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Abstract VerifyThis is a series of program verification com-

petitions that emphasize the human aspect: participants

tackle the verification of detailed behavioral properties—

something that lies beyond the capabilities of fully auto-

matic verification, and requires instead human expertise to

suitably encode programs, specifications, and invariants. This

paper describes the 8th edition of VerifyThis, which took

place at ETAPS 2019 in Prague. Thirteen teams entered the

competition, which consisted of three verification challenges

and spanned two days of work. This report analyzes how

the participating teams fared on these challenges, reflects on

what makes a verification challenge more or less suitable for

the typical VerifyThis participants, and outlines the difficul-

ties of comparing the work of teams using wildly different

verification approaches in a competition focused on the hu-

man aspect.
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1 The VerifyThis 2019 Verification Competition

VerifyThis is a series of program verification competitions

where participants prove expressive input/output properties

of small programs with complex behavior. This report de-

scribes VerifyThis 2019, which took place on 6–7 April 2019

in Prague, Czech Republic, as a two-day event of the Euro-

pean Joint Conferences on Theory and Practice of Software

(ETAPS 2019). It was the eighth event in the series, after the

VerifyThis competitions held at FoVeOOS 2011, FM 2012,

the Dagstuhl Seminar 14171 (in 2014), and ETAPS 2015–

2018. The organizers of VerifyThis 2019 were also the au-

thors of this paper—henceforth referred to as “we”.

VerifyThis aims to bring together researchers and practi-

tioners interested in formal verification, providing them with

an opportunity for engaging, hands-on, and fun discussion.

The results of the competition help the research community

evaluate progress and assess the usability of formal verifi-

cation tools in a controlled environment—which still repre-

sents, on a smaller scale, important practical aspects of the

verification process.

Unlike other verification competitions that belong to the

same TOOLympics (Competitions in Formal Methods) track

of ETAPS, VerifyThis emphasizes verification problems that

go beyond what can be proved fully automatically, and re-

quire instead human experts “in the loop”. During a Ver-

ifyThis event, participating teams are given a number of

verification challenges that they have to solve on-site dur-

ing the time they have available using their favorite veri-

fication tools. A challenge is typically given as a natural-

language description—possibly complemented with some

pseudo-code or lightweight formalization—of an algorithm

and its specification. Participants have to implement the al-

gorithm in the input language of their tool of choice, for-

malize the specification, and formally prove the correctness

of the implementation against the specification. The chal-
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lenge descriptions leave a lot of details open, so that partic-

ipants can come up with the formalization that best fits the

capabilities of their verification tool of choice. Correctness

proofs usually require participants to supply additional in-

formation, such as invariants or interactive proof commands.

Following a format that consolidated over the years, Ver-

ifyThis 2019 proposed three verification challenges. During

the first day of the competition, participants worked during

three 90-minute slots—one for each challenge. Judging of

the submitted solutions took place during the second day

of the competition, when we assessed the level of correct-

ness, completeness, and elegance of the submitted solutions.

Based on this assessment, we awarded prizes to the best

teams in different categories (such as overall best team, and

best student teams) The awards were announced during the

ETAPS lunch on Monday, 8 April 2019.

Outline. The rest of this report describes VerifyThis 2019 in

detail, and discusses the lessons we learned about the state of

the art in verification technology. Section 1.1 outlines how

we prepared the challenges; Section 1.2 discusses the in-

vited tutorial that opened VerifyThis; Section 1.3 presents

the teams that took part in this year’s VerifyThis; and Section 1.4

describes the judging process in some more detail.

Then, Sections 2–4 each describe a verification chal-

lenge in detail: the content of the challenge, what aspects we

weighed when designing it, how the teams fared on it, and a

postmortem assessment of what aspects made the challenge

easy or hard for teams.

Finally, Section 5 presents the lessons learned from or-

ganizing this and previous competitions, focusing on the

tools and tool features that emerged, on the characteristics

of the challenges that made them more or less difficult for

participants, and on suggestions for further improvements

to the competition format.

The online archive of VerifyThis

http://verifythis.ethz.ch

includes the text of all verification challenges, and the so-

lutions submitted by the teams (typically revised and im-

proved after the competition). Reports about previous edi-

tions of VerifyThis are also available [6,12,3,15,18,19,17].

The motivation and initial experiences of organizing verifi-

cation competitions in the style of VerifyThis are discussed

elsewhere [22,16]; a recent publication [10] draws lessons

from the history of VerifyThis competitions.

1.1 Challenges

A few months before the competition, we sent out a public

“Call for Problems” asking for suggestions of verification

challenges that could be used during the competition. Two

people submitted by the recommended deadline proposals

for three problems; and one more problem proposal arrived

later, close to the competition date.

We combined these proposals with other ideas in order

to design three challenges suitable for the competition. Fol-

lowing our experience, and the suggestions of organizers

of previous VerifyThis events, we looked for problems that

were suitable for a 90-minute slot, and that were not too bi-

ased towards a certain kind of verification language or tool.

A good challenge problem should be presented as a series of

specification and verification steps of increasing difficulty;

even inexperienced participants should be able to approach

the first steps, whereas the last steps are reserved for those

with advanced experience in the problem’s domain, or that

find it particularly congenial to the tools they’re using. Typ-

ically, the first challenge involves an algorithm that operates

on arrays or even simpler data types; the second challenge

targets more complex data structures in the heap (such as

trees or linked lists); and the third challenge involves con-

currency.

In the end, we used one suggestion collected through the

“Call for Problems” as the basis of the first challenge, which

involves algorithms on arrays (see Section 2). Another prob-

lem suggestion was the basis of the second challenge, which

targets the construction of binary trees from a sequence of

integers (see Section 3). For the third challenge, we took a

variant of the matrix multiplication problem (which was al-

ready used, in a different form, during VerifyThis 2016) that

lends itself to a parallel implementation (see Section 4).

1.2 Invited Tutorial

We invited Virgile Prevosto to open VerifyThis 2019 with a

tutorial about Frama-C. Developed by teams at CEA LIST

and INRIA Saclay in France, Frama-C1 is an extensible plat-

form for source-code analysis of software written in C.

Frama-C works on C code annotated with specifications

and other directives for verification written as comments

in the ACSL (pronounced “axel”) language. Each plug-in

in Frama-C provides a different kind of analysis, including

classic dataflow analyses, slicing, and also dynamic anal-

yses. The tutorial2 focused on the WP (Weakest Precon-

dition) plugin, which supports deductive verification using

SMT solvers or interactive provers to discharge verification

conditions.

The tutorial began with the simple example of a func-

tion that swaps two pointers. Despite the simplicity of the

implementation, a complete correctness proof is not entirely

trivial since it involves proving the absence of undefined

behavior—a characteristic of C’s memory model. The tuto-

rial continued with examples of increasing complexity demon-

1 https://frama-c.com
2 https://frama.link/fc-tuto-2019-04
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strating other features of the WP plugin and of the ACSL an-

notation language, such as how to specify frame conditions

and memory separation, how to reason about termination,

and how to define and use custom predicates for specifica-

tion.

Frama-C has been used to analyze critical low-level code,

such as the Contiki embedded operating system and imple-

mentations of critical communications protocols. Its focus

and the rich palette of analyses it supports make it a tool

with an original approach to formal verification—one that

VerifyThis participants found interesting and stimulating to

compare to the capabilities of their own tools.

1.3 Participants

Table 1 lists the thirteen teams that participated in Verify-

This 2019. Four teams consisted of a single person, whereas

the majority of teams included two persons (the maximum

allowed).

As it is often the case during verification competitions,

the majority of participants used a tool they know very well

because they have contributed to its development. However,

four teams identified themselves as non-developers, as they

did not directly contribute to the development of the verifi-

cation tools they used during the competition.

Out of 21 participants, 11 were graduate students. Some

participated with a senior colleague, while some others

worked alone or with other students, making up a total of

three all-student teams.

