
Diss. ETH No. 12493

Computing Economic Equilibria
and its Application to

InternationalTrade of C02 Permits:

an Agent-Based Approach

Dissertation submitted to the

Swiss Federal Institute of Technology

Zürich, Switzerland

for the degree of

Doktor der Mathematik

presented by

Benno Paul Büeler

Dipl. Math. ETH, Dipl. Ing.-Agr. ETH

born December 13, 1961

Citizen of Schwyz (SZ)

accepted on the recommendation of

Prof. Dr. H.-J. Lüthi, exarainer

Prof. Dr. B. Schips, co-examiner

Prof. Dr. J.-P. Vial, co-examiner

1997



To Anna, Joel

and my Parents



Leer - Vide - Empty



Acknowledgment

I am very grateful to Prof. D. Onigkeit for both supporting my mathematical

studies and encouraging my environmental interests.

Prof. H.-J. Lüthi has my füllest gratitude for the freedom he gave me to do this

work and his generous support in all kind of ways. His critical and fundamental

discussions have decisively improved the work.

I am indebted to Prof. J.-P. Vial and Prof. B. Schips for their thorough and

constructive review of the work.

S. Kypreos deserves the honor of having suggested the core subject of this work;

furthermore, he contributed various regional modeis and data, and carefully re-

viewed the results. I am also obliged to researchers in the Netherlands and Sweden

who supplied me with data.

Finally I thank all the people in the Institute and outside who supported me in

many ways. Specifically, I appreciate the discussions relating to economy I have

had with Jörg Wild, Stefan Felder and Werner Hediger.



Leer - Vide - Empty



Contents

Abbreviations xi

Zusammenfassung xiii

Summary xv

Introduction xvii

1 Economic Equilibrium Problems (EEP) 1

1.1 A world of producers and consumers 2

1.2 Simplification for Utility maximizing agents 5

1.3 Markal-Macro multi-region (MM") 6

1.4 EEP as variational inequality problem (VIP) and other formulations 6

2 Is there a Solution to EEP? 9

2.1 Kakutani's Fixed Point Theorem 10

2.2 Negishi's approach 12

2.3 The path following concept 16

3 Solving EEP using the VIP-approach 21

3.1 Monotonicity reconsidered 22

3.2 Complexity of the VIP-approaches 28

3.3 Monotonicity of market demand 38

4 Solving EEP using the Negishi-approach 45

4.1 Comparing the Negishi- and VIP-view 45

4.2 Two algorithms 47

4.3 Decomposing the Negishi-welfare problem 48

5 Qualitative comparison of the algorithms 61



vi CONTENTS

6 Economic aspects of C02 permits 65

6.1 Emission permits 66

6.2 Energy economy modeis 70

7 Markal-Macro multi-region MM" 73

7.1 Multiregional Markal-Macro (MMmr) with C02-permits 74

7.2 MM' as VIP and Negishi-problem 83

8 Economic results of MM" for three countries 85

A Notation and basic theorems 97

A.l The Karush-Kuhn-Tucker characterization of optima 97

A.2 The Lagrangian dual problem 99

A.3 Differentiability and continuity 100

A.4 An introduction to variational inequality problems 101

B Proving the existence of equilibria using VIPs 105

C Original Markal and Markal-Macro 113

C.l Markal 113

C.2 Markal-Macro (MM) 115

D Existence of an equilibrium for MM" 121

E Implementation of both algorithms 127

E.l VIP-based cutting plane methods (CPM) 127

E.2 Negishi-based methods 131

E.3 Adaptions needed in the regional MM-models 135

F Numerical comparison of the algorithms 137

F.l Almost pseudo-monotonicity of the excess 137

F.2 Analytic center versus center of gravity CPM 140

F.3 Non-conic versus conic ACCPM 141

F.4 <5-Negishi-algorithm versus ACCPM 145

F.5 S- versus i-Negishi-algorithm 146

F.6 Conclusions 148



List of Tables

5.1 Characteristics of different algorithmic concepts 62

8.1 Economic parameters of the regions in MM' 86

8.2 Abbreviations used for the different cases 87

8.3 Initial endowment of C02 permits for the —20 %-scenario 88

8.4 Reference C02 emissions 88

8.5 Benefit of trade without emission limits 89

8.6 Amount of trade without emission limits 90

8.7 Per period versus free permits 93

8.8 Net export of C02 emission permits 94

F.l Differences in the regions of Utopia 141

F.2 ACCPM applied to Utopia 142

F.3 CoGCPM applied to Utopia 143

F.4 ACCPM applied to MM" 145

F.5 The (5-Negishi-algorithm 146

F.6 The i-Negishi-algorithm 147



LIST OF TABLES



List of Figures

3.1 A pseudo-monotone and non-continuous map with a non-convex

Solution set (/,£>)* 23

3.2 e-relaxation cuts 27

3.3 Non-convexity of gp for a monotone VIP 30

3.4 Complexity of a cutting plane algorithm for a pseudo-monotone
VIP 31

3.5 A monotone Operator with diverging ACCPM 32

3.6 Monotonicity of dernand and excess 39

3.7 Slutsky decomposition of demand 41

4.1 Dual relationship between the VIP- and Negishi-approach 46

4.2 Direction and unboundedness 54

4.3 Minimizing the Lagrangian function 58

6.1 Profits from trade and distributional effects due to C02 permits. .
68

7.1 The multiregional Markal-Macro MM" 74

8.1 Undiscounted marginal reduction costs and equilibrium permit

prices 91

8.2 Discounted equilibrium prices 91

8.3 C02 emissions in case of free or 'per period' permits 92

8.4 Undiscounted free permit prices 93

8.5 Decrease of aggregated GNP 95

A.l Characterization of projection 102

A.2 VIP as fixed point problem 103

A.3 Characterization of a Solution to VIP(/, D) for unbounded D.
. .

103



x LIST OF FIGURES

B.2 A non-open K{p) 111

C.l Objects of the Reference Energy System 114

C.2 The model Markal-Macro 116

E.l Scheme of cutting plane methods 128

E.2 The 5-Negishi-algorithm using decomposition 132

F.l Conic versus non-conic ACCPM, 0%-reduction scenario 144

F.2 Conic versus non-conic ACCPM, -20%-reduction scenario 144



Abbreviations

12-RT 12-Region Trade model

ACCPM Analytic Center Cutting Plane Method (cf. Algorithm 2 page 23)
aeeifac autonomous energy efficiency improvement factor (see page 118)
BNL Bruckhaven National Laboratory (USA)
CES Constant Elasticity of Substitution

CGE Computable General Equilibrium
CH Confoederatio Helvetica, i.e. Switzerland

CoGCPM Center of Gravity Cutting Plane Method (cf. Algorithm 2 page 23)
CPM Cutting Plane Method (Algorithm 2 page 23)
CPU Central Processing Unit

EEP Economic Equilibrium Problem (Definition 1.4 page 4)
EP (Nash) Equilibrium Problem (Definition 2.4 page 17)
ETA Energy Technology Assessment model

ETSAP Energy Technology Systems Analysis Project
FPP Fixed Point Problem (see (FPP) page 7)
GAMS General Algebraic Modeling System
GDP Gross Domestic Product

GHG Greenhouse Gas

GNP Gross National Product

IEA International Energy Agency
IIASA International Institute for Applied System Analysis (Austria)
KFA Kernforschungsanstalt Jülich (Germany)
KKT Karush-Kuhn-Tucker conditions (see Section A.l)
LP Linear Programming
Macro Macroeconomic growth model

Markal Market Allocation

MESAP Microcomputer based Energy Sector Analysis and Planning System
MINOS Model Incore Nonlinear Optimization Solver

MM Markal-Macro model

MM" Markal-Macro multi region (see Section 7.1)
MUSS Markal User's Support System
NCP Nonlinear Complementarity Problem

NL The NetherLands

NLP NonLinear Programming
PSI Paul Scherrer Institut (Switzerland)



Xll Abbreviations

QVIP QuasiVariational Inequality Problem (cf. Definition B.l page 105)
RES Reference Energy System

SMEDE Simulation Model for Energy DEmand

SW SWeden

VIP Variational Inequality Problem (Definition 3.1 page 22)
WARP Weak Axiom of Revealed Preferences (Definition 3.13 page 39)



Zusammenfassung

Seit der Postulierung der berühmten 'unsichtbaren Hand' von Adam Smith vor

200 Jahren haben Ökonomen eine ambivalente Haltung gegenüber Wettbewerbs¬

gleichgewichten. Einerseits ist es das grundlegende Konzept der Marktwirtschaft

und intuitiv einfach zugänglich, andererseits stellt dessen formale Handhabung

grosse Probleme. So gelang z.B. erst in den dreissiger Jahren dieses Jahrhun¬

derts ein erster Existenzbeweis von Gleichgewichten für bestimmte Modelle. Aber

auch die algorithmische Handhabung selbst einfacher Modelle erweist sich vielfach

als schwierig und erfordert im allgemeinen ein genaues Verständnis der Modell-

Strukturen.

Von den zahlreichen Möglichkeiten, Wettbewerbsgleichgewichte formal zu be¬

handeln, wird in dieser Arbeit der Fokus auf Agenten und deren Reaktion auf

Preissignale gelegt. Dabei kann ein Agent je nach Situation verschiedenes re¬

präsentieren: ein Konsument, ein Produzent, ein ganzer Wirtschaftssektor, eine

geographische Einheit (Land), usw. Bei gegebenem Preis ist die Reaktion der

Agenten definiert als Netto-Verkauf (Angebot minus Nachfrage, oder Export mi¬

nus Import), was summiert über alle Agenten als Exzessfunktion bezeichnet wird.

Ein Wettbewerbsgleichgewicht mit einem nichtnegativen Gleichgewichtspreis ist

dann gefunden, wenn entweder das Angebot und die Nachfrage übereinstimmen,
oder aber das Angebot grösser als die Nachfrage und zugleich der zugehörige
Preis Null ist.

Motiviert wird die Wahl, Wettbewerbsgleichgewichte auf der Ebene von Exzess¬

funktionen zu betrachten, durch eine Reihe von spezifischen Vorteilen: dazu

zählen die breite Anwendbarkeit auf verschiedenste Gleichgewichtsprobleme, die

einfache Integrierbarkeit bestehender beliebig heterogener Agenten in ein überge¬
ordnetes Gleichgewichtsmodell, oder die offensichtliche Parallelisierungsmöglich-
keit in der Behandlung der einzelnen Agenten. Dabei stellten sich die zwei letzten

Punkte als entscheidend für das in dieser Arbeit konkret betrachtete Energie-
Ökonomie-Modell MM' (Markal-Macro multi-region) dar. Diese Vorteile dürften

auch für viele andere Modelle relevant sein. Allerdings erweist sich als einer

der gravierendsten Nachteile dieser Sichtweise die für einen Konvergenzbeweis
der angewandten Algorithmen im allgemeinen nicht gegebenen Struktur-Voraus¬

setzungen der Exzessfunktion.

Aufgrund der entscheidenden Vorteile werden in dieser Arbeit zwei Heuristiken
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entwickelt, die das Gleichgewichtsproblem basierend auf der Exzessfunktion lösen.

Zum einen ist das ein Schnittebenenverfahien, welches im Rahmen von Va¬

riationsproblemen diskutiert wird, und zum anderen ein Fixpunktverfahren. Ein

Beitrag dieser Arbeit findet sich dabei in der Diskussion der Monotonie der

Exzessfunktion, welche sich als zentral für die Konvergenz des ersten Verfahrens

heraustellt. Weiter wird die Behandlung der Unbeschränktheit der Lagrange-
Funktion in gewissen Fällen untersucht. Diese Unbeschränktheit tritt bei der

Dekomposition des Optimierungsproblemes auf, welches dem Fixpunktverfahren

zugrundeliegt. Als erstes interessantes empirisches Resultat erscheint dabei die

Robustheit des FixpunktVerfahrens, sofern eine spezifische primal-duale Beziehung
zwischen den zwei Verfahren ausgenützt wird.

Um Algorithmen sinnvollerweise einzusetzen muss sichergestellt sein, dass eine

Gleichgewichtslösung überhaupt existiert. In einer vergleichenden Diskussion

werden verschiedene Beweisstrategien mit einigen Verallgemeinerungen und Er¬

gänzungen für die Existenz eines Gleichgewichtes einander gegenübergestellt.
Eine davon wird schliesslich an MM" angewandt.

Der mehr ökonomisch ausgerichtete Teil der Arbeit beginnt mit einem Exkurs

zu Energie-Ökonomie Modellen unter dem Gesichtspunkt von C02 Emissions-

Beschränkungen. Diskussionsbeiträge finden sich hier im Bereich des 'burden-

sharing' und der Implementation von C02 Emissions-Zertifikaten.

Aufbauend auf nationalen Energie-Ökonomie Modellen (Markal-Macro) werden

unterschiedliche Konzepte zur Modellierung von C02 Emissions-Zertifikaten vor¬

gestellt. Diese werden einerseits zur Integration der nationalen Markal-Macro

Modelle im Mehrländermodell MM benutzt. Andererseits werden die Konse¬

quenzen der unterschiedlichen Zertifikats-Modellierung in diesem Kontext auch

analysiert.

Beruhend auf Daten von Schweden, den Niederlanden und der Schweiz wurden die

zwei entwickelten Heuristiken schliesslich an MMmr erfolgreich getestet. Vorbe¬

haltlich der bei Modellrechnungen zu machenden Relativierung der numerischen

Resultate ergeben sich doch einige interessante ökonomische Einsichten. So er¬

scheint der auf das Jahr 2000 diskontierte Preis für solche Zertikate umgerechnet
bei etwa 20 Rappen pro Liter Treibstoff zu liegen, wenn eine 40%-ige Abnahme

der Emissionen bis ins Jahr 2040 vorgegeben wird. Für dieses Szenario liegen die

Verluste des BNP (Brutto-Nationalprodukt) im Bereich von 2% gegenüber einem

Referenz-Szenario ohne Emissionsbeschränkung. Diese Verluste können um etwa

einen Fünftel verringert werden, wenn statt fixen länderweisen Emissions-Be¬

schränkungen handelbare Zertifikate eingeführt werden. Bemerkenswert ist auch

die länderweise unterschiedliche Verteilung der Verluste gemessen am BNP. Da

diese Verteilung der Verluste durch die Erstausstattung mit Zertifikaten direkt

steuerbar ist, können solche Modelle bei der Aushandlung der Erstausstattung
sowie möglicher Transferleistungen eine wichtige Entscheidungshilfe leisten.



Summary

Since Adam Smith postulated the 'invisible hand' 200 years ago, economists

have had an ambivalent position towards competitive economic equilibria. On

the one hand it is the fundamental paradigm of the market economy System

and intuitively easy to understand. On the other hand its formal treatment

poses considerable difficulties. The first proof of existence for certain modeis

was possible only in the 1930's; but the algorithmic tieatment of even simple
modeis has often proved to be hard due to the need of an accurate insight into

the concrete model-structure which can be hard to obtain.

There are various ways to formalize equilibria; in this work equilibria are formal-

ized through the reaction of economic agents to price Signals. Here 'agent' is used

to denote different things, depending on the context: a consumer, a producer,
a whole economic sector, or a geographic unit like a country, etcetera. The 're¬

action' of an agent is defined as the net selling (supply minus demand, export

minus import) which is determined by price. The summing of the reaction of all

agents is called (market) excess.

An equilibrium with non-negative price is found when either supply equals de¬

mand or supply exceeds demand and the corresponding price is zero.

The choice to study equilibria on the level of the excess-function was motivated by
a number of specific advantages including its broad applicability to different eco¬

nomic equilibrium problems, its simphcity of integrating existing and arbitrarily

heterogeneous agents in an overall equilibrium model, and its possibility to treat

agents in parallel. For MM" (Markal-Macro multi-region), the energy-economy

model studied in this work, the last two advantages are of decisive value. A se-

rious disadvantage of this excess-based view is the possible lacking of structural

properties of the excess-function which are required for proving convergence of

related algorithms to equilibria.

The above mentioned advantages, however, necessitated the development of two

main heuristics to solve the equilibrium problem based on the excess-function

approach. The first, the Cutting Plane Method (CPM), is derived from a for-

mulation of the equilibrium problem as a Variational Inequality Problem (VIP).
The second heuristic is a fixed point method.

Contributions to the Solution of equilibrium problems include the mathematical

analysis of monotonu ity of the excess-function, the clarification of the central
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role of monotonicity when applying CPM, and the treatment of unboundedness

of the Lagrangian-function in some cases. This unboundedness appears in the

decomposition of the optimization problem which underlies the fixed point prob¬
lem. Another contribution is the discussion and extension of different strategies
to prove the existence of an equilibrium. One of these strategies is finally applied
toMM1.

One of the study's empirical result is the robustness and convergence of the fixed

point method when a specific dual relationship to the VIP is utilized.

The economically oriented part of this study Starts with a discourse upon energy-

economy modeis from the perspective of C02 emission bounds. Specific attention

is given to bürden sharing and the implementation of C02 emission-permits.

Based on national energy-economy modeis (Markal-Macro), different possibilities
to model C02-permits are developed. First, the permits are used to integrate the

national modeis in the international model MM". Second, the consequences of

the different permit strategies are analyzed.

Using data from Sweden, the Netherlands and Switzerland, the two heuristics

are finally successfully tested. Even though the resulting numbers must be inter-

preted cautiously, some interesting economic trends can be observed. Assuming
a C02 emission scenario which reduces linearly the emission by 40 % from 2000

to 2040, the average permit price is calculated to be 14 US cents per liter of fuel

if discounted back to the year 2000. Furthermore, the GNP-losses are around 2%

compared to a reference case without emission bounds. In our model these losses

can be reduced by one fifth if tradable permits instead of fixed national emission

bounds are introduced. Significant economic differences were observed between

nations. Because the distribution of gains and losses can be influenced directly by
the initial endowment with permits, modeis like MM" can be useful as a decision

support tool when initial endowments or transfer payments are negotiated.



Introduction

This study is motivated by an ecological concern: The rise of global mean temper¬
ature due to Carbon Dioxide emission. It investigates a possible strategy which

could be used to reduce the level of this harmful emission.

C02 is widely recognized today as the Single most influential greenhouse gas

(GHG) emitted by human activities, and is therefor considered to be the main

culprit in the observed rise of global mean temperature. Large sudden changes in

the global climate seem to have happened regularly in prehistoric times and are in

that sense part of the ecological System 'earth'. However, the great complexity of

human society today makes mankind more vulnerable and sensitive economically
and socially to this climatic change, and unfortunately, the less developed the

country is the more it Stands to suffer.

Under these circumstances politicians and decision makers must grapple with a

number of dilemmas; for example, what abatement or mitigation strategies should

be implemented if costs occur today but 'revenues' (avoidance of damage) are

uncertain and might occur in a later date? And further, which of these strategies
are politically viable, cost efficient and effective? What effects may have the

implementation of such strategies on international equity and burden-sharing?

One of the strategies which has recentiy grown in popularity both economically
and politically is tradable C02 emission permits. As a C02 abatement instru-

ment emission permits are effective, cost efficient, and allow direct negotiation of

burden-sharing by means of initial permit endowments.

The focus of this study is to solve a competitive economic equilibrium problem

(EEP) resulting from international trade of C02 permits. The equilibrium prob¬
lem is formalized using modeis representing the national economies called agents.
Schemes which integrate various agents in an Overall equilibrium framework are

therefor investigated. Mathematically, agents are treated as oracles, which, given
a price signal, return the resulting excess of supply minus demand of the goods
traded.

While such an oracle-based perspective is attractive for model-builders who are

free to design any kind of agents in any kind of modeling environment, its math¬

ematical treatment presents difficulties. What mathematical structures can be

exploited to solve such an agent-based equilibrium problern?
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To date, exact methods can be roughly classified into two groups. On the one

hand the fixed point based methods (see [33, 99]) and on the other hand a variety
of methods which are usually based on a reformulation of the equilibrium problem
as a variational inequality problem (VIP) or nonlinear complementarity problem

(NCP), see [47, 81].

While fixed point methods require little mathematical structure to hold, and thus

can in principle solve an equilibrium problem given by a set of arbitrary agents,

their theoretical and practical Performance is not convincing. These weaknesses

are considerably worsened when the evaluation of an agent is costly. The second

group of methods utilize the problem's structure to a larger extend and therefore

exhibit, as a rule, a superior Performance. But, being tailored for specific agent

structures they can not be applied when agents are only given by an excess-

oracle; or, in Harker's words [46], 'CGE-like modeis1, or any numerical approach

to equilibrium computation, suffers from the curse of specificity.'

Taking into account those difficulties, heuristic methods can be attractive. Two

heuristic methods are presented here, a fixed point based and a VIP-based method,

which share a certain dual relationship. Both give convincing Performance in

practice for our specific model and are also applicable to a wide ränge of dif¬

ferent modeis. Importantly, both concepts strongly Support the Integration of

arbitrary agents into an overall equilibrium framework without the requirement

of a Single modeling environment or a reformulation of the agents. In that sense

both concepts can be useful tools in a decision support system where varying

agents can be easily integrated and thereby a sensitivity analysis on the level of

agent-models can be performed. However, while agents' Integration for the VIP-

based approach presents no difficulties, Integration for the fixed point approach

requires decomposition. Decomposition is used here in reverse, for Integration

and not for subdivision, and is crucial for the Integration of agents, without their

reformulation, in the fixed point based approach.

One important virtue of the VIP-based heuristic method is that if the excess-

function is monotone, i.e. fulfills a structural assumption, then the method prov-

ably yields a Solution. And furthermore, as stated by the theory of economics,

monotonicity is likely to hold for economically reasonable agents.

The study Starts with a general, theoretical exposition and moves in the subse-

quent chapters into a more specific discussion of the concrete equilibrium model

'Markal-Macro multi-region' MMmr.

Chapter 1 introduces the basic definitions related to economic equilibrium prob¬
lems and formally links them to MM". Next it formulates a specific VIP as the

first approach for treating equilibrium problems.

Chapter 2 discusses strategies of proving the existence of an equilibrium. One

strategy will be used later to actually prove the existence of an equilibrium Solu¬

tion of MM". Another strategy underlies the second approach for treating EEPs

1
Computable General Equilibrium



called 'conceptual Negishi algorithm'.

Taking up the VIP from Chapter 1, Chapter 3 addresses the notion of monoto¬

nicity, and introduces thereby two algorithms for solving the VIP.

Similarly Chapter 4 builds on Chapter 2; it presents two Negishi-algorithms and

discusses the resulting decomposition problem.
As a conclusion to the previous two chapters a qualitative comparison between the

algorithms is given in Chapter 5. The comparison is extended by two represen-

tative advanced algorithms from the literature for solving equilibrium problems,

thereby clarifying the advantages and disadvantages of the different equilibrium

Solution methods.

This mathematical focus is dropped in Chapter 6 where some economic back-

ground to emission permits and related energy-economy modeis is given.

Chapter 7 is devoted to the construction of MM" and to the analysis of different

aspects of introducing emission permits.

Finally, the results of applying the MMmr-model to data from Sweden, the Nether¬

lands, and Switzerland are presented in Chapter 8.

The appendix discusses some technical background. It Starts in Appendix A with

a brief compilation of the Karush-Kuhn-Tucker (KKT) theory and an introduc¬

tion to VIPs.

Appendix B presents an alternative approach for the proof of the existence of a

Solution for EEPs based on an up-to-date view of VIP.

Appendix C introduces the modeis, Markal and Macro, which appear in the re¬

gional agents of MM-.

The concrete proof of an equilibrium for MM" is given in Appendix D.

Implementation details of the algorithms are presented in Appendix E.

An empirical comparison of the algorithms discussed in this work appears in

Appendix F.

For the mathematically inclined reader Chapters 1-5 together with Appendix B

are of more relevance. Economists may find Chapters 6-8 more rewarding, and

politically oriented readers may want to focus solely on Chapter 8.

A final word on the bürden of notation is in order. In principle the notation

is designed to meet the specific needs of the different sections. The more eco¬

nomically oriented sections use more the specific economic notation, whereas the

mathematical sections obey the notation of corresponding mathematical fields.

As a consequence, the same abbreviation can designate different objects in differ¬

ent sections. Notational differences, however, are always made explicit. Among
the notational Conventions in this work the following should be observed:

(l) Let x be a vector with components x,\ if such a component is itself a vector, a

scalar component is denoted by x,j.; if a; is build up by the components x\,... , xn

we write for the corresponding vector x = (x\, . . . ,xn) and make no notational

difference whether the parts x, are vectors or scalars. Particularly, the usual

Compound, x = (xj,... , x^)T for vectors xt, is simplified to x = (x\,... , xn).

(ii) Vector relations are always meant component-wise, consequently addition and
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subtraction of vectors happen also component-wise.

(iii) Sequences {xn} are both symbolized by curly brackets and a superscript,

e.g. n, omitting the subscript 'n IN'; convergence to a point x is symbolized by
a simple arrow, x" —> x, dropping any 'n —^ oo', there are, however, rare instances

where a superscript has a different meaning, so as in the initial endowment xj
of region r, or in the trivial case of a power, e.g. x2, but all these differences are

clear from the context and do not appear mixed.

(iv) Avoiding the usual mathematical sloppiness, we differentiate between objects
like x and x(p); while the former is any quantity, the latter is a map with argument

p. Such seemingly confusing notation is used where a semantic relation between

x and x(p) is emphasized; for example, while xr denotes a variable of region r,

xr(p) denotes the set of xT where the Utility is maximal for a given price p.

(v) Other basic notations include the following. 1R denotes the set of m-

dimensional real vectors with non-negative components (> 0); [a, b] is the closed

interval from o to fe; if round brackets are used the corresponding boundary point
does not belong to the interval set, e.g. [a,b) = {x\a < x < b}; set designators
stand for the whole set, e.g. T in t 6 T, as well as for the last element in the set,

e.g. t e {1,... ,
T — 1} where t gets all values of T but the last; the cardinality

(number of elements) of a set T is written \T\.

(vi) V* denotes the differentiation Operator applied k times where, as usual, the

exponent '1' is dropped. The map to which Vfc is applied may be Single or vector-

valued. If the map depends on a vector-variable x but the differentiation is done

only with respect to a subset x of components of x, we wiite V£.



Vor dem Gesetze steht ein Turhuter Zu diesem Türhüter

kommt ein Mann vom Lande und bittet um Eintritt in das

Gesetz Aber der Turhuter sagt, dass er ihm jetzt den Ein

tritt nicht gewahren könne Der Mann überlegt und fragt
dann, ob er also spater werde eintreten dürfen "Es ist

möglich", sagt der Turhuter, "jetzt aber nicht" Da das

Tor zum Gesetz offensteht wie immer und der Turhuter

beiseitetritt, bückt sich der Mann, um durch das Tor in

das Innere zu sehen F K [58]

The Name of the Game:

Economic Equilibrium Problems

(EEP)

The chapter is organized as follows. In Section 1.1 a simple formalized econ-

omy, including a finite set of producers and consumers, is introduced; it follows

essentially Negishi's [82] exposition, relaxing to some extend its assumptions,
and defines the notion of welfare, Pareto optimality and economic equilibrium.
While those definitions are used throughout this work, the Assumptions 1.1 will

be needed in Section 2.2 when proving the existence of an economic equilibrium.
Here a reference to the excellent monograph Theory of Value by Debreu [18] is

apposite, where the concepts and assumptions used by Negishi are discussed more

in depth.

Section 1.2 brings the general notation into formal correspondence with the ba¬

sic structure of MM", the concrete energy-economy model studied in this work.

Different to the above abstract economy the production is here part of the 'con-

sumer'

We continue by a brief outlook on MM" in Section 1.3.

In Section 1.4, finally, we present possible equivalent formulations of the rather

abstract equilibrium conditions as complementarity problem (NCP), variational

inequality problem (VIP) and fixed point problem (FPP). They will be used in

following parts of the work. Namely, (VIP) is the problem solved by the cutting

plane methods discussed in Chapter 3.

Contributions of this chapter include the Sections 1.2 and 1.3.

A final notational remark is in order. The classical economic theory considers

usually consumers and producers. We stick to this habit when presenting fun¬

damental economic concepts. However, from a more general point of view they
can be simph (alled (economic) 'agents'. In the concrete application MMr, fi-

Chapter 1
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nally, we talk of regions. Following these different Standpoints we will use the

appropriate notion in the different parts of this work.

1.1 A World of Producers and Consumers

A simplified economy can be thought of as a set of consumers (e.g. people) maxi¬

mizing their Utility and producers (e.g. firms) maximizing their profit. The profit
in turn goes back to the consumers depending on the share of ownership.

Definition 1.1 (cf. [82])

I (finite) set of consumers;

J (finite) set of producers;
m dimension of the space of goods;

xt 6 !Rm consumption of consumer i;

x° £ IR \ {0} initial endowment of consumer i;

y3 6 Rm production vector of firm j;

Fj(y3) : IRm —> IR production function of firm j;

profit share of firm j distributed to consumer i;

: IR —> IR utihty of consumer i with consumption vector x,;

vector.

\tJ >o

ut( *,) =

pe IR

Note that by definition x and p are non-negative. The production function char-

acterizes the set of possible (feasible) production vectors, that is, y} is a feasible

production of firm j if and only 'd Fj(y}) > 0. The profit share fulfills J2, \j = 1-

As mentioned in the introduction we abbreviate x :~ (xi,... ,xj) or U(x) :=

([/i(xi),... ,Uj(x[)); furthermore, vector-relations are meant component-wise,

e.g. F(y) > 0 means Fi(yi) > 0,... , Fj(yj) > 0. The quantity e := e(x, x°, y) :=

^2,(z° — x,) + 53j V] is called excess (supply minus demand) and is defined for

any feasible (x, y). Later, based on optimal vectors (x(p), y(p}), a different excess

definition e(p) will be given which is a function of the price p.

We make in this chapter the following assumptions:

Assumption 1.1 (cf. [82])

1. U(x) is once conhnuously differenhabk, non-decreasmg, stnctly increasmg

in at least one good, and concave;

2 F(y) is once conhnuously differentiable and quasi-concave;

3. 3y' : F(y') > 0 and 0 < £, x° + Z3 V'v

4. With Y} := {V] | F,{y,) > 0} and Y := £, y, = {y\y = E3 V„ V3 e Y,} it

must hold
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(a) ö e Fj.- possibility of no production;

(b) Y PI H = 0: 'negation of the land of Cockaigne' (no free lunch);

(c) Y n (—Y) = 0; vrreversibihty of the production process.

Let us briefly comment these assumptions. Non-decreasing means x' > x implies
U(x') > U(x); U is strictly increasing in at least one component, if for each x > 0

and for all * G / there is k such that U,(x[) > U,(xt) if x[ > x, and x'tk > x,*.

The latter requirement is very modest, because otherwise we may have constant

Utilities, for which trivial equilibria and welfare rnaxima can be given. Concavity
of the Utility functions implies convexity of all level sets and can be interpreted
economically as non-increasing marginal utihty.

The second assumption—quasi-concavity of F(y)—is equivalent with convex pro¬

duction sets.

The third condition, sometimes denoted as Slater condition, is motivated by
mathematical reasons permitting to apply the theorem of Karush-Kuhn-Tucker

(KKT). At the same time it is one of the easier regularity conditions to be verified

by economic arguments.

By the fourth condition we impose a reasonable economic behavior of the pro¬

ducers.

As a first step to approximate the behavior of a real economy, it makes sense

to require that all consumers are simultaneously 'optimal', e.g. are in a State

of maximal Utility. Such a multiobjective maximization can be explicited by

assigning each consumer a weight o, > 0 and maximizing the sum of the weighted
consumer Utility calling it welfare maximum.1

Definition 1.2 (Welfare maximum, [82]) Given a normahzed weight vector at >

0, 53l6/ a> = 1> an all°cahon (x",y*) is called a welfare maximum if ü solves

max y^q,(7,(j,)

s.i. 2_]x> — zZ^ + zJ^j (no excess of demand) (1.1)

FjiVj) > 0 Vj 6 J (condition of production) (1.2)

Note that the consumers are not restricted by an individual monetary budget;
only the overall demand is restricted by the total supply (1.1) and the feasibility
of production (1.2). Giving weights to the consumers implies a distribution, that

is, the share of the overall wealth given to a consumer is implicitly determined

1In the economic literature the notion of (social) welfare is more generally defined as a

monotone function W(U(x)) : ]Rm ^ -> TR, that is, if U{x') > U{x) we have W(U(x')) >

W(V(x)).

} (1-3)
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by his weight. To overcome this restriction, a more general concept called Pareto

optimality can be used to characterize the optimality of the State of an economy.

The idea is, if a consumer can be made better off and everybody eise does not

loose, then the former State can be improved, i.e. is not optimal. Reformulated

we have the following

Definition 1.3 (Pareto optimal, [82]) An allocation (x,y) is called Pareto opti¬

mal, if %t satisfies (1.1) and (1.2), and if there is no allocation (x',y') satisfymg
also (1.1) and (1.2) and for which U(x') > U(x), U(x') £ U(x).

Assumption 1.1 implies that the set of welfare optima with a > 0 and the set of

Pareto optimal points coincide, cf. Theorem 2.4. Both the concept of welfare and

Pareto optimality do not consider explicitly prices, or, to State it differently, both

the wealth of consumers expressed by their initial endowment x° and the scarcity
of different goods expressed by pricing are not taken into account. Those lacks

are overcome in a State called competitive equilibrium. Here—given a price p—
all consumers maximize their utility subject to a budget, and all firms maximize

their profit. The key concept lies in the balance of supply and demand, by which

the set of possible equilibria is restricted to an extend making even the existence

of one equilibrium questionable.

Definition 1.4 (Competitive economic equilibrium problem, EEP, [82]) A vector

(x*,y*,p*) is called a competitive equilibrium if

(a) y* solves for each firm j J

max p'Ty3 1

s.t. F,(y,) > 0; / [1A>

(b) given the budget Mt := p*Tx\ + £\ A,jP*T)/*, x* solves for each consumer

iel

max Ut(xt) \ , .

s.t. p*Tx, = M,; /
{l-b)

(c) p* > 0, e(p") = e(x*,x°,t/*) > 0 (no excess of demand over supply) and

p'e* = 0, i = 1,... ,
m (equality of demand and supply for non-free goods).

The complementarity condition in (c) expresses that only scarce goods (e,(p*) =

0) can have a positive price p* > 0.

Welfare and economic equilibria have a close relationship; first note that both

are 'economically efficient' in the sense of equal marginal Utility relations. Next,

on a formal level we can observe a sort of duality: On the one hand welfare

maxima always fulfill the (overall) excess constraint (1.1) but not necessarily the
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(individual) budget constraints in (1.5); on the other hand, given an arbitrary (not

necessarily equilibrium) price p the maximization of the firms (1.4) and consumers

(1.5) fulfills the budget constraint but not necessarily the excess constraint. The

latter is exactly the condition for an equilibrium price. The relation between

economic equilibria and welfare will be discussed more in depth in Section 2.2.

1.2 Simplification for Utility Maximizing Agents

The formalism presented in the preceding section can be simphfied if every firm

belongs exactly to one consumer, i.e. V? G J 3i I : \t3 = 1. Denote by

J' all firms owned by consumer i. Then the next proposition states that the

Utility maximization for all consumers subject to the production constraints of

the corresponding firms is equivalent to the simultaneous profit maximization

of the firms and the Utility maximization of the consumers. Note that in the

following proposition the price p is an exogenously fixed parameter; to have a

proper (finite) Solution requires positiveness of certain components of p.

Proposition 1.1 Assume \t] = 1 ifj 6 J' and zero otherwise, and let the sets J'

be a disjomt covenng of J. Furthermore, let the prices for scarce goods be positive,

i.e., for all k for which there exists i e / such that Ut is strictly mcreasmg in the

kth component we have pu > 0. Then (x*, y*) is a Solution of

max Ut(xt) 1
s.t. pTx, = pTxa, + Y,ieJ. PTy3 > Vi G J (1.6)

Fj(y3)>0 VjeJ' J

if and only if y* is a Solution of (1-4) Vj £ J and x* is a Solution of (1.5) Vj e /.

I The pioof uses the characterization of optima by Karush-Kuhn-Tucker, cf. Ap¬

pendix A. Because f/,(x,) is strictly increasing in at least one good, we can

replace the budget constraint pTx, = pTx° + X),eJ, pTy3 in (1.5) and in (1.6) by

pTx, — pT(x,° -f X^ej' Vj) — 0 ar,d know that the corresponding multiplier in the

KKT-condition is positive. Choose any i £ I; from Assumption 1.1 follows the

equivalence of the KKT-points and the optima for each of the three maximization

problems (1.4), (1.5) and (1.6). Thus it is sufficient to verify the equivalence of

the KKT-conditions of (1.4) and (1.5) with those of (1.6) for any i E I and all

j 6 J', which are, respectively

-p-^yiF3{y3) =0

H3 >0

for (1.4),

-Vx,U,(x,) + ßp =0

/i >0

Vje J' (1.7)

(l.i
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for (1.5) and

'VXtU,(xJ 0 P "o'
'

0

-E\ Vy,F,(v,) + A
-P

=

0

0
3£J<

Ö -P

A
;
>C

:

0J
"

Vj e J-

\ >C

(1.9)

for the aggregated problern (1.6). Setting A = ß and \3 = MjA for all j e J'

yields the desired equivalence of (1.9) with (1.7) and (1.8). |

Note that the non-negativity of x does not affect the proven equivalence.

1.3 Formal Link to Markal-Macro Multi-Region

(MM")

MM' (Markal-Macro multi-region) considered in this work and presented in de¬

tail in Chapter 7 has exactly the structure (1.6). The overall equilibrium model

integrates a set R of regions connected by trade of C02 emission permits and

other goods. Dropping for convenience the regional index r (respectively i in

(1.6)) the utility of one region is defined as discounted sum of logarithms of

consumption
T

U(C) = Y,df\ogCt
(=i

over a set T of time periods. The consumption is determined by the gross do-

mestic product (GDP) minus investment costs, which are subsequently specified

by a set of constraints. The constraints—represented by F(y) > 0 in (1.6)—can
be divided into two parts: A small nonlinear part responsible foi the aggregated
macro-economic stiucture, and a large linear part describing in detail the energy

related sector.

1.4 EEP as Variational Inequality Problem (VIP)
and Other Formulations

An economic equilibrium problem (EEP) defined in definition 1.4 can be charac-

terized in a more transparent way by using the notion of the excess map:
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Definition 1.5 Let y3{p) and xt(p) be the set of Solutions to (1.4) and (1.5)
respectively; then the excess map e(p) is defined by

e(p):=£K-*.(p))+I>(p)- (1-10)
•e/ 3eJ

Note that in general e(p) may be set-valued. Based on e(p) EEP is subsequently
formulated as generalized nonlinear complementarity problem (GNCP), general-
ized variational inequality problem (GVIP), and as generalized fixed point prob¬
lem (GFPP). Here 'generalized' designates the set-valuedness of e(p); to simplify
the notation, we drop the 'G' for generalization in the rest of this exposition and

mean by e.g. VIP both GVIP and VIP, where the valuedness of e(p) is given by
the context.

As a direct consequence of Definition 1.4 we find an equilibrium to be character-

ized by the following NCP:

find p* G IR such that 3£ G e{p') with
T f ^ °Q' 1 (NCP)

This (NCP) can also be formulated as VIP, which is the basement of the VIP-

solution approach discussed in Chapter 3:

find p* G IR such that 3£ g e(p*) with f(p - p*) > 0 Vp G IR. (VIP)

Here (NCP) and (VIP) are tags for the specific problems from above, while NCP

and VIP denote the corresponding class of problems. The equivalence of (NCP)
and (VIP) is proven in the following proposition.

Proposition 1.2 (cf. [61]) p* solves (NCP) if and only if it solves (VIP).

| Assume p* solves (NCP), then for the corresponding £ we have fT(p — p*) =

iTp > 0 \/p G IR, i.e. p* solves (VIP).

Assume now p* solves (VIP); obviously we must have £ > 0 due to £T(p —p*) > 0,

because for any £, < 0 we could otherwise choose a sufficiently large p, 2> 0

such that £T(p — p*) < 0. Let us check now complementarity; from the last

consideration we know f,p* > 0, by setting p := p* except for p, = 0, we get

fT(p ~~ P*) = -£«P* > 0 or equivalently £,p* < 0, thus £,p* = 0 for any i. |

As a third possibility we formulate EEP as a fixed point problem:

find p* G IR such that p* G PE? o (1 - e)(p*). (FPP)

By PiRm we mean the orthogonal projection onto H, and by 1 the identity map.

The structure of this fixed point problem will be discussed more in depth in

Section 2.1. Based on the characterization of projections given in Lemma A.7,

we have equivalence of (VIP) and (FPP).
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Proposition 1.3 (cf. [23]) p* solves (VIP) if and only if it solves (FPP).

I The definition of a Solution p* to (VIP) is 3£ G e(p*) such that £T(p - p*) >

0 Vp G IR. By multiplying with —1 and adding p*T{p — p*) on both sides we

have the equivalent relation

P*r(p-P*)>(p*-£)T(P-P*) VpG IR.

Applying Lemma A.7 yields equivalently p* = Pw?{p* - 0, and with £ g e(p*)
we get finally equivalence to p* G Pr»> o (1 — e)(p*).|
In our practical problem MM', described in Chapter 7, e(p) is Single valued

because the underlying problem has the structure (1.6) with a strictly concave

Utility function. For this and because it simplifies both intuition and proofs, we

will restrict ourselves in the following discussion mostly to Single-valued Operators.

Note that for economic problems with a scalar budget constraint like (1.5) or

(1.6) the excess map is homogeneous of degree 0, that is, e(Ap) = e(p) VA > 0.

This allows to restrict the feasible price set IRm to the unit-simplex A which is

compact and defined by

m

A:={pGlR : X> = 1}> (1.11)
i=i

where the dimension m of the embedding space is chosen accordingly to the

problem.

Finally we should point to the aggregation level in the problem formulations

above. Instead of using the very aggregated excess map which hides the structure

of the underlying optimization problems, one might as well formulate the |/| + \J\
simultaneous maximization problems together with the no-excess condition (c)
in Definition 1.4 directly as complementarity problem, and based on that also

as VIP and fixed point problem. The basic idea is to catch the maximization

problems in their respective Karush-Kuhn-Tucker Systems of equations, cf. Garcia

and Zangwill [33], and then solve those Systems of equations simultaneously.

Whereas from a mathematical and algorithmic point of view it is in general ad-

vantageous to work on a disaggregated level where more Information is available,
the Situation might be different in practice like in case of our model, where such a

simultaneous formulation as set of equations or complementarity problem is not

available.



Als der Turhuter das merkt, lacht er und sage "Wenn

es dich so lockt, versuche es doch, trotz meines Verbotes

hineinzugehen Merke aber. Ich bin machtig Und ich bin

nur der unterste Türhüter Von Saal zu Saal stehen aber

Turhuter, einer machtiger als der andere Schon den An¬

blick des dritten kann nicht einmal ich mehr ertragen."
F K [58]

Is There a Solution to EEP?

In 1874 Leon Walras presented in Elements d'Economie politique pure ou Theorie

de la Richesse sociale [102] a formalization of general equilibrium theory; there

he argued that an economic equilibrium exists by stating that there is an equal
number of variables and equations in the underlying set of equations. Indeed,
it is easy to construet economic equilibrium problems which, having an equal
number of variables and equations, do not possess an equilibrium Solution. It took

almost 60 years until 1935, when Abraham Wald [101] gave a first mathematically

satisfactory answer (for a thorough discussion see John [55]).

Later, in the early fifties, the proof of existence was given in the totally different

setting of fixed point theory; this allowed the relaxation of some of the conditions

required by Wald, and at the same time made the proofs considerably easier.

Since then most strategies for proving the existence of equilibria use finally a

fixed point argument. The adverse side of this elegant mathematics is its non-

construetive nature, i.e. it can not be used directly to actually find an equilibrium.

Ten years later Lemke [69] resolved this question partially by suggesting an al¬

gorithm for solving bimatrix games. A more general approach was developed

by Scarf [95] another ten years later, which today is seen as a variant of 'path-

following', cf. Zangwill and Garcia [104]. This construetive view in turn admit-

ted new variants to prove the existence of equilibria, and it is exactly such an

equation-based approach which will be used in the case of the MM^-model. The

reason why an abstract fixed point theorem can not be directly applied is the

lack of structure in the excess function e(p).

The chapter is struetured as follows. In Section 2.1 Kakutani's Fixed Point

Theorem is discussed and the obstacles in applying it to our excess-based problem
are clarified.

Based on the foundations of Chapter 1, Section 2.2 presents Negishi's approach
to the problem of proving the existence of a competitive economic equilibrium.
From Negishi's theory a general fixed point heuristic called 'conceptual Negishi

algorithm' is deii\ed, which will be detailed in Chapter 4.

Chapter 2
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Section 2.3 discusses a path-following approach following Garcia and Zangwill
[33], which will be used in Appendix D to actually prove the existence of an

equilibrium of MM".

Let us also point to Appendix B, where an up-to-date VIP-based approach fol¬

lowing Yao [103] is discussed. This yields on the one hand the Negishi-based proof
in Section 2.2 again, and makes on the other hand the proof of existence appli¬
cable to a wider ränge of structural assumptions. Similar to the path-following
approach, the VIP under consideration does not rely on the aggregated excess

function e(p), but on a direct formulation of the optimality conditions of the

underlying maximization problems.

The contributions in this chapter are as follows. In Section 2.2 the original

assumptions used by Negishi [82] are relaxed, and based thereupon the existence

proof is given. In Section 2.3 the agents have a different structure compared
to the discussion in Garcia and Zangwill [33], and furthermore the constraint

qualifications are changed in order to make the concepts applicable to our model

mit.

2.1 Kakutani's Fixed Point Theorem

Consider a convex set C C IRn, denote by 2C the set of subsets of C and conse-

quently by a point-to-set map / : C —> 2C a map relating to each x G C a set

/(x) C C. Then we call x* a fixed point of / if x* G /(x*). Furthermore, / is

called convex if f(x) is convex for all x G C. Besides convexity we need a second

property called closedness to assure the existence of a fixed point.

Definition 2.1 (Closedness, [30]) Let {xk} C C be any convergent sequence with

hmit point x G C, xk —> x G C, and choose for all k G IN a yk G f{xk) such that

{yk} C C is convergent in C, yk —> y G C. If for all such sequences {xh} and

{yk} we have y G f(x), then f is called closed.

Furthermore, we also introduce the notion open:

Definition 2.2 (Openness, [30]) Let {x*} C C be any convergent sequence with

hmit point x G C, xk —> x. If for any y G /(x) we can choose for all k G IN a

yk G f{xk) such that {yk} C C converges towards y G C, then f is called open.

A set-valued map which is both open and closed is called contmuous. Interpreting
these properties, closedness inhibits a sudden 'contraction' of the sets f(x) if x

varies slightly, whereas openness inhibits a sudden expansion.

A proof of the following fixed point theorem due to Kakutani (1941) can be

found e.g. in Heuser [49, p. 614], or in Garcia and Zangwill [33]. Its relevance for

mathematical economics can not be overestimated, and one of its applications is

presented in the next section.
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Theorem 2.1 (Kakutani's Fixed Point Theorem) Let C G IR" be a non-empty,

compact and convex set. If the map f : C —> 2C is nonempty, closed and convex,

then f has a fixed point in C.

To clarify what is essential for the existence of a fixed point, let us give the

following simpler but nevertheless equivalent

Theorem 2.2 (Brouwer's Fixed Point Theorem)1 Assume C C IR" is a nonempty,
convex and compact set. Then every contmuous pomt-to-point map f : C —> C

has at least one fixed point.

Hence it is continuity of / together with convexity and compactness of C which

guarantees the existence of a fixed point. Let us briefly outline the connection of

Kakutani's Fixed Point Theorem to the problem of existence of an equilibrium.
As stated in Proposition 1.3, the economic equilibrium problem EEP can be

formulated equivalently as fixed point problem using the map /(p) := P& o (1 —

e)(p), where Pa denotes the orthogonal projection map onto the unit-simplex A, o

abbreviates the concatenation of maps, and (1 —e)(p) := p—e(p). If e(p) is single-
valued we have equivalence of continuity of the fixed point map f(p) and e(p) due

to the continuity of the projection PA. In view of (FPP), Proposition 2.2 together
with continuity of the excess map implies the existence of an equilibrium. In case

of a set-valued excess map we must have both convex values and closedness,
cf. Theorem 2.1. However, a projection of a convex set onto another convex set

does in general not produce a convex set, and hence the fixed point map }{p)
may be non-convex even if e(p) is convex for all p G A. Furthermore, even if

convexity could be assured closedness is a demanding property.

To enlighten the difficulties with closedness, following Flippo [30], let us look at

a Single agent represented by a mathematical programming problem maxt7(x)
subject to G(x) < b, where x, G(x) and b are vectors of appropriate dimension,
and where p is part of b. Denote by <j>(b) the feasible set map and by w(b) the

corresponding optimal set map. Our excess map can be understood as (part of)
oj(6), and hence closedness of e(p) follows from closedness of ui(b). The latter

is essentially given if both the objective U(x) and (f>(b) are continuous [30, The¬

orem 2.1 and Corollary 2.1]. As mentioned above, continuity of the set-valued

map cf>(b) requires closedness and openness. While closedness of (j>(b) is basically

implied by a continuous G(x) [30, Theorem 2.3], openness requires a constraint

qualification like the one of Mangasarian-Fromovitz [30, Theorem 3.4].2 As dis¬

cussed in [30], there is little hope to weaken those requirements, because they

]In Brouwer's original formulation C is the closed unit ball in R".

2Flippo [30] discusses only the case where solely the right hand side may vary In order

to translate the consumers problem containing a budget constraint into such a framework,
both x and p must be treated as variable. In a second step the 'variable' p is then equalized
to components of the nght hand side b. Thereby the convexity of the budget constraint is

destroyed, and consequeutly [30, Theorem 3.1-3.3] can not be applied
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are too strongly connected to a 'well-behaved' optimization problem. This mav

explain why proving existence of an equilibrium is usually not done by examining

the overall excess, but by studying some underlying mathematical structures.

In the next section, Negishi's successful application of Kakutani's Fixed Point

Theorem, based on an exploration of the structure of the agents, is demonstrated.

2.2 Negishi's Approach

This section is based on Negishi's proof for the existence of an equilibrium [82]
and requires the definitions and assumptions of Section 1.1. Compared to Negishi

we weaken some assumptions and modify the proofs accordingly. We start by a

direct consequence of Assumption 1.1 which guarantees the existence of a finite

Solution to both the consumer and producer problem. Moreover, we can conclude

that the set of solutions must be convex.

Lemma 2.3 ([82], Lemma 1) If Assumption 1.1 is fulfilled and if there is no

excess of demand over supply, i.e. e > 0, then the domain ofx andy is nonempty,

convex and compact.

Applying this prerequisite we have under Assumption 1.1 almost equivalence of

Pareto optimal states and welfare maxima:

Theorem 2.4 ([82], Theorem 2) If Assumption 1.1 holds, then for any weightmg

vector a* > 0 there is a welfare maximum represented by the utihty vector U".

Furthermore, for et > 0 an allocation is a welfare maximum if and only if it is

Pareto optimal.

Note that if either the feasibility sets are non-convex or U is non-coneave, the

equivalence of welfare maxima and Pareto optimality is violated.

The following theorem relates equilibria to a subset of welfare maxima charac-

terized by the weighting vector a. Based on this relation a fixed point map is set

up and Kakutani's theorem can finally be applied to prove the existence of an

equilibrium.

Theorem 2.5 ([82], Theorem 4) Let p correspond to the Lagrange-multiplier of

(1.1) in the welfare problem. Then

1. at any welfare maximum the conditions (a) and (c) of a competitive equi¬

librium (Definition 1.4) are fulfilled;

2. condition (b) in Definition 1.4is satisfied if and only ifO<al = l/St, where

St is the marginal utihty of mcome of consumers, i.e. 5, is the Lagrange-

multiplier of the budget constraint in the utihty maximization problem (1.5)

of consumer 1.
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Both Claims can be shown by comparing the KKT-conditions of the underlying

optimization problems.

The equation q, = 1/5, is only given in this canonical setting, where the equilib¬

rium price equals the dual multiplierp of (1.1). Obviously the welfare maximiza¬

tion problem produces the same pnmal result for any scaling Xa with A > 0, and

also the utility maximization problem is pnmal invariant with respect to a scaling

Ap for A > 0. This is relevant for restricting the feasible set of a when applying

Kakutani's theorem below, but also in the practical implementation where the

relation a, = 1/5, is satisfied only up to scaling.

In order to prove the existence of an equilibrium we have to sharpen Assump¬

tion 1.1 slightly. This is necessary for two reasons. First we need a convex valued

and closed fixed point map to apply Theorem 2.1, which is achieved by assuming

concavity of F. Secondly we want each consumer to have a positive amount of

'money' to spend even if some (but not all) prices are zero. This is needed in

the proof of Theorem 2.6 to derive an equilibrium from a fixed point. Several

conditions can be considered implying a positive monetary endowment. Negishi

[82] presumes strictly increasing Utilities (i.e. (Vt7,(x,))t > 0 Vx, > 0, V« G /

and Vfe = 1,... ,m) together with x° > 0, x° / 0 and F(0) > 0, resulting in

a positive monetary endowment. But these assumptions are rather strong, be¬

cause they imply p > 0 in any welfare Solution (where a G A), which collapses

the complementarity and variational inequality problem to finding a zero of the

excess map e(p). Here we impose the following relaxed assumptions:

Assumption 2.1

1. F3(y3) is concave for all j e J.

2. There is a good k for which all utihties are strictly increasing, and for which

all consumers have a positive endowment.

The second condition is easily fulfilled if a good is introduced which represents

a monetary numeraire and if each consumer is endowed with a (small) positive

amount.

Under Assumptions 1.1 and 2.1 all welfare maxima are equivalently saddle-points

of the Lagrange dual function

I(x, y,p, ß; a) := aTU{x) + pTe(x, y) + ßTF(y). (2.1)

The saddlepoint map i/> is defined as

tMa) := arg min max L(x,y,p,ß;a) (2.2)
(p,fi)>0 z>0,!/

and is obviously a non-empty, convex-valued point-to-set map: given (p, ß) >

0, maximization with respect to (x, y) appears in concave summands only, and

given (x,y), minimization with respect to {p,ß) appears in linear, thus convex,

summands onlv.



14 IS THERE A SOLUTION TO EEP?

Theorem 2.6 (cf. [82], Theorem 5) Under Assumptions 1.1 and 2.1 there exists

a competitive equilibrium.

I The proof is based on Kakutani's fixed point theorem; the underlying fixed point

map <p {k) —> {('k+1)} is constructed by a concatenation of three maps, where

the brackets {(•)} indicate set-valuedness:

(ak,xk,yk,pk)

I ip(ak): (extended) saddlepoint map

(tt',{(i'+1>9,+V+1)l)

j v: normalization of p

(«*,{(x*+1,if*+1,p'*+1)})

I v. Upgrade of ak

{{ak^,xk+1,yk+1,plk+l)}

The extended saddle point map ip differs from t/> in that it contains a but drops

ß. The normalization map u{p) is defined by p h-> pj £],p,, and the Upgrade map
v by

max(0, a, 4- p'T(x°t + ^]jeJ A,,;/, - x,))

£tmax(0,a, + p'T(x° + Yl3eJxvVj ~ x>))'

In the course of the proof it is shown that the denominator in the map v is

positive, and also v is well defined. Hence for all k G IN both ak and pk are in

the unit-simplex of appropriate dimension.

In order to apply Kakutani's fixed point theorem we first have to verify that tj> is

closed. We do this by exploiting that continuous (point-to-point) maps preserve

closedness, and the Cartesian product of two closed maps is closed (this is always

on the background of IRn-topology, where all metrics are equivalent).

To begin with let us prove closedness of the saddle-point map i]>\ under Assump¬
tions 1.1 and 2.1 we find that for any given a in the unit-simplex the set of welfare

maxima {(x,y,p,ß)} equals the set of saddle-points in (2.2). Assume now a se¬

quence {a1} C A converging to some a* G A, and choose for each al,l G IN,

from the set of saddle-points a (xl,y\pl,ßl) converging to some (x*,y*,p*,/J*).
We have to show that (x*, y*,p*, ß") is in the set of saddle-points of a*. Looking
at the following characterization of saddle-points

L(xl,y',p,ß;al) > L(x',yl,p',ßl;a') > L(x,y,p',ß';a')

which holds for all/ G IN and all feasible (x,y,p,ß), we derive from continuity of

L in x ,y, p, ß and a

£(z*,2/*,P,Wa*) > L(x\y*,p*,ß'a') > L(x,y,p*,ß*a*),
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hence (x*,y",p*,ß*) is in the set of saddle-points of a* implying closedness of

yj(ct). To accept closedness of the extended saddle-point map i[, note that

it can be built by a projection (ak,xk,yk,pk) i-> ak, followed by ip : ak h->

{(xk+1,yk+\pk+\ßk+1)}, followed by a projection {(xk+l, yk+1,pk+l, ßk+l)} ^

{{xk+1,ykH,pk+1)} and finished by building the Cartesian product with ak, that

is,(ak,{(xk+1,yk+l,pk+l)}).

Next, from ak G A and the second item in Assumption 2.1 we observe p*+1 > 0

and pk+l =^ 0, implying continuity of v.

Before showing continuity of v in the last step, we first verify that it is well-

defined, i.e. 5Z,max(0, a, + (M, - p'Tx,)) > 0 for any a G A and its resulting

(x,y). Assume contrarily J^tmax(0,a, + (M, — p'Tx,)) < 0; this implies M, —

p'Tx, < 0 for all i, and because a G A there is an i with a, > 0 forcing Mt—plTxt <

-a, < 0. But then X)t(Af, -p'Tx,) < 0 contradicting £,(Af,-plTxt) — p'Te = 0.

Thus, 5Z, max(0, a, + (M, — p'Txt)) > 0 and the map is well defined.

Based on that the Upgrade mapping v is obviously continuous leading to the

verification of closedness of <f>. Furthermore, non-emptiness and convex values

of 4> can be easily verified using the fact that ip has these properties. The final

condition to be verified is that <f> has a compact and convex set of definition,

which is a consequence of Lemma 2.3 and the scaling onto the unit-simplex of a

and p. By Kakutani's Theorem we thus have the existence of a fixed point.

The verification that any fixed point is a competitive equilibrium is a consequence

of the positive monetary endowment M, > 0 for each consumer, induced by

Assumption 2.1. Assume in a fixed point a there is an i G / where a, = 0. From

the definition of the fixed point map we have then Mt — pTx, < 0 which is only

possible if pTx, > 0. But this contradicts the assumption of a welfare maximum

being maximal, because pTx, > 0 implies that x, has positive components for

goods with positive dual multiplier in the welfare problem. This implies in turn

that by setting x, = 0 we can strictly increase the overall welfare which, in view

of a, = 0, contradicts optimality of the welfare Solution. Thus a > 0 and by
Theorem 2.5 the only point left to prove is that the budget constraint holds for

all i G /, which, for a > 0, follows directly from the fixed point property. |

Extending Theorem 2.6, Ginsburgh and Waelbroeck [36] show that for every com¬

petitive equilibrium there is an a > 0, such that the Solution (x(a), y(a),p(a)) of

the corresponding welfare problem equals the equilibrium Solution. This proves

that under the Assumptions 1.1 and 2.1 the set of equilibria is contained in the

set of welfare states.

It is interesting to see that this set-relation can be reversed in a restricted

sense: given a > 0 with a welfare Solution (x(a),y(a),p(a)) fulfilling x,(a) -

Zligj ^«j3/j(a) ^ 0, we endow each consumer with

x°,e := xt(a)-^2\t3y3(a) > 0;
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then the thereby defined economic equilibrium problem has the same Solution as

the original welfare problem. To see this note that (r(a), y(a)) is feasible for the

optimization problems in Definition 1.4(a) and (b), and that at (x(a),y(a)) the

KKT-conditions for both the consumer and producer problems are also fulfilled.

In this restricted sense equilibria and welfare are equivalent, but it is the point
of view which sets them apart: while equilibrium problems allow a direct control

of the endowment and thereby of the resulting distribution, the welfare approach
allows only to choose a which determines the distribution implicitly. This subtle

difference forms the fundamental distinction between centrally planned economies

and ('free') market economies. Superfluous to say that this distnbutional effect

is also of central importance when a Community of countries agrees on trading

C02 permits. The price for the different modeling philosophy is the change from

a (convex) optimization problem in case of welfare problems to equilibrium prob¬

lems, formulated e.g. as variational inequality problem, complementarity problem
or fixed point problem.

Finally, note that the view of a fixed point problem leads to solving approaches
like path following, cf. Garcia and Zangwill [33], which can be computationally

very demanding. In practice it turns out, however, that some heuristic methods,
based on the following general concept, are in our case very fast.

Algorithm 1 Conceptual Negishi Algorithm

(i) Choose a set of initial weights a° and set k = 0.

(ii) Solve the Negishi welfare problem and compute thereby the regional excess

ek and the dual price pk of the excess constraint.

(iii) Stop if all regional budget constraints pkTek are (close to) zero. Otherwise

set k := k + 1, update the weight vector ak and return to (ii).

The crucial part in this concept is the update step a* —> ak+l; two strategies are

discussed in Chapter 4 and numerically compared in Appendix F.5.

2.3 The Path Following Concept

This section is based on Garcia and Zangwill [33]. The concept and the relation-

ship to our problem MM" is given in some detail, because the proof of existence

of a Solution to MMrar is based on this idea. The reason why we can not simply

verify the assumptions underlying the Negishi proof of existence has to do with

the more complex structure involved in the consumers of MM".

At its heart the path-following (homotopy) concept solves a system of (nonlinear)
equations by following a path from a known Solution of the somehow twisted

problem to a real Solution of the original problem.
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To bridge the gap to our EEP we proceed in several steps; first the economic equi¬
librium problem EEP is transferred into an equivalent Nash equilibrium problem

(EP) by introducing an artificial price-agent. EP consists of |/| +1 J\ +1 optimiza¬
tion problems which can be formulated equivalently as Systems of equations by

using the theory of Karush-Kuhn-Tucker, given some regularity conditions hold.

A simultaneous Solution to the \I\ + [ J\ +1 Systems of equations is an equilibrium
Solution of the original EEP and can, in principle, be found by applying a path-

following approach. Taking the last step first the basic idea in the path-following

concept can be described as follows:

1. Extend the original System of equations by introducing a scalar t, such that

for t = 0 we have a unique known Solution v°, while at t = 1 it coincides

with the original system.

2. Follow the path v(i) of the system's Solution from t = 0 to t = 1, thereby

solving the original problem.

As a simple example consider the linear System Au = b with a non-singular
A G K.nx". Take any v° G IR" and choose d according to Av° = b + d -: b.

The extended System is Av = b — td where, at t = 0, we have a unique Solution

v° = v(0) and, at t = 1, the Solution v(i) solves the original problem.

In general, given some assumptions, the path is differentiable and goes from one

starting point v° exactly to one endpoint v(1). It does not turn back to a Solution

w(0), bifurcates to multiple Solutions or diverges to infinity.

Coming back to the question how EEP can be transformed into a system of

equations, we first catch the feasibility and complementarity condition (c) in the

Definition 1.4 of EEP in an artificial price agent, defined by the following problem;
as usual A denotes the unit simplex from (1.11).

Definition 2.3 (Pnce agent, [33, (6.2.2)]) Given the overall excess e (supply
minus demand), the price agent chooses a price p solving

min eTp. (2.3)

The price agent can be interpreted as the 'invisible hand' postulated by Smith.

To see that (2.3) can indeed replace condition (c) in Definition 1.4 the following

(Nash) equilibrium problem is studied.

Definition 2.4 (Equilibrium problem, EP, [33]) (x*,y*,p*) is called an equilib¬

rium Solution of EP if simultaneously x* solves problem (1.5), y* solves prob¬
lem (1-4), and p* solves problem (2.3).

The following lemma uses ideas of Garcia and Zangwill [33, p. 118 f].
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Lemma 2.7 (x*, y*,p") is an economic equilibrium in the sense of Definition 1.4

if and only if it solves the related EP in Definition 2-4-

I Let (x*, y'jP*) be a Solution to EEP; then, by condition (c) in Definition 1.4, we

know e > 0 and p*Te = 0, p* G A. Thus p* solves problem (2.3) and consequently

(x*,y*,p*) is a Solution to EP.

To prove the reverse implication assume (x*, y*,p*) is a Solution to EP. To show

that it also solves EEP, the non-negativity of e and complementarity with p*
must be deduced. Suppose firstly that e 2 0, then 3j : e3 < 0. Because p* solves

problem (2.3) and the j-th unit vector is in A, we must have

p*Te < e3 <0. (2.4)

On the other hand the budget constraint for each consumer requires

0 = M, - p*Txf, = p*T

which, summed over all consumers, yields

0 =p* Etf
3iJ tei

p-Te. (2.5)

=1

But this contradicts (2.4), and hence e > 0 is proven. Complementarity of p*
and e is an immediate consequence of e > 0, p* > 0 and (2.5). |

Note that there is almost no structure required for this lemma to hold; it simply
suffices to have agents (consumers and producers) which—given a price signal
from the price agent—reveal their optimal choice (consumption or production)
and that consumers obey their budget constraint. Specifically, problem (1.5)
representing consumers may contain arbitrary additional constraints. It is exactly
this property of EP which makes it applicable to MM""".

Formally, EP consists of a set A (economic agents) of convex maximization prob¬
lems which are connected by common variables; in view of the problems (1.5),
(1.4) and (2.3) we can think of |.AJ = |/| -I- |J| + 1. We are looking then for a

simultaneous Solution to these maximization problems and accomplish this by

transforming all problems into their corresponding KKT-systems of equations.3
Given some constraint qualifications are fulfilled, we have thereby reformulated

EEP into a nonlinear equation problem (NEP).

The notation v = (va,Vä) used in the sequel symbolizes a decomposition of the

overall variable v into a part va which is in the realm of agent a, and the rest vä

3Usually the KKT conditions are formulated with equations and inequalities; the inequalities

appear, because the sign of the Lagrange multipliers for the inequalities in the problem must be

fixed A simple transformation not only eliminates these inequalities, but makes the resulting
equations even differentiable, cf Garcia and Zangwill [33, p 66].
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not under control of o. Considering the set of problems (1.4), (1.5) and (2.3), v

can be interpreted as (x,j/,p), where va = x, if a represents consumer i, va = y3
if a represents producer j, and va = p if o is the price agent.

For the ease and generality of exposition we consider for all a G A the following
maximization problem encompassing the aforementioned problems.

m&x fa(va,va)
Va

s-t.ga(va,vs) < 0,

K(va, vä) = 0.

For a specific a G A problem (2.9) can be seen as a parametric optimization

problem.

To apply both the KKT-conditions and the path-following concept we assume

for the rest of this section the following.

Assumption 2.2 For all a G A the following holds:

(a) fa is concave and three times conhnuously differentiable in va;

(b) ga is quasi-convex and three times conhnuously differentiable in va;

(c) ha is affine in va;

(d) there exists a v° such that ga(v°) < 0 and ha(v°) = 0.

The affinity claimed for h in (c) might be relaxed while preserving the characteri¬

zation of optimal points by the KKT-conditions, cf. Theorem A.l and A.2 in Ap¬
pendix A; in that case, however, linear independence of the vectors {V„„/ja | a G

A} for all feasible v is needed. An important aspect in Assumption 2.2 is that

they apply only to va, the part of the variable under control of agent a. For

example, the consumer budget constraint is linear in va = x,, even though non¬

linear in the overall variable which comprises y and p; similarly the objective of

the price-agent is linear in p, because the excess e is determined exogenously by
the consumers and producers.

To apply the path-following approach for solving the KKT-system corresponding
to problem (2.9), we first extend the objective in problem (2.9).

max f*a(va, v^ := t fa{va, v-a) - (1 - t)-\\v - u°||2

s.t.ga(va,vä) < 0

ha(va,Vä) =0

(2.6) 1

(2.7) | (2-9)

(2.8) I

• (2.10)
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Note that v° is the unique Solution for (2.10) at t = 0, and that due to the strict

concavity of fl(va,Vä) in va for all t G [0,1) the Solution is unique for t G [0,1).
Based on (2.10) the set of all KKT-equations for all agents in A defines therefore

a homotopy H(t) onto which the path-following concept can be applied.

Before stating the main theorem, the notion 'regulär' must be explained. In

order to have a differentiable path by applying the Implicit Function Theorem,
the Hessian of H with respect to the variable v and the Lagrange multipliers must

be regulär, that is, of füll rank. This is in principle required for all t G [0,1]. By

using a perturbation technique due to Sard (cited in Garcia and Zangwill [33]),
however, this requirement can be overcome.

Theorem 2.8 ([33], Theorem 4.5.2) Let D = {v \ ga(v) < 0 and ha(v) = 0 Va G

A} be the feasible set; if D is compact, Assumption 2.2 holds, and if H(t) is

regulär, then the path startmg att = 0 reaches for f = la simultaneous Solution

to (2.9) for all a G A.

In view of the later application to MM"' a comment on Condition (d) in As¬

sumption 2.2 is in order. On the one hand this condition allows to characterize

all optima by KKT-points (cf. Appendix A). On the other hand Condition (d)
makes >7_1(0) a singleton, that is, v° is the unique primal Solution, and at the

same time the dual Solution is also unique. This uniqueness-requirement is cru-

cial in order to prevent the path from turning back to t = 0. In case of MM*

both requirements are met by proving linear independence of {V„oga} on a sub-

set of variables of va which are not used in the affine part ha. The argument
is straightforward: the affine part can always be made regulär by eliminating
linear dependent equations, and together with linear independence of {V„ag0} on

another subset of variables, the KKT-equations yield a unique Solution for the

dual multipliers.



Solche Schwierigkeiten hat der Mann vom Lande nicht er¬

wartet; das Gesetz soll dochjedem und immer zuganglich
sein, denkt er, aber als er jetzt den Turhuter in seinem

Pelzmantel genauer ansieht, seine grosse Spitznase, den

langen, dünnen, schwarzen tatarischen Bart, entschliesst

er sich, doch lieber zu warten, bis er die Erlaubnis zum

Eintritt bekommt. Der Turhuter gibt ihm einen Schemel

und lasst ihn seitwärts von der Tur sich niedersetzen.

Dort sitzt er Tage und Jahre. Er macht viele Versuche,

eingelassen zu werden, und ermüdet den Turhuter durch

seine Bitten. F. K, [58)

Solving EEP Using the

VIP-Approach

This chapter discusses some mathematical background to VIPs which is relevant

for solving the excess-based (VIP) posed by the primal integration, cf. Section 1.4.

As part of this discussion two algorithms are presented. For a good general
introduction to VIPs see e.g. Kinderlehrer and Stampacchia [65]; a summary

is presented in Appendix A.4. Another excellent survey focusing equilibrium
problems has been given by Harker and Pang [47]. The chapter is organized as

follows.

The crucial role of the different monotonicity properties is investigated in Sec¬

tion 3.1 and is brought into relation with the first algorithmic concept, the cutting

plane method (CPM).

Section 3.2 seeks to present the subtle structural differences between pseudo-

monotonicity and monotonicity causing fundamental differences in the complex¬

ity of the algorithms deduced. While a direct application of CPM to pseudo¬
monotone or monotone problems does not yield a polynomial complexity, Nes-

terov and Vial [87] found a homogenized reformulation which is pseudo-polynomial
for monotone problems. The resulting homogenized CPM for monotone VIPs is

presented and discussed.

The first two sections highlight the necessity of (pseudo-)monotonicity for apply¬

ing a cutting plane method. On that background Section 3.3 motivates (pseudo-)
monotonicity of the excess map from an economic point of view; even though
no (pseudo-)monotonicity-proof can be expected, there is quite some evidence to

observe an 'almost' pseudo-monotone excess if the number and heterogeneity of

agents is sufficiently large.

Contributions in Section 3.1 include the necessity-discussion of pseudo-monotoni-

city in the course of CPM (cf. Lemma 3.3), the equivalence of local and global

(pseudo-)monotonicity (cf. Lemma 3.4) permitting the use of sensitivity analysis,

Chapter 3
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or the concept of ff-pseudo-monotonicity. In Section 3.2 original work lies in the

examples, and finally Section 3.3 brings in the specificities of MM".

3.1 Monotonicity Reconsidered

The basic Variational Inequality Problem can be stated as follows.

Definition 3.1 (Variational Inequality Problem, VIP(f,D), [65, problem 4-1])
Let D cB." be convex and f : D C IR" -> IR"; find x G D, such that

f(x)T(y-x)>0 VyeD. (3.1)

For such a point-to-point Operator / the following properties are fundamental.

Definition 3.2 (cf. [91]) f is called

monotone over D, if (/(x) — f{y))T{x - y) > 0 Vx,y G D, and

pseudo-monotone over D, if \f{y)T{x - y) > 0 => /(x)T(x - y) > 0] Vx, y G D.

To support intuition, note that under suitable assumptions the notion of mono¬

tonicity of / is equivalent with convexity of some F where / = VF.

Proposition 3.1 Let D be convex, U D D be open, F be once conhnuously

differentiable on U and set f := VF; then

1. ([79]) f is monotone on D if and only ?/ F is convex on D;

2. ([62[) f is pseudo-monotone on D if and only if F is pseudo-convex on D.

Based on a suitable definition of subdifferentials Aussei, Corvellec and Lassonde

[5] and Aussei [4] extend the above two equivalences onto semi-continuous func¬

tions F.

The set of Solutions of VIP(/, D), abbreviated by (f,D)*, is intimately related

to a second set of 'solutions'

(/, D)" .= {x \ f(y)T(y - x) > 0 Vy G D}. (3.2)

If we introduce the cut set

C„ := {x G D | f(y)T(y - x) > 0}

(3.2) can be written in the form (/, D)** = nyeDCy. A possible Interpretation
of (/, D)** is based on Proposition A.ll, where (/, D)""" appears as (part of the)
set of minima of the minimization problem minxD F(x), and where / = VF

for a contmuously differentiable function F. Because (f,D)" is built by the

intersection of (possibly infinitely many) linear cuts, it is always convex and

thereby forbids isolated Solutions. The relation between (/, D)* and (/, D)** is

stated in the following proposition.
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Proposition 3.2 ([65, 51]) Let D be convex, then the following relaüons hold,
where ' U' allows any set relation:

arbitrary f pseudo-monotone f

arbitrary f U,D)"n(f,DY (f,Dy?u,Dy

continuous f (f,D)-c(f,Dy (f,D)" = (f,DY

Note how (/,£>)** approximates (/,£>)* from inside or outside, depending on

the properties given. Consequently (/, D)" is called set of weak Solutions if the

focus lies on pseudo-monotonicity; in this case (/,£>)* is called set of strong
Solutions. If, however, continuity is put forward, a Lyapunov function can be

given which makes all points in (/, £))** stable Solutions of the corresponding
dynamical System, motivating the name set of stable Solutions for (/, D)".

To illustrate that the set relations in Proposition 3.2 are strict, a first non-

continuous but pseudo-monotone example is depicted in Figure 3.1; here (/, D)*
is non-convex and thus (/,D)* C (/,£>)**.

2r+ i T

set of Solutions

(0,0) l 2 3

Figure 3.1: A pseudo-monotone and non-continuous map with a non-convex So¬

lution set (/,£>)*.

An even simpler example shows (/, D)" S (/, D)* for a continuous mapping;
choose D = [-1,1] and set f(x) := -x. Then (/,£>)" = 0 g {-1,0,1} =

(/£)*•

In view of Proposition 3.2, an algorithm for VIPs with pseudo-monotone Opera¬

tors can be set up exploring the fact that {f,D)* C Cy for all y G D. Thus, an

obvious scheme for finding a point in (or close to) (/, £>)** follows Algorithm 2.

Algorithm 2 Cutting plane method (CPM) for pseudo-monotone VIPs.

(i) Set k=0, choose an inner point ic6ß and set D° := D.

(ii) Stop if xk satisfies a stopping criterion, otherwise proceed.

(iii) Reduce the feasibility set: Dk+1 := Dk n Cxk.

(iv) Choose an inner point xk+l G Dk+1, set k <— k + 1 and go back to (ii).

/(*) =
(0,0 3) if (x2 > 1) V (x2 = 1 A (n < 1 V Xi > 2)),

(0,0) eise.
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We will use the notion 'inner point' in the steps (i) and (iv) synonymical with

'center'. Theie are basically two classes of centers. On the one hand geometri-

cally defined centers (like the prominent center of gravity, or less used ones like

the center of the largest inscnbed (smallest circumscribed) ellipsoid) which are

independent of the analytic description of the set Dk. On the other hand so

called analytic centers which do depend on the analytic representation of Dk (see
Kaiser [59]), and for which 'the' analytic center became very populär in the last

years. If Dk is a polytope the analytic center is defined as follows.

Definition 3.3 (Analytic center, [91]) Let {x\Ax < b},whereA Rmx", be

a compact polytope with nonempty mterior; then the unique maximizer of

Y^Li l°s(& ~ Ax)t over {x Ax < b} is called analytic center.

As a convenient abbreviation we use ACCPM (analytic center cutting plane

method, cf. Goffin and Vial [38]) for Algorithm 2 where the analytic center is

used as inner point in step (i) and (iv).

Proposition 3.2 underlines the relevance of pseudo-monotonicity; as well as it is

usually required for a minimization problem to fulfill some convexity properties in

order to be 'reasonably' solvable, the same applies to monotonicity with respect

to VIP. The reason is that these conditions allow to draw conclusions about the

global behavior of a map given local Information only.

To understand better the role of pseudo-monotonicity in the cutting plane method,

we assume continuity of / and ask if pseudo-monotonicity is necessary for the

equality (/,£>)* = (/,£>)"• The example with D = [0, l]2 and /(x) = (0.01 -

0.1xiX2,1) exhibits (/, D)* = (/, D)" = {(0,0)}, but pseudo-monotonicity is not

given as can be seen from the test-points x = (0,0.5) and y = (1,0.5). Hence,

pseudo-monotonicity is not necessary for this cutting plane construction, it is

only sufficient.

In a sense made explicit in the following lemma, however, the identity (/, D)* =

(/, £>)** is equivalent with pseudo-monotonicity under the assumption of continu¬

ity. Or in other words: pseudo-monotonicity, under the assumption of continuity,

is the weakest possible condition guaranteeing (/, D)* = (/,£>)**.

Lemma 3.3 Given a compact, nonempty and convex set D C IR" and a contm¬

uous map f : D —> IR"; then the following two Statements are equivalent:

(i) f is pseudo-monotone on D;

(n) VD C D, D convex and closed, it holds (f,D)" = (/,£>)**.

| The implication '(i) => (ii)' is stated in Lemma 3.2; the reverse is shown as 'not

(i) implies not (ii)'. Not (i) implies the existence of x, y G D : f(y)T(x - y) > 0

and f(x)T(x - y) < 0. Set D := [y,x], that is, the line segment from y to x.
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Then y is obviously a Solution, that is, y G (/, D)*. But by /(x)T(x — y) < 0 we

have y & (/, D)". Therefore (ii) does not hold. |

Other similar results can be found in John [57].

Having established the necessity of pseudo-monotonicity for any cutting plane

method, the question arises, under what conditions (pseudo-)monotonicity of the

excess map can be expected. From an economic point of view Dafermos [16]
claims that the excess map of a reasonable economic equilibrium problem should

be at least 'nearly' monotone. This qualitative Standpoint is mathematically

analyzed by Hildenbrand [51] and will be discussed in Section 3.3. Mathematically

seen, the overall excess is the sum of (part of) the Solution of the individual

utility and profit maximization problems; the dependency on the price signal
can thus be understood as a sensitivity analysis of the underlying maximization

problems. Based on such an analysis, one can either try to resolve the question

on the level of the overall excess or, simpler, observe that (pseudo-)monotonicity
of the individual consumers e,(p) implies overall (pseudo-)monotonicity. Here

we do not address the topic of sensitivity analysis which has a rieh literature

(for a good presentation see Gauvin [35]). Instead, we point to the fact that

sensitivity analysis gives local Information, whereas the cutting plane algorithm

requires global (pseudo-)monotonicity. But, as is seen below, the local and global
behavior coincides.

Definition 3.4 Let Us(x) be the open ball with radius 5 centered at x. Then f :

D C IR" —> IR" is called locally (pseudo-)monotone around x G D if 35 > 0, such

that f is (pseudo-)monotone in Ug(x) PI D. Furthermore, f is called everywhere

locally (pseudo-)monotone if f is locally (pseudo-)monotone around all x G D.

Lemma 3.4 Let D C IR" be a convex set and /:£>—> IR" be everywhere locally

(pseudo-)monotone, then f is (pseudo-)monotone on D.

I First the monotone case is treated. Chose any two points x ^ y in D. From the

local monotonicity property we can cover the compact line segment [x, y] C D

with a finite covering U of (relative) open sets, where / is monotone on U for

all U eU. From U we extract another covering with corresponding set of points

{2?'}.=o, ,jv+i C [x, y] such that all pairs of consecutive points are in the same U'.

To do this the following algorithm is used which selects the 'good' sets from U

and defines a first auxiliary set {zk} C [x,y]:

(i) Set k := 0 and «° := x.

(ii) Choose any Uk &U such that zk et/'.

(iii) If y G Uk define N := k and stop.

Else set k := k + 1, define zk := argmin ]|x - ,z||, and goto (ii).
«[i,»]\Uil<»I/J
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The 'else'-case in step (iii) is well defined, because the set over which the min-

imization is done is compact and non-empty. Finiteness of the algorithm is an

immediate consequence of finiteness of U together with the property that no IP

can be chosen twice (because zk $ U1 for 0 < j < k). Finally, the chosen sets

{Ul}l=Q) ,jv cover [x,y], and we can assume N > 0 (otherwise x and y are in f/°

and then monotonicity would hold).

Now the interesting set {x'} is defined. Due to openness of the sets in {f/'}1=o, ,n

our construction guarantees non-empty intersection U% n U'+1 n [x, y] for i =

0,... ,
N - 1. Hence we can choose x!+1 G U' n U'+1 n [x, y] such that (xs+1 -

x')T(y - x) > 0 for i = 0,... ,
N - 1. Additionally we define x° := x, xN+1 := y.

The resulting sequence has the property that every consecutive pair belongs to

the same set where monotonicity of / holds, i.e. x' G U' and xt+1 G U' for

i = 0,... ,N.

After this lengthy construction we know now

[f(x'+1) - f(x')]T[x'+1 - x'] > 0 for i = 0,.. .N.

The relative length

h-x\\

must be in the interval (0,1], and so fiom non-negativity of all summands involved

we have

0 < ^[/(xI+1) -/(x!)]T[.r1+1 - x'

JV

= $>[/(x'+1)-/(x')f[y-x]
t=0

T
< [y-x ^[/(x-^)-/(x«)]

= [y-x}T[f(y)-f(x)].

Now we prove the pseudo-monotone case by contradiction. Suppose / is not

pseudo-monotone at x, y G D, x ^ y, that is,

f(yf(x-y)>0 and f(x)T(x-y)<0.

Denote by x{t) := y + t(x - y) and set

i*:=inf{*G[0,l]|/(x(<))T(x-j/)<0}.

In the sequel, the following implications derived from scaling are used: If t G (0,1],
then f(y)T(x -y)>0 implies f(y)T(x(t) - y) > 0; and if 1 > tx > ty > 0, then

f(x(tv))T(x — y) > 0 implies f(x(ty))T(x(tx) — x(ty)) > 0. The same applies to

the case '<'. Now there are three possible cases concerning t*:
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(i) t* = 0: This implies that for any S G (0,1) there is a tx G (0,6/\\x -

2/||) such that f(x(tx))T(x - y) < 0. Furthermore x(tx) G Us(y), hence

f(yf{x(tx) -y)>0 and f{x{tx))T(x(tx) - y) < 0, that is, / is not locally

pseudo-monotone around y.

(ii) f G (0,1): Here we have for any S G (0,l)aij,G (t'-6/{2\\x-y\\),t*)n[0,1]
andaixG [t*,t* + 6/(2\\x - y\\)) n [0,1] fulfilling

f(x(ty))T(x-y)>0 and f(x(tx))T(x - y) < 0.

Because i„ < tx we have ||x(fx) — a:(*v)|| > 0, so f(x(ty))T(x(tx)-x(ty)) > 0

and f(x(tx))T(x(tx) - x(ty)) < 0. From the construction follows x{tx) G

Uj(x(tv)) and therefore / is not locally pseudo-monotone around x(ty).

(iii) t* = 1: Similar to case (i). |

If convexity of D is dropped, however, the claim of Lemma 3.4 can be falsified

by simple counter-examples; note also that continuity of / is not required.

So far we insisted on 'global' pseudo-monotonicity in order to guarantee that the

set of Solutions (/, D)* is contained in the cut set (f,D)**. If we are satisfied

by one Solution x G (/,£))*, however, we can replace the condition of pseudo-

monotonicity over the whole set D by the condition of pseudo-monotonicity at x

alone.

Definition 3.5 / is called pseudo-monotone at x G D over D if the implication

(f(x)T(y -x)>0 = f{y)T(y - x) > 0) is true for all y G D.

Lemma 3.5 Assume x G (/, D)" and f is pseudo-monotone at x over D, then

x is not cut away by any cut, i.e. \/y G D : x G {z | f(y)T(y — z) > 0}.

The proof is an immediate consequence of the definition.

A second kind of relaxation is motivated by practical prob¬

lems where one always has to deal with numerical imperfections.

Looking at the geometry of a cut in Figure 3.2, where an ad¬

ditional strip of width e > 0 (gray shaded) is included in the

cut set Cy := {x e D\ f(y)T(y - x) > -e\\f(y)\\} demonstrates

that the corresponding notion of e-pseudo-monotonicity is a true

relaxation of pseudo-monotonicity:

Definition 3.6 / is e-pseudo-monotone over D if

(f(xf(y-x)>0 = f(yf(y-x)>-e\\f(y)\\) Vz,y e D.

Figure 3.2: e-relaxation.
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It is interesting to note that in our practical economical examples we usually
observed e-pseudo-monotonicity for some appropriate e > 0, whereas pseudo-

monotonicity occured less frequently.

Let Yk = {y°,... ,yk} C D be such that nv.eykC°, has non-empty (relative)
interior, which is exactly the Situation of Algorithm 2. Then the point to set

map e G [0, oo) i-> C\y,YkC^, is continuous. Namely continuity also holds at the

boundary e = 0. This is a consequence of [30, Theorem 3.2] together with the

fact that non-empty mterior of f}y,eYkCy, implies non-emptiness of n^yiCy for

some e < 0.

In the course of an algorithmic process one can vary e, say proportional to the

radius of the largest inscribed sphere at the given iterate yk, which, in case of

a polytope D, is easy to compute. If such a relaxation-scheme is applied in a

Situation where the Operator is strongly /-monotone and the volume reduction

for non-relaxed cuts is bounded by a constant smaller than 1 (cf. [71]), such a

relaxation is always possible while maintaining polynomial complexity.

3.2 Complexity of the VIP-Approaches

In the last 30 years the computational complexity has become an ever increasingly

important aspect in the analysis of problems and corresponding algorithms. For

a good survey on the historical development see for example Cook [14]. Closer to

our problem is the monograph from Nemirovsky and Yudin [84]. In our context

the basic question is: Given a class of problems defined by certain properties, is

there a scheme which, for every e > 0, finds an 'e-close' Solution after a polynomial
number of arithmetic Operations A (or iterations /).

To sharpen the question, the notion of an e-close Solution must be fixed; for

convex minimization problems one usually considers an iterate xk to be an e-

close Solution if |F(x*) - F(x*)| < e, where F denotes the objective and x" is a

minimizer.1 Lacking an objective for VIPs, alternate measures must be used, see

Definition 3.7 and 3.8 below.

Next, to make the notion 'polynomial' operational the arguments must be spec-

ified. Possible arguments comprise the dimension n of the involved Euclidean

space, a characterization of the feasible set D like the diameter 8 of D and the

radius p of the largest sphere contained in D, and as characterization of / both

a Lipschitz constant L and an upper bound M of j|/(x)|j for x G D. We call

a problem class and the corresponding algorithm polynomial, if we can find a

polynomial p(n, 5, p, L, M, log(A),...), such that A < p(...) (or I < p(...)) for

any problem instance in this class of problems. If the polynomial p depends on

j
rather than logf1), the complexity is called pseudo-polynomial.

^ore populär is a relative e-solution concept, if V is a good lower bound on the Variation

of F over D, i e. V w maXa-eo F(x) — minl£D F(x), a pomt x D is called an e-close Solution

if \F(xk) - F(x-)\/V < E
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For our discussion it is important to emphasize the difference between the State¬

ment 'problem class Z is polynomial (solvable)' and 'algorithm Y which solves

all problems of class Z is polynomial'. While the former is not specific about the

algorithm (it requires only the existence of a polynomial algorithm), the latter

claims polynomial complexity with a given algorithm.

Research in the last 10 years has revealed polynomial complexity for many impor¬

tant classes of convex minimization problems and consequently monotone VIPs

(see e.g. [86, 98]); the underlying algorithms are so called path-following (in-
terior point) methods which need a continuously differentiable / together with

an 'easily' computable barrier, which must fulfill some additional conditions. If

derivatives are not available—as it is the case for the MM"-based VIP—, and

hence we apply a strategy following Algorithm 2, the example in Figure 3.5 below

proves non-polynomial complexity for a monotone VIP. Because a monotone Op¬

erator is pseudo-monotone the same non-polynomial complexity of Algorithm 2

holds for pseudo-monotone VIPs, see also Figure 3.4 below.

Strikingly enough, Nesterov [85] proves pseudo-polynomial complexity using AC¬

CPM for convex minimization problems, where / is the gradient map of the

objective. Furthermore, for an adapted ACCPM where superfluous constraints

are dropped even polynomial complexity can be shown, see Atkinson and Vaidya

[3]. In view of Proposition 3.1 we have the unsatisfactory Situation that ACCPM

is polynomial for monotone VIPs only if / is the gradient of some convex function.

Dropping the assumption of a convex integral, a first polynomial complexity re¬

sult based on Algorithm 2 using centers of circumscribed ellipsoids was proven

1985 in Lüthi [70] for strongly monotone VIPs. A generalization (in a certain

restricted sense) for strongly /-monotone VIPs appeared 1996, see Magnanti
and Perakis [71]. This case is of interest because it represents the weakest as¬

sumption known to date for polynomial complexity based on Algorithm 2. For

monotone problems an ingenious breakthrough due to Nesterov and Vial [87]
was finally achieved by homogenization of the problem and applying ACCPM in

this extended setting. As an interesting detail, however, it turns out that the

iterates yk do not represent a sequence converging to a Solution. Only after a

clever weighting, yk = 5Z,_0 wty', a sequence yk is obtained which converges with

pseudo-polynomial complexity to a Solution.

To give an insight in the subtleties of the structures involved, we briefly outline in

Section 3.2.1 the behavior of pseudo-monotone VIPs when solved by Algorithm 2.

In Section 3.2.2 the monotone case is discussed where a homogenized ACCPM is

used.

3.2.1 The Pseudo-Monotone Case

The notion of strong and weak Solutions (see page 23) leads to two measures re-

flecting the 'closeness' of any leflto the two Solution sets (/, D)* and (/, D)"
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respectively. Examining first the strong Solution property defining the true Solu¬

tion set (/, DY = {x G D | f(x)T(y - x) > 0 Vy G D} of VIP(/, D), we find for

any x G D

min/(x)T(y-x) < 0,
veD

where min^o f{x)T(y - x) = 0 if and only if x G (/, DY- By changing the sign

we observe max„eB /(x)T(x - y) > 0 for any x G D and '= 0' if and only if

x 6 (/,-D)* motivating the following notion.

Definition 3.7 (Pnmal gap function, [48]) gp(x) := maxf(x)T(x — y).
yeD

A specific Interpretation of gp can be given in case of convex minimization prob¬
lems, where we have F(x") > F(x) + VF(x)T(x* - x) for a Solution x* and any

x G D. We then see

|F(x)-F(s*)| = F(x)-F{x") < VF(x)T(x-x')
< max VF(x)T(x - y) = gp(x),

yD

that is, gp(x) gives an upper bound for |F(x) - F(x*)|. More generally, gp(x) can

be geometrically interpreted as measuring the width of Cx := { y G D \ f(x)T(x —

y) > 0} along f(x) scaled by ||/(x)[|. Next, the weak Solution property defining
the weak Solution set (/,-D)** = {x G D\f(y)T{y - x) > 0 Vy G D} can

analogously be understood as min„eD /(y)T(y - x) < 0 for all x G D, and with

'= 0' if and only if x is a weak Solution, that is, x G (/, DY*- Changing the sign

yields the definition of the dual gap function:

Definition 3.8 (Dual gap function) gd{x) := max/(y)T(x — y).
yeD

From the definitions of the gap functions follows an obvious way how

a VIP can simply be stated as minimization problem. But while we

can prove in Lemma 3.6 convexity of gd without any assumptions, this

is not true for the primal gap function; even under the assumption
of (strong-)monotonicity gp can be non-convex as is demonstrated by
the following example. Think of a half-funnel defined over D ~ [0,2]

Figure 3.3: Non- with p = i_x2 for x e [0) j] and Ftx) =I-![ori£ (1,2], F is

convexity of gp for
convex and once continuously differentiable with f(x) := VF(x) = x

a monotone VIP. fot x [01j anci constant 1 for larger x, see Figure 3.3. For gp(x)
we find x2 in the unit interval [0,1] and x for x G (1,2]. Thus, even though gp
is convex both within [0,1] and (1,2], it is obviously non-convex on whole D.

By twisting slightly F on (1,2] the same construction can be extended to strong
monotone maps derived from F. But at least gp is continuous. The Situation

with the dual gap function is nicer as is shown in the following lemma.

Lemma 3.6 ga is convex and continuous on D.
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\gd is the supremum of linear functions and therefor convex on D. From convexity

follows continuity in the interior of D. In general, a convex function may be non-

continuous on the boundary of its domain; in case of gd, however, we can exploit
its specificity. First note that the extended map g~d{x) '= max^D /(y)T(x — y)
is well defined and convex on 15 + e for any e > 0. Thus <jd is continuous on

int(D + e); because <jd = gd on D and additionally D C int(D + e), gd must be

continuous on D. \

To tackle the question, if a cutting plane concept follow¬

ing Algorithm 2 can have polynomial complexity for pseudo¬
monotone VIPs, we first have to agree on how the centers

are chosen. As is demonstrated by the example presented in

Figure 3.4, all 'reasonable' centers like the center of gravity,
the analytic center, the center of (inscribed or circumscribed)

ellipsoids or the Volumetrie center, behave qualitatively equal

and we can choose whatever we like. Next, we have to agree

on how the quality of an approximate Solution xk is mea¬

sured; in this example we restrict ourselves to gd and take

as a second measure the Euclidean distance from the set

of Solutions, for which we have the trivial characterization

d{xk, (/, DY) = 0 if and only if xk G (/, D)\

,. *

X 1

r .
* , ,

X2

--M-H-U
. . 1. V 1

Figure 3.4: Complexity ofa

cutting plane algorithm for

a pseudo-monotone VIP.

Looking at Figure 3.4, we first note that the vector-field is pseudo-monotone and

continuous implying (/, D)* = (f,D)** = {x*}. Next, we see that by choosing

a > 0 sufficiently small, an arbitrary number of iterates can be kept on the central

vertical line. To estimate gd(xk) and d(xk, x*), we assume that the cube has sides

of length 1, x* = (|,0), that the length of the vectors amounts constantly to ^
at all feasible points, and that the vector-field has an angle with the bottom line

of
y

for all points on the bottom line which are by at least some small e > 0 to

the left of x* (with this e-gap we can interpolate the vector-field continuously to

match the picture and have a unique Solution). Choosing in the evaluation for

gd(xk) a y at the bottom line and by e to the left of x*, we find as a lower bound

9d(xk) ^ cos(|) \ • \ =

jj
for an arbitrary number of iterations k. Similarly

we see d{xk, (/, D)*) = \\xk - x*|| > |. Hence a cutting plane concept following

Algorithm 2 does not possess polynomial complexity with respect to gd or the

Euclidean distance for pseudo-monotone problems.

Such a non-polynomial behavior can also be observed if the primal gap function gp

is chosen as measure. Consider again the unit-square {0 < Xi < 1} x {0 < x2 < 1}
and define f(x) = (0,1) if x2 > a and f(x) = (1,0) if x2 < ct. By choosing a suf¬

ficiently small a > 0 we can provoke an arbitrary number of cuts parallel to the

Xi-axis for reasonable centers (like the analytic center or the center of gravity), but

finally a center will lie for the first time in the a-strip along the xraxis. For the an¬

alytic center or the center of gravity this will happen on the vertical line x\ = 1/2,
and so gp(xk) = 1/2 for an arbitrary large k. The Operator in this example could

also be made differentiable by inserting an appropriate 'small' transitional strip.
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To gain polynomial complexity in a cutting plane concept following Algorithm 2,

strong /-monotonicity is the weakest known condition to date, cf Magnanti and

Perakis [71]. If the problem is solved in a homogenized reformulation, however,

monotonicity is sufficient for pseudo-polynomial complexity. The next section

outlines this approach.

3.2.2 The Monotone Case

Until recentiy this case resisted a theoretical

satisfactory treatment. Nesterov and Vial [87]
finally suggested a homogenization concept

and proved pseudo-polynomial complexity for

solving monotone VIPs without further condi¬

tions (except bounded ||/|| on D, which is not

demanding). In Figure 3.5 an example due to

Nesterov and Vial [87] is given, where /(y) =

(ä/2, -?/i) is monotone, D = [-1,2] x [-1,1],
and the unique Solution lies in the origin 0.

For an improved presentation the vectors of

the vector-field / are depicted slightly short-

ened along the boundary of D. Note that /
is not integrable because its derivative is not

Symmetrie. Considering Algorithm 2 all cuts pass through the origin and hence

the analytic center is, starting from y° = (1/2,0), driven away from the Solution

towards (—1,0) when ACCPM is applied directly (dotted line). The hard nature

of this problem is further underlined by using other centers like the center of

gravity or the center of maximal inscribed ellipsoids which converge to (—2/3,0)
and ( — 1,0) respectively, i.e. far away from the true Solution.

On the background of this general difficulty with Algorithm 2, the result due to

Nesterov and Vial [87] fascinates even more; its iterates are depicted along the

solid line in Figure 3.5 showing convergence to the Solution. To compare also

with path-following methods, the triangles connected by a dashed line represent

the iterates of an algorithm described in Ralph and Wright [93]. Because of the

quick convergence only the first few iterates are shown, after 10 iterations the

absolute value of the components of the iterates are already below 10"~20.

In the next section the basic analytic center cutting plane Solution concept in the

frame of a homogeneous feasibility problem is given, and in a subsequent section

applied to monotone VIPs. For an improved presentation we denote by y the

variable in the original space and by x the variable in the homogenized space.

Figure 3.5: A monotone Operator with di-

verging ACCPM.

The Homogeneous Feasibility Problem

The problem investigated in this section is the so called homogeneous feasibility

problem. Given is a closed convex cone K with non-empty interior, and a second
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closed convex cone X*. The feasibility problem then is to find x G K n X*

with x ^ 0, or to approximate ATlP in a sense specified later. The following
definitions are necessary for the exposition.

Definition 3.9 ([86, Definition 2.1.1]) Let Q C IR" be open, convex and non¬

empty and let a > 0. Then F : Q —¥ IR is called a-self-concordant ('a-scc') on

Q if F G C3 is convex, and for all x G Q and all h G IR" the following inequality
holds:

\ V3F(x)[/i, h,h]\< -^=(V2F(x)[h, h)f12. (3.3)

By the Mean Value Theorem we know (V2F(x')-V2F(x2))[/i, h] = V3F(£)[h, h, x1-

x2] for some £ G [x1,!2]; thus, condition (3.3) states Lipschitz continuity of V2F

with respect to its own local norm V2F. Note that from the definition follows

'stability under summation' ([86], Prop. 2.1.1 (ii)), i.e. if F, is a,-scc on Q„
i = 1,2, and Q := QinQ2 / 0, then Fx + F? is a-scc on Q with a = min{a!,a2}.

Definition 3.10 (]86, Definition 2.3.2]) Let K c IR" be a closed convex set

and proper cone (i.e., K / IR"^ with non-empty mterior, and let v > 1. Then

F : int K —> IR is called a v-loganthmically homogeneous barrier for K (notation:
F G B„(K)) if F is a C2-smooth convex function on int K such that F(x,) —> oo

for each sequence {x, G int K} that converges to a boundary pomt of K, and, for
each x G int K and each t > 0 we have

F{tx) = F{x) + v\ogt. (3.4)

If m addition F is 1-self-concordant on mtK then F is called a v-normal barrier

for K (notation: F G NBV{K)).

Both iMogarithmically homogeneous barriers and (/-normal barriers enjoy 'sta¬

bility under summation': If F, G B„t(Ki), » = 1,2 and intfi^! n K2) ^ 0 then

Ft + F2 G 5^+„2(#i n K2). Furthermore, if F, G JVß„,(.rY,), i = 1,2, then

F1 + F2GiV5,1+„2(/i-1nA:2).

As an important example consider a convex cone defined by m hyperplanes:
K = {x | afx > 0,i = 1,... ,m}. It possesses the ro-normal barrier F(x) =

- Y^=i l°g(afx) an<1 therefore F(x) is also 1-scc. More generally, let F(x) be

a f-normal barrier for a cone K, and assume K n {x | aTx > 0} has nonempty

interior; then the function F(x) — log(aTx) is a v + 1-normal barrier for the cone

K(l{x\ aTx > 0}.

Definition 3.11 ([81, Definition 1]) g(x) is called a homogeneous Separation Or¬

acle for X* on int K if

(%) g(x)T(x - x*) > 0 for all x* G X* and all x G int K;

(n) g(tx) = q(i) for all x G K;
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(in) g(x)Tx = 0 for all x G K.

By (i) we do not lose any x* G X* by making cuts at any x G K, and by

(iii) the hyperplane returned by the Separation oracle passes through the origin

maintaining thereby the cone-property. In the sequel we assume the following.

Assumption 3.1 ([87, Assumption 1])

(i) There is a v-normal barrier F(x) for K;

(n) there is a homogeneous Separation oracle g(x) for all x G mt K, with

\\9(x)\\ = 1.

Based on these assumptions the Separation oracle is used in Algorithm 3 to solve

the feasibility problem.

Algorithm 3 Homogeneous cutting plane method ([87, (2.5)]).

(i) Setfc = 0, F0:=f||:r|r + F(x).

(ii) Compute the analytic center xk = argmin^, Fk{x), and set Fk+1(x) =

Fk(x) - \og(g(xk)T(xk - x)).

(iii) Stop if xk satisfies a stopping criterion, otherwise set k := k + 1 and return

to (ii).

Due to the quadratic term |||x||2 in F0 the centers are called proximal analytic
centers. In fact the factor | can be replaced by any positive number without

changing the iterates in the projective geometry. This freedom is also present in

the later application to monotone VIPs described in Algorithm 4. In view of a

real world implementation the accuracy in the computation of the analytic center

and the oracle-response is to be clarified. At least the precision of Computing the

analytic center can be considerably relaxed to the Standard approximation

%— fit
\\VFk(xk)\\{VFk(xh)\ i <

—2—

while preseiving qualitatively the complexity analysis below.

To measure the convergence of the iteiates the following weighted average of the

slacks is studied:

1
k~l

Mx) =

TT ]P A^xJ^x, -x), (3.5)
Sk"

1=0

where

Kk =
, vr/ T

for i = 0,... ,fc-1, and Sk =

J^A„
9\Xi) \Xi xk)

k-l

1

k-
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Note that analytic centers are always in the interior of the cone, implying x, / x3

for all possible i and"^ where i ^ j.

With the constants 9X := |(%/5 - 1) - log(^ti) « 0.137, 92 := ^ « 1.62, and

03 := j-eei~1/2 « 0.43 the following main theorem holds for the conic feasibility

problem when Algorithm 3 is applied.

Theorem 3.7 ([81, Theorem 1[) For any x G K the following bound on ßk{x)
holds:

Mr) < 4f^(F(Xi)~F(lo))A INI-

Furthermore, F(xk) — F(x0) < k^JvQi yieldmg the bound

/Fh

kB;
ßk(x) < ^§r-ee^\\x\\. (3.6)

Solving Monotone VIPs

Consider a monotone VIP(/, D) with Single valued /, where D and / are bounded,
i.e. there exist constants R and L respectively such that || y \\ < R and || f(y) \\ <
L for all y e D. From monotonicity we know that </<j(y) = 0 if and only if

y G (/, D)"*, and moreover g<j(y) is convex and continuous on D. Similar to

the cutting plane method outlined in Algorithm 2 we do not intend to solve

VIP(/, D), but want to find a point y which is close to (/,£/)** in the sense of

the dual gap function gd-

Definition 3.12 Given the Operator f and the compact set D with nonempty

mterior, we call a pomt y an e-close Solution to VIP(f, D) if gd(y) < e.

In a first step the VIP is transformed into a conic feasibility problem by the

following embedding:

X* := {x:=(iy,t)|yG (/,£>)", t>0},

K := {x:=(ty,t)\yeD, t > 0}.

Next we need a ^-normal barrier for K; this can be constructed in a straight¬
forward way if a f-scc barrier for D is known, cf. Nesterov and Nemirovskii [86,
Proposition 5.1.4]. Here we restrict ourselves to the relevant case of a feasible set

D defined by linear inequalities, {y | ajy < bt, 1 = 1,... , m}. This includes the

unit simplex A which is the feasible set in our equilibrium problem. In such a

case, with linear constraints only, an m + 1-normal barrier for K is given by

m tn

F(x) = -J2lo^bi~a^y^~l°6t = -5Zlos(6'-a^)-(m + 1)loe*'
1=1 1=1

where, as defined above, x = (ty,t). In order to apply the machinery from the

previous section we have to impose the following assumption.
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Assumption 3.2 ([81, Assumption 3]) The origin 0 is the analytic center of D,
i.e. VyF(0,0 = 0.

Consequently, the minimizer of F0(x) = 5||x||2 - F(x) is x0 = (0,1) yielding

j|x0|| = 1. In order to meet this requirement a translation of the whole problem
from the analytic center of D into the origin has to be done; this is also true in

the case of A, the feasible set of our equilibrium problem.

As a final ingredient for Algorithm 3 we need a homogeneous Separation oracle

following Definition 3.11; with

ä(x):=(f(y),-f(yfy)

the conditions (ii) and (iii) of Definition 3.11 are obvious. The inequality in item

(i) of Definition 3.11 is equivalent with f(y)T(y" — y) < 0, and this contains the set

(/,£>)**. Hence we have a homogeneous Separation oracle, where, at x = {ty,t),
we have

g(x)T(x-x)=t(f(y),y-y). (3.7)

Theorem 3.8 (]81, Theorem 2]) Algorithm 3 yields an e-approximate Solution

in the sense of Definition 3.12 m at most k iterations, where k satisfies

*
<
£U + #)^. (3.8)

Vk + v £"3

| Assume {x,} = (<ty„t,) is the sequence generated by Algorithm 3; define

\k
k~\

and

1
k~1

Vk = -^~Yln'ky>- (3-9)
n

.=o

Choose an arbitrary y G D; from monotonicity of / we conclude

f(yf(yk-y) = yJ2**f(v)T(v*~y) ^ ttHW(y.)T(y.-v)- (3.io)
*

1=0
*

1=0

Let x = (y, 1) be the corresponding canonic element in the cone K; then from

(3.7) we deduce further

1 ti 1 ti
-w2_,Kikf{y,)T{y, -y) =

-^ 22^g(x,f(x, - x)
n

i=o
n

,=0

1
*_1

5- Yl x'<>g(xi)T{xi - x)
Pk"

1=0

Sk , .

Wt*k{x).
rk
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The factor 7 + - is minimal for 7 = 1, i.e. the scaling is optimal if k = R with

the complexity relation

_A= < ^ee^.
'

(3.11)
\/k + v £03

Let us conclude this section by expliciting the homogeneous cutting plane method

for monotone VIPs.

Algorithm 4 Homogeneous CPM for monotone VIPs (cf. [87]).

(i) Choose e > 0 and compute the related maximal iteration bound k following

(3.8) or (3.11).

Set k=0, shift the initial feasible set at its analytic center into the origin,
let Fix) be the i/-normal barrier for the related cone, and define F0 :=

f||x||2 + F(x).

(ii) If k > k goto step (iv).

(iii) Compute the analytic center xk = argmina,Ft(x), set F*+i(x) = Fk(x) -

log(g(xk)T(xk — x)), set k := k + 1 and goto step (ii).

(iv) Compute the Solution yk following (3.9).

Of course, instead of fixing the number of iterations in the beginning of Algo¬
rithm 4, it can be reasonable to replace step (ii) by step (iv) and then to judge
the quality of yk in every iteration. Note, however, that the explicit evaluation

°f 9d{Vk) is m general not tractable. Only the primal gap function can easily be

handled as linear programming problem in case of a polytopal initial feasible set.

And in view of (3.10) monotonicity helps to use the primal gap function as bound

for the dual gap function.

As a final aspect note that the accuracy required in the computation of the ana¬

lytic center in Algorithm 4 seems to limit the attainable final quality of Solution.2

This is a fundamental difference to Algorithm 3 for solving the feasibility problem.
The question of accuracy with respect to the oracle seems to be still open.

3.3 Economic Evidence for (Pseudo-)Monotonicity
of Market Demand

The previous two sections clarified the necessity of (pseudo-)monotonicity for

applying a cutting plane method. Following the notation in Section 1.1 we want

to justify here (pseudo-)monotonicity of the aggregate demand function d(p) =

2Personal communication with J.-P Vial
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J2ieix'(p)- This is not vet tne Aggregate excess function which is the vector

valued difference between supply and demand as a function of the price, but if

the aggregate supply is monotone (e.g. independent of the price), the property

of monotonicity of demand and excess coincides.3 Dafermos [16] states for the

excess function that "monotonicity assumptions, though restrictive, are in the

spirit of the 'law of demand' ".

To support intuition a typical one dimensional supply and de¬

mand curve with resulting excess is depicted in Figure 3.6. The

supply s is usually expected to increase when prices rise (nonnega¬
tive slope of s(p)), whereas the demand d decreases (non-positive
slope of d(p)). Hence we observe not only monotonicity of the

demand, (d(pl) — d(p2))(p1 — p2) < 0, but even more plausible

monotonicity of the excess e(p) = s(p) - d{p). The relevance

and applicability of this one dimensional argument to higher di¬

mensional cases, however, is limited. Major reasons are so called

cross-price effects, where changes in the price of a commodity i
p. e

oc. yion tft
•

influence demand or supply of a different good j, which is a com- -

of demand and ex_

mon phenomenon. Given such cross-price effects together with

monotonicity for each component, it depends then on the amount

and sign of the cross-price effects, whether or not the excess for prices differing
in more than one component is (pseudo-)monotone.

Note that in general the individual demand not only depends on the price, but

on the monetary endowment w as well. If w = pTx° for fixed x°, the additional

variable w is not needed, but in general w has to be included and then the

individual demand function will be written in the form f'(p, w*), i G I. If there

is only one individual the index i is dropped.

In the sequel a number of cases will be investigated with respect to (pseudo-mono¬
tonicity of demand.

3.3.1 Pseudo-Monotonicity of Excess in the Case of Util¬

ity Maximizing Consumers

As indicated above we focus the discussion on demand only. This might irritate,

because it is well known in the economic literature that for utility maximizing

consumers the resulting individual demand x,(p) is already pseudo-monotone. To

justify this claim we consider problem (1.6) but exclude production, i.e. y, = 0,

and drop the index i for convenience. In a first step we claim that the resulting in¬

dividual demand function x(p) fulfills WARP (weak axiom of revealed preference):

Definition 3.13 (WARP, weak axiom of revealed preference, [94]) The demand

function f(p, w) : lR"xl —> IR", with pnce p and monetary endowment w (outlay,

mcome), is said to fulfill the weak axiom of revealed preference if for every pair

(px,wl), (p2,w2) G IR" x 1R+, p2Tf{px,wl) < w2 implies p1Tf{p2,w2) > tu1.

3We use here the Convention of the economic literature, where monotonicity of demand is

defined with reversed sign I inequality) compared to our definition 3 2. In the case of supply or

the excess, however, our de'i'ütion applies.
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In order to show WARP for consumers based on (1.6) we first bridge the gap to

our notation by setting x(p) = f(p,pTx°), abbreviate x' = x(p') = /(p',piT^'°) =

f(p',w') and observe that our consumers behavior follows max£/"(x) s.t. pTx <

w. To verify WARP we see from the left side of the implication that x1 is

feasible at (p2,w2), therefore we must have U(x2) > U(xl). If we assume that

the implication in the definition of WARP does not hold we get the contradiction

that x2 is strictly feasible at (pl,i»') and thus U(x1) > U(x2).

From WARP we derive in a second step pseudo-monotonicity of the individual

excess. The relation

p2Tf{p\wl) < w2 =»• p1Tf(p2,w2) > w1

can be written in the notation of (1.6) as

p2T(x(p1) - x°) < 0 => p1T(x(p2) - x°) > 0, (3.12)

or, using the excess e(p) = x° — x(p), we find p2Te(p1) > 0 => p1Te(p2) < 0.

With the budget identity pTe(p) = 0 we finally conclude

«KpW-P1)^ =* e(p2)T(p2-pl)>0.

Essential in this derivation of pseudo-monotonicity of e(p) is the price-indepen-
dence of production. This holds e.g. for a pure exchange economy, but as soon

as production is allowed, the identity w = p1 x° is extended to w = pT{x° + y(p))
and consequently we find instead of (3.12)

p2T(x(pl) - x° - y(p2)) < 0 = P1T(x(p2) -x°- y(px)) > 0,

where x(p*) — x° — y(p2) can no more be interpreted as —e(p1) except for the case

when y(p) is in fact independent of the price.

Numerically we find—due to the production in problem (1.6)—price pairs violat-

ing pseudo-monotonicity of the excess in case of MM". Nevertheless, WARP still

holds if w = w(p) = pT(x° + y(p)) is dependent on the price, i.e. for problem (1.6)
in its füll generality. But because an agent of the form (1.6) includes production,

pseudo-monotonicity of the individual excess can not be deduced.

3.3.2 Monotonicity of Demand in the Case of a Contin-

uum of Equal Consumers

Coming back to the question of monotonicity of the demand f{p,w) we find in

Hildenbrand [50] a first positive answer. Let / be an individual demand function,
i.e. / fulfills WARP and the budget identity pTf(p, w) = w holds for all p > 0

and w > 0. Consider the following Situation; there is a continuum of consumers

with respect to w described by the same individual demand function /(p, w), and

furthermore the distribution of individual expenditure described by the density
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p : 1R+ -» 1R+ is a decreasing function with J0°° p(w)dw = 1 and /0°° wp(w)dw <

oo. Then the mean (market) demand function is defined by

/•oo

F(p) = / f(p, w)p(w)dw.
Jo

(3.13)

Note that in this formulation p and w are independent of the price. The following
result can be shown.

Theorem 3.9 ([50], Theorem 1) For every individual demand function f and for

every decreasmg density p, the mean demand function F from (3.13) is monotone,

i.e, (p1 - p2)T(F(pl) - F{p2)) < 0 for every p1 > 0, p2 > 0.

Hence, under the given assumptions we can achieve a stronger property by ag¬

gregation than the individual demand functions enjoy. Note also that part of the

assumptions can be relaxed, e.g. p may be increasing in the beginning to some

extend, or there may be a finite set of different demand functions.

But comparing this Situation with problem (1.6) we find nevertheless first of all

only finitely many consumers (quite few indeed). Secondly, the demand functions

are usually mutually different, and thirdly w depends stiongly on p. Thus, even

though x,(p) derived from (1.6) is an individual demand function, we cannot

derive monotonicity of demand.

3.3.3 Non-Monotonicity of the Slutsky Compensated De¬

mand Function

Contrary to the other parts this section documents non-

monotonicity of an approximate demand function called

Slutsky compensated demand function (or 'Slutsky de¬

mand' for short). Two reasons motivate this; first the

so called Slutsky decomposition (of demand), which un-

derlies the Slutsky demand, is needed in the next sec¬

tion, and secondly the Jacobian of the Slutsky demand

is negative semidefinite (n.s.d.). Because this led various

authors erroneously to the conclusion that the Slutsky
demand function is monotone (cf. Eatwell, Milgate and

Newman [22, pp. 544]), the subtleties involved will briefly
be outlined.

1 \_^
Utility level sets

^-6° p X = W

Sy^-b2 p X — W

\Jr'bl
T

p X = W

\^<3;
X

V>C^

Figure 3.7: Slutsky decomposi¬
tion of demand.The object under investigation is an individual, continu-

ously differentiable demand function /(p, w) with a con¬

stant (price independent) outlay w. Assume f(p, w) is analyzed around a given

point x = /(p, w) where pTx = w. Then the Slutsky demand function, defined by

xx ' P *-* f(p,PTx), reflects the change in demand when the price changes under
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the assumption of constant purchasing power, that is, the outlay is adapted to

keep x just affordable. Graphically this corresponds to a rotation of the budget

constraint around x in Figure 3.7. While x —> xs can be interpreted as (Slut¬
sky) Substitution effect, xs —¥ x is constructed by a parallel shift of the budget
constraint b1 —> b2 to regain the old outlay in the new price setting p and called

mcome effect. Looking at our model (1.6) we have w = pT(x° + y(p))\ to sim-

plify assume that production y is price independent yielding a demand function

f{p,pTx°) with x° := x° + y. Thus at x° the Slutsky demand function xl0(p) and

the simplified demand function /(p,pTx°) stemming from (1.6) coincide, and one

is motivated to use x|(p) as an approximation for f(p,pTx°) in a neighborhood
of p, where x = f{p,pTx°). Differentiating the Slutsky compensated demand

function xj(p) gives

VP4H = Vp/(p,prx)|p_ = Vp/(p,üY)|p_ + Vwf(p,w)\^xT, (3.14)

where Sf .— VpxJ(p)L and Af := V„/(p, «OL*7" are called 'Slutsky Substitution

matrix' and 'matrix of income effects' respectively. Now Hildenbrand [51, p. 176]
proves equivalence of WARP and n.s.d. of Sf under the assumption of budget

identity, i.e. at points (p, x) where xj(p) = x. Based on the first equality in (3.14)
one might hope to exploit n.s.d. of Sf to prove monotonicity of }(p,pTx) for all

x and all p in a neighborhood of p by using the Mean Value Theorem,

(A(p) - SM)T{p - P) = (p- P)tvMp)\(t(p - p),

where the notation fx(p) abbreviates f(p,pTx), and £ is chosen appropriately
from the interval \p,p}. It turns out, however, that n.s.d. of Vpfx(p)L can not

be deduced from n.s.d. of Sf because the latter holds only at points (p, x) where

xj(p) = x, and hence can be false at p = £. It is even possible to construet

individual demand functions of the form /(p,pTx°) which are not monotone, see

Eatwell et al [22, p. 545].

3.3.4 Monotonicity of Demand in the Case of a Large

Population of Sufficiently Heterogeneous Consumers

In the previous section we approximated the real demand function f(p, w(p))
stemming from problem (1.6) by requiring price-independence of production y

and thereby relating it to the Slutsky demand function. But we can as well

approximate f(p,w(p)) by the usual demand function f(p,w) where w is price-

independent, that is constant. Given a finite population of consumers with indi¬

vidual continuously differentiable demand functions f'(p, w'), where w' is price-

independent, the mean market demand function F(p) is defined by

Fw = m£/1(p'w!)' (3-15)
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and again we ask if F(p) is monotone. A positive answer, based on the main ideas

in Hildenbrand [51], is outlined in the following. The reasoning Starts with the

Slutsky decomposition stated in (3.14). The goal is to raise evidence for n.s.d. of

VpF(p) and we rewrite for that purpose (3.14) in the form

VpF(p) = S(p) - A(p), (3.16)

where S(p) and A(p) represent the corresponding mean over the set of consumers

of Sf(p) and Af(p) respectively. From the last section we know Sf(p) and thus

5(p) is n.s.d. and concentrate therefore here on conditions implying positive semi-

definiteness (p.s.d.) of A(p). To begin with note that A(p) is p.s.d. if and only if

M(p) := A(p) + A(p)T is. From (3.14) and (3.15) we deduce

MW = j7i£v-,[/'(p>tu,)/,(p>u',)r]
' '

16/

= lim i [m2{f'(p, w> + h)} - m2{f'(p, w')}] ,

ft-»o n

where m2 is the second moment of a cloud of vectors with components defined

by

m2k{f'(p,w')} := ^-Xf;(p,w')fl(P,W).
' '

i7

Observe that the second moment of any cloud of vectors is p.s.d. (if in the

definition of m2 every summand is p.s.d. then also the sum, and the former

is equivalent to requiring that uuT is p.s.d. for any u e TR" which is trivial).
Therefore we mean by 'increasing spread of consumers demand' that for every

sufficiently small h > 0 the matrix m2{/'(p, ur* + h)} - rn2{f,(p,w')} is p.s.d.,
and this is a sufficient condition to have a p.s.d. A(p), and thus monotonicity of

the mean market demand.

One plausible argument why M(p) should be p.s.d. stems from the Observation

that an increase in income also increases the variance of demand (heteroscedastic-

ity). However, it must be fundamentally acknowledged that empirical evidence is

needed here. Interestingly enough this shows also that the mean market demand

can enjoy properties that are non-existent in any of the underlying individual

demand functions. In Hildenbrand [51] this concept is much more elaborated

and made applicable to real world data, and empirically verified using data sets

from the United Kingdom and France.

3.3.5 Monotonicity of Demand Implied by a Sufficiently

Small Curvature of Utility

Another possibility, due to Mitjuschin and Polterovich (1978, cited in [51]), is

based on the insight that by imposing certain conditions on the utility U, the

resulting individual Substitution effect Sf(p), and thus S(p), can be made suffi¬

ciently negative definite in order to guarantee n.s.d. of VpF(p).
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Proposition 3.10 (cf. [51]) Let f(p,w) denote a C1 demand function that is

derived from a C2, monotone, and concave utihty function U. If

xTV2U(x)x

then the function f(p, w) is strictly monotone m p for w > 0, that is,

(f(p\ w) - /(p2, w)f(pl - p2) < 0 V pV P2 6 E^+.

3.3.6 Monotonicity of Demand Implied by Homothetic

Individual Demand Functions

Instead of making Sf sufficiently negative definite we ask now for conditions im¬

plying Af to be p.s.d. Assume for that purpose that an individual demand func¬

tion /(p, w) is homogeneous of degree one in w, that is, /(., \w) = A/(., w) for

all A > 0. Using Euler's equation wVwf(., w) = /(., w) we then have coUinearity
of V„/(., w) and f(.,w) which is equivalent with p.s.d. of Vm/(., w)f( , w)T =

Af. This can be extended to so called homothetic functions which are produced

by applying a strictly increasing transformation to a homogeneous function. It is

exactly this class of homothetic demand functions, characterized by the coUinear¬

ity property of Vwf and /, which guarantee Af to be p.s.d.

3.3.7 Conclusions

The cases above can be seen as different approximations to the 'real' demand (or
excess) function resulting from a set of agents of the form (1.6). Though none

of them is equivalent to (1.6), they Support the claim of Dafermos [16] cited in

the beginning. Specifically, it is interesting to find pseudo-monotonicity of the

individual excess (and thereby the aggregated excess) given price-independence
of production. Further reaching, however, are the concepts relying on sufficiently

large sets of heterogeneous consumers where the mean variance of demand in-

creases with rising w. This justifies hope to gain (pseudo-)monotonicity of the

excess for modeis comprising an increasingly number of agents of the form (1.6).



Der Turhuter stellt öfters kleine Verhöre mit ihm an, fragt
ihn über seine Heimat aus und nach vielem andern, es

sind aber teilnahmslose Fragen, wie sie grosse Herren

stellen, und zum Schluss sagt er ihm immer wieder, dass

er ihn noch nicht einlassen könne. Der Mann, der sich

für seine Reise mit vielem ausgerüstet hat, verwendet

alles, und sei es noch so wertvoll, um den Turhuter zu

bestechen Dieser nimmt zwar alles an, aber sagt dabei

"Ich nehme es nur an, damit du nicht glaubst, etwas

versäumt zu haben
"

F K [58]

Solving EEP Using the

Negishi-Approach

In this chapter the conceptual Negishi algorithm (Algorithm 1 page 16) is dis¬

cussed more in depth. First, Section 4.1 Starts by comparing the VIP- with the

Negishi-view. Next, in Section 4.2 two strategies are presented on how the weight
vector ak can be updated, thereby concreting the conceptual Negishi Algorithm.
Because the algorithms solve in each iteration a Negishi-welfare problem, Sec¬

tion 4.3 treats two undesirable properties of the Negishi-welfare problem: (i) to

actually built it requires in general a global reformulation of all underlying indi¬

vidual utility maximization problems, and (ii) to solve the resulting large welfare

problem may be intractable. Both problems are simultaneously resolved by a

technique called decomposition and for which an algorithm is given.

Contributions comprise the Suggestion of the Ä-Negishi-Algorithm, the analysis of

the r-Negishi-Algorithm in case of MM" (see Appendix E.2.2), and the discussion

of unboundedness of the Lagrangian in Section 4.3.2.

4.1 Comparing the Negishi- and VIP-View

As stated in Theorem 2.5 there are relations between the VIP- and the Negishi

problem1 motivating the notion of 'primal' problem for the VIP-approach and

'dual' for the Negishi problem.

Figure 4.1 depicts symbolically the Negishi- and the VIP-approach; the Negishi-
view is located to the left, whereas the VIP-view is presented to the right. Ur

represents the objective function (utility) and Kr the set of constraints (feasi¬
bility set) for r G R from problem (1.5), or, more generally, from (1.6), without

'While the Negishi-welfare problem is given in Definition 1.2, the 'Negishi problem' is then

to find a weight vector q, such that a Solution of the related welfare problem represents an

equilibrium, cf. Theorem 2.5.

Chapter 4
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Negishr overall welfare problem

1/a

max aiUi + + Clxl'R

S t Ci + . + tR > o

K\

Kr

VIP independent legional piobiems

max [\ max Up

st. prei > 0 s.t priB > 0

' |
Kr

Space of regions Space of goods

Figure 4.1: Dual relationship between the VIP- and Negishi-approach.

the budget constraint. Here the index set R instead of / is chosen in view of our

later application to a multiregional problem. There are three levels of gray: light

gray is the Negishi-welfare problem integrating all individual (regional) problems

in one large optimization problem, medium gray are the individual structures

which—in case of the VIP-view—are essentially the individual utility maximiza¬

tion problems (1.5) oi (1.6), and finally, emphasized dark-gray are the excess-

related constraints. The latter constraints account on the one hand for the main

difference between the individual problem (1.6) and the EEP and, on the other

hand, are central for the dual relationship between the Negishi- and the VIP-

view. In the VIP-part the surrounding box is only dashed and not shaded to

underline its consistence of independent subproblems.

Now Theorem 2.5 States that in an equilibrium the dual multiplier vector p of

the excess constraint in the welfare problem is exactly an equilibrium price, mo-

tivating the dotted arrow from left to right. Reversing the view, the inverse of

the dual multipliers <5 of the budget constraint in the VLP-sub-problems form a

set of equilibrium Negishi weights. This is indicated by the dotted arrows from

right to left labeled '1/a'. Note that scaling a or p by any positive scalar does

not affect its equilibrium properties; this permits keeping both a and p in the

unit simplex A of appiopriate dimensionality.

From Definition 1.4 it follows that p is an equilibrium price if and only if the re¬

sulting excess e from sohing all regional problems in the VIP-box is non-negative

and complementarity with the price holds. This is suggested by the bottom right

circle in Figure 4.1, where in one iteration e(p) is computed, and depending on
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its outcome p adjusted. As for the Negishi-view Theorem 2.5 together with Defi¬

nition 1.4 claims thaka is an equilibrium weight vector if and only if pTer = 0 for

all r G R, where p is the dual multiplier vector of the excess constraint. This leads

to the bottom left circle where a is judged and updated following the outcome

of p(a)Ter(a) for all r G R.

Denoting by the index g any good, an intuitive approach for updating otr or pg sim¬

ply looks at the corresponding test-quantities p(a)Ter(ct) and eg(p) respectively:
increase aT if p(a)Ter(a) > 0 and decrease it otherwise, and do the analogue
with reversed inequality in case of pg and e9(p). Economically this means in the

welfare view that a region (consumer) should have more weight if it did not use

all the wealth it has, and decrease the weight of those exceeding there budgets

(p(a)Ter(a) < 0). In the VIP-world a price-component pg is increased if demand

exceeds supply (e9(p) < 0) and vice versa.

This is the basic idea behind the so called 'tätonnement'-process which was one of

the first algorithmic concepts used in computational economies, cf. Ginsburgh and

Waelbroeck [36]. A direct application of such a tätonnement-process, however,

is not only theoretically unsatisfactory, but can yield poor results in practice too

(mainly because it ignores cross-effects). As for the VIP-approach, Algorithm 2

based on the analytic center or center of gravity is more robust. Similarly, the

5-Negishi algorithm extends also the tätonnement-process and convinces on our

practical problem MM". Nevertheless, both the VIP- and the Negishi-algorithm
used in this work are under the given structures only heuristics; for a possible
exact algorithm based on a fixed point approach see e.g. Taheri [99].

Note that on the first level the Negishi-approach leads to an algorithm in the

space of the regions or agents, whereas the VIP-view works in the space of goods.
Because the dimensionality of the problem influences strongly the computational

efficiency, this can be of determining importance. However, if the Negishi-welfare

problem is solved using decomposition, the dimensionality of the goods reappears,

cf. Algorithm 6. If this can be handled efficiently, e.g. in that the number of

goods increases the computational bürden comparably slowly, then the Negishi-

approach seems preferable if the number of goods exceeds significantly the number

of regions or agents.

4.2 Two Algorithms

4.2.1 The <5-Negishi-Algorithm

As a direct outcome of the previous discussion the <5-Negishi-algorithm Updates

the weight vector by explicitly Computing the dual multiplier of the budget con¬

straint in the underlying regional problem.

The heuristic fixed point method given in Algorithm 5 proved to be very contrac-

tive and additionally very robust with respect to starting points. In case of our
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Algorithm 5 <5-Negishi-algorithm

(i) Choose a set of initial weights a° and set k = 0.

(ii) Solve the Negishi-welfare problem and compute thereby the dual price pk.

(iii) Stop if the Solution satisfies a stopping criterion, otherwise proceed.

(iv) With the price pk solve the utility maximization problem of all economic

agents ((1.5) or (1.6)) and retrieve the dual multipliers 5k of the budget
constraint.

(v) Set k := k + 1 and update the weights by

k=
1

ar~6k-iZreRl/ok-i'

return to (ii).

examples it was advantageous to start with a suitable p° in step (iv). A more in

depth discussion is presented in Appendix E.2.1. Numerical results are presented

in Appendix F.4 and F.5.

4.2.2 The i-Negishi-Algorithm

Another approach to update the Negishi-weights was successfully used e.g. in 5Ä,

a five region model based on simplified Markal-Macro modeis and described in

Manne and Rutherford [75]. The central idea is to estimate S, the dual multipliers
of the budget constraint, from a Solution of the welfare problem. Such a scheme

avoids solving the regional modeis (1.6) in every iteration of Algorithm 5.

Because deriving such estimators depends on the concrete structure of the model,

it will be done in Appendix E.2.2 for MM".

A final note on the naming; t is motivated from the fact that the resulting scheme

is a 'tätonnement' strategy, where the old weight is essentially updated by the

(weighted) addition of the budget excess. That is, ak+1 = ak + wpkTek with an

appropriate weight w.

4.3 Decomposing the Negishi-Welfare Problem

In every iteration of the [5, f]-Negishi-algorithm we face a Negishi-welfare prob¬
lem (1.3). It exhibits a typical block-diagonal structure with a few connecting
constraints:
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Variables

Constraints

region 1 region 2 region R

objective 1

excess 1

region 1

region 2

region R

The overall problem can—depending on |Ä|—grow exceedingly large. If we con¬

sider 10 regions with 5000 variables each, the Hessian of the objective contains

50'000 x 50'000 = 2.5 • 109 elements; supposing 10% non-zeros using 8 byte pre-

cision, we need for storing alone about 2 gigabyte Computer memory, a number

which beats State of the art Workstations by a factor of 10.

Besides the need to keep the Negishi-welfare problem tractable for real world

Computers we face in the next step the complexity observed in practice (i.e. the

time needed to find an approximate Solution). Theoretically optimal local meth¬

ods for solving nonlinear convex problems require at least 0(n log ^) iterations to

find an e-approximate Solution, where n is the number of variables (dimension of

the problem), see Elster [63]. This implies that at best real world solvers based

on Newton-kind of methods exhibit an increase of computation time of an order

of n3. Even though this is a low order polynomial satisfying theoreticians it can

already forbid to solve large modeis; to see this assume that it takes 15 minutes

to solve one regional problem (a typical value in our case), then the same solver

needs 103 • 15 = 15000 minutes or about 250 hours—more than 10 days!—to solve

the Negishi welfare problem with 10 regions.

A final obstacle specific to our Situation is that the overall Negishi-welfare problem
can hardly be set up; each region is a large and complex piece of GAMS-code

consisting of over 100 files, and to put together several regions would require to

extend the whole code by a regional index—an enormous task taking months of

work.2 Even worse, one would run into update problems: every time the original

regional code is changed this has to be followed up in the Negishi-code.

For all these reasons we are thus seeking for a procedure which allows to solve

the Negishi-welfare problem by solving the underlying independent and (almost)
unchanged regional problems. It is exactly this integrative aspect which obliged
us to use decomposition techniques. The other side of the medal—the usual one

2At least in case of GAMS there are attempts to extend the system to handle such situations

in a transparent way, i.e. without requiring to change the underlying model code. But in general
the problem still exists: how to design an algorithm for solving the Negishi-welfare problem
where the underlying regional problems are left as much as possible unchanged.
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where large problems are split into pieces and thereby the computational bürden

reduced—attracts increasingly attention, cf. [37, 30, 31].

The basic technique of dualizing common constraints is presented sufficiently gen¬

eral in Appendix A.2. In the rest of this chapter we apply this to the separable
structure of the Negishi-welfare problem and subsequently solve it by using AC¬

CPM, a cutting plane method, cf. Goffin, Haurie and Vial [38, 37]. The section

concludes with a complexity result due to Nesterov [85].

4.3.1 The Lagrangian Dual Problem

The Negishi-welfare problem (1.3) (or (7.9) in case of MM") can be written as

max ctiUi(vx) + + aRUR{vR)

s.t. ei(^i) + + eR{vR) > 0,

5iW) < 0,

M«i) = 0- \ (4.1)

9r(vr) < 0,

hR(vR) = 0.

The constraints ofthe underlying regional subproblems define Kr := {vr \ gr(vr) <

0, hr(vr) = 0}; abbreviating further the objective or(vT) := arUr(vr) and the

overall feasible set by K := flreRKr, problem (4.1) can be written in the form

max oi(vi) +

s.t. ei(üi) +

vi G Ku

+ oR(vR)

+ eR(vR) > 0,

vr e KR.

The Lagrangian dual function (cf. Appendix A.2) is then defined as

Ö(p) := max ^or(Dr) + ^pTer(pr
rgfl

]T max [or(vr) +pTer(vr)} ,

reü
'VrtK..

(4.2)

where p has the dimension d of the image set of e(v). The Lagrangian dual

problem following (A.5) is

minf/(p).
p>0

(4.3)
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Given Condition (A.6) is satisfied, Theorem A.3 and A.4 State that it is equivalent
either to solve the primal problem (4.1) or the dual problem (4.3).3 In view of

(4.2) and the introduction we observe that the evaluation of 8(p) for a given p

results in |Ä| independent maximization problems of the form

max [or(vr] +pTer(vr)\

which coincide with the original regional modeis up to the Negishi multiplier
hidden in or and the additional term pTer(vr) in the objective. The remaining
question is how to solve the dual problem (4.3). Of course, if we want to be

successful we need in general convexity of 9 together with Information about

(sub-)gradients. For that purpose let P := {p > 0 j 9(p) < oo} denote the set

where 9 is finite and write succinctly o(v) = Ylr^R °r(vr), e(v) = YlreR e<-(vr) and

finally (j>(p, v) := o(v) +pTe{v). The next lemma proves convexity of 6, and so P

is also convex.

Lemma 4.1 (for similar results see Bazaraa and Shetty [7]) 9 is convex; fur¬
thermore, if p G P and v* G argniax„eÄ- 0(p, v), then e(v*) is a subgradient of 9

at p.

| To show convexity of 9 choose A G (0,1) and take any prices p, q > 0; we then

have

6{\p + (1 - \)q) = max{o(i;) + [Ap + (1 - X)q\Te{v)}

= max{A[o(?;) +pTe{v)} + (1 - A)[o(v) + qTe{v)}}
veK

> X max 0(p, v) + (1 — A) max (t>(q, v)

= \9(p) + (1 - \)9{q).

To see the second claim concerning e(v*) being a subgradient of 9 at p, choose

any q > 0; then

6{q) = max^(g,p)

> <l>(q,v*)

= o(v") + pTe(v*)
= o(v,)+pTe{v*)-pTe(v*)+pTe(v*)
= 8(p) + e(v*)T(q-pY]

3To make this Statement precise note that a Solution p* of the dual problem (4.3) has

implicitly attached a primal 'Solution' v g K by means of (4.2). In general v is not a Solution

to (4.1), but once p* is known it can be used within a derived linear programming problem to

approximate a primal Solution v" K For a detailed discussion see Bazaraa and Shetty [7,
Section 6.5].
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From this lemma we know how to linearly approximate 9(p) by (sub-)gradient
cuts within P. But this is not sufficient to solve (4.3) because for ap > 0 outside

P we have so far no Information in what direction the minimum of 8(p) might

be, or, to be more modest, where P is located. This topic is briefly discussed in

the next section.

4.3.2 Unboundedness of the Lagrangian Dual

To begin with note that unboundedness of 9(p) is of practical relevance because

the additional term pTe(v) in the objective can turn bounded problems into

unbounded ones. This is specifically true in case of the subproblems in the

Negishi-decomposition approach of MM""'. Given p with 6(p) = oo, in this section

we try to derive supporting hyperplanes of P passing through p. Such a process

can yield an outer approximation of P.

In the sequel we make for all r G R the following assumptions:

Assumption 4.1 or(vr) and eT(vr) are contmuously differentiable, concave on

Kr and finite if vr is finite. Furthermore, KT is non-empty, convex and closed.

From these assumptions the following lemma can be deduced allowing to focus

the further discussion on a Single region r G R.

Lemma 4.2 Choose any p > 0; then 9(p) is finite if and only if 8r(p) :=

max„),eA-r{or(i,r) +pTer(vr)} is finite for all r G R.

This lemma implies that if we choose any r G R and find a (linear) constraint

which cuts away a part of IRrf (with d the dimension of P) where 9r(p) = oo, then

the remaining part contains P. Or to State it differently: every subproblem can

independently generate so called feasibility-cuts which form an outer approxima¬

tion of P. In the following discussion we concentrate therefore on an arbitrary
reR.

From Assumption 4.1 follows boundedness of 9r(p) for any finite p > 0 if Kr is

also bounded. A possible strategy for practitioners could thus consist of imposing
an overall box constraint, which is reasonable for 'real' world problems.4

In case of unbounded KT C IR"r we call a vector dr G IR" a direction of Kr if

vT + \dr G Kr for all A > 0. Additionally, we call a feasible point extremal if it

can not be represented as a proper (i.e. A G (0,1)) convex combination of two

4This strategy is also piesent in typical solvers for nonhnear convex optimization problems,

usually the variable values are bounded to a 'reasonable' large box like ±1020 as is the case

for GAMS-related solvers. In such a Situation one can in principle ignore any 'unboundedness-

message' of the solver and simply use the subgradient at the point where the Solution process

was stopped which, without härm, may happen at the boundary of the large box.
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different feasible points. A direction is called extremal if it can not be represented

as a positive combination of two different directions.

Assuming KT has directions we ask how P can be characterized. As for notation,

Ver(ur) or simply Ver is the differential of the vector-valued map er with respect

to vr; usually this matrix is called Jacobian.

Lemma 4.3 Let both oT and er be affine and Assumptions 4-1 hold; if p G P

then for any direction dT of Kr we have

(Vor + VerTp)Tdr < 0. (4.4)

I Assume on the contrary p e P and (Vor + VerTp)Tdr > 0; From affinity of or

and er we then have

or(vr + Adr) + pTer(vr + Xdr) = or(vr) + pTer(vr) + A(Vor + S/erTp)Tdr,

where A(Vor + VerTp)Tdr can be made arbitrarily large by increasing A. But this

contradicts the assumption p G P. \

Because (4.4) holds for all p G P, Lemma 4.3 gives an outer approximation of

P if all (extremal) directions dr of KT are checked. To reverse the implication
and construet thereby an inner approximation of P, it is necessary to strengthen

(4.4) as is shown in the example illustrated in Figure 4.2 below.

The notion concave for a vector-valued function used below is defined by concavity

of all its components.

Lemma 4.4 Let both or and er be concave and Assumptions 4-1 hold; then p G P

if there is a vT G Kr such that for all directions dr of Kr we have

(VorK) + Ver(pr)Tp)Tdr < 0. (4.5)

I The proof will given by showing the equivalent Statement 'p $ P => Vur G Kr

there is a direction dr of Kr with (Vor(pr) + Ver(vr)Tp)Tdr > 0'- Choose any

vi G Kr\ from p £ P we know there exists a continuing sequence v" G Kr, n > 2,

such that or(v") +pTer(v") -» oo for n -> oo, and such that vj: / p"V» > 2.

This implies (from the previous assumption that or and er are finite for finite vr)
that w" must tend to infinity; defining for n > 2

«,«
_

I,1

d" := -,

we observe that d" is a sequence on the unit-ball, and thus has a convergent

subsequence which—without loss of generality—is assumed to be <f" with limit

d. Note that due to closedness of Kr d is a direction.
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Setting A" := \\v" — v^\\ we derive from concavity of or and er

or («?) + pTer«) = or(vl + A"rf?) + pTeT(v1r + A"d?)

< or(v1r)+pTer(v1r) + X"(Vor(vl) + Ver{vl)Tp)T,

and thus (Vor(pr1) + VeT(vl)Tp)Td > 0 for all sufficiently large n which implies

(Vor(0 + Ve^1)7»7^ > Oj
To see why (4.5) can not be relaxed to '<' consider the follow¬

ing example, where both or and er are assumed affine. Choose

as primal feasible set Kr := {{x,y) j y > x2} in ]R2 which is

simply the epigraph of a paraboloid. The only extremal di¬

rection is dr = (0,1); if p is such that (Vor + VerTp) = (1,0)
then (4.5) holds with equality, that is, (Vor + VerTp)Tdr = 0.

But the sequence d" := {n,n2) makes (Vor + VerTp)Td" = n

diverge to infinity, implying by virtue of affinity or(dn) +

pTer(d") -+ oo.

Figure 4.2: Direction and
_ ., T . . . ,,. , .

. /r7°
To verify Lemma 4.4 in this example, let us now assume (Vor+

VerTp)Tdr < 0, which implies a negative i/-component of s :=

(Vor + Verrp). The maximum of or(vr) +pTer(vr) over Kr is

then finite and achieved at the point where s equals the normal of a supporting

plane as is indicated in Figure 4.2.

Anticipating Algorithm 6 which is used to solve (4.3), the following Observation

is useful. Assume P is characterized by the cuts (4.4) formed by all extremal

directions, and denote this outer approximation of P by P. Then any inner

point of P satisfies in fact (4.5). Hence, once P is available Algorithm 6 which

uses analytic centers suffers no more from unboundedness of the Lagrangian.

In practice, P will be iteratively built up: Starting with P° := {p G R^ | P <

Me } for a sufficiently large M, Pk is reduced to pk+1 ;= pk n (4.4) whenever a

direction dk is detected, and otherwise left unchanged. Now, if Pk is a 'sufficiently
close' approximation to P and our inner test points pk are 'sufficiently far away'
from the boundaries of Pk, we are in the happy Situation that 8(pk) < oo despite
the possibility Pk\P^m.

Nevertheless, Lemma 4.4 can be sharpened; one possible way is by requiring
boundedness of the extremal points K~l of Kr for all r G R. Such a Kr can

be seen as algebraic sum of a bounded convex set and a convex cone; to give
an example think of the paraboloid in Figure 4.2 where the convex bounded

set is changed to Q = {{x,y)\y > x2 A y < 1} and extended by the cone

C = {d\d = A(-l,2) + ß{\,2),\>0,ß> 0}.

Denote by the Operator 'conv' the convex hüll of a set, let K' be the (bounded)
set of extremal points of Kr, and let C be a cone such that Kr = conv(it^) + C.

For any vT G Kr we then have the existence of a v'r G conv(K^) and a d'r G C

such that vr = v'r+ d'r. With nr the dimension of Kr we can further derive from



4.3 Decomposing the Negishi-welfare Problem 55

Caratheodorys Theorem the existence of nr + 1 extremal points v'r G K' such

that v'T can be written as convex combination of the v'r, i.e. there exists a vector

of weights A > 0, J^1 A, = 1, such that v'r = E^i" X>K-

Based on these prerequisites the following characterization of P can be estab-

lished.

Lemma 4.5 Let Assumption 4-1 hold and let Kr = conv(K')+C be the algebraic
sum of a bounded convex set conv(K^) plus a cone C. We then have p G P if
there is a vT G conv(K') such that for all directions dr of Kr

(VoT{vr) + Ver{vrfp)Tdr < 0. (4.6)

I We demonstrate the equivalent implication 'p g- P => Vi>r G comr(Kf) there

exists a direction dr G C with (Vor(tv) + Ver(vr)Tp)Tdr > 0' (cf. the proof of

Lemma 4.4).

Choose any vT G conv(Ä"^) ancI define

M := sup or(wr)+pTer(wr).
wreconv{K{)

which is finite from Assumption 4.1.

From boundedness of K° we have a finite diameter 8(K*) of the set K', and

furthermore from Assumption 4.1 follows the existence of a finite upper bound

L for both ||Vor(pr)j| and ||Ve(iv)|| if vr is in con\(K^). As usual, the matrix¬

norm ||Ve(p,)]| is defined by the maximum of the product |pTVe(pr)i;r] over all

unit-vectors p and vT.

Now p $ P implies the existence of a sequence v" G Kr, v -+ oo, such that

or(v") +pTer{v") —r oo for n -> oo. Therefore there exists an n such that

*(«,") + PTerKn) > 1(1 + ||P||W) + M.

Let v" = v'r + dr for a suitable v'T G conv(Ü"^) and dr G C. Seen from the chosen

vr G conv(üf°) we then have

L(l + j|pj|)<5(A7) + M

< or(pr")+pTer«)
= or(ür + (v'r - vT) + dr) -+- pTer{vT + (v'T - vr) + dr)

< or(vr)+pTer{vr) + {Vor(vr) + Ver(vrfp)T((v'r - vr) + dr)

= or(vr)+pTer{vr) + (Vor(pr) + Ver(vr)Tp)T{vr - vr)

+ (VoT(vT) + Ver{vr)Tp)Tdr

< M + L(l + \\p\\)5{K?) + (Vor{vr) + Ver{vT)Tp)Tdr,

and hence 0 < (Vor(pr) + Ver{ur)Tp)Tdr which proves the lemma. |
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This Statement can be made more useful by observing that from Caratheodorys
Theorem for cones it is sufficient to restrict condition (4.6) to extremal directions

only.

From the Lemmata 4.3 and 4.5 the following corollary follows.

Corollary 4.6 Let Assumption 4-1 hold, let Kr = conv(K^) + C be the algebraic

sum of a bounded convex set conv(K') plus a cone C, and let both or and er be

affine. We then have p G P if and only if for all directions dr of KT

(Vor + VerTp)Tdr < 0.

4.3.3 Solving the Lagrangian Dual Problem

To solve (4.3) we abbreviate (sub-)gradients of 8(p) at pk by gk, i.e. gk = g(pk) =

e(vk), where vk argmaxveA-(o();) +pke(v)).

The Proximal Analytic Barrier Method

This section is based on Nesterov [85]. Choose a constant a > 7, and a starting

point po which salisfies ||po—P*\\ < p for a Solutionp* and a constant p. Assuming
furthermore Bx ip(po) C P and \\g(p)\\ < L for all p : ||p - poll < 1.1 • p for a

suitable constant L, the so called analytic barrier is defined to be

Fo(p) := —Wp-PoW2,

Fk(p) := Fk^(p) + ^|!p-Po|12 - log(«?2Li(P*-i -P))> k e IN.

Based on this strictly convex barrier Fk(p), the next iterate is then

pk := argmin .Ffc(p), k G JN0,
p

where p is varied over the anterior of the polytope {p j gj(p, — p)) > 0, i =

0,... ,
k — 1}. It can be shown that )\pk — Po|| < 1.1 • p and so gk is well defined

for all k. Using the notation 9*k = argmint<fc 9(p,) and 9* = 9{p") it is shown in

Nesterov [85] that for all k G 1N0

pff/(2(*+ l))

Ph-P<c{o)Lp-===,
\/c + k + 1

where c(o) is some constant depending on ct. Hence the gap 9k — 9* is asymp-

totically decreased at a rate of at least 1/y/k. Also remarkable in this result is

its independence of the problem dimension d. In practical problems, however, p

and L might have to grow with d; e.g. to include the unit cube p grows with \/d.

Finally note that this convergence result must be multiplied with the cost of the

oracle, that is, in our case the time required to compute e(p).
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The Analytic Center Cutting Plane Method (ACCPM)

This scheme described in [37, 38, 39] and used in our implementation of the

Negishi-algorithm has a number of good properties: it gives an upper bound

on 9k — 6", it handles unbounded directions in case of linear objectives or(vr) +

pTer(vr), and it speeds up convergence by using multiple (sub-)gradient cuts in

each iteration. A convergence analysis for one or two simultaneous cuts can

be found in Goffin and Vial [40, 41]. Let vk := argmax„rSA.r(j>r(pk,vr), and

vk ._ ^vk^ ^ vk^^ tnen rrom Lemma 4 1 we know that e(vk) is a (sub-)gradient
of 9(p) at pk:

6{p) > 9(pk) + (p-pk)Te(vk)

= J2[MPk,vk) + {p-pk)Ter(vk)].

An obvious lower approximation 8k oft? based on a set of test points {p0,... ,pk} C
P is therefore

9~k{p) = min 2! + ... + zR

s.t. zr > <t>r(pt, v'r) + (p - p,)Ter(v'r), Vr G R, i = 0,... , k,

which is a linear programming problem. Note that the approximation 9k(p) takes

every regional excess er as separate subgradient into account, whereas for 9(p)
only the overall excess gives one subgradient.

Setting 9k := minp>08k(p) (the optimal Solution for the approximation with k

test points), the difference 9k - ÖJ > 0 is called duality gap. Because 9' > 9*k, this

difference gives an upper bound on 8k — ff* which we want to make sufficiently
small. Of course 9k - 9*k depends on the set of test points; if 'sufficiently many'
of them are close to p*, the approximation quality of 9k increases and we observe

hopefully 9*k-9t\ 0.

To make ACCPM applicable the following is assumed:

(i) There are appropriate bounds 0 <BP < p* < Bp andB2 < z* < Bz.

(ii) M := max 9(p) < oo.

BP<P<BP

In (ii), instead of the unknown exact maximum M, any upper bound can be

chosen. With z = (zi,... ,zR) the so called 'set of localization' Fk, k > 0, is

defined to be

Fk := {(p,z) j Bp < p < Bp, Bz<z< Bz,

reH

Zr ><l>r(P',K) + {p-Pt)Ter(v'r) Vr G R, l = 0, . . .

, k.}. (4.9)

(4.7)
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Algorithm 6 ACCPM for decomposition

(i) Choose e > 0 and set k := 0, p0 := \{Bp -Bp), 9*_1 := M.

(ii) For all r G R compute a primal Solution

vk G argmax</>r(pfc,pr), (4.10)

i.e. solve all regional problems ((7.10) in case of MM""'). Add the resulting

|Ä| subgradient cuts to Fk; if 8k < 9*k_x update also (4.8).

(iii) If 9*k - 91 < e STOP.

(iv) Set k := k + 1 and compute the new analytic center (pk,zk) of Fk^i; return

to (ii).

Fk can be written in the form {u J Aju -

sk = ck, sk > 0} where, from k to

k + 1, the matrix A enlarges maximally by |Ä| columns and the vectors sk and

Cfc are extended appropriately. Based on these preparations the implemented

decomposition-ACCPM is described in Algorithm 6.

Skip), 0(p)

9*

So

Figure 4.3: Minimizing the Lagrangian function.

Before giving some remarks on Algorithm 6, a simplifying picture is shown in

Figure 4.3. Starting at p0 the subproblems are solved, i.e. 9r(po) is computed for

all r G R; then the linear approximation at (po,ö(po)) defines 90(p). The set of

localization F0 is depicted light-gray shaded; its analytic center ai is projected
onto the p-axis yielding pi. In the second iteration the subproblems are solved

again with the new price signal pi and the resulting subgradient cut at (pi,9(pi))
is inserted in F0 yielding Fi. Because 9(pi) < 8*(p0) = 9(p0), the so called 'value

*P
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cut' (4.8) is updated and F: becomes the darker shaded region. 9i(p) is defined

as the maximum 6f 9~a(p) and the subgradient cut at (pi,9(pi)). In these two

iterations the duality gap decreases from ÖJ — ÖJ down to 0* — 9\.

If in every iteration the minimizer of 9k(p) is taken instead of the analytic center,
the method is called 'Kelley's cutting plane method', see Kelley [64], or 'Benders-

decomposition', see Benders [8]. An interesting discussion comparing ACCPM

with the Kelley decomposition is contained in du Merle, Goffin and Vial [21],
where also some hints are given on how to improve the efficiency of ACCPM.

The following remarks are in order:

• The stopping criterion is an 'absolute' duality gap; in theoretical analysis
a relative duality gap defined by (9k - 8*k)/(M - 9*) is preferred. In Algo¬
rithm 6 this can be attained by dividing e with M — 9* (or an estimate of

it). Note also that determining 9k requires solving the LP (4.7), i.e. before

the stopping criterion in step (iii) can be examined an LP has to be solved.

• In general the best iterate (the 'Solution' returned when stopping in iter¬

ation k) is the price p, where i is the last iteration where a value cut was

performed, i.e. the last iteration i where 9, < 9,_l holds.

• Practical experience shows that convergence is improved by putting more

weight on the value cut compared to the subgradient cuts when Computing
the thereby weighted analytic center. Going further it can be useful not to

check for any redundancy when inserting constraints of the form (4.8) and

(4.9), but add in every iteration the füll [Ä| + 1 constraints. If identical

constraints are inserted several times this increases the weight of these con¬

straints and thereby 'pushes away' the subsequent analytic centers, which

is a positive effect in the practical behavior of the algorithm.

• The computation of the analytic center for a given Fk can impose some

difficulties despite the fact that it is a smooth, strictly convex minimization

problem. The reason lies in its high nonlinearity; to apply ordinary solvers

thus requires both a good starting point and a suitable scaling. As start¬

ing point we choose the center of the maximal inscribed sphere (a linear

programming problem), and scale the problem with the Solution at this

point. Another scaling aspect is involved with the shrinkage of Fk; after

some iterations the radius of the largest inscribed sphere of Fk can drop be¬

low the feasibility tolerance of ordinary (linear or nonlinear) solvers which

then reject the problem as infeasible. By multiplying each constraint with

an appropriate factor ;» 1 this problem can be overcome. The factor may

differ among the constraints because this does not influence the location of

the analytic center (the factors drop out of the logarithm into an additive

constant), cf. the discussion concerning implementation in Appendix E.

Instead of Computing the analytic center with an existing solver, dedi-

cated solvers can be advantageous. One code was developed in Geneva (see
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http://ecolu-info.unige.ch/~logilab/software/accpm.html) and successfully

applied to a wide ränge of problems. Specifically, it can efficiently compute
the new analytic center based on the location of the old analytic center if

one or several cuts are introduced.

• The dimension of the localization set Fk using this multiple cut scheme is

d + |Ä| where d denotes the number of connecting constraints which are

dualized into the objective. If instead of |Ä| regional subgradient-cuts of

the form (4.9) only the overall excess cut from Lemma 4.1 is used, the

dimension of Fk is reduced to d + 1. To State it differently: the price

paid for generating |Ä| subgradient cuts in each iteration is the increase

in dimensionality of the localization set. But usually the gain outperforms

clearly this price.

• Experiments on certain test problems encourage the use of Kelley decompo¬
sition for small dimensional localization sets, whereas in higher dimensional

cases—say more than 20—the analytic center behaves in general better,
cf. [21]. MIT is solved more efficiently using analytic centers than Kelley
test points, even though the dimension was typically around 10.

• If or and er are linear for all r G R, and the extremal points of KT are

bounded (as is the case for polyhedral Kr), then we do not need to require

maxB <p<b 9(p) < oo. In this case constraints of the form (4.6) are inserted

into Fk whenever an unbounded subpioblem is detected.

• If the original problem is a linear programming problem, there is only a

finite number of extremal points and directions. Hence 8k(p) will eventually
coincide with 9{p) and so the Kelley decomposition terminates with the

exact Solution. The ACCPM on the other hand does in general not produce
an exact Solution in a finite number of iterations due to its 'interior nature'.



Wahrend der vielen Jahre beobachtet der Mann den

Turhuter fast ununterbrochen, er vergisst die andern

Turhuter, und dieser erste scheint ihm das einzige Hin¬

dernis für den Eintritt in das Gesetz Er verflucht den

unglücklichen Zufall, in den ersten Jahren rücksichtslos

und laut, spater, als er alt wird, brummt er nur noch vor

sich hm Er wird kindisch, und, da er in demjahrelangen
Studium des Türhüters auch die Flohe in seinem Pelzkra¬

gen erkannt hat, bittet er auch die Flohe, ihm zu helfen

und den Turhuter umzustimmen. F. K [58]

Qualitative Comparison of the

Algorithms

In Chapter 3 and 4 we have described three basic algorithms: (i) Algorithm 2

which is a general cutting plane method (CPM) and called ACCPM if the analytic
center is used as inner point; (ii) Algorithm 4, a homogenized cutting plane

method; and (iii) Algorithm 5 a fixed point heuristic. Here we try to briefly

compare qualitatively these three algorithms and to position them with respect

to other algorithms from the literature. A more in depth numerical comparison of

the three algorithms, together with some variants, can be found in Appendix F.

A survey on the main algorithmic possibilities solving computable general equi¬
librium problems (CGE) faces the curse of specificity. Due to the hard nature

of CGE-problems, algorithms usually explore as much as possible the specific
structure of a given equilibrium problem. This leads to an enormous amount of

different mathematical formulations and even more of different algorithms. For

an incomplete impression the references [47, 46, 100, 33, 9, 20] can serve as a

starting point.

Nevertheless, one ordering criterion for this plethora of concepts is simple and at

the same time of practical relevance: the level of aggregation. Either an algorithm

explores directly the complete structure of the economic agents (disaggregated

view), or the agents are treated as 'black-box' oracle where no information about

the internal structure is used by the algorithm (aggregated view).

In principle, the additional information available in the disaggregated view should

make the first group of algorithms more efficient. Among them a very competi¬
tive solver is PATH1, where the problem is formulated as a Mixed Complemen¬

tarity Problem. At its heart PATH performs Newton-Iterations, and because the

Newton-concept is the key-technique in most other algorithms working in a dis¬

aggregated setting, we have chosen PATH as representative for the whole group.

'Developed by Dirkse and Ferris [20], the code is commercially distributed as a solver with

GAMS

Chapter 5
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A central limitation of Newton-based methods is, however, that some convex¬

ity properties must be given. Otherwise, fixed point homotopal approaches tan

still be applied, where the only requirement is continuity of the functions in¬

volved. A prominent example of a homotopal algorithm is OCTASOLV [9]. As

a consequence, the linear, super-linear or even locally quadratic convergence of

Newton-methods is in case of fixed point approaches replaced by simple global

convergence without polynomial complexity bounds.

Concerning algorithms working in the aggregated setting, a first question could

be, why one should ignore information which is—in principle—always available.

A first theoretical motivation comes from the level of abstraction obtained, allow-

ing an application of oracle-based methods to a broad and divers set of equilib¬

rium problems. More decisive, however, can be the practical side of the problem.

The requirement to have all information, including derivatives, available implies

a formulation of the equilibrium problem in a specific modeling and solving en-

vironment. If sophisticated modeis of agents are already existing, the effort to

transforrn them into such a specific environment can be intractable.

On top of this, an aggregated view facilitates also a kind of 'sensitivity' analysis

on the level of agents. The effort to replace an agent-model by another model,

to include more agents or drop some agents can be kept small.

Besides Algorithm 2, 4 and 5 described in this work, we include in Table 5.1

another aggregated-view algorithm due to Taheri, Maxfield and Luenberger [100],
which applies the homotopal solver OCTASOLV to a cleverly designed surplus

function.

Given the necessary structural assumptions are fulfilled, Algorithm 2 and 4 are

pseudo-polynomial only, whereas Newton-based methods working in the disag¬

gregated ('d.-a.') setting are polynomial. Furthermore, the speed of convergence

view method assumption measure convergence

d.-il.
Newton-Methods

(PATH [20])
convex

merit

function

global,

locally superlinear

cutting
plane ACCPM

(Algorithm 2)

pseudo-monotone \\e(p)\\ provably not given

pseudo co-coercive 9P pseudo-polynomial

> conic ACCPM

(Algorithm 4)
monotone 9d pseudo-polynomial

regat
fixed
point

Negishi

(Algorithm 5)
— IM«)II

heuristic,

empirically linear

ho Homotopy

([100])
continuous

utility or

price deviation

globally

convergent

Table 5.1: Characteristics of different algorithmic concepts.



is significantly higher in the latter case.

After this comparison with approaches from the literature, the rest of the chapter
concentrates on a qualitative comparison of the Algorithms 2, 4 and 5 discussed

in this work. More details on the implementation and resulting numbers are

reported in Appendix E and F.

The empirical behavior of all three algorithms is strongly influenced by the stop¬

ping criterion and the starting feasible set. The starting point is less important
but can have a minor influence in some cases. Let us comment the stopping

criterion first.

In Algorithm 2 we have chosen ||e(p)|| and not, say, |pre(p)|, gp(p) or gj(p),
because the norm of the excess has a direct economic Interpretation as opposed

to the other measures. Furthermore, e(Ap) = e(p) for all A > 0 and so neither gp,

gd nor the complementarity product pTe(p) have an absolute meaning, making the

Interpretation of an e-solution difficult. The choice of |[e(p)(| requires, however,

that e(p") = 0 at equilibrium prices p*, a condition which is satisfied by all our

test-problems.

In Algorithm 4 gj is usually not computable. Nevertheless, either gd can be

bounded by gp using monotonicity, or the norm of the excess ||e(p)|| is used

again. In the implementation of both Algorithm 2 and 4 we used simultaneously

||e(p)|| and the number of iterations as stopping criterion.

In Algorithm 5 the notion e(p) is replaced by the budget excess vector be(a) which

appears in the space of agents. Hence, we stop if either ||6e(a)|| is sufficiently

small, or the number of iterations reaches a given bound.

Next, concerning the starting feasible set, the user can exploit his a priori knowl-

edge about the location of the equilibrium price by choosing a tight price-set. In

case of Algorithms 2 and 4 this is straightforward. In the Negishi-Algorithm this

knowledge can be used in the decomposition-machinery of Algorithm 6. Because

the time spent in the decomposition routine strongly dominates the overall Com¬

puting time, the restriction of the price-set influences directly the total running
time. One should be aware, however, that only in an equilibrium a* the Solution

p* of the decomposition coincides (up to scaling) with the equilibrium price. Or

to put it the other way round: For a ^ a* a tight restriction of the feasible

price-set around the true equilibrium price may exclude the actual Solution of

the decomposition. In case of our examples, though, we observed a remarkable

robustness in that the Solution price of the decomposition was always very close

to the final equilibrium price, i.e. almost independent of the weight vector ct.

The examples we tested numerically are described in some detail in Appendix F.

Basically we used different variants of the energy-economy model MMmr, both

with respect to data and model-structure. Additionally, a set of simple agents

defined by non-linear optimization problems was investigated.

Based on these examples, let us State some general conclusions, cf. Appendix F.6.

Most importantly, Algorithm 2 and 5 including all variants always found the same
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Solution. Specifically, the starting point had no noticeable influence on the final

iterate. In a few cases Algorithm 2 got stuck near the equilibrium Solution, in

most cases, however, Algorithm 2 was surprisingly robust and reliable. Compared
to Algorithm 2 Algorithm 4 reduced ||e(p)[j quicker—in the first 30-40 iterations,

but then converged to a non-equilibrium price. This phenomenon is probably
due to non-monotonicity of e(p), but also the limited accuracy of Computing the

analytic center or the excess can be responsible. In view of these experiences it can

be reasonable to combine Algorithm 4 in a first stage with Algorithm 2 in a second

stage. Furthermore, Algorithm 4 is dropped from the remaining discussion.

Concerning Algorithm 5 we observed empirically a linear convergence of ||6e||
as a consequence of a contractive fixed pomt map. This interesting result de-

serves future attention. Usually 5-6 Negishi-iterations are sufficient to obtain a

good Solution from an arbitrary starting point. Only the limited accuracy in the

decomposition routine limits the attainable quality of Solution.

The choice of the feasible set influences strongly the CPU-time of the algorithms,

aggravating thereby a comparison of Algorithm 2 and 5. Moreover, a sound rec-

ommendation on which algorithm to use should rely on a complexity-analysis,
which—in view of the structural deficiencies of e(p)—seems difficult. Neverthe-

less, based on the discussion in Chapter 3 and 4 and empirical findings in our

test problems the following considerations can be of interest.

To begin with let us assume that the number of Negishi-iterations in Algorithm 5

depends only 'little' on the number of agents. Then the computational bürden

of Algorithm 5 is essentially determined by the decomposition subroutine which

has a pseudo-polynomial complexity bound. Looking at Algorithm 2 using an¬

alytic centers the Situation seems ambivalent: on the one hand we can not give
a (pseudo-)polynomial complexity bound, on the other it outperformed Algo¬
rithm 5 by a factor of 2-4 on our test-problems. The test-pioblems included 3

agents and 6 16 goods. In the sequel we try to raise evidence why Algorithm 2

might stay superior when |G|, the number of goods, increases.

Let us assume that Dk, the feasible set in iteration k of Algorithm 2, stays

sufficiently fat, i.e. the ratio of the largest inscribed sphere over the smallest

circumscribed sphere stays sufficiently far away from 0. Moreover, based on

our test-problems we assume an average volume reduction of 50% per iteration

and intioduce some appropriate constants c, d and c". Therefore vol(£>*) ~

vol(ß°)2_*: ss c[S(Dk)]d, where 6(Dk) denotes the diameter of Dk, and hence

S(Dk) ~ c'2~*/rf. If we assume e(p) is Lipschitzian continuous with constant L

we can further deduce |]e(p*) -e(p*)|| §, L\\p* -pk\\ < c"L2-kld. Finally, with the

stopping criterion J|e(p*) - e(pk)\\ < £ we find a polynomial complexity bound

k < p(logj,...). In such an ideal Situation Algorithm 2 clearly outperforms
Algorithm 5 which has a pseudo-polynomial complexity bound only. In case of

our test-problems the superiority of Algorithm 2 over Algorithm 5 might therefore

be even accentuated when |G| increases.



Schliesslich wird sein Augenlicht schwach, und er weiss

nicht, ob es ihm dunkler wird, oder ob ihn nur seine

Augen tauschen. Wohl aber erkennt er jetzt im Dunkel

einen Glanz, der unverloschlich aus der Türe der Geset¬

zes bricht Nun lebt er nicht mehr lange. F K [58]

Economic Aspects of CO2
Permits

In the last 20 years the scientific valuation of greenhouse gas (GHG)-induced

temperature rise has become quite uniform: a doubling of the CO2 concentration

in the atmosphere by 2050 will rise the global mean temperature by about 2° C,

and thereby is predicted to cause damage in the ränge of one to a few percent

of GDP for developed countries, and several times more for developing countries

(see IPCC [54]). Estimates of the marginal damage of C02 emission ränge be¬

tween US$1990 5 and US$1990 125 per ton of carbon emitted now, where US$1990

denotes US dollars in 1990. As an example, recent estimations of damage costs

for Switzerland (see Meier [78]) predict about US$1997 2 • 109 or almost 1% of

GDP; major effects are expected in tourism and direct weather induced damage

like floods.

The wide acceptance of this standpoint in the international scientific Community

is rather new. The discussion can be traced back more than 200 years; but only

since the publication of Arrhenius [1] in 1896 the role of C02 became prominent.

Until about 50 years ago most authois acknowledged positively the potential

warming. For example, the title of a booklet from 1919 promises "Es winken Pal¬

menhaine von Berlin bis Stuttgart" (Palm groves wave from Berlin to Stuttgart),
and Callendar [11] postulates with respect to climate effects "the consumption of

fossil fuels will probably prove useful for humanity".

Although there are indeed positive effects for an increased global mean temper¬

ature, scientists today are more aware of potential damage caused by floods,

storms, global destabilization of ecosystems, rising sea level, and loss of human

life, as well as shifting climate belts which bring about droughts in fertile areas

and increased precipitation on waste land. Despite the detailed knowledge of

potential damage based on climate scenarios, there is still a large uncertainty on

what the real local climate will actually be all over the world.

Thus, the economic estimation of damage costs is difficult, explaining partly

why the focus of many economists lies more on the other side of the coin, the

Chapter 6
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estimation of C02 abatement costs, which is more tractable. This focus, however,

may introduce bias into the damage/abatement equation. A discussion of the

present estimation of abatement costs based on energy-economy modeis can be

found in Ekins [26] and is summarized in Section 6.2.

Besides the critical discussion of existing literature, a main contribution of this

chapter include the section 'Initial distribution of permits', where the bürden im-

posed by C02 abatement is compared between developing and developed coun¬

tries, which, as we will see, can be understood as sharing the bürden between

sellers and buyers of permits.

6.1 Emission Permits

In order to understand the meaning of emission permits consider a group of

countries which agree on the maximal amount of combined emissions for a given
future period t. This combined amount is distributed among the countries as the

initial endowment of permits. Then, at the end of period t, the actual amount

of C02 emission, cumulated over t, must be equal to or less than the amount

of permits it owns. If the initial endowment exceeds actual C02 emission the

country can seil the excess permits to other countries, while in the opposite case

the country must buy the necessary amount of permits from other countries.

Emission permits have attained a high degree of respect not only in environmen¬

tal economy, but also in politics, where the US-administration—not necessarily
known for an active strategy for C02 abatement—recentiy acknowledged C02
emission permits as a tool against climate change (see Cushman [15]). Reasons

for this Situation are a number of advantages of permits over alternative instru-

ments like taxes or regulative laws. Specifically, permits are claimed to have a

high ecological aptness, high economic efficiency1, constitute a dynamic incen-

tive for development and implementation of improved technologies (see Schubert

[96]), and can be implemented with little administrative cost. In contrast to

these advantages of permits financial instruments like taxes have only an indirect

effect on the amount of emission and, furthermore, are in practice usually differ¬

ing between the countries and therefore economically inefficient. Country-wise

regulative laws can directly control the amount, but are not only often tedious to

implement, but suffer in general from different marginal costs of abatement and

are consequently also not efficient economically.

1A State is economic efficient if it can not be obtained with less cost. In our Situation this

is characterized by equal marginal cost of CO2 abatement throughout all countries To see

this assume two countries with marginal costs öi < 52 and define A := 82 — Si > 0. Then a

profit of A can be realized by allowing region 2 to emit one unit more (costs- — S2), and at the

same time by reducing the emissions of region 1 by one unit (costs: +<$!) Assuming a liberal

market economy where world market prices coincide with domestic prices, emission permits

imply equal marginal abatement cost in all countries considered
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Nevertheless, C02 emission permits also have their shortcomings and give rise

to a number of questions which are commented below: (i) what is the level of

'optimal' C02 concentration in the atmosphere, (ii) how shall they be distributed

initially, (iii) how are the permits implemented, (iv) under what conditions can

the potential advantage be realized, etcetera. In the recent polit-economic dis¬

cussion the distributional effect and the level of 'optimal' emissions are most

prominent.

'Optimal' Level of C02 Emission

Often the notion 'optimal' is interpreted only economically, designating a State

of maximal net profit or welfare, whereas other branches of science may interpret
it differently. Hence opinions about the optimal level of C02 concentration in

the atmosphere are very different, ranging from todays level up to an arbitrarily

high level.

Physicists and other natural scientists, being aware of the high non-linearity and

uncertainty in the reaction of global climate on a rise of C02 concentration,

tend to hold the former, conservative position. Indeed, IPCC [54] highlights
that "There are many uncertainties and many factors currently limit our abil¬

ity to project and detect future climate change. Future unexpected, large and

rapid climate system changes (as have occurred in the past) are, by their nature,

difficult to predict. This implies that future climate changes may also involve

'surprises'. In particular, these arise from the nonlinear nature of the climate

system. When rapidly forced, nonlinear Systems are especially subject to unex¬

pected behavior." As an example of such recent 'surprises' GRIP [43] indicates

that abrupt temperature changes with a magnitude of 6-14° C within only 30-60

years happened in Greenland. Such a change is definitely out of imagination and

beyond the results of larger international modeis which are usually 'tuned' to

show a 'reasonable' behavior, i.e. what modelers expect.

The latter position—no reduction of C02 emission—is closer to some economists

Standpoint being aware of the uncertainty in the estimation of the damage costs

on the one hand, and tending to expect very high abatement costs on the other

hand. If additionally a high discount rate (say > 5 % p.a.) is assumed it becomes

prohibitively expensive to invest today in C02 abatement, if its 'return', the

avoidance of damage, happens considerably later in time. A more thorough
discussion on how abatement costs are estimated by todays modeis can be found

in Ekins [26] and will be taken up in Section 6.2.

Initial Distribution of Permits

The initial endowment with permits is intimately related to the global distribu¬

tional effect of C02 abatement, which is of decisive importance for the political

survival of this concept. Because decision makers want to know the consequences
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marginal cost

of positions beforehand in order to negotiate optimally, the crucial role of good

studies which possibly rely on the kind of modeis presented in this work is obvi¬

ous. If information about the consequences for all the participating countries is

openly available, rational negotiation is strengthened.

Major open questions concern the participation of lower developed countries

(LDC) and the endowment with permits over time among LDC and DC (devel¬

oped countries). Facing future demographic and economic trends and potential

leakage effects, it is compulsory on the long run to integrate all major emitters in

such a permit Community to make it work effertively. Presently, typical simplified

positions are the non-willingness of LDC to accept a reduction of their economic

development as a consequence of C02 abatement, whereas DC tend to show to

some extend a willingness to pay. One possibility to overcome this problem is to

make the LDC profit through a sufficiently large initial endowment which then

can be sold on the permit market.

Assume a representative developed country

has a marginal C02 abatement cost curve

ct,(Em) as a function of the emission Em

and where the subscript 'b' Stands for buyer.

Similarly a developing country is assumed to

exhibit the characteristic cs(Em) ('seller'),
cf. Figure 6.1. Here the notion buyer and

seller generalize the notion DC and LDC re¬

spectively. Assume further the initial endow¬

ment is ej and e°s respectively, and the equi¬

librium price is p* at equilibrium emission ej
and e* respectively. Let us analyze the Sit¬

uation of the seller first; the cost of partici¬

pating in the permit Community veisus doing

nothing is J „ cs(Em) dEm = (A) (dark gray

shaded). By moving from the initial endow¬

ment e°s to the equilibrium p*, the seller profits by f ,'[p* — c s(Em)\ dEm — (B)

(light giay shaded). The difference

0

[p* — c,{Em)] dEm -

c,{Em) <'b( Em)

(cr\

\m

(A)~-
emissions

Figure 6.1: Profits from trade and distribu¬

tional effects due to C02 permits.

cs{Em) dEm = (B) - (A)

is thus the direct net piofit of C02 abatement foi the seller. Obviously, by shifting

initial endowment from the buyer to the seller, i.e. e° - A and i
- A,

the net profit for the seller increases. and can even become positive in some

situations, such as not too restrictive global emission bounds and a sufficient

decrease of marginal cost cs(Em) in the ränge [fj,e2].

Besides this 'buying the seller' aspect, Figure 6.1 shows the profit for both the

buyer and the seller achieved by trading visavis obeying the Single country emis¬

sion bounds pj and e°b respectively. In such a comparison 'trade versus non-trade',
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both the buyer and the seller profit by the light gray shaded area (B) and (C)
respectively. The evaluation of such differing regional profits could guide negoti-
ations for distributing the initial endowment. Besides such direct profits, a major
indirect profit is to come from a reduction of the damage costs mentioned in the

introduction. Furthermore, it can be expected that a reduction of C02 emission

causes also other indirect profits called 'secondary benefits': reduced emissions

of other pollutants, increased efficiency of the overall economy, improved quality
due to increased process control, etcetera.

Aspects in the Implementation of Permits

Among the numerous aspects we like to comment on very few only. First some

of the different possible time-structures of permits are discussed in Section 7.1.2.

Next, the context of international permits rises another level of complexity by
the question on how the local implementation happens, i.e. how the local agents

(single consumers or firms) are taken into account. Possibilities comprise national

taxes on fossil fuels, a System of domestic permits taking up the international

permits, etcetera. As a non-regional possibility one can think of imposing a

permit scheme on the producers of fossil fuels, theoretically bypassing all political
obstacles. Or more regionally oriented, in case of crude oil the refineries could

constitute the agents in the permit system.

Conditions for the Functioning of the Permit Market

Neglecting almost everything which can be found in the Standard economic liter¬

ature, we want to point to some specificities of MMrar. First note that the regions
behave myopically; they take the price signal as given and maximize their util¬

ity. By contrast, regarded as a player in an |Ä[-person game, regions might
well choose a strategy where parts of the goods are held back and thereby the

prices influenced (cf. Gabszewicz and Vial [32]).2 Such oligopolistic strategies
are tempting above all for larger agents owning a significant part of the total

permits and producing much of the (numeraire) goods. Focusing on the market

of permits, it is likely that such a behavior can be detected by the other agents,
because reliable information about regional emissions are available from several

independent sources. It is then up to the interregional Community to establish

clear rules in the beginning and consequently apply them accordingly.

2It is interesting that in one of the few existing real world implementations of emission

permits—sulphur rights in the US—such a behavior was indeed postulated based on empirical
findings (see Murphy, Sanders and Shaw [80]), but the explanation there did not assume a

direct profit-increasing Strategie behavior of the agents via increased prices, instead a certain

conservative attitude was found where emitters were afraid of not having sufficient permits
when needed. This risk-averseness obstruets the functioning of the permit market especially in

the case of a small number of agents.
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Similarly, the case of hiding emissions by systematically falsifying regional statis-

tics or other cheating possibilities must be properly taken into account.

And finally, as mentioned above, a market of emission permits should comprise
all major emitters, otherwise leakage effects can affect the whole economy, ruining

part of the economy of the permit-trading regions on the one hand, and missing
the global C02 emission targets on the other (cf. Manne and Rutherford [75]). It

is unclear, however, to what extend such leakages could negatively affect regional
economies in reality. Not only a large part of emission activities is locally fixed

(heating/cooling, transportation, Service sector, etcetera), but also in the indus-

trial production sector energy costs are normally making up only a small part of

the overall production costs. In the remaining cases like cement or heavy steel

and aluminum, a permit induced tax-regime can be imposed in case of imports,

and reversely permit induced costs can be paid back if such goods are exported.

Furthermore, it is even questionable if uncorrected leakages are harmful on the

long run for regions in the permit-community, because permits give anyway an

incentive for the economy to shift from industrial energy-intensive products to

higher level service-sector products.

The Situation is comparable to countries being rieh in resources vis-ä-vis countries

endowed with little natural resources. The former will tend to stay in a resource

depletion oriented structure bringing only modest wealth, whereas economies of

countries lacking such resources tend to increasingly develop value-added prod¬
ucts and Services, resulting finally in wealthier economies. This may be aeeepted

as an empirical finding, but moreover it can be an argument against model-results,
where typically the economic structure modeled is limited in antieipating such

long running sectoral shifts.

6.2 Energy Economy Models

An economically optimal behavior attempts to equate the marginal damage costs

of GHG emissions to the marginal cost of reducing them, and thereby prevents

damage. The estimation of both cost curves—regionally differentiated or glob¬

ally aggregated—are subjeet to a Wide margin of uncertainty. But whereas an

estimation of mitigation costs is calculated within the human economic System

and is therefore more open to an economic analysis, the factors determining dam¬

age costs are beyond human control, and therefore aggravate significantly their

analysis. This might explain why so much research concentrates on mitigation
costs while only little effort is put into the estimation of damage costs. As a

consequence of the uncertainty involved in estimating mitigation costs, a number

of papers appeared in the last 10 years comparing and analyzing different modeis

(see [26, 17, 34]). Not surprisingly, the assumptions on which the modeis are

construeted have a decisive influence on the outcomes.

To start with, the base line scenario assumptions like rate of economic growth,



6.2 Energy economy models 71

levels of discount rate or demographic trends greatly affect the resulting abate¬

ment costs. Other ihfluential assumptions include the value of land, the value of

human life, agricultural losses, macroeconomic assumptions like Substitution pa¬

rameters, technological assumptions like backstop technologies or the aeei3 factor,

use of unemployed resources, revenue recycling of potential carbon taxes, existing
distortions in the tax regime, how carbon taxes are set up ('double dividend'4),
and considerations stemming from secondary benefits.

Surprisingly enough, most models show multiple severe shortcomings in these re-

spects. For example, Pearce [92, Note 6 p. 940] expresses surprise "that most of

the simulations of hypothetical carbon taxes do not consider revenue neutrality."
Nordhaus [90, p. 317] states, "The importance of revenue recycling is surpris-

ing and striking. These Undings emphasize the critical nature of designing the

instruments and use of revenues in a careful manner. The tail of revenue recy¬

cling would seem to wag the dog of climate change policy." Finally, Gaskins and

Weyant [34, p. 320] confirm the importance of revenue recycling: "Simulations

with four models of the US economy indicate that from 35 % to more than 100 %

of the GDP losses could ultimately be offset by recycling revenues through cuts

in existing taxes". Concerning MM1, it has no explicit carbon tax, but the re¬

sulting equilibrium can equally be interpreted as a result of a tax regime with

neutral revenue recycling.

Another influential parameter is the aeei factor; while the values in the models

ränge from 0-1 %, Dean and Hoeller [17] in their comparative study of the six

main global models note: "A difference of 0.5 % in this parameter, given com-

pounding, can lead to an outcome in 2100 which is as much as 20 billion tons

of carbon emissions different." Ekins [26] comments that "differences in base¬

line emissions of this magnitude would greatly affect the cost of reducing these

emissions to any particular level."

Finally, concerning secondary benefits, Ekins [26, p. 261] reports that its impor¬

tance in a benefit cost analysis has been recognized by many analysts of global

warming, and continues: "This makes it the more surprising that neither of the

two main cost-benefit analysis of global warming to appear to date make any at-

tempt to incorporate into their assessment, even tentatively, the various estimates

of secondary benefits that have so far been made."

Ekins [26, p. 271] concludes that "implementing a carbon tax sensitively with re-

gard to issues such as these could partially or totally offset the negative economic

effects deriving from increasing the price of energy." As important conditions

he identifies on the one hand the gradual imposition, and on the other hand the

likewise reduction of other taxes to keep the fiscal package invariant.

3Autonomous energy efficiency improvement; it describes the price-independent technologi¬

cal increase of energy efficiency over time, i.e. the increase of Output over energy input.

4Double dividend designates the double gain from internalizing the externalities due to free

C02 emissions on the one hand, and the gain from a reduction of distortions in the existing

tax System due to the introduction of a carbon tax with a concurrent reduction of distortional

taxes on the other hand
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Vor seinem Tode sammeln sich in seinem Kopfe alle Er¬

fahrungen der ganzen Zeit zu einer Frage, die er bisher

an den Turhuter noch nicht gestellt hat Er winkt ihm zu,

da er seinen erstarrenden Korper nicht mehr aufrichten

kann. Der Turhuter muss sich tief zu ihm hinunterneigen,
denn der Grossenunterschied hat sich sehr zuungunsten
des Mannes verändert F K [58]

Modeling Trade of CO2 Permits:

The Model Markal-Macro

Multi-Region Mi\r

When 1973 the oil crisis shook the economy of almost the whole world, the energy

market attracted the attention from many researchers. In the following years

two institutions started to build large energy models: IIASA1 and IEA2. In 1974

Häfele and Manne built a first model for IIASA, from which 1974 ETA-Macro [72]
and 1981 'the' IIASA-model [45] were derived. IEA on the other hand initiated

Markal with its variations (see below) and the IEA-ORAU model [24, 25]. A

third important contribution came fiom Nordhaus (Yale-University), who built

in the late 70's a linear energy-optimizing model [88, 89]. From ETA-Macro

Manne derived Markal-Macro, Global2100 and 12RT3.

Markal and Markal-Macro are insofar outstanding, in that they are based from

the beginning on an international collaboration. As a consequence, Markal and

Markal-Macro are implemented and used in more than two dozen countries all

over the world. This results in a reliable and well tested model code, data avail-

ability for many different countries, and ongoing discussions and improvements
of the models. A survey on both Markal and Markal-Macro can be found in

Appendix C.

The chapter is organized as follows. Section 7.1 presents the extensions needed

for interregional trade of C02 permits. Here different modeling approaches for

permits are discussed and formally analyzed, and the role of the numeraire price
is investigated. Section 7.1 is written from an economical Standpoint focusing on

a Single region. In Section 7.2 this Single region view is broadened to encompass

the equilibrium problem posed by the set of all regions; two formulations are

'International Institute for Applied System Analysis
2 International Energy Agency
312 region trade this model deals especially with world trade and its effects on CO2 strate¬

gies.

Chapter 7
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given: first the VIP-foimulation (VIP) from page 7 and second the fixed point

problem due to Negishi discussed in Section 2.2.

Contributions comprise the whole chapter.

7.1 MMmr: A Multi-Regional Version of Markal-

Macro Including Trade of C02-Permits

Each regional Markal-Macro model can be understood as partial equilibrium

model in the energy sector, and the result represents a regional equilibrium,

cf. Appendix C. Here we want to extend the regional models by coupling them in

an interregional (international if the regions coincide with nations) model where

in principle an arbitrary set of goods can be traded on a common market, see Fig¬

ure 7.1. In the concrete present formulation, however, only two goods are traded

in each time period (i.e. due to the dynamic nature of MM there are in fact 2|T|

goods, with T the set of time periods) On the one hand we have C02 emission

permits, often simply called permits, and on the other hand the aggregated good

Yt which is the numeraire and closes trade. A region in the resulting equilibrium

model MM" equals the 'utility maximizing agent' (1.6).

Macro economy

(Macro)

Energy sector

(Markal)

Macro economy

(Macro) h
n t-

Energy sector

(Markal) region R

Figure 7.1: The multiregional Markal-Macio MM".

7.1.1 Changes in the Model

In the multiregional framework every quantity needs an additional regional index

r, which is, however, dropped in case of coefficients for the sake of notational

convenience. Based on the notation from Appendix C, the following will be used

in the sequel:

T set of periods (time horizon);
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R set of regions;

Ur utility of region r;

Cr,t consumption of region r in period 4;

yr,( production of region r in period t;

Ir,t investment of region r in period t;

ECrit energy cost of region r in period t;

Krf capital of region r in period t;

Lr>( labour of region r in period t;

Dr,t demand of (aggregate of) energy Services
... ;

IEC02r e IFt'2"' initial endowments of C02 permits of region r;

NTXC02r £ 1R'T' net export (exports minus imports) of permits of region r\

NTXT e JR|T| net export of Yr of region r;

Pcoa £ IRf price of C02 permits;

pNTX G Rf1 price of Yr;
eelR2lTl excess = (£r NT^r, Er NTXC02T).

The changes of the original Macro-model comprise the following constraints which

are distinguishable from the original MM-constraints by the superscript
mr (multi

regional). First, the use of production is corrected by the net trade,4

Yr,t = Cr,t + /,,, + ECr,t + NTXr,f (USE)

Second, the C02 emissions allowed are restricted by the initial endowment minus

the net selling of permits,

Emr,, < IEC02rti - NTXC02r,,. (EC/)

Finally, the overall budget (trade balance) must have no deficit:

0 < pTNTXNTXr + pTC02NTXC02r. (BCrmr)

All other Markal-Macro constraints in (C.5) are left unchanged except for the

addition of a regional index r. In view of (1.6) and (C.5) the resulting regional

problems of MM* can be written as follows:

max Ur(Cr)

s.t. (C.1)-(C4), (PRDr,(), (Lr,(+1), (CAPr,,+1), (TCr),

(USE,7), (EC-), (BCr),

(all other Markal-Macro constraints).

(7.1)

4As for notation we use the gams-related Convention that an equation has to be repeated
for each nieaningful occurrence of indices which are given in the tag. As an example the tag

(USEJY) indicates that the corresponding equation is repeated for all t T and r £ R.



76 Markal-Macro multi-region MM"

Important economic results of the models are the GDP (gross domestic product)
and the GNP (gross national product). Based on the original MM-definition of

production (PRDr() we have for the stand-alone MM-model

GDP, := Ct + I, = Yt - ECt.

Because the view of Macro on the energy sector does not distinguish between

the value added and the cost of inputs, the Interpretation of the GDP requires

extra caution. One of the possibilities is to treat the total cost ECt as input cost,

and interpret the part X^rf D^dt in the production function related to energy

Services as total Output.

In the multiregional setting of MM"" the GDP takes also foreign trade into ac¬

count and is defined by

GDP' := Crj + Ir,t + NTXr,t = Yr<i-ECr,t.

If the capital-exchange is further taken into account we arrive at the GNP:

GNPmr .= GDp- + E£°E±NTXC02r,t = Yrtt-ECr,t + ^1AMTXC02r,f
PNTX.t

' ' '

PNTX.t

In all these relations !>_, is defined by the CES-production function in (PRD()
page 117, extended by a regional index r. Some authors prefer to call this specific
GNP 'green national product' because the capital-flow is based on 'artificial'

rights at the nature and not on 'proper' goods, labor or Services.

Notational Generalization

The extensions presented above are specific for trade of C02 permits. It is ob¬

vious, however, that MMmr can be generalized to model trade of a larger set of

goods. Assume G = {0,1,... , |G| - 1} is the index set of traded goods without

subdivision by periods, and with the Convention that the index 0 represents the

numeraire good. In our case good 0 is NTX and good 1 represents the C02

permits. Denote by x°
t
the initial endowment of good g in region r and period

t, and by x9tTtt the corresponding excess ('export minus import' in the context of

geographical units). The formulation of our previous model MMmr can then be

expressed by ajjj ,
= 0,

YT,t = Cr,t + Ir,t + ECr,t + X0,r,t. (USE)

EmT,t < x?ir,t - xi,r>t, (ECrm(r)

and

o < 5>jv (Bcr)
ge_G

To incorporate more traded goods requires simply to explicit the excess based on

the corresponding constraints in the underlying model and to extend the set of

goods in the budget constraint.
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7.1.2 Discussion of Some Aspects of MM"

The Numeraire-Price and the Budget Constraint

Note that the price vector can be scaled by any positive scalar without affecting
the primal Solution of any MM-based agent. (The dual multiplier of the budget

constraint, however, is linearly influenced by such a scaling.) A Single value

of a price component pg<t is therefore without information; here the function of

the numeraire comes in which is defined as a good representing the monetary

unit of an economy. That is, the price of the numeraire good x0,r,t in the local

currency of region r is known (fixed exogenously), and usually taken to be one,

which can always be achieved by adjusting the unit-amount. Based on that the

'real' prices of the goods are
^ for all g ^ 0 and all t. In case of MM all

prices are undiscounted and therefore the fraction ^ is also undiscounted. How
r

Po,t

discounting of equilibrium prices should be done will be discussed below. But first

the economic Interpretation of the budget constraint deserves some clarification.

Because the discussion focuses on one region, the index r will be suppressed.
Consider in a first step a 'per period' budget constraint of the form

Pa,tXo,t + Pi,tXi,t > 0 Vt E T;

in the model-related undiscounted 'real' prices it can equivalently be written as

xq t H -xi (
> 0 Vt er.

Po,t
'

In our case, though, we have chosen a scalar budget constraint which balances the

monetary exchange over all time periods. An economically consistent approach

to derive this takes the budget excess of each time period, multiplies it by an

appropriate discount factor at, and balances it over the whole time horizon:

y>(*o,t + —xht) >0. (7.2)

It is proven in the next lemma that we regain our model formulation

Y^^Po,tXo,t + Pi,tXi,t) > 0 (7.3)
ter

if and only if at = Apo,< Vt G.T and some A > 0.

Lemma 7.1 There exists A > 0 such that at = Apo.t Vt £ T «/ and only if

{x : ^a( \Xo,tJr~LtXiA > 0> = Ix : ^po.i^o.t +pi,tXi,t > 0 > .

teT ) ( ter )
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| The sets—a halfspace whose defining hyperplane contains the origin—are equal
if and only if the corresponding normal vectors

n1 := (01,... ,ot,^Pi,i,...,^:Pi,t) and

n2 := (Po,i,--- >Po,t,Pi,i,... ,Pi,t)

differ by a positive scalar only. We then have from the first half of the vector

equality nl — \n2 the relation

at = \p0li VteT,

and in the second half f-pi.t ~ Api.t, which, by the previous relation at = Ap0,t,

gives the trivial identity Apiit = Apijt, and so we have verified n1 = An2. (

Economically interpreted the (endogenously determined) price for the numeraire

Po is exactly proportional to the discount factor at in the budget constraint (7.2),
that is, we have

_^t_
=
_PM_ *£{!,...,T-1}.

o-t+i Po,t+i

Hence the equilibrium discount factor is given by at = Po,t/Po,i and equals the

sum of inflation plus net (real) return on capital. As for MM there is no inflation.

Note that the discount factor of the traded goods cannot be obtained by infor¬

mation contained in the agents; this knowledge can only be extracted from the

equilibrium Solution. It seems therefore reasonable to give always the discounted

equilibrium prices, otherwise decision-makers might be tempted to erroneously
take the discount rate of their regional agent.

The Numeraire-Price and the Regional Utility Discount Factor

Here the equilibrium discount rate represented by the numeraire price po is put
into correspondence with the utility discount factor bt in the MM objective (C.l).
A simplified MM-model reflecting the direct influence of the budget constraint

on the objective caused by trade of the numeraire Xq is

max y. °t 1°s(Ct — £o,t)

!-t- 5Zpo,t^O,t + ^Pl.r^l.r > 0.

rer

s.1

tct rer

Obviously we can assume equality in the budget constraint. From economic

theory it follows that arbitrage over time is zero in all equilibrium Solutions, or

formally interpreted that the dual multiplier of the budget constraint in

max bt \og{Ct - xo,t) 1

S.t. ^(Po.t^O.t+Pi.tZi.t) = ° j
tT
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is the same for all t £ T. Note that the maximization is done only with respect
to one time period t. For this model the Lagrangian is

L{x0it, A() = 6( log(Ct - x0,t) + A( ^(po,tzo,t + Pi,Txi,T),

and we derive from the first order optimality conditions öL/6Vo,< = 0 the relation

PoALt ~ xo,t)

From the arbitrage argument we expect to find in an equilibrium Solution A< =

A(+i Vi £ {1,... ,
T - 1}. The relation (7.5) is based on an extremely simpli¬

fied model but numerical tests in equilibrium points of the full-fledged MMrar

confirmed constant Lagrange multipliers following (7.5) with a high accuracy of

8-10 digits (based on the solver gams-minos). The reason for this coincidence lies

in the fact that our simplified model comprises all occurrences of the numeraire.

Therefore we have found the proportionality of the components of the numeraire

price to be

„.
. .

h.
.

in.
_ „_ ^

(7.6)
Va,t "t V^t+i

—

*o,t+it

that is, the fraction

C«+i —

a'o.t+i

appears additionally in the transmission of the utility discount factor b onto the

equilibrium discount factor po-

Free Permits

In the presentation of Section 7.1.1 it was assumed that permits are valid only in

one period. This comes probably close to todays usual political intention, but it

is straightforward to model permits which are free to be used in any period. The

idea is to allow an arbitrary exchange of permits in all periods, and to require a

balanced 'C02-budget' only at the end of the time horizon. As a consequence,

such a free world allows to emit C02 prior to buying the corresponding permits.5
To capture this free behavior the emission constraint (EC(r) in the model MM1

is replaced by

J2Em<-<* ^ JI [IEC02r,t - NTXC02T,t] (ECT)
teT tT

P0,(+1 fc+i (Ct
-

x0,t)

Pa,t bt (Ct+l

C( — xo,t

—

x0,(+l)

5This might irritate, but one can interpret such free permits in that there is no periodic
structure in the permits at all; the whole amount of permits for the whole time horizon is

simply given at the beginning, and the regions are free to use them in whatever way they like.

This Supports actors who like to do the whole Job of emission abatement towards the end of

the time horizon.
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In view of the previous section, it is straightforward to expect a formal depen¬

dency among the permit prices if the emission constraint is scalar; this helps both

to check economic consistency of the results, and to reduce the problem dimen¬

sion. The starting presumption is the same 'no-arbitrage'-argument as in the

previous section; the dual multiplier (shadow price) of (EC*66) must be constant

over all time periods. Technically this means that if a Solution is given, choose

t £ T, freeze all variables for t' ^ t, and compute the dual multiplier ßt of (EC£ree).
Then all such-wise computed multipliers must be equal, i.e. ßt = ßt< must hold

for all t1 / t. Economically seen constant ßt means that the marginal utility of

permits is constant over time, that is, arbitrage possibilities are exeluded. To

analyze the Situation problem (7.4) is extended to

max bt log(C( - x0,t)

s.t. ^(po.t^o.t +Pi,t£i,t) = 0,

tT

Y^,{x\,r - Xl.r) =J2Emr-
tT rer

Fixing the emissions J3T EmT =: c, the following Lagrangian is obtained:

L(x0,t, Xi,t, A(, ßt) = bt log(C( - x0it)

+ A, ^(Po,t-To,t +Pl,rXl,r) + ßt^^tä.T ~ X1.t) _ C\ '•

rer rer

resolving for ßt we derive from the first order optimality conditions dL/dxiit = 0

the relation ßt = A(piv<. The no-arbitrage argument requires that both ßt and A<

are constant over time, thus plj( must also be constant over time, and so the

dimensionality of independent price components is reduced by |T| — 1. Note

that the 'real' (undiscounted) permit prices pi,t/po,t are then proportional to the

equilibrium discount rate 1/po.t, which equals the Situation of natural resources

analyzed by Hotelling [52].

The constant price components for pi give raise to non-unique Solutions due to

redundant variables. To see this, first note that aq appears only in the budget
constraint and the (scalar) emission constraint (EC'ree); in both constraints aq

shows up only as a whole sum Stgr^M' anc' therefore the feasible set and the

objective does not change if for two distinct time periods t,t' e T we perturb

xitt + S and xi<ti
— S for any S £ IR. This ambiguity aggravates the Solution

behavior of both the ACCPM and the regional models. In case of ACCPM this

is caused by almost arbitrarily large and 'jumpy' excesses oecuring throughout the

iterations which disturb to focus the Solution; furthermore, these large excesses

can happen arbitrarily close to a Solution and even in the Solution itself, because

in an equilibrium only p\it J2TT £i,T = 0 holds for an arbitrary t e T, and

so the components aq,,- can still be large. The regional models are negatively
affected in that solving the models using restart techniques is slowed down due

to possible bigger distances between successive Solutions. All these problems
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can be overcome and the Solution made unique by restricting trade to a Single

period, say the last one, which is achieved by fixing all permit trade except for

the last period to zero, aqi(
= 0 Vi < jX|. This unique Solution is obviously also

a (maximal) Solution of the regional problem where xx is not restricted such-like.

Furthermore, this strategy allows to reduce the size of the equilibrium problem

by |T| — 1. Of course, instead of fixing all but the last component to zero, and to

make the numbers 'nicer', one could as well distribute the trade equally among

all periods by imposing aqi( = aq^« for all t and t' in T, or by simply redistributing
it after Computing the equilibrium by setting Xi,( := w\xip Vi £ T.

Floating Permits

The previous two concepts for trading permits—totally period dependent in the

original MM^-model versus total freedom in the section above—are two extreme

cases. As an intermediate case we consider heie so called floating permits; the

idea is to allow the use of unused permits in later periods, but—opposed to free

permits—it is not allowed to use permits from future periods. As in the case of

free permits two ways of exchanging permits are possible: exports/imports and

internal savings. While there was no need to explicitly model the internal saving
of permits in case of free permits, this must be done in case of floating permits,
because now savings from future periods are no more allowed to flow backwards,
i.e. credits are not allowed. To that end a new variable called SC02rf (Savings
of C02-permits) is introduced; it represents the change of the regional (internal)
stock of permits in period t. Thus, at the end of every period t the total amount

of permit savings is X^T=i SC02r,T which must be non-negative for all t G]T:

t

Y,SC02r,T > 0. (SC02r,t)
T=l

Based on these savings the emissions are bounded by the following set of |T|
constraints replacing (EC(r) from above:

Emryt < IEC02r,t - NTXC02r,t - SC02r,f (EC?°at)

Because permits are only allowed to move into future periods, the dual multipliers
of (ECjlf') are non-increasing over time. As a consequence we observe

Pi.i > Pl,2 >
•••

> Pi,t- (7.7)

Because MM is a growth model and the initial endowment with permits is linearly

decreasing over time we observe usually an overall scarcity of permits. Hence

Pij > 0 and so pi > 0.

The role of SC02ri( in (ECj!f') is close to that of a slack; a major difference is that

some of the components may be negative due to requiring only J2T=i SC02T,T > 0



82 Markal-Macro multi-region MM"

instead of SC02r,( > 0 for each period t. By putting all positive slack appearing in

(ECjJf) into SC02r,( we can require equality in (ECjJf'). Substituting (EC«f')
into (SC02r() leads then to equivalence of the set of constraints described by
(SC02r,t) and (EC^at) with

t t

J2Em*'T ^ Yl \IEC02r,T - NTXC02r,r] (EC^3'*)
T=l T= l

Hence, in the real implementation the set of constraints (ECj!°at2) suffices and it is

not necessary to introduce explicitly the savings SC02rit with the corresponding
constraints (SC02r)t).

In principle we have the same problem of non-uniqueness due to the introduction

of redundant variables as we had with free permits. To see this, note that if in a

period permits are at least as scarce as in the preceding period, the equilibrium
price of the corresponding components of pi are equal. As discussed in case of

free permits in the previous section, trade is non-unique within a certain (sub-)set
of time periods V C T if the corresponding price components of pi are equal. By
imposing pi>( > pi,j+i + e, t = 1,... , |T| — 1, with a sufficiently small e > 0, trade

a;1>r becomes unique while still being arbitrarily close to an unperturbed Solution

of the floating permit equilibrium problem.

In our scenarios we usually observe the same equilibrium Solutions p using either

free or floating permits. To justify this note that a growing economy together with

a linear decrease of the endowment with C02-permits leads to a Situation where

permits are typically more scarce in period T than in all preceding periods. This

implies already p1>( = pM' Vt,t' e T, and for all i < |T| the constraint (EC^f2)
is non-binding and can be dropped. Therefore a practical way to solve MM

with floating permits is to solve it actually with free permits and then check the

resulting equilibrium price p if it is also an equilibrium price for floating permits.
This seemingly obscure way to solve the floating permit equilibrium problem is

actually of practical relevance, because ACCPM has severe problems solving it

directly. If, in a first attempt, (7.7) is not required, the same large and jumpy
excesses appear as discussed in case of free permits. If, in a second attempt,

(7.7) is obeyed, two undesirable effects are present: (i) non-unique Solutions

and therefore again large and jumpy excesses (remember that in an equilibrium
Solution we usually have pi,( = piy Vt,t' e T); (ii) the restriction (7.7) for feasible

prices leads to poorly distributed excess vectors, eventually pushing the iterates

away from an inferior Solution point. Imposing in a third attempt pi)( > p1(+1+e
Vi = 1,... , IT"! - 1 resolves (i) but does not improve on (ii).

Consistency

Integrating consistent (regional) models which were developed independently
raises the question of consistency of the overall equilibrium model. Trivial aspects
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cover equal units, more importantly are, however, the underlying model assump¬

tions. In principle all regional models should make the same 'global' assumptions,

whereas regional differentiation should still be possible. For example, it is reason¬

able to require the same crude oil price on the world market for all regions, but it

is also meaningful to find different growth rates of the population in the different

regions. And here the discussion Starts: how far should the model-assumptions

be equahzed when integrating regional models? A relevant example in the case

of MM""1 is the question of available technologies and the corresponding prices.

Should different regional prices for photo-voltaic power generation be allowed,
even though there is an almost homogeneous world market for panels? Maybe

yes due to differing tax regimes or different local construction costs, but one can

as well reject it as being inconsistent. Similar questions can be asked for al¬

most all technologies. It is also questionable to what extend certain technologies
should be exclusive to certain regions. On the macroeconomic level more ques¬

tions are added: are different depreciation rates acceptable? What about growth

rates, elasticities, or the autonomous energy efficiency improvement factor? As

well as it is obvious that consistent regional models can produce an inconsistent

overall model, it is also clear that there are in case of complex regional models

too many details involved to adjust all of them by a central authority. In case

of such complex regional models the only tractable way is to bring together the

local modelers and make them discuss directly there local assumptions. In fact,

ETSAP6, running now for more than 15 years, is exactly a forum where this

kind of adjustment has been done excessively. For this reason, and in view of

the above discussion, we accepted the regional models as is without any changes

except an adaption of units, cf. Appendix E.3. We are aware, however, that a

more thorough discussion is still lacking, and that this issue becomes increasingly

important once developing countries are integrated.

7.2 MM as VIP and Negishi-Problem

7.2.1 The VIP-Formulation

Based on (VIP) from page 7, MM" can be written as a variational inequality

problem as follows. Let p = (pntx, Pcos) £ R+ >
define the regional excess

er(p) = (NTXT(p), NTXC02r{p)) 6 IR2lTi to be the outcome of the regional

utility maximization problem (7.1) at price signal p, and denote the aggregation

by e(p) := zCrRer(p). Because e(p) = e(Ap) for any A > 0, we can restrict the

set of feasible prices to A C 1R+ ,
cf. (1.11), and formulate the concrete VIP for

MM^as

find p* £ A such that e(p*)T(p-p') > 0, Vp £ A. (7.8)

6ETSAP abbreviates Energy Technology Systems Analysis Project which was founded by

the IEA, the International Energy Agency.
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Assuming non-redundant variables, the strict concave regional objective functions

imply a Single valued e(p). Based on the map e(p), Algorithm 2 or Algorithm 4

can be applied, where in the latter case an initial transformation of the problem

together with a final transformation of the iterates is required.

7.2.2 The Negishi Problem

Here, Definition 1.2 is the starting point; to relate MMmr to a welfare problem
denote by Kr the feasible set of region r £ R defined by all constraints in (7.1) and

where the budget constraint (BCJnr) is omitted. By (Cr, NTXr, NTXC02r,...) £

Kr we then mean that the corresponding components fulfill simultaneously all

constraints in (7.1) except the budget constraint. In view of the VIP-formulation

above, we define again the regional excess er = (NTXr, NTXC02r) which is,

in the context of the Negishi welfare-problem, simply the Compound of the two

vectors NTXr and NTXC02r and hence not price dependent. For any weight
vector a £ 1R+ , ^2reRoir = 1, the welfare problem ('Negishi-welfare problem')
is then defined by

max 2_.arUr(Cr

s.t. y
^

er > 0,
re«

(Cr,NTXr,NTXC02r,... e Kr Vr £ R.

(7.9)

Based thereupon Algorithm 5 can be applied, using a decomposition scheme like

the one described in Algorithm 6. To apply the latter we conclude this section

by expliciting (4.8) and (4.9), i.e. the Interpretation of 9*k, d>r(pk,vk) and eT(vk) is

given in the context of MM1.7 To start with, in iteration k the regional problem

defining max^^*,»,*) in (4.10) is

max arUr{Cr)+pkNTXTNTXr+pkcoeTNTXC02r
s.t. (C.1)-(C.4), (PRDr,f), (Lr,m), (CAPr,m), (TCr

(USEr), (EC-),

(all other Markal-Macro constraints).

(7.10)

Comparing (7.10) with (7.1) reveals two differences in the regional problem:

(BCr) is dropped and the objective is extended by the penalty-term pkTer —

pkNTxTNTXr + pkcosTNTXC02r. Next, 9*k is the sum of the objective values over

all such regional problems in iteration k. Finally, eT(vk) = (NTXr, NTXC02r)
where NTXr and NTXC02r are taken from the Solution of (7.10) in iteration k.

7Opposite to (4.8) and (4.9) the iteration-index is here a superscript again.



Chapter 8

Economic Results of MM""" for

Three Countries

The regional MM models draw a sophisticated picture of the related energy sec-

tors and produce additionally a large amount of macro-economic data. A pre¬

sentation and discussion of these results requires an in-depth knowledge of all

underlying regional models which is beyond the scope of this study. We therefore

restrict the presentation to results which are a direct outcome of the equilibrium
model MM', most notably equilibrium prices, dual multipliers of the C02 emis¬

sion constraints, the GNP and the amount of trade. All these economic results

are to be considered cautiously, as an in-depth discussion with economists of the

involved countries is not included. Nevertheless, the underlying regional data sets

are up to date (summer 1996 to spring 1997), and comprise the three countries

Sweden (SW), the Netherlands (NL) and Switzerland (CH).

Although this is definitely a very small equilibrium model, the results can rep-

resent the equilibrium of a larger group of countries; to see this, note that the

resulting trade can be interpreted in two ways. On the one hand the equilibrium
Solution forces the overall excess to zero (given positive price components, which

is always the case in our scenarios), that is, trade among the three countries is

implicitly modeled as if it is closed, which is far away from reality. On the other

hand the only external information of a single region is the price signal given

exogenously. It makes no difference, therefore, from the perspective of a single

region if there are 3 or 30 regions included in the trade model, its (excess) reaction

is solely determined by the price signal.

If we assume that the three countries are representative of a larger part of Eu-

rope 'E', in the sense that the resulting equilibrium prices of the three countries

correspond to the E trade model, then we can equally well interpret trade of the

three countries as trade within the larger E Community. In view of the structural

Variation of the three countries discussed below we claim that they might indeed

come near being representative in this equilibrium price sense, and hence their

results could—to some extend—be interpreted in such a sense. Specifically, trade

Was willst du denn jetzt noch wissen?" fragt der

Turhuter, "du bist unersättlich." "Alle streben doch nach

dem Gesetz", sagt der Mann, "wieso kommt es, dass in

den vielen Jahren niemand ausser mir Einlass verlangt
hat?" Der Turhuter erkennt, dass der Mann schon an

seinem Ende ist, und, um sein vergehendes Gehör noch

zu erreichen, brüllt er ihn an. "Hier konnte niemand sonst

Einlass erhalten, denn dieser Eingang war nur für dich

bestimmt. Ich gehejetzt und schliesse ihn." FK [58]
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of numeraire could be seen in the context of such a larger Virtual E Community.

The Regional Models

The energy-related specificities of the three countries can be summarized as fol¬

lows, cf. Bahn, Büeler, Kypreos and Luethi [6]. The three countries have high

living Standards. For instance, the 1993 gross domestic product (GDP) per capita
was (in thousand US$) 20.9 for the Netherlands, 24.7 for Sweden and 35.7 for

Switzerland, cf. [53]. However, both the structure and efficiency of their en¬

ergy Systems are rather different, particularly in the case of C02 emission, see

Kram [66].

The Netherlands is a major exporter of natural gas, and its own energy System
relies heavily on gas. In 1993, 98% of all houses were connected to the natural

gas grid, and around 50 % of electricity production came from gas power plants
and 40% from coal. Furthermore, fossil fuels accounted in 1990 for 97% of the

total primary energy use (TPE) resulting in C02 emissions of 161.3 million tons,

that is 10.8 tons per capita.

In contrast in Switzerland, 60 % of electricity production is hydro-generated and

38 % nuclear. Under the current nuclear moratorium (valid until 2000), nuclear

capacity is not allowed to increase. Fossil fuels accounted in 1990 for 54 % of the

TPE, but the use of coal is very low. In 1990, C02 emissions from combustion

were 43 million tons or 6.4 tons emitted per capita. The main contributors of

C02 were transportation and heating activities.

Sweden has large hydroelectric resources. Its electricity production is primarily
based on hydro-power (52 %) and nuclear power (42 %), the rest is produced from

fossil fuels. This Situation is due to change, as the Swedish Parliament has decided

in 1980 to phase-out nuclear energy by the year 2010, starting in 1995. Fossil

fuels accounted in 1990 for only 34 % of the TPE, resulting in C02 emissions of

54 million tons, that is 6.3 tons emitted per capita.

These differences lead to significant variations of C02 abatement costs among

the three countries and for this reason constitute an incentive for cooperating on

C02 emission abatement through an international market of emissions permits.

Parameter CH NL SW

pot. GDP growth rate [%]

discount rate [%]
ESUB

US$/local currency

1990 2000 2010 2020-40 2000 2010 2020 2030 2040 o

0 57 1 97 1 75 12 2 19 2 1 74 1 5 1 25

5 5 5

0.2 0.25 0.4

0.8333 0.6 0.15

Table 8.1: Economic parameters of the regions in MM.



Both the Swiss and Swedish data cover initially the periods 1990-2030, whereas

the data representing the Netherlands are from spring 1997 and cover the periods

2000-2040. To extend trade, in the case of Switzerland and Sweden the data

from period 2030 were duplicated and adjusted, yielding data sets covering the

periods 1990-2040. In period 1990, Switzerland and Sweden behave as isolated

regions without C02 emission bounds; this is achieved by forcing the numeraire

exchange variable NTXi990 = 0 together with setting the initial endowment of

C02 permits to a sufficiently large constant, i.e. formally IECO2i990 = cxs. A few

relevant economic parameters are presented in Table 8.1.

Emission Cases and Scenarios

There are basically five cases to consider, see Table 8.2: (A) the regional models

are isolated, i.e. are identical to the original formulation, without any trade; (B)
the countries trade only the aggregated product NTX but no emission permits;

and (C), the countries trade in addition C02 emission permits NTXC02. Case

(A) and (B) can be further combined with C02 emission limits which then have

to be fulfilled in each country. Case (B) is important as reference for the füll trade

case (Cl), because trade by itself influences considerably the results and hence it

would be misleading to compaie only case (A) and (C). The above abbreviations

No trade Trade of

NTX only

Trade of NTX

and NTXC02

Unlimited emissions

Limited emissions

(Au)

(AI)

(Bu)

(Bl) (Cl)

Table 8.2: Abbreviations used for the different cases.

are extended in Table 8.2 and will be used in the rest of the chapter. In principle,

trade of permits can be further subdivided into 'per period', 'floating' and 'free'

permits following Section 7.1.2. For this chapter we have chosen 'per period'

permits noting any exceptions.

Differing from the notion 'case', we designate by 'scenario' the C02 reduction

target. The reference values are the approximate C02 emission values in pe¬

riod 1990 and set to 42 million tons for Switzerland, 62 for Sweden and 160 for

the Netherlands. Based on these reference emissions the reduction scenarios are

built; starting from the reference emissions in period 2000, the initial endowment

decreases linearly between 2000 and 2040 by the prescribed percentage. As an ex¬

ample, the endowment in the —20 %-scenario is given in Table 8.3. In the special

period 1990 the emissions of Switzerland and Sweden are unbounded. There are

three scenarios used in this study: Stabilization (i.e. 0%-scenario), the —20%-

and -40 %-scenario. In the (AI) and (Bl) case the initial endowment with per¬

mits is exactly the emission bounds of each country; only in case (Cl) permits
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are traded and consequently the realized regional emissions may differ from the

endowment.

Country 2000 2010 2020 2030 2040

CH 42 39.9 37.8 35.7 33.6

SW 62 58.9 55.8 52.7 49.6

NL 160 152.0 144.0 136.0 128.0

Table 8.3: Initial endowment of C02 permits for the -20 %-scenario, in [Mtns/y]
C02.

Effects of Numeraire Trade

As a first result Table 8.4 shows the unlimited emissions in the case (A) of isolated

countries and case (B) where only the numeraire goods are traded. It is interesting

to see that regional emissions can increase non-monotonically (NL, 2010 —> 2020),
and that trade of numeraire does not significantly influence emissions but can

slightly increase or decrease them. This is remarkable in view of the significant

increases of utility and GDP induced by trade presented in Table 8.5 below.

Finally, the aggregated emissions increase smoothly by about 60 % from period
2000 to 2040.

Country Case 1990 2000 2010 2020 2030 2040

PH
(Au)

GH

(Bu)

NL
(Au)
(Bu)

SW (Au)
bW

(Bu)

42.8 42.5 48.9 50.4 52.5 55.4

42.8 42.9 49.6 51.1 54.1 56.2

— 162.9 176.0 175.9 176.0 194.2

— 162.9 177.4 176.8 178.0 197.2

62.2 67.1 108.5 130.0 164.0 186.8

62.2 64.9 102.1 124.6 156.9 178.9

v (Au)
2^ (Bu)

— 272.5 333.4 356.3 392.5 436.4

— 270.7 329.1 352.5 389.0 432.3

Table 8.4: C02 emissions (Mt/year) for the cases (Au) and (Bu).

While the utility-index—being the objective of the regional optimization problem—
is a scalar, results like GDP, consumption1, etcetera are period-dependent. The

presentation of such period-dependent results stemming from dynamic models

can be done in two ways; either the results are given for each period separately,

or they are aggregated. We have chosen to aggregate results in order to give

1
For a definition of all economic terms see Chapter 7. 'Consumption' denotes total macroe-

conomic consumption.



a clearer overview. However, the choice of an appropriate discount rate is not

'canonical'. In order to emphasize the effects in the later periods, a small discount

rate of 2.5 % p.a.—and not say 5 %—is chosen, and based on this discount rate

the quantities are aggregated over the periods where trade takes place, i.e. 2000-

2040.

The last period 2040 poses a final problem; to damp terminal effects, the Util¬

ity discount factor of the last period is increased following a geometrical series,

see (Cl) page 117.2 This tends to make consumption in the last period higher
than in the other periods and so the weight attached to this last period influences

significantly the aggregated outcome. But in our Interpretation the results of the

last period are simply representatives of period 2040 and therefore discounted

back by 0.97540 « 0.363 to the base period 2000. This works fine for Switzerland

and the Netherlands, but Sweden increases the utility discount factor of the last

period considerably more than the other regions, resulting in a significant shift

of consumption into period 2040. For example, in case (Bu) Sweden increases its

consumption from US$ 3.3 • 1012 in 2030 to US$ 6.7 • 1012 in 2040. This effect

is not visible in the other two regions, explaining why only Sweden exhibits a

decrease in the aggregated consumption if trade is allowed, cf. Table 8.5.

Measure

CH

(Au) (Bu)

NL

(Au) (Bu)

SW

(Au) (Bu)

Utility-index
GDP

Consumption

2555.86 2559.66

12.16 12.41

9.25 9.55

3230.78 3236.89

18.48 18.63

15.93 16.48

5091.78 5157.34

10.69 10.43

9.02 8.14

Table 8.5: Benefit of trade without emission limits; GDP and consumption are

in [1012US$] with aggregation discount factor 2.5%.

If in the case of Sweden the internal utility discount factors are used in the ag¬

gregation, then the consumption, which defines the objective function, increases

significantly from US$ 20.70 • 1012 in the (Au)-case to US$ 26.67 1012 in the

(Bu)-case. Using this internal utility discount factor also for aggregating the

GDP, however, we observe a slight drop from US$ 24.68 • 1012 for (Au) down to

US$ 24.05 • 1012 for (Bu). Using Swedish data these numerical examples show

how the discount factor can shape the result of aggregation.

In the rest of this chapter we restrict ourselves to an aggregation discount factor of

2.5%. As a first main result Table 8.5 demonstrates nicely the expected 'mutual

benefit from trade' through the increase of the utility-index for all regions when

2A look at (Cl) reveals that for all but the last period T the utility discount factor 'ud/,'
is the only discount factor attached to logCy In the last period T, however, an additional

1/(1 — (1 — udrr)10) factor accompanies udfr. For linguistic simplicity we denote in this

chapter the whole expression wifTi,l^dr ,,„ as utility discount factor of the last period
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trade is allowed.3 Surprisingly, having the greatest gain in the utility-index,
Sweden has also the only drop in aggregated consumption and GDP. But as

indicated by the word 'index', the quantitative gain/loss in utility can not be

easily interpreted economically. Instead, measures like compensated or equivalent
variations are more appropriate for its Interpretation.

Country 2000 2010 2020 2030 2040

CH -0.32821 -0.21302 -0.20958 -0.11786 0.9949

NL -0.48481 -0.49876 -0.30145 -0.29456 1.7142

SW 0.81302 0.71178 0.51103 0.41241 -2.7091

Table 8.6: (Bu); Undiscounted NTX trade without emission limits, in [1012 US$].

The discussion above indicates another fundamental behavior of such dynamic

equilibrium models; the amount of trade—above all of the monetary numeraire

good—tends to show a 'bang-bang' behavior as seen in Table 8.6. For example,
in the case of Sweden, the very high utility discount factor attached to the last

period formes an incentive to export numeraire in all prior periods but the last,
and then to import in the last period, when it counts most from the perspective

of the objective function, as much numeraire as needed in order to satisfy the

budget constraint. Ginsburgh and Waelbroeck [36, Chapter 4], however, strongly

argue against the temptation to correct such 'anomalous' outcomes by inserting
ad hoc constraints.

Another possibility would simply be to ignore the problematic last period in the

aggregation process. This, however, would compromise for example the Swedish

results where all imports would be left out. Also interesting is that the amount

of traded numeraire—the aggregated monetary foreign trade—can exceed 20 %

of GDP. This is, as indicated in the introduction, only plausible if trade is inter¬

preted as happening within a larger group of countries.

Füll Trade of Numeraire and Permits

'Per Period' Permits

To start the presentation of the equilibrium results with one of its most interest¬

ing facets, the undiscounted equilibrium prices resulting from case (Cl) together
with the corresponding marginal costs of isolated C02 abatement from case (Bl)
are given in Figure 8.1. The large difference in the marginal abatement costs

constitute an incentive to join such a permit Community and to trade certificats.

3To prevent misunderstandings the mutual benefit from trade assures an improvement for

each region only if the non-trade-case (perfectly isolated regions) is compared with a case where

trade (of some goods) is possible. Specifically, economic theory does not predict a mutual

increase of Utility if, starting from a Situation where some goods are traded, additional goods
are traded. E.g., the utility-index of a region may drop when trade is extended from case (Bl)
to (Cl).



500 US$/t C02

400
0%

300

200

100

n
~~""—'

"

500 US$/t co2

400

300

-20%

200 /'

100

^^>
2000 2010 2020 2030 2040 2000 2010 2020 2030 2040

800 US$/t C02

700 /

600
-40%

500 ,'

400

300

200 .---'' ^^
100

-i^-^"^

SW

NL

CH

equilibrium price

2000 2010 2020 2030 2040

Figure 8.1: Undiscounted marginal reduction costs and equilibrium permit prices.

US$ 2000 per ton C02

Figure 8.1 shows in particular that the permit prices lie between the lowest and

highest national marginal reduction costs. As can be expected from the differ¬

ing structures in the energy sector, Switzerland and Sweden have siginificantly

higher marginal abatement costs than the Netherlands. If the marginal costs

and equilibrium prices are linearly extrapolated from the interval [+60%,0%],
where +60 % denotes a scenario without emission limits, we observe considerably

nonlinearly increased costs and prices in the —20 % and —40 % scenarios.

The above undiscounted equilibrium prices,
which exceed US$ 400 per ton C02 in period
2040 for the —40 %-scenario, seem to be high,
but discounting them back to the base period
2000 by means of the numeraire price compo¬
nent (cf. Section 7.1.2 page 77), show in fact

the opposite. Based on Pntx the anual equi¬
librium discount factor is around 4.7 %. 2000 2010 2020 2030 2040

The discounted prices, depicted in Figure 8.2,

are very reasonable even for demanding sce¬

narios like a reduction of 40% until 2040. To

give an example, a tax of US$ 60 per ton of C02 measured in dollars from period
2000 equals approximately 13-14 US cents per liter of gasoline. Also interesting
is the bump in period 2010 which is possibly due to the inertia of the energy

sector. It takes time to implement cost effective alternatives, suggesting an early

Figure 8.2: Discounted equilibrium prices.
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but comparably slow emission reduction instead of doing nothing now and leave

harder reduction targets for later time periods.

'Free' versus 'Per Period' Permits

One possible strategy to investigate how permits are optimally distributed over

time is to leave the choice to the model, i.e. to look at the Solution generated from

'free permits' (FP), cf. Section 7.1.2 page 79. Whereas in the previous section 'per

period' (PP) permits were assumed, Figure 8.3 shows the C02 emissions for both

the 'per period' and the 'free' permits for each country. The 'free permit' curves

exhibit a characteristic raise at the end and are thereby easily distinguished from

the 'per period' curves. The aggregated emissions are only shown for the 'free

permit' Option, because the aggregated 'per period' emissions form a straight line

with a slope given by the reduction scenario. The aggrageted curves as well as all

regional curves show most clearly the optimal saving behavior: save permits in all

periods but the last, i.e. emit less, and use more permits in the last period. These

results underline the potential overall improvement achieved by early reduction of

emissions, instead of no reduction in early periods and severe reductions later. It

is still unclear, however, to what extend the shift of emissions into the last period
is influenced by the increased utility discount factor attached to period 2040.
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Figure 8.3: C02 emissions in case of free or 'per period' permits.

The utility-index for the individual regions, however, may decrease in the equi¬
librium Solution if permits are free to move in time. Mathematically this is not

surprising, because even though the \T\ periodical emission constraints are re¬

laxed by one overall constraint and thereby the regional feasibility sets enlarged,



the equilibrium price may change, affecting the feasibility sets. Thus, by chang¬

ing the equilibrium, some parts of the feasibility sets can expand, while others

can shrink. Table 8.7 shows the utility for the different reduction scenarios in

case (Cl), where either the permits are restricted to periods (PP) or are free to

move among the periods (FP). In the first two reduction scenarios there are only
minor differences, showing a slight improvement of Switzerland and Sweden on

the one hand and a deterioration for the Netherlands on the other hand. The

—40 %-scenario is more drastic in that only Sweden profits from free permits,
whereas Switzerland and the Netherlands both lose utility-index.

Scenario

CH

PP FP

NL

PP FP

SW

PP FP

0%

-20%

-40%

2559.365 2559.375

2558.984 2559.014

2559.058 2558.381

3237.232 3237.095

3236.769 3236.541

3239.869 3235.560

5151.147 5152.304

5147.358 5149.767

5143.758 5146.171

Table 8.7: Comparison of per period versus free permits expressed by utility-
index, case (Cl).

Finally the undiscounted equilibrium prices resulting from free permits are given
in Figure 8.4. In view of the 'free permit' discussion in Section 7.1.2 one expects

an exponential increase over time. This exponential growth of prices over time

is confirmed by the results in all but the last period. The drop in period 2040 is

again due to the higher weight given to period 2040 in the objective, which impels
the regions to shift emissions into that period, decreasing thereby the marginal
abatement costs, resulting finally in a lower permit price.

As discussed in Section 7.1.2 the discounted

prices are constant over time, avoiding irreg-
ularities like the bump in Figure 8.2. But

the drop in period 2040 aggravates the esti¬

mation of the discounted equilibrium prices
for the different scenarios. As a first simple

strategy the undiscounted prices of period
2000 can be taken as the discounted prices.
But this is an overestimation due to the shift

of permits into the last period and the re¬

sulting lower undiscounted prices in period
2040. An improved estimation can be obtained by discounting the prices back to

period 2000 and then building the weighted average, where the utility discount

factors are used as relative weight. An educated estimate of the discount fac¬

tor is based on the numeraire price components of the periods 2000-2030 and

yields approximately 4.7% per year. The weighted average then produces dis¬

counted equilibrium prices in the ränge of 22.9, 36.9 and 58.4 US$ per ton C02

2000 2010 2020 2030 2040

Figure 8.4: Undiscounted free permit prices.
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respectively for the three reduction scenarios.

These discounted equilibrium prices, based on free permits, seem to be compara-

ble with the prices of 'per period' permits depicted in Figure 8.2.

'Per Period' Permits: Amount of Foreign Trade and GNP for Different

Emission Scenarios

The influence of the different reduction scenarios (0%, —20% and —40% C02

emissions) on numeraire trade are marginal only, i.e. Table 8.6 remains in priciple
valid for all scenarios. The same applys less strictly to trade of permits, as can

be seen from Table 8.8, where, as usual, a positive value designates exports and

a negative value imports. In all scenarios, Sweden trys to buy sufficient permits
to keep emissions at least at the 2000 period level, whereas the Netherlands is

a major net seller of permits. In conclusion, the further the overall emissions

are reduced, the more Switzerland increases its imports, the Netherlands reduces

exports and Sweden reduces imports of permits.

Scenario Country 2000 2010 2020 2030 2040

CH

0% NL

SW

-0.8 -0.5 0.3 0.6 -1.6

-0.6 6.4 14.7 26.3 34.2

1.5 -5.8 -15.0 -26.5 -32.6

CH

-20 % NL

SW

-0.8 -1.5 -1.7 -3.7 -6.8

-0.6 4.6 12.2 25.5 31.1

1.4 -3.2 -10.8 -22.2 -24.2

CH

-40% NL

SW

-0.8 -2.7 -4.2 -6.6 -7.0

-1.4 2.2 14.8 23.2 22.8

1.7 0.6 -10.7 -16.5 -15.8

Table 8.8: Net export of C02 emission permits (Mt/year).

As a final result, the effect on the aggregated GNP of bounding emissions and

trading permits is presented in Figure 8.5.4 As before, the aggregation is done

over the periods 2000-2040 with a discount rate of 2.5 %. The origin of the i-axis

is marked by '+60%' to indicate that no emission limits are imposed; starting

4In the usual definition of GNP the repair costs due to climate-change-induced damages

(floods, storms, etcetera) must be added to the GNP. Ecologically oriented economists criticize

this definition of GNP because then damages are considered positively as increasing the GNP.

In our Macro model, the GNP does not explicitly include the repair costs caused by climate

change, which implies a larger GNP in the baseline (Bu)-case. Consequently, this larger GNP

increases the GNP losses when the baseline case (Bu) is compared with a Situation where C02
emissions are limited and hence repair costs are reduced. Because IPCC estimate the damage
costs in the ränge of one to a few percents of GNP (cf. the introduction of Chapter 6) the above

baseline effect could significantly influence the results in figure 8.5.
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Figure 8.5: Decrease of aggregated GNP in %; reference (= 100%) is the case

(Bu), * designate (Bl) cases and non-* designate (Cl) cases.

from there and going to the right, the emissions are increasingly reduced. On

the y-axis 100% represent the aggregated GNP in case (Bu), i.e. when numeraire

is traded, but C02 emissions are not bounded. The decrease in GNP caused by

bounding emissions follows either case (Bl), i.e. no tradeable emission permits, or

case (Cl) where the bürden can be shared by trading permits. The (Bl) curves,

marked by a star, are generally lower than the corresponding (Cl) curves with the

exception of the Netherlands where trade of permits brings about slightly lower

GNP. As seen in Figure 8.5 the GNP losses are not equally distributed. Sweden's

GNP suffers most in both cases and all scenarios, whereas the Dutch economy is

less affected. A possible explanation is the high costs involved in the phase-out
of nuclear power in Sweden compared with the lower costs involved in phasing
out coal plants in the Netherlands. It is also Sweden which gains most (reduces
its losses most) from trading permits if the non-trade case (Bl) is considered as

reference. In view of this the negotiation of initial endowments may improve

benefits/losses equity among the countries.

The GNP summed over all countries ('overall') decreases by a little more than

one percent, where trade can reduce the decrease by about 0.2%-points, that is,
trade reduces the GNP losses by roughly 20 %. All GNP losses are small; indeed,
one percent of aggregated GNP by the year 2040 corresponds to an average

yearly growth rate of approximately 0.045 %-points,5 something which is beyond
Statistical measurability. In view of the criticism leveled at the definition of the

GDP in MM, however, the above values should be interpreted cautiously.

6
Assuming a yearly growth rate g = 0.02 and a time horizon T = 40 years then a first

approximate answer is given by the equation (1 + g - l)T = 0.99 • (1 + g)T yielding / = 0.026 %.

Because the losses are aggregated over the whole period T an improved estimation Starts from

the equation J0r(l + g - l)'dt = 0.99 • /„T(l + gfdt. For its approximation Ya(1 + g
- ()' =

0.99 • X)<f (1 + gf a numerical Solution based on bisectioning yields / = 0.045 %.
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Summary

The results can be summarized as follows. First the discounted equilibrium prices
are very low; even for drastic reduction targets like —40% they are only around

13-14 US cents per liter of gasoline. The corresponding loss of aggregated GNP

is around 1-1.5 %, which is also very low, corresponding to an anual growth rate

reduction of approximately 0.06%-points. Trading permits reduce the overall

GNP losses by about 20 % when compared with unilateral reductions. Clearly,
this GNP 'gain' from trading permits is strongly related to the distribution of

the initial endowment. Finally, the results indicate that it is profitable to start

reducing emissions early and to leave emission reserves for the future.

We believe the results presented in this chapter contribute to the understanding
of important aspects of C02 emission permits. However, they emanate from the

particular models and data chosen, and are in that sense specific. Nevertheless,
we are convinced that the economic and mathematical reasoning developed in

this work can be profitably applied to a variety of situations.



Appendix A

Notation and Basic Theorems

The chapter summarizes some basic mathematical material which is relevant to

the main part of this work. After some convexity definitions the characteriza¬

tion of optima due to Karush, Kuhn and Tucker is given in Section A.l. The

Lagrangian dual problem, used in the decomposition of the Negishi-welfare prob¬

lem, is discussed in Section A.2. Because both the Karush-Kuhn-Tucker charac¬

terization of optima and the connection to the Lagrangian dual problem requires

differentiability, we give in Section A.3 a well known relaxation to continuous

functions. Finally Section A.4 gives a brief introduction to VIPs.

Definition A.l (cf. [7]) A set C C IR" is called convex «/VA e [0,1] and

Vx, y 6 C we have Xx + (1 — \)y £ C. A function f : D C IR" —> IR is called

• convex on D ifVX £ [0,1] and Vx,y E D we have f(\x + (1 - X)y) <

Xf(x) + (1 - X)f(y);

• pseudo-convex on D if f is differentiable on (an open set containing) D
and Vx,y G D with Vf{x)T(y — x) > 0 we have f(y) > f(x);

• quasi-convex on D «/VA 6 [0,1] andVx, y £ D we have f(Xx+(l-X)y) <

max{/(i), f(y)}.

The same definitions with concavity replacing convexity are obtained by exchang-

ing / with —/. Given differentiability of /, convexity implies pseudo-convexity
which in turn implies quasi-convexity. The latter is equivalent with convexity of

all level sets La := {x \ f(x) < a}, thus level sets of convex and pseudo-convex
functions are always convex. The following two sections are based on [7j.

A.l The Karush-Kuhn-Tucker Characterization

of Optima

The problem under consideration can be described as follows. Let X be a

nonempty, open subset of IR" and let f,gtforif\I and h3 for j G J be functions
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from X to IR, where both / and J are finite. The problem is to find a Solution of

min f(x)
s.t. g,{x) < 0 Viel,

h3(x) = 0 VjeJ,

xeX.

(A.l)

Under suitable conditions such optimization problems can be replaced by a set

of equalities and inequalities. This is the content of the following theorems de¬

veloped in the fifties and sixties, and which are today one of the most often used

mathematical tools in economic theory.

Theorem A.l (Karush-Kuhn-Tucker, necessary conditions; [7, Theorem 4-3.6])
Consider the problem (A.l), suppose x" is a local Solution and define the set of

binding mdices at x*, Ib = {« G / | g,(x") = 0}. /// and g, Vi G Ib are differen¬
tiable at x*, gt Vi $ Ib are contmuous at x*, h3 Vj G J are contmuously differen¬
tiable atx*, and finally the bindmg gradients {Vgt(x*),i G /(,}u{V/iJ(a;*), j G J}
are hnearly independent, then there exist scalars u, for i G Ib and v3 for j G J

such that

V/(x*) + Yl u<V9,(x*) + Yl VJ VM**) = °

te/' jeJ (A.2)

u, > 0 V« e Ib.

If 9i Vi ^ Ib are also differentiable at x* condition (A.2) is equivalent to

v/OO + J2 u<vfl.(--0 + Yl v^hAx') = o

u,9l(x ) = 0 |
u, > 0

'

The linear independence of the binding gradients {Vg,(x*),i 6 Ib}L){Vh}(x*),j G

J} is called Kuhn-Tucker constraint qualification. Depending on the problem
it can be advantageous to replace this linear independence condition by other

conditions. A populär one is the so called Slater condition which implies the

Kuhn-Tucker constraint qualification.

Definition A.2 (Slater constraint qualification) If there exists an x such that

gt(x) < 0 Viel,

hj(x) = 0 Vj e J,

x G X,

we say the constraints fulfill the Slater conditions.
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While Theorem A.l states conditions under which a so called KKT-point exists,

that is, a point x* where (A.2) holds, it is interesting to know when such a

KKT-point is an Optimum.

Theorem A.2 (Karush-Kuhn-Tucker, sufficient conditions; [7, Theorem 4-3.7])
Suppose x* is feasible to problem (A.l), i.e. x* G X, gt(x") < 0 Vi 6 / and

h}{x*) = 0 Vj G J. Assume further f and gt Vi G Ib are differentiable at x*,

g, Vi $ Ib are continuous at x*, h3 Vj G J are contmuously differentiable at x*,
and that x* fulfills (A.2). If f is pseudo-convex at x*, gt is quasi-convex at x* for
i G Ib, h3 is quasi-convex at x* for j G J : v} > 0 and h3 is quasi-concave at x*

for j G J : Vj < 0, then x* is a global optimal Solution to (A.l).

Simplifying those sophisticated structural properties, we have the following equiv¬
alence: Assume / and g, for «' G / are convex, h3 for j G J is affine, and either

the KKT constraint qualification at a feasible point x* or the Slater conditions

are fulfilled; then x* is a global Solution to (A.l) if and only if it fulfills the

KKT-condition (A.2).

A.2 The Lagrangian Dual Problem

Consider problem (A.l) where X may be closed. Then the Lagrangian dual

function 9 is defined as follows:

9(u,v) := inf
v '

xX
f{x) + Y u,g,(x) + ]T v,h,(x) (A.4)

Note that 9 can attain —oo; based on 9 the following dual problem can be posed:

max 9(u,v). (A.5)
«>0,t;

The following Theorem A.3 states that under the condition

3x G X such that g{x) < 0, h{x) = 0, 0 G int{/i(x) | x G X} (A.6)

the so called primal problem (A.l) has the same objective value as the derived

Lagrangian dual problem (A.5).

Theorem A.3 (]7, Theorem 6.2.4]) Let X C IR" be a nonempty convex set,

f : ]R" -r IR and g : IR" -»• IR1'1 be convex, and let h : IR" -> IR|J| be affine.

Suppose the constraint qualification (A.6) holds. Then

inf{/(z) | x e X, g(x) < 0, h{x) = 0} = sup{0(u, v) \ u > 0, v}.
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Note that the constraint qualification (A.6) is closely related to the Slater con¬

dition. As a consequence of the previous theorem the following so called 'saddle

point' criteria can be derived which is based on

$(x,u,v) := f{x) + Y2ut9i(x) + Y2v>h'(x)- (A-7)
•er jeJ

The notion 'saddle point' is motivated from concavity of $ in (u, v) for fixed x and

convexity in x for fixed (u, v) forming the image of a saddle; the 'saddle points'
are under appropriate conditions simultaneous Solutions to both the primal and

the dual problem.

Theorem A.4 (]7, Theorem 6.2.5]) Let X C IR" be a nonempty convex set, and

let f : IR" -+ IR, g : IR" -> IR171 and h : IR" -> B)Jl Suppose that there exist

x G X and (ü, v) with ü > 0, such that

$(x,u,v) < $(x,ü,v) < <S?(x,ü,v) Vx G X, V(u, v) with u > 0. (A.8)

Then x solves the pnmal problem (A.l) and (ü, v) solves the dual problem (A.5).

Conversely, suppose that f and g are convex and that h is affine. Further, sup¬

pose that the constraint qualification (A.6) is satisfied. If x solves the primal

problem (A.l) then there exists (ü,v) with ü > 0, such that (A.8) holds true.

Note that the set X may be chosen freely, that is, depending on the Situa¬

tion it can be IR" or can contain a (sub-)set of the constraints g„ i G / or

kj,j£j,a circumstance which is very useful when using the Lagrangian dual

problem for decomposition. This Situation differs from the Karush-Kuhn-Tucker-

characterization of optima where openness of X is required. It is exactly here

where equivalence of KKT-points and saddle-points holds: under convexity of /
and g and affinity of h we have to require x G intX in order to have equiva¬
lence of KKT-points and saddle-points (SP). Differently stated, if the constraint

qualification (A.6) holds we have

{{x,ü,v)KKi\x G intX} = {(x,ü,v)SP | x G intX},

where the index KKT refers to Karush-Kuhn-Tucker points (i.e. points satisfying

(A.2)) and SP to saddle-points (i.e. points satisfying (A.8)).

A.3 Differentiability and Continuity

Even though continuous functions are almost always almost nowhere differen¬

tiable (that is, in the set of continuous maps the ones which are differentiable on

more than a set of measure zero have measure zero), they are in a sense arbitrarily
'close' to differentiable functions. Considering functions defined on a closed set

D let us define the distance of two functions / : IR" -+ IR and g : IR" -> IRm by
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|t/ -fl||«,:= max \\f{x) - g{x)\\.
x£D

There is actually a plethora of differentiable functions which approach in this

sense any (non-differentiable) continuous function. In the following theorem due

to Weierstrass polynomials are chosen:

Theorem A.5 (Weierstrass' approximation theorem) Let D C IR" be compact

and f : D —> IR"1 be continuous. Then given any e > 0 there is a polynomial

g : D -r IR"1 such that

ll/-flll»<e-

A.4 An Introduction to Variational Inequality
Problems (VIP)

As a start, two examples give a first intuition on variational inequalities (cf. [65]):

1. Let a,b ElR, and / : [a,b] —r IR be continuously differentiable. The points

Xq'- f{xo) = minj,(=[aij,| f(x) have to be determined. Three cases may occur:

(a) if x0 G]a, b[, then f'{xa) = 0;

(b) if x0 = a, then f'(x0) > 0;

(c) if x0 = b, then f'{x0) < 0.

These three cases can be understood as Xo solves the variational inequality

problem f'(x0){x - x0) > 0 V x G [o, 6].

2. Let D C IR" be a closed, convex set and / : D —> IR be continuously
differentiable with minimum x0 G D. Let x G D be an arbitrary point;
then the function

m):=f{xo + t(x-x0)), 0 < * < 1,

attains its minimum at t = 0. From the first example follows

$'(0) := Vf(x0)T{x -x0)>0 Vx G D.

Hence, any minimum xo fulfills the variational inequality Vf(xo)T(x—xo) >
OVxeD.

A.4.1 Existence and Uniqueness of Solutions for VIPs

Definition A.3 (Variational Inequality Problem, VIP(f,D), [65, problem 4-1])
Given f : D C IR" -»IR"; find x e D, such that

f(xf(y -x)>0 VyeD. (A.9)



102 Notation and basic theorems

The existence of Solutions to VIP(/, D) can be shown by means of fixed point

arguments. We call h a contractwn mappmg, if \\h(x) — h(y)\\ < at\\x — y\\ for all

x,y G D, and some a G [0,1). In the case of a = 1, h is called non-expansive.

With this notion the following obvious contraction lemma can be formulated:

Lemma A.6 ([65, Theorem 1.2]) Ifh:Dc IR" —> D is a contraction mappmg,

then there exists a unique fixed pomt of h.

Note that D may be non-compact in the previous lemma. h being contracting
can be replaced by continuity if D is additionally compact, cf. Brouwer's Fixed

Point Theorem 2.2.

Finally, to bridge the gap between fixed points and variational inequalities, the

concept of projection is needed. If D C IR" is a closed, convex subset, then for

each x G IR" there is a unique y D with

\\x-y\\ = inf ||x-2||,

called the projection of x onto D, and written y = Pdx. Obviously, Pr>x =

x Vx G D. The following lemma characterizes projections.

Lemma A.7 ([65, Theorem 2.3]) If D C IR" is closed and convex, then y = Pr>x

is the projection if and only if

yT(z - y) > xT(z -y) Vz G D.

This can be written in the equivalent form (y — x)T(z — y) >

0 Vz G D and interpreted as ly is the outermost point in D

towards x\ see Figure A.l. From Lemma A.7 it follows that

the projection map is nonexpansive, i.e. \\PDx — Poy\\ <

||x — y\\ for all x, y G IR", and thus Lipschitz-continuous.
After these preparations, a first existence result for VIP

can be stated.

Theorem A.8 ([65, Theorem 3.1]) If D C IR" is convex and compact and f :

D —7 IR" is contmuous, then there exists a Solution to VIP(f, D).

The proof of Theorem A.8 gives an idea of the relevance of projection and fixed

points, therefore it is outlined here:

| Multiplying (A.9) by —1 and adding xT(y—x) on both sides yields the equivalent
relation

xT{y-x)>{x-f{x))T(y-x) Vy G D.

With 1 the identity mapping, PD o (1 - /) : D -+ D is continuous. Hence, by

Proposition 2.2, there exists a fixed point ieD, i.e. x = PD(x — f(x)). Together
with the characterization of projection, this can be written as

xT{y-x)>{x-f(x))T{y~x) Vy G D

which is exactly the relation to be proved. |

z-y

Figure A.l: Characteriza¬

tion of projection.
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The pioof shows that every VIP(/, D) is equiva¬

lent with the fixed point pioblem x = PD o (I —

f)(x), see Figure A 2

In Theorem A 8, the existence of a Solution was

proven for bounded D The example f(x) =

exp(x) with D = TR shows that this condition can

not be dropped without further considirations

Define Br(0), the ball with center 0 and radius i, and set Dr =

Dr]Br(0) Then the following lemma gives a sharp condition for the

existence of a Solution in the case of unbounded D, see Tiguie A 3

Lemma A.9 ([65, Theoiern 4 2]) If D C IR" is convex and closed,

and «/ / D —> IR" is contmuous, then there exists a Solution

to VIP(f, D) if and only if 3r > 0, such that a Solution xv of

VIP(f,Dr) satisfies \\xr\\ < r

A more useful condition is based on a notion called coeruveness

f D C IR" -> IR" is called coercne, if 3xa fc D with

-fix)

Foix-f(x))

Figuie A 2 VIP as fixed pomt pioblem

Figuie A 3 Charac¬

terization of a sohl

tion to VIP(/, D) in

case of unbounded D

(/(r)-/(x„))r(x-r„)

\x- xQ\\
-» +cx) Vx G D, (A10)

Rewnting (A 10) in the fonn f{i)r(r-x0)/\\r- xQ\\ -f(c0)T(x -xo)/l|r-i0|' "+

+oo shows that the projection of f(x) onto the unit vector (x — x0)/\\x — xo\\

must giow to infinity, as x G D tends to infinity As a simplified picture one

can think of a \ectoifield with all vectors f(x) going away from Xo and becoming

longei the further awav x is from Xq (a star w lth growing rays)

Theorem A.10 ([65, Corollary 4 3]) If f D C IR" -> IR"

convex and closed, then VIP(f, D) has a Solution

is coercive, D is

A Solution to VIP(/ D) may not be unique Theie is, however, a natural condi¬

tion which ensuies uniqueness If x, i' aie two Solutions of VIP(/, D), we have

f(t)T(y-x) > o

f(x')T(y-x') > o
VjtD

Setting y = i' in the first and y = x in the second lelation and adding them

yields

(/(*) - f(x'))T(x - x') < 0

Hence the existence of se\eial Solutions implies this last relatron, or reverseh, if

this last relation is denied, there is at most one Solution This denial is called

strict monotonicity and is defined below
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Definition A.4 (cf. [91, 7l[) f is called

monotone over D, if (f(x) — f(y))T(x — y) > 0 Vx,y G D,

pseudo-monotone over D, if [ f{y)T(x - y) > 0 => f(x)T(x — y) > 0] Vx, y G D,

strictly monotone over D, if {f(x) - f{y))T(x - y) > 0 Vx, y G D,

strongly monotone over D, if (f(x) — f(y))T(x — y) > a\\x — y\\2 Vx,y G D,

ot > 0, and

strongly/-monotone overD, if (f (x) - f {y))T\x -y) > a\\f(x)~ f(y)\\2 Vx,y G

D, a > 0.

To get some intuition, note that under suitable assumptions the notion of mono¬

tonicity of / is equivalent with convexity of some F where / = VF, see Propo¬
sition 3.1.

A.4.2 Optimization and VIP

This section relates the problem of minimizing a function F : D C IR" —> IR to

VIP(VF,£>).

Proposition A.ll Let D be convex, let F : D -+ IR be once contmuously dif¬

ferentiable, and set f(x) := VF(i); then we have

(i) ([65, Proposition 5.1[) x solves VIP(f,D) if F(x) = minyD F(y);

(n) ([65, Proposition 5.2]) suppose F is convex and x solves VIP(f, D), then x

satisfies F(x) = minyo F(y);

(in) (cf. [56, Satz 4-2]) F{x) = min,^ F{y) if f(y)T(y -x)>0VyeD.

While part (i) and (ii) are rather obvious as can be seen from the first example in

this section, the sufficiency condition presented in (iii)—which can be difficult to

check—is only rarely found in the literature. The points x satisfying f(y)T(y -

x)>0VyeD are called 'weak Solutions' of VIP(/,£>).

In the previous proposition optimization problems are related to certain equiva¬
lent VIPs. Using so called gap functions, discussed in Section 3.2, every VIP can

be transformed into an optimization problem. Due to the specificities of the gap

functions, however, these optimization problems are in general not tractable.
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Proving the Existence of

Equilibria using VIPs

For point-to-point and continuous excess maps Theorem 2.1 and Proposition 2.2

guarantee the existence of an equilibrium. Here we want to discuss the non-

continuous or multi-valued case, which allows to regain the proof of existence of

a Solution to EEP (see Definition 1.4) under relaxed assumptions. It requires,

however, to leave the aggregated view of an excess map and to analyze the un¬

derlying structures of the economic agents.

This chapter is based on Yao [103], where proofs of existence of Solutions to—in a

certain sense extended—VIPs are discussed and subsequently applied to economic

equilibrium problems.

The contribution lies in the bridging between the general formulation due to Yao,
and the specific Situation of our economy described in Chapter 1.

As usual in the context of VIPs, the notion 'generalized' applies to the Situation

where the Operator is set-valued; a further extension is achieved with the so called

generalized quasi-variational inequality problems (GQVIP), where the feasibility
set is variable.1 To clarify the notation, all v- and a-related quantities have the

meaning from Section 2.3, whereas /, x and y are general quantities and do not

refer to any previous usage. Otherwise the Situation described in Section 1.1 is

assumed.

Definition B.l (Generalized quasi-variational inequality problem (GQ VIP(f, K,

D)), ]12]) LetDclRn,f:D^ 2B", and K : D -> 2D; findx G D and (, G f{x),
such that

fiv ~x)>0 Vye K{x). (B.l)

'Note that there is also a notion called quasi-monotone which relates to quasi-convexity in

the same way as pseudo-monotonicity to pseudo-convexity, cf. Proposition 3.1.
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If the Operator / is Single valued the problem is called QVIP(/, K, D). The

relevance of this formulation can be seen from the consumer problem (1.5), where

the feasibility set depends on the price and production, which are determined by
other agents—the producers and the price agent in the more general setting of

problem (2.9). Recalling the Splitting of variables v = (va, vä) for an agent a G A,
we assume that the feasible set depends on the action of all other agents, i.e. we

require va G Ka(vä), which is a notational simplification for (2.7) and (2.8). Let

us further assume that for each agent a e A there exists Va such that Ka(vs) C Va
for all va eVä-

In view of Lemma 2.7, rewriting (2 9), we call a point v* an equilibrium of this

abstract economy if for all a G A

v'.eKM) and /„«) = max /„(«„, v'a). (B.2)

Consequently we abbreviate such an abstract economy by [fa,Ka,Va]aA, and

write furthermore F = (-VvJa)afA, K := UaeAKa : V -> 2V and V := UaAVa.

In the sequel / is a general notion for a mappmg and can be real or vector

valued, its meaning should always be clear from the context. F on the other hand

is reserved for the Compound negative gradient of the pseudo-concave objective
functions of the agents. To use the VIP-based machinery, the following lemma,
which slightly generalizes Lemma A.ll, relates optimization problems to VIPs.

Lemma B.l Let f : IR" —> IR be pseudo-concave and differentiable, D c IR"

nonempty, closed and convex;

(a) if x* solves VIP(—Vf,D) it is also a Solution to maxxeD f(x);

(b) if V/ «5 continuous and x* is a Solution to maxl£j) /(x), then x* solves

also VIP(-Vf,D).

|Tosee (a) note that a Solution to VIP(-V/, Z?) is characterized by -V/(x*)T(z-
x*) > 0 Vz G D and that by pseudo-concavity f(x*) > f(z) Vz G D.

To prove (b) assume x* G argmaxx£ö f(x) and x* does not solve VIP(-V/, D),
that is, there exists z* G D : V/(x*)T(z* - x") > 0. By continuity of V/ and

convexity of D there exists 6 G (0,1] such that Vf(x{t))T(z* - x*) > 0 Vi G [0, S]
where x(t) := x* + t(z* - x*). But then

f(x(5)) - /(*') = [ Vf(x(t))T(z'-x')dt >0

Jo

and so x" $ argmax^,^ /(x). This contradiction proves that x* has to solve also

VIP(-V/,Z?)J
Using this lemma it is sufficient to find a Solution to VIP in order to have a

Solution to the maximization problem. The reverse requires continuity of the

gradient map.
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The next lemma gives a trivial characterization of the Solution set of VIPs which

will be used in the theorems below.

Lemma B.2 x* is a Solution to VIP(-Vf,D) if and only if

x* G {x G D | sup - V/(x)T(x - z) < 0}.

I x* is a Solution to VIP(—V/, D) if and only if

-V/(x*)T(z - x*) > 0 Vz G D <=> inf -V/(x*)T(z - x*) > 0

*=> sup - V/(x*)T(x* - z) < 0.1
2gD

—J

The Situation is now as follows; in order to find for a specific aEia Solution to

the maximization problem (B.2), the corresponding VIP(—V„a/0(ua;i>ä), Ka(vä))
can be solved. Based on that we expect that a Solution of QVIP(F, K, V) is a

simultaneous Solution of the maximization problems (B.2) for all a G A, that is,

an equilibrium of the abstract economy.

Lemma B.3 If v* solves QVIP(F,K,V), where F(v) := (-V„„/a(i/))o/1, then

v* is a simultaneous Solution to (B.2) for all a G A.

I Let v* be a Solution to QVIP(F, K, V); assume that there exists o G A for

which v* is not a Solution to VIP(-VVafa,Ka(v!)), i.e. 3z'a G Ka(v?) such that

-VvJa{v"')T{za - v*a) < 0. Let z := (z'a,v*a); then we have

£-v„0/aK)T(z0-<) = -v,./„(«*)Va-0 < o

aeA

which contradicts v* being a Solution. This contradiction proves that a Solution

to QV1P(F,K,V) is also a Solution to all its subproblems VIP(-Vt,„/a, Ka(v£))
and with Lemma B.l the claim follows. |

A function g : IR" —> IR is said to be lower semi-continuous (I.s.c.) if the set

{x | g(x) < a} is closed for any a G IR, or equivalently, for all convergent

sequences i°->iwe have g(x) < \immfn^><x,g(x"). Next, we say a (set-valued)
function f(v) has convex values (or is convex valued), if the set f(v) is convex.

Now the prerequisites are ready for proving existence of an equilibrium based on

the following general existence result for GQVIP.

Theorem B.4 ([103, Theorem 3.3]) Let D C IR" be nonempty compact and con¬

vex, f : D —J- 2ffi" and K : D -> 2D. Suppose that the following conditions are
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1. The mappmg f has nonempty, compact and convex values, and for every

fixed y £ D the mappmg

x i-> inf f (x — y)

is lower semi-contmuous on D;

2. K has nonempty, closed and convex values, and for every fixed p G IR" the

set {x 6 D | pTx < sup pTy} is closed;
ViK(x)

3. the so called mteracting set {x G D \ sup inf £T(x — y) < 0} is closed.

yK(x)(ef{x)

Then there exists a Solution to GQVIP(f,K,D).

Assuming \A\ < oo, the following existence theorem for the abstract economy

can be deduced from the previous theorem.

Theorem B.5 ([103, Theorem 6.1[) Consider an abstract economy [/„, Ka, Va]aeA
where V = na£AVa C IR"; suppose that the following conditions are sahsfied:

1. Va is nonempty, compact and convex for all a G A;

2. fa is pseudo-concave with respect to va for all a G A;

3. for every fixed y G V the mappmg x f-+ F(x)T(x — y) is lower semi-

conhnuous on V, where F(v) = (-V„<1/0(D))JeA;

4- Ka(va) C Va is nonempty, closed and convex for all a G A, and for every

fixedp G IR" the set {v e V \ pTv < J2aeAsuPzeKa(va)pIz} ls closed, where

pa denotes the part of p related to agent a;

5. the mteractmg set 1:— {v G V \ sup F(v)T(v — z) < 0} is closed.

zK(v)

Then there exists an equilibrium.

The proof is a direct application of Theorem B.4 using the relation between

optimization problems and VIP given in Lemma B.l. Note that Condition 3. is

trivially satisfied if/„ is not only differentiable but contmuously differentiable, and
that the so called interacting set is exactly the set of Solutions to QVIP(F, K, V).

To apply this general framework to the Situation in Section 1.1 we have to relate

closedness in Condition 4. and 5. to properties of K. First note, however, that

for all fixed »^we have from \A\ < oo and additivity of the objective

SUp pTZ = SUp T]plza ~ S~] SUP PTaza-
z£K(v) *e*»0(Ej4 aeAza£K^Vä)



Lemma B.6 Let V G IR" be compact and K : V -+ 2V have nonempty, closed

and convex set values' for allveV. If K is closed then for every p G IR" the set

V := {v G V | pTv < sup pTz] is closed.

z£K(v)

I Assume K is closed (cf. Definition 2.1); take any p eW and convergent sequence

{vn} C V, v" -t v°°. We have to show that v°° G V. Choose a sequence z" G

argmax2eA-(1J„)p:rz. Because V is compact {z"} has a convergent subsequence

which, without loss of generality, is assumed to be {zn} and converges to z°°. We

then have the following chain of inequalities,

pTv°° = lim pTv" < lim sup pTz = lim pTz" = pTz°° < sup pTz,
n-too "->°°z£K(v") "-*00

z£K(v)

where the second inequality is due to vn G T, and the last inequality follows from

closedness of K which implies z°° G K(v°°). Thus v°° G V and so V is closed. |

Lemma B.7 Let V G IR" be compact and K : V -> 2V have nonempty, closed

and convex values for all v G V. If K is open and F contmuous, then the

mterachng set

I := {v e V \ sup F(v)T(v - z) < 0}
z£K(v)

is closed.

I Take any convergent sequence {vn} C I, v" —> v°°; we have to show that

v°° G I. Let z°° G argmaxzeA-(v0„) F(v°°)T(v°c - z) which exists due to nonempty

and compact values of K(vx) plus continuity of F. From openness of K follows

the existence of a sequence {zn}, such that z" G K(vn) Vn G IN and z" converges

to z°°. We then have the following chain of inequalities:

sup F(d00)t(ü°° - z) = F(v°°)T(v°° - z00)

lim F(f;n)T(i/" - *n)

< lim sup F(vnf(v" - z)

< 0.

The second relation follows from convergence of both {vn} and {z"} together
with continuity of F, the last is a consequence of vn G I Vn G IN. |

Recalling the comments at the end of Section 2.1, we see that by the previous

two lemmata we ensure a continuous feasible set map K which, together with

continuity of fa for all a G A, implies a closed optimal set map, and this is exactly

what is required for applying Kakutani's Theorem. In that sense Theorem B.5

is a generalization of Kakutani's existence Theorem for this class of problems. If

we assume that K is defined by sets of (in-)equalities, closedness of K follows
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already from continuity of the (in-)equalities. However, openness of K requires

usually constraint qualifications to hold, see Flippo [30, Theorem 3.1-3.4]. In

order to verify openness of K the following lemma reduces openness of the overall

feasibility set map K to openness of the feasibility set map Ka for each agent

o G A.

Lemma B.8 K : V —> 2V is open if and only if Ka : V —> 2V° is open for all

a G A.

| '=>': Choose o G A and a convergent sequence v" —> v°° in V, and choose z£° G

Ka(v°°). Because K = llaGAKa there exists z°° G K(v°°) satisfying (z°°)0 = z£°,
where (• )„ symbolizes the vector of a-related components; from openness of K we

conclude that there is a convergent sequence z" -> z°° with z" G K{vn) Vn G IN.

But by the definition of K we have then (z")„ e Ka(v") Vn G IN and from

convergence of z" -> z°° we conclude convergence of its part (z")„ —> (z°°)a = z£°.

'<=': Choose a convergent sequence vn —> n°° in V, and choose a z00 G K(v°°).
Because Ka is open for all o G A there exist convergent sequences zj —> (z°°)a
where zj G /^(ü"). From this construction we conclude z" := UaeAz" G iY(n")
and z" -> z°°. |

The analogue, where closedness of K is equivalent with closedness of Ka for all

a G A, is straightforward. One might hope that, due to the specific structure of

our K deduced from (2.9), closedness of the interacting set I is given. This is in

general not true as is demonstrated by the example depicted in Figure B.2. But

if we are more modest and restrict our consumer and producer agents to (1.4)
and (1.5) we succeed.

Lemma B.9 The feasibility map Ka is open for the problems (1-4), (1-5) and

(2.3).

| The problems (1.4) and (2.3) have a constant feasibility map and so they are

open. Problem (1.5)—though most simple in the structure of its feasibility nmp—
is not so obvious. Without loss of generality we assume there is exactly one con¬

sumer and producer and drop therefore the corresponding indices; the feasibility

map is

K{y,p) = {x \ pT(x - x° - y) < 0}.

Let {yn,pn) -> (i/00,^00) be a convergent sequence and choose x°° G K(y°0,p°°).
Then the distance between x°° and K(yn,pn) is

6(x°°,K(yn,p")) = max{0,P^(x^-x0-y")}.
Because p G A (the unit simplex), S is continuous in (yn,pn), and by choosing the

minimizer of the distance function in K(yn,pn) as x", we have found a convergent

sequence with x" G K(y",p") and x" -> x°°. |
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From the previous lemma we have an open feasibility map, closedness follows

from continuity of the underlying restrictions in the setting of Section 1.1, and

so we have the following corollary of Theorem B.5.

Corollary B.IO The equilibrium problem based on Definition 1.4 and its related

definitions and assumptions m Section 1.1 has a Solution.

The adverse of this bright view shows up as soon as the feasibility

maps are more complicated. Assume for example that a consumer

has some additional constraints which are even independent of prices
or production quantities. To demonstrate the difficulties and high-

light the intimate relation of l.s.c. of the value map and closedness

of the feasible set map, Figure B.2 shows a 2-dimensional simple ex¬

ample. The feasibility set (gray shaded) is [0,1]2, further cut by a

rotating constraint ((xi,x2) -(1, |))(-l,p)r < 0. The problem is to

maximize J — [(xi — l)2 + (12 -1)2] whose level curves form circles and

are partly dotted drawn. Let p" = £ form a sequence converging to

0; the resulting feasible set K(p") shrinks continuously maintaining

always a non-empty interior. The Solution of the maximization prob¬
lem for all pn stays at x" = (1, |) with constant objective value 0. In the limit

p°° = 0, however, K(p) expands non-continuously to 1 x [0,1], and the Solution

value jumps to \. Openness of K forbids exactly this non-continuous growth of

K, and as can be seen from this example, this condition can in general not be

weakened.

(1,1)

Figure B.2:

open K(p).

A non-
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Appendix C

The Original Markal and

Markal-Macro Models

For some general comments on energy economy models see Section 6.2. Introduc-

tory notes are also given at the beginning of Chapter 7. Here we restrict ourselves

to giving an overview on the linear energy-model Markal in the first section and

a more detailed description of the nonlinear macroeconomic model Macro in the

second section.

Cl Markal

The linear model Markal (Market Allocation) was mainly developed in the late

seventies by Fishbone et al [27, 28] at BNL1 in collaboration with and ordered by
the ETSAP-group2, which is itself an outcome of IEA. Originally written in the

language OMNI, Goldstein [42] translated the model in the early nineties into

GAMS3. The purpose of this section is to give an idea of the structure of Markal

without going into details which can be found e.g. in Kypreos [68].

The fundamental concept of this model is the so called Reference Energy System

(RES), cf. Figure Cl. RES is a process-oriented flow-chart covering all possible
connections between primary energy sources and final energy Services. It contains

a rieh set of intermediate nodes for transformations, and on its edges all kind

of economical, technical and ecological information are attached. The Solution

process in Markal can thus be interpreted as a search for a minimal cost flow

in the feasible set of paths admitted by RES, satisfying the given demand in

the sinks. The resulting Markal is a dynamic linear programming (LP) problem,

which, given exogenously the demand for a number of different energy Services

for the different time periods, searches for the cheapest possibility to satisfy the

'Bruckhaven National Laboratory in the USA.

2Energy Technology Systems Analysis Project
'General Algebraic Modeling System.



114 Original Markal and Markal-Macro
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Figure Cl: Objects of the Reference Energy System.

demand. It comprises a description of the available and—in the near future—

expected technologies to become available. Depending on the number of time

periods and the details in the technological description, it can contain up to

5,000-10,000 activities and constraints respectively.

The required demand for energy Services can be generated exogenously by ap-

propriate models, or endogenously by linking Markal to a macroeconomic model

like Macro. In case of Switzerland the demand generator used is called SMEDE4

and is an adaption and implementation of MEDEE-S, originally developed by

B. Lapillonne at the Institut Economique et Juridique de l'Energie at Universite

des Sciences Sociales de Grenoble. SMEDE computes, based on technological,
economical and social data, the demand for the different energy Services for a

specified time period. Hence its results depend crucially on the scenarios given,
like the economic growth rate in the future, demographic development, and many

more. The model Macro, which is an alternative way to generate the demand

endogenously, is described in the next section.

The activities of Markal can be subdivided into three groups:

Capacities: Reserves (e.g. oil) and capacities of various technologies or plants.

Activities: Annual production of all processes (e.g. electricity or heat).

Energy-resources: Annual consumption of energy carriers.

The restrictions can be grouped as follows:

Capacity-transfer: These inter-period constraints connect the available capaci¬

ties with foregoing Investments and depreciation.

"Swiss MEDE, see Kypreos [67]
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Demand: Supply must be greater or equal demand for each energy Service

in each period.

Fuels budget: The sum of imports, depletion of reserves or resources, and the

production must meet the consumption of the plants and of other

demand sources. This holds for all fuels and time periods.

Electricity budget: Analogous to the above budget of fuels.

Heat budget: Extending the previous two budgets the regional structure is taken

into account for the heat.

Load-restrictions: Guarantee coverage of peak demand with existing capacity.

Plant structure: Models time for maintenance of plants, or period dependent

changes in capacities like river power plants.

Investment- and resource-usage: Period-specific investment- and plant-capacity-
restrictions are in this category as well as time related constraints

for introducing new technologies.

Rest: All other restrictions; this can be region specific, like the usage

of electric heaters in Switzerland which is regulated by law and

restricted by the capacity of the net.

The overall (discounted) cost include all variable costs (e.g. for buying fuels),
fixed costs (e.g. for building plants), and finally the so called 'salvage costs' which

account for the problem when a plant is not yet at the end of its hfe time when

the model reaches its time horizon.

C.2 Markal-Macro (MM)

Markal-Macro is a synthesis between the bottom-up engineering model Markal

described in the previous section and a top-down macroeconomic model called

Macro. Analog to the previous section the presentation of Macro is limited;
more details can be found in [76, 77, 73, 75, 74]. MM allows to investigate
the relationship between economic growth, demand for energy Services and the

structure of the energy sector. Macro is supply-oriented, i.e. it is assumed that

the (aggregated) production is fuUy consumed. The author of Macro motivates

it as follows:

[... ] macroeconomic models, with their descriptions of effects within

the total economy but fewer technical details on the energy System,

tend to overestimate future energy demands[.] Conversely, [...] engi¬

neering models, ignoring feedbacks to the general economy and non

technical market factors but containing rieh descriptions of technol-

ogy options, tend to take to optimistic a view of conservation and the

use of renewable energy resources [... ] Manne and Wene [76]
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Of special interest with regard to such a hybrid model is the influence of changing

energy/fuel prices or limiting ecological effects on macroeconomic indicators like

the GDP (gross domestic product). Figure C.2 sketches the overall structure of

MM.

labor

I
ressources

technologies
environmental restrictions

Markal

demand of useful energy consumption
'

Macro

investment

capital

Figure C.2: The model Markal-Macro following Manne and Wene [76].

Markal can thus be understood as an oracle which, given the demand for useful

energy by Macro, returns the cost in each period. Because the costs are minimal

while all energy Services are fully 'consumed', MM can be seen as a partial equi¬
librium model in the energy sector. In this setting Macro is the master-program

representing

[... ] a macroeconomic model with an aggregated view of long-term
economic growth. The basic input factors of production are capi¬

tal, labor and individual forms of energy. The economy's Outputs

are used for investment, consumption and interindustry payments for

the cost of energy. Investment is used to build up the stock of capi¬
tal. The model clearly distinguishes between autonomous and price-
driven conservation. Manne and Wene [76]

In the following detailed description we assume 10 years per period t and de¬

note by T the set of time periods. The objective function of (Markal-)Macro is

called utility and defined as logarithm of consumption. One of the most relevant

exogenously determined quantity is labor Lt, further exogenous coefficients not

discussed here include p, a, a, bd, grow, k, aeeifac^t, supply,^, costJj(, c, cx,

expf, ...
On the top level of Macro we find the variables Ct (consumption), It

(investment) and EC( (energy-cost), followed by Kt (capital) and Ddj (demand
for energy-service of kind d). Finally, the variable XCAPXi( permits to use the

technology x beyond its availability but penalizes it by additional cost.

Even though all quantities have a period index t G X, they relate always to

one year. E.g. Ct is the mean consumption per year of period t, and It is the

investment per year in the average of period t.

Macro consists of only 4 restrictions:5 USE( (usage of production), PRD4 (pro¬
duction), CAP( (capital accumulation) and TC (terminal condition). In addition

to these economic constraints, relations describing the link between Markal and

Macro are needed. While the first T — 1 periods comprise 10 years, the last period

5But—as in Markal—each restriction is repeated for every period, thus there are theoretically
about 4|T| restrictions. In the implementation, however, this number is reduced by using some

obvious algebraic simplification possibilities.
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T represents the rest of the time horizon to infinity. The objective is to maximize

'utility'6

T-l

U(C) := ^B^logC, + udfTi _

„
logCT, (Cl)

where udft = YlTJo^~ udrT)10 is the utility discount factor for period t computed
from the average annual utility discount rate in period r, udrT. The exponent

represents the number of years per period. The fraction in the last summand

stems from the summation of a geometric sequence Yl^Lol" = VU ~~ l)- Hence

this implicit terminal condition assumes a constant growth in the future leading
to a higher weight of consumption in the last period of the optimization problem.

Next, the constraint USE( distributes production Yt on consumption, investment

and energy cost:7

Yt = Ct + It + ECt- (USE«)

The production is determined by a nested CES-function8 of the form

Yt = [aKrLf~a) + Y,d b* D^ "''. (PRD()

a, bd, p and a are coefficients, Kt is the capital stock accumulated up to period t,

Lt is the Labor(-potential) in period t, and Drf( is the demand for energy Services

of form d in period t. Thus, production is determined on the first level by a

capital-labor-aggregate and different energy Services. On the next lower level the

capital-labor-aggregate connects capital and labor in a Cobb-Douglas function

fixing the elasticity of Substitution between capital and labor to 1. Here, et can

be interpreted as optimal share of capital in the aggregate. Price-induced energy

savings are essentially determined by a, the elasticity of Substitution between

energy and the capital-labor-aggregate. It holds er = 1/(1 — p), see Chiang [13].

The previous two relations, (USE() and (PRD(), assume implicitly that the gross

value of energy Services is captured in Yt, whereas the outlay ECt must be sub-

tracted explicitly in a second step to gain the net production from energy Services.

The long-term economic growth is mainly determined by the exogenously given
labor supply Lt and its produetivity, cf. Figure C.2. Initially, L0 is set to 1 and

subsequently increased following

Lt+i = (1 + grow)10L„ (L(+1)

where grow is the potential growth rate of the economy. As mentioned, we have

chosen for the ease of exposition 10 years per period, hence the exponent of 10.

6More precisely, U (C) is a utility index; the absolute quantity U(C) has no direct economic

Interpretation, hence U{C) is no Cardinal utility but only an ordinal index.

7As a notational convenience we use the gams-related notion that an equation has to be

repeated for each meaningful occurrence of indices which are given in the tag. As an example

the tag (USEt) indicates that the corresponding equation is repeated for all t T.

8Constant elasticity of Substitution.
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Having chosen et and p, the quantities a and 6d are determined by calibrating the

model using real data.

On the one hand, capital Kt is accumulated by Investments It, on the other hand

it is depreciated by a given annual capital depreciation factor k:

KM = (1 - k)wKt + 5((1 - k)wIt + IM)- (CAP(+i)

The quantity 5((1 — k)10It + It+i) permits a better estimation of the mean invest¬

ment in period t. Initially, we set I0 = (grow + k)Kf).

Finally, the following terminal condition guarantees reasonable Investments in

the last period:

KT(grow + k) < IT. (TC)

This 'primal' terminal condition reduces some of the effects which are caused by

the finiteness of the time horizon.

The model description is completed by outlining the connection between Markal

and Macro. As mentioned above, Markal requires the energy Services to be given

exogenously, or to State it reversely: the link between Macro and Markal has

to generate the demand for energy Services from the State of Macro. Let X}
be an activity of Markal supplying useful energy of the form d proportional to

supply^. With the 'autonomous energy efficiency improvements factor' aeeifac,*,9
the demand constraints for Markal are for all meaningful combinations (d, t) given

by

V"* supplyj.rf.fX,,* = aeeifacdj(Dd,t- (C.2)

To transfer the costs from Markal to Macro the link computes for each activity

and period the cost cost,]( per unit of activity Xjf. A first approach is

Y2 cost3,tXht = ECt\

because the accelerated introduction of technological capacities is possible but

penalized, a quadratic term is added,

Y costhtXht + cY, cxXCAP2xt = ECt. (C.3)

Here XCAPX]< is the amount of capacity installed beyond the capacity expansion

factor expf. Therefore the last constraint needed is

CAPXtt+i < expf CAPx4 + XCAPxMi. (CA)

6aeeifac<j allows to account for energy saving effects induced by the general technological or

social development. As mentioned above there is also a price-induced energy saving possibil¬

ity available by the Substitution of energy with the capital-labor-aggregate in the production

function.
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Putting the pieces together, MM can be written as follows:

max U(C) 1

s.t. (C.1)-(CA), (USE,), (PRD(), (L(+1), (CAPm), (TC), \ (C.5)

(all other Markal-Macro constraints). J

By substituting (PRD() and (USE<) into the objective function (Cl), and by
further linearizing (C.3), the whole set of constraints of MM can be kept linear.

This Supports efficient Solution techniques and is exploited e.g. in Minos5, the

solver used. Convexity of Markal-Macro is shown in Appendix D

C.2.1 Discussion of Some Aspects

In the objective function the logarithm of consumption log(C<) is chosen and

not, say, simply Ct, GDP or GNP, because choosing a linear function as the

objective has a strong tendency to produce 'bang-bang' Solutions. For example,
consume nothing and invest everything in all periods prior to the end of the

horizon; then consume everything at the end of the horizon. Furthermore, most

applied general equilibrium modelers focus on consumption rather than GDP

because GDP includes investment as well as consumption. Investment is like

other costs of doing business usually viewed as a means to an end—not an end in

itself. Next, a nested Cobb-Douglas function within a CES production function

is chosen instead of just a one-level CES-function where all production factors

are equally treated, because the former permits the handling of two basic 'facts':

(i) the elasticity of Substitution between capital and labor is usually estimated

as something close to unity; and (ii) the price elasticity of demand for energy is

usually estimated as something a good deal lower than unity. Such a production
function is therefore chosen not only in Markal-Macro, but also in ETA-Macro

and Global2100.

Among the shortcomings of Macro are (i) the aggregation of the economy which

inhibits the analysis of distributional effects, e.g. between economic sectors or so¬

cial groups; (ii) a disproportion between the detailed energy-technology modeling

part and the aggregated macroeconomic part; (iii) investments are not modeled

in a so called vintage-like manner, but are free to be de-invested in later periods;

(iv) the determination of the GDP suffers from not differencing input cost and

added value in the energy sector.
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Appendix D

Proof of Existence of an

Equilibrium for MM"1'

The existence of an equilibrium Solution to MM"' will be given using the path-

following approach described in Section 2.3. The other two possibilities discussed

in Section 2.2 and Appendix B can not be directly applied for the following rea-

sons. On the one hand the Negishi-concept requires Assumptions 1.1 and 2.1 to

hold which can not be easily verified in case of MM', even though Section 1.2

relates the structure in Definition 1.4 to the formulation of MMmr. On the other

hand, the VIP-based approach from Appendix B requires closedness of the so

called interacting set 1 (Theorem B.5) which can be achieved by openness of the

feasible set map K (Lemma B.7 and B.8). On the background of the related dis¬

cussion in Flippo [30] one can not expect to easily verify this openness for general

agents like the ones in MM', cf. the example page 111 depicted in Figure B.2.

Contributions of this chapter include the adapted application of the general path-

following concept to MM' for proving the existence of an economic equilibrium.

The proof of existence based on path-following relies on Theorem 2.8 and requires

Assumption 2.2 to hold which will be checked in the sequel. To start with, the

notation in Chapter 7 is related to the formalism in Section 2.3. The set of agents

A is replaced by R + 1 where R denotes the set of regions and is augmented by

the price agent (2.3). The MM^-variables of one region r are caught in

p price vector,

xT traded goods (numeraire and permits),

yT residual Macro-variables not appearing in Markal

(Ct, It, Ku EC(, Lt, D , XCAP,), and

zT all Markal variables;

they are further put together following (2.9):



122 Existence of an equilibrium for MM

Vr \Xr, yr-, %r),

vf = (vi,... ,vr-i,vr+i,... ,vR,p), and

v = (vu... ,vR,p) = (vr,vf).

So each region has its own variable vr, which it controls, and the other variable

vf it has to accept exogenously. The special case p is subsumed into vR+i.

Concerning the constraints, the equality part of the linear model Markal plus
the linear equations of Macro is represented by hT, whereas the inequality part
can be represented by a part of the concave function gr. All nonlinear equality-
constraints in Macro can be written as inequalities based on the specific economic

meaning. Thus every regional problem of MM1 can be expressed in the form of

problem (2.9). The remaining price agent R + 1 is obviously a simple linear

programming problem and poses no difficulties. Now the formal foundation is

ready for checking conditions (a)-(d) of Assumption 2.2.

Concerning condition (a) concavity of the objective follows from concavity of the

log function plus the fact that the positively weighted sum of concave functions

remains concave.

As for condition (b) the linear part is acceptable; there are two nonlinear relations

left, which could destroy convexity: the production function Yt = [aKfL1]' +
T,dbj Djtt]1/p, and the quadratic constraint concerning investment £\ cost^X, +

^2 c^XCAP^, = ECt. In both cases '=' must logically be replaced by '<'; the

quadratic investment constraint is convex, thus only concavity of the production
function is required. To that end the production function is broken into a Cobb-

Douglas function

f1(K,L):=cKaL^~a)

and a CES-function

h(A,D):=(a1A<> + a2D<')ll<'.

The term A is the aggregate of capital and labour formed by fx. If both functions

are concave and if fi is monotone in A, that is in /1; then the nested function

f(K, L, D) := f2(fi(K, L), D) is concave:

Xf(K0,L0,D0) + (l-X)f(K\L\D1)
= XMMK^L0)^0) + (1- X)h(h(K\L%Dl)
< MXMK0, L°) + (1 - X)fi(K\ L1), XD° + (1 - X)D')
< /j(/i(A/f° + (1 - X)K\XL° + (1 - A)!1), AD0 + (1 - X)Dl)
= f(XK° + (1 - X)K\ XL" + (1 - X)Ll, XD" + (1 - X)D1).

The monotonicity mentioned is given if p > 0. Furthermore non-negativity of

all variables has to be assumed. So the problem of concavity of the production
function is reduced to show concavity for each of those two functions. This is



performed by Computing the eigenvalues of the Hessian of both, resulting for ft
in Ai = 0 and

a-czM?)Vi)(l2+*2)-
In MMmr K and L are always positive as well as c, and economic theory demands

et > 0. Therefore the sign of A2 equals the sign of ct — 1. That is, under the

given assumptions f, is concave in K and L if et e [0,1]. The eigenvalues of the

Hessian of fi are A2 = 0 and

r_

a^aiA» + a2D»y/i>(ADy(p - 1)(A2 + D2)
1

A2D2(a2A2<> + 2aia2(AD)p + a\D*)

Also in this case A and D can be assumed positive as well as the constants ax

and a2. Hence the sign of Ai coincides with the sign of p — 1, that is f2 is concave

in A and D if p 6 (0,1]. In the sequel it is assumed that a [0,1] and p e (0,1],
and so condition (b) in Assumption 2.2 is satisfied.

Condition (c) in Assumption 2.2 is trivial.

Before checking condition (d) some comments are required. A careful look at the

proof of Theorem 2.8 reveals that (d) is needed exactly for two reasons: (i) as a

constraint qualification (CQ) in order to guarantee the existence of KKT-points,

and (ii) to make the primal and dual Solution of (2.10) unique. The second

property is required to inhibit the path from turning back. As mentioned in

the comments following Theorem 2.8 both can be achieved by requiring v° to be

any feasible point (not necessarily interior) together with the well known linear

independence of the (binding) gradients as CQ (see Appendix A). We assume

therefore all regional MM-models to be feasible under the additional constraint

Emr,( < IEC02r,t Vr e R. (D.l)

In the sequel we denote by D the global feasible set

D := {v\gr(v) < 0, hr(v) = 0, r = 1,... ,
R + 1},

and restrict ourselves to verifying the linear independence of the gradient vectors,

cf. Theorem A.l.

(CQ) System (2.9) fulfills that the gradients with respect to vr of all components

of gr and hr are linear independent for each r and any v G D.

The proof will be given step by step.

The whole linear part, consisting of the complete MARKAL-part and parts of

Macro, can be assumed linear independent by means of elimination. The overall

linear independence follows then if the gradients of all Macro relations localized on

the set of pure Macro variables are linear independent. For the ease of exposition
the Macro-relations are reproduced here while dropping the regional index r; note
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that (PRD() and (USE() are not present in the Macro-constraints because they
are directly substituted into the objective.

Io = l, (D.2)

L( = (l + grow)10L«_l, (D.3)

0 < ^2(po,tXo,t + Pi,tXi,t), (D.4)
ter

K0 = c, (D.5)

I0 = (grow + k)K0, (D.6)

Kt = (1 - fc)10AVi + 5((1 - k)mIt-i + It), (D.7)

It > Kx(grow + k), (D.8)

"Y supply^rf.fX^; = aeeifac^D^j, (D.9)

EC(>^ costhtXht + cJ2 cxXCAP2(, (D.10)

CAPX>( < expf CAP;^,^! + XCAPXi«, (D.ll)

Emt < x°, - xM. (D.12)

The gradients of those relations, restricted to pure Macro variables only, are ana-

lyzed in the following tables. The basic idea is to group the constraints according
to the variables they contain, and such that those variables do not appear in the

other groups; if the constraints have linear independent gradients with respect

to these group variables, the overall set of gradients is linear independent. Note

that some constraints appear only once ((D.2), (D.4), (D.5), (D.6) and (D.8)),
while the others are repeated for t T. To have nice checkable tables we assume,

without loss of generality, |X| = 3.

Group 1 contains the constraints (D.2) and (D.3) where Lt is the group vari¬

able. We then have the following table of gradients obviously implying linear

independence of the set of corresponding gradients:

Lo Li L2 Lt

V(£>.2) 1

V(ß.3)t=1 1 + grow -1

V(D 3)t=2 1 + grow -1

V(ß 3)4=r 1 + grow -1

Group 2 contains the constraints (D.4) and (D.12) with the group variables x.

The corresponding table of gradients is:



«0,1 «0,2 «0,T 31,1 «1,2 «1,T

V(ß.4) Po,i W>,2 PO.T Pl.l Pl,2 Pl.T

V(£U2)t=I -1

V(D.12)^2 -1

V(D.12)i=T -1

Combining any column with positive po,< from the first half of the array with

the second half yields a non-singular matrix and thus the set of corresponding

gradients is linear independent. The third group comprises (D.5), (D.6), (D.7)
and (D.8), where K and I are the exclusive variables. The table of gradients is:

Ko Ki K2 Kj1 h h h h

V(D.b) 1

V(£>.6) grow+fc -1

V(ß.7)(=1 (l-/fc)10 -1 5(l-it)10 5

V(ß.7)(=2 (l-*)10 -1 5(l-fc)x0 5

V(0.7)i=s (l-fc)'ü -i 5(l-fc)10 5

V(U8) grow + k -1

To see that the following subset of columns forms a non-singular matrix one

has to recall the rule for calculating determinants of block-diagonal matrices,

det(? °)=det(A)det(B).

Ka lo h h h Kt

V(Z>.5) 1

V(£>.6) grow + k -1

V(ß.7)(=1 (l-k)m 5(1-fc)10 5

V(/J.7)f=2 5(1 -k)w 5

V(D.7)t=3 5(1 -fc)10 5 -i

V(U.8) -1 grow + k

We conclude that the gradients in group 3 are also linear independent with respect

to K and / given b(grow -f k) j= 1. To see linear independence of the gradients
with respect to the other constraints note that D, appears only in (D.9), EC(

appears only in (D.10), and CAP appears only in (D.ll).

We have proven now (CQ) under two conditions: (i) there is a positive numeraire

price component p0,< > 0| and (ii) 5(grow + k) ^ 1. Condition (ii) is merely
technical and easy to fulfill. Condition (i) is very reasonable, because already a

single zero-valued numeraire price component implies an unbounded objective in

problem (7.1). Without loss of generality we assume therefore that the feasible

set of the price agent is altered by requiring p0 > e for some e > 0 instead of

requiring p0 > 0.
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Besides Assumption 2.2 Theorem 2.8 requires compactness of the global feasible

set D. From the economical-technological background it is always possible to

derive lower and upper bounds on all quantities and we can assume therefore

compactness of D without loss of generality.

Having verified all requirements of Theorem 2.8 the following corollary is the

ultimate answer to the question of existence of an equilibrium to MM"r:

Corollary D.l There exists an equilibrium Solution of the model MM if the

following conditions are satisfied: all regional MM-models (C.5) are feasible under

the additional emission constraint (D.l), D is compact, b(grow + k) ^ 1, p 6

(0,1], a e [0,1], and K0 > 0.



Appendix E

Implementation of Both

Algorithms

In this chapter we describe the implementation of the VIP-algorithms (Algo¬
rithm 2 and 4) and the [5, i]-Negishi-algorithms (cf. Algorithm 5). The program-

codes are freely available from the author ([bueeler, root]@ifor.math.ethz.ch).

Two aspects were considered most important in the implementation of both the

VIP- and the Negishi-approach: (i) leave the regional gams-models as far as

possible unchanged, and (ii), solve the regional models in a transparent parallel

way. The first point carries over to an overall 'lazy' implementation where the

major work is done by existing programs or solvers; the second point allowed both

the VIP- and the Negishi-algorithm to run in a number of different settings: on

a single processor machine, on two or three single processor machines which were

geographically distributed solving one or two regional models each, and finally
on a multiprocessor machine. Operating Systems include hp-ux and aix which

are unix derivatives of Hewlett Packard and IBM respectively. The main work to

integrate additional machines is the installation of gams and the Markal-Macro

model, whereas the changes in the equilibrium code are comparatively simple.

Contributions of this chapter include the overall coding and the implementation
of parallel solving techniques for both the VIP- and Negishi-algorithm.

E.l VIP-Based Cutting Plane Methods (CPM)

The cutting plane methods for solving VIPs can be applied either directly in the

original space A C M2'7^ (Algorithm 2), or indirectly in an extended homogenized

space (Algorithm 4). While Algorithm 2 from page 23 was implemented and

tested with a variety of centers, Algorithm 4 from page 38 was used with the

analytic center only. In both cases the overall algorithmic structure is identical,

see Figure E.l. The heart of the algorithm is a small program written in C
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('main') which alternates between calling the appropriate center Computing unit

('centers:') and the excess Computing unit ('MM (7.1)' standing for Markal-Macro

regions of the form (7.1)).

main

/"regional
>

overall

excesJTX| regionl.dat centers:

analytic center

center of gravity

| region2 dat
*

MM

(7.1)

\^_P
region3.dat

p ^y

/ \

gams

minos

gams

minos

other

solvers

Figure E.l: Scheme of cutting plane methods.

This main routine coordinates furthermore the communication using files and

accounts for starting and stopping specificities. The actual work to compute the

excess and the (analytic) center is done by the solver minos through appropriate

gams problems (boxes at the bottom of Figure E.l). Parallel execution of the re¬

gional problems (left part) is implemented in 'main' using forkO1 in connection

with execlO to generate a process for each regional problem and waitpidO to

coordinate termination. In case of different (geographically distributed) Comput¬

ers rcp (remote copy) maintains communication and rsh (remote shell) cares for

the execution of the regional models on remote machines.

To speed up the Solution process the feasibility set A is further restricted to

some A° C A before starting. In case of Algorithm 2 an inner point x" A°

can be chosen freely as starting point; in contrast to this the starting point of

Algorithm 4 is determined by A° and represents essentially its analytic center,

cf. Section 3.2.2.

Stopping criterions for both algorithms are either the number of iterations or

j]e(p)|| < e for some chosen e > 0 If Algorithm 2 stops due to exhausting the

number of iterations, the iterate with minimal [|e(p)|j is returned. The criterion

||e(p)|| is chosen, and not say \pTe(p)\ (typical for complementarity problems) or

the dual gap function gr, (typical for variational inequality problems), because the

former depends on the arbitrary scaling of prices, and the latter is not computable.

Furthermore, e(p) has a direct economic Interpretation which—due to e(p") = 0 in

all our equilibria—is well reflected by ||e(p)||, making it an attractive measure for

the quality of approximate Solutions. In the sequel questions on how to compute

centers are briefly touched.

'This and all subsequent verbatim terms are unix system-functions or shell commands; all

of them are Standard avoiding portability problems
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Computing the Analytic Center

There is a rieh literature on how to compute the analytic center, cf. for example

[86, 2, 39]. The problem is especially 'good-natured' and can be solved very effi¬

ciently if an inner starting point is given, see Nesterov [86, Theorem 2.2.3]. These

theoretical findings are also strongly supported by computational experiences.
Our goal was, however, to program as little as possible and to use existing solvers

to do the work.2 Because the CPU-time required for Computing the analytic cen¬

ter is much below 1 % of the overall CPU-time, the following brüte force method

was used. Given in iteration k the feasibility set A* = {p | Akp < ak, Bkp < bk},
the center of a maximal inscribed sphere, which is a Solution pc of the following
LP,

max A

s.t. Xe < ak - Akp,

Bkp < bk,

is computed. Here e denotes the vector of all l's in the appropriate dimen¬

sion. The constraints Bkp < bk are used for several purposes, e.g. to keep p on

the affine hyperplane ^2tp, = 1, or to impose various proportionality relations,
cf. the discussion about free and floating permits in Section 7.1.2. They share

the common property that they should not be included in the barrier, either be¬

cause they represent a hyperplane or to allow the center fulfilling the constraints

tight. Starting at pc, the solver minos is then used to determine the maximum

of ]C,log(s*), where sk = ak - Akx and the inequality Bkx < bk is obeyed,
cf. Definition 3.3. To make this scheme work down to tiny Ak (the diameter

should decrease to zero), an appropriate scaling is of crucial importance. Note

that the analytic center is invariant with respect to x if ak — Akx is replaced

by (ak — Akx) diag(/), where / is a vector of scaling factors and diag(/) the

related matrix of diagonal Clements. It is therefore easy to keep the feasibility
set sufficiently large by using an appropriate scaling vector /.

In case of the homogeneous ACCPM there is no bounded polytope, instead the

analytic center is defined as minimum of the proximal barrier Fk defined in Al¬

gorithm 4 page 38. Hence the center of a maximal inscribed sphere can no more

be computed; a reasonably good starting point is nevertheless available by im¬

plicitly fixing t = 1, i.e. by simply ignoring the conic structure and treating the

start-problem in the original space as described above. The result turned out to

be a very satisfying starting point for minos to derive the analytic center of the

conic barrier.

2In fact, in the mean time very robust and efficient Codes for Computing the an¬

alytic center were developed. One is due to a group in Geneva, see http://ecolu-

info.unige.ch/~logilab/software/accpm.html
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Computing the Center of Gravity

Computing the center of gravity (cog) is closely related to volume computation as

can be seen from its definition, cog = fp xdx/ Jp dx. Here P denotes the appro¬

priate bounded convex polytope under consideration in iteration k of Algorithm 2.

It is know that exact, deterministic volume computation based on a hyperplane-

representation, Ax < b, can not be done in polynomial time, and furthermore,

given any representation, volume computation is #'P-hard, cf. Gritzmann and

Klee [44],

The simple idea we implemented to compute the cog is to triangulate P into a

set of simplices, compute the cog of each simplex and build the volume-weighted

average over all simplicial cog's. There are a number of different triangulation-

possibilities described in the literature. An analysis of some of these concepts

together with numerical tests can be found in [10].

Despite the fact that the cog is hard to compute, and as a matter of fact could not

compete with the analytic center in our examples, a cutting plane algorithm using
the cog has two attractive aspects. On the one hand it is 'optimal' if algorithms
are lanked according to the criterion 'worst rate of convergence (independently
of /) in the case of many variables', where only first order information from an

oracle can be used, see [83, p. 551]. On the other hand it is optimal if the effort

for evaluating the oracle grows sufficiently large.

In the last ten years, however, hope arose that the Situation can be significantly

improved. The basis is an interesting randomized approximation-scheme for vol¬

ume computation, see Gritzmann and Klee [44] with the references therein, and

specifically Kannan, Loväsz, Miklös and Simonovits [60]. Whereas an exact and

deterministic computation of the volume of a polytope is hard, and also the ap¬

proximate deterministic computation is hard, the Situation changes drastically
if randomized approximation algorithms are considered. Choose ß 6 (0,1) and

e > 0, then the randomized volume approximation pr(P) is defined as follows.

Prob/M^-j <A>1-ß.
\ vol(P)

- / "

Based on random walks which are analyzed by rapidly mixing Markov chains a

polynomial randomized volume approximation scheme is described in Kannan,
Loväsz and Simonovits [60], where the complexity is bounded by

o(^(logj)3log^log^.
In case of Algorithm 2 a randomized scheme where some of the approximate

cogs are in fact outside the feasibility set is no problem, because the hyperplane-

representation is always available, and so points which are not 'sufficiently' inte-

rior can simply be rejected. Thus, a valid CPM can be set up where all iterates

are in the interior of P and represent most of the time the cog sufficiently well.
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A Quadratic Cut Method

Convergence of Algorithm 2 can be improved if higher order information is ad¬

ditionally used. As an example consider a strongly monotone Operator /, i.e. we

observe for an a > 0 and for all x, y in the polyhedral feasibility set D the re¬

lation (f(y) — f(x))T(y — x) > a\\y — x\\2. In such a case the quadratic cut set

C'k := {x e D | - f(xk)T(x - xk) - ct\\xk - x\\2 > 0} contains the Solution of

VIP(/, D) for any xk e D. That is, for strongly monotone Operators we can re-

duce the feasibility set Dk in step (iii) of Algorithm 2 further by using Ch instead

of Cxk. If more precise second order information is available, Ck can be defined

more generally C«„ := {x e D\ - f(xk)T(x - xk) - (xk - x)THk(xk - x) > 0},
where Hk is a suitable positive semi-definite matrix.

If higher order information is not available with füll certainty one can nevertheless

improve Algorithm 2 in the following way. Compute in iteration k the analytic
center xk+l of DkDC^h, where Hk is chosen according to the underlying problem.
Then update the feasibility set without the quadratic term, i.e. set Dk+1 := Dk n

{x 6 D\f(xk)T(xk - x) > 0}. That is, the uncertain quadratic information

at xk is only used to position xk+l, but it does not reduce the feasibility set

-D*+1. This procedure can therefore be used whenever / is pseudo-monotone
and a reasonable hypothesis about V/ is at hand. Two ways to approximate

Vf are the well known rank one update scheme and the Davidson-Fletcher-

Powell method, cf. Fletcher [29]. This 'use-and-forget'-quadratic cut method is

discussed in depth in Denault [19], where also its application to a variety of

problems, including MM", is presented. Empirically it improved convergence

significantly in many instances. It's theoretical properties, however, are not yet

fully understood.

E.2 Negishi-Based Methods

Two algorithms are discussed in this section: the <5-Negishi-algorithm which ex-

ploits the relation ctr — l/ör (see Theorem 2.5) and which is also the default

Negishi-algorithm throughout this work. And secondly an alternative updating
scheme called i-Negishi-algorithm (iätonnement) is studied.

E.2.1 The (S-Negishi-Algorithm

The implementation of the S-Negishi-algorithm (Algorithm 5 page 48) is depicted
in Figure E.2. The large gray shaded box contains its main component, the

ACCPM-decomposition machinery from Algorithm 6 page 58 to solve the Negishi-
welfare problem (4.1). The input to this welfare problem is the Negishi-weight

et, the ultimate Output are the dual multipliers of the common excess constraint

e > 0 which are called 'dual price' throughout the figure (see also Figure 4.1
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Figure E.2: The 5-Negishi-algorithm using decomposition.

page 46). This (dual) price p is then used in 'Negishi main' to compute the dual

multipliers S of the budget constraint (top left). Note that there are two slightly
different regional MM-models present in the Negishi algorithm, but which use the

same data-set 'region7.dat'. The MM-model (7.10) on the one hand contains a

penalty term in the objective based on the excess, but has no budget constraint.

MM-model (7.1) on the other hand has the original objective together with a

budget constraint. The inverse of the dual multiplier 5 of this budget constraint

is, after inverting and normalizmg, taken as new approximation of the Negishi

weight.

The following remarks are in order:

• To start the rf-Negishi-algorithm one can either choose a first Negishi weight
a° which is then used in the decomposition machinery; or a first (dual) price
is chosen and «5° retrieved by solving (7.1), which in turn yields a first et0.

The second strategy is significantly superior because solving (7.1) is much

cheaper than solving the Negishi welfare problem (gray shaded box), and at

the same time the resulting 5° comes already very close to the true Solution

of the equilibrium problem even if the price signal is rather far away from

the equilibrium price.

This 'robustness' mentioned in the previous item was observed in fact in

both directions, and on the whole feasible set of p and a respectively.

Taking any p e intA and solving (7.1) yields 6 which—taken inverse and

normalized—is close to an equilibrium weight ct*. And conversely: Choos¬

ing an arbitrary feasible ct and solving (7.9) yields dual multipliers of the
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excess constraints which are close to an equilibrium price p*. Mathemat¬

ically spoken one such Negishi-iteration represents a contraction mapping

(cf. Section A.4.1) with a small contraction constant around 0.01 in our

examples. This remarkable behavior deserves future attention and is the

basement of successfully solving equilibrium problems using the Negishi-

approach.

In the decomposition-machinery the overall Performance can greatly be

influenced by choosing an appropriate small box around the Solution. Ad¬

ditionally it turned out that choosing the starting point p0 too close to the

true Solution slows down the decomposition because the related first cut

pushes away subsequent iterates.

The Negishi welfare-problem is very sensitive to minor changes of the weights
ct. This sensitivity makes numerical 'rounding' effects in the decomposition

machinery a major reason for limited convergence of the overall <5-Negishi-

algorithm. The regional problems with the dual multipliers are only solved

approximately by the solver minos, yielding approximate sets of localiza¬

tion. In the implementation the decomposition code returns the dual price

once a minimal duality gap is reached. Due to the numerical difficulties the

minimal absolute duality gap can not be lowered below 10~6 (correspond¬
ing to a relative duality gap of 10~9), which in turn limits the attainable

accuracy in the overall J-Negishi-algorithm.

To further speed up the algorithm, the duality gap limit in the stopping cri¬

terion of the decomposition machinery is dynamically reduced. In the first

Negishi-iteiation the decomposition is carried out rather approximately,
whereas in the following Negishi-iterations the decomposition is performed

increasingly accurate.

Looking closer at the excess and the dual price in the last few iterations of

the decomposition algorithm reveals a surprisingly large 'jumping around'.

The main strategy used in the decomposition machinery is to return the

quantities of the last iteration where a value-cut was performed. Another

successful strategy takes the average over the last few iterations of those

quantities.

E.2.2 The i-Negishi-Algorithm

This algorithm can also be visualized by Figure E.2, if the top left box (MM

(7.1)) together with the related arrows is dropped. The basic idea to estimate

6, the dual multipliers of the budget constraint in (7.1), is taken from the model

5Ä, cf. Manne and Rutherford [75]. In case of MMmr, the derivation is based on
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(7.5):

St ~ S° :=

P^TxACr.t- NTXr,t)
(BU)

at an arbitrarily chosen time period (cf. the discussion on page 79); here '~'

means 'approximately modulo scaling'. Because the same equilibrium Solution is

obtained in the VIP- and the Negishi-approach, the quantities from the Solution

of the Negishi welfare problem can be used to compute such an approximate <5".

The updating scheme of the Negishi weights uses then the inverse of Jj? and adds a

scaled amount of the budget excess following the tätonnement concept described

page 47. Empirically we found that the numerical behavior depends crucially on

the scaling of the budget excess added, motivating a closer look at the underlying

quantities.

Amazingly enough, we observed in the fullfledged MM^-model that in every

iteration k the relation

k_
1

holds with an accuracy of more than 10 digits. Here the quantities in (E.l), which

define <$"*, are taken from the Solution of (7 10) at ak. That is, <5°* derived from

the Solution of (7.10) at ctk does not estimate Sr of (7.1), but is—taken inverse

and normalized—simply ctk again.

To analyze this phenomenon the machineiy of Section 7.1.2 is used, applying it

to the following simplified Negishi welfare problem:

max ^2 ar ^ ftr'( lo8(Cr,* ~ NTXr,t)
rR KT

s.t. Y^ NTXT,t = 0 V<eT.

reu

Using Pntx.i as Lagrange multiplier the corresponding Lagrange function reads

L(Cr,t, NTXr,t, PNTX,,) = J2 «r J2 **•* l°S(Cr,t ~ NTX't)
rSÄ tei

+ J2PNTX,tY,NTXr,t-
KT rft

The first order optimality condition 8L/dNTXr,t = 0 yields

PNTX,t(Cr,t - NTXr,t)
aT — 7 . (p-t)

br,t

Due to the non-arbitrage argument this is independent of t. Comparing the

inverse of (E.l) with (E.2) we find coincidence explaining why the ostensible

guess for the new Negishi weight, 1/6°, returns in fact simply the old Negishi

weight.
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The update of the Negishi weight a from iteration k to k + 1 can thus be under¬

stood as tätonnement process (therefore t-Negishi-algorithm), and be described

as follows. Let bek = pTer be the budget excess of region r in iteration k, where

p is the dual multiplier of the common excess constraint, set bek = £]r |6er'| + 1,
and let redfac > 0 be an appropriate reduction factor. Then the update scheme

(step (iii) in Algorithm 1) proceeds as follows.

a'k+1 = max{0, ak + redfack bek/bek}, (E.3)

a»*+i = «'*+!/£o/*+1, (E.4)
r

ak+1=a-ak + (l-o)-a"k+1. (E.5)

In (E.3) the basic updating step is performed which consists of adding the budget
excess to the old weight. Then the weights are normalized again (E.4) and finally
in (E.5) they are smoothed with the former weight, where a 6 [0,1] is chosen

appropriately. In the original scheme used by Manne and Rutherford (E.5) was

not present, i.e. o was set to 0. The reduction factor redfac is reduced in each

iteration. A good starting value together with a suitable reduction are of critical

importance to come sufficiently close to a Solution and to overcome the non-

contractive nature of the map. This heuristic has to be adjusted for each problem.

In the Solution process of 5R the scaling factor redfac was implicitly fixed by

replacing (E.3) with (F.l).

E.3 Adaptions Needed in the Regional MM-

Models

First the common changes from (C.5) to (7.1) and (7.10) are described, secondly
the specific changes are reported. Note that no explicit regional index r is in¬

troduced in the gams-code of the regional models. Common changes comprise

the introduction of the parameter IEC02 (initial endowment with C02 emis¬

sion permits), the variables NTXC02 (net exchange of permits) and NTX (net

exchange of numeraire), and the equation EMC (CO2 emission constraint). To

adapt the regional models to the same monetary and emission units, the scalars

C02EMFAC (regional emission units per megatons C02) and LCU.FACT (US$

per regional monetary unit) are further defined. Based thereupon the following
common changes are made to (C.5): (i) replace log(C4) by

\og(LCU..FACT (Ct - NTXt)),

and (ii) bound the emissions by

EM(TP[ C02')/C02EMFAC < CC02(TP).
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In (ii) it is in the case of the Negishi-algorithm important to put the C02EMFAC

on the left side of the inequality, otherwise incompatible dual multipliers are

produced and the decomposition machinery does not work.

Specific for (7.1), additional price parameters Pntx and Pntxcos and the budget

constraint are declared.

As for (7.10) specific declarations comprise the dual price parameters Pntx and

Pntxcob, and the Negishi weight ctr. Finally, the objective is extended to

Y,\og(LCU-FACT-(Ct-NTXt)) +J2pNTx,tNTXt+J2pNTxco2,tNTXC02t.



Appendix F

Numerical Comparison of the

Algorithms

This chapter presents numerical comparisons among pairs of algorithms; specifi¬

cally neither economic results are reported, nor are the data the same throughout

all comparisons. Only within a comparison the underlying data are kept iden¬

tical. Reasons are the different numerical requirements of the algorithms, the

evolution of the data-situation in time, and technical convenience. To begin with,

in Section F.l (pseudo-)monotonicity is tested using a very simplified (nonlinear)
MM^-model. Next, concerning Algorithm 2 the analytic center is compared with

the center of gravity cutting plane method in Section F.2. Then in Section F.3

the classic non-conic ACCPM versus the new conic ACCPM (Algorithm 4) is

investigated. The <5-Negishi-algorithm vis-ä-vis the ACCPM is presented in Sec¬

tion F.4. Finally, the 5-Negishi-algorithm (Algorithm 5) is compared with the

t-Negishi-algorithm.

As a general remark, all algorithms found the same equilibrium Solution, whereas—

due to the algorithmic specificities—the accuracy can differ. To obtain the true

permit prices in US$/ton C02, the price components related to C02 permits must

be divided by the components of the numeraire NTX and multiplied by 1000 to

account for internal scaling. Because all algorithms work in the füll price space,

some algorithmic comparisons will be made presenting untransformed prices.

F.l Almost Pseudo-Monotonicity of the Excess

in a Simplified Model

The following, very simplified MM^-model was set up, and the resulting over¬

all excess examined. There are three regions ri,r2,r3 e R, three time periods

tithth £ T, and three energy demand forms w,n,f D standing for water,

nuclear and fossil respectively. The arguments in the following presentation of
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the variables or data structures are the index set over which the corresponding

quantities are defined. The variables in the model are

TDC(R) total discounted consumption,

C(R, T) consumption,

X(R,T) consumption of C02 emission certificates,

P0(T) price for X(.,T),
P1(T) price for NTX(.,T),
Em(R,T) emission of C02,

EC(R, T) energy cost,

E(R,T,D) energy demand (consumption),
NTX(R,T) net exchange of (abstract) products,

NTXC02(R,T) net exchange of C02-emission-certificates.

The variables C, X, Em, EC and E are nonnegative. The data are as follows:

p discount rate in objective = .2,

o~ elasticity in CES-production function = .6,

ECO(R) base energy cost = (2,1.2,1),

EEC(D) energy emission coefficient in emission function = (.01, .02,1),

X0(R,T) emission certificate endowment:

t\ t2 t3

ri 150 60 60

r2 25 15 10

r.i 510 250 120

EPC(R, D) energy production coefficient in production function:

w n f

ri 50 38 90

r2 50 38 95

r3 50 38 110

ECC(R, D) energy cost coefficient in energy cost function:

w n f

ri 5 25 9

r2 3 15 7

r3 9 15 7

The model consists of the following equations for each region r£Ä:

OBJ

BCon

VSE(T)

NTXC02Def(T)
ECCon(T)

objective,

budget constraint,

usage constraint,

defining constraint for NTXC02,

energy cost constraint,
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EMCon(T) emission constraint,

EMB(T) emission budget,

MFEW(T) minimal fossil energy for producing 'water' energy,

MFEN(T) minimal fossil energy for producing 'nuclear' energy,

EUB(T, D) energy consumption growth upper bound,

ELB(T, D) energy consumption growth lower bound.

They are defined as follows:

rüc7=£(i + p)-(iogct, (OBJ)

0 < ]T PltNTXt + P0tNTXCO2t, (BCon)

NTXC02t < X0t - Xt,
- 1 IfT

(NTXC02Def)

Ct < 0.0005 J^EPCdEld
.dD

-ECt -NTXt (USE)

ECt = EC0 + Y1 ECCdEt4, (ECCon)
dD

Emt < Xt, (EMCon)

Emt = J2 EECdEt,d, (EMB)
deD

Et+i,d < 1-3 • Ft,d, (EUB)

Et4 > 0.5 Et-14, (ELB)

£,,.„.< 100 -Et;r, (MFEW)

Et,v < 10 • Et,- r- (MFEN)

C02 emissions are free in the first period and hence p° = 0 is fixed, leaving 5

tradable goods. Furthermore, instead of requiring p > 0 together with £t p, = 1

(i.e. p 6 A), each of the 5 price-components is logarithmically distributed from

0.0001 to 10, giving raise to 6745 valid and different price-vectors, for which

the solver minos could compute the excess. Though the excess e(p) is invariant

under price-scaling, the monotonicity-product (p — p')T(e(p) — e(p1)) depends

on the scaling of the prices, requiring a rescaling of the prices onto A. We

found about 5 % of the price pairs where monotonicity is violated (560926 out

of 22744140). The maximal monotonous product was 59998, the minimal -787,
hence the extend of violation of monotonicity is around 1.3%.

Then pseudo-monotonicity was tested, that is, we checked whether e(p)T(p'-p) >

0 implies e(p')T(p' - p) > 0. The first relation, e(p)T(p' - p) > 0, was given for

4.6 106 price pairs, and only in case of 18 pairs we then had e(p')T(p' - p) < 0,
i.e. pseudo-monotonicity was violated only extremely rarely. Looking to what

extend it was violated, the product e(p')T(p' - p) attained at least -0.14 and
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at most 25,000 among the pairs where e(p)T(p' - p) > 0 holds. Hence pseudo-

monotonicity is practically fulfilled. On top of that the equilibrium price p* was

never cut away by any of the above prices, i.e. the minimum of e(pf(p — p*) over

all prices p on the grid is positive.

The fullfledged MM^-model can not be tested in such a way, because the numer¬

ical effort exceeds todays computer-capacities. Nevertheless, the numerous runs

of MMmr using ACCPM cut away the Solution only rarely, and if so it happened

already close to an equilibrium price. That is, only if ||e(p)|| is small, ACCPM

sometimes cut away p*. This indicates also non-pseudo-monotonicity of e(p) in

case of MM""'.

F.2 Analytic Center versus Center of Gravity
CPM

In the previous section both the data and the model were very simplified com¬

pared to the fullfledged MM""". In this section, the füll gams code for the regions
is used, but the data-set is simplified to shrink the size of the resulting regional

problems to about 10 % of its original value. At the same time the number of time

periods is increased to 5, where, as before, trade of permits in the first period is

omitted in Order to have the starting period under control.

The first four components in the price-vector (PO in the Tables F.2 and F.3) relate

to the C02 permits of the periods t2,... ,t5, the final 5 price-components (PI)
correspond to the numeraire good of the periods h,.. , £5. Hence the number of

traded goods is 4 + 5 = 9.

There are three different regions in this example; region 1 has simplified energy

data from Switzerland, region 2 is about five times larger than region 1 and

electricity generation from nuclear power is cheaper, and finally region 3 is about

10 times larger than region 1 with cheaper fossil fuels. The differences in the data

are shown in Table F.l. In the cases where values are given for 1990 and 2030

only, the values for the intermediate periods are linearly interpolated.

In the Tables F.2 and F.3 'absolute vol.' is the volume of the feasibility set

in 8 dimensions, 'v. red.' is the volume reduction from the current cut, and

'Iexcess I' is ||e(p)||. Comparing those two tables the following remarks are in

order.

• Both cutting plane methods produce the same approximate Solution while

the iterates can differ considerably.
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Region 1 Region 2 Region 3

13.5 67.44 144.2

300 1500 3000

28 90 270

30 105 300

35 120 350

40 130 400

40 140 450

30.68 37.43 41.86

100 500 1000

185 925 1850

50 250 500

105 500 1050

5 5 3

8 8 5

1 0.8 1

500 200 500

5000 3000 5000

ECO (initial energy cost)
GDP0 (initial GDP)
IEC02.1990 (certificates endowment)

IEC02.2000

IEC02.2010

IEC02.2020

IEC02.2030

DDAT.RH.PREF (reference price for residentia) heating)

DM.DEMAND.RH.1990 (Maximal demand for residential heat)

DM_DEHAND.RH.2030 (Maximal demand for residential heat)
DM_DEMAND.TX.1990 (Maximal demand for transportation)

DM_DEMAND. TX. 2030 (Maximal demand for transportation)

SEP.COSTl. IHP. HC0.1.1990*2030 (import price for hard coal)

SEP.COSTl. IMP. 0IL. 1.1990*2030 ( ... oil)

SEP.C0ST1. IMP. URN. 1.1990*2030 ( ... uranium)

TCH_FIX0M.E21.1990*2030 (fix cost of LWR)

TCH.INVCOS. E21.1990*2030 (investment cost of LWR)

Table F.l: Differences in the regions of Utopia.

The overall volume reduction coefficient is in case of the analytic center

0.52, in case of the center of gravity, slightly better, 0.49. But whereas

the volume reduction factor in case of the center of gravity has a small

Variation—it must stay in the interval (1/e, 1 - 1/e)—the reduction rate in

case of the analytic center varies broadly between 0.1 and 0.9.

After 100 iterations the norm of the excess ||e(p)|| has decreased non-

monotonically by a factor of about 10~4, where a similar accuracy is ob¬

tained using either center.

The unit simplex in 9 dimensions represents in fact an 8-dimensional volume

computation problem. The bürden to compute the center of gravity was

around 2/3 of the overall computation time of Algorithm 2. Compared to

the analytic center the center of gravity is already in this low dimensional

problem much harder to compute, requiring roughly 10-1000 times more

computation time.

F.3 Non-Conic versus Conic ACCPM

It must be emphasized that the crucial assumption for the conic ACCPM—

monotonicity of e(p)—is not given in case of MM"'. Furthermore, the accuracy

is limited in the concrete implementation. In that sense this comparison must

be interpreted cautiously. Here both the fullfledged MMmr-model and the füll
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log(||e(p)||)

conic accpm

direct accpm
^>- Iteration

10 20 30 40 50 60

Figure F.l: Conic versus non-conic ACCPM, 0 %-reduction scenario.

iog(lk(p)ll)

conic accpm

direct accpm

* Iteration
10 20 30 40 50 60

Figure F.2: Conic versus non-conic ACCPM, —20%-reduction scenario.

The conic ACCPM with the transformed iterates behaves much smoother,

even yet in the first iterations, and it reduces the excess much quicker in

the first 30-40 iterations. Afterwards, the transformed iterates converge

to a non-equilibrium price, leaving the norm of the excess on a higher
level. Among the possible reasons, why it does not converge to a true

Solution, we find non-monotonicity of e(p) and a limited numerical precision
for both Computing the analytic center and the oracle-response. In that

sense the conic version seems to be more sensitive to precision problems

and monotonicity than the direct ACCPM.

For the conic ACCPM, ||e(p)|| of the direct (i.e. non-transformed) iterates

converge towards the norm of the excess of the solution-iterates. The reason

for this coincidence is that both price iterates in the conic case, i.e. the

transformed Solution iterates and the direct iterates, converge toward the

same (non-equilibrium) price.

• It seems that the conic ACCPM 'smells' quickly the approximate location
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of the Solution with its weighted iterates, but looses it finally. A possible

improvement of the direct ACCPM could therefore consist of using the

conic version with its transformed iterates, and once ||e(p)|| starts to raise

the direct ACCPM is used in a neighborhood of the best conic Solution.

F.4 (5-Negishi-Algorithm versus ACCPM

Here the füll MM^-model code together with the füll regional data-sets of Sweden,
The Netherlands and Switzerland is present (state summer 1996). The prices

given are already in the unit US$/ton CO2; trade is allowed in the 4 periods
2000-2030.

it. P(2000) P(2010) P(2020) P(2030) Hp)\\
0 8.18 16.00 30.00 61.29 617.94

5 85.62 117.79 144.84 140.14 291.50

10 57.33 69.68 88.98 97.53 54.41

15 26.23 45.56 68.60 109.22 86.91

20 13.16 44.03 63.33 79.87 56.45

30 5.08 42.10 51.46 124.52 28.59

40 3.25 42.96 64.33 114.24 4.02

50 2.98 43.91 65.46 113.73 1.00

60 2.86 44.26 63.63 112.89 0.67

70 3.15 44.16 63.67 113.45 0.13

80 3.04 44.26 63.50 113.44 0.30

Table F.4: Permit prices [US$/t C02] in the ACCPM-iterations and the corre¬

sponding norm of the excess vector ||e(p)||.

Table F.4 shows convergence of the direct ACCPM to a satisfying Solution of the

equilibrium problem. As usual, the norm of the excess ||e(p)|| does not go down

monotonically.

In the first 4 iterations of Algorithm 5 a fast convergence can be observed, see

Table F.5. Each iteration reduces the norm of the budget excess vector ||6.e.||
by about two order of magnitude, achieving an overall reduction of 5 order of

magnitude within 4 iterations. Then, in the last 2 iterations, a plafond is reached

by the norm of the budget excess, which is due to the limited accuracy in the

decomposition, measured as duality gap in the approximation of the Lagrangian.
While in the first iteration the stopping criterion in the decomposition is an

absolute duality gap of 10~4, it is set in the rest of the iterations to 10~6; this

corresponds to a relative duality gap of 10~7 and 10~9 respectively. Due to

numerical problems it was not possible to decrease it further. The results show
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it.

Negishi weight
Switzerland Sweden Netherlands

C02 permit price

2000 2010 2020 2030 |j6.e.|| #it.

1

2

3

4

5

6

0.45000000 0.20000000 0.35000000

0.39019676 0.15302284 0.45678040

0.39345156 0.15387045 0.45267800

0.39336264 0.15384863 0.45278873

0.39336458 0.15384931 0.45278611

0.39336439 0.15384915 0.45278646

3.10 44.41 66.82 112.33

3.05 44.23 63.49 113.36

3.11 44.20 63.59 113.39

3.13 44.23 63.54 113.36

3.11 44.20 63.58 113.38

3.03 44.23 63.52 113.37

60.207

2.0496

0.0557

0.0026

0.0034

0.0018

43

56

59

60

58

61

Table F.5: The (5-Negishi-algorithm for the first 6 iterations. The number of

iterations in the decomposition method is given in the last column #it.

the crucial influence of the accuracy in the decomposition, both on the overall

number of iterations and on the convergence of the (5-Negishi-algorithm.

Note also that the price vector obtained in the first Negishi iteration based on

a starting weight vector is already near the true equilibrium price, or to say it

more generally, the prices are quite independent of the Negishi weights whereas

the budget excess is very sensitive to small changes in the weights. In the VIP-

approach a dual Observation can be made (cf. Figure 7.1); the dual multipliers
of the budget constraints are quite independent of the prices, whereas the excess

e(p) is sensitive to changes in the price.

This dual robustness—on the one hand is the dual price of the excess constraint

in the Negishi welfare problem close to the equilibrium price and only weakly
influenced by the Negishi weight, and on the other hand the inverse of the bud¬

get constraint in the regional VIP-problems is close to an equilibrium Negishi

weight and only weakly influenced by the price—is the reason for this remarkable

convergence of the (5-Negishi-algorithm.

F.5 5- versus i-Negishi-Algorithm

The Negishi update scheme in iteration k + 1 used in the i-Negishi-algorithm is

0**1 = £
PNTxÄCr,t-NTXr,t)

+ f^ (p J}
tT

"T*

ak^ = a'k^/Y,vVX-
r

Here p is the dual multipliei associated with the excess constraint SreÄer > 0,
and so pTer is the budget excess of region r. The expression YIkt Pntx,f(Cr,< —

NTXr,t)lbr,t is motivated from (E.2) where this is shown to approximate (modulo
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it.

Negishi weight
Switzerland Sweden Netherlands

CO2 permit price

2000 2010 2020 2030 ||b.e.|| #it.

1

2

3

4

5

6

7

8

9

10

0.45000000 0.20000000 0.35000000

0.42403936 0.14299279 0.43296785

0.40364823 0.15470586 0.44164591

0.39760614 0.15329384 0.44910002

0.39495138 0.15379185 0.45125678

0.39398597 0.15379777 0.45221626

0.39360284 0.15383450 0.45256266

0.39345687 0.15384259 0.45270055

0.39340062 0.15384617 0.45275321

0.39337861 0.15384816 0.45277323

2.85 44.66 66.33 112.33

2.91 44.03 63.12 113.36

3.07 44.14 63.69 113.39

3.05 44.19 63.61 113.36

3.12 44.22 63.57 113.38

3.07 44.23 63.54 113.37

3.12 44.24 63.52 113.37

3.06 44.22 63.56 113.37

3.05 44.20 63.57 113.37

3.09 44.21 63.57 113.37

60.1984

14.5142

5.6157

2.0015

0.7880

0.2998

0.1163

0.0446

0.0173

0.0070

36

51

53

53

51

52

56

52

55

53

Table F.6: The ("-Negishi-algorithm for the first 10 iterations. The number of

iterations in the decomposition method is given in the last column #it.

scaling) the existing weight; to make it numerically more robust1 the sum over

all time periods is taken. The reason why not simply the old Negishi-weight ctk is

used has to do with the different scaling of the quantities. This heuristic seems to

be very sensitive on how much weight is put to the old weight ak and how much

the budget excess pTer contributes. The implicit weighting in (F.l) did perform
most satisfying in our experiments and is therefore reported in Table F.6.

First note that the accuracy in the decomposition machinery was identical with

the case shown in Table F.5. To speed up the iterations, however, the feasibility
set in the decomposition was reduced, explaining why the number of decompo¬
sition iterations is slightly below the ones of Table F.5. The major difference

between Table F.6 and F.5 is the speed of convergence; while the true compu¬

tation of the dual multipliers yields a very quick decrease of the budget excess

||6.e.||, the reduction in Table F.6 is considerably slower. More aggravating even,

this heuristic depends sensitively on the implicit weighting when the budget ex¬

cess is added to the old Negishi weight. As a detail note that the Negishi weight
is considerably more 'jumpy' here compared to Table F.5, but the quality of the

final Solution is similar.

'Based on the argument of no-arbitrage in a Solution of the Negishi welfare problem it

follows that PKTX,t(Cr,t - NTXr,t)/brj is constant over time periods. However, in reality where

concrete solvers are at work, slight differences are possible. In fact, a coinciding accuracy of

10-12 digits was found; this summation has therefore two effects: increase further the accuracy,

and increase the weight in the sum (F.l).
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F.6 Conclusions

Based on the examples presented above together with further experiences the

following conclusions can be drawn.

• The cutting plane methods (Algorithm 2 and 4) used for solving VIPs

are much easier to implement and manage than the Negishi-approaches

(Algorithm 5). This is mainly due to the decomposition required in the

latter case.

• In our tests ACCPM (Algorithm 2) required only about 1/3 to 1/2 of the

computation time as compared with the (5-Negishi-algorithm (Algorithm 5).
But this depends on the relation #regions/#goods, and on the behavior of

the decomposition method (Algorithm 6 in our case) when the number of

goods or regions changes.

• The center of gravity is much too costly in our examples. Moreover, the

analytic center shows in all examples tested a very good average volume

reduction.

• The new conic ACCPM (Algorithm 4) improves on ACCPM (Algorithm 2)
considerably—in the first 40 iterations. Here a two stage scheme may prove

useful in practice, where Algorithm 4 is used in the beginning, and once

||e(p*)|| Starts to raise, the scheme Switches to Algorithm 2. A crucial open

question would then be, how the feasible set in Algorithm 2 is chosen after

such a switch. A reasonable strategy could take the set A* defined by

cutting {t = 1} with the cone Kk stemming from the fcth iteration of

Algorithm 4, because this intersection guarantees to contain (/,£>)** for

pseudo-monotone Operators.
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