big challenge in grapevine pathology. 

Unlike the three previously mentioned pathogens and pest, the fungi responsible for 

GTDs are not native to the Americas and they are believed to be part of the grapevine 

pathosystem for millennia. In fact, some early reports describe grapevines with trunk 

diseases-like symptoms during the ancient Greeks age (Mugnai et al., 1999). Despite 

this, more reliable sources describing GTDs are found in French scientific literature 

starting from the late nineteenth century (Surico, 2009). From these reports to our 

days, wood diseases are found in all grape-growing regions of the world and their 

presence and incidence seems to be steadily increasing (Graniti et al.,  2000; Fontaine 

et al., 2016). Over the last ten years, several surveys tried to give a figure on the 

percentage of vineyards/plants affected by trunk diseases and, although the estimates 

are limited by the elusiveness of the symptoms, grapevine trunk diseases are known to 

affect 10.5% of the vineyard’s area in Spain, 13% in France, between 8 to 19% in Italy 

(Fontaine et al., 2016). Despite these records, the current extent of infections by GTDs 

pathogens remains uncertain. Infections develop, undetected, in the wood and 

external symptoms are not visible before several years from the moment an infection 

has taken place (Bertsch et al., 2013; Fontaine et al., 2016). For this reason, pathogens 

keep spreading silently and nearly unrestricted. In fact, externally asymptomatic but 

infected grapevines contribute to the spread of pathogens to other vines, before any 

control strategy can be performed (e.g. vine removal; Mugnai et al., 1999). A 

worldwide estimate of the economical damage caused by GTDs was calculated by 

Hofstetter et al. (2012), revealing that the annual cost of replacing grapevines that 

died due to grapevine trunk diseases exceeds 1.13 billion euro. 

 

1.2.1 Causal agents 

Grapevine trunk diseases are caused by fungi belonging to both the Ascomycota and 

Basidiomycota and, despite the wide array of organisms involved, the similarities in the 

syndromes’ etiology and epidemiology led to this common classification. Recent 

reviews include in the GTDs cluster five main disease: Botryosphaeria dieback, Eutypa 

dieback, the Esca disease complex, Phomopsis dieback and Black foot; with the former 
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three being the most concerning (Bertsch et al., 2013; Fontaine et al., 2016; Gramaje 

et al., 2016).  

Several causal agents have been associated with each of these diseases and a brief list 

of the most frequent fungi follows. In the case of Botryosphaeria dieback, many 

members of the Botryosphaeriaceae family have been linked with this syndrome, 

among the most frequently isolated from symptomatic plants we find: Diplodia seriata 

De Not., Neofusicoccum parvum (Pennycook & Samuels), Neofusicoccum australe 

(Slippers, Crous & M.J. Wingf.), Botryosphaeria dothidea (Moug. ex Fr.) and 

Lasiodiplodia theobromae (Pat.) (Úrbez-Torres, 2011; Bertsch et al., 2013). Members of 

the family Diatrypaceae are considered responsible for the syndrome Eutypa dieback, 

with Eutypa lata (Pers.) being the most recurrent causal agent, while less frequent 

pathogens are fungi belonging to the genera Eutypella, Diatrypella, Cryptosphaeria and 

Diatrype (Bertsch et al., 2013; Sosnowski et al., 2013). 

Three main pathogens are associated with the esca disease complex. Tracheomycotic 

ascomycetes Phaeomoniella chlamydospora (W. Gams, Crous, M.J. Wingf. & L. Mugnai) 

and Phaeoacremonium minimum (Tul. & C. Tul.), and basidiomycete Fomitiporia 

mediterranea M. Fisch, which are involved in one or more of the syndromes included 

in this disease complex. Despite these three fungi are the most recurrent, other 

species of wood pathogens, especially within the basidiomycetes, have been isolated 

from esca symptomatic plants (Mugnai et al., 1999; Surico, 2009). 

 

1.2.2 Infections and symptomatology 

According to current understanding, GTDs causal agents can infect plants both at the 

nursery level and in the field. In the first case, the fungal pathogens are already 

present in the propagation material (rootstock and/or scion), or can be found in 

nurseries’ tools or equipment used during the grafting process and storage of the 

cuttings (e.g. grafting machinery, hydration tanks, cold rooms; Zanzotto et al., 2001; 

Whiteman et al., 2002; Retief, McLeod and Fourie, 2006; Gramaje et al., 2018). In the 

case of field infections, fungal conidia and/or mycelium reach open wounds in the 

wood, usually produced during the pruning season, via several media, such as air, 

water droplets, arthropods and human intervention (Bertsch et al., 2013; Fontaine et 

al., 2016).  
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Once landed on fresh pruning wounds, conidia germinate and make their way into the 

plant’s xylem, where the plant – pathogen interaction begins, giving rise to the first 

symptoms. The manifestation of an infection occurs on several levels and varies among 

GTDs, although it is most often characterized by an initial vascular discoloration, 

followed in time by the appearance of wood necrosis (central or sectorial ‘wedge-

shaped’; Figure 1.1 A, B) which increases in size. Occasionally wood decay, most 

commonly white rot is present, primarily but not exclusively, in esca infected plants 

(Figure 1.1 C; Mugnai et al., 1999). Despite their slow progression, these symptoms 

keep advancing in the wood, compromising the hydraulic system of the plant.  

Secondary symptoms are occasionally exhibited by plants affected by GTDs, as well. 

They become visible at shoots level (e.g. stunted growth, shorter internodes), leaves 

(e.g. chlorosis, tiger stripes) and berries (e.g. black spotting), often discontinuously, 

and their appearance occurs several years after the infection has taken place (Mugnai 

et al., 1999; Sparapano et al., 2001; Bertsch et al., 2013). Despite GTDs pathogens are 

not considered to be directly responsible for such secondary symptoms, fungal 

secondary metabolites (e.g. toxins) and byproducts of the degradation of the wood, 

are believed to play a role in their development ( Mugnai et al., 1999; Evidente et al., 

2000; Tabacchi et al., 2000; Andolfi et al., 2011). Overall, plants affected by GTDs suffer 

from decline, dieback, reduced vigor, lower quantity and quality of the yields and an 

earlier death (Bertsch et al., 2013; Fontaine et al., 2016).  

 

 

Figure 1.1. Grapevine stems affected by wood pathogens. A- Central necrosis, 

symptom associated with the Botryosphaeria dieback syndrome; B- Sectorial ‘wedge-

shaped’ necrosis, associated with Eutypa lata infection; C- Necrosis and wood rot, 

symptoms of the esca disease. Sources: A- http://grapepathology.blogspot.com/p/trunk-diseas-

projects_6.html (Retrieved on 22-11-2018); B- www.lodigrowers.com/labratory-testing-for-grapevine-diseases/ 

(Retrieved on 22-11-2018); C- https://it.wikipedia.org/wiki/Mal_dell%27esca_della_vite (Retrieved on 22-11-2018). 
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1.2.3 Control strategies 

To date, it remains unclear the reason(s) behind this sudden epidemic of wood 

diseases, which seems to have started in the eighties. Among the several hypotheses, 

Rubio and Garzón (2011) listed some factors that might be related to this recent 

increase in GTDs: (i) the ban of sodium arsenite, the sole chemical control effective 

against some GTDs; (ii) the increased number of infected but asymptomatic vineyards, 

which left untreated keep spreading the infections; (iii) newly grafted plants coming 

from nurseries, where the presence of GTD fungi has often been identified; (iv) 

agricultural practices(Rubio, J.J.; Garzón, 2011).  

Over the last 20 years, the scientific community has made considerable efforts with 

the aim of identifying effective control strategies capable of tackling the GTDs issue 

(Mondello et al., 2017). Research ranged from the test of active ingredients to be used 

as antifungal agents against GTDs pathogens, to novel delivery ways of such chemicals 

(e.g. endotherapy; Darrieutort and Pascal, 2007; Mondello et al., 2017). Other studies 

focused on the use of biological control agents (BCA) both fungal and bacterial 

(Mutawila et al., 2011; Haidar et al., 2016; Yacoub et al., 2016). On the side of the 

nurseries, the aims were to (i) limit infections by implementing ‘best practices’ such as 

the sanitation of tools, tanks and storage rooms; (ii) treat rooted cuttings with 

techniques such as the hot water treatment (HWT), to deal with infected plant 

material (Fourie and Halleen, 2004; Gramaje et al., 2018). Field trials focused primarily 

on agricultural practices such as the application of dressings to pruning wounds, in 

order to prevent new infections from taking place (Kotze et al., 2011; Amponsah et al., 

2012; Díaz and Latorre, 2013; Sosnowski et al., 2013). 

Despite several positive achievements, no definitive control strategy has been 

identified for any of the GTDs and, to date, an integrated approach that combines 

nurseries sanitation with agricultural practices, such as pruning wound protection, 

offer the best chances to prevent these diseases from spreading (Gramaje et al., 2018). 

In conclusion, grapevine trunk diseases are considered the current biggest challenge in 

grapevine pathology for the following reasons:  

(i) There is still no clear explanation on the causes behind this dramatic increase in 

GTDs presence; 
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(ii) There are two battlefronts, the one to prevent infections from taking place 

(both in nurseries and in the field) and the one that deals with treatments for 

infected plants; 

(iii) Applying treatments in the wood is a difficult task; 

(iv) GTDs are spreading silently, as newly infected plants cannot be detected, and 

nearly unrestricted. 

 

 

1.3 The esca disease complex 

 

From early research... 

Esca can be considered one of the oldest diseases of cultivated grapevine (Vitis 

vinifera), with reports dating back from the ancient Greeks times and from the Latin 

world. Medieval works also describe grapevines affected by symptoms attributable to 

this disease (Mugnai et al., 1999).  

Early research, dating back to the beginning of the 20th century, associated two 

basidiomycetes with esca infections, namely Stereum hirsutum and Phellinus (Fomes) 

igniarius, with L. Petri being able to reproduce some internal wood symptoms with 

Cephalosporium sp. and Acremonium sp. A confirmation of this understanding came in 

the mid nineteen hundreds, when researchers assessed the role of Cephalosporium sp. 

and P. igniarius in producing wood symptoms, including wood decay (Mugnai et al., 

1999). Up until this time, esca was considered ‘a simple disease of old vines’, with 

symptoms such as white rot present in the trunk and branches, and associated with 

wounds produced on the plant (e.g. yearly pruning; Graniti et al., 2000). Symptoms 

were described to appear also in leaves and berries, from June to September, and 

apoplexy, namely the sudden wilting of the plant, was associated with environmental 

factors (e.g. heat, water availability, wind; Surico et al., 2006). Researchers had to 

change their mind starting from the late 1980’s, when an upsurge in the disease 

incidence in Southern Europe led to an increased study of the etiology and 

epidemiology of the disease (Mugnai et al., 1999; Graniti et al., 2000). The research 

carried out through the 90’ies raised more questions than it settled. In the eyes of 

some researchers, esca was a disease complex, with several factors and 
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microorganisms acting in association or succession. A second branch of thought saw 

esca as two distinct diseases, one causing the white rot (caused by Fomitiporia 

punctata) and the other being responsible for other wood symptoms such as brown 

wood streaking and gummosis. A third opinion supported the view that esca was 

exclusively caused by species of Phaeoacremonium, and that the presence of F. 

punctata played a secondary role (Graniti et al., 2000). 

 

…to current understanding   

A redefinition of the nomenclature of ‘esca’ and the esca-associated syndromes was 

proposed by G. Surico (2009), as a review of past knowledge joined with more recent 

understanding. This nomenclature gained popularity among leading researchers, 

becoming accepted by the majority of the scientific community.  

Surico established five separate syndromes, identified as such according to three main 

factors: the age of the plant, the symptomatology expressed in the wood and/or other 

plant tissues (e.g. leaves, bunches), and the pathogenic fungi that led to the expression 

of such symptoms. The five syndromes are: 

(i) Brown wood streaking of rooted cuttings (BWS); 

(ii) Petri disease; 

(iii) Grapevine leaf stripe disease (GLSD); 

(iv) Esca; 

(v) Esca proper; 

with the first three of the list belonging to the group “Grapevine Phaeo-

tracheomycosis complex”, a category created to identify plants of different age, which 

express similar symptoms and are infected by the same pathogen(s).  

These syndromes will be further described, focusing on the pathogens involved, the 

symptoms they cause and the current control strategies. 

 

Esca-associated syndromes presence in the world 

It is difficult to estimate the presence and extent of infections for these five syndromes 

in the world. This is because wood infections are not visible unless a destructive 

approach is used and foliar symptoms may or may not appear a number of years after 
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the wood infection has taken place. In addition, foliar symptoms are discontinuous and 

appear with no predictable pattern (Li et al., 2017).  

Concerning the syndrome BWS, several studies revealed the presence of 

tracheomycotic pathogens in propagating material in nurseries, revealing that either 

the rootstock/scion coming from the mother field were infected, or that the nursery 

environment and processes (e.g. hydration, cold storage,  disbudding, grafting) were 

sources of infection (Ridgway et al., 2002; Fourie and Halleen, 2004; Gramaje et al., 

2018). Despite that, no large-scale surveys were conducted to assess the presence on 

wood pathogens in nurseries.  

The same applies to Petri disease, for which no large-scale epidemiological study has 

been performed.  

On the other hand, several surveys tried to estimate the presence of GLSD, although in 

studies pre-dating the current nomenclature it was considered as ‘esca’, still referring 

to the appearance of the ‘tiger stripes’ symptomatology in leaves. Observations made 

in Kremstal (Austria) in the 1990s (Reisenzein et al., 2000) revealed a percentage of 

infected plots (n= 46) greater than 70% when grapevines were above 10 year old. In 

the 2000s, a French survey recorded the presence of foliar symptoms referable to 

GLSD (or black dead arm disease) in 66% of vineyards in Alsace, 68% in Bourgogne, 

73% in Bordeaux, between 81-85% in Charentes and above 95% in Jura (n= 329) (Bruez 

et al., 2013). In Portugal, a survey carried out during 2011/2012 in the Dão wine region 

revealed that GLSD was present in 88% of the sampled vineyards (n= 62) (Sofia et al., 

2013). However, no large-scale data is available for what concerns the past or current 

presence of GLSD in Spain, Australia, Italy or other wine-producing countries. 

Concerning esca and esca proper, also in these cases it is difficult to assess the 

presence of wood rot as it is externally asymptomatic. In fact, absence of GLSD foliar 

symptoms in plants located in a field with disease history does not mean plants are 

non-infected or non-symptomatic in the wood (Liminana et al., 2009; Díaz and Latorre, 

2014). Few studies examined, destructively, the presence of wood rot in vineyards 

with esca proper symptoms, such as the one by Pollastro et al. (2000), demonstrating 

that while only 17% of grapevines showed leaf symptoms, 84% of them presented 

deteriorated wood.  
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1.3.1 The Phaeo-tracheomycosis complex 

Pathogenic fungi 

There is a multitude of tracheomycotic fungi that affect the wood of grapevines. The 

ascomycetes included in the ‘Phaeo-tracheomycosis complex’ are those most 

frequently isolated from the wood of plants affected by BWS, Petri disease and GLSD, 

namely Phaeomoniella (Pa.) chlamydospora (Phaeomoniellales, Phaeomoniellaceae) 

and members of the Phaeoacremonium (Pm.) genus (Diaporthales, Togniniaceae), with 

Pm. minimum being the most represented (Figure 1.2; Surico, 2009; Gramaje, Urbez-

Torres and Sosnowski, 2018). They are known as plant pathogens, although some 

studies reported their presence in asymptomatic wood (Zanzotto et al., 2001). Both Pa. 

chlamydospora and Phaeoacremonium spp. have been isolated from numerous hosts, 

mainly woody plants, and soil (Rooneye et al., 2001; Mostert et al., 2006; Díaz and 

Latorre, 2014). Moreover, propagules are dispersed by several means, such as wind, 

rain, arthropods and human intervention (Edwards et al., 2001; Eskalen et al., 2007).  

Their pathogenicity is the result of both the colonization of the functional woody 

tissues and the release of several toxic metabolites (e.g. scytalone, isosclerone;  

Evidente et al., 2000; Abou-Mansour et al., 2004; Andolfi et al., 2011). 

 

 

Figure 1.2. Cultures of Phaeomoniella chlamydospora (A) and Phaeoacremonium 

minimum (B) grown for 14 days on potato dextrose agar medium. 
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1.3.1.1 Brown wood streaking of rooted cuttings  and Petri disease 

Symptomatology 

Once conidia land on open wounds (e.g. during pruning season) they germinate and 

the fungal mycelium starts colonizing the xylem of the plant. Histological studies have 

shown that the wood colonization differs between Pa. chlamydospora and Pm. 

minimum. In fact, the first one is found primarily in the lumen of xylem vessels and in 

xylem fibers (Valtaud et al., 2009; Pouzoulet et al., 2017), while the second can 

colonize bark, pith, phloem, xylem fibers and vessels, vessel-associated cells, rays, 

metaxylem and protoxylem (Valtaud et al., 2009; Pierron et al., 2015). 

The plant responds to an infection in several ways, including the synthesis of 

phytoalexins, the overexpression of genes related with the production of 

pathogenesis-related proteins (Ferreira et al., 2007; Martin et al., 2009; Fischer et al., 

2016) and the formation of tyloses. However, the only internally-visible plant response 

consists in the discoloration of the wood and the appearance of brown wood streaking 

(when seen in longitudinal sections), also observed as brown dots (in cross sections; 

Figure 1.3). This symptom is shared among all the syndromes included in the Phaeo-

tracheomycosis complex.  

The presence of brown wood streaking is the only internally-visible symptom 

associated with the BWS syndrome. When observed in cross sections it may be 

scattered randomly, clustered or forming ring-like structures in the xylem (White et al., 

2011; Figure 1.3 B, C). This disease is most often associated with rooted cuttings, in 

particular with the rootstock of the propagation material (Surico, 2008; Surico, 2009). 

Vines affected by BWS present damaged xylem vessels, as a result of fungal infection, 

but they do not express any external symptoms. 

Petri disease is associated with young vines, it may occur as an evolution of BWS or it 

may originate in the field (Surico, 2008). In Petri disease, previously called ‘black goo’ 

or gummosis, the vessels affected by brown streaking are occasionally associated with 

the oozing of a black viscous fluid, a gum, primarily composed by pectin and 

polymerized phenolics, but whose role and composition remain to be fully understood 

(Mostert et al., 2006). Other symptoms associated with Petri disease are a darkened 

central pit, leaf chlorosis, with plants suffering losses in yield, stunted growth and 

decline in vigor (Surico, 2008). 
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Figure 1.3. Symptomatology associated with the syndromes brown wood streaking of 

rooted cuttings and Petri disease. Longitudinal sections of 2 years old rooted cutting 

presenting brown wood streaking (A). Cross sections showing scattered (B) or 

clustered (C) black dots. 

 

Control strategies 

The majority of the studies concerning the control of the esca-associated syndromes 

focus on fighting tracheomycotic pathogens, in order to produce infection-free plant 

material in nurseries and prevent new infections from occurring in the field (Gramaje 

et al., 2018). For these purposes, a multitude of natural products, chemicals of 

synthesis and BCAs have been tested against mycelial growth and conidial germination 

of Pa. chlamydospora and Pm. minimum (Mondello et al., 2017). In addition, cultural 

practices or other agronomical practices are considered a valid tool to be employed as 

control strategies.  

Among the successful active ingredients and BCAs tested in vitro, only a few made it to 

the following step of nursery and field trial, where even fewer proved valid for the 

purpose. 

(i) In nurseries. The use of fungicides on nurseries’ tools, equipment and facilities is 

common practice, although Chinosol (hydroxyquinoline sulfate), reported to be the 

most utilized, has proven ineffective against Pa. chlamydospora and Pm. minimum 

(Gramaje et al., 2009). The hot water treatment seems the most effective method to 

disinfect dormant canes during the propagation process. It consists in treating plant 

material with hot water at 50 °C for 30 min. However, some studies have shown that 

vines may be negatively affected in terms of survivability and overall vigor (Waite and 
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May, 2005). On the side of BCAs, the incidence of both tracheomycotic pathogens in 

rootstock cuttings was reduced by soaking the propagation material in ascomycete 

Trichoderma formulations (Fourie and Halleen, 2004; Mondello et al., 2017).  

Oomycete Pythium oligandrum was tested under greenhouse conditions, it was able to 

colonize the root systems of grapevine cuttings and its presence was effective in 

reducing the wood necroses caused by P. chlamydospora (Yacoub et al., 2016). Also 

bacteria have been tested as possible BCAs, with species of Bacillus spp. being some of 

the most promising, although none of them is currently employed in nurseries (Alfonzo 

et al., 2012; Haidar et al., 2016).  

(ii) In the field. The treatment of pruning wounds is considered the best strategy to 

prevent new infections from occurring in the field. Tests revealed that chemicals such 

as thiophanate-methyl and copper oxychloride worked against Phaeoacremonium spp. 

(Gramaje et al., 2018); while boron, pyraclostrobin and boscalid, and a mixture of 

cyproconazole and iodocarb proved effective against Pa. chlamydospora. Promising 

results were achieved especially using BCAs, where several species/strains of 

Trichoderma (e.g. T. harzianum, T. atroviride, T. asperellum and T. gamsii)  were able 

to control tracheomycotic pathogens protecting pruning wounds (Di Marco et al., 

2004; Mutawila et al., 2011; Pertot et al., 2016). All these field trials resulted in a 

reduction of the incidence of infections but, to date, full protection of pruning wounds 

has not been achieved. 

The control strategies through cultural/agronomical practices focus primarily on 

preventing infections from occurring on rootstock mother vines. It is suggested to 

grow them on trellis, to minimize the chance of soil-borne pathogens from reaching 

the wood; to avoid using sprinkling irrigation, to reduce conidial dispersal and their 

germination rates (Gramaje et al., 2018). In addition, some studies identified 

rootstocks less susceptible to tracheomycotic fungi (Eskalen et al., 2001). The pruning 

timing and technique, as well as the training system of grapevines seem to have an 

impact on the chance of infections and development of wood necrosis. Late pruning 

(February-March) and minimizing the amount and size of pruning wounds are advised 

(Travadon et al., 2016; Gramaje et al., 2018).   

According to recent reviews, the best approach currently available is to adopt an 

integrated disease management strategy that combines nursery sanitation practices 



General introduction 

15 

and pruning wound protection, possibly leading to long lasting pathogen-free 

grapevines (Mondello et al., 2017; Gramaje et al., 2018).  

 

1.3.1.2 Grapevine leaf stripe disease 

Symptomatology 

Grapevine leaf stripe disease (GLSD) is associated with different symptoms in the 

wood, such as brown streaking, black spots and wood necroses, and with a main 

external symptom, the characteristic appearance of the so-called “tiger stripes”, in 

which the leaves present interveinal chlorotic areas and/or reddening of leaves, 

followed by necrosis (Figure 1.4; Surico, 2008). Another symptom occasionally 

expressed in GLSD affected plants is dark spotting on the skin of berries, which 

develops as a results of necrosis of epidermal and hypodermal cells, but whose 

triggering factor(s) remain unknown (Mugnai et al., 1999). 

The first appearance of foliar symptoms occurs years after the infection of grapevine 

by the wood pathogens (Sparapano et al., 2001) and it is normally exhibited in late 

spring/early summer. The reasons why leaf symptoms may disappear, from plants 

which were symptomatic during the previous growing season, have not yet been fully 

clarified. Some studies suggest that soil (Lecomte et al., 2011), nutrients (Calzarano et 

al., 2014), fungicides (Di Marco et al., 2011) and environmental factors (Surico et al., 

2000; Marchi et al., 2006; Di Marco et al., 2011; Bruez et al., 2013) may play a role in 

the development of the symptoms, but further research is necessary to support such 

claims.  

To date, the factor(s) directly responsible for the foliar symptoms of GLSD are yet to be 

found, as tracheomycotic fungi were never found in leaves or berries. Several 

speculations have been made in the past, but recent evidence is pointing towards the 

role of fungal metabolites (Abou-Mansour et al., 2004; Andolfi et al., 2011), as well as 

products from the wood degradation (Evidente et al., 2000; Tabacchi et al., 2000), 

which are thought to be carried via sap flow from the infected/decaying wood to the 

leaves and berries. These metabolites and products are thought to trigger a host 

defense response that results in the expression of foliar symptoms (Andolfi et al., 

2011; Bertsch et al., 2013). Also, a recent study provided evidence that the seasonal 

pattern of development of GLSD symptoms could be related to the phytoalexins levels 
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in the leaves and the grapevine growth stage (Calzarano et al., 2016). Despite these 

advances, the full mechanism of the development of foliar symptoms is still unclear. 

No grapevine cultivar is considered resistant to GLSD and symptom expression in the 

leaves may vary by degree and appearance (Köklü, 2000; Marchi, 2001; Murolo and 

Romanazzi, 2014; Borgo et al., 2016). Similar foliar symptoms are found also in vine 

plants infected by other wood fungi, mainly species in the Botryosphaeriaceae 

responsible for black dead arm disease (Larignon et al., 2009).  

 

 

 

Figure 1.4. Wood and leaf symptomatology associated with grapevine leaf stripe 

disease. Cross section of a trunk, the wood presents extensive necrosis, black dots and 

brown streaking (A). Foliar symptoms, described as ‘tiger stripes’, expressed on cv 

Cabernet Sauvignon in July (B), or on cv Fernão Pires in October (C). 

 

Control strategies 

Despite the appearance and development of the leaf symptoms remain to be fully 

elucidated, the application of treatments to fight GLSD focus on chemicals effective 

against the wood pathogens, and on their delivery method (e.g. foliar pulverization, 

endotherapy). To date, trials were mostly unsuccessful and only few treatments 

proved moderately effective in reducing the occurrence of foliar symptoms (Mondello 

et al., 2017). 

Up until the early 2000’s sodium arsenite pulverization, few weeks before bud-break, 

was the only treatment capable of preventing the appearance of foliar symptoms. The 

mode-of-action of sodium arsenite in this concern remains unclear, as well as its effect 
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on the wood pathogens. This chemical was banned from vineyards due to its toxicity 

for both humans and the environment (Di Marco et al., 2000; Bertsch et al., 2013). 

Among the, moderately, successful trials in reducing the incidence of foliar symptoms, 

with foliar pulverization, we find a seaweed extract (Calzarano et al., 2014), a copper 

formulation and fosetyl-aluminium (Di Marco et al., 2011). However, to date, none of 

these treatments are considered effective enough for their application in vineyards, 

and the best control strategy lies in the prevention of infections. 

 

1.3.2 Esca and esca proper   

Pathogenic fungi 

Several basidiomycetes genera have been linked with wood decay of esca symptomatic 

plants. Fomitiporia mediterranea (Hymenochaetales, Hymenochaetaceae) is fungus 

most frequently isolated from white rot in Europe (Surico, 2009), and this internally-

visible symptom has been successfully reproduced with artificial inoculations of this 

fungus in grapevine (Sparapano et al., 2000), demonstrating that F. mediterranea can 

also act as primary pathogen (Figure 1.5, A). Members of the genus Fomitiporia are 

primarily saprotrophs or parasites, with a worldwide distribution and have been 

associated with numerous genera of woody plants (Fischer, 2002). Other genera of 

white rot agents, reported at lower frequencies or most frequently isolated outside 

Europe are Fomitiporella, Phellinus, Inonotus, Inocutis, Stereum, Pletorus and Trametes 

(White et al., 2011; Bertsch et al., 2013; Cloete et al., 2015). 

 

Symptomatology 

There are three main symptoms that identify esca, all of which derive from the 

presence of an infection by white rot agents. The first and most obvious is the 

presence of white rot itself, which can be observed either in a destructive way or when 

large pruning wounds are made in the symptomatic hardwood. White rot is the name 

used to describe the transformation of the wood into a ‘spongy, friable, whitish-yellow 

mass’ (Figure 1.5, C), often delimited by a dark line when observed in cross sections 

(Surico, 2008). The decay, which normally starts from pruning wounds (Mugnai et al., 

1999), is the result of the activity of enzymes involved in cell wall decomposition. Only 

a few toxic metabolites have been identified from F. mediterranea (Andolfi et al., 
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2011). The second symptom that reveals an advanced infection is the presence of a 

crack in the trunk, which may occur when the rot reaches the wood surface (Surico, 

2008). A third observation can reveal the presence of white rot in grapevines, namely 

the presence of fruiting bodies of white rot agents on the surface of the trunk or arms 

of the plants (Figure 1.5, B).  

The simultaneous presence of white rot and GLSD foliar symptoms is the condition 

associated with esca proper.  

Esca and esca proper are the two syndromes considered responsible for the event 

called ‘apoplexy’, a condition in which the entire plant or only one of its arms suddenly 

wilt and die. This event generally occurs during summer and it is due to the 

compromised hydraulic system of the plant. However, environmental factors such as 

water availability and heath are believed to play a key role (Mugnai et al., 1999).  

 

 

 

Figure 1.5. White rot agent Fomitiporia mediterranea grown on potato dextrose agar 

medium (A). Trunk of grapevine presenting extensive white rot (top arrow) and a 

fruiting body of F. mediterranea (bottom arrow; B). Section of wood examined under 

the stereo microscope, top arrow indicates healthy wood, bottom arrow indicates 

white rot (C). Sources: A- (Rajaiyan et al., 2014) 

 

Control strategies 

Tests aiming to control F. mediterranea, or other white rot causal agents, are scarce 

and limited to studies in vitro. F. mediterranea is inhibited by natural compounds such 

as chitosan and by chemicals of synthesis such as the combination of pyraclostrobin 
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and metiram. Both F. punctata and S. hirsutum were inhibited by the phytoalexins 

resveratrol and pterostilbene (Mondello et al., 2017).  

The only bacterial BCA tested against F. mediterranea is Bacillus amyloliquefaciens, 

which proved moderately effective in vitro. No fungi were tested as BCA against any 

white rot agent (Mondello et al., 2017). 

A traditional method to treat esca proper consists in splitting the trunk in half and 

inserting a stone within the two halves of the trunk, therefore exposing permanently 

the rotted wood to the air (Figure 1.6). This approach, still in practice in rural areas of 

north-east Italy, seems to delay the reappearance of foliar symptoms, despite no 

scientific studies have yet verified this claim (Mugnai et al., 1999). More recently, a 

pruning technique combined with the mechanical removal of the wood rot, which 

reminds the trunk-splitting technique, has been identified as a promising method to 

stop the expression of foliar symptoms in plants affected by esca proper 

(https://simonitesirch.com/). Also in this case, scientific research has not yet 

investigated the subject. 
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Figure 1.6. Trunk-splitting technique, also know as ‘metodo Armano’ (from the Italian: 

‘Armano’s method’), performed on grapevines affected by esca proper. Treated 

grapevines in a vineyard in northeast Italy (Friuli), in December 2015 (A) and July 2016 

(B). 
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1.4 The microbial ecology of grapevines 

 

1.4.1 The microbiome and next-generation sequencing  

The concept of microbiome identifies the community of microorganisms (e.g. fungi, 

bacteria, viruses) that inhabit a particular environment.  All environments, ranging 

from soil to the human body, present a diverse array of microbes that interact among 

each other and with their host.  The field of microbial ecology, also called 

environmental microbiology, aims to study such diversity and interactions.   

The history of microbial ecology underwent important changes from its beginnings to 

recent days (Morgan et al., 2017). There are three main approaches to the study of the 

composition of microbiomes, starting from the earliest to the most recent: 

(i)  The traditional microbiological approach, which characterizes the first studies of 

microbial ecology. This method is based on the isolation and cultivation of 

microorganisms in vitro, their identification relying mainly on morphology, 

microscopy and growth of cultures in different media; 

(ii) The molecular biology approach, beginning from the polymerase chain reaction 

(PCR) revolution. This approach is culture-independent and allows the accurate 

identification of microorganisms through DNA-based fingerprinting.  Common 

methods included in this category are: single strand conformation polymorphism 

(SSCP), automated ribosomal intergenic spacer analysis (ARISA), denaturing 

gradient gel electrophoresis (DGGE); 

(iii) The next-generation sequencing (NGS) approach, being the results of the latest 

improvements in DNA sequencing and bioinformatics. Metagenomics consists in 

the direct analysis of the collective genomes of environmental samples, either in 

their entirety (whole metagenome sequencing) or focusing on a specific category 

or organisms (amplicon-based sequencing, also called metabarcoding). In 

metabarcoding, a specific gene marker (amplicon), from fungi or bacteria, is 

selected and amplified directly from environmental DNA (eDNA) without any 

step of enrichment or cultivation (Morgan et al., 2017). 

The approaches just described are all valid and still applied to this day. Nevertheless, 

culture-dependent and culture-independent approaches offer different understanding. 
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The culture-independent approaches are able to identify taxa present in very small 

abundance and others that are not cultivable in vitro; with NGS being able to describe 

the diversity of complex environmental samples and with greater resolution (Morgan 

et al., 2017). 

 

1.4.2 The microbiome of the vineyard 

In recent years, increasing interest has developed over the understanding of the 

vineyard’s microbiome, using culture-independent approaches. It is not only an 

interest of the scientific community, but also of vine-growers and wine makers, as the 

microbial composition of the vineyard may influence several factors, such as the plants 

health and physiology, the quality of the yield and eventually the fermentation 

processes that lead to wine (Zarraonaindia and Gilbert, 2015).  Therefore, several 

studies characterized the mycobiome, namely the fungal communities, and the 

bacterial populations associated with the phyllosphere (Pinto et al., 2014; Singh et al., 

2018), rhizosphere and soil (Zarraonaindia et al., 2015; Samad et al., 2017), 

endosphere (Campisano et al., 2014; Rezgui et al., 2016), grape’s skin and flowers 

(Belda et al., 2017; Morgan et al., 2017), must (Belda et al., 2017; Mezzasalma et al., 

2017). This new understanding is yet incomplete: an increasing number of new genera 

and species are associated with grapevines (Jayawardena et al., 2018), dynamics of 

spatial and seasonal changes are found (Bruez et al., 2014), microbiomes may vary 

according to the plants’ cultivar and age (Dissanayake et al., 2018), agronomical 

practices may influence microbiomes as well (Travadon et al., 2016). In conclusion, 

more research is necessary to advance the present knowledge, especially concerning 

one of the areas least investigated, namely the endosphere. 

 

1.4.3 The wood mycobiome and GTDs 

To date, research on the mycobiome of the endosphere of grapevines, in particular of 

the wood, have mostly focused on culture-dependent studies. This approach consists 

in plating on artificial medium pieces of wood and isolating the emerging colonies. 

These studies identified numerous species of fungi, allowing an understanding of the 

communities of endophytes, saprophytes and pathogens associated with grapevines 

(Halleen et al., 2003; González and Tello, 2011; Núñez-Trujillo et al., 2012). A culture-
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independent approach was chosen by Pancher et al. (2012), using ARISA; while, more 

recently two studies applied next-generation sequencing to unravel the diversity of the 

wood mycobiome. Of these last two studies, the first evaluated the saprotrophic 

communities present in dead vines (Jayawardena et al., 2018), while the second 

analyzed the endophytes of vines at different ages (Dissanayake et al., 2018). These 

three culture-independent works contributed to widen the understanding of the wood 

mycobiome especially, but not exclusively, by introducing organisms that had not been 

previously reported in association with the grapevine’s endosphere.     

The study of the microbial ecology of the wood may offer important insights when 

applied to GTDs as well. In the available literature, there are only three studies which 

tried to address the composition of the wood mycobiome, in GTDs-affected plants, 

from this perspective. The first study, by Hofstetter et al. (2012), used a culture-

dependent approach, revealing an unprecedented fungal diversity of 158 species, 

including numerous GTDs pathogens. Grapevines apparently healthy and others 

presenting foliar symptoms of esca had a very similar wood mycobiome composition 

both in terms of species present and relative frequency. The authors raised doubts in 

regards to the real role of esca-related pathogens in the expression of foliar symptoms, 

which is well supported by their evidence, but against the prevalent understanding of 

the disease. A second study by Bruez et al. (2014) used a culture-independent 

approach (SSCP), with the same objective. Bruez analyzed the mycobiome of non-

symptomatic wood of plants with or without foliar symptoms of esca, during the four 

seasons. The study revealed a shift in the mycobiome of the wood during different 

seasons, but no differences when comparing symptomatic and non-symptomatic 

plants, supporting the observations made by Hofstetter. The third study, by the same 

author and using the same methods, analyzed the mycobiome of old plants with no 

foliar symptoms of esca, but symptomatic in the wood. The study characterized the 

mycobiome of old plants, also revealing the presence of many GTDs causal agents, 

despite the absence of foliar symptoms (Bruez et al., 2016). 

The research on microbial ecology of the wood mycobiome greatly improved the 

understanding of the diversity of the fungal communities inhabiting the endosphere of 

grapevines, also raising doubts on the etiology of the foliar symptoms. To date, no 



General introduction 

24 

studies used NGS to further the understanding of the wood mycobiome and its 

possible role in the foliar symptomatology expression.  

 

 

1.5 Aims 

 

This PhD project focused primarily on evaluating control strategies that might find 

application in the short-to-medium term, in order to confront infections caused by two 

tracheomycotic fungi directly responsible for the syndromes brown wood streaking of 

rooted cuttings, Petri disease and grapevine leaf stripe disease, namely Phaeomoniella 

chlamydospora and Phaeoacremonium minimum, in Vitis vinifera L. Three research 

lines were pursued simultaneously, in line with the aims of this research project, each 

one of which constitutes one chapter of this thesis. The fifth chapter does not deal 

directly with control strategies, instead the aim of this line of research is to gain an 

understanding of the microbial ecology of the wood of adult grapevines located in a 

vineyard with a history of esca proper. This knowledge is a prerequisite for the 

following investigation (not included in this thesis) aiming to understand how applying 

any control strategy, under field conditions, may affect the endosphere of grapevines, 

in regards to both pathogens and non-target fungi (e.g. endophytes, saprobes). 

 

Chapter 1. General introduction. This chapter aims to introduce the reader to 

grapevine trunk diseases, giving background on the five syndromes associated with the 

esca complex and their current control strategies. An overview of the concept of 

mycobiome and its meaning in the vineyard and in the grapevine’s endosphere 

conclude this chapter. 

Chapter 2. “Epicoccum layense E24 a potential biological control agent of esca-

associated fungi in grapevine”. In this chapter, we screened several species/strains of 

Epicoccum sp., a genus of ascomycetes commonly associated with grapevines, to 

assess their potential in biological control. This study had the following aims: (i) 

identifying Epicoccum spp. through molecular analysis, (ii) running in vitro dual culture 

competition tests against three esca-associated fungi and examining their interactions 

under the microscope, (iii) learning whether E. layuense E24 produces symptoms in 
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grapevines when artificially inoculated, (iv) understanding whether E. layuense E24 is 

capable of antagonizing two esca tracheomycotic fungi in planta. 

 

Chapter 3. “Endotherapy of infected rooted grapevine cuttings in the control of 

Phaeomoniella chlamydospora and Phaeoacremonium minimum”. In this chapter, we 

tested the method of endotherapy, namely injecting active ingredients in the wood, as 

a possible control strategy against two esca-associated fungi, P. chlamydospora and P. 

minimum. The aims of this study were two: (i) establishing the efficacy of several 

chemicals as antifungal agents in vitro, (ii) understanding whether endotherapy, using 

selected chemicals, has the potential to control these two wood pathogens in young 

grapevines, under greenhouse conditions. 

Chapter 4. “Fungicides and the grapevine wood mycobiome. A case study on 

tracheomycotic ascomycete Phaeomoniella chlamydospora reveals potential for two 

novel control strategies”. Application of fungicides, through foliar spray, is a common 

and necessary practice in vineyards worldwide. The primary aims of this study were to 

use a next-generation sequencing approach in order to understand whether fungicides 

applied against powdery and downy mildew agents (i) affect indirectly the wood 

mycobiome, and/or (ii) have the potential to be exploited in the control of P. 

chlamydospora infections. 

Chapter 5. “Characterization of the wood mycobiome of Vitis vinifera in a vineyard 

affected by esca. Spatial distribution of fungal communities and their relation with 

foliar symptoms”. The wood mycobiome in adult grapevines has been studied mainly 

with culture-dependent approaches. In this study, we used next-generation 

sequencing (culture-independent approach) in order to gain insights on the microbial 

ecology of plants found in a field with a history of esca proper. There were three main 

aims in this study: (i) to characterize the diversity fungi living in the perennial and 

annual wood of grapevines, (ii) to learn whether different areas of the plants (e.g. graft 

union, trunk, spurs, canes, etc.) present differences in diversity and abundance of taxa, 

and (iii) to understand if there is any link between esca foliar symptoms and the fungal 

communities present in the wood.  
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Chapter 6. Final remarks. In this last chapter we review the achievements of this PhD 

project, examining how they may find application in nurseries and/or in the field, also 

evaluating potential perspectives. 
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2. Epicoccum layuense a potential biological control agent of esca-

associated fungi in grapevine  

Giovanni Del Frari, Ana Cabral, Teresa Nascimento, Ricardo Boavida Ferreira, Helena 

Oliveira 

 

 

Abstract  

Epicoccum is a genus of ascomycetes often associated with the mycobiome of 

grapevines (Vitis vinifera). Epicoccum spp. are found in the soil, phyllosphere, as well as 

in the wood, where they interact both with the plant and with other endophytes and 

pathogens. Wood pathogens involved in the esca disease complex, a grapevine trunk 

disease, are particularly concerning in viticulture, as current control strategies have 

proven unsatisfactory. This study investigated the interaction among Epicoccum spp. 

and three esca-associated fungi, with the aim of establishing whether they are suitable 

candidates for biological control. A screening conducted in vitro, by means of dual 

culture, revealed that all tested Epicoccum spp. inhibited the growth of pathogens 

Phaeomoniella chlamydospora and Fomitiporia mediterranea, while only some of them 

inhibited Phaeoacremonium minimum. Epicoccum layuense E24, identified as the most 

efficient antagonist, was tested in rooted grapevine cuttings of cultivars Cabernet 

Sauvignon and Touriga Nacional, under greenhouse conditions, against P. 

chlamydospora and P. minimum. This study revealed that the inoculation of E. 

layuense E24 produced a successful colonization of the wood of grapevines; in addition 

it did not impair the growth of the plants or induce the appearance of symptoms in 

leaves or in wood. Moreover, grapevines colonized by E. layuense E24 showed a 

considerable decrease in the wood symptomatology caused by the inoculated 

pathogens (by 31 — 82%, depending on the pathogen/grapevine cultivar), as well as a 

reduction in their frequency of re-isolation (60 — 74%). Our findings suggest that E. 

layuense E24 is a promising candidate for its application in biological control, due to its 

antagonistic interaction with some esca-associated fungal pathogens.   

 

Keywords biological control, fungal interaction, grapevine, tracheomycosis 
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2.1 Introduction 

 

Grapevine trunk diseases (GTDs) are an increasing threat to worldwide viticulture 

(Bertsch et al., 2013; Fontaine et al., 2016; Gramaje et al., 2018). Affected grapevines 

(Vitis vinifera L.) exhibit lower vigor, reduced productivity and quality of yields, shorter 

lifespan; which, altogether, cause considerable economic losses (Hofstetter et al., 

2012; Gramaje et al., 2018). The causal agents of these diseases are found in diverse 

groups of both ascomycetes and basidiomycetes, which can colonize the woody tissues 

of grapevines, interfering with the plant physiology, microbial ecology and activating 

plant response mechanisms (Bertsch et al., 2013; Bruez et al., 2014). Symptoms of an 

infection by trunk disease pathogens are often elusive. They are found primarily in the 

wood, in the form of brown streaking (longitudinal discoloration of xylem vessels), 

black dots, necrosis and wood decay; occasionally, symptoms may appear in other 

organs of the plants as well (e.g. leaves and bunches; Mugnai et al., 1999; Surico, 

2008).  

One of the major GTDs is the esca disease complex which comprises five different 

syndromes. The first three, (i) brown wood streaking of rooted cuttings, (ii) Petri 

disease and (iii) grapevine leaf stripe disease (GLSD), are mainly caused by the 

tracheomycotic pathogens Phaeomoniella chlamydospora (W. Gams, Crous, M.J. 

Wingf. & Mugnai) Crous & W. Gams and Phaeoacremonium minimum (Tul. & C. Tul.) D. 

Gramaje, L. Mostert & Crous. These syndromes manifest in vines of different ages, the 

former affects newly grafted plant material, Petri disease is diagnosed in young vines, 

while GLDS generally affects adult plants. The fourth syndrome is (iv) esca, which is 

caused by different basidiomycetes, most frequently Fomitiporia mediterranea M. 

Fisch. This pathogen has the capacity to degrade lignin and induces the appearance of 

white rot in the wood. Lastly, (v) esca proper, that corresponds to the co-occurrence of 

GLSD and white rot in the same vine (Surico, 2009; Calzarano et al., 2016). Infections 

occur primarily in the field, where spores of the pathogens land on fresh pruning 

wounds and make their way in the wood, as well as via infected propagating material 

(Mugnai et al., 1999; Fourie and Halleen, 2004; Gramaje et al., 2018). Control 

strategies, aiming to limit the infection caused by these pathogens, have often proven 

unsatisfactory, offering only partial protection. Additionally, the regulatory restrictions 
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that chemicals are facing in most countries around the world are leading researchers 

towards alternative measures as a priority, in which biological control is included 

(Mondello et al., 2017; Gramaje et al., 2018). Bacteria, oomycetes and fungi have been 

screened in order to find suitable candidates to be exploited in the biological control of 

esca-associated fungi. Among the tested bacteria, Bacillus subtilis strains have revealed 

promising antagonistic traits against GTD pathogens in vitro and in vivo, both in 

pruning wound protection and in nurseries (Alfonzo et al., 2012; Haidar et al., 2016; 

Haidar et al., 2016; Rezgui et al., 2016). On the side of oomycetes, the colonization of 

the root system by Pythium oligandrum triggered the plant defenses and reduced the 

extent of the wood symptomatology caused by P. chlamydospora (Yacoub et al., 2016). 

Among fungi, tests have been conducted with Aureobasidium spp. (González et al., 

2012), Chaetomium spp. (Spagnolo et al., 2012), Fusarium lateritium (Christen et al., 

2005), but the most studied species are those belonging to the genus Trichoderma, 

namely T. atroviride, T. harzianum and T. longibrachiatum, which have been used with 

encouraging results in pruning wound protection or throughout the different steps of 

grapevine propagation in nurseries (Di Marco et al., 2004; Fourie and Halleen, 2004; 

Pertot et al., 2016). Despite of these results, there are several other candidates that 

may reveal potential for biological control against esca-associated pathogens, some of 

which are assigned to the genera Epicoccum, Cladosporium and Alternaria (Pancher et 

al., 2012; Bruez et al., 2014).  

Fungi belonging to the genus Epicoccum are ubiquitous ascomycetes (Didymellaceae) 

frequently isolated from healthy and diseased grapevine wood, being Epicoccum 

nigrum the most referred species (Hofstetter et al., 2012; Pancher et al., 2012; Bruez 

et al., 2014).  However, there are different references to the Epicoccum genus, not 

ascribed to a species, that have been reported from healthy grapevine cuttings 

(Halleen et al., 2003), pruning wounds (Úrbez-Torres and Gubler, 2011) and mature 

grapevine plants (Kuntzmann et al., 2010; Choueiri et al., 2014). These fungi have been 

thought to be endophytes or saprophytes in grapevine wood but their role on healthy 

or diseased wood, where they can co-inhabit with different GTDs pathogens, has not 

been investigated. 

Several studies proved the antagonistic effect of E. nigrum against plant pathogenic 

agents, and it currently finds application as a biological control agent (BCA) in different 
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crops (Larena et al., 2005; Koutb and Ali, 2010; Fávaro et al., 2012; El-Gremi et al., 

2017; Kosawang et al., 2017). The antagonistic behavior of E. nigrum is mainly 

attributed to the release of secondary metabolites, some of which have antifungal (e.g 

flavipin, epicorazine and epirodins) and anti-bacterial (e.g. beauvericin) activity 

(Browne et al., 1987; Dzoyem et al., 2017). Epicoccum nigrum is known as a 

genotypically and phenotypically highly variable species (Arenal et al., 2002) and it has 

been hypothesized that E. nigrum could encompass different species (Fávaro et al., 

2011). Recent developments on the taxonomy of Didymellaceae fungi are contributing 

to clarify boundaries between genera in this family, as well as delimiting new species 

or combinations within the Epicoccum genus (Aveskamp et al., 2010; Chen et al., 2017; 

Jayasiri, 2017; Valenzuela-Lopez et al., 2018). Some of these new species are 

represented by a restricted number of strains closely related to E. nigrum (Chen et al., 

2017). 

The presence of Epicoccum fungi in grapevines is well known, nevertheless, 

information regarding their interactions with the plants, their role in the microbial 

ecology of the wood and the interaction with GTDs pathogens is scarce. Moreover, the 

potential of these fungi to be exploited as BCAs against esca-associated fungi has not 

yet been assessed. Therefore, the aims of this study are: (i) to identify Epicoccum spp. 

currently isolated from grapevine wood in Portugal, and (ii) to gain an understanding 

of the type of interaction that occurs among members of the genus Epicoccum and 

esca-associated pathogens both in vitro and in vivo. 

 

 

2.2 Materials and methods 

 

2.2.1 Epicoccum spp. isolation 

Isolates (E17, E20-E24, E27 and E28) were obtained from grapevine woody tissue 

sampled from canes in a vineyard, cv. Touriga Nacional, located in the Alentejo region 

(district of Beja), while isolate (E33) was obtained from symptomatic wood in a 

vineyard, cv. Touriga Nacional, located in the Lisbon region (Table 2.1). Wood chips, 2 

mm thick, were surface disinfected by immersion in a NaClO solution (0.05% w/w 

active chlorine) for 1 min, followed by double-rinsing in sterile distilled water (SDW) 



Epicoccum layuense in biological control 

43 

and plated on potato dextrose agar (PDA, BD-Difco Laboratories, Detroit, MI, USA) 

supplemented with 250 mg l-1 chloramphenicol (BioChemica, AppiChem, Germany). 

Petri dishes were incubated at 25 °C in the dark and regularly checked for the 

development of Epicoccum-like fungi, based on the cultural characteristics of colonies. 

The isolates were single-spored or purified by cutting off the tip of a hypha, and 

maintained on slants of PDA, at 5 °C, until use.  

 

2.2.2 Epicoccum spp. identification 

The total genomic DNA of each isolate was extracted from mycelium of 10 d old 

cultures grown in PDA, according to Nascimento et al. (2001). The internal transcribed 

spacer regions 1 and 2 and the intervening 5.8S nrDNA region (ITS) were amplified by 

using the primers ITS1F (Gardes and Bruns, 1993) and ITS4 (White et al., 1990), the 

RNA polymerase II second largest subunit (rpb2) gene by using the primer pair RPB2-

5F2 (Sung et al., 2007) and fRPB2-7cR (Liu et al., 1999) and the partial gene of β-tubulin 

(tub2) by the primers T1 and T2 (O’Donnell and Cigelnik, 1997), respectively. PCR 

amplifications were performed using 1× PCR buffer with 2 mM MgCl2 (Thermo 

Scientific, Lithuania), 48 µM of each dNTP, 0.32 µM of each primer, 0.5 units Taq DNA 

Polymerase (Dream Taq, Thermo Scientific, Lithuania) and 10-15 ng of gDNA in a final 

volume of 20 µL. The cycle conditions in a iCycler thermocycler (Bio-Rad, USA) were 94 

°C for 5 min, followed by 40 cycles at 94 °C for 30 s, 52 °C (for ITS) or 58 °C (for tub2) 

for 30 s, and 72 °C for 1:40 min, and a final elongation at 72 °C for 10 min. For the rpb2 

gene the amplifications followed the protocol of Woudenberg et al. (2013). 

Sequencing was performed by StabVida (Portugal). Sequences generated in this study 

were deposited in GenBank (accession numbers MH643917 to MH643946), the 

alignments and trees in TreeBASE 

(http://purl.org/phylo/treebase/phylows/study/TB2:S23108). 

Sequences of related Epicoccum species were retrieved from GenBank and are listed in 

Table 2.1. Alignments were performed with MAFFT version 7 ((Katoh et al., 2017); 

https://mafft.cbrc.jp/alignment/server/) using the L-INS-i method and manually 

adjusted, if necessary, in MEGA7 (Kumar et al., 2016). Maximum likelihood (ML) and 

Bayesian analyses were conducted for each locus and on a three-locus dataset 

combined using the program SequenceMatrix 1.8 (Vaidya et al., 2011). ML was 
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implemented in the CIPRES Science Gateway V 3.3 (Miller et al., 2010) using RAxML-

HPC v.8 on XSEDE (8.2.9) using the GTRCAT model and 1000 rapid bootstrap 

inferences. Prior to Bayesian inference, the best nucleotide substitution models for 

each locus according to the Akaike Information Criterion were calculated in jModelTest 

2.1.10 (Darriba et al., 2012). According to this software, a Hasegawa-Kishino-Yano 

model with proportion of invariable sites (HKY+I) was suggested for ITS dataset, a 

General Time-Reversible model with gamma-distributed rate (GTR+G) for tub2 and a 

GTR+G+I model for rpb2. The Bayesian analyses were performed in MrBayes v. 3.2.6 

(Ronquist et al., 2012). The Markov Chain Monte Carlo sampling was set to 10 million 

generations, with two independent runs with four chains, one cold chain and three 

heated chains with a temperature value of 0.2. The tree samples of the two cold chains 

were compared every 1,000 generations and stopped when the average standard 

deviation of split frequencies fall below 0.01. Burn-in was set at 25 % after which the 

likelihood values were stationary and the remaining trees were used to calculate 

posterior probabilities. Trees from different runs were then combined and summarized 

in a 50% majority-rule consensus tree. Didymella exigua (CBS 183.55) was selected as 

outgroup.  

 

2.2.3 In vitro interactions among Epicoccum spp. and esca-associated fungi 

Epicoccum spp. isolates were tested in dual culture against three esca associated-fungi, 

P. chlamydospora CBS 161.90 and P. minimum CBS 110713 from the CBS culture 

collection (Westerdijk Fungal Biodiversity Institute, Netherlands) and a local strain of F. 

mediterranea. All possible combinations of pathogen – Epicoccum spp. were tested, as 

well as each fungus alone or against itself. All experiments were done in 90 mm diam. 

Petri dishes containing 15 mL of PDA in four biological replicates. Mycelial plugs of 4 

mm diam. were cut, with a cork borer, from the actively growing margin of each fungal 
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Table 2.1. Isolates of Epicoccum layuense and related species used for phylogenetic 

analyses. Ex-type isolates are shown in bold type. 

Species Isolate 1 Host, substrate Country 
GenBank accession numbers 

ITS TUB RPB2 

Didymella exigua CBS 183.55 Rumex arifolius France GU237794 GU237525 EU874850 

Epicoccum cedri MFLUCC 17-
1058; KUMCC 
17-0140 

Cedrus deodara 
(dead land branch) 

Italy 
KY711170 KY711168 – 

E. dendrobii CGMCC 3.18359 Dendrobium 
fimbriatum 

China 
KY742093 KY742335 – 

 LC 8146 Dendrobium 
fimbriatum 

China 
KY74209 KY742336 – 

E. italicum CGMCC 3.18361 Acca sellowiana Italy KY742099 KY742341 KY742172 

 LC 8151 Acca sellowiana Italy KY742100 KY742342 KY742173 

E. layuense CGMCC 3.18362 Perilla sp. China KY742107 KY742349 – 

 LC 8156 Perilla sp. China KY742108 KY742350 – 

 E 20 Vitis vinifera Portugal MH643918 MH643928 MH643939 

 E 21 Vitis vinifera Portugal MH643919 MH643929 MH643940 

 E 22 Vitis vinifera Portugal MH643920 MH643930 MH643941 

 E 23 Vitis vinifera Portugal MH643921 MH643931 MH643942 

 E 24 Vitis vinifera Portugal MH643922 MH643932 MH643943 

 E 27 Vitis vinifera Portugal MH643923 MH643933 MH643944 

 E 28 Vitis vinifera Portugal MH643924 MH643934 – 

 E 33 Vitis vinifera Portugal MH643925 MH643935 MH643945 

E. mackenziei  MFLUCC 16-
0335; KUMCC 
16-0071 

Ononis spinosa (dead 
aerial stem) 

Italy 
KX698039 KX698032 KX698035 

E. nigrum CBS 173.73 Dactylis glomerata USA FJ426996 FJ427107 KT389632 

 CBS 125.82 Human toe nail The 
Netherla
nds 

FJ426995 FJ427106 KT389631 

 LC 8158 Poa annua USA KY742111 KY742180 KY742353 

 LC 5180 Lonicera japonica China KY742109 KY742178 KY742351 

E. nigrum (ex-
type of E. 
mezzettii) 

CBS 173.38 Populus (pulp of 
wood, in paper 
factory) 

Italy 
MH643926 

 
MH643936 

 
MH643946 

 

 E17 Vitis vinifera Portugal MH643917 
 

MH643927 
 

MH643938 
 

E. poae LC 8161 Poa annua USA KY742114 KY742356 KY742183 

 CGMCC 3.18363 Poa annua USA KY742113 KY742355 KY742182 

E. pimprinum CBS 246.60; 
ATCC 22237; 
ATCC 16652; IMI 
81601 

Soil India 

FJ427049 — FJ427159 

1) ATCC: American Type Culture Collection, Virginia, U.S.A; CBS: Westerdijk Fungal Biodiversity Institute (formerly CBS-KNAW), 
Utrecht, The Netherlands; CGMCC: China General Microbiological Culture Collection, Beijing, China; IMI: International 
Mycological Institute, CABI-Bioscience, Egham, Bakeham Lane, U.K.; LC: Lei Cai personal collection deposited in laboratory, 
housed at Chinese Academy of Sciences, Beijing, China; MFLUCC: Mae Fah Luang University Culture Collection, Chiang Rai, 
Thailand; KUMCC: Culture collection of Kunming Institute of Botany, Chinese Academy of Sciences, Beijing, China. 



Epicoccum layuense in biological control 

46 

colony and placed, facedown, 40 mm apart. Dishes were incubated at 25 °C, in the 

dark, for 14 d, and photographed every 2 or 3 d. The size of all colonies was measured 

from the images generated, using Adobe Photoshop Creative Cloud (2015). The 

percent growth inhibition (PGI) of pathogens was calculated using the formula: PGI (%) 

= 100 × ((control - treatment)/control), in which the ‘control’ represents the area of 

each fungal colony growing against itself and ‘treatment’ the area of each colony 

growing against Epicoccum spp. 

For microscope observations, a square of agar was removed from the interaction zone 

of the dual cultures (E. layuense isolate E24 and pathogen) and mounted on a 

microscope slide on a drop of 85% lactic acid (w/w) and overlaid with a cover slip. 

Images were captured by using a differential interference contrast microscope (Leica 

DM2500, Germany) equipped with a Leica DCF295 camera. Measurements of conidia 

were made at 1000x magnification with the Leica Application Suite (LAS) version 3.3.0 

software and round to the nearest 0.5 μm. Thirty conidia of P. chlamydospora and P. 

minimum were measured and the means, at 95% confidence intervals, were 

calculated. The spore dimensions are presented as mean values with extreme values in 

parentheses. 

 

2.2.4 In vivo interactions among E. layuense and esca-tracheomycotic fungi 

The experiments conducted in vivo focused on one isolate of E. layuense, namely ‘E24’, 

selected from the in vitro assays as best performing antagonist. The experiments were 

conducted in grapevine potted plants as follows. In a first experiment (year 2016), the 

isolate was tested for its pathogenicity in the wood of grapevines. One year-old canes 

of cv. Touriga Nacional were collected in a vineyard in the Azeitão region (Portugal), in 

December 2015, and left in a cold-room (4 °C) for two months. Canes were divided into 

3-buds-long cuttings, rooted in a warm bench, at 24 °C, and potted in a mixture of peat 

and sand (1:1 v/v). Before inoculation, cuttings were surface disinfected with 70% 

ethanol. Discs of mycelium (4 mm diameter) of the isolate E24, were cut with a cork 

borer from the actively growing edge of a seven-days-old culture growing in PDA, and 

inoculated in the rooted grapevine cuttings. Mycelium discs were inserted in a wound 

(4 mm diameter, 4 mm deep) made in the wood with a cork borer, 40 mm below the 

top shoot (Figure 2.1A). A small piece of sterile cotton, imbibed in sterile distilled 
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water (SDW) was placed on top of the mycelium plug and tightened to the plant with 

Parafilm®. Mock-treated plants were inoculated with a sterile plug of PDA. Each 

treatment consisted of 10 biological replicates. 

In a second experiment (year 2017), 3-buds-long cuttings of cvs. Touriga Nacional and 

Cabernet Sauvignon, rooted and potted in a mixture of peat and sand (1:1 v/v), were 

provided by VitiOeste nursery (Pó, Bombarral, Portugal). The following fungal 

combinations were tested: (i) E24 alone, (ii) P. chlamydospora CBS 161.90 and (iii) P. 

minimum CBS 110713 alone, (iv, v) combination E24 – each pathogen, and (vi) mock-

control; with each combination consisting of 10 biological replicates.  

All inoculations with the isolate E24, as well as the mock-control, were carried out as 

described in the first experiment (mycelial discs). The inoculation of the pathogens 

occurred one month later, a 50 µl aliquot of a suspension containing approximately 

2000 conidia was deposited in a fresh wound (4 mm diameter, 4 mm deep; Figure 

2.1B) and covered with Parafilm®. Mock-treated controls were inoculated with 50 µl of 

SDW. The conidial suspension was prepared by flooding 14 days-old PDA cultures of 

each pathogen with SDW, and the conidia were dislodged from the mycelium with a 

sterile glass rod. The suspension was filtered through a double layer of cheesecloth, 

the conidial concentration was determined using a hemocytometer and adjusted to 1 

×105 conidia/mL with SDW.  

After inoculation, plants were randomly placed in a greenhouse equipped with fan and 

pad evaporative system (24±5 °C day/18±5 °C night) and watered three times a week, 

or when needed. Fortnightly treatments with meptyldinocap (35.7% p/p) or sulfur 

wettable powder (80% p/p) were carried out to prevent powdery mildew (Erysiphe 

necator) infections. 

Three months after the pathogens inoculation, plants were visually inspected for the 

appearance of foliar symptoms and the length of the shoots was recorded. Afterwards, 

vines were uprooted, their bark removed and longitudinal sections were made in order 

to assess the presence and extent of symptoms in the wood (brown streaking), 

departing from the inoculation points. 
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Figure 2.1. Schematic representation of the inoculation and re-isolation areas in 

grapevine rooted cuttings. (A) E24 inoculation via mycelium plug; (B) pathogen 

inoculation via spore suspension; (C) re-isolation area 15 mm below the pathogen 

inoculation; (D) re-isolation area 45 mm below the pathogen inoculation. 

 

Pieces of wood (approx. 4 mm3) were cut transversally 30 mm above the area A for the 

first experiment, and areas C and D (Figure 2.1) for the second, to undergo re-isolation. 

The re-isolation of the pathogens occurred as follows. Four pieces of wood were taken 

from each level (C and D) of each plant, they were surface disinfected by flame, 

followed by immersion for 1 min in a NaClO solution (0.35% w/w as active chlorine), 

double rinsed in SDW (1 min each), dried with sterile filter paper and plated on PDA 

amended with 250 mg l-1 chloramphenicol. Petri dishes were incubated at 25 °C, in the 

dark, for 21 d. The re-isolation of E24 was achieved as described for its isolation. The 

percentage of re-isolation was calculated as the proportion of wood pieces from which 

fungal colonies were recovered over the total number of pieces of wood plated for 

each plant. 
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2.2.5  Data analysis 

All data were subjected to analysis of variance (ANOVA), and statistically significant 

means were compared using the Tukey post hoc test at a 5% significance level 

(STATISTICA 8.0). Before analysis, arcsine-square root transformation was performed 

for data expressed as percentage. For each experiment, the following analyses were 

carried out: (i) one-way ANOVA model to evaluate the in vitro effect of Epicoccum spp. 

on esca-associated fungi ; (ii) two-way ANOVA model to assess the effects of the 

grapevine cultivar, fungal inoculation (E24, P. minimum and P. chlamydospora), and 

their interaction, upon the shoot length and brown wood streaking length; (iii) three-

way ANOVA model to assess fungal re-isolation in which, in addition to the grapevine 

cultivar and fungal inoculation variables, two regions of fungal re-isolation were 

considered (Figures 2.1C and 2.1D), as well as their interactions. Data recorded from 

mock-treated plants were used to estimate any infection of rooted grapevine cuttings 

before inoculation and, therefore, they were not included in the statistical analyses. 

 

 

2.3 Results 

 

2.3.1 Epicoccum spp. identification 

The three locus alignment contains 25 ingroup isolates and one outgroup Didymella 

exigua (CBS 183.55). A total of 1422 characters were considered, including alignment 

gaps (490 for ITS, 596 for rpb2 and 336 for tub2), from which 1154 were conserved and 

154 were parsimony-informative (12 for ITS, 111 for rpb2 and 31 for tub2). The tree 

topologies obtained by ML and Bayesian analysis of individual loci and for the 

combined alignments were essentially congruent, therefore, only the ML tree is 

shown, with bootstrap support values (MLBS) and Bayesian posterior probabilities 

(BPP) indicated at the nodes (Figure 2.2). The ITS loci were the least informative 

resolving only four out of nine taxa present in the dataset, whereas the other two loci, 

rpb2 and tub2, were able to resolve all the taxa. 
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Figure 2.2. Phylogenetic tree inferred from a Maximum likelihood analysis based on a 

concatenated alignment of ITS, rpb2 and tub2 sequences of 25 isolates of Epicoccum 

and one isolate of Didymella. The RAxML bootstrap support values (MLBS) and 

Bayesian posterior probabilities (BPP) are given at the nodes (BPP/MLBS). The tree was 

rooted to Didymella exigua (CBS 183.55). Ex-type cultures are emphasised in bold type. 

The scale bar indicates 0.1 expected changes per site. 

 

Among the nine isolates of Epicoccum obtained from grapevine, eight of them (E20-

E24, E27, E28 and E30) cluster within the E. layuense clade, and one (E17) clusters with 

the ex-type strain of E. mezzettii (CBS 173.38), whose current name is E. nigrum. From 
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here on, the isolate E17 will be referred as E. mezzettii, in order to distinguish it from 

the others belonging to E. nigrum species. 

 

2.3.2 In vitro interactions among Epicoccum spp. and esca-associated fungi 

Epicoccum mezzettii (E17) and all the strains of E. layuense inhibited the growth of P. 

chlamydospora and F. mediterranea, after 14 d of growth on PDA medium, by the 

dual-culture method, while only some strains of E. layuense (E22-E24 and E33) were 

able to inhibit P. minimum (Figure 2.3).  

The growth behavior of the confronting fungi varied depending on the different fungal 

combinations. Epicoccum mezzettii (E17) was the only fungus capable of clearly 

overgrowing all three pathogens (Figure 2.4 (ii)), while the remaining isolates (E20-E24, 

E27, E28 and E33), all assigned to E. layuense, were able to inhibit the pathogens 

without a physical colony contact, when observed by the naked eye.  

The interaction Epicoccum — P. chlamydospora was characterized by a great reduction 

of the colony size of the pathogen, when compared to both single and dual culture 

controls (Figure 2.3A). The average reduction was of 71.0%, with the best performer 

being E24 that reduced the growth of P. chlamydospora by 79.9% (Table 2.2), as 

exemplified in Figure 2.4 (a, d and g).  

Microscopic observations of the interaction between E. layuense (E24) and P. 

chlamydospora (CBS 161.90) revealed that the growth of P. chlamydospora ceases 

before the contact with the antagonist. When the hyphae of E. layuense are within 3-4 

mm distance of P. chlamydospora hyphae, the growth slackens and the hyphae 

become sparser, growing below the agar surface without visible aerial mycelium 

(Figure 2.5A). The E. layuense isolate extends its growth towards P. chlamydospora, 

surrounding it, with an intermingling of the hyphae but without overlapping the 

pathogen (Figures 2.4a and 2.5B). The P. chlamydospora isolate reacts to the presence 

of the antagonist increasing the conidia production along the contact line and the 

hyphae differentiate swollen cells that remind chlamydospores (Figures 2.5C and 

2.5D). 
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Figure 2.3. In vitro inhibition of esca-related fungi by Epicoccum spp. isolates. Growth 

was measured 14 days post-inoculation on PDA medium in dual-culture with (A) Pch, 

Phaeomoniella chlamydspora; (B) Pmin, Phaeoacremonium minimum and (C) Fmed, 

Fomitiporia mediterranea. ‘Control s’ and ‘Control d’ indicate the colony area of the 

pathogen in single culture or dual culture, respectively, and ‘E’ indicates the Epicoccum 

isolate. Error bars represent the standard deviation from the mean; different letters 

indicate statistically significant differences (Tukey post hoc test, p ≤ 0.05). 
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No differences were observed between the conidia dimensions of P. chlamydospora 

withdrawn from the interaction zone and the conidia of this pathogen growing alone. 

All antagonists but one (E20) significantly inhibited the growth of P. minimum when 

compared to the dual culture control (Figure 2.3B). The single culture control grew 

significantly less than the dual, which suggests a possible growth-promoting 

interaction between P. minimum colonies. Also in this case, the interaction between 

E24 and P. minimum caused the greatest reduction in the colony size of the pathogen, 

amounting for a 61.0% decrease (Table 2.2; Figure 2.3B). Microscopic details of the 

interaction E. layuense (E24) and P. minimum (CBS 110713) reveal that both fungi 

slacken their growth when they approach each other. The pathogen, sensing the 

presence of E. layuense, alters the growth direction of their hyphae, in an attempt to 

avoid contact (Figure 2.5H), although at a later stage the intermingling and overlapping 

of hyphae of both fungi become visible (Figures 2.5G and 2.5I). The conidia of P. 

minimum withdrawn from the interaction zone are larger and narrower ((3.5–)4.5–

5.0–5.5(–6.5) × (1.0–)1.0–1.3–1.5(–1.5) µm) than those collected from the single 

culture of P. minimum ((3.0–)3.5–4.1–4.5(–5.5)×(1.0)–1.5–1.5–1.5(–2.0) µm), having a 

greater length-width ratio ((3.0–)3.5–4.1–4.5(–6.0)) when compared to the control  

((1.5–)2.5–2.7–3.0(–3.5)). 

Regarding F. mediterranea, E. layuense (E24) proved to be one of the most efficient 

inhibitor, inducing a colony size reduction of 71.8% (Table 2.2; Figure 2.3C). All other 

Epicoccum isolates were effective in inhibiting the mycelial growth of this pathogen, 

although there were significant differences among them (Figure 2.3C). Microscopic 

details of the confronting zone between E. layuense (E24) and F. mediterranea reveal 

that after six days of incubation the hyphae of both fungi come into contact and the 

pathogen responds by entangling their hyphae, forming hyphal strands. In addition, 

degradation of the hyphal tips and formation of clamp connections are observed. On 

the bottom of the dual culture it is visible a brown streak along the line of contact of 

fungi corresponding to a multiplication of branches piles up the hyphae to prevent the 

contact with the antagonist (Figure 2.5M-Q). 
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Table 2.2. Percent growth inhibition of esca-associated fungi by Epicoccum spp. 

 

    PGI (%)1 

Epicoccum spp. Isolate P. chlamydospora P. minimum F. mediterranea 

E. mezzettii E17 71.8 19.1 44.6 

E. layuense E20 72.6 0.9 24.2 

 
E21 71.4 21.8 32.9 

 
E22 75.3 37.9 55.0 

 
E23 76.9 53.4 64.2 

 
E24 79.9 61.0 71.8 

 
E27 66.8 25.3 52.4 

 
E28 58.0 24.6 54.3 

 
E33 67.8 37.2 31.4 

 

1Calculated using the formula: PGI (%) = 100 × ((control - treatment)/control) in which the 

control represents the area of each fungal colony growing against itself and treatment the area 

of each colony growing against Epicoccum spp. 
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Figure 2.4. Interaction pathogen – antagonist or pathogen — pathogen after 14 d of 

incubation on PDA. (i) Phaeomoniella chlamydospora (a), Phaeoacremonium minimum 

(b) and Fomitiporia mediterranea (c) inoculated on the left side, against Epicoccum 

layuense strain E24 inoculated on the right; (ii) the same pathogens against E. mezzettii 

strain E17, (iii) dual cultures of each pathogen. 
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Figure 2.5. Morphological changes of vegetative structures of esca-associated fungi 

upon interaction with Epicoccum layuense isolate E24 in dual culture plates. 

Phaeomoniella chlamydospora isolate CBS 161.90 (left side) and E. layuense (right side) 

at interaction area at day eight (A); hyphae of P. chlamydospora with swollen 

chlamydospores (arrow) and an increasing of sporulation in the contact line with E. 

layuense (B-D) when compared to P. chlamydospora growing alone (E) at day ten. 

Phaeoacremonium minimum isolate CBS 110713 (left side) and E. layuense (right side) 

at the interaction zone at day eight (F); intermingled hyphae of both fungi at day ten 

(G) after the hyphae of P. minimum have tried to change their growth direction (left 
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Figure 2.5 (continues). arrow) to avoid the contact with the antagonist (right arrow) at 

day six (H); agglomerates of P. minimum hyphae intermingled with the antagonist 

hyphae (I), conidia of P. minimum from the interaction zone (J) when compared to 

conidia from the P. minimum single culture (K), and hyphae of P. minimum growing 

alone (L), all at day ten. Fomitiporia mediterranea (left side) and E. layuense (right side) 

at the interaction zone at day eight (M); agglomerates and strands of F. mediterranea 

hyphae in an attempt to block the advance of E. layuense (N); hyphae of F. 

mediterranea denoting plasmolysis (arrow) (O) and clamp connections (arrow) (P); 

mycelium of F. mediterranea growing alone (Q). Scale bars represent A, F, M = 1 mm; 

B, G, H, L, N =50 µm; C, E, I, O-Q = 20 µm; D, J, K = 10 µm. 

 

3.3.3 In vivo interactions between E. layuense and esca-tracheomycotic fungi 

The first experiment was carried out to infer whether E24 isolate could induce 

symptoms of a wood disease, in grapevine potted plants of cv. Touriga Nacional. This 

investigation revealed that, after four months of incubation, inoculated plants did not 

present any foliar symptoms, such as chlorosis, spotting or tiger stripes pattern, and 

the shoot length of inoculated plants was not significantly different from the control 

(Figure 2.6A). The examination of the stem for the presence of wood symptoms, in 

longitudinal sections, revealed no relevant brown-wood streaking, when compared to 

the mock-treated plants. The discoloration observed in woody tissue was short in 

length and related to the wound produced in the inoculation point, being present both 

in inoculated and mock-treated vines (Figure 2.6B). By the end of the assay, the E24 

isolate was consistently yielded from inoculated plants, by means of in vitro re-

isolation, and never from the control, thus indicating its potential for the inner 

colonization of grapevine. 

The results from the first experiment, revealing that E. layuense E24 was unable to 

produce wood symptoms and affect the grapevine growth, led to a second 

experiment, performed in 2017, in which two grapevine cultivars were evaluated 

(Touriga Nacional and Cabernet Sauvignon). In this case, the in vitro re-isolations of the 

inoculated fungi aimed to assess the presence of both pathogens and antagonist in all 
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Figure 2.6. Effects of Epicoccum layuense E24 on grapevines. Measurements of the 

shoot length (A) and brown wood streaking length (B), in cv. Touriga Nacional, four 

months after inoculation. Error bars represent the standard deviation from the means. 

No significant differences in shoot length or brown streaking length were detected (p > 

0.05). 

 

combinations, and the re-isolations occurred both 15 mm and 45 mm below the point 

where the pathogens were inoculated (Figure 2.1).  

Results revealed that the artificial inoculation of E. layuense (E24) did not produce 

external symptomatology on both grapevine cultivars, four months after inoculation. 

The pathogens, P. chlamydospora and P. minimum, whose inoculation was performed 

one month after that of the antagonist, were also unable to induce external 

symptomatology. 

The growth of the green shoots, and therefore their final length, was not significantly 

influenced by the presence of either pathogens and/or antagonist, in both cultivars (p 

> 0.05; Table 2.3).  

 

While the inoculation of E24, P. minimum or P. chlamydospora did not produce any 

external symptom on grapevines of both cultivars, the two pathogens induced the 

appearance of internal symptoms of brown wood streaking that differed significantly 

in length from those inoculated with E24 isolate and mock-treated plants  (Figure 2.7). 

In both cultivars, the wood symptoms due to E24 inoculation alone were not 

significantly greater than the controls, which support results from the previous 

experiment (first year) on the behavior of E. layuense on grapevine wood. In Touriga 
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Nacional, the wood streaking significantly decreased in length due to the E24 — 

pathogen interaction, for both pathogens, when compared to pathogen-alone 

inoculation. The same behavior was recorded in Cabernet Sauvignon for both 

interactions, namely E24 x P. minimum and E24 x P. chlamydospora. In both cultivars, 

the inoculation of E24 reduced or completely prevented the negative effects of the 

pathogens, in regards to the development of brown wood streaks. 

 

Table 2.3. Shoot length (cm) of grapevine potted plants inoculated with water (control) 

or with Epicoccum layuense strain E24, Phaeoacremonium minimum (Pmin), 

Phaeomoniella chlamydospora (Pch) and the combination of E24 with Pmin (E24 x 

Pmin) or Pch (E24 x Pch). Measurements were taken three months after the 

inoculation of the pathogens.  

 

Grapevine 

cultivar 

Water 

control 
E24  Pmin  Pch  E24 x Pmin E24 x Pch 

Touriga 

Nacional  
77.2 ± 12.1 61.4 ± 12.2 62.7 ± 13.6 75.0 ± 13.7 63.6 ± 16.8 60.3 ± 10.9 

Cabernet 

Sauvignon  
89.2 ± 12.2 81.4 ± 19.7 70.6 ± 13.6 79.1 ± 14.0 82.9 ± 18.6 71.7 ± 10.6 

 

 

The presence of the inoculated fungi, calculated as the frequency of re-isolation, 

supported the insights gained by the brown wood streaking measurements. A more 

comprehensive understanding of the pathogen — antagonist interaction was obtained 

thanks to the two re-isolations areas examined, 15 mm and 45 mm below the 

pathogens’ inoculation point (Figures 2.1C and 2.1D). The presence of E. layuense E24 

was also assessed in the same areas as for the pathogens.  
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Figure 2.7. Brown wood streaking length in inoculated grapevine potted plants. 

Grapevines were inoculated with water (control) or with Epicoccum layuense strain 

E24, Phaeoacremonium minimum (Pmin) and Phaeomoniella chlamydospora (Pch) 

alone, or combined with E24 (E24 x Pmin and E24 x Pch). Bars followed by the same 

letter do not differ statistically according to the Tukey’s test (p > 0.05). 

 

The frequency of re-isolation of E24 in inoculated plants revealed a significant 

interaction among ‘grapevine cultivar’, ‘re-isolation area’ and ‘fungal inoculation’ (p < 

0.05), in which the ‘grapevine cultivar’ and the ‘fungal inoculation’ were responsible 

for the major effects (p ≤ 0.001), while no meaningful differences emerged from the 

variable ‘re-isolation area’. The average frequency of re-isolation of E24 in control 

plants of Cabernet Sauvignon was 68.8% and a similar value was recorded in Touriga 

Nacional (58.8%), highlighting a successful colonization of the woody tissues in the 

areas near the inoculation points, thus revealing that E24 could colonize indifferently 

the wood tissues above and below its inoculation point.  

Although some variation has been observed when Epicoccum E24 re-isolation means 

are compared, neither P. minimum nor P. chlamydospora have significant detrimental 

effect on the antagonist re-isolation (Figure 2.8). 
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 Figure 2.8. Frequency of Epicoccum layuense re-isolation from two grapevine cultivars 

and two areas of re-isolation (C 15 mm and D 45 mm). E. layuense was inoculated 

alone (E24) or in combination with Phaeoacremonium minimum (E24 x Pmin) or 

Phaeomoniella chlamydospora (E24 x Pch). Different letters on the top of the bars 

represent statistical differences according to the Tukey’s test (p ≤ 0.05).  

 

The frequency of re-isolation of pathogens, when inoculated in absence or presence of 

E. layuense E24, is presented in Figure 2.9. The three-way ANOVA revealed a significant 

interaction among ‘grapevine cultivar’, ‘re-isolation area’ and ‘fungal inoculation’ (p = 

0.0029), with positive effects coming from the ‘re-isolation area’ (p = 0.0017) and 

‘fungal inoculation’ (p < 0.001). 

 

By examining the ‘area of re-isolation’  C (15 mm), it is possible to infer that, for both 

pathogens and cultivars, the frequency of re-isolation of P. minimum and P. 

chlamydospora is lower in the presence of E24, although never significantly different 

from the positive controls (inoculated with the pathogen alone). In contrast, in ‘area of 

re-isolation’ D (45 mm) there is a strong decrease in the presence of both pathogens in 

both grapevine cultivars. The re-isolation of P. minimum, when co-inoculated with E24, 

was reduced by 83.3% in Cabernet Sauvignon and 95.2% in Touriga Nacional. A similar 

trend was registered for P. chlamydospora, where the decrease in the frequency of re-

isolation was of 85.7% in Cabernet Sauvignon and 88.9% in Touriga Nacional. 
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Figure 2.9. Frequency of re-isolation of inoculated pathogenic fungi. Phaeoacremonium 

minimum (Pmin) and Phaeomoniella chlamydospora (Pch) were either inoculated 

alone, or in combination with Epicoccum layuense E24 (E24 x Pmin, E24 x Pch). Re-

isolations occurred at 15 mm (C) and 45 mm (D) below the pathogens’ inoculation 

point in cultivars Cabernet Sauvignon and Touriga Nacional. Different letters indicate 

statistically significant differences after a Tukey’s post hoc test (p ≤ 0.05) 

 

 

2.4 Discussion 

 

2.4.1  Epicoccum spp. identification 

In this study, a collection of Epicoccum spp. obtained from wood of grapevine plants in 

Portugal was identified morphologically and by gene sequencing (ITS, rpb2 and tub2). 

Results revealed two Epicoccum species within the collection, E. layuense and E. 

mezzettii, being E. layuense the most represented. This species is phylogenetically 

closely related to E. nigrum and E. poae and it was recently reported from leaves of 

Perilla sp. in Tibet, China (Chen et al., 2017). In turn, E. mezzettii, represented by the 

type strain CBS 173.38 and E17, although considered synonym of E. nigrum 

(Mycobank), proved to be a different species.  

E. nigrum, apparently not represented in our collection, is the most reported species of 

the genus, in grapevine wood. However, E. nigrum was for long considered a single 

variable species, encompassing high diversity (Fávaro et al., 2011), and it is possible 

that other closely related species (e.g. E. layuense or E. mezzettii) have been 
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misidentified as E. nigrum, before the taxonomic reassessment of the genera within 

Didymellaceae (Chen et al., 2015, 2017).  

 

2.4.2  Epicoccum layuense E24 and grapevines 

Strains of E. nigrum are known as potential biological control agents (BCAs) in 

grapevine, against fungal aerial diseases, as well as in other pathosystems (Madrigal et 

al., 1994; Koutb and Ali, 2010; Fávaro et al., 2012; Li et al., 2013), but their role as a 

grapevine wood endophyte, along with that of other closely related species, has not 

been addressed. This study reveals the inability of E. layuense E24 to impair the growth 

of grapevines and to induce leaf and wood symptoms on inoculated plants of cvs 

Touriga Nacional and Cabernet Sauvignon, within the timings of the experiments. 

These results support the current understanding that Epicoccum spp. are not 

associated with any grapevine disease. Long-term studies are necessary to confirm this 

conclusion, as wood pathogens grow slowly and plants may remain externally 

asymptomatic for a number of years after an infection has taken place (Sparapano et 

al., 2000). 

 Despite Epicoccum spp. are often associated with the endosphere, phyllosphere and 

rhizosphere of grapevine plants (Cueva et al., 2012; Pancher et al., 2012; Pinto et al., 

2014), to date, it is not clear the mode of colonization of the wood. Our results show 

that the inoculation of a mycelium plug of E. layuense produces a successful 

colonization in one-year-old cuttings of both tested cultivars, also revealing that its 

antagonist behavior was not influenced by grapevine cultivar.  

 

2.4.3  In vitro interaction between Epicoccum spp. and esca-associated fungi 

The various syndromes that constitute the esca disease complex are an increasing 

concern in viticulture for their unrestrained spread, which highlights the need to apply 

immediate and effective control strategies to prevent what may become the 21st 

century phylloxera (Bruez et al., 2013). Success stories of the application of BCA 

against grapevine diseases are many (Compant and Mathieu, 2016), and their use 

could prevent several of the side effects that result from the application of fungicides 

(Komárek et al., 2010). Grapevine wood is characterized by a complex microbiome 

(Hofstetter et al., 2012; Pancher et al., 2012; Bruez et al., 2015) comprising hundreds 
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of species that interact with one another, and the role that some of these organisms 

play in preventing infections or slowing the spread of grapevine trunk pathogens must 

be further investigated. In this work, we present an overview of the interactions that 

lie between Epicoccum spp. and three esca-related fungi.  

Although E. layuense has never been studied as an antagonist, the taxonomic 

proximity of this species to E. nigrum suggests that it may act in a similar way. Several 

studies demonstrated antibiosis among E. nigrum and different plant pathogenic fungi, 

including hyperparasitism (El-Gremi et al., 2017). The interaction types may vary, 

ranging from a pure chemical one (Fávaro et al., 2012) to a combination of chemical 

and physical (Brown et al., 1987; Li et al., 2013).  

Our work shows a species-specific interaction of Epicoccum spp. over P. 

chlamydospora, P. minimum and F. mediterranea, where E. mezzettii overgrows all 

three pathogens, while for E. layuense there was mutual inhibition. The fast growth of 

E. mezzettii and E. layuense, along with the diffusion in the culture medium of 

pigments, suggest that the antagonism is primarily due to competition for space, 

nutrients and probably chemical interaction. These claims are also supported by 

previous reports of E. nigrum - pathogen interactions (Brown et al., 1987; Madrigal et 

al., 1994; Talontsi et al., 2013). The different pathogens behavior reported in response 

to the presence of E. layuense E24, such as (i) the increase in the conidia production 

along the contact line in P. chlamydospora, (ii) the alteration of the growth direction of 

the hyphae in P. minimum and (iii) the formation of hyphal strands, degradation of the 

hyphal tips and formation of clamp connections in F. mediterranea, are considered 

antagonistic interactions in other studies where different fungi were confronting 

(Porter, 1924; Molla et al., 2001; Naidu et al., 2016). 

However, the in-depth study of these interactions, as well as the chemical nature of 

the pigments produced by E. layuense E24 and by E. mezzettii, was not covered in this 

study and needs to be further investigated. 

 

2.4.4 In vivo interaction between E. layuense E24 and esca-tracheomycotic fungi 

The in vivo study focused on the interaction between E. layuense E24 and the two 

tracheomycotic fungi P. chlamydospora and P. minimum. These pathogens are the 

most frequently isolated from symptomatic young grapevines and they are responsible 
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for the brown wood streaking appearance, which is a parameter of our interest. 

Therefore, in this part of the study, F. mediterranea was not further examined. 

In the greenhouse experiment, the inoculation of both pathogens did not induce any 

significant external symptom, most likely because of the relatively short amount of 

time that the pathogens had to interact with the plant. Nevertheless, the evident 

brown streaking, that manifested from the inoculation point, revealed that a 

pathogenic mechanism had taken place in the wood, and the role of the pathogens in 

its occurrence was confirmed by in vitro re-isolations.  

The wood symptomatology caused by P. chlamydospora, when interacting with E. 

layuense E24, was consistently lower in both grapevine cultivars, with a 67.5% 

reduction of the brown wood streaking length in Cabernet Sauvignon and 73.8% in 

Touriga Nacional. Also for P. minimum, a significant reduction of symptoms was 

observed, although unevenly between cultivars (82% in Cabernet Sauvignon and 31.3% 

in Touriga Nacional; Figure 2.9). Studies that described a similar reduction in the 

streaking length induced by P. chlamydospora, achieved with other antagonists, 

include Pythium oligandrum inoculated in the root system (40 – 50%; Yacoub et al., 

2016), Trichoderma spp. in nurseries and in pruning wound protection (67 – 79%; Di 

Marco et al., 2004; Di Marco and Osti, 2007), Bacillus pumilus and Paenibacullus sp. 

(31 – 39%) in co-inoculation assays (Haidar et al., 2016).   

The frequencies of re-isolation of P. chlamydospora and P. minimum, when alone or 

interacting with E. layuense, support the observations gained from the measurements 

of the brown wood streaking. In fact, the shorter the streaking the lower the frequency 

of re-isolation of the pathogens (Figures 2.7 and 2.9). The examination of the wood at 

different distances from the pathogens inoculation point increased the understanding 

of their wood colonization success. While the pathogens presence is similar to that of 

the positive controls near the inoculation point (15mm below), it is considerably 

reduced further down the wood (45mm; Figure 2.9). This suggests that the presence of 

E. layuense E24 slowed-down or completely stopped the spread of the pathogens in 

the wood. These observations also confirm the general understanding that the brown 

wood streaking length, although not incited exclusively by P. chlamydospora and P. 

minimum, is linked to the re-isolation of these pathogens (Mugnai et al., 1999; Díaz 

and Latorre, 2014). 
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Combining the length of brown wood streaking with the re-isolation of pathogens, it is 

interesting to notice how fast P. minimum and P. chlamydospora could colonize woody 

tissues, approximately 10 mm/month for the first and 17 mm/month for the second, 

under our experimental conditions. These data are particularly worrying when thinking 

about nursery infections, as pathogens may fully colonize newly rooted cuttings in a 

matter of months.  

 

The application of biological control agents in perennial plants presents several 

challenges and its success can be influenced by biotic and abiotic factors. This study 

examined the potential of Epicoccum layuense E24 in the biological control of two 

esca-associated pathogens, under greenhouse conditions. Further investigation is 

required to assess whether the success of the wood colonization by E. layuense E24 

and the antagonism observed vary in time (e.g. aging of the vine) and under field 

conditions (e.g. seasonality, extreme weather conditions). Infections of newly grafted 

rooted cuttings or young grapevines have been widely reported (Scheck et al., 1998; 

Rego et al., 2000; Edwards et al., 2001; Ridgway, Sleight and Stewart, 2002; Fourie and 

Halleen, 2004); they entail weaker and less productive plants, leading often to death of 

the infected vines. From our results, it can be hypothesized that the application of E. 

layuense E24, or even its metabolites, in nurseries or young vineyards may help the 

young plants to cope with early infections, by reducing both the wood colonization by 

P. chlamydospora and P. minimum, as well as the brown streaking symptom associated 

with them. The modes of production, delivery and application of E. layuense E24 need 

to be further investigated. In conclusion, E. layuense E24 is a promising candidate for 

biological control and its future application in nurseries and young vineyards is the 

natural follow-up of this study, in the ultimate quest of keeping in check these esca-

related pathogens. 
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3. Endotherapy of infected rooted grapevine cuttings for the control of 

Phaeomoniella chlamydospora and Phaeoacremonium minimum 

Giovanni Del Frari, João Costa, Helena Oliveira, Ricardo Boavida Ferreira 

 

 

Abstract 

The pathogens Phaeomoniella chlamydospora and Phaeoacremonium minimum are 

associated with different syndromes of the esca disease complex affecting grapevine 

propagation material, and young and adult plants. Infections by these fungi occur in 

grapevine nurseries and in vineyards, with disease control strategies providing limited 

protection in both cases. Several chemicals are effective in vitro against these two 

pathogens, but treatment of infected plants, especially endotherapy, has not yet 

proven satisfactory. Five chemicals (elemental silver, fosetyl-Al, glutaraldehyde, 

hydrogen peroxide and Blad-containing oligomer) were tested in vitro, with the first 

four also tested in planta, by means of endotherapy, against Pa. chlamydospora and 

Pm. minimum. All chemicals were effective in vitro for preventing growth of both 

pathogens, at different concentrations. Endotherapy of rooted grapevine cuttings (cv. 

Touriga Nacional) was effective against Pa. chlamydospora for all the tested chemicals, 

with reductions in the frequency of re-isolation of this pathogen of 91 – 95% 

(glutaraldehyde), 68 – 96% (hydrogen peroxide), 68 – 77% (elemental silver) and 58 – 

59% (fosetyl-Al) when compared with the water-treated experimental controls. The 

only treatment that was effective against Pm. minimum was glutaraldehyde, providing 

a 75 – 83% reduction in re-isolation frequency. These results indicate that endotherapy 

of young grapevines during early stages of infection may be an effective control 

strategy, especially against the wood pathogen Pa. chlamydospora.  

 

 

 

Key words Tracheomycosis, grapevine trunk diseases, fungicides, chemical control, 

endotherapy 
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3.1 Introduction 

 

Phaeomoniella (Pa.) chlamydospora and Phaeoacremonium (Pm.) minimum are 

tracheomycotic ascomycetes involved in the esca disease complex, a major trunk 

disease of grapevines (Vitis vinifera L.; Gramaje et al., 2018). They are directly 

responsible for three syndromes, affecting rooted cuttings (brown wood streaking), 

young grapevines (Petri disease) and adult plants (grapevine leaf stripe disease, GLSD). 

They also play a role in the development of the ‘esca proper’ syndrome, in which their 

presence occurs simultaneously with wood rotting basidiomycetes (e.g. Fomitiporia 

mediterranea; Surico, 2008; 2009). Primary internal symptoms develop in grapevine 

wood, where these fungi cause brown wood streaking, black dots and necroses. 

However, plants may remain externally asymptomatic for a number of years after 

infections have taken place (Mugnai et al., 1999; Sparapano et al., 2001). Overall, 

affected plants suffer reduced vigour, shortened lifespan, and reduced grape quality 

and yield (Bertsch et al., 2013; Fontaine et al., 2016).  

Over the last 20 years, several studies have identified fungicides, biocontrol agents and 

natural compounds that are capable of inhibiting growth of Pa. chlamydospora and 

Pm. minimum in vitro and in grapevines. However, to date, control methods have only 

achieved partial protection through integrated management approaches, in which 

sanitation methods are also of major relevance (Bertsch et al., 2013; Gramaje et al., 

2018; Mondello et al., 2018). There are two main disease management strategies. The 

first is against tracheomycotic fungi inside the wood of grapevines, which is a 

challenging task, as it is difficult to reach the pathogens with fungicides and other 

compounds. The second is to prevent new infections, due to the widespread 

occurrence of these pathogens as epiphytes or in the endosphere of grapevine 

propagation material (Larignon and Dubos, 2000; Rego et al., 2000; Zanzotto et al., 

2001; Ridgway et al., 2002; Fourie and Halleen, 2004), as well as in the air (Gramaje et 

al., 2018), soil (Rooney et al., 2001; Whiteman et al., 2002), arthropods (Edwards et al., 

2001) and other plant hosts (Díaz and Latorre, 2014). For the control of 

tracheomycotic/esca infections in the field, moderate results have been obtained by 

spraying leaf symptomatic grapevines with a copper formulation (Di Marco et al., 

2011a) and with a mixture of calcium chloride, magnesium nitrate and seaweed 
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extract (Calzarano et al., 2014), achieving reduced expression of the frequency of foliar 

symptoms. However, trunk injections of active ingredients performed in adult plants 

with established infections gave mainly negative results (Calzarano et al., 2004; 

Sentenac et al., 2005; Loskill et al., 2006; Darrieutort and Pascal, 2007). These studies 

focused on endotherapy, based observations exclusively on the appearance of leaf 

symptoms to assess treatment effects, and did not examine changes in the presence of 

pathogens in the wood pre- or post-treatment, leaving questions on the true efficacy 

of endotherapy. 

The aims of the present study were: (i) to test promising chemicals in vitro against Pa. 

chlamydospora and Pm. minimum, and (ii) to test endotherapy for the control of these 

pathogens in the wood of artificially infected rooted grapevine cuttings. 

 

 

3.2 Materials and Methods 

 

3.2.1 Fungal isolates, chemicals tested and plant material 

The fungal isolates used in this study were Pa. chlamydospora CBS 161.90 and Pm. 

minimum CBS 110713, from the CBS culture collection (Westerdijk Fungal Biodiversity 

Institute, Netherlands). Stock cultures were maintained in Petri dishes containing 

potato dextrose agar (PDA; Difco™), at 25 °C, in the dark.  

The chemicals examined in this study, and the range of tested concentrations, are 

listed in Table 3.1. 

Rooted cuttings of Vitis vinifera L. cv. Touriga Nacional were used in greenhouse 

experiments. For the first year experiment (EXP 1), one-year-old canes were sampled 

in a vineyard in the Azeitão region (Portugal), and left in a cold-room (4 °C) for 2 

months. Three-bud cuttings were rooted in a warm bench, at 24 °C, and then potted in 

a mixture of peat and sand. For the second year experiment (EXP 2), three-bud 

cuttings, rooted and potted in a mixture of peat and sand, were provided by the 

Viveiros VitiOeste nursery (Pó, Portugal). Rooted cuttings were grown and maintained 

under greenhouse conditions at an average temperature of 24 °C. Plants were treated 

fortnightly with meptyldinocap (35.7% w/w) or sulfur wettable powder (80 % w/w) to 

prevent powdery mildew (Erysiphe necator). 
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Table 3.1. Chemicals tested against Phaeomoniella chlamydospora (Pch) and 

Phaeoacremonium minimum (Pmin), the range of concentrations of active ingredient 

(a.i.) tested in vitro and the minimum inhibitory concentration (MIC) of each chemical. 

 

Active Ingredient Trade Name Manufacturer Formulation 
In vitro conc. 

max – min 
(g a.i. L-1) 

MIC (g a.i. L-1) 

Pch Pmin 

Blad-containing 
oligomer (BCO) 

Fracture® CEV/CONVERDE 20% (v/v) BCO 1.00 – 1.69×10-5 0.037 0.111 

Elemental silver BioBac® 
M.H.I 

Compania de 
Ingenerie 

1000 ppm 
Elemental silver 

0.012 – 2.00×10-7 0.004 0.012 

Fosetyl-Al 
Aliette 
Flash® 

Bayer 
74.6% (w/w) 

Fosetyl-Al 
0.667 – 1.13×10-5 0.222 0.222 

Glutaraldehyde* - VWR chemicals 
25% (v/v)  

Glutaraldehyde 
14.88 – 2.52×10-4 0.061 0.020 

Hydrogen 
peroxide 

- Sigma-Aldrich 
30% (v/v) 
Hydrogen 
peroxide 

11.10 – 1.88×10-4 0.015 0.046 

 

*In this study, the glutaraldehyde solution was activated by increasing its pH to 8, 

using a solution of NaHCO3 (0.93% w/v; Gorman and Scott, 1977). 

 

 

3.2.2 Minimum inhibitory concentration (MIC) of the chemicals tested 

To determine the lowest concentration of active ingredient required to prevent visible 

fungal growth, experiments were performed as a modified version of that described by 

Kuipers et al. (1999). 

(i) Separate conidia suspensions of Pa. chlamydospora or Pm. minimum were 

prepared, by flooding 14-d-old cultures of each pathogen with sterile distilled water 

(SDW), and dislodging the conidia from the mycelium with sterile glass rods. The 

suspension of each fungus was filtered through a double layer of cheesecloth, the 

conidia concentration was determined using a hemocytometer, and then adjusted to 1 

× 105 conidia/mL with sterile distilled water (SDW). 

(ii) The liquid growth medium was a solution of potato dextrose broth (PDB). 

(iii) The five chemicals examined in this study as antifungal agents were tested at 

11 concentrations, and their respective dilution ranges are presented in Table 3.1. 
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Each tested concentration was a sequential three-fold dilution of the previous 

solution, commencing from the most concentrated solution (e.g. 1.000, 0.333, 0.111, 

0.037 … 1.69 × 10-5 g a.i. L-1). 

Fungal growth occurred in 96-well culture plates (flat bottom). Each well contained 

equal volumes (80 µL) of pathogen, liquid growth medium and candidate chemical. 

Positive controls contained a combination of equal volumes (80 µL) of conidia 

suspension, PDB and SDW; negative controls contained equal volumes (80 µL) of PDB, 

candidate chemical at its greatest concentration and SDW. 

The 96-well culture plates were sealed with Parafilm®, and the cultures left to grow at 

25 °C, in the dark, for 72 h, during which the conidia would be mostly germinated 

(Pierron et al., 2016). Fungal growth was measured spectrophotometrically, targeting 

turbidity of the solution (optical density [λ = 630 nm]; Kuipers et al., 1999). Samples 

were analysed in a microplate reader (BIO-TEK Synergy HT) with BioTek GEN5 Data 

Analysis Software. Each treatment was applied in four replicates, and the experiment 

was repeated once.  

 

3.2.3 Pathogen inoculation and endotherapy 

In greenhouse assays, each grapevine stem was surface-disinfected with 70% ethanol. 

An artificial wound was then made by drilling a hole in the bark of the stem (4 mm 

diam. 4 mm depth), below the upper bud (Figure 3.1a). 

Inoculation of Pa. chlamydospora or Pm. minimum was performed by inserting in the 

wound either a mycelium plug (EXP 1) or a conidia suspension (EXP 2). In the first case, 

the mycelium plug (4 mm diam.) was cut from the margin of a 2-week-old colony, to 

minimize the presence of conidia, and was then placed in the stem hole with the 

mycelium facing the inner part of the stem. The inoculated wound was covered with 

moist cotton and wrapped tightly to the plant with Parafilm®. In the second 

experiment, 50 µL of conidia suspension (1 × 105 conidia/mL), prepared from 2-week-

old colonies, were deposited in the stem hole, which was then covered with Parafilm® 

for protection during the incubation period. 

Three months after inoculation, each grapevine cutting was injected with 1 mL of 

candidate chemical solution (or SWD for the controls), with the aid of a modified 

syringe, into a hole made 3 cm below the pathogen inoculation point. Each hole (4 mm 
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diam., 5 mm deep; Figure 3.1, b-c) was made using a drill. The drill bit was disinfected 

with ethanol (70%) and NaClO solution (0.5% w/w active chlorine) after each use. Each 

treatment consisted of ten biological replicates. Preliminary tests, using a food-

colouring agent dissolved in water, showed that the injected liquids diffused 

throughout the xylem vessels of the plants (data not shown). Fluids were absorbed 

into the stem wood, on average, within 5 h from the moment the syringes were 

applied to the rooted cuttings. 

Injection of BCO was unsuccessful, probably due to the large size of this oligomer, 

which prevented the BCO solutions from entering the xylem of the plants. Application 

of BCO in endotherapy will not be further discussed in this paper. 

 

 

 

Figure 3.1. Schematic illustration of grapevine cuttings (cv Touriga Nacional). Pathogen 

inoculation, via mycelium plug or conidia suspension, occurred in point (a). For 

endotherapy, a drill-made wound (b) was performed 3 cm below point (a) and a 

modified syringe was placed in the hole (c) forcing the chemicals into the xylem.  

 

 

3.2.4 Examination of rooted cuttings, and re-isolation of inoculated pathogens 

One month after treatment, the green shoot length of each plant was measured, and 

the plants were inspected for the appearance of symptoms attributable to pathogens 
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infection or phytotoxicity from the treatments applied, both in leaves and in the stem. 

Symptoms such as brown streaking and other wood alterations were recorded. 

Pieces of wood were collected 1.5 cm below the pathogens inoculation point, they 

were surface sterilized using flame, immersed in NaClO solution (0.5% w/w active 

chlorine) for 1 min, then double rinsed in sterile water, and plated onto PDA 

supplemented with chloramphenicol (250 mg/L) in Petri dishes. Resulting fungus 

colonies emerging from the wood pieces were identified, and their frequency of re-

isolation was calculated as follows: 100 × (number of wood pieces from which a 

pathogen was re-isolated / total number of pieces plated). 

Wounded but non-inoculated and non-treated plants, representing negative controls, 

were screened for the presence of wood discoloration and background infections of 

Pa. chlamydospora and/or Pm. minimum. 

 

3.2.5 Data analyses 

Minimum inhibitory concentrations (MICs) were determined as outlined by Kuipers et 

al. (1999). The least concentration of each active ingredient capable of preventing 

fungal growth was selected as the MIC. The MICs were recorded for both pathogens, 

and in all treatments these were identical among replicates and between the 

repetitions of the test, so no averaging was necessary. 

All other data were compared using analyses of variance (ANOVA) followed by Tukey´s 

post hoc tests (at p < 0.05; GraphPad Prism 7.05). Data obtained from EXP 1 and EXP 2 

were analyzed separately, as they used different inoculum types and were carried out 

in different years. In both cases, three different parameters were examined: shoot 

length, length of brown wood streaking, and frequency of re-isolation of the 

inoculated pathogens. For each parameter, a two-way ANOVA was performed, 

examining the factors ‘pathogen’ (Pa. chlamydospora or Pm. minimum) and 

‘treatment’ (water control, elemental silver, fosetyl-Al, glutaraldehyde or hydrogen 

peroxide). Data expressed as percentages, as for frequency of re-isolation, were 

arcsine-square root transformed before analyses. 
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3.3 Results 

 

3.3.1 Minimum inhibitory concentration  

All the chemicals studied prevented in vitro growth of Pa. chlamydospora and Pm. 

minimum, but at different concentrations (Table 3.1). MICs indicated that Pa. 

chlamydospora is more sensitive than Pm. minimum to most chemicals tested, with 

the exception of fosetyl-Al (identical MICs for this fungicide) and glutaraldehyde (lower 

MIC for Pm. minimum). The in vitro inhibitory effects of the tested chemicals against 

these pathogens is reported in here for the first time. 

 

3.3.2 Examination of grapevine cuttings 

Four months after inoculation of the rooted grapevine cuttings with Pa. 

chlamydospora or Pm. minimum, and 1 month after treatment with each of the 

chemicals under study, except for BCO, no leaf symptoms attributable to the wood 

pathogens were observed. In addition, no phytotoxicity symptoms in leaves were 

observed for any treatment, except for glutaraldehyde, where 10% of the plants 

exhibited leaf wilting on the two lower internodes of the green shoots. The shoot 

lengths of grapevine plants were not statistically affected (p > 0.05) by the ‘treatment’ 

and ‘pathogen’ factors analyzed, both for EXP 1 and EXP 2, so data were pooled for 

presentation in Table 3.2. 

For lengths of brown wood streaking, two-way ANOVA followed by Tukey’s post hoc 

tests revealed no statistically significant differences (p > 0.05) for factors ‘pathogen’ 

and ‘treatments’. However, the different inoculum types that characterized EXP 1 

(mainly fresh mycelium) and EXP 2 (conidia only) produced different lengths of 

streaking (Table 3.2), which was presumably due to the different wood colonization 

rates by mycelium and conidia. Negative controls, non-inoculated and non-treated, did 

not present wood streaking attributable to wood pathogen infections. 

Examination of the wood surrounding the chemicals injection point revealed no wood 

discoloration or necrosis for the injections with water, fosetyl-Al or elemental silver, 

while different degrees of wood discoloration were evident after treatments with 

hydrogen peroxide or glutaraldehyde (Table 3.2), highlighting some phytotoxicity 

effects of these chemical at the tested concentrations. 
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3.3.3 Re-isolation of pathogens 

The frequency of re-isolation of the inoculated pathogens was chosen to determine 

how effective each treatment had been. Two-way ANOVA showed that the factors 

‘pathogen’ (Pa. chlamydospora, Pm. minimum; p < 0.05) and ‘treatments’ (p < 0.01) 

had statistically significant effects on the re-isolation of the pathogens, for both EXP 1 

and EXP 2, and the two factors interaction effect was also significant (p < 0.05) in EXP 

2. Pa. chlamydospora was affected by all treatments, and its frequency of re-isolation 

was significantly lower than in the water-treated plants for three of the four 

treatments. The most effective chemical for the control of Pa. chlamydospora was 

glutaraldehyde, resulting in 90.9 – 94.7% reduction in re-isolation frequency, although 

this was not significantly different from hydrogen peroxide (68.4 – 95.5% reduction) or 

elemental silver (68.4 – 77.3%; Table 3.2; Figure 3.2 A, B). The fosetyl-Al treatment also 

reduced the re-isolation of Pa. chlamydospora, although not to a statistically significant 

extent. 

Pm. minimum was unaffected by elemental silver or fosetyl-Al, and only mildly affected 

by hydrogen peroxide, while a significant reduction in frequency of re-isolation of this 

pathogen was observed from the glutaraldehyde treatment. In this case, treatment 

with glutaraldehyde resulted in a 75.0 – 83.3% reduction in re-isolation of the 

pathogen (Table 3.2; Figure 3.2 C, D). 

The examination of negative controls did not reveal background infections of Pa. 

chlamydospora or Pm. minimum. 
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Table 3.2. Mean shoot lengths, extents of brown wood streaking and wood discolouration, and reductions in frequencies of pathogen re-

isolation, after injection of different chemicals into rooted grapevine cuttings (cv. Touriga Nacional) that had been inoculated with 

Phaeomoniella chlamydospora (Pch) or Phaeoacremonium minimum (Pmin). 

Treatment 
Conc.      

(g a.i. L-1) 

Shoot length* (mm) Brown wood streaking (mm) 
Wood discoloration near 

injection point* (mm) 
Reduction in frequency of re-

isolation (%) 

EXP 1 EXP 2 
EXP 1 EXP 2 

EXP 1 EXP 2 
EXP 1 EXP 2 

Pch Pmin Pch Pmin Pch Pmin Pch Pmin 

Water control - 1000 a 928 a 102 b 120 b 62 c 69 c <1.0 <1.0 - - - - 

Blad-containing 
oligomer (BCO) 

- - - - - - - - - - - - - 

Elemental silver 0.250 1028 a 938 a 103 b 118 b 59 c 69 c <1.0 <1.0 68.4 12.4 77.3 0.00 

Fosetyl-Al 0.250 1019 a 941 a - - 62 c 63 c <1.0 <1.0 57.9 0.00 59.1 12.5 

Glutaraldehyde 0.318 1029 a 933 a 111 b 118 b 64 c 67 c 12.4 d 12.2 d 94.7 75.0 90.9 83.3 

Hydrogen 
peroxide 

0.333 990 a 934 a 109 b 108 b 62 c 67 c 6.6 e 7.0 e 68.4 56.3 95.5 37.5 

 

(*) Data presented for ‘Shoot length’ and ‘Wood discoloration near injection point’ are an average of the two pathogens inoculation (Pch, 

Pmin), as no statistical differences (p > 0.05) were detected between them. Numbers followed by the same letter, in each column, do not differ 

statistically according to Tukey’s test (p > 0.05). 
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Figure 3.2. Frequency of re-isolation (%) of Pa. chlamydospora (Pch; A, B) or Pm. 

minimum (Pmin; C, D), one month after endotherapy with either water (negative 

control), elemental silver (BioBac), hydrogen peroxide (H2O2), glutaraldehyde (Glut) or 

fosetyl-Al (Aliette). Experiments conducted in year 2016 (EXP 1) used a mycelium plug 

inoculum (A, C), while that in 2017 (EXP 2) used a conidia inoculum (B, D). Bars 

accompanied by the same letter do not differ significantly according to Tukey’s test (p 

< 0.05). 

 

 

3.4 Discussion 

 

A considerable number of chemicals and biocontrol agents have been tested against 

esca-related tracheomycotic pathogens over the last 20 years (Mondello et al., 2018). 

Many chemicals have been identified as effective in vitro, against conidia germination, 

and for reduction of mycelium growth of Pa. chlamydospora and Pm. minimum, with 

follow-up studies on the application of chemicals under greenhouse conditions and in 
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the field. Despite these attempts, effective control of esca-associated tracheomycotic 

pathogens has not been achieved. 

 

3.4.1 Screening of chemicals as antifungal agents in vitro 

The majority of in vitro studies performed to test fungicidal activity against Pa. 

chlamydospora or Pm. minimum have been conducted on solid growth media, 

measuring the growth inhibition of inoculated mycelium (Mondello et al., 2018). In the 

present study, a different approach was selected, to deal with chemicals whose activity 

is negatively affected by dilution in solid media or long incubation periods (e.g. 

hydrogen peroxide, glutaraldehyde or BCO). 

This study expands the list of chemicals assayed against grapevine trunk diseases 

(Mondello et al., 2018; Gramaje et al., 2018) with new active ingredients capable of 

inhibiting visible growth of Pa. chlamydospora and Pm. minimum.  

Blad-Containing oligomer (BCO) is a high molecular weight oligomer (210 kD) extracted 

from the cotyledons of Lupinus albus L. plantlets. It is non-toxic and it has a broad-

spectrum fungicidal activity (Monteiro et al., 2015; Carreira et al., 2018), having multi-

site activity (Pinheiro et al., 2016; Pinheiro et al., 2017). With these characteristics, it 

was included in the 2017 FRAC code list as BM 01. 

Silver nanoparticles-based chemicals have been shown to be effective against bacteria 

(Morones et al., 2005) and several plant pathogenic fungi (Kasprowicz et al., 2010;  Kim 

et al., 2012; Patel et al., 2014). Their modes of action are yet to be fully understood but 

they are known to negatively interact with fungal cell membrane structure and 

functions (Lamsal et al., 2011). 

Fosetyl-aluminium (fosetyl-Al) acts primarily as elicitor of plant defence responses (Di 

Marco et al., 2011b). This fungicide has also been tested, in vitro, against Pa. 

chlamydospora, but no fungicidal activity has been recorded for concentrations up to 5 

mg a.i. L-1 (Groenewald et al., 2000). In the present study we have demonstrated that 

fosetyl-Al prevents the growth of Pa. chlamydospora and Pm. minimum, albeit at a 

higher concentration (222.2 mg a.i. L-1). 

No studies describe fungicidal activity of glutaraldehyde against Pa. chlamydospora or 

Pm. minimum, although this is a well-known antimicrobial agent (Gorman and Scott, 

1977; Baldry, 1983; Migneault et al., 2004).  
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The use of hydrogen peroxide against Pa. chlamydospora and Pm. minimum is known, 

but has not been assayed in vitro, and results were inconsistent when this compound 

was tested as a soak-treatment of propagation grapevine material in nursery 

conditions (Fourie and Halleen, 2006). Despite unpredictable results, some 

winegrowers are already using injections of hydrogen peroxide into grapevine trunks 

to control grapevine trunk diseases, but more testing is required before this technique 

can be fully recommended (Prezman, 2017). 

 

3.4.2 Endotherapy of infected rooted grapevine cuttings 

Despite the promising results in vitro, previous in planta tests have been discouraging, 

especially for endotherapy (Calzarano et al., 2004; Sentenac et al., 2005; Loskill et al., 

2006; Darrieutort and Pascal, 2007). The present study focused on applying some of 

the tested chemicals as endotherapy treatments, for the control of two grapevine 

pathogens in their wood environment. Injecting bioactive molecules into plant xylem 

allows direct interaction between the chemicals and mycelia and conidia of the 

pathogens, but application to adult plants with established infections finds limitations. 

The internal xylem surface area is large, the wood is dense and it cannot be easily 

penetrated by the active ingredients. Moreover, if pathogens are not completely 

eradicated from plants, they may re-colonize the wood when active ingredient 

concentrations diminish. Endotherapy of young grapevines allows increased 

penetration of active ingredients into internal xylem tissues, and control of pathogen 

infections before the hosts become heavily colonized. 

Our results show that colonization by Pa. chlamydospora in the wood can be reduced, 

at least up to one month after treatment, using selected chemicals (Figure 3.2). 

Hydrogen peroxide and glutaraldehyde, the most efficient chemicals, caused wood 

discoloration near the injection points, indicating the need to optimize their use 

concentrations in future trials. The elemental silver-based chemical (BioBac) 

considerably reduced the pathogen presence and did not cause phytotoxicity, making 

it a suitable candidate for the control of Pa. chlamydospora in plant wood. Pm. 

minimum was more difficult to control, with glutaraldehyde being the only treatment 

capable of significantly reducing the presence of this pathogen. 
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Different responses to endotherapy were observed for the two pathogens, with 

presence of Pa. chlamydospora considerably reduced by all treatments, while Pm. 

minimum was unaffected by most of them. This behaviour is probably not attributable 

to differences in sensitivity to the injected chemicals, as their concentrations were 

always equal or greater than their in vitro MICs. Histological studies unveiled the 

different wood colonization strategies of Pa. chlamydospora and Pm. minimum. Pa. 

chlamydospora occurs mainly in the lumen of xylem vessels and in xylem fibers, having 

limited capacity to degrade cell wall polymers (Valtaud et al., 2009; Pouzoulet et al., 

2017). Pm. minimum can colonize bark, pith, phloem, xylem fibers and vessels, vessel-

associated cells, rays, metaxylem and protoxylem (Valtaud et al., 2009; Pierron et al., 

2015). Therefore, endotherapy may be particularly efficient against Pa. chlamydospora 

because the chemicals are transported in host xylem vessels, where the fungus was 

located. Concerning Pm. minimum, although the chemicals may have effectively 

interacted with this pathogen in the xylem vessels, its presence in several other areas 

of the stem tissues may have allowed it to remain present in the wood, making 

endotherapy less efficient against this pathogen. 

 

 

3.5 Conclusions 

 

Although not addressed in this study, the results obtained indicate that some of the 

tested chemicals may find applications during the grapevine propagation processes in 

nurseries, for control of external viable propagules of Pa. chlamydospora and Pm. 

minimum. These compounds could be used in plant material, on pruning shears and on 

grafting machines (Retief et al., 2006; Gramaje et al., 2018), to replace other chemicals 

reported to be ineffective against Pa. chlamydospora and Pm. minimum, such as 

Chinosol (hydroxyquinoline sulfate), one of the most commonly used fungicides in 

nurseries (Gramaje et al., 2009). 

We are aware that the process of injecting chemicals into host plants (endotherapy), 

as described in this study, is time-consuming and may not find application in large-

scale nursery production systems or young vineyards. It is necessary to improve 

chemical delivery technology, to make it rapid and reliable, as could be the case for the 
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instrument developed by Montecchio (2013). Testing whether different concentrations 

of active ingredients, and/or multiple or mixture treatments, may lead to a complete 

and long-lasting eradication of these important grapevine pathogens. 
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4. Fungicides and the grapevine wood mycobiome. A case study on 

tracheomycotic ascomycete Phaeomoniella chlamydospora reveals 

potential for two novel control strategies. 

Giovanni Del Frari, Alex Gobbi, Marie Rønne Aggerbeck, Helena Oliveira, Lars Hestbjerg 

Hansen, Ricardo Boavida Ferreira 

 

Abstract 

Phaeomoniella chlamydospora is a tracheomycotic fungus that colonizes the xylem of 

grapevines (Vitis vinifera L.), causing wood discoloration, brown wood streaking, 

gummosis and wood necrosis, which negatively affect the overall health, productivity 

and lifespan of vines. Infections by P. chlamydospora may occur both in the nursery, 

via infected propagation material and/or contaminated equipment, and in the field, 

though propagules disseminated by several means. Current control strategies to 

prevent or cope with P. chlamydospora infections are frequently ineffective. It remains 

unclear whether fungicides commonly applied in vineyards against downy and 

powdery mildew agents affect the wood mycobiome, including wood pathogens such 

as P. chlamydospora.  

In this study, we used next-generation sequencing to assess the effects of foliar spray 

of grapevines with inorganic (copper oxychloride and sulfur), synthetic (penconazol 

and fosetyl-aluminium) and natural (blad-containing oligomer) fungicides currently 

used against the downy and powdery mildews. The subjects of our investigation were 

(i) the resident wood mycobiome, (ii) the early colonization by a consortium of wood 

endophytes (skopobiota), (iii) the wood colonization success of P. chlamydospora, and 

(iv) the in planta interaction between P. chlamydospora and the skopobiota, under 

greenhouse conditions, in rooted grapevine cuttings cv Cabernet Sauvignon.  

The data obtained suggest that the resident mycobiome was affected by different 

fungicide treatments. In addition, the early colonization success of the endophytes 

composing the skopobiota varied in response to fungicides, with relative abundances 

of some taxa being over- or underrepresented when compared with the control. The 

wood colonization by P. chlamydospora comported significant changes in the 

mycobiome composition and, in addition, it was greatly affected by the foliar spray 
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with blad-containing oligomer, which decreased the relative abundance of this 

pathogen 12-fold (4.9%) when compared with the control (60.7%) and other 

treatments. The presence of the pathogen also decreased considerably when co-

inoculated into the plant with the skopobiota, which reached relative abundances 

between 13.9 and 2.0%, depending on the fungicide treatment applied. 

This study shows that fungicides sprayed to prevent infections of powdery and downy 

mildews have an effect on non-target fungi, including some that colonize the 

endosphere of grapevines, with unpredictable consequences for the wood mycobiome 

ecosystem. We suggest two potential control strategies to fight P. chlamydospora, 

namely the foliar spray with blad-containing oligomer and the use of skopobiota. 

Further studies to confirm these results are required.  

 

 

4.1 Introduction 

 

Protecting grapevines (Vitis vinifera L.) from fungal pests by means of fungicides  dates 

back to the late eighteen hundreds, with the accidental discovery that a mixture of 

copper sulfate and lime, sprayed on vine leaves, was not only able to deter thieves 

from stealing grapes, but also prevented downy mildew infections (Morton and Staub 

2008). Since then, research on fungicides improved the use of copper and sulfur as 

contact fungicides and introduced additional synthetic broad-spectrum systemic 

fungicides (e.g. benzimidazoles, triazoles, fludioxonil, organophosphorous compounds) 

during the mid-late nineteen hundreds (Morton and Staub 2008). Overuse of 

fungicides in vineyards came at a cost. Several were shown to be phytotoxic to 

grapevines (Dias 2012; Juang et al., 2012), toxic to humans and the environment 

(Komárek et al., 2010), some affected non-target organisms (La Torre et al., 2018), 

while others hampered beneficial insects (Thomson et al., 2000). In addition, the 

development of pathogen resistance pushed the search of ever more effective 

chemicals capable of dealing with increasingly resilient species (Verweij et al., 2009).  

It was only in recent years, with the advent of molecular ecology and its tools, such as 

metagenomics and metabarcoding, that scientists have begun to understand how 

fungicides, along with herbicides and insecticides, impact the microbial ecology of 
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environments with unpredictable medium- and long-term consequences (Komárek et 

al., 2010; Setati et al., 2012; Karlsson et al., 2014; Morrison-Whittle et al., 2017). The 

vineyard is an extremely diverse environment, characterized by complex interactions 

among plants, soil microbes, endophytes and epiphytes, which are associated not only 

with grapevine health (Zarraonaindia and Gilbert 2015; Jayawardena et al., 2018), but 

also with the concept of terroir, as it is a source of yeasts and bacteria especially 

important in winemaking (Pretorius et al., 1999; Setati et al., 2012).  

Concerning plant health, grapevine trunk diseases (GTDs) are currently a major 

concern in viticulture, considered by some as ‘the new Phylloxera’ due to their 

potential destructive power (Bruez et al., 2013). Early scientific reports on GTDs are 

over a century old (Surico 2009) and the reasons underlying their recent worldwide 

outbreak have not yet been fully addressed. Unlike powdery and downy mildews 

agents (Erysiphe necator and Plasmopara viticola) and Phylloxera (Daktulosphaira 

vitifoliae), which were introduced from the Americas and found a susceptible host in 

Vitis vinifera (Jackson 2014), GTD pathogens have presumably been co-evolving with 

grapevines for centuries, if not millennia (Mugnai et al., 1999). 

Copper and sulfur fungicides were introduced approximately two decades before the 

first scientific reports on GTDs and the recent outbreak began some 30 years ago 

(Surico et al., 2004; Fontaine et al., 2016), approximately two decades after the 

massive introduction of synthetic broad-spectrum systemic fungicides in vineyards. To 

date, no study has investigated the effect of these fungicides, and that of other natural 

active ingredients, on the wood mycobiome and its possible implications in GTDs. To 

address this issue, we used metabarcoding (Illumina® next-generation sequencing; 

NGS) and tested four hypotheses. (1) Are fungicides commonly sprayed to fight 

powdery and downy mildews capable of affecting the resident wood mycobiome 

and/or (2) an inoculated consortium of wood endophytes (skopobiota)? (3) Is 

Phaeomoniella chlamydospora, a wood pathogen associated with several syndromes in 

grapevine (Surico 2009), affected by such fungicides, when artificially inoculated in 

wood? (4) Is a skopobiota inoculation potentially exploitable in the control of early 

infections of P. chlamydospora, independently of fungicide treatments? 
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4.2 Materials and Methods 

 

4.2.1 Experimental setup 

Plant and fungal material 

The grapevines used in this assay were one-year-old canes of cv Cabernet Sauvignon, 

provided by Viveiros VitiOeste nursery (Pó, Portugal), that were cut at 3-buds-long size. 

The cuttings were rooted, potted in a mixture of peat and sand (1:1 v/v) and 

maintained under greenhouse conditions, at the temperature of 24 °C ± 5 °C day/18 °C 

± 5 °C night.  

The pathogenic ascomycete tested in this study was Phaeomoniella chlamydospora 

(CBS 161.90), from the CBS culture collection (Westerdijk Fungal Biodiversity Institute, 

Netherlands). The fungi used to produce the skopobiota, as named by the authors, and 

consisting in a consortium of grapevine endophytes, were isolated from grapevine 

wood (cv Cabernet Sauvignon) of asymptomatic plants and identified as Alternaria (Al.) 

alternata A101, Epicoccum nigrum E279, Cladosporium sp. C22, Aureobasidium (Au.) 

pullulans AU86. All fungi were maintained in Petri dishes with vents, on potato 

dextrose agar medium (Difco™), at 25 °C, in the dark. 

 

Inocula preparation and delivery 

Four different inocula were prepared for delivery into the plants wood, three of them 

consisting of a suspension of conidia and/or fungal cells and the fourth as a control. 

Inoculum (i) consisted of a conidia suspension of P. chlamydospora, which was 

prepared by flooding a two-week old colony. The conidia were dislodged from the 

mycelia with a sterile glass rod and the suspension was filtered through a double layer 

of cheesecloth. The conidial concentration was determined using a hemocytometer 

and adjusted to 1 × 105 conidia/mL with sterile distilled water (SDW). Inoculum (ii) 

consisted of a skopobiota, which was prepared by joining a conidia suspension of 

ascomycetes Al. alternata, E. nigrum, Cladosporium sp. and cells of yeast Au. pullulans. 

Cultures’ growth conditions and conidia/cell suspension preparation occurred similarly 

to inoculum (i), where the final skopobiota presented a concentration 1 × 105 (conidia-

cells)/mL of each one of the four fungi. Inoculum (iii) was prepared by joining a conidia 

suspension of P. chlamydospora and the skopobiota, in order to produce a solution 
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with a final concentration of 1 × 105 (conidia-cells)/mL of each one of the five fungi. 

Inoculum (iv) consisted of sterile distilled water. 

The delivery of the inocula into the rooted plants was performed as follows. Grapevine 

cuttings were surface disinfected with 70% (v/v) ethanol and a wound in the wood was 

produced with the aid of a cork borer (4 mm diameter, 4 mm deep), approximately 1 

cm below the green shoot (Figure 4.1 A- (a)). The four inocula were delivered with a 

micropipette by depositing 50 µL of solution in freshly made wounds, which were 

immediately sealed with Parafilm®. Each inoculum was delivered in 32 plants (Figure 

4.1 B). 

 

 

 

Figure 4.1. A – Grapevine rooted cutting of cv Cabernet Sauvignon. (a) Inoculation 

point of a conidia suspension of P. chlamydospora, skopobiota, P. chlamydospora and 

skopobiota, or water. (b) Two cm of wood, located one cm below the inoculation 

point, were sampled three months post-inoculation and its mycobiome was examined 

through metabarcoding. B – Experimental setup. Each circle represents a set of eight 

plants that underwent the same treatment. Same colors in the circles represent the 

same inoculum type, while rectangles represent different treatments. All possible 

combinations of inoculum and fungicide application by foliar spray are shown. 
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Treatments via foliar spray 

Four treatments were tested for each inoculum type. The chemicals used and their 

application rate are reported in Table 4.1. The spray occurred every fortnight, starting 

from the 7th day post-inoculation and consisting in a total of six applications per 

treatment. Plants were sprayed on leaves and stem, with the exception of the control, 

which was sprayed exclusively on leaves. The chemicals were prevented from dripping 

onto the soil. All possible combinations of fungal inoculum and foliar treatment were 

tested, for a total of 16 combinations, each one consisting of eight biological replicates 

(Figure 4.1 B). The assay ended one week after the last spray (99 days post-

inoculation). 

Potassium permanganate (KMnO4) was chosen as control treatment due to the need 

of dealing with natural infections of powdery and downy mildews, which normally 

occur under greenhouse conditions. This chemical is effective against these pathogens 

due to its strong oxidative properties (La Torre et al., 2004) and we used the 

assumption that, when sprayed exclusively on leaves, it would not interact in a 

significant way with the wood mycobiome. Concerning the treatments ‘Copper-Sulfur’ 

and ‘Systemic fungicides’, the two active ingredients of each treatment were sprayed 

approximately 3 h apart from one another. 

 

Table 4.1. Chemical treatments sprayed fortnightly on grapevine rooted cuttings. Six 

applications were performed during three months. Each active ingredient was sprayed 

separately. 

Treatment 
Active 

ingredient 
Trade name Manufacturer Formulation 

Tested 
concentration  

Control 
Potassium 

permanganatea 
Permanganato de 

potassio basi 
Laboratorios 

Basi 
Capsules 500 mg 1.0 g/L 

Copper -
Sulfur 

Copper 
oxychlorideb 

Cuprocol® Syngenta 
Copper 

oxychloride 
36.5% 

2.5 mL/L 

Sulfurc 
Microthiol Special 

Disperss 
Epagro 

Sulfur wettable 
powder 80%  

6.0 g/L 

Systemic 
fungicides 

Fosetyl-
Aluminiumb 

Aliette Flash® Bayer 
Fosetyl-

Aluminium 80% 
2.5 g/L 

Penconazolc Topaze® Syngenta Penconazol 10.5%  35 mL/100L 

Blad 
Blad-containing 
oligomer (BCO)a 

Fracture® CEV/CONVERDE BCO 20% 2.0 mL/L 

a treatments that target simultaneously powdery and downy mildews pathogens; b treatments that target downy 
mildew; c treatments that target powdery mildew  
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4.2.2 Assessment of the plant health status 

Three parameters were evaluated to assess the health status of the plants at the 

moment of sampling. First, a visual inspection of the leaves and green shoots to 

establish whether any symptomatology related to the pathogen or skopobiota 

inoculation occurred. Second, the shoot length was recorded, to understand if 

inoculated fungi and/or treatments had an effect of the growth of the plants. Lastly, 

for each combination of inoculum – treatment, three vines were subject to a 

destructive inspection to assess the presence and degree of internal wood 

symptomatology (e.g. brown streaking) visible in the stem of plants, and starting from 

the inoculation point. Three categories of symptomatology degree were established: 

category 1, absence of wood symptoms; category 2, presence of brown streaking in 

the proximities of the inoculation point; category 3, presence of brown streaking that 

extended several centimeters from the inoculation point (Figure 4.2).  

 

4.2.3 Wood sampling, DNA extraction and amplification 

Grapevines were uprooted and the stem processed under laboratory conditions. The 

bark was sterilized by dipping the stem in 70% (v/v) ethanol followed by flame 

sterilization, and then removed with the aid of a sterile scalpel. Exactly 2 cm of wood 

were sampled, 1 cm below the inoculation point (Figure 4.1), for five plants within 

each combination inoculum – treatment. Samples were frozen, freeze-dried and stored 

at - 80 °C.  

Wood samples were ground to dust using sterile mortars and pestles, aided by liquid 

nitrogen. An aliquot of ground wood (0.25 g ± 0.01 g) of each sample was added to 

DNA extraction columns (FastDNA™ SPIN Kit for Soil, MP Biomediacals® LLC) and total 

DNA was extracted as described by the kit manufacturer. Three negative controls 

consisted in extraction columns, without wood, that underwent the DNA extraction 

procedure.  

The amplicon chosen for the metabarcoding analysis targets the Internal Transcribed 

Spacer ITS2 region, and the primer set selected was ITS86F and ITS4R (Op De Beeck et 

al., 2014). For building libraries we used a double-step PCR approach as reported by 

Feld et al. (2016). The full primer sequences including Illumina overhangs are: ITS86F 

(5’-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-GTGAATCATCGAATCTTTGAA-3’) and 
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ITS4R (5’-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-TCCTCCGCTTATTGATATGC-

3’). 

Every first-PCR reaction contained 12.5 µL of Supreme NZYTaq II 2x Green Master 

Mix™ (NZYtech™), 0.5 µL of forward and reverse primer from a 10 µM stock, 1.5 µL of 

sterile water, and 5 µL of template. Each reaction was pre-incubated at 95 °C for 2 min, 

followed by 40 cycles of 95 °C for 15 s, 55 °C for 15 s, 72 °C for 40 s; a further extension 

was performed at 72 °C for 10 min.  

Second PCR-step for barcoding, MagBio bead fragment-purification and Qubit 

quantification was performed as reported in Gobbi et al. (2018). Final pooling was 

performed at 10 ng/sample. DNA Sequencing was performed using an in-house 

Illumina MiSeq instrument and 2x250 paired-end reads with V2 Chemistry.  

 

4.2.4 Bioinformatics 

After sequencing, demultiplex was performed using an Illumina MiSeq platform and 

the raw data were analyzed using QIIME 2 v. 2018.2 (Caporaso et al., 2010), using the 

same pipeline described in Gobbi et al. (2018); denoised reads were trimmed by 15 bp 

on the left to remove adapters and were then analyzed using DADA2 with the exact 

sequence variants (EVS) methods (Callahan et al., 2017). To minimise barcoding noise, 

OTU counts below 25 reads were filtered out across all samples. Taxonomic 

assignments were performed at 99% identity using qiime feature-classifier classify-

sklearn with a Naïve-Bayes classifier trained with UNITE (Nilsson et al., 2013) v7.2 for 

ITS. After taxonomy assignment, the dominant features assigned to high taxonomical 

ranks such as order, class or family were further investigated using BLAST to refine the 

analyses (Bokulich et al., 2018).  

 

4.2.5 Data analysis 

Shoot length data was subjected to analysis of variance (two-way ANOVA model) to 

evaluate the effects of factors ‘fungicide treatment’ and ‘inoculum type’. Significant 

means were compared using the Tukey post hoc test at a 5% significance level 

(GraphPad Prism 7.05). 

The frequency table and its taxonomy table were combined, converted to biom format 

in QIIME (Caporaso et al., 2010), then merged with a table of metadata into an S4 
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object and analysed in R (v. 3.4.3) using the following packages: phyloseq, v. 1.22.3 

(McMurdie and Holmes, 2013); vegan, v. 2.5.2 (Oksanen et al., 2007); DeSeq2 v. 1.22.1 

(Love et al., 2014); ggplot2, v. 3.0.0 (Wickham, 2016); metacoder, v. 0.2.1.9005 (Foster 

et al., 2017); adespatial, v. 0.1.1 (Dray et al., 2018); data.table, v 1.10.4.3 (Dowle and 

Srinivasan, 2017). R code is publicly available at github.com/Marieag/EMG. 

The alpha diversity was measured using the Shannon diversity index and Pielou’s 

evenness, and tested with one-way ANOVA with Tukey’s HSD (Honestly Significant 

Difference) post hoc to determine differences among treatments and inoculum types. 

We analyzed the beta dispersion to measure between-sample variances in abundance, 

computing average distances of the individual samples. The resulting ordination was 

plotted using non-metric multidimensional scaling (NMDS) combined with a Jaccard 

index matrix. To assess overall inter-group variance, we performed a PERMANOVA, 

using a Jaccard distance matrix with 999 permutations.   

To investigate any systematic changes between treatments, we calculated the 

differential abundance of any taxon with a relative abundance of more than 0.1% using 

DESeq2. Twenty-four pairwise analyses were run for every combination of fungicide 

treatment per inoculum type, log2 fold changes were calculated for each taxon 

resolved to species or genus level, and tested for significance using a Wald test on the 

negative binomial distribution of the pairwise treatments. The p-value threshold was 

set to 0.05, and log fold change threshold to 0.1.  In order to illustrate the results and 

to factor in the relative abundance of unresolved species, we created differential heat 

trees using MetacodeR. A Wilcoxon Rank Sum test was applied to test differences 

between the same species in different treatments, and the resulting p-values were 

corrected for multiple comparisons using FDR, as implemented in MetacodeR. p-Value 

threshold was set to 0.05.  

 

 

4.3 Results  

 

4.3.1 Evaluation of the plant health parameters 

Visual inspection of the grapevine cuttings, shoots length measurements and wood 

examination occurred on the day of sampling. The visual inspection revealed no foliar 



Fungicides and grapevine wood mycobiome 
 

108 
 

symptomatology attributable to the wood pathogen P. chlamydospora or to the 

inoculated skopobiota.  

The statistical analysis of the green shoot length measurements, performed as a two-

way ANOVA, revealed no significant differences for the factor ‘inoculum type’ (p = 

0.228), meaning that shoot growth was not influenced by the inoculation with 

pathogen, skopobiota or the combination of both. However, a positive effect was 

present when comparing the factor ‘treatment’ (p < 0.01), revealing that BCO and/or 

systemic fungicides increased the growth of the shoots of inoculated plants (pathogen, 

skopobiota and pathogen + skopobiota), when compared with one or both the two 

other treatments (Table 4.2).  

 

Table 4.2. Measurements of shoots length (cm). Grapevines were inoculated with a 

control (Water), P. chlamydospora (Pathogen), a consortium of wood endophytes 

(Skopobiota), and a combination of both (Pathogen + Skopobiota). Grapevines were 

also treated with a foliar spray of potassium permanganate (Control), copper 

oxychloride and sulfur (Copper – Sulfur), fosetyl-Al and penconazol (Systemics), blad-

containing oligomer (BCO). Numbers followed by the same letter are not statistically 

different according to Tukey’s post hoc test (P < 0.05). 

 

 Water Pathogen Skopobiota 
Pathogen + 
Skopobiota 

Control 92.5 ab 75.9 a 76.8 a 77.4 a 

Copper – Sulfur 88.1 ab 77.5 a 96.1 ab 82.8 ab 

Systemics 89.4 ab 100.3 b 101.5 b 93.5 ab 

BCO 101.3 b 88.6 ab 104.3 b 110.3 b 

 

 

The examination of the wood revealed different degrees of symptomatology, ranging 

from absence of symptoms to extensive brown streaking departing from the 

inoculation point, as shown in Figure 4.2. Plants inoculated with P. chlamydospora 

presented extensive wood discoloration (Category 3; Figure 4.2 C, D), under all spray 
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treatments; while mild-to-absent symptoms, such as those shown in Figure 4.2 (A, B) 

were recorded when P. chlamydospora was inoculated along with the skopobiota. 

Plants inoculated with only water or the skopobiota did not show brown wood 

streaking symptoms, with the exception of the Copper-Sulfur treatment, suggesting 

that either copper oxychloride or sulfur or the combination of both may contribute to 

this plant response, independently from the inoculation of the pathogen. 

 

 

Figure 4.2. Grapevine rooted cuttings were examined revealing different degrees of 

brown wood streaking symptomatology. Category 1, absence of symptoms (A) 

departing from the inoculation point (a) downwards; Category 2, presence of mild 

symptomatology (B); Category 3, extensive symptomatology (C). In (D), each category 

is presented in a different scale of gray, as an average of the observations (n = 3) for 

each treatment - inoculum, where Category 1 is shown in light gray, Category 2 in gray 

and Category 3 in dark gray. 

 

4.3.2 Sequencing dataset description 

The dataset containing the NGS data produced and analyzed in this study account for 

78 samples. These samples are represented by 6.454.075 high quality reads distributed 

in 506 unique features. The average number of reads per sample is 82.744, which 
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allowed an adequate sequencing depth to unravel the complexity of the grapevine 

cuttings wood mycobiome. 

Using BLAST to refine the taxonomic classification, taxon ‘Pleosporales incertae sedis’ 

was assigned to Epicoccum nigrum in 98.12% of the reads. Alternaria sp was retrieved 

in 16 sequence variants, with the dominant feature correspond to 97.88% of the total. 

After Blasting this dominant sequence, the assignment was refined to Alternaria 

alternata, with 100% identity. The genus Cladosporium sp. appears 12 times in our 

database for a total of 61288 high quality reads. Blasting the four dominant features, 

which cover 94.7% of the total amount of reads, they were all assigned to 

Cladosporium sp. 

 

4.3.3 A qualitative overview of the wood mycobiome 

The diversity of fungal taxa identified examining all grapevine cuttings (n= 78) amounts 

to 66 species or genera of both ascomycetes and basidiomycetes. Among these 66 

taxa, 30 of them are represented in a relative abundance (RA) greater than 0.1%, while 

the remaining 36 taxa are considered rare taxa (RA < 0.1%; Tables 4.3 and S4.5). 

Among the 30 most abundant taxa, several genera of ascomycetes are known to be 

involved in GTDs (e.g. Neofusicoccum, Diaporthe, Cadophora, Fusarium), while no 

pathogenic basidiomycetes were detected (Table 4.3). The most frequent (non-

inoculated) taxa are Debaryomyces sp., Cryptococcus sp., Malassezia restricta, M. 

globosa, Diaporte sp., Acremonium alternatum, Candida sake and C. friedrichii. On the 

other hand, 16 out of the 30 taxa shown in Table 4.3 were detected in less than 10% of 

the total number of vines and, among these 16, 8 of them were present only in a single 

plant (1.3%; RA > 0.1%). This observation highlights the high variability often 

encountered when comparing individual plants.  

The metagenomic analysis detected Phaeomoniella chlamydospora in 28% of non-

inoculated plants (RA > 0.1%), while the presence of wood endophytes that composed 

the skopobiota, in non-inoculated grapevines, revealed to be very low. Alternaria sp. 

and Cladosporium sp. were present in 8% of the plants, while E. nigrum (Pleosporales 

incertae sedis) and Aureobasidium pullulans in 3% of them (RA > 0.1%).  
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Table 4.3. Taxonomic classification of the most abundant taxa identified to genus or 

species level in the wood of grapevine rooted cuttings. The relative abundance of the 

listed taxa was equal or greater than 0.1%. Species between parentheses were 

determined using BLAST. 

 

     Phylum        Family            Species 

Ascomycetes -not available- Circinotrichum maculiforme  † 
 Botryosphaeriaceae Neofusicoccum sp.*† 
 Cucurbitariaceae Pyrenochaeta sp. † 
 Davidiellaceae Cladosporium sp. 
  Cladosporium sphaerospermum 
 Debaryomycetaceae Meyerozyma guilliermondii † 
 Diaporthaceae Diaporthe sp.* 
 Didymellaceae Pleosporales Incertae sedis (Epicoccum nigrum) 
 Dothioraceae Aureobasidium pullulans 
 Helotiales Cadophora sp.*† 
 Herpotrichiellaceae Phaeococcomyces nigricans † 
  Phaeomoniella chlamydospora * 
 Hypocreales Acremonium alternatum 
  Ilyonectria destructans *† 
 Nectriaceae Fusarium sp. *† 
 Pleosporaceae Alternaria sp. (Alternaria alternata) 
 Saccharomycetaceae Debaryomyces sp. 
  Candida friedrichii 
  Candida parapsilosis † 
  Candida sake 
  Candida tropicalis † 

Basidiomycetes Cystofilobasidiaceae Cystofilobasidium capitatum † 
 Filobasidiaceae Naganishia sp. † 
 Malasseziaceae Malassezia sp. † 
  Malassezia restricta 
  Malassezia globosa 
  Malassezia sympodialis † 
 Peniophoraceae Peniophora sp. † 
 Sporidiobolaceae Sporidiobolus sp. † 
 Tremellaceae Cryptococcus sp. 

 

(*) taxa associated with grapevine trunk diseases  

† taxa detected in less than 10% (n = 8 or less) of the total number of vines (n = 78) 
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4.3.4 Alpha diversity 

The boxplots in Figure 4.3 show the Shannon diversity and Pielou’s evenness in 

grapevines treated with different fungicides and inocula. The Shannon diversity and 

evenness of the resident mycobiome of non-inoculated plants did not vary in relation 

to the fungicide treatment, according to Tukey’s HSD (P > 0.05). On the other hand, the 

inoculation of P. chlamydospora comported changes in both diversity and evenness (P 

< 0.05) of the mycobiome, when vines were sprayed with blad (Figure 4.3). This active 

ingredient induced a reduction in Shannon diversity when compared to control-treated 

plants, as well as a strong trend when comparing blad-treated plants to those treated 

with systemic fungicides (P = 0.058) . No diversity differences were significant among 

the other treatments (P > 0.05). The evenness of the fungal communities significantly 

varied when comparing blad-treated with copper-sulfur-treated vines (Figure 4.3), and 

a strong trend was detected when comparing the former treatment with systemic 

fungicides-treated vines (P = 0.051). The application of the different fungicides did not 

affect the Shannon diversity and evenness of vines inoculated with either the 

skopobiota alone or the skopobiota and the pathogen (P > 0.05). 

 

4.3.5 Beta dispersion 

The Jaccard’s index, when visualized in a non-metric multidimensional scaling (NMDS) 

plot, shows a considerable overlap for different fungicide treatments and inoculum 

types (Figure 4.4). The PERMANOVA analysis indicates a significant difference between 

groups (p = 0.001) but, looking at the ordination, the difference seems to lie in the 

clustering of the observations, rather than any distinct difference in sample 

composition. For example, the fungal communities in BCO–treated plants cluster more 

tightly than the Control–treated ones, and a similar trend applies to non-inoculated 

vines when compared with those inoculated with both pathogen and skopobiota.   
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Figure 4.3. Box plots of diversity indexes (Shannon, Pielou’s evenness) of the fungal 

community present in grapevine cuttings added with water (No Inoculation), or 

inoculated with P. chlamydospora (Pathogen), a consortium of fungal wood 

endophytes (skopobiota), or both P. chlamydospora and skopobiota. Inoculated plants 

were sprayed with either blad or potassium permanganate (Control) or copper 

oxychloride and sulfur (CuS) or penconazol and fosetyl-aluminium (Systemics). n= 5 for 

each combination inoculum/treatment. The black, horizontal brackets at the top of the 

figures denote statistical comparisons of the two treatments at each end of the 

bracket, calculated using one-way ANOVA with Tukey’s HSD post hoc. Statistical 

differences are shown by asterisk, where P < 0.05 = *. 
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Figure 4.4. Non-metric multidimensional scaling (NMDS) plots based on Jaccard’s index. Fungal 

communities present in grapevine cuttings added with water (No_inoculation), P. 

chlamydospora (Pathogen), a consortium of wood endophytes (Skopobiota), or both P. 

chlamydospora and skopobiota. Inoculated plants were sprayed with either Blad-containing 

oligomer (Blad) or potassium permanganate (Control) or copper oxychloride and sulfur (CuS) 

or penconazol and fosetyl-aluminium (Systemics). Ellipses illustrate the multivariate normal 

distribution of samples within the same fungicide (A) or inoculum (B) group.  



Fungicides and grapevine wood mycobiome 
 

115 
 

4.3.6 Effect of inoculum type and fungicide treatments on taxa abundance 

When examining the effect of fungicide treatments on the fungal communities of both 

non-inoculated and inoculated plants, no differences are detected according to the 

Wilcoxon test (p > 0.05). However, several taxa were found to have significantly 

different abundances between treatments according to the Wald tests on the pairwise 

treatment comparisons, and the combined metacoder and DESeq analyses revealed 

up- and downregulation of numerous taxa under different treatments (Figures 4.5 and 

4.6). Nevertheless, some of the differently abundant taxa are found in less than 10% of 

the total number of plants (Table 4.3), therefore, their differential abundance may not 

lie in the effect of the treatments. For this reason, these taxa are not going to be 

further examined.  

In non-inoculated vines, Candida sake and C. friedrichii, present in Control-treated 

plants, are absent in BCO-treated vines; similarly, C. sake, Malassezia restricta and M. 

globosa are present in Control-treated plants but absent in Systemic fungicide-treated 

vines; Diaporthe sp. was detected under all treatments with the exception of Systemic 

fungicides. None of the most frequent taxa differ significantly when comparing 

Control- with Copper-sulfur-treated grapevines (Figure 4.6).  

In inoculated vines, we assumed that a successful colonization only occurred when 

inoculated fungi were detected in at least 50% of the biological replicates (per 

treatment/inoculation combination). The inoculation with P. chlamydospora, whether 

alone or in combination with the skopobiota, resulted in a successful wood 

colonization, 1 cm below the inoculation point, in 87% of the cases. In the pathogen-

only inoculation, fungicide treatments affected the relative abundance of P. 

chlamydospora (Figure 4.5, Table 4.4), and that of other taxa. The foliar spray with BCO 

significantly decreased the relative abundance of this fungus when compared with the 

control and other treatments (p < 0.05).  

In grapevines inoculated with the skopobiota, and sprayed with potassium 

permanganate (Control), only Epicoccum nigrum could successfully colonize the wood 

examined. The abundance of this ascomycete increased when plants were treated with 

BCO or Systemic fungicides (Table 4.4). Alternaria sp. was absent (or present in RA < 

0.1%) in control-treated plants, while it was detected, in different abundances, under 

all other treatments (Table 4.4). The wood colonization by Aureobasidium pullulans 
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was poor-to-absent and it was not detected in 50% or more of the inoculated plants, 

suggesting that it perhaps was part of the resident mycobiome (Table 4.4). 

Cladosporium sp. was present exclusively in copper-sulfur-treated plants, although not 

detected in 50% or more of the inoculated plants.  

The simultaneous inoculation of P. chlamydospora and the skopobiota resulted in a 

lower colonization success by the pathogen, when compared with the P. 

chlamydospora-only inoculum (Table 4.4), for all treatments except BCO. Alternaria sp. 

was detected under all fungicide treatments, except for the control-treated vines. E. 

nigrum exclusively colonized the wood when vines were treated with systemic 

fungicides or copper-sulfur. The BCO treatment facilitated the wood colonization by 

Au. pullulans and Cladosporium sp., that were not detected under any of the other 

treatments (Figure 4.6). 
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Table 4.4. Relative abundance of inoculated fungi. Grapevine cuttings were non-inoculated (No inoculation), inoculated with P. chlamydospora 

(Pathogen inoculation) or a consortium of wood endophytes (Skopobiota inoculation) or a combination of both (Pathogen + Skopobiota 

inoculation). Grapevines were treated with a control (potassium permanganate; C) or copper oxychloride and sulfur (CuS) or fosetyl-aluminium 

and penconazol (Sys) or blad-containing oligomer (BCO). Different colors represent different intervals of relative abundance (≤1; 1-5; 5-10; 10-

20; >20) 

 

 
No inoculation Pathogen inoculation Skopobiota inoculation 

Pathogen + Skopobiota 
inoculation 

 C CuS Sys BCO C CuS Sys BCO C CuS Sys BCO C CuS Sys BCO 

Phaeomoniella  chlamydospora - - - 11.6* 60.7* 64.0* 33.3* 4.9* 17.6* 1.8* 1.8 0.4 13.9* 2.0* 2.9 6.6* 

Alternaria alternata 
(Alternaria sp.) 

- - - - - 13.1 - - - 22.3* 4.3* 2.1* 5.0 5.5* 11.0* 4.3* 

Epicoccum nigrum 
(Pleosporales incertae sedis) 

- - - - - - 2.0 - 2.8* 7.6* 24.1* 12.9* 6.4 25.9* 40.4* - 

Aureobasidium pullulans - - 0.8 - - - - - 0.7 - - 0.2 - - - 2.5* 

Cladosporium sp. - - - 0.3 0.3 - 0.1 - - 2.5 - - - 0.2 - 2.7* 

 (*) 50% or more of the biological replicates were successfully colonized by the inoculated fungi 
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Figure 4.5. Barplots of the relative abundance of the 20 most abundant taxa (A) identified to 

species (s_), genus (g_) or family (f_) level, found in rooted grapevine cuttings non-inoculated 

(No inoculation), or inoculated with P. chlamydospora (Pathogen) or a consortium of wood 

endophytes (Skopobiota) or a combination of both (Pathogen + Skopobiota). Grapevines were 

treated with either blad-containing oligomer (Blad) or potassium permanganate (Control) or 

copper oxychloride and sulfur (CopperSulfur) or fosetyl-aluminium and penconazol 

(Systemics). ‘Unassigned’ are taxa identified to a lower taxonomic level than family or non-

identified, ‘Others’ are taxa not included in the 20 most abundant. In (B) the 20 most abundant 

taxa within the ‘Others’ group of (A), are shown. 
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Figure 4.6. Differential heat tree matrixes depicting the change in species abundance 

between different tissue groups, represented in the dataset with a RA > 0.1%. The size 

of the individual nodes in the grey cladogram depicts the number of taxa identified at 

that taxonomic level. The smaller cladograms show pairwise comparisons between 

each treatment, with the colour illustrating the log2 fold change: a red node indicates 

a lower abundance of the taxon in the tissue group stated on the abscissa, than in the 

tissue group stated on the ordinate. A blue node indicates the opposite. A black star 

next to a node represents the statistical differences according to DeSeq2 (p < 0.05). 
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4.4 Discussion 

 

The authors would like to introduce the concept of ‘skopobiota’, a neologism built 

from the Greek word skopos, which translates in ‘purpose’. A skopobiota represents a 

diverse array of selected microorganisms who may act synergistically in order to 

accomplish a predefined purpose in/on a specific environment. In light of the 

increasing understanding of the importance of microbiomes in the overall ‘health’ of 

environments, humans and plants (Alivisatos et al., 2015; Dubilier et al., 2015; Claus et 

al., 2016), possible applications of skopobiota can be, among many others, to restore 

diversity in a system (e.g. depleted soils, reclaimed environments from pollution), in 

human health (e.g. probiotics, restoring gut microbiota) or to be exploited in the 

control of plant pathogens, as this work suggests. 

The skopobiota of this study was conceived with two purposes. (1) To be used as 

reference, to monitor whether the application of different fungicides favor or inhibits 

the wood colonization success of any of its component organisms; (2) to test whether 

it has the potential to be exploited in the control of early infections by P. 

chlamydospora. By simultaneously inoculating the skopobiota and the pathogen, the 

authors hypothesized that the multiple interactions among organisms would decrease 

the pathogen’s likelihood of successfully producing an infection in the plant. The 

organisms that constitute this skopobiota are endophytes of grapevine wood, believed 

to be potential candidates for biological control (Jayawardena et al., 2018; Mondello et 

al., 2017; Pancher et al., 2012; Pinto et al., 2018). 

 

4.4.1 Visual inspection, shoot length and brown wood streaking 

The absence of foliar symptoms in the vines inoculated with the skopobiota confirms 

the current understanding that none of the selected organisms composing the 

skopobiota, when present in the wood, are pathogenic in grapevines (Jayawardena et 

al., 2018). Concerning P. chlamydospora, Sparapano et al. (2001) observed that this 

fungus induced foliar symptoms appearance, albeit only several months/years post-

inoculation, therefore the absence of foliar symptoms at the end of the experiment 

was expected.  
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The differences in length of the green shoot, only observed in response to fungicide 

treatments, suggest that both systemic fungicides and BCO positively affect the growth 

of vines, however, their mechanisms of action remain unclear. 

Wood discoloration, in the form of brown wood streaking, is a result of the oxidation 

and polymerization of phenolic compounds, through the action of phenolases, a plant 

response to pathogen infections (Agrios 2012) but also to other stresses such as 

mechanical injuries (Pouzoulet et al., 2013). Absence of brown wood streaking in 

water- and skopobiota-inoculated vines, in plants treated with potassium 

permanganate, systemic fungicides and BCO, confirms the endophytic nature of the 

components of the skopobiota. On the contrary, copper-sulfur treated plants 

manifested extensive brown wood streaking. A recent report revealed that wood 

necrosis caused by grapevine wood pathogen Neofusicoccum parvum was promoted 

by the presence of high doses of copper in soil (Bruez et al., 2017). Copper is also 

associated with fungal pigmentation production (Griffith et al., 2007), a virulence 

factor (e.g. fungal melanins; Jacobson, 2000); laccase synthesis, which is involved in 

wood degradation (Tychanowicz et al., 2006); and induction of phytotoxic effects, with 

changes in the plant’s morphology, biochemistry and physiology (Bruez et al., 2017). 

Overall, these clues suggest that copper may play a relevant role in the development 

of brown wood streaking, by interacting with plant, endophytes and/or pathogens. The 

extensive symptomatology recorded in plants inoculated with P. chlamydospora, under 

all fungicide treatments, indicates that the plant readily responded to the infection, 

and it did so independently of the abundance of P. chlamydospora in the wood (e.g. 

BCO treatment; Table 4.4). Wood pathogens are known to induce the appearance of 

brown wood streaking, but they are not always found in symptomatic wood, especially 

that farther from the inoculation point (Mugnai et al., 1999). This suggests that, under 

some circumstances, the extent of wood streaking may not be correlated with the 

abundance of the pathogen. Moderate-to-absent wood symptoms were observed 

when co-inoculating P. chlamydospora and skopobiota, suggesting that the 

interactions among fungi resulted in a weaker or absent plant response to the 

infection. In fact, P. chlamydospora has been previously reported in wood free from 

brown streaking symptoms (Rumbos and Rumbou 2001; Abreo et al., 2011; Hofstetter 

et al., 2012), and its ecology requires further investigation. In addition, the reduction in 
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wood streaking extent, due to the presence of fungal antagonists, has been previously 

reported in grapevines (Mondello et al., 2017) 

 

4.4.2 Effect of fungicides on the resident mycobiome and on the early colonization by 

endophytes 

Previous studies revealed that fungicides application can affect the mycobiome of 

grapevines and other crops (Karlsson et al., 2014; Morrison-Whittle et al., 2017), 

although none of them investigated the fungal communities present in the wood. This 

study shows that some of the fungal taxa composing the resident wood mycobiome of 

grapevine cuttings cv. Cabernet Sauvignon are affected by fungicides. This observation 

suggests that active ingredients interacted with fungi either directly or indirectly, for 

example stimulating plant defenses. In fact, copper oxychloride is known to be 

absorbed in the xylem of grapevines, when sprayed, although in a much lower 

concentration than that found on the bark (Di Marco et al., 2011). Further studies are 

necessary to confirm this preliminary understanding, especially in light of the high 

variability in taxa composition and abundance that characterize individual cuttings. 

Moreover, the DNA of dead fungal cells, supposedly affected by fungicides, may persist 

in the wood, during short-term experiments, hiding the real effect of the treatments. 

The effect of fungicides application on the early colonization by fungal endophytes 

composing the skopobiota reveals that some interaction occurred, and that fungicides 

have the potential of shaping the wood mycobiome by favoring/inhibiting the early 

wood colonization of specific fungi. Nevertheless, it remains to be elucidated whether 

this interaction is (i) skopobiota-fungicide or (ii) fungicide-plant, resulting in a 

fungicide-plant plant-skopobiota interaction, or (iii) a combination of both. It is 

important to mention that the colonization success of the endophytes composing the 

skopobiota may be influenced by several other factors, such as the resident 

mycobiome, climatic conditions, and health status of the vine, making this a case study 

rather than a general understanding.   

 

4.4.3 Effect of fungicides on the early colonization of P. chlamydospora 

The copper-sulfur and systemic fungicides treatments did not affect the colonization 

success of the pathogen, within the timings of the experiment. A preliminary study in 
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support of the neutral effect of copper oxychloride on the colonization success of P. 

chlamydospora was presented by Di Marco et al. (2011), although no literature is 

available on the influence of sulfur or other synthetic fungicides. Blad-containing 

oligomer was the only active ingredient capable of significantly inhibiting the wood 

colonization success of P. chlamydospora. This is the first report of a foliar spray 

capable of reducing the wood colonization success of this pathogen. BCO is a recently 

developed non-toxic fungicide with large spectrum activity (Monteiro et al., 2015). It is 

a large size oligomer (210 kDa), known as contact fungicide, also effective against P. 

chlamydospora (Del Frari et al., 2018), and data suggest that it also interacts with 

plants, for example as growth enhancer. Due to its large size, it is very unlikely that 

BCO reached the xylem where the pathogen was located, which excludes its contact 

fungicidal activity. The authors hypothesize that BCO interacted with the plants, for 

example activating natural defenses, which in turn inhibited the growth of P. 

chlamydospora. Research on the physiological response of grapevine after treatment 

with BCO is underway. 

 

4.4.4. Use of a skopobiota in the biological control of P. chlamydospora 

As postulated, the wood colonization success of P. chlamydospora was greatly reduced 

when co-inoculated with a consortium of wood endophytes (skopobiota) that are 

considered potential antagonists. Some of the possible explanations are found in the 

multiple inhibitory effects that occur during conidia germination and mycelial growth 

(e.g. release of metabolites) and by increasing the competition for space and nutrients. 

In addition, only minor changes in the abundance of the pathogen are observed with 

the different fungicide treatments, making this skopobiota a very promising tool in 

biological control. Interestingly, the BCO treatment facilitated the wood colonization 

by both Cladosporium sp. and Au. pullulans, while inhibited that of E. nigrum, in the 

presence of P. chlamydospora, when compared with the results obtained from the 

skopobiota-only inoculation. This observation suggests the occurrence of complex 

interactions in which not only the fungicide, but also the pathogen, play a primary role, 

resulting in a selective wood colonization. In addition to the fungicides, the pathogen-

skopobiota interaction may also be influenced by other factors, such as the plant 

and/or the resident mycobiome. Further investigation is necessary to confirm these 
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results also from a quantitative point of view, and to understand if the effect observed 

by the addition of this skopobiota is long lasting, and it may be successfully applied to 

plants with an established infection, as a curative strategy.  

 

 

4.5 Conclusion 

 

This study shows that some common fungicides that have been applied in viticulture 

for decades (copper-sulfur and systemics) affect the wood colonization success of 

some endophytes, with unpredictable consequences, both short and long term, on the 

wood mycobiome ecology. It is reasonable to wonder whether the wood mycobiome 

composition of grapevines before the fungicide era was considerably different from 

today’s, and whether a diversity loss has occurred.  As the diversity of a biological 

system is positively correlated with its stability (McCann 2000), a loss in endophytic or 

saprophytic species that antagonize GTD pathogens, such as P. chlamydospora, may be 

a possible explanation for the recent success of these pathogenic fungi. This work only 

addressed four endophytes, although the wood mycobiome of adult plants is known to 

be potentially colonized by hundreds of species. In conclusion, restoring or enhancing 

the diversity of the wood mycobiome, for example using skopobiota, may considerably 

improve our chances to control GTDs. While research on skopobiota advances, blad-

containing oligomer seems a promising tool to confront early infections by P. 

chlamydospora. This active ingredient is non-toxic for the environment and humans, it 

has growth promoting properties, and strongly antagonizes the wood colonization 

success of P. chlamydospora, making it the most promising control mean currently 

available. 
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4.8 Supplementary material 

 

Table S4.5. Fungal taxa identified to genus or species level in the wood of grapevine 

rooted cuttings, at relative abundances (RA) inferior to 0.1 % or 0.01% of the total. 

RA < 0.1 % 

Buckleyzyma sp. 

Cenococcum geophilum 

Colletotrichum gloeosporioides 

Cryptococcus victoriae 

Cyberlindnera jadinii 

Cystofilobasidium infirmominiatum 

Filobasidium magnum 

Hannaella oryzae 

Meira nashicola 

Naganishia albidosimilis 

Neophysalospora eucalypti 

Peniophora piceae 

Phyllosticta sp. 

Pseudozyma sp. 

Rhodotorula mucilaginosa 

Rhodotorula nothofagi 

Saccharomyces cerevisiae 

Sporobolomyces johnsonii 

Stemphylium sp. 

RA < 0.01 % 

Ceratobasidium sp. 

Cladosporium fusiforme 

Coriolopsis gallica 

Cryptococcus heimaeyensis 

Debaryomyces mycophilus 

Debaryomyces prosopidis 

Diaporthe phaseolorum 

Dioszegia sp. 

Erythrobasidium hasegawianum 

Hyphodermella rosae 

Itersonilia perplexans 

Lecanicillium lecanii 

Leucosporidium sp. 

Phaeotheca triangularis 

Pseudotaeniolina globosa 

Tilletiopsis pallescens 

Tubaria furfuracea 
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5. Characterization of the wood mycobiome of Vitis vinifera in a vineyard 

affected by esca. Spatial distribution of fungal communities and their 

putative relation with foliar symptoms. 

Giovanni Del Frari, Alex Gobbi, Marie Rønne Aggerbeck, Helena Oliveira, Lars Hestbjerg 

Hansen, Ricardo Boavida Ferreira 

 

Abstract 

Esca is a disease complex belonging to the grapevine trunk diseases cluster. It 

comprises five syndromes, three main fungal pathogenic agents and several 

symptoms, both internal (e.g. affecting the stem) and external (i.e. affecting leaves and 

bunches). The etiology and epidemiology of this disease complex remain, in part, 

unclear. Some of the points that are still under discussion concern the sudden rise in 

disease incidence, the simultaneous presence of multiple wood pathogens in affected 

grapevines, the causal agents and the discontinuity in time of foliar symptoms 

manifestation. The standard approach to the study of esca has been mostly through 

culture-dependent studies, yet, leaving many questions unanswered.  

In this study, we used Illumina® next-generation amplicon sequencing to investigate 

the mycobiome of the wood of grapevines in a vineyard with history of esca. We 

characterized the wood mycobiome composition, investigated the spatial dynamics of 

the fungal communities in different areas of the stem and in the canes, and assessed 

the putative link between mycobiome and foliar symptoms.  

An unprecedented diversity of fungi is presented (289 taxa), including five genera 

reported for the first time in association with grapevine’s wood (Debaryomyces, 

Trematosphaeria, Biatriospora, Lopadostoma and Malassezia) and numerous hitherto 

unreported species. Esca-associated fungi Phaeomoniella chlamydospora and 

Fomitiporia sp. dominate the fungal community, and numerous other fungi associated 

with wood syndromes are also encountered (e.g. Eutypa spp., Inonotus hispidus). The 

spatial analysis revealed different abundances of taxa, the exclusive presence of 

certain fungi in specific areas of the plants, and tissue specificity. Lastly, the 

mycobiome composition of the woody tissues in proximity to the canopy that 

manifested foliar symptoms of esca, as well as in foliar symptomatic canes, was highly 
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similar to that of plants not exhibiting any foliar symptomatology. This observation 

supports the current understanding that foliar symptoms are not directly linked with 

the fungal community in the wood. 

This work builds to the understanding of the microbial ecology of the grapevines wood, 

offering insights and a critical view on the current knowledge of the etiology of esca. 

 

Key words esca disease, fungal diversity, grapevine, metabarcoding, wood 

mycobiome 

 

 

5.1 Introduction 

 

The phyllosphere, rhizosphere and endosphere of grapevine (Vitis vinifera L.) are 

characterized by the presence of complex communities of microorganisms that 

constantly interact with one another and with the plant, affecting it positively, 

neutrally or negatively (Bruez et al., 2014; Pinto et al., 2014; Zarraonaindia et al., 

2015). Until a decade ago, the approach to characterize the mycobiome - namely the 

fungal community present in/on an organism - of grapevines, focused on culture-

dependent studies in which fungi were isolated in vitro and identified morphologically 

and/or molecularly (Morgan et al., 2017). This approach remains valid to this day, 

however it presents several limitations, such as the impossibility of detecting 

uncultivable fungi, the bias of the cultivation conditions (e.g. growth medium, 

incubation parameters) and the difficulty of isolating species present in low 

abundances (Morgan et al., 2017). In recent years, technologies like next-generation 

sequencing (NGS) have improved in quality and reduced in cost, which, in combination 

with ever more efficient bioinformatics tools, have allowed the exploitation of this 

method in the study of the molecular ecology of environmental DNA (eDNA) samples. 

In particular, DNA metabarcoding approaches have taken the investigations of 

microbiomes to a new level, surpassing some of the limitations which characterize 

culture-dependent studies. In fact, NGS studies have revealed a higher diversity of taxa 

and accurate relative abundances in samples coming from different environments, 
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including the vineyard (Peay et al., 2016; Morgan et al., 2017; Jayawardena et al., 

2018). Despite these recent advances, culture-independent studies describing the 

microbial endosphere of grapevines are still scarce. 

 DNA metabarcoding is a promising tool to investigate the microbial communities 

present in the wood of grapevines, as it may lead to a new understanding of the 

complexity that characterizes grapevine trunk diseases (GTDs). This cluster of fungal 

diseases affects primarily the perennial organs of the plants, such as the trunk and 

roots, however secondary symptoms may be observed in leaves, bunches and shoots. 

Overall, GTDs cause a loss in vigor, productivity, quality of the yield and lifespan of the 

plants, with conspicuous economic consequences (Bertsch et al., 2013; Fontaine et al., 

2016; Hofstetter et al., 2012). GTDs pathogens are phylogenetically unrelated, 

belonging to different families, orders and even phyla, although plants infected may 

reveal similar symptomatology. For example, wood discoloration and necrosis are 

symptomatology shared by all GTDs (e.g. Figure 5.1 C), whereas the ‘tiger stripes’ 

pattern in the leaves can be attributed to both grapevine leaf stripe disease (GLSD; 

Figure 5.1 F) and black dead arm (Mugnai et al., 1999; Larignon et al., 2009; Bertsch et 

al., 2013). Moreover, the simultaneous presence of several possible causal agents in 

infected grapevines complicates the outline of a clear etiological pattern (Bruez et al., 

2016; Edwards and Pascoe, 2004; Mondello et al., 2017). This is especially true in the 

case of esca, a disease complex consisting of five separate syndromes (brown wood 

streaking of rooted cuttings, Petri disease, GLSD, esca and esca proper) in which, 

according to current literature, several pathogenic fungi play a role (Surico, 2009). 

These fungi may infect vines in the field, where conidia or other propagules reach fresh 

pruning wounds and start colonizing the xylem, or during the propagation process in 

nurseries (Gramaje et al., 2018). The pathogens most frequently associated with the 

first three syndromes are Phaeomoniella chlamydospora and Phaeoacremonium 

minimum, two tracheomycotic ascomycetes; while the latter two syndromes are 

associated with the presence of the wood rotting basidiomycete Fomitiporia 

mediterranea (esca), especially common in Europe, or with the simultaneous presence 

of both tracheomycotic and wood rotting pathogens (esca proper; Surico, 2009). Along 

with these three players, other wood pathogens including, but not limited to, 

members of the Diatrypaceae and Botryosphaeriaceae are often found in symptomatic 
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plants (Bruez et al., 2014; Edwards and Pascoe, 2004; Hofstetter et al., 2012; Travadon 

et al., 2016). Studies that used the NGS approach to learn more about the grapevine 

endosphere are scarce (Dissanayake et al., 2018; Jayawardena et al., 2018) and none 

of them investigated the mycobiome of GTDs-affected plants.  

This study focuses on a vineyard in Portugal, which ranks 11th in the world for wine 

production, with a total vineyard area of 195 kha (Aurand, 2017). V. vinifera cultivar 

Cabernet Sauvignon is the most cultivated worldwide, with a total vineyard area of 340 

kha. It is considered susceptible to trunk diseases (Darrieutort and Pascal, 2007; 

Eskalen et al., 2007) and has already been cited in studies concerning the microbial 

ecology of wood, phyllosphere and grapes (González and Tello, 2011; Bruez et al., 

2014; Morgan et al., 2017; Singh et al., 2018). This work aims to investigate the fungal 

communities present in the wood of grapevines, in a vineyard with history of esca 

proper. Three main objectives were set: (1) to characterize the mycobiome of the 

wood of V. vinifera cv Cabernet Sauvignon, in a vineyard located in the Lisbon area 

(Portugal), using Illumina® NGS; (2) to understand the spatial distribution of the 

communities present in different areas of perennial wood and in annual wood; (3) to 

understand whether there is a link between the microbial communities of the wood 

and the expression of foliar symptoms of esca.  

 

 

5.2 Materials and Methods 

 

5.2.1 The vineyard 

Field sampling took place in the experimental vineyard (Almotivo) of the Instituto 

Superior de Agronomia, in Lisbon (38°42'32.7"N, 9°11'11.5"W). The vineyard has a 

density of 3333 plants/ha, the soil is classified as vertisoil, it is managed under 

conventional agricultural practices and there is no irrigation system. The selected 

cultivar was Cabernet Sauvignon grafted on 140 RU rootstock, 19 years old at the 

moment of sampling (planted in 1998), trained as Cordon Royat Bilateral and spur 

pruned. The field has a history of esca, with leaf-symptomatic grapevines accounting 

for less than 1% of the total plants in all recorded years (2015, 2016 and 2017). The 

selection of the plants used in this experiment was restricted to a block of 450 m2. 
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The immediate surroundings of the vineyard, within a 25 m radius from the perimeter, 

are characterized by the presence of diverse vegetation. The majority of the species 

are listed in Table S5.4, found in the supplementary materials.  

 

5.2.2 Sampling and experimental setup 

Samples of perennial wood (PW) were taken in a non-destructive way, in April 2017, by 

means of hand-drilling the plants with a gimlet (Figure 5.1 B). The sampling procedure 

occurred as follows. The bark, on each sampling point, was removed with the use of a 

knife and the wounds were disinfected with ethanol (70% v/v); the gimlet was placed 

perpendicularly on the open wounds and manually forced in the wood until it went 

through the whole width of the plant. This allowed us to extract cores of wood (5 mm 

of diameter and approximately 60 mm long) which were immediately placed in sterile 

15 mL falcon tubes and temporarily stored in ice (Figure 5.1 C). Samples were then 

frozen, freeze-dried and stored at -80 °C. After extracting each core of wood, the 

gimlet was sterilized by dipping it in a sodium hypochlorite solution (0.35 w/w of active 

chlorine) for 1 minute, followed by a rinse with ethanol (70% v/v) and then double-

rinsed with sterile distilled water (SDW), in order to minimize cross-contamination.  

Canes grown in the 2017 growing season were sampled, as annual wood (AW), in 

September, detaching them with pruning scissors, approximately 3 cm above the spur 

from which they departed (total length of the canes sampled 50 mm; Figure 5.1 F). 

Each sample was deprived of its bark, frozen, freeze-dried and stored at -80 °C until 

processing. 

 

Concerning the PW, ten grapevines were sampled in 9 areas each, as shown in Figure 

5.1 (B). Five of these plants did not show foliar symptoms of esca during the previous 

two growing seasons (years 2015 and 2016), while the other five presented leaf ‘tiger 

stripes’ symptoms, only in one of the two cordons (cordon 2; Figure 5.1 A), during the 

previous growing season (year 2016). The terms ‘asymptomatic’ and ‘symptomatic’, 

which will often be encountered in the rest of the text, refer exclusively to the foliar 

symptomatology and not to the wood symptomatology (unless specifically stated).  

The tissue types corresponding to the nine sampling areas are: ‘Graft Union’ (GU), 

located approximately (3±1 cm) above the soil, on the graft union; ‘Trunk’ (T), (22±1 
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cm) above GU; ‘Upper Trunk’ (UT), (22±1 cm) above T; ‘Arm 1’ (A1), was located on the 

cordon, (36±2 cm) away from UT; the sample point ‘Spur 1’ (S1) is located on the 

cordon, right below the spur, (10±1 cm) from A1; ‘Arm 2’ (A2), located (22±1 cm) to 

the right of A1; ‘Spur 2’ (S2), (10±1 cm) from A2 (Figure 5.1). Sample points (A1, S1, A2 

and S2) belonged to cordon 1, and the canopy departing from this cordon never 

exhibited foliar symptoms, for all 10 sampled plants. Sampling points (SA, symptomatic 

arm) and (SS, symptomatic spur) are the equivalent of points (A1) and (S1), but located 

in cordon 2. In this case, 5 out of the 10 sampled grapevines presented foliar 

symptoms in the canopy departing from (SS), while the other 5 plants had a non-

symptomatic canopy.  

 

Only one tissue type was examined in the AW, namely the ‘Canes’, where 15 canes 

were sampled from 10 plants. Five of them came from asymptomatic plants, while the 

other 10 came from symptomatic plants. Within these 10, 5 canes were foliar-

symptomatic, while the other 5 were asymptomatic and sampled in cordon where the 

whole canopy was asymptomatic (Figure 5.1 F).  

 

To address the three objectives of this study the sample points corresponding to 

different tissue types were combined as follows. (1) To characterize the mycobiome of 

the wood of the vineyard, all sample points were taken in consideration (n= 80 from 

wood, n= 15 from canes; Figure 5.1 A). (2) To learn about the spatial distribution of the 

mycobiome in the different areas of the plants, we used tissue types (GU – S2) (n= 10 

per tissue type, total n= 70; Figure 5.1 D), along with asymptomatic canes (n= 10). (3) 

To understand the link between foliar symptoms expression and mycobiome of PW or 

AW, we created three groups per category. In the category ‘PW’, group (i) consisted in 

asymptomatic plants (cordon 1, points ‘A1 and S1’; n= 10), group (ii) consisted in 

symptomatic plants, sampled in the asymptomatic cordon (cordon 1, points ‘A1 and 

S1’; n= 10), group (iii) consisted in symptomatic plants, sampled in the symptomatic 

cordon (cordon 2, points ‘SA and SS’; n= 10) (Figure 5.1 E). The same applied for the 

category ‘AW’, where group (i) consisted in asymptomatic canes, sampled from 

asymptomatic plants, group (ii) consisted in asymptomatic canes, sampled from 

symptomatic plants, group (iii) consisted in symptomatic canes. 
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Figure 5.1. Sampling points in the perennial wood or annual wood of grapevine cv Cabernet sauvignon. 
(GU) Graft union, (T) Trunk, (UT) Upper trunk, (A1) Arm 1, (S1) Spur 1, (A2) Arm 2, (S2) Spur 2, (SA) 
Symptomatic arm, (SS) Symptomatic spur. Cordon (1) presented canopy with healthy leaves in all ten 
sampled plants, while cordon (2) presented foliar symptoms in the canopy, departing from SS, in five of 
the sampled plants (circles and letters in red). (A) Sampling points used to characterize the mycobiome 
of perennial wood – objective 1-; (B) Sampling procedure involved using a gimlet to drill the wood and 
extract wood cores; (C) Cores of wood extracted with a gimlet (red arrows indicate wood 
symptomatology). From right to left:  brown wood streaking, wood necrosis, extensive wood necrosis, 
wood decay-white rot-wood necrosis. (D) Sampling points used to test the spatial distribution of fungal 
communities – objective 2-; (E) Sampling points used to examine the mycobiome present in the wood in 
proximity of the canopy with foliar symptomatology (AS, SS) and healthy (A1, S1) – objective 3-; (F) From 
left to right: symptomatic canes sampled from plants with foliar symptoms, asymptomatic canes 
sampled from plants with no foliar symptoms in either of the cordons or with foliar symptoms in only 
one of the two cordons; the sampling area for each cane is indicated by the blue rectangle. 
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5.2.3 DNA extraction, amplification, library preparation and sequencing  

Wood samples were ground to dust using sterile mortars and pestles aiding the 

process with liquid nitrogen. An aliquot of ground wood (0.25 ± 0.01 g) of each sample 

was added to DNA extraction columns (FastDNA™ SPIN Kit for Soil, MP Biomediacals® 

LLC) and total DNA was extracted as described by the kit manufacturer. Three negative 

controls of the DNA extraction procedure were added.  

The amplicon chosen in this study targeted the Internal Transcribed Spacer ITS1 region, 

and the primer set selected was ITS1F2 - ITS2 (Gaylarde et al., 2017) with overhang 

recommended by Illumina. For building libraries, we have been using a double-step 

PCR approach as reported by Feld et al. (2015). The full sequence of the primers, 

including Illumina overhangs, is the following: ITS1F2 (5’-

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-GAACCWGCGGARGGATCA-3’) and ITS2 

(5’-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-GCTGCGTTCTTCATCGATGC-3’) 

(Gaylarde et al., 2017). 

Each first-step PCR reaction contained 12.5 µL of Supreme NZYTaq II 2x Green Master 

Mix™ (NZYtech™), 0.5 µL of forward and reverse primers from a 10 µM stock, 1.5 µL of 

sterile water, and 5 µL of template. Each reaction was pre-incubated at 95 °C for 2 min, 

followed by 40 cycles of 95 °C for 15 s, 55 °C for 15 s, 72 °C for 40 s; a further extension 

was performed at 72 °C for 10 min.  

Second PCR-step for barcoding, fragment-purification by using MagBio beads and 

Qubit quantification was performed as reported in Gobbi et al. (2018). Final pooling 

was performed at 10 ng/sample. DNA Sequencing was performed using an in-house 

Illumina MiSeq instrument and 2x250 paired-end reads with V2 Chemistry.  

 

5.2.4 Bioinformatics  

After sequencing, demultiplex was performed using our Illumina MiSeq platform and 

the raw data were analyzed using QIIME 2 v. 2018.2 (Caporaso et al., 2010) using the 

same pipeline described in Gobbi et al. (2018); denoised reads were trimmed 15 bp on 

the left to remove the adapters and then they were analyzed using DADA2 with the 

exact sequence variants (EVS) methods (Callahan et al., 2017). Each ESV appears at 

least twice in the dataset. Singletons were discarded. Taxonomic assignments were 

performed at 99% identity using qiime feature-classifier classify-sklearn with a Naïve-
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Bayes classifier trained with UNITE (Nilsson et al., 2013) v7.2 for ITS. To test the three 

hypotheses underlying this work we separate the frequency table in three sub-tables 

which were tested under different conditions.  

 

5.2.5 Statistics  

The frequency table and its taxonomy were combined, converted to biom format in 

QIIME (Caporaso et al., 2010), then merged with a table of metadata into an S4 object 

and analysed in R (v. 3.4.3) using the following packages: phyloseq, v. 1.22.3 

(McMurdie and Holmes, 2013); biomformat, v. 1.10.0 (McMurdie and Paulson, 2018), 

vegan, v. 2.5.2 (Oksanen et al. 2007); ggplot2, v. 3.0.0 (Wickham, 2016); igraph, v. 1.2.2 

(Csardi, 2006), MetacodeR, v. 0.2.1.9005 (Foster et al., 2017); adespatial, v. 0.1.1 (Dray 

et al., 2018); data.table, v 1.10.4.3 (Dowle and Srinivasan, 2017); and microbiome, v. 

1.4.0.R code is publicly available at https://github.com/marieag/EMG. 

To assess the alpha diversity, Shannon diversity index and Pielou’s evenness were 

calculated and tested using a one-way ANOVA with post hoc Tukey’s HSD (Honestly 

Significant Difference), determining differences in these indexes between tissue types 

or tissue groups. We analyzed the ꞵ-dispersion to measure between-sample variances 

in abundance, computing average distances of the individual samples. The resulting 

ordination was plotted using the non-metric multidimensional scaling (NMDS) 

combined with a Jaccard index matrix. These ordinations were also performed with a 

Bray-Curtis dissimilarity matrix. To assess overall inter-group variance, we performed a 

PERMANOVA, using a Jaccard distance matrix with 999 permutations. In order to 

illustrate this effect size compared to the relative abundance of the taxa, we created 

differential heat trees using MetacodeR, illustrating the log2 fold change in species 

abundance. A Wilcoxon Rank Sum test was applied to test differences between the 

same species in different tissue groups, and the resulting p-values were corrected for 

multiple comparisons using FDR, as implemented in MetacodeR. P-value threshold was 

set to 0.05.   
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5.3 Results  

 

5.3.1 Sequencing dataset description 

This dataset, obtained by sequencing, consists of a total of 95 samples. This includes 80 

samples collected from different parts of the PW and 15 from canes (AW). All of them 

represent a total of 20 plants and each one of these counts as an independent 

biological replicate. This dataset contains 2805 exact sequence variants which appear a 

total of 8.184.885 times among all the different samples.  

 

5.3.2 Visual examination of the sampled wood 

Before processing the samples for the molecular analysis, wood cores of perennial 

wood and samples of annual wood were visually examined to assess the presence of 

symptomatology. Approximately 10% of the wood cores were fully asymptomatic, 75% 

presented symptoms of tracheomycosis (e.g. brown wood streaking and/or wood 

necrosis), and 15% showed the presence of white rot, which was always associated 

with other tracheomycosis symptoms.  The examination of the annual wood revealed 

that 100% of the samples were fully asymptomatic. 

 

5.3.3 The wood mycobiome 

The identification of sequences in our dataset revealed an unprecedented diversity. 

Taxa that were assigned to genus or species level are 289, 50 of them are found in 

relative abundance (RA) greater than 0.1%, while the remaining 239 are considered 

rare taxa (RA < 0.1%). Within these 239 taxa, 146 are found in a RA included between 

0.1 and 0.01%, and 93 have a RA lower than 0.01%. The full list of taxa is available in 

the supplementary material (Table S5.5). 

The qualitative overview of the wood mycobiome will focus mainly on the 30 most 

abundant taxa in PW and the 12 most abundant in AW, which account for 79.1 and 

80.8% of the total RAs respectively (Table 5.1), while the remaining percentages 

represent unidentified taxa or fungi found in lower abundances.  Within this group of 

taxa, five genera and nine species of fungi are described for the first time in association 
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with the grapevine wood mycobiome, while the remaining 18 taxa have already been 

reported (Table 5.1).  

The community encountered in perennial wood is characterized by the presence of 

both ascomycetes and basidiomycetes (66.7% and 27.7% RA), with high abundances of 

tracheomycotic pathogen Phaeomoniella chlamydospora (25.8%) and white rot agent 

Fomitiporia sp. (14.6%), two organisms directly associated with esca proper and other 

esca-related syndromes. Among all sampled wood cores (n= 80), P. chlamydospora 

was present in 68 of them (85%; RA> 0.1%), while Fomitiporia sp. in 58 (64%; RA> 

0.1%) or 14 (17.5%; RA> 35%). Other GTD pathogens among the 30 most abundant 

taxa are Eutypa lata (0.7%) and E. leptoplaca (0.9%), within the Diatrypaceae. More 

members of this family are Anthostoma gastrinum (0.9%), a potential wood pathogen, 

as well as E. flavovirens, Eutypella citricola and Cryptovalsa ampelina, identified as rare 

taxa. Members of the Botryosphaeriaceae (e.g. Diplodia pseudoseriata, Neofusicoccum 

parvum, N. australe), Ilyonectria sp. and Neonectria sp. are also found, although 

represented only as rare taxa (Table S5.5). Decay agents, such as Fomitiporia sp., 

Fomitiporia mediterranea (0.2%) and Inonotus hispidus (0.3%), were also identified in 

this study, along with several others represented in minor abundances (e.g. 

Fomitiporella sp.). Among the endophytes and saprophytes, Alternaria sp. (3.2%), 

Cladosporium sp. (1.9%), Aureobasidium pullulans (0.4%) and Psathyrella sp. (0.5%) are 

the most abundant. Several other genera or species, identified for the first time in 

association with grapevine wood, amount to 14 taxa out of the 33 most abundant in 

PW or AW (Table 5.1). 

Annual wood is also colonized by both ascomycetes (76.3%) and basidiomycetes 

(18.8%). The most abundant taxa are endophytic and saprophytic fungi, with Alternaria 

sp. (14.6%), Ramularia sp. (9.4%) and Cladosporium sp. (8.2%) being among most 

abundant, as well as other species reported for the first time (e.g. Debaryomyces 

prosopidis; Table 5.1). Only two wood pathogens are present in moderate abundances 

in AW, namely P. chlamydospora (3.9%) and Diaporthe sp. (0.8%), while other 

pathogenic agents are found in minor abundances (RA < 0.2%; e.g. Neofusicoccum 

australe).   
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Table 5.1. List of most abundant taxa, identified to genus or species level, found in grapevine wood. The list includes the 30 most abundant taxa 

found in perennial wood and the 12 most abundant in annual wood, for a total of 32 taxa. The numbers between brackets represent the 

relative abundance of that Phylum or Family in the perennial wood or annual wood (PW% - AW%) based on the table created to address 

objective (1). The ecology of the identified taxa in wood of grapevines or of other plants is shown based on available literature (E= endophyte, 

S= saprophyte, P= pathogen, na= unknown ecology). The presence of taxa in different tissue types is based on the table created to address 

objective (2), (+) indicates presence (RA ≥ 0.1%), (-) indicates absence or presence in RA < 0.1%. Meaning of GU, T, UT, A1, A2, S1, S2 and C as in 

the legend of Figure 5.1. 
 

Phylum Family Species 
Relative abundance (%) Ecology in 

wood * 

Presence in different tissue type  

PW AW GU / T / UT A1 / A2 S1 / S2 C 

Ascomycetes 
(66.7 – 76.3) 

Biatriosporaceae (0.6 – 0) Biatriospora mackinnonii‡ 0.6 - E a - / - / - - / - - / - - 

 Bionectriaceae (0.4 – 0) Clonostachys rosea 0.4 - E, S, P b - / - / - - / - - / + - 

 Davidiellaceae (2.0 – 8.2) Cladosporium sp. 1.9 8.2 E, S b + / + / + + / + + / - + 

 Diaporthaceae (<0.1 – 0.8) Diaporthe sp. <0.1 0.8 E, S, P b - / - / - - / - - / - + 

 Diatrypaceae (2.6 – 0) Anthostoma gastrinum† 0.9 - S, P c, d + / + / + + / + + / - - 

  Eutypa lata 0.7 - P b - / - / - - / - - / + - 

  Eutypa leptoplaca 0.9 - P b - / - / + - / - + / + - 

 Dothioraceae (0.4 – 4.0) Aureobasidium pullulans 0.4 4.0 E, S b - / + / + + / + - / - + 

 Glomerellaceae (<0.1 – 0.7) Colletotrichum sp. <0.1 0.4 P b - / - / - - / - - / - - 

 Herpotrichiellaceae (27.1 – 3.9) Exophiala xenobiotica† 0.5 - na - / - / - - / + + / + - 

  Phaeomoniella 
chlamydospora 

25.8 3.9 P d + / + / + + / + + / + + 

 Hypocreales (0.3 – 0.2) Acremonium sp. 0.2 - E e - / - / - - / - - / + - 

 Lophiostomataceae (3.8 – 0) Angustimassarina acerina† 0.5 - S f - / - / + + / + + / + - 

  Lophiostoma sp. 2.7 - E, S b + / + / - + / - + / - - 

  Lophiostoma cynaroidis† 0.3 - E g - / + / - - / - - / - - 

  Lophiotrema rubi 0.3 - na + / - / - - / - - / - - 
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* References. a(Kolařík et al., 2017), b(Jayawardena et al., 2018), c(Haynes, 2016), d(Gramaje et al., 2018), e(González and Tello, 2011), f(Thambugala et al., 

2015), g(Xing et al., 2011), h(Casieri et al., 2009), i(Suetrong et al., 2011), j(Pancher et al., 2012), k(Jaklitsch et al., 2014), l(González et al., 2009), m(Bruez et al., 

2016), n(Haňáčková et al., 2017).  

‡First report of genus and species in grapevine wood.  

†First report of species in grapevine wood. 

Table 5.1. (continue). 
 

Phylum Family Species 
Relative abundance (%)  Ecology in 

wood * 

Presence in different tissue type  
PW AW      GU / T / UT    A1 / A2    S1 / S2 C 

 Massarinaceae (0.5 – 0) Massarina sp. 0.5 - E h + / + / + - / - + / - - 

 Mycosphaerellaceae (3.3 – 9.4) Ramularia sp. 3.1 9.4 na + / + / + + / + + / + + 

 Pleomassariaceae (2.9 – 0) Trematosphaeria pertusa‡ 2.9 - S i + / + / - - / + + / + - 

 Pleosporaceae (3.9 – 14.8) Alternaria sp. 3.2 14.6 E b, j + / + / + + / + + / + + 

 Saccharomycetaceae (10.9 – 
31.8) 

Debaryomyces prosopidis‡ 10.4 31.5 na + / + / + + / + + / + + 

 Xylariaceae (0.7 – 0) Lopadostoma meridionale‡ 0.3 - S k - / - / - - / - - / - - 

  Lopadostoma quercicola‡ 0.4 - S k + / - / - - / - - / - - 

Basidiomycetes 
(26.7 – 18.8) 

Filobasidiaceae (0.2 – 0.2) Filobasidium magnum† 0.1 0.2 na + / - / - - / + - / - - 

 Hymenochaetaceae (15.2 – 0) Fomitiporia sp. 14.6 - P d + / + / + + / + + / + - 

  Fomitiporia mediterranea 0.2 - P d - / + / - + / - - / - - 

  Inonotus hispidus 0.3 - S, P l + / - / - - / + - / - - 

 Malasseziaceae (0.3 – 0.3) Malassezia restricta‡ 0.2 0.2 na + / - / - - / - - / - + 

 Psathyrellaceae (0.5 – 0) Psathyrella sp. 0.5 - S m + / - / - - / - - / - - 

 Sporidiobolaceae (0.6 – 0) Rhodotorula mucilaginosa† 0.4 <0.1 S n - / + / + + / + - / - - 

 Tremellaceae (6.4 – 8.3) Cryptococcus sp. 2.7 7.6 E, S b + / + / + + / + + / + + 

  Cryptococcus heimaeyensis† 0.3 - - - / - / + - / - - / - - 

  Cryptococcus victoriae† 2.9 0.7 - + / + / + + / + + / + + 

  TOTAL  79.1 80.8      
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The core mycobiome, namely the taxa shared between PW and AW, is constituted by 

44 taxa. Only 10 taxa are unique to AW and the remaining 235 are unique to PW. All 

the 10 unique taxa found in AW are considered rare taxa, as their RAs are lower than 

0.1% of the total, while among the many taxa unique to PW we find organisms 

belonging to the Hymenochaetaceae, Lophiostomataceae, Pleomassariaceae, 

Xylariaceae and several others (Table S5.5). 

 

5.3.4 Diversity and spatial distribution of the mycobiome 

Alpha diversity  

The Shannon (H’) and Pielou’s (J’) indexes vary significantly among tissue types, 

according to Tukey’s HSD (Figure 5.2, Table 5.2). The Shannon diversity analysis reveals 

that one sample point, namely the Upper Trunk, differs from both the spur points S1 

and S2 (P < 0.05). The spur tissue is also significantly different from canes (P < 0.05). No 

differences are observed when comparing GU, T, UT, the two sample points in the arm 

(A1 and A2) and canes. Exact p-values of the significant differences are available in 

Supplementary Table S5.6.  

Different tissue types also vary in mycobiome evenness, with fungal communities of 

canes, GU, T and UT being more evenly distributed than those of the spurs (P < 0.05; 

Figure 5.2). All other tissue types examined do not differ in evenness (Figure 5.2). 

 

Beta diversity 

The Jaccard’s index, when visualized in a non-metric multidimensional scaling (NMDS) 

plot, shows a considerable overlap for different tissue types (Figure 5.3 A). The 

PERMANOVA indicates significant difference between groups (p < 0.001), but looking 

at the ordination, the difference is arguably in the clustering of the observations, 

rather than a distinct difference in sample composition. A pattern emerges when 

examining each tissue type separately (Figure 5.3 B). We observe a reduction in 

between-sample variability starting from the GU to T and until UT. The UT variability is 

very similar to that of both the Arm points (A1 and A2), while the Spurs (S1 and S2) 

have higher between-sample variability, when compared to the Arms, but similar to 

one another. Concerning the AW, the variability of this tissue type is very low (Figure 
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5.3 B). Bray Curtis test revealed a similar profile and significant differences (p < 0.001; 

data not shown). 

 

Table 5.2. Shannon diversity (H’) and Pielou’s evenness (J’) indexes of the spatial 

distribution analysis (objective 2) and the mycobiome analysis in the wood associated 

with symptomatic canopy (objective 3). 

 

 

Shannon (H’) Pielou's evenness (J’) 

Spatial distribution (objective 2) 
  Graft Union 1.85 0.60 

Trunk 1.73 0.57 

Upper trunk 1.92 0.61 

Arm 1 1.26 0.40 

Spur 1 1.08 0.34 

Arm 2 1.58 0.49 

Spur 2 1.09 0.37 

Canes 1.93 0.61 

Foliar symptomatology (objective 3) 
  Perennial wood 
  Asymptomatic arm 

in asymptomatic plant 
1.29 0.41 

Asymptomatic arm 
in symptomatic plant 

1.05 0.33 

Symptomatic arm 1.25 0.39 

Annual wood 
  Asymptomatic cane  

in asymptomatic plant 
2.04 0.63 

Asymptomatic cane  
in symptomatic plant 

1.81 0.59 

Symptomatic cane 2.09 0.68 
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Figure 5.2. Box plots of diversity indexes (Shannon, Pielou’s evenness) of the fungal 

communities present in different sampling areas of the perennial wood (Graft Union, 

Trunk, Upper trunk, Arm 1, Spur 1, Arm 2, Spur 2) and canes. Vertical boxes denote the 

median, the upper and lower quartiles, and the extremes of data. The black, horizontal 

brackets at the top of the figure denote statistical comparisons of the two tissues at 

each end of the bracket, calculated using a one-way ANOVA with post-hoc Tukey’s 

HSD. Statistical differences are shown by asterisks, where P < 0.05 = *. 
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Figure 5.3. Non-metric multidimensional scaling (NMDS) plots based on Jaccard’s 

index. Fungal communities present in different tissue types in grapevine. (A) Shows all 

samples ordinated together, while (B) is the same data, split up per tissue group. 

Ellipses illustrate the multivariate normal distribution of samples within the same 

tissue group. The groups are colour-coded to correspond with Figure 5.2. 

 

 

Mycobiome composition and differentially represented taxa 

The bar plot in Figure 5.4 shows the relative abundance of the 20 most abundant taxa 

in different tissue types, giving an overview of the presence/absence of taxa and their 

differential representation. For example, Eutypa lata and Acremonium sp. are present 

exclusively in the wood below the spurs, while Trematosphaeria pertusa was detected 

in the same tissue type and in the graft union. Fomitiporia sp., very represented in 

most of the perennial wood, is nearly absent in the graft union. This tissue contains 

three unique taxa, Psathyrella sp., Lophiotrema rubi and Lopadostoma quercicola, as 

well as other taxa which are present in higher abundances when compared to the rest 

of the plant, such as Lophiostoma sp. and Massarina sp. The heat trees shown in 

Figures 5.5 and 5.6 give a thorough view of the differently abundant taxa, when 

comparing each tissue type, for taxa with RAs > 0.1% (n= 50). The majority of the 

statistical differences observed, for both ascomycetes and basidiomycetes, concern 

the comparison between the Canes (AW) and all other tissue types of the perennial 

wood. Among the ascomycetes, the AW presents lower abundance of P. 
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chlamydospora and Diatrypaceae, and higher abundance of Aureobasidium pullulans, 

Debaryomyces prosopidis, Diaporthe sp., Capnodiales, depending on the woody tissues 

compared. 

 

 

 

Figure 5.4. Barplots of the relative abundance of the 20 most abundant taxa identified 

to species (s_) or genus (g_) level, found in different sampling areas of the stem and in 

the canes of grapevine. ‘Unassigned’ are taxa identified to a lower taxonomic level 

than genus, ‘Others’ are taxa not included in the 20 most abundant. 
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Figure 5.5. Differential heat tree matrix depicting the change in taxa abundance 

between different tissue groups, for ascomycetes, represented in the dataset (RA > 

0.01%). The size of the individual nodes in the grey cladogram depicts the number of 

taxa identified at that taxonomic level. The smaller cladograms show pairwise 

comparisons between each tissue group: an orange node indicates a higher abundance 

of the taxon in the tissue group stated on the abscissa, than in the tissue group stated 

on the ordinate. A blue node indicates the opposite. Taxa identified as statistically 

differently represented, according to the Wilcoxon test, are tagged with a black star. 
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Figure 5.6. Differential heat tree matrix depicting the change in taxa abundance 

between different tissue groups, for basidiomycetes, represented in the dataset (RA > 

0.01%). The size of the individual nodes in the grey cladogram depicts the number of 

taxa identified at that taxonomic level. The smaller cladograms show pairwise 

comparisons between each tissue group: an orange node indicates a higher abundance 

of the taxon in the tissue group stated on the abscissa, than in the tissue group stated 

on the ordinate. A blue node indicates the opposite. Taxa identified as statistically 

differently represented, according to the Wilcoxon test, are tagged with a black star. 
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5.3.5 Mycobiome and foliar symptoms 

Alpha and beta diversity 

The examination of the mycobiome of the wood in the proximity of the canopy that 

exhibited foliar symptoms of esca revealed no significant differences in term of 

diversity (H’) and evenness (J’), when compared with the fungal communities in the 

wood in proximity of non-symptomatic canopy, both in symptomatic or asymptomatic 

vines (p > 0.05; Table 5.2). The same results were obtained when comparing the 

mycobiome of the annual wood (canes) presenting foliar symptoms or non-

symptomatic leaves, in both symptomatic and asymptomatic plants. The Jaccard 

indexes, when plotted in a NMDS matrix, reveal overlapping communities with a very 

similar between-sample variability, suggesting an overall similarity in beta diversity. In 

fact, the PERMANOVA analysis revealed no statistical differences among the three 

tissue groups in both perennial wood (p = 0.067) and annual wood (p = 0.429). 

Boxplots of the diversity indexes and NMDS of beta dispersion are available in the 

supplementary materials (Figures S5.9 and S5.10). 

 

Mycobiome composition and differentially represented taxa 

The mycobiome of the perennial wood in proximity of symptomatic or non-

symptomatic canopy is characterized by high abundances of P. chlamydospora, 

Fomitiporia sp. and Debaryomyces prosopidis (Figure 5.7). The most frequent taxa of 

known GTD-associated pathogens are presented in Table 5.3. 

The MetacodeR analysis revealed no statistical differences among taxa for their 

differential abundance in the three tissue groups compared in perennial wood and in 

annual wood. Nevertheless, trends of change are present for some taxa, and they are 

shown in the heat trees in Figure 5.8.  

 

The perennial wood in proximity of non-symptomatic canopy in non-symptomatic 

plants presents higher abundances of Ramularia sp., Cladosporium spp., Alternaria sp., 

Debaryomyces sp., Cryptococcus sp. and, to a lower extent, P. chlamydospora; while 

Fomitiporia spp. is under-represented, when compared with the wood near 

symptomatic canopy.  
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When comparing the PW in proximity of non-symptomatic and symptomatic canopy, 

both collected from a symptomatic vine, similar trends are observed. In fact, 

Ramularia sp., members of the Pleosporales and Aureobasidium pullulans are over-

represented in the former, along with a minor over-representation of the other taxa 

previously mentioned. Also, in this case a trend of underrepresentation is observed for 

Fomitiporia spp.  

Some differences are also observed when comparing the PW near asymptomatic 

canopy coming from either asymptomatic or symptomatic plants. In the former we 

observe an over-representation of Alternaria sp., Debaryomyces sp. and Cryptococcus 

spp., and an under-representation of Aureobasidium pullulans and Anthostoma sp. 

 

Annual wood communities are characterized by similar relative abundances, among 

the most abundant taxa, for all three groups analyzed. Several trends of variation are 

shown in Figure 5.8, involving primarily genera Malassezia, Cryptococcus, Acremonium 

and Diaporthe. 
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Table 5.3. Relative abundances of genera or species of fungi known to be involved in 

GTDs, encountered in the perennial wood (PW) or annual wood (AW), relative to 

objective (3). Three groups of wood were examined, namely the PW in proximity of 

symptomatic canopy (SYM); asymptomatic canopy, but in vines that presented foliar 

symptoms (ASYM-SYM); asymptomatic canopy, in vines that did not present foliar 

symptoms (ASYM). The same groups were examined in AW, namely canes with 

manifested foliar symptoms (SYM); asymptomatic canes, but in vines that presented 

symptomatic canopy (ASYM-SYM); asymptomatic canes, in vines that did not present 

symptomatic canopy (ASYM). Taxa listed are found in RA > 0.01% of the total dataset, 

other known wood pathogens (RA < 0.01%) are not included. 

 

 

*genus Anthostoma has been associated to pathogenicity in grapevine wood, but not A. 

gastrinum, being this the first report of this species in grapevine wood. The RAs of this taxon 

were not calculated in the Total(s). 

Genus/Species 
Pathogens’ RA in PW Pathogens’ RA in AW 

SYM ASYM-SYM ASYM SYM ASYM-SYM ASYM 

Ascomycetes       

Anthostoma gastrinum* 1.3 0.7 - - - - 

Diaporthe sp. - - <0.1 0.6 <0.1 1.2 

Eutypa lata 0.2 0.1 <0.1 - - - 

Eutypa leptoplaca 0.7 3.7 <0.1 - - - 

Neofusicoccum parvum 0.1 - - - - - 

Neofusicoccum australe    - 0.2 - 

Phaeomoniella chlamydospora 21.8 50.1 43.1 3.5 3.4 4.9 

       

Basidiomycetes       

Fomitiporia sp. 34.9 24.1 7.7 - - - 

Fomitiporia mediterranea 0.9 <0.1 0.1 - - - 

       

Total Ascomycetes 22.7 53.9 43.1 4.1 3.6 6.1 

Total Basidiomycetes 35.8 24.1 7.8 - - - 

TOTAL 58.5 78.0 50.9 4.1 3.6 6.1 
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Figure 5.7. Barplots of the relative abundance of the 20 most abundant taxa identified to species (s_), genus (g_) or family (f_) level. ‘Unassigned’ are taxa identified to a lower taxonomic level 
than family. ‘Others’ are taxa not included in the 20 most abundant. (Left) Communities found in the PW in proximity of symptomatic canopy (‘Symptomatic_arm’) or of asymptomatic canopy, 
either in symptomatic plants (‘Asymptomatic_arm symptomatic_plant’) or in asymptomatic plants (‘Asymptomatic_arm asymptomatic_plant’). (Right) Communities found in the canes with 
manifested foliar symptoms (‘Symptomatic_cane’) or asymptomatic, but coming from symptomatic (‘Asymptomatic_cane symptomatic_plant’) or asymptomatic plants (‘Asymptomatic_cane 
asymptomatic_plant’). 
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Figure 5.8. Differential heat tree matrix depicting the change in species abundance between different tissue groups, represented in the dataset 

with a (RA > 0.01%). The size of the individual nodes in the grey cladogram depicts the number of taxa identified at that taxonomic level. The 

smaller cladograms show pairwise comparisons between each tissue group, with the colour illustrating the log2 fold change: a red node 

indicates a higher abundance of the taxon in the tissue group stated on the abscissa, than in the tissue group stated on the ordinate. A blue 

node indicates the opposite. 
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5.4 Discussion 

 

5.4.1 Characterization of the mycobiomes in PW and AW 

The diversity of the fungal communities living in the stem of woody plants, 

characterized by NGS approaches, is largely unknown. Research performed over the 

past decades on the grapevine mycobiome, using both culture-dependent and 

independent approaches, revealed over 900 fungal taxa (Jayawardena et al., 2018).  

The richness of the wood mycobiome in esca infected vineyards was estimated to be 

88 taxa in Montpellier, France (Travadon et al., 2016); 85 species in Bordeaux, France, 

from 108 single strand conformation polymorphism (SSCP) profiles (Bruez et al., 2014); 

and 150 operational taxonomic units (OTUs) in Switzerland (Hofstetter et al., 2012). 

This study, the first using a NGS approach, reveals an even greater richness (289 taxa), 

adding numerous fungi to the known list of 900+ known taxa. Several factors may play 

a role in shaping the fungal community composition, such as location, cultivar and age 

of the plants (Dissanayake et al., 2018; Travadon et al., 2016). This is the primary 

reason why we expect that using NGS to assess the diversity of the wood mycobiome 

in other vineyards will considerably increase the number of fungal species found in 

association with grapevine wood. 

Interestingly, 239 out of the 289 taxa (80%) are rare taxa. The ecology of several of 

them is known (Jayawardena et al., 2018), while that of several others needs to be 

assessed, nevertheless the extent to which they contribute to the grapevine-

mycobiome and fungus-fungus interactions remains to be elucidated. Grapevines 

perennial wood seems to function as a reservoir of fungal diversity, where species that 

are found in minor abundances may thrive under specific environmental conditions 

(e.g. extreme weather conditions, mechanical injuries), leading to positive or negative 

effects for the plant’s wellbeing.  

Unsurprisingly, within this massive richness, numerous fungi associated with GTDs 

were identified, both as frequent and rare taxa. This agrees with previous reports 

showing that esca-affected plants may host numerous other wood pathogens 

(Edwards and Pascoe, 2004; Rumbos and Rumbou, 2001). However, Phaeoacremonium 

spp., a genus of tracheomycotic fungi often involved in esca-associated syndromes 
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(Mostert et al., 2006), was not detected. The vineyard under study, as well as other 

esca-symptomatic fields examined in previous works (Bruez et al., 2014; Hofstetter et 

al., 2012; Travadon et al., 2016), are dominated by wood pathogens (e.g. P. 

chlamydospora or Botryosphaeriaceae), and the presence of decay agents was 

confirmed in all studies. On the other hand, the wood mycobiome of healthy 

vineyards, characterized by other authors, is dominated by endophytes and 

occasionally saprobes, some of which hold potential for biological control of wood 

pathogens, with genera Trichoderma, Aureobasidium, Acremonium, Cladosporium, 

Alternaria and Epicoccum being predominant (Dissanayake et al., 2018; González and 

Tello, 2011; Pancher et al., 2012). Despite the fact that wood pathogens were 

encountered, in minor abundance, also in healthy vineyards (González and Tello, 2011; 

Pancher et al., 2012), decay agents were not reported. Unfortunately, previous studies 

did not report data on rare taxa, therefore it is not possible to establish if other wood 

pathogens – including decay agents – were present but unable to thrive (e.g. 

antagonistic interactions with other fungi, strong plant defenses) or if they were 

completely absent.   

The differences observed between PW and AW (e.g. alpha diversity, beta dispersion, 

taxa composition and abundance), some of which have also been observed in a 

previous study in grapevines (Hofstetter et al., 2012) and other plants (Qi et al., 2012), 

can be due to two main factors. First factor is the time that fungi had to colonize the 

perennial wood (up to 19 years in the present study), which is also subjected to yearly 

pruning, leaving wounds that are the optimal entry point for colonizers. The annual 

wood had approximately 5 months of age from bud-burst to sampling and no 

wounding occurred in the shoots (e.g. summer pruning). A second factor that explains 

these differences is the tissue-specificity, as considerable anatomical, biochemical and 

physiological differences characterize perennial wood and annual wood, which may 

prevent some fungi, such as decay agents, from colonizing the latter. In fact, the 

absence of decay agents in annual wood (e.g. Fomitiporia sp., Inonotus hispidus, 

Fomitiporella sp.) observed in this study, and also reported in canes and nursery 

propagation material in other studies (Casieri et al., 2009; Halleen et al., 2003; 

Hofstetter et al., 2012; Rumbos and Rumbou, 2001), suggests that the infection by 

these pathogens occurs exclusively in older wood and under field conditions. 
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A brief introduction of the five genera identified for the first time in grapevine’s wood 

follows. 

Debaryomyces. Members of the genus Debaryomyces (Saccharomycetales, 

Saccharomycetaceae) are yeast-like ascomycetes found in several ecological niches. 

There are 93 species in the genus, with D. hansenii being the most widely studied. D. 

hansenii has been isolated from shoots of Sequoia sempervirens and from the soil 

under the tree (Middelhoven, 2003), as well as from white and brown rot of several 

woody species (González et al., 1989). Debaryomyces sp. was also detected in slime 

fluxes of Prosopis juliflora, a deciduous woody plant, as well as in insects associated 

with it (Drosophila carbonaria and Aulacigaster leucopeza; Ganter et al., 1986). 

Molecular analysis identified some of these strains as a new species, D. prosopidis 

(Phaff et al., 1998), which is the only record of this organism in literature. Concerning 

the vineyard, Debaryomyces sp. has been identified on grape berries (Jara et al., 2016) 

and during wine fermentation (Varela and Borneman, 2017). 

Trematosphaeria. Members of the genus Trematosphaeria (Pleosporales, 

Pleomassariaceae) are saprotrophs or hemibiotrophs of terrestrial woody plants, with 

some exceptions reported from freshwater or marine habitats (Tanaka et al., 2005). T. 

pertusa, from  this study, is known to grow on the surface of decaying terrestrial wood 

(Suetrong et al., 2011), however, it has also been retrieved from wood of Fagus 

sylvatica and Pinus sylvestris submerged in a river (Kane et al., 2002). Terrestrial woody 

hosts of T. pertusa include also Fraxinus excelsior, Fagus sp. and Platanus sp. 

Lopadostoma. Members of the genus Lopadostoma (Xylariales, Xylariaceae) are 

ascomycetes currently considered saprotrophs (Anthony et al., 2017). Members of the 

Xylariaceae are typically saprobes, despite some members of this family are 

endophytes and others are plant pathogens (Mehrabi and Hemmati, 2015). To date, 

due to the lack of studies on this topic, the ecology of the genus Lopadostoma remains 

to be fully understood. There are 12 species described in this genus, most of which 

have been isolated from hosts Quercus spp. or Fagus sylvatica (Jaklitsch et al., 2014).  

Biatriospora. The genus Biatriospora (Pleosporales, Biatriosporaceae) contains species 

that have been isolated as endophytes of both terrestrial and marine-associated plants 

(Kolařík et al., 2017), as well as from lichens, as an endolichenic fungus (Zhou et al., 

2016). Known hosts of this genus, in temperate climate, are Ulmus spp. and Acer 
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pseudoplatanus, along with several other hosts from tropical climates (Haňáčková et 

al., 2017; Kolařík et al., 2017). Biatriospora sp. is a source of bioactive compounds 

(heptaketides) with antifungal properties (Zhou et al., 2016) and preliminary studies 

suggest some potential in biological control (Haňáčková et al., 2017). B. mackinnonii, 

from this study, has been isolated from terrestrial plant material and it has also been 

linked with human mycetoma, a skin disease (Ahmed et al., 2014; Kolařík et al., 2017).  

Malassezia. Members of the genus Malassezia (Malasezziales, Malasezziaceae) are 

yeast or yeast-like basidiomycetes isolated from numerous niches.  Fourteen species 

belong to this genus and most of them are obligatory lipophiles (Sommer et al., 2015). 

M. restricta, from this study, has been identified as endophyte of both woody and 

herbaceous plants (e.g. Eucalyptus sp., Populus deltoids, Spiranthes spiralis, Solanum 

tuberosum) as well as found on orchid roots, and in soil (Abdelfattah et al., 2016; 

Connell and Staudigel, 2013; Paulo et al., 2017). 

 

It is important to mention the genera Cryptococcus, Angustimassarina and Exophiala, 

found in this study, which have been previously associated once to grapevine’s wood, 

either as saprobes or endophytes, by a culture-independent study (Jayawardena et al., 

2018). Lastly, species of Ramularia have been isolated from leaves (both as epiphytes 

and endophytes) of several hosts, including Platanus sp., Prunus cerasus and Vitis 

vinifera (Bakhshi and Arzanlou, 2017), although never in association with wood. 

 

Among the genera and species that were found associated with grapevines for the first 

time in this study, some have previously been detected in the endosphere or 

phyllosphere of other woody plants that were found in the proximities of the vineyard 

used in the present study (Table S5.4). For example, Lopadostoma spp. and 

Anthostoma gastrinum were reported in Quercus (Haynes, 2016; Jaklitsch et al., 2014), 

Rhodotorula mucilaginosa and Trematosphaeria pertusa in Fraxinus (Haňáčková et al., 

2017; Suetrong et al., 2011), and Malassezia restricta in Eucalyptus (Paulo et al., 2017). 

This suggests that the fungi present in the endosphere and phyllosphere of the flora in 

proximity of a vineyard might influence the composition of the mycobiome of 

grapevines wood, acting as a reservoir of multi-host fungi, with wind, rain and insects 

being possible vectors for mycobiome exchange.  
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5.4.2 Spatial distribution of the fungal communities 

The concept of spatial distribution and tissue specificity in woody and herbaceous 

plants is not new in microbial ecology (Kovalchuk et al., 2018; Paulo et al., 2017; Singh 

et al., 2017; Wearn et al., 2012).  However, studies that investigated the spatial 

distribution of fungal communities that colonize different areas or tissues in the wood 

of adult grapevines are scarce (Bruez et al., 2014; Travadon et al., 2016), and none of 

them used NGS approaches. When examining the relative abundances of identified 

taxa with NGS, it is important to remember that the ITS marker, our target amplicon, 

can be found in multiple copies in the genome of fungi and the number of copies may 

vary considerably from species to species (Schoch and Seifert, 2012), which inherently 

leave fungal relative distributions with great uncertainties. 

From a qualitative point of view, the communities of various areas in PW shared 

numerous taxa, overall in agreement with the findings of Bruez et al. (2014), although 

some tissue types were more variable than others. Also, considerable differences are 

evident from a quantitative point of view. High variability was observed among 

individual plants, as already noted in grapevines (Travadon et al., 2013).  

The graft union and the wood below the spurs host unique taxa or taxa that are found 

only in low percentages (RA < 0.1%; Table 5.1) in other parts of the plant. Supposedly, 

the root system (in this study Vitis berlandieri x V. rupestris), whose endosphere is 

influenced by the soil microbiome (Zarraonaindia et al., 2015) and by the rootstock 

used in the propagation process, harbor unique fungi that have a limited capacity of 

colonizing the stem of V. vinifera. Interestingly, Fomitiporia sp., a species that is well 

represented in all PW tissues (8.9% < RA < 22.9%), is nearly absent in the graft union 

(0.6%; Figure 5.4). Artificial inoculations of F. punctata in rootstock Kober 5BB (V. 

berlandieri x V. riparia) led to low re-isolation percentages of this pathogen (8% of 

inoculated plants; Sparapano et al., 2000), and we are not aware of any other 

literature that describes the presence of Fomitiporia sp. in the root system of naturally 

infected vines.  

The spur tissue is located in proximity of pruning wounds, which are considered the 

main entry point of GTDs-associated fungal pathogens (Bertsch et al., 2013). Through 

this woody tissue some colonizers successfully spread throughout the cordon and 

trunk (e.g. P. chlamydospora or Fomitiporia sp.), while others may be restrained by the 
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antagonistic interactions with the resident mycobiome and/or plant defenses (e.g. 

Eutypa spp., Clonostachys rosea, Acremonium sp.; Table 5.1). 

The remaining tissues, namely the trunk, upper trunk and arm points, do not differ by 

any of the parameters measured in this study (e.g. alpha and beta diversity, 

MetacodeR; Figures 5.2, 5.3, 5.5 and 5.6), where unique taxa among the most 

represented fungi are nearly absent (Table 5.1), and relative abundances differ 

primarily in the representation of P. chlamydospora (Figure 5.4). 

The results of this study show that the wood mycobiome of grapevines may vary and, 

in order to have a representative understanding of the diversity and abundance of the 

fungal communities, multiple sampling areas are recommended. We propose four 

samples per plant. The first two are the graft union and the wood below one spur, 

where some taxa are uniquely represented and abundances vary considerably; the 

third is any point of the trunk or arm; and the forth is annual wood.  

 

5.4.3 Fungal communities and foliar symptomatology 

The outcome of the statistical analyses of the mycobiome of both perennial wood and 

annual wood highlight that the fungal communities were not affected by the 

manifestation of foliar symptoms, or vice versa. The manifestation of “tiger stipes” 

foliar symptoms, always associated with an advanced stage of infection by 

tracheomycotic pathogens, is in large part cryptic due to its discontinuity and 

unidentified causal agents (Mugnai et al., 1999). Greenhouse and field trials failed to 

reproduce such symptoms with artificial inoculations of Pa. chlamydospora and/or Pm. 

minimum (Zanzotto et al., 2007; Gramaje et al., 2010), except for one study in which 

esca-like foliar symptoms were replicated in a very small percentage of inoculated 

plants (Sparapano et al., 2001). Other microbial ecology studies of the wood from 

foliar-symptomatic and asymptomatic vines showed that there are no differences in 

the fungal community composition, finding similar abundances of wood pathogens 

(Bruez et al., 2014; Hofstetter et al., 2012). Nevertheless, tracheomycotic fungi are 

currently believed to be directly or indirectly responsible for foliar symptoms as they 

are frequently isolated from symptomatic wood (Surico, 2008). The two arguments 

supporting this hypothesis are that the translocation of (1) fungal toxins, (2) 

byproducts of the wood degradation or (3) a combination of both, via xylem sap, from 
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the perennial wood to the leaves, are responsible for the appearance of leaf symptoms 

(Mugnai et al., 1999). While other studies showed that some toxins or culture filtrates 

of tracheomycotic fungi could lead to leaf discoloration and necrosis, solid evidence of 

the replication of the “tiger stripes” pattern is lacking (Abou-Mansour et al., 2004; 

Andolfi et al., 2011; Evidente et al., 2000; Sparapano et al., 2000). No evidence is 

currently available in support of the second hypothesis, namely the role of byproducts 

of wood degradation.  

The results of the present study are, to some extent, in agreement with the findings of 

Hofstetter et al. (2012) and Bruez et al. (2014). In fact, the fungal communities present 

in the PW in proximity of canopy that had exhibited symptoms were overall similar to 

those found in plants with healthy canopies (in symptomatic or asymptomatic plants). 

When considering trends, Pa. chlamydospora is more abundant in the wood near non-

symptomatic canopies, while Fomitiporia sp. is the most represented taxa in the wood 

near symptomatic canopy. This observation suggests a higher wood decay activity, 

which likely leads to a greater presence of byproducts of wood degradation, therefore 

supporting the second hypothesis for foliar symptoms manifestation. Regardless, it 

does not explain the manifestation of foliar symptomatology in grapevines not 

infected by Fomitiporia sp. (Edwards et al., 2001). 

The similarity in the community structure of symptomatic and non-symptomatic canes 

is an additional evidence in support of the current understanding that fungi present in 

AW are not directly linked with the foliar symptomatology. 

Foliar symptoms’ manifestation remains cryptic, however, it is important to note that 

this study, as well as the one by Bruez et al. (2014), analyzed the microbial 

communities of the perennial wood several months after the plant had exhibited foliar 

symptoms. It is not known whether the pathogens abundance in the moment pre-

/during/post-symptomatology vary. In fact, the study by Bruez et al. (2014) revealed 

that alterations in the wood mycobiome may occur in different seasons, therefore 

further research is needed in this direction. However, this may not apply to the annual 

wood, as foliar symptoms were still present, and manifested only two months before 

wood tissue sampling.  
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5.4.4 Further considerations 

In this study, the mycobiome of the canes (AW) is composed principally by endophytes 

and saprobes, with the exception of pathogens P. chlamydospora and Diaporthe sp., 

whose presence did not induce the appearance of wood symptoms. Concerning the 

former, this observation suggests that this fungus may fall along a continuum ‘from 

mutualist to saprophyte or latent pathogen’ (Wearn et al., 2012), as also proposed by 

other authors (Hofstetter et al., 2012; Rumbos and Rumbou, 2001), and whose 

pathogenicity is triggered by external factors.  Interestingly, also Fomitiporia sp. was 

often identified in woody tissue that did not present the typical white rot symptom. 

This fungus may live asymptomatically in wood when found in low abundances, and 

produce white rot when its presence increases considerably. Hypothetically, the wood 

cores showing this symptom (15% of the total) may be the same in which Fomitiporia 

sp. was present in a RA > 35% (17.5%). 

The presence of P. chlamydospora, and that of other wood pathogens, in vineyards 

around the world might be currently blatantly underestimated due to the elusiveness 

of internal symptoms. The Almotivo vineyard (this study) presented an incidence of 

foliar symptoms manifestation of ca. 1%, for three consecutive years, nevertheless, 

100% of the sampled plants were colonized by both P. chlamydospora (in PW and AW) 

and Fomitiporia sp. (in PW). It is already known that foliar symptoms are not a reliable 

parameter to assess the health status of a vineyard (Pollastro et al., 2000), although it 

is the only one currently employed. It is of utmost importance to develop tools that 

allow vine growers to assess the real extent of infections in the wood, and apply 

appropriate control measures.  

 

 

5.5 Conclusion 

The characterization of the grapevine wood mycobiome, using NGS, in a vineyard 

affected by esca proper is an important step that lays the foundations for future 

studies to compare microbial community structures of vineyards affected by esca or 

other GTDs. Some parameters that may influence the mycobiome composition and 

which may be of interest to investigate upon are: the flora surrounding the vineyard, 

the climatic conditions and seasonality, geographical location and year. Moreover, 
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useful comparisons can be made between cultivars and vineyard management 

strategies (e.g. conventional, organic, biodynamic). Eventually, a meta-analysis of the 

mycobiome that takes into account several of these parameters may reveal a pattern 

that could elucidate some of the obscure points that still prevent a full understanding 

of the etiology of this disease complex. 

 

 

5.6 Acknowledgements 

The authors would like to acknowledge João Costa, Inês Valente, David van der Kellen, 

Lúcia Gomes, Elisa Filippi for technical support; Pedro Talhinhas for advises; Professor 

Carlos Lopes for allowing the use of the Almotivo vineyard; Professor José Carlos Costa 

for identifying the flora adjoining the Almotivo vineyard.  

This study was funded by the Horizon 2020 Programme of the European Commission 

within the Marie Skłodowska-Curie Innovative Training Network “MicroWine” (grant 

number 643063 to G. Del Frari, A. Gobbi, L.  Hestbjerg Hansen and R. Boavida Ferreira) 

and by Portuguese national fund FCT Unit funding UID/AGR/04129/2013 (LEAF).  

 

 

5.7 Authors contribution 

GDF: conceived the study, performed field sampling, performed wet-lab work, 

interpreted and discussed the results, wrote the manuscript; AG: performed wet-lab 

work, performed bio-informatics analyses, interpreted the results, wrote the 

manuscript; MRA: performed statistical analyses and data visualization; HO, LHH, RBF: 

supervised the study, reviewed the manuscript. 

 

 

 

 

 

 

 



Wood mycobiome of a vineyard affected by esca 
 

169 
 

5.8 Supplementary material  

 

Table S5.4. Classification of the woody plants encountered in the proximity of the 

vineyard used in the present study.  

 

Phylum Class Order Family Genus Species 

Magnoliophyta Liliopsida Liliales Agavaceae Agave A. americana 

- - - Asphodelaceae Aloe A. arborescens 

- Magnoliopsida Apiales Pittosporaceae Pittosporum P. undulatum 

- - Caryophyllales Cactaceae Opuntia O. ficus-indica * 

- - - - - O. stricta 

- - Fabales Fabaceae Ceratonia C. siliqua 

- - - - Cercis C. siliquastrum 

- - Fagales Fagaceae Quercus Q. rotundifolia 

- - Lamiales Oleaceae Fraxinus F. angustifolia 

- - - - - F. australis * 

- - - - Olea O. silvestrys * 

- - - - Phillyrea P. latifolia * 

- - - - - P. media * 

- - Myrtales Myrtaceae Eucalyptus E. camaldulensis 

- - - - - E. globulus 

- - Proteales Platanaceae Platanus P. occidentalis 

- - Rhamnales Rhamnaceae Rhamnus R. alaternus 

- - Rosales Rosaceae Eriobotrya E. japonica 

- - - - Prunus P. dulcis 

- - - - - P. persica 

- - - Moraceae Maclura M. pomifera 

- - Urticales Ulmaceae Celtis C. australis * 

Pinophyta Pinopsida Pinales Cupressaceae Cupressus C. sempervirens 

- - - Pinaceae Pinus P. pinea 

(*) denotes the most abundant species in the proximities of the Almotivo vineyard. 
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Table S5.5. List of taxa identified to genus or species level present in the dataset 

including all sampling points for all tissue types –objective (1)-. Three groups are 

created to separate taxa present in a relative abundance (RA) greater than 0.1%, 

included between 0.1% and 0.01%, and lower than 0.01%. The taxa with a RA < 0.1% 

are considered rare taxa. Taxa followed by (*) are part of the core mycobiome – shared 

by perennial wood and annual wood –, taxa followed by (†) are unique to annual 

wood, taxa not followed by any symbol are unique to perennial wood. 

 

RA > 0.1% (n= 50) 0.01% < RA < 0.1% (n= 146) 
(continues) 

Wallemia muriae * 

Acremonium sp. Cyphellophora sp. Xanthoria sp. 

Acremonium alternatum * Cystobasidium pinicola Xylodon sambuci 

Alternaria sp. * Cystobasidium sp. Zymoseptoria sp. 

Angustimassarina acerina Cystofilobasidium capitatum RA < 0.01% (n= 93) 

Anthostoma gastrinum Cystofilobasidium macerans Acremonium fusidioides 

Aureobasidium pullulans * Devriesia pseudoamericana * Agaricus blazei 

Biatriospora mackinnonii Devriesia sp. Alternaria brassicae 

Candida friedrichii * Dioszegia hungarica Alternaria eureka 

Capronia coronata Erythrobasidium hasegawianum Alternaria metachromatica 

Cladosporium sp. * Eucasphaeria capensis * Apiotrichum domesticum 

Clonostachys rosea Eutypa flavovirens Arthrinium sp. 

Colletotrichum sp. * Eutypella citricola Arthrobotrys superba 

Cryptococcus sp. * Exidia japonica Ascochyta medicaginicola 

Cryptococcus heimaeyensis Exobasidium sp. † Aspergillus amstelodami 

Cryptococcus victoriae * Exophiala oligosperma Aspergillus ochraceus 

Debaryomyces sp. * Fellomyces sp. Beauveria bassiana 

Debaryomyces prosopidis * Fomitiporella sp. Bjerkandera adusta 

Diaporthe sp. * Funneliformis geosporum Candida etchellsii 

Eutypa lata Fusarium poae Candida mycetangii 

Eutypa leptoplaca Fusarium solani Candida zeylanoides 

Exophiala sp. Ganoderma australe Capronia pulcherrima 

Exophiala xenobiotica Ganoderma lucidum † Catenulostroma hermanusense 

Filobasidium globisporum Ganoderma resinaceum Cladosporium salinae 

Filobasidium magnum * Gibellulopsis chrysanthemi Colacogloea sp. 

Fomitiporia sp. Holtermanniella takashimae Cryptococcus aureus 

Fomitiporia mediterranea Hyphodontia alutaria Cryptosphaeria subcutanea 
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RA > 0.1% (n= 50) (continues) 0.01% < RA < 0.1% (n= 146) 
(continues) 

RA < 0.01% (n= 93) (continues) 

Fusarium sp. * Hyphodontia radula * Cryptovalsa ampelina 

Glomerella acutata * Knufia epidermidis Curvularia sp. 

Guehomyces pullulans Knufia perforans Curvularia tsudae 

Inonotus hispidus Laetiporus sulphureus Cyphellophora europaea 

Lopadostoma meridionale Leprocaulon sp. † Cyphellophora reptans 

Lopadostoma quercicola Meira nashicola * Cystofilobasidium infirmominiatum 

Lophiostoma cynaroidis Microdiplodia sp. Cytospora sp. 

Lophiostoma sp. Minimedusa polysp.ora Debaryomyces mycophilus 

Lophiotrema rubi Mortierella sp. Dioszegia zsoltii var. yunnanensis 

Malassezia globosa * Mortierella minutissima Diplodia pseudoseriata 

Malassezia restricta * Mrakia sp. Engyodontium album 

Massarina sp. Mucor sp. Epicoccum pimprinum † 

Meyerozyma guilliermondii * Mycena metata Erysiphe necator 

Mycosphaerella tassiana * Naganishia albidosimilis Erythrobasidium elongatum 

Penicillium sp. * Neodevriesia capensis Erythrobasidium sp. 

Peniophora sp. * Neoerysiphe galeopsidis Exophiala bergeri 

Phaeomoniella chlamydospora * Neofusicoccum sp. * Fellomyces penicillatus 

Psathyrella sp. Neofusicoccum parvum Fellomyces polyborus 

Ramularia sp. * Neofusicoccum australe * Filobasidium wieringae 

Rhinocladiella sp. Neonectria sp. Fuscoporia ferruginosa 

Rhodotorula mucilaginosa * Occultifur sp. Gymnopus barbipes 

Sporidiobolus sp. Orbilia sp. Hannaella sp. 

Trematosphaeria pertusa Papiliotrema flavescens Hanseniaspora sp. † 

Vishniacozyma carnescens Paraconiothyrium sp. * Heterobasidion irregulare † 

 Paraphaeosphaeria parmeliae Hyphoderma nudicephalum 

0.01% < RA < 0.1% (n= 146) Penicillium citreonigrum Ilyonectria liriodendri 

Absidia sp. Peniophorella pubera * Itersonilia pannonica † 

Acremonium brunnescens Petriella sp. Knufia tsunedae 

Annulohypoxylon sp. Phacidiella eucalypti Kondoa aeria 

Apiotrichum sp. Phaeomoniella sp. Kurtzmanomyces sp. 

Articulospora sp. Phallus impudicus Lachancea thermotolerans 

Ascobolus sp. Phanerochaete sp. Lycoperdon ericaeum 

Aspergillus sp. Phialemoniopsis ocularis Magnaporthe grisea 

Aspergillus conicus Phialophora cyclaminis Malassezia sp. * 

Aspergillus penicillioides * Phialophora verrucosa Malassezia sympodialis 

Aspergillus proliferans Physcia sp. Mariannaea superimposita 
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0.01% < RA < 0.1% (n= 146) 
(continues) 

0.01% < RA < 0.1% (n= 146) 
(continues) 

RA < 0.01% (n= 93) (continues) 

Bensingtonia sp. Pleospora fallens Mollisia cinerea 

Bipolaris sp. Podospora sp. Monographella cucumerina 

Blumeria graminis Pyrenochaeta sp. Monographella nivalis 

Boeremia exigua Pyrenochaeta keratinophila Mortierella alpina 

Buckleyzyma sp. Pyrenochaeta unguis-hominis Mucor hiemalis 

Caloplaca obscurella Pyrenophora tritici-repentis Mucor saturninus 

Candida sp. Ramicandelaber sp. Naganishia albida 

Candida palmioleophila Ramichloridium cucurbitae Naganishia randhawae 

Candida parapsilosis Rhizomucor pusillus Neodevriesia simplex 

Candida sake Rhizopus microsp.orus Occultifur externus 

Candida tropicalis * Rhodotorula sp. Papiliotrema pseudoalba 

Candida orthopsilosis Rhodotorula graminis Paraphoma fimeti 

Capnodium sp. Rhodotorula nothofagi Parasola conopilus 

Capronia sp. Rhodotorula diobovata Periconia pseudobyssoides 

Cenococcum sp. Saccharomyces cerevisiae Periconia sp. 

Ceratobasidium cornigerum Sakaguchia dacryoidea Phialemoniopsis curvata 

Ceratobasidium sp. Sarcoporia sp. Phlebia acerina 

Circinotrichum maculiforme * Sarocladium subulatum * Phlebiopsis gigantea † 

Citeromyces matritensis Scheffersomyces spartinae Pseudocercospora sp. 

Cladophialophora chaetospira Schizophyllum commune Ramularia stellenboschensis † 

Cladophialophora sp. Sclerostagonospora sp. Rhodotorula ingeniosa 

Cladosporium delicatulum * Scytalidium sp. Rhodotorula terpenoidalis 

Cladosporium fusiforme Sistotremastrum sp. * Rhodotorula toruloides 

Cladosporium sphaerospermum * Solicoccozyma terrea Sclerostagonospora cycadis 

Clathrus ruber Sporobolomyces oryzicola Scopuloides rimosa 

Clitopilus sp. Stemphylium sp. Setophaeosphaeria badalingensis 

Colletotrichum acerbum * Tetracladium sp. Sistotremastrum guttuliferum 

Colletotrichum gloeosporioides * Torulaspora delbrueckii Sterigmatomyces halophilus 

Coprinellus micaceus Trametes hirsuta Taphrina deformans 

Cryptococcus aerius Trichaptum abietinum Trametes versicolor 

Cryptococcus frias Trichoderma sp. * Trichosporon asahii 

Cryptococcus uniguttulatus Trichoderma harzianum † Uncispora sinensis 

Cutaneotrichosporon sp. Veronaea compacta Valsaria insitiva 

Cutaneotrichosporon cyanovorans Verticillium sp. * Verrucocladosporium dirinae 

Cyberlindnera jadinii Wallemia sp. Yamadazyma triangularis 
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Table S5.6. One-way ANOVA with post-hoc Tukye’s HSD of woody tissue types to 

assess differences in the Alpha diversity (Shannon index, Pielou’s evenness) of fungal 

communities. For each row, column (A) is significantly different from column (B). 

 

Index A B P value 

Shannon Canes Spur_1 0.023 

 Canes Spur_2 0.027 

 Upper_trunk Spur_1 0.024 

 Upper_trunk Spur_2 0.028 

Pielou's evenness Canes Spur_1 0.005 

 Canes Spur_2 0.016 

 Graft_Union Spur_1 0.010 

 Graft_Union Spur_2 0.029 

 Trunk Spur_1 0.034 

 Upper_trunk Spur_1 0.006 

 Upper_trunk Spur_2 0.020 
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Figure S5.9. Box plots of diversity indexes (Shannon, Pielou’s evenness) of the fungal 

communities present in (A) perennial wood or (B) annual wood. (A) Communities 

found in the wood in proximity of symptomatic canopy (‘Symptomatic_arm’) or of 

asymptomatic canopy, either in symptomatic plants (‘Asymptomatic _arm 

symptomatic_plant’) or in asymptomatic plants (‘Asymptomatic_arm 

asymptomatic_plant’). (B) Communities found in the cane with manifested foliar 

symptoms (‘Symptomatic_cane’) or asymptomatic, but coming from symptomatic 

plants (‘Asymptomatic_cane symptomatic_plant’) or asymptomatic plants 

(‘Asymptomatic_cane asymptomatic_plant’). 
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Figure S5.10. Non-metric multidimensional scaling (NMDS) plots based on Jaccard’s 

index. Fungal communities present in different tissue types in grapevine. (A) 

Communities found in the wood in proximity of symptomatic canopy 

(‘Symptomatic_arm’) or of asymptomatic canopy, either in symptomatic plants 

(‘Asymptomatic _arm symptomatic_plant’) or in asymptomatic plants 

(‘Asymptomatic_arm asymptomatic_plant’). (B) Communities found in the cane with 

manifested foliar symptoms (‘Symptomatic_cane’) or asymptomatic, but coming from 

symptomatic plants (‘Asymptomatic_cane symptomatic_plant’) or asymptomatic 

plants (‘Asymptomatic_cane asymptomatic_plant’). Ellipses illustrate the multivariate 

normal distribution of samples within the same tissue group. 
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6. Final remarks 

 

Over the last 20 years, the interest in grapevine trunk diseases has been steadily 

increasing. Esca is perhaps the most complex, among GTDs, and several aspects of its 

etiology remain to be fully elucidated. Reports on the influence of climate and weather 

conditions on the manifestation of foliar symptoms often contradict each other 

(Calzarano et al., 2018; Serra et al., 2018), and weak correlations were found when 

comparing pruning and training systems (Travadon et al., 2016; Lecomte et al., 2018). 

The much declared ‘trend of increase’ in the disease’s incidence is not uniformly 

reported in literature (Reisenzein et al., 2000; Redondo et al., 2001; Bruez et al., 2013; 

Guérin-Dubrana et al., 2013; Li et al., 2017; Calzarano et al., 2018), and the causal 

agent(s) behind the foliar symptomatology manifestation are not unanimously agreed 

upon. We currently lack a fast and reliable mean for assessing the extent of field 

infections (Pollastro et al., 2000), as symptoms are mostly hidden in the wood, as well 

as detection methods for infected plant material in nurseries. Some authors even put 

in doubt the very role of tracheomycotic fungi in the esca symptomatology expression 

(Hofstetter et al., 2012), especially, but not exclusively, in light of the presence of esca-

associated fungi in asymptomatic wood (Rumbos and Rumbou, 2001).  

Trials conducted over the last 15 years, aiming to find effective control strategies to 

deal with infected vines or prevent infections from occurring, did not lead to the 

formulation of a solid strategy (Mondello et al., 2017). This may not be necessarily due 

to the lack of effectiveness of treatments, but instead due to the lack of reliable 

parameters to assess their efficacy. For example, endotherapy and foliar spray 

treatments have been mostly evaluated by the reduction of foliar symptoms 

manifestation, however, the link between this symptom and the action of pathogens in 

the wood remains unclear. Despite it is true that foliar symptomatic plants correspond 

to an advanced stage of infection in the wood, plants with a similar wood 

symptomatology may not exhibit foliar symptoms. Moreover, the identification of 

treatments that prevent the manifestation of foliar symptoms, such as the case of 

sodium arsenite (Fontaine et al., 2016) or the more recent mixture developed by 

Calzarano and Di Marco (2018), does not necessarily mean that the fungi in the wood 

have been effectively controlled.  
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For this reason, the first three lines of research of this PhD project focused on 

assessing the efficacy of treatments by using as parameter the reduction in 

presence/abundance of pathogens, rather than foliar symptomatology. By controlling 

pathogens in the wood, we are able to prevent, or at least delay, their negative effects 

on the plants physiology and microbial ecology, on the hydraulic systems of the stem 

and, as a consequence, on the manifestation of foliar symptoms and apoplexy.  

Each of the three tested strategies proved effective against early infections by 

Phaeomoniella chlamydospora and/or Phaeoacremonium minium, under greenhouse 

conditions. In biological control, both Epicoccum layuense E24 and the skopobiota 

were capable of reducing the wood symptoms expression and of antagonizing the 

wood colonization success of P. chlamydospora and/or P. minimum. The endotherapy 

with silver nanoparticle, hydrogen peroxide and glutaraldehyde was particularly 

effective against early infections by P. chlamydospora. In addition, this pathogen was 

greatly inhibited when plants were sprayed with Blad-containing oligomer. Despite 

these three control strategies were effective when applied alone, their joint action 

may produce enhanced results. For example, a young grapevine with an established 

infection may be treated with endotherapy, strongly decreasing the pathogens 

abundance in the wood. Subsequently, the plant may be inoculated with E. layuense 

E24 or a skopobiota, antagonizing the pathogen from the re-colonization of the wood. 

Meanwhile, vines can be sprayed with Blad-containing oligomer, another mean for 

weakening P. chlamydospora’s wood colonization success, while also being effective 

against other common grapevine pathogens.  

The study on the wood mycobiome of adult grapevines, in a vineyard with history of 

esca, contributed to the ecological understanding of the fungal communities that may 

play a role in the whole disease complex. The richness of taxa is considerably greater 

than what previously believed, and the differences observed in the spatial distribution 

of fungal communities are crucial information for planning future studies. These 

results lay the foundation for future investigation on the effect of control strategies on 

the wood mycobiome, whether the aim is to fight GTD-associated pathogens or to 

monitor the effect of treatments on non-target fungi, at community level. 
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The natural continuation of the work pursued during this PhD lies in the optimization 

of tested concentrations of active ingredients, means and timings of treatment 

application, and the investigation in a medium-to-long term perspective. Eventually, 

these ameliorated control strategies may be applied in nurseries and young or 

established vineyards. Here, in conjunction with other control strategies suggested in 

the literature, such as pruning wound protection, nursery sanitation and ‘best 

practices’ in the field, the checkmate on the esca disease complex will take place.  
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