1.4 Judging

Judging took place on the competition’s second day. Each

team sat for a 20–30-minute interview with us, during which

they went thought their solutions, pointing out what they did

and didn’t manage to verify, and which aspects they found

the most challenging.

Following the suggestions of previous organizers [10],

we asked teams to fill in a questionnaire about their sub-

mitted solutions in preparation for the interview. The ques-

tionnaire asked them to explain the most important features

of the implementation, specification, and verification in their

solutions, such as whether the implementation diverged from

the pseudo-code given in the challenge description, whether

the specification included properties such as memory safety,

and whether verification relied on any simplifying assump-

tions. The questionnaire also asked participants to reflect

on the process they followed (How much human effort was

involved? How long would it take to complete your solu-

tion?), and on the strengths and weaknesses of the tools they

used. With the bulk of the information needed for judging

available in the questionnaire, we could focus the interviews

on the aspects that the participants found the most relevant

while still having basic information about all teams.

At the same time as judging was going on, participants

not being interviewed were giving short presentations of their

solutions to the other teams. This is another time-honored

tradition of VerifyThis, which contributes more value to the

event and makes it an effective forum to exchange ideas

about how to do verification in practice. We briefly consid-

ered the option of merging interviews (with organizers) and

presentation (to other participants), but in the end we de-

cided that having separate sessions makes judging more ef-

fective and lets participants discuss freely with others with-

out the pressure of the competition—although the atmosphere

was generally quite relaxed!

Once the interviews were over, we discussed privately

to choose the awardees. We structured our discussion around

the questionnaires’ information, and supple-

mented it with the notes taken during the interviews. Never-

theless, we did not use any fixed quantitative scoring, since

VerifyThis’s judging requires us to compare very different

approaches and solutions to the same problems. Even crite-

ria that are objectively defined in principle may not be di-

rectly comparable between teams; for example, correctness

is relative to a specification, and hence different ways of

formalizing a specification drastically change the hardness

of establishing correctness. We tried to keep an open mind

towards solutions that pursued an approach very different

from the one we had in mind when writing the challenges,

provided the final outcome was convincing. Still, inevitably,

our background, knowledge, and expectations somewhat may

have biased the judging process. In the end, we were pleased

by all submissions, which showed a high level of effort, and

results that were often impressive—especially considering

the limited available time to prepare a solution.

We awarded six prizes in four categories:

– Best Overall Team went to Team The Refiners

– Best Student Teams went to Team Mergesort and

Team Sophie & Wytse

– Most Distinguished Tool Feature went to Team Bashers—

for a library to model concurrency in Isabelle, which

they developed specifically in preparation for the compe-

tition—and to Team VerCors T(w/o)o—for their usage

of ghost method parameters to model sparse matrices

– Tool Used by Most Teams went to Viper—used directly

or indirectly3 by three different teams—represented by

Alexander J. Summers.

3 VerCors uses Viper as back-end; hence Team Viper used it di-

rectly, and Team VerCors T(w/o)o and Team Sophie & Wytse used

it indirectly.
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TEAM NAME MEMBERS TOOL

1 Mergesort Quentin Garchery Why3 [13,5]

2 VerCors T(w/o)o Marieke Huisman, Sebastiaan Joosten VerCors [4,1]

3 Bashers Mohammad Abdulaziz, Maximilian P L Haslbeck Isabelle [26]

4 Jourdan-Mével Jacques-Henri Jourdan, Glen Mével Coq [2,20]

5 OpenJML David Cok OpenJML [8]

6 YVeTTe Virgile Prevosto, Virgile Robles Frama-C [21]

7 The Refiners Peter Lammich, Simon Wimmer Isabelle [26,23]

8 KIV Stefan Bodenmüller, Gerhard Schellhorn KIV [11]

9 Sophie & Wytse Sophie Lathouwers, Wytse Oortwijn VerCors [4]

10 Coinductive Sorcery Jasper Hugunin Coq [2]

11 Heja mig Christian Lidström Frama-C [21]

12 Eindhoven UoT Jan Friso Groote, Thomas Neele mCRL2 [9,7]

13 Viper Alexander J. Summers Viper [25]

Table 1 Teams participating in VerifyThis 2019, listed in order of registration. For each TEAM the table reports its NAME, its MEMBERS, and the

verification TOOL they used. A member names is in italic if the member is a student; and it is underlined if the member is also a developer of the

tool or of some extension used in the competition.

2 Challenge 1: Monotonic Segments and GHC Sort

The first challenge was based on the generic sorting algo-

rithm used in Haskell’s GHC compiler.4 The algorithm is a

form of patience sorting.5

2.1 Challenge Description

Challenge 1 was in two parts—described in Section 2.1.1

and Section 2.1.2—each consisting of several different ver-

ification tasks. We did not expect participants to solve both

parts in the 90 minutes at their disposal, but suggested that

they pick the one that they found the most feasible given the

tool they were using and their preferences.

2.1.1 Part A: Monotonic Segments

Given a sequence s

s = s[0] s[1] . . . s[n− 1] n ≥ 0

of elements over a totally sorted domain (for example, the

integers), we call monotonic cutpoints any indexes that cut

s into segments that are monotonic: each segment’s elements

are all increasing or all decreasing.6 Here are some examples

of sequences with monotonic cutpoints:

SEQUENCE s MONOTONIC CUTPOINTS MONOTONIC SEGMENTS

1 2 3 4 5 7 0 6 1 2 3 4 5 7

1 4 7 3 3 5 9 0 3 5 7 1 4 7 | 3 3 | 5 9

6 3 4 2 5 3 7 0 2 4 6 7 6 3 | 4 2 | 5 3 | 7

In this challenge we focus on maximal monotonic cutpoints,

that is such that, if we extend any segment by one element,

the extended segment is not monotonic anymore.

4 https://hackage.haskell.org/package/base-4.12.0.0/docs/src/Data.OldList.html#sort
5 Named after the patience card game

https://en.wikipedia.org/wiki/Patience_sorting .
6 More precisely, all strictly increasing, or nonincreasing (decreas-

ing or equal).

cut := [0] # singleton sequence with element 0

x, y := 0, 1

while y < n: # n is the length of sequence s

increasing := s[x] < s[y] # in increasing segment?

while y < n and (s[y-1] < s[y]) == increasing:

y := y + 1

cut.extend(y) # extend cut by adding y to its end

x := y

y := x + 1

if x < n:

cut.extend(n)

Fig. 1 Algorithm to compute the maximal cutpoints cut of sequence s.

Formally, given a sequence s as above, we call mono-

tonic cutpoints any integer sequence

cut = c0 c1 . . . cm−1

such that the following four properties hold:

non-empty: m > 0

begin-to-end: c0 = 0 and cm−1 = n

within bounds: for every element ck ∈ cut : 0 ≤ ck ≤ n

monotonic: for every pair of consecutive elements

ck, ck+1 ∈ cut , the segment s[ck..ck+1) =

s[ck] s[ck + 1] . . . s[ck+1 − 1] of s, which

starts at index ck included and ends at index

ck+1 excluded, is monotonic, that is: either

s[ck] < s[ck + 1] < · · · < s[ck+1 − 1] or

s[ck] ≥ s[ck + 1] ≥ · · · ≥ s[ck+1 − 1]

Given a sequence s, for example stored in an array, max-

imal monotonic cutpoints can be computed by scanning s

once while storing every index that corresponds to a change

in monotonicity (from increasing to decreasing, or vice versa),

as shown by the algorithm in Figure 1.

To solve Challenge 1.A, we asked participants to carry

out the following tasks.

4
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# merge ordered segments s and t

merged := []

x, y := 0, 0

while x < length(s) and y < length(t):

if s[x] < t[y]:

merged.extend(s[x])

x := x + 1

else:

merged.extend(t[y])

y := y + 1

# append any remaining tail of s or t

while x < length(s):

merged.extend(s[x])

x := x + 1

while y < length(t):

merged.extend(t[y])

y := y + 1

Fig. 2 Algorithm to merge sorted sequences s and t into sorted se-

quence merged.

Implementation task: Implement the algorithm in Figure 1

to compute monotonic cutpoints of an input sequence.

Verification tasks:

1. Verify that the output sequence satisfies properties

non-empty, begin-to-end, and within bounds above.

2. Verify that the output sequence satisfies property mono-

tonic given above (without the maximality require-

ment).

3. Strengthen the definition of monotonic cutpoints so

that it requires maximal monotonic cutpoints, and

prove that your algorithm implementation computes

maximal cutpoints according to the strengthened def-

inition.

2.1.2 Part B: GHC Sort

To sort a sequence s, GHC Sort works as follows:

1. Split s into monotonic segments σ1, σ2, . . . , σm−1

2. Reverse every segment that is decreasing

3. Merge the segments pairwise in a way that preserves the

order

4. If all segments have been merged into one, that is an or-

dered copy of s; then terminate. Otherwise, go to step 3

Merging in step 3 works like merging in Merge Sort, which

follows the algorithm in Figure 2.

For example, GHC Sort applied to the sequence s =
3 2 8 9 3 4 5 goes through the following steps:

– monotonic segments: 3 2 | 8 9 | 3 4 5
– reverse decreasing segments: 2 3 | 8 9 | 3 4 5

– merge segments pairwise: 2 3 8 9 | 3 4 5

– merge segments pairwise again: 2 3 3 4 5 8 9, which is s

sorted

To solve Challenge 1.B, we asked participants to carry

out the following tasks.

Implementation task: Implement GHC Sort in your pro-

gramming language of choice.

Verification tasks:

1. Write functional specifications of all procedures/func-

tions/main steps of your implementation.

2. Verify that the implementation of merge returns a se-

quence merged that is sorted.

3. Verify that the overall sorting algorithm returns an

output that is sorted.

4. Verify that the overall sorting algorithm returns an

output that is a permutation of the input.

2.2 Designing the Challenge

The starting point for designing this challenge was Nadia

Polikarpova’s suggestion to target GHC’s generic sorting

method. Responding to VerifyThis’s Call for Problems, she

submitted a concise high-level description of how the sort-

ing algorithm works, and pointed us to an implementation in

Liquid Haskell7 that verifies sortedness of the output.

In order to understand whether this algorithm could be

turned into a suitable verification challenge, we developed a

prototype implementation of GHC Sort written in Python,

complete with assertions of key correctness properties as

well as tests that exercised the implementation on different

inputs. Tweaking this implementation was useful to quickly

explore different variants of the algorithm and their reper-

cussions on correct program behavior.

We also developed a verified Dafny implementation of

parts of the algorithm, in order to get an idea of the kinds

of invariants that are required for proving correctness and to

anticipate possible pitfalls when trying to specify or verify

the algorithm.

These attempts indicated that verifying the whole GHC

Sort algorithm would have been a task too demanding for

a 90-minute slot. Therefore, we split it into two conceptu-

ally separate parts: A) finding the monotonic segments of

the input (Section 2.1.1); and B) the actual sorting procedure

(Section 2.1.2). We suggested to participants to focus their

work on the parts of the algorithm that were more amenable

to analysis according to the capabilities of their verification

tool, while specifying the expected behavior of the other

parts without proving their correctness explicitly. In particu-

lar, to decouple the different parts of the challenge and give

more flexibility, we left participants working on part B free

to add the reversal (step 2 of GHC Sort) to the same pass

that constructs the monotonic segments in step 1.

GHC Sort’s original implementation is in Haskell—a

pure functional programming language, which offers abstract

lists as a native data type—bringing the risk of a verifica-

tion challenge biased in favor of tools based on functional

7 https://github.com/ucsd-progsys/liquidhaskell/blob/develop/tests/pos/GhcSort1.hs

5
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programming features. To mitigate this risk, we explicitly

told participants they were free to choose any representa-

tion of input sequences and cutpoints sequences that was

manageable using their programming language of choice:

arrays, mathematical sequences, dynamic lists, . . . . We also

presented the key algorithms (Figure 1 and Figure 2) using

iteration, but still left participants free to use recursion in-

stead of looping to implement the general idea behind the

algorithms.

One technical issue we discussed while preparing the

challenge was the definition of monotonicity of a segment.

Definition monotonic on page 4 above is asymmetric since

it distinguishes between strictly increasing and nonstrictly

decreasing (that is, nonincreasing) segments. While using

a symmetric definition—which would allow repeated equal

values to appear indifferently in increasing or decreasing

segments—seemed more elegant and perhaps more natural,

the asymmetric definition (2.1.1) seemed simpler to imple-

ment, since it is enough to compare the first two elements of

a segment to know whether the rest of the segment has to be

increasing (strictly) or decreasing (nonstrictly). In turn, def-

inition (2.1.1) seemed to require slightly simpler invariants

because the predicate for “decreasing” would be exactly the

complement of the predicate for “increasing”. At the same

time, we were wary of how people used to different nota-

tions and verification styles might still find the symmetric

definition easier to work with. Therefore, we left participants

free to change the definition of monotonic so that segments

of equal values could be indifferently included in increasing

or in decreasing segments. If they choose to do so, we also

pointed out that they may have had to change the algorithm

in Figure 1 to match their definition of monotonic segment.

One final aspect that we tried to anticipate was the re-

quirement of maximality of the monotonic segments. Prov-

ing maximality seemed somewhat more complex than prov-

ing monotonicity alone; hence, we marked it as “optional

task (advanced)” and we did not provide any formal defini-

tion of maximality—so that participants were free to come

up with the formal specification that best fitted their general

solution.

2.3 Submitted Solutions

Overall Results

Team OpenJML and Team The Refiners submitted solutions

of challenge 1 that were complete and correct. Another team

got close but missed a few crucial invariants. Five teams

made substantial progress but introduced some simplifying

assumptions or skipped verification of maximality. And an-

other five teams’ progress was more limited, often due to

a mismatch between their tools’ capabilities and what was

required by the challenge.

Detailed Results

The two teams using Isabelle followed very different ap-

proaches to representing cutpoints in challenge 1. While

Team The Refiners used functional lists of lists to repre-

sent monotonic segments explicitly, Team Bashers chose

to use an explicit representation of indexes corresponding

to cutpoints—which turned out not to be a good match for

Isabelle’s functional programming features. Team The Re-

finers expressed challenge 1’s correctness properties recur-

sively to be amenable to inductive proofs. With these adjust-

ments, they could take full advantage of Isabelle’s verifica-

tion capabilities: they specified all properties of part A and

performed all verification tasks with the exception of com-

pleting the proof of maximality; and they even managed to

solve most of part B’s specification and verification tasks,

completing all its proofs not long after the competition slot

was over.

Both teams using the Coq theorem prover encoded chal-

lenge 1-A in a purely functional setting, using lists and re-

cursion. Without the support of domain-specific libraries,

reasoning about the properties required by the challenge turn-

ed out to be quite cumbersome and time-consuming. In par-

ticular, Coq’s constructive logic requires that every recursive

function definition be accompanied by a proof of termina-

tion (showing that recursion is well founded). This slowed

down the work of Team Jourdan-Mével and Team Coinduc-

tive Sorcery , who could submit only partial solutions in time

for the competition.

Challenge 1—in particular, part A—was well-suited, in

its original form using arrays, with OpenJML’s capabilities:

Team OpenJML delivered an implementation of the algo-

rithms that was very close to the pseudo-code of Figure 1,

and could express and prove properties that directly trans-

lated all of the challenge’s verification tasks. As usual for

verifiers based on SMT solvers, a successful proofs depends

on being able to write specifications in a form amenable to

automated reasoning. Then, the required loop invariants had

a fairly clear connection to the postconditions that had to be

proved. To save time, Team OpenJML took some shortcuts

in the implementation (for example, writing the result into

a global variable instead of returning it explicitly) that do

not affect its behavior but are somewhat inelegant; cleaning

them up, however, should be straightforward.

Both teams using VerCors progressed quite far in solv-

ing part A of challenge 1, but could not complete the proof of

maximality during the competition. Team Sophie & Wytse

modified the implementation of the algorithm to compute

the cutpoints so that it stores in a separate array the mono-

tonicity direction of each segment (that is whether each seg-

ment is increasing or decreasing); this helped to simplify

reasoning about maximality, since one can more easily re-

fer to the monotonicity of each segment independent of the

6



others. Even without this trick, Team VerCors T(w/o)o pro-

gressed further in the proof of maximality, as they only missed

a few key invariants. Both teams using VerCors used im-

mutable sequences, instead of arrays, to store cutpoint se-

quences; this dispensed them with having to deal with per-

missions—extensively used for arrays by VerCors.

Team KIV also used immutable sequences as primary

data structure for challenge 1-A; KIV’s libraries recently in-

cluded a proof that sequences and arrays can simulate each

other, and hence it should be possible to rework the formal-

ization to work with arrays with limited changes. As it is

customary in KIV, and in contrast to what most other ap-

proaches prefer to do, Team KIV expressed all correctness

properties together using a single descriptive predicate. Ac-

cording to Team KIV ’s members, this helps scalability with

their tool, but may hamper a partial yet faster progress when

limited time is available—as it was the case during the com-

petition, when they could not complete the proofs in time.

Team Viper implemented challenge 1-A’s algorithm us-

ing arrays; more precisely, they introduced a domain defi-

nition that represents arrays as objects with certain proper-

ties. Team Viper modified the algorithm in Figure 1 trying

to enforce the property that increasing and decreasing seg-

ments strictly alternate—a property that the original algo-

rithm does not possess. This turned out to be tricky to do

and complicated several aspects of the specification. In the

end, Team Viper submitted a solution that included several

parts of the specification and invariants necessary to prove

correctness but did not completely establish monotonicity

and maximality.

Team YVeTTe solved challenge 1-A using Frama-C’s

WP plugin, which provides automated deductive verification

of C code using SMT solvers. Since Frama-C encodes low-

level aspects of the C memory model, correctness proofs of-

ten generate a large number of proof obligations that require

to establish safety and separation of different memory re-

gions. These low-level proof obligations may significantly

complicate the proof of higher-level functional properties—

such as those that are the main focus of VerifyThis’s chal-

lenges. More practically, this interplay of user-defined pred-

icates and low-level properties made Frama-C’s WP plugin

generate proof obligations that were not automatically prov-

able by SMT solvers and would have required a lengthy

manual analysis using an interactive prover like Coq. Due

to these hurdles, Team YVeTTe managed to get close to a

proof of monotonicity, but could not complete some invari-

ants and lemmas in time during the competition.

The only team using a model checker, Team Eindhoven

UoT had to introduce restrictions and simplification to ex-

press the requirements of challenge 1-A within the finite-

state expressiveness of their verification tool. In their so-

lution, the integers that make up a sequence range over a

finite bound; and only input lists of a certain fixed length

could be analyzed. In practice, most of their analysis used

lists of up to 4 elements (lists of up to 10 elements is close

to the maximum the tool can handle before the analysis al-

gorithm exhausts the available resources); and they did not

prove maximality (possibly because expressing the property

in operational form would have been tedious).

2.4 Postmortem Evaluation of the Challenge

Teams did not find the definition (2.1.1)of monotonicity hard

to work with because it is asymmetric: as far as we could

see, most of them encoded the property as we suggested and

made it work effectively.

However, a couple of teams were confused by mistak-

enly assuming a property of monotonic segments: since the

condition for “decreasing” is the complement of the condi-

tion for “increasing”, they concluded that increasing and de-

creasing segments must strictly alternate (after a decreasing

segment comes an increasing one, and vice versa). This is

not true in general, as shown by the example of sequence

6 3 4 2 5 3 7, which is made of 4 monotonic segments

6 3 | 4 2 | 5 3 | 7, all of them decreasing.

While we did not give a formal definition of maximality,

the teams that managed to deal with this advanced property

did not have trouble formalizing it. Since “extending” a seg-

ment can be generally done both on its right and on its left

endpoint, teams typically expressed maximality as two sep-

arate properties: to the right and to the left. While it may be

possible to prove that one follows from the other (and the

definition of monotonic cutpoints), explicitly dealing with

both variants was found to be preferable in practice since the

invariants to prove one variant are clearly similar to those to

prove the other.

3 Challenge 2: Cartesian Trees

The second challenge involved the notion of Cartesian trees8

of a sequence of integers and, in particular, dwelt on how

such trees can be constructed in linear time from the se-

quence of all nearest smaller values9 of the input sequence.

3.1 Challenge Description

This challenge was in two parts. The first part, presented in

Section 3.1.1, asked to compute the sequence of all nearest

smaller values of an input sequence, while the second, in

Section 3.1.2, dealt with the construction of the sequence’s

actual Cartesian tree. We did not expect participants to com-

plete the whole challenge in an hour and a half; so they could

8 https://en.wikipedia.org/wiki/Cartesian_tree
9 hhttps://en.wikipedia.org/wiki/All_nearest_smaller_values
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stack := [] # empty stack

for every index x in s:

# pop values greater or equal to s[x]

while not stack.is_empty

and s[stack.top] >= s[x]:

stack.pop

if stack.is_empty:

# x doesn’t have a left neighbor

left[x] := 0

else:

left[x] := stack.top

stack.push (x)

Fig. 3 Algorithm to compute the sequence left of all left nearest

smaller values of input sequence s. The algorithm assumes that in-

dexes start from 1, and hence it uses 0 to denote that a index has no

left neighbor.

choose the part that best fitted their language of choice. The

second part of the challenge used features described in the

first part, but participants did not need to actually implement

and verify the algorithms of the first part to carry out the sec-

ond.

3.1.1 Part A: All Nearest Smaller Values

For each index in a sequence of values, we define the nearest

smaller value to the left, or left neighbor, as the last index

among the previous indexes that contains a smaller value.

More precisely, for each index x in an input sequence s, the

left neighbor of x in s is the index y such that:

– y < x,

– the value stored at index y in s, written s[y], is smaller

than the value stored at index x in s,

– there are no other values smaller than s[x] between y

and x.

There are indexes that do not have a left neighbor; for exam-

ple, the first value, or the smallest value in a sequence.

We consider here an algorithm that constructs the se-

quence of left neighbors of all values of a sequence s. It

works using a stack. At the beginning, the stack is empty.

Then, for each index x in the sequence, pop indexes from the

stack until a index y is found such that s[y] is smaller than

s[x]. If such a index exists in the stack, it is the left neighbor

of x; otherwise, x does not have a left neighbor. After pro-

cessing x, push x onto the stack and go to the next index in

s. This algorithm is given in pseudo-code in Figure 3.

As an example, consider sequence s = 4 7 8 1 2 3 9 5 6.

The sequence of the left neighbors of s (using indexes that

start from 1) is: left = 0 1 2 0 4 5 6 6 8. The left neighbor of

the first value of s is 0 (denoting no valid index), since the

first value in a list has no values at its left. The fourth value

4 7 8 1 2 3 9 5 6

1

2

3

4

5

6

7

8

9

Fig. 4 Cartesian tree of sequence 4 7 8 1 2 3 9 5 6.

of s (value 1) is also 0, since 1 is the smallest value of the

list.

To solve Challenge 2.A, we asked participants to carry

out the following tasks:

Implementation task. Implement the algorithm to compute

the sequence of left neighbors from an input sequence.

Verification tasks.

1. Index: verify that, for each index i in the input se-

quence s, the left neighbor of i in s is smaller than i,

that is left[i] < i.

2. Value: verify that, for each index i in the input se-

quence s, if i has a left neighbor in s, then the value

stored in s at the index of the left neighbor is

smaller than the value stored at index i, namely, if

left[i] is a valid index of s then s[left[i]] < s[i].

3. Smallest: verify that, for each index i in the input

sequence s, there are no values smaller than s[i] be-

tween left[i] + 1 and i (included).

3.1.2 Part B: Construction of a Cartesian Tree

Given a sequence s of distinct numbers, its unique Cartesian

tree CT (s) is the tree such that:

1. CT (s) contains exactly one node per value of s.

2. When traversing CT (s) in-order—that is, using a sym-

metric traversal: first visit the left subtree, then the node

itself, and finally the right subtree—elements are encoun-

tered in the same order as s.

3. Tree CT (s) has the heap property—that is, each node in

the tree contains a value (not an index) bigger than its

parent’s.

The Carthesian tree of sequence s = 4 7 8 1 2 3 9 5 6 is given

in Figure 4.
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There are several algorithms to construct a Cartesian tree

in linear time from its input sequence. The one we consider

here is based on the all nearest smaller values problem (part

A of this challenge). Let’s consider a sequence of distinct

numbers s. First, we construct the sequence of left neighbors

for the value of s using the algorithm in Figure 3. Then, we

construct the sequence of right neighbors using the same al-

gorithm, but starting from the end of the list. Thus, for every

index x in sequence s, the parent of x in CT (s) is either:

– The left neighbor of x if x has no right neighbor.

– The right neighbor of x if x has no left neighbor.

– If x has both a left neighbor and a right neighbor, then

x’s parent is the larger one.

– If x has no neighbors, then x is the root node.

To solve Challenge 2.B, we asked participants to carry

out the following tasks:

Implementation task. Implement the algorithm for the con-

struction of the Cartesian tree.

Verification tasks.

1. Binary: verify that the algorithm returns a well

formed binary tree, with one node per value (or per

index) in the input sequence.

2. Heap: verify that the resulting tree has the heap prop-

erty, that is, each non-root node contains a value

larger than its parent.

3. Traversal: verify that an in-order traversal of the tree

traverses values in the same order as in the input se-

quence.

3.2 Designing the Challenge

The subject for the challenge was given to us by Gidon Ernst

(one of the organizers of VerifyThis 2018) as an idea that

was considered but, in the end, not used for the 2018 verifi-

cation competition.

After first reading about Cartesian trees, we were wary

of the risk that using them as subject would lead to a chal-

lenge too much oriented toward functional programming—

unfeasible using verification tools that cannot handle recur-

sive data structures such as trees and lists. To avoid this risk,

we focused the challenge on one specific imperative algo-

rithm that constructs a Cartesian tree bottom-up, attaching

the nodes to their parents in the order in which they appear

in the input sequence.

To better understand if we could make a challenge out

of the this bottom-up Cartesian tree construction algorithm,

we tried to implement and verify it using the SPARK verifi-

cation tool for Ada. We began by writing and annotating the

short loops that build the input sequence’s nearest smaller

values to the left and to the right. This task was not compli-

cated, but turned out to be time-consuming enough to serve

as a challenge by itself. Completing the implementation and

verification of the actual Cartesian tree construction algo-

rithm turned out to be decidedly more complicated: writ-

ing the algorithm itself was no big deal, but understanding

how it works well enough to prove it correct was more chal-

lenging. In particular, proving property traversal (in-order

traversal of a Cartesian tree gives the input sequence) took

nearly one day of work for a complete working solution in

SPARK.

Following these investigations, we considered the possi-

bility of simply dropping from the challenge the construc-

tion of Cartesian trees, and concentrating only on the con-

struction of nearest smaller values. However, we decided

against that option, because we still wanted to give partic-

ipants who had the right background and tools a chance of

trying their hands at proving this challenging algorithm. To

make the overall challenge tractable, we split it in two parts.

The first part, concerned only with nearest smaller val-

ues, was explicitly presented as the simplest, and was de-

signed to be verifiable using a wide range of tools, at it only

deals with sequences. Since the main algorithm (Figure 3) is

imperative but uses stacks—which could make it a bit tricky

to verify using only functional data structures—we let par-

ticipants free to use an existing implementation of stacks or

even use sequences as models of stacks.

As for the second part, dealing with the Cartesian tree

construction algorithm, we clearly split the verification job

in three distinct tasks of different difficulties; and marked

the third task (property traversal) as “optional”, assuming

that it would be mostly useful as a further exercise to be

done after the competition. We did not provide an algorithm

in pseudo-code for this part, as writing an implementation

is straightforward from the textual description but also de-

pends strongly on the data structures used to encode the tree.

Instead, we presented an example of a Cartesian tree built

from a sequence, so that participants could use it to test their

implementation and to understand why it worked. We also

remarked to the participants that they could implement trees

as they preferred, using for example a recursive data-type,

a pointer-based structure, or even just a bounded structure

inside an array.

3.3 Submitted Solutions

Overall Results

Two teams submitted solutions to challenge 2 that were both

correct and complete: Team OpenJML worked on part A of

the challenge, and Team VerCors T(w/o)o on part B. The

latter team even managed to verify a partial specification of

part B’s task traversal—which was marked “optional”. An-

other four teams completed the first two verification tasks

of part A, one of them coming close to finishing the proof
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of the third, with only a small part of the necessary invari-

ant missing. Another team completed all three verification

tasks of part A but with simplifying assumptions (on the fi-

nite range of inputs). Another two teams completed part A’s

verification task 1 only. The remaining four teams didn’t go

further than implementing the algorithm of the same part

and writing partial specifications of the properties that were

to be verified.

Detailed Results

Most teams attempted part A of challenge 2, as it was pre-

sented as the more approachable of the two. Only two teams

attempted part B: Team VerCors T(w/o)o , using VerCors,

who focused entirely on part B, and Team The Refiners, us-

ing Isabelle, whose two members decided to work separately

in parallel—one person on each part of the challenge—to

assess which was more feasible (and eventually decided to

focus on part A).

Both teams working on part B represented trees using

a “parent” relation mapping an index in the input sequence

to the index of its parent node in the tree. Team The Re-

finers encoded this relation as a function on indexes. They

managed to verify the second verification task (heap: the

tree is a heap), but then decided to continue to work on

part A of the challenge, since it seemed more suitable for

their tool’s capabilities. In contrast, Team VerCors T(w/o)o

stored the parent of each value in the input sequence using

another sequence. They also defined two other arrays, stor-

ing the left and right child of each node. On tree structures

encoded using this combination of parent and child rela-

tions, Team VerCors T(w/o)o managed to complete part B’s

verification tasks 1 and 2. They even verified a partial ver-

sion of task 3’s property traversal—partial because it in-

volved only a node’s immediate children instead of the whole

left and right subtrees.

Even though they tackled the same problem, the two

submissions in Isabelle for part A of the challenge were

very different. Team Bashers sticked to the usual functional

programming style most common in Isabelle. They imple-

mented the algorithm using two recursive functions to rep-

resent the two loops in the pseudo-code of Figure 3. By con-

trast, Team The Refiners—true to their name—deployed Is-

abelle’s refinement framework to encode the algorithm di-

rectly in an iterative fashion, so that their implementation

could closely match the pseudo-code in Figure 3. On top of

this, they attempted refinement proofs to express part A’s

three verification tasks. This worked well for the first two

tasks (index and value), but they could not carry out the third

one (smallest) in time. While revising their solution after the

competition, they realized that they had not implemented the

algorithm correctly, because their encoding implied that no

values in the input sequence can have a smaller value to its

left. In principle, this mistake in the implementation should

not have invalidated their proofs of verification tasks 1 and 2,

which were expressed as conditionals on any values that do

have smaller values to their left. Thus, once they noticed the

error, they fixed the implementation and tried replaying the

mechanized proofs of the first two properties. Even though

they were using Sledgehammer to automate part of the rea-

soning, only the first task could be verified without manually

adjusting the interactive proofs—which required some dif-

ferent proofs steps even though the overall proof logic was

unchanged.

Both teams using Coq, Team Jourdan-Mével and

Team Coinductive Sorcery , implemented a functional ver-

sion of the pseudo-code in Figure 3 using two recursive func-

tions instead of loops—just like Team Bashers did in Is-

abelle. This encoding proved tricky to get right: both teams

ended up with a slightly incorrect “off-by-one” version of

the algorithm that also pops (instead of just inspecting it)

the first value y on the stack that satisfies s[y] < s[x] (exit

condition of the inner loop in Figure 3) and thus is the left

neighbor of current value x. This mistake does not affect

the verification of tasks 1 and 2 (index and value), and, in

fact, the Coq teams did not notice it and still managed to

specify (both teams) and prove (Team Jourdan-Mével ) these

two tasks. In contrast, the invariant needed to prove the third

verification task (smallest) depends on all values previously

processed during the computation, which means that it could

not have been expressed on the implementations written by

the Coq teams but would have required additional informa-

tion about processed values to be passed as part of the recur-

sive functions’ arguments.

As presented in Figure 3, the algorithm for the construc-

tion of the sequence of all nearest smaller values of an in-

teger sequence was more suited to an imperative implemen-

tation. The Java implementation produced by Team Open-

JML was indeed very close to that pseudo-code algorithm.

It included a low-level stack implementation consisting of

an array along with a separate variable storing the stack’s

top value index. The three properties—corresponding to the

three verification tasks index, value, and smallest—were ex-

pressed in a direct way, and all were verified automatically

by OpenJML without manual input other than the suitable

loop invariants. The loop invariant for the third verification

task was by far the most complex, but, once it was expressed

correctly, the automated prover Z3—used as the backend of

OpenJML—could handle it without difficulties in the auto-

mated proofs.

Other teams using a language with support for impera-

tive programming features were also able to go quite far in

the implementation and the verification of the algorithm of

challenge 2’s part A. These submitted solutions’ implemen-

tations closely matched the algorithm in Figure 3 with dif-

ferences only in how stacks were represented. Team Merge-
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sort , using Why3, encoded stacks as lists with an interface

to query the first value (top) and retrieve the tail of the list

(pop). The main limitation of this approach was the back-

ground solver’s limited support for recursive lists. As a re-

sult, some of the lemmas about stacks required to build the

algorithm’s overall correctness proofs couldn’t be verified

automatically, and were left unproved in the submitted solu-

tion. Despite this issue, Team Mergesort managed to verify

the first two verification tasks, and made significant progress

on the third one. The invariants submitted for this task were

proved automatically and close to the required ones—even

though they were not strong enough to complete the verifi-

cation of task smallest.

Team Viper also came close to a complete solution of

part A. The team’s implementation of the algorithm was

close to Figure 3’s, whereas the representation of stacks was

more original. Instead of using a concrete data structure,

Team Viper defined stacks in a pure logic fashion using un-

interpreted function symbols and axioms that postulate the

result of popping, pushing, and peeking on a stack.

Team Viper’s submitted solution included specifications of

all three verification tasks, and complete proofs of the first

two. Since the axiomatic representation did not support ref-

erencing arbitrary values inside the stack, Team Viper re-

sorted to expressing the invariant for the third verification

task using a recursive predicate. The invariant was nearly

complete, but the proofs could not be finished in time dur-

ing the competition.

Team Sophie & Wytse submitted a direct implementa-

tion of Figure 3’s algorithm in VerCors. They represented

stacks using VerCors’s mathematical sequences (an approach

that worked well because these are well supported by the

background prover). They wrote pop and peek functions to

manipulate sequences as stacks; and equipped them with

contracts so that they could be used inside the main algo-

rithm (for lack of time, they did not provide an implemen-

tation of pop). They progressed quite far in the verification

activities, but were not able to complete the proof of part A’s

third task during the competition. While VerCors has no spe-

cific limitations that would have prevented them from com-

pleting the proof given more time (the invariant required for

verifying the third task is quite involved), the team’s par-

ticipants remarked that invariant generation features would

have been useful to speed up their work.

Team YVeTTe and Team Heja mig implemented in C

the algorithm of part A, and annotated it using ACSL com-

ments. While Team YVeTTe implemented the algorithm as

described in the challenge, Team Heja mig wrote a sim-

pler, quadratic-time algorithm, which searches for the near-

est smaller value to the left by iterating in reverse over the in-

put sequence (that is, by literally following the definition of

left neighbor). Both teams managed to complete the first ver-

ification task using Frama-C’s WP plugin, but they could not

complete the other tasks in the time during the competition.

In particular, difficulties with formalizing aliasing among

data structures used by the algorithm and proving absence

of side effects—a result of C’s low-level memory model—

slowed the teams down and hindered further progress.

Team Eindhoven UoT managed to verify part A entirely

using the mCRL2 model checker, but had to introduce re-

strictions on the cardinality of the input values due to the

nature of their verification tool. Their proofs assume lists of

up to six values; and each value ranges over four possible

values. With these restrictions, they managed to complete

all three verification tasks in less than an hour. In partic-

ular, the third verification task did not cause any particular

trouble as model checking does not need manually-provided

invariants.

3.4 Postmortem Evaluation of the Challenge

We presented challenge 2 under the assumption that its part A

was somewhat easier and more widely feasible than part B.

The fact that most teams worked on part A may seem to con-

firm our assumption about its relatively lower difficulty.10 At

the same time, one out of only two teams who submitted a

complete and correct solution to challenge 2 tackled part B.

This may just be survival bias but another plausible explana-

tion is that the difficulties of the two parts are not so different

(even though part B looks more involved).

Indeed, part A revealed some difficulties that were not

obvious when we designed it. First, the algorithm in Figure 3

follows an imperative style, and hence it is not obvious how

to encode it using functional style; various teams introduced

subtle mistakes while trying to do so. Part B is easier in this

respect, as the Cartesian tree construction algorithm consists

of a simple iteration over the input, which manipulates data

that can all be encoded indifferently using sequences, ar-

rays, or lists. Part A, in contrast, requires a stack data struc-

ture with its operations. In the end, what really makes part B

harder than part A is probably its third, optional, verifica-

tion task traversal. Specifying it is not overly complicated,

but proving it requires a complex “big” invariant, which was

understandably not easy to devise in the limited time avail-

able during the competition.

10 After the competition, Team VerCors T(w/o)o explained that they

missed our hint that part A was simpler, and chose part B only because

it looked like a different kind of challenge (as opposed to part A, which

they felt was similar in kind to challenge 1’s part A). In the heat of the

competition, participants may miss details of the challenges that may

have helped them; this is another factor that should be considered when

designing a challenge.
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y := (0, ..., 0)

for every element (r, c, v) in m:

y (c) := y (c) + x (r) * v

Fig. 5 Algorithm to multiply an input vector x with a sparse matrix m

and store the result in the output vector y. Input matrix m is represented

in the COO format as a list of triplets.

4 Challenge 3: Sparse Matrix Multiplication

The third challenge targeted the parallelization of a basic

algorithm to multiply sparse matrices (where most values

are zero).

4.1 Challenge Description

We represent sparse matrices using the coordinate list (COO)

format. In this format, non-zero values of a matrix are stored

in a sequence of triplets, each containing row, column, and

corresponding value. The sequence is sorted, first by row

index and then by column index, for faster lookup. For ex-

ample, the matrix:









0 0 1 0

5 8 0 0
0 0 0 0

0 3 0 0









is encoded into the following sequence (using row and col-

umn indexes that start from 1):

(1, 3, 1) (2, 1, 5) (2, 2, 8) (4, 2, 3)

In this challenge, we consider an algorithm that com-

putes the multiplication of a vector of values (encoded as a

sequence) with a sparse matrix. It iterates over the values

present inside the matrix, multiplies each of them by the ap-

propriate element in the input vector, and stores the result at

the appropriate index in the output vector. Figure 5 presents

the algorithm in pseudo-code.

To solve challenge 3, we asked participants to carry out

the following tasks:

Implementation tasks.

1. Implement the algorithm to multiply a vector x with

a sparse matrix m.

2. We want to execute this algorithm in parallel, so that

each computation is done by a different process,

thread, or task. Add the necessary synchronization

steps in your sequential program, using the synchro-

nisation feature of your choice (lock, atomic block,

. . . ).

You can choose how to allocate work to processes.

For example:

– each process computes exactly one iteration of

the for loop;

– there is a fixed number of processes, each taking

an equal share of the total number of for loop

iterations;

– work is assigned to processes dynamically (for

example using a work stealing algorithm).

Verification tasks.

1. Verify that the sequential muplitplication algorithm

indeed performs standard matrix multiplication (that

is, it computes the output vector y with values yi =
∑

k xk ×mk,i).

2. Verify that the concurrent algorithm does not exhibit

concurrency issues (data races, deadlocks, . . . ).

3. Verify that the concurrent algorithm still performs

the same computation as the sequential algorithm. If

time permits, you can also experiment with differ-

ent work allocation policies and verify that they all

behave correctly.

4.2 Designing the Challenge

Since we designed challenge 3 last, after refining the de-

scription of the other two challenges, we ended up with sev-

eral desiderata for it.

We wanted challenge 3 to target a concurrent algorithm,

but in a way that the challenge remained feasible, at least

partly, also by participants using tools without explicit sup-

port for concurrency. Expecting widely different degrees of

support for concurrency, we looked for a problem that was

not completely trivial for teams using model-checking tools,

which typically have built-in notions of concurrent synchro-

nization and are fully automated. Finally, true to the house-

hold style of VerifyThis competitions, we wanted a problem

that also involved behavioral (safety) input/output proper-

ties, as opposed to only pure concurrency properties like ab-

sence of deadlock and data races.

With the content of challenge 2 still fresh in our minds,

we first briefly considered some parallel algorithms to con-

struct Cartesian trees. It was soon clear that these would

have added more complexity on top of an already challeng-

ing problem, and would have strongly penalized teams who

found, for whatever reason, the Cartesian tree topic unpalat-

able.

Since even a modicum of concurrency significantly com-

plicates the behavior of an algorithm, we decided to start

from a sequential algorithm that was straightforward to un-

derstand. The first candidate was a trivial problem where dif-

ferent processes increment a shared variable. In a sequential

setting, when processes execute one after another, the behav-

ior is very simple to reason about. But if the processes are

allowed to interleave (that is, they run in parallel), some in-

crements may be lost due to interference. The issue with this
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problem is that verifying its concurrent behavior requires

reasoning about the behavior of a program with races, but

most verification frameworks for concurrent programs are

geared towards proving the absence of race conditions—so

that the input/output behavior of the overall program is inde-

pendent of an execution schedule. Therefore, being able to

reason about the behavior of a program with races seemed

unsuitable.

Continuing from this observation in our search for a prob-

lem, we ended up considering the matrix multiplication prob-

lem. To avoid requiring to represent bidimensional data struc-

tures we decided to target sparse matrices, whose non-zero

elements can be encoded with a list of triples.

The standard sequential algorithm to multiply matrices

is neither overly hard nor trivial, therefore it seemed a good

basis for the challenge. Parallelizing it is not conceptually

difficult; however, we decided to give plenty of freedom

in how computations are assigned to concurrent units (pro-

cesses, threads, or tasks) both to accommodate different tools

and to allow participants using tools with advanced support

for concurrency to come up with sophisticated paralleliza-

tion strategies and proofs.

As a final sanity check, we worked out a solution of

this challenge using the model checker Spin. ProMeLa—

Spin’s modeling language—offers primitives to model non-

deterministic processes and to synchronize them, but also

has limitations such as support of only simple data types.

These features—typical of finite-state verification tools—

made solving challenge 3 possible in a reasonable amount of

time but certainly non-trivial. In particular, we had to encode

parts of the state model in C, and then to finesse the link be-

tween these foreign-code parts and the core ProMeLa model

so that the size of the whole state-space would not blow up

during model checking.

Finally, we revised the description of challenge 3 to make

sure that it was not biased towards any particular approach

to modeling or reasoning about concurrency, and that its se-

quential part was clearly accessible as a separate verification

problem.

4.3 Submitted Solutions

Overall Results

No teams solved challenge 3 completely. Six teams, out of

the 12 teams11 that took part in VerifyThis’s third and fi-

nal session, attempted the verification of the sequential al-

gorithm only—usually because their tools had little or no

support for concurrency; out of these six teams, one com-

pleted verification task 1. Another six teams introduced con-

currency in their implementation and tried to verify the ab-

11 That is, one team skipped the last session.

sence of concurrency issues (verification task 2). Some of

these teams used tools with built-in support for the verifi-

cation of concurrent algorithms, while others added concur-

rency to their mostly sequential tools via custom libraries.

Three teams out of the six that tackled task 2 completed the

verification task in time during the competition; all of them

happened to use a tool with built-in support for concurrency.

Finally, five teams attempted verification task 3 (proving

that the sequential and concurrent algorithms compute the

same output). Two of them achieved substantial progress on

the proofs of task 3: Team Eindhoven UoT used a model

checker with native support for concurrency; Team The Re-

finers used Isabelle—a tool without built-in support for

concurrency—and hence modeled the concurrent implemen-

tation as a sequential algorithm that goes over the sparse ma-

trix’s elements in nondeterministic order.

Detailed Results

Only teams using tools without support for concurrency at-

tempted the verification of the sequential algorithm. Their

implementations were close to the simple algorithm in Figure 5—

in some cases using recursion instead of looping. Verifica-

tion task 1 (prove the correctness of the sequential matrix

multiplication algorithm) required to specify the expected

output given by “standard matrix multiplication”. The ap-

proaches to expressing this property were quite varied.

Team Mergesort , using Why3, defined a sparse matrix as

a record containing two fields: a regular field (representing

the sparse matrix in COO format) and a ghost field, repre-

senting the same matrix as a standard bidimensional array

(with explicit zero values). A type invariant links together

the two fields so that they represent the same matrix. The

type invariant does not require uniqueness of indexes in the

COO representation; if the element at a certain row and col-

umn appears more than once in the input sequence, its value

in the “standard” matrix is taken to be the sum of values

in all such occurrences. Team YVeTTe, using Frama-C, in-

troduced the “standard” matrix as an additional parameter

of the multiplication function. The predicate linking the two

representations was straightforward, stating that all elements

in the COO representation are in the matrix, and that any el-

ements of the matrix not in COO representation are zero.

Uniqueness of indexes in the input sequence follows by as-

suming that they are ordered. Team KIV followed a different

approach to ensure uniqueness of indexes: they represented

the input sparse matrix by means of a map instead of a list.

For “standard” matrices, they went for arrays of arrays, as

KIV does not have support for multi-dimensional arrays.

Team Mergesort , Team YVeTTe and Team KIV achieved

good results in producing accurate specifications, but they

did not have enough time left to complete the verification

task during the competition.
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Several teams who used tools without built-in support

for concurrency still managed to model concurrent behavior

indirectly by making the order in which input elements are

processed nondeterministic. Team Viper defined axiomati-

cally a summation function over sets, and used it to specify

progress: at any time during the computation, a set variable

stores the elements of the input that have been processed so

far; the current value of the output is thus the sum involving

all the matrix elements in that set. This specification style

has the advantage of being independent of the order in which

input elements are processed, and thus it encompasses both

the sequential and the concurrent algorithms. By the end of

the competition, Team Viper got close to completing the cor-

responding correctness proofs.

Following a somewhat similar idea, Team Coinductive

Sorcery implemented two versions of the multiplication al-

gorithm: one operating directly on the COO list, and the

other on a binary tree. The tree defines a specific order in

which elements are processed and combined to get the final

result, corresponding to different execution schedules. Then,

Team Coinductive Sorcery proved a lemma stating that both

versions of the algorithm compute the same output—with

some unproved assumptions about the associativity of vec-

tor addition.

Team The Refiners used Isabelle’s refinement framework

to prove that the sequential algorithm for multiplication of

sparse matrices (Figure 5) was a refinement of the “stan-

dard” multiplication algorithm on regular matrices. Then,

to lift their proofs to the concurrent setting, they modified

the sequential algorithm so that it inputs a multiset instead

of a list. Since the order in which a multiset’s elements are

processed is nondeterministic, the modified algorithm mod-

els every possible concurrent execution. They also started

modeling a work assignment algorithm (as an implementa-

tion of a folding scheme over the multisets), but they did not

completely finish the proofs of this more advanced part.

In preparation for their participation in VerifyThis,

Team Bashers developed a library for verifying concurrent

programs in Isabelle, which they could deploy to solve chal-

lenge 3. The library supported locking individual elements

of an array. Unfortunately, this granularity of locking turned

out to be too fine grained for challenge 3, and they struggled

to adapt it to model the algorithm of challenge 3 in a way

that worked well for verification.

Among the tools used in VerifyThis 2019, three had built-

in support for concurrency: VerCors (using separation logic),

Iris (a framework for higher-order concurrent separation logic

in Coq), and the model checker mCRL2. The four teams us-

ing these tools—Team VerCors T(w/o)o , Team Sophie &

Wytse, Team Jourdan-Mével , and Team Eindhoven UoT—

managed to encode the concurrent algorithm, and to verify,

possibly under simplifying assumptions, that it does not ex-

hibit concurrency issues (verification task 2).

Team Jourdan-Mével , using Coq’s Iris, verified the safety

of a single arbitrary iteration of the concurrent loop in Figure 5.

They encoded the concurrent algorithm using a deeply em-

bedded toy language named LambdaRust, which features

compare-and-set instructions as synchronization primitives.

They ran out of time trying to extend the proof to all itera-

tions of the loop.

Both teams using VerCors followed the same strategy of

implementing the concurrent multiplication algorithm using

parallel loops and an atomic block around the output up-

date (the loop’s body) to avoid interference. Thanks to Ver-

Cors’s features, they had no major difficulties verifying that

the code does not exhibit concurrency issues. Progress in

task 3—verifying the functional behavior of the algorithm—

was more limited. A major stumbling block was that Ver-

Cors does not have support for summation over collections

of elements; introducing and specifying this feature (required

for task 3) was quite time-consuming. Team VerCors T(w/o)o

set up the algorithm’s functional specification by introduc-

ing a summation function without specifying it fully—which

limited the extent of what could be proved. Their specifi-

cation used ghost variables to encode the input’s matrix in

“regular” form, as well as a mapping between this form and

the COO input sequence in sparse form. The mapping ex-

plicitly defined an element in the COO sequence for every

non-zero element of the full matrix, so that no existential

quantification is needed.

Team Eindhoven UoT was the only team that completed

verification of task 3, albeit with the usual simplifying as-

sumptions (on input size and on the number of processes)

that are required by the finite-state nature of model check-

ers. They explicitly built the “standard” matrix equivalent of

the input sparse matrix, and verified that the output was the

expected result for all possible finitely many interleavings

(which are exhaustively explored by the model checker). If

they had had more time, they remarked that they would have

tried to validate their model: the proofs assert the equiva-

lence of two implementations, but it would be best to per-

form a sanity check that they work as expected.

4.4 Postmortem Evaluation of the Challenge

Regardless of whether their verification tools supported con-

currency, all teams had plenty of work to do in challenge 3.

We wanted a challenge that was approachable by everybody,

and it seems that challenge 3 achieved this goal.

On the other hand, the challenge turned out to be more

time-consuming than we anticipated. The sequential and the

concurrent part alone were enough to fill all 90 minutes of

the competition session, and no team could complete the
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whole challenge.12 When we designed the challenge, we did

not realize how time-consuming it would be.

The multiplication algorithm is conceptually simple, but

verifying it requires to fill in a lot of details, such as as-

sociativity and commutativity properties of arithmetic oper-

ations, that are not central to the algorithm’s behavior but

are necessary to complete the proofs. In most cases, it was

these details that prevented participants from completing the

challenge. Another feature that is often missing from verifi-

cation tools but was required for challenge 3 is the ability

of expressing sums over sets and sequences; while this can

always be specified and verified, doing so takes time and

distracts from the main goal of the challenge.

In all, verification challenges involving concurrency are

not only harder to verify but also to design! There are so

many widely different concurrency models and verification

frameworks that calibrating a challenge so that it suits most

of them is itself a challenge. A possible suggestion to come

up with concurrency challenges in the future is to write prob-

lems with different parts that are suitable for different verifi-

cation approaches. This strategy worked to ensure that tools

without support for concurrency still had work to do in this

challenge, and it may be generalizable to encompass differ-

ent styles of concurrent programming and reasoning.

5 Discussion

We organize the discussion around four themes. Section 5.1

outlines how teams revised their solutions for publication

in the months after the competition. Section 5.2 points out

some tool features that emerged during VerifyThis 2019, and

briefly discusses how they relate to open challenges in veri-

fication technology. Section 5.3 analyzes the features of the

verification challenges offered over the years, and how they

affect the teams’ success rate. Section 5.4 mentions some

lessons we learned during this year’s VerifyThis, which we

would like to pass on to future organizers.

5.1 Revised Solutions

A couple of weeks after VerifyThis was over, we contacted

all participants again, asking them permission to publish their

solutions online. Teams who consented had the choice of ei-

ther publishing the solutions they submitted during the com-

petition or supplying revised solutions—which they could

prepare with substantially more time and the benefit of hind-

sight. Nine teams submitted revised solutions—from light

revisions to significant extensions. Among the former,

Team Jourdan-Mével and Team OpenJML cleaned up their

12 Using a model checker, Team Eindhoven UoT covered all verifi-

cation tasks but relied on simplifying assumptions on input size and

number of processes.

code, added comments, and improved a few aspects of the

implementation or specification to make them more read-

able. Team YVeTTe thoroughly revised their solutions and

filled in missing parts of specification and proofs, so as to

complete parts A of challenges 1 and 2, and the sequential

part of challenge 3. Team KIV and Team Viper went further,

as they also completed the concurrent part of challenge 3.

So did Team VerCors T(w/o)o , Team Sophie & Wytse,13

and Team The Refiners who also provided partial solutions

for part B of challenge 2. Team Mergesort submitted exten-

sively revised solutions, including the only complete solu-

tion to challenge 2’s part B—relying on a Coq proof of task

traversal14—and the sequential part of challenge 3.

The process of revising and extending solutions after the

competition is very different from that of developing them

from scratch during it. With virtually unlimited time at their

disposal, and the freedom to explore different approaches

even if they may not pan out in the end, every team could in

principle come up with a complete and correct solution. At

the same time, comparing the post-competition work of dif-

ferent teams is not very meaningful since some may simply

not have additional time to devote to improving solutions—

after all, we made it clear that revising solutions was some-

thing entirely optional that they did not commit to when they

signed up for the competition.

5.2 Used Tools and Features

Undeniably, SMT solvers have been a boon to verification

technology, but some of their limitations may be a source of

frustration even for users with lots of experience. Team Open-

JML reported the well-known problem of unresponsive proof

attempts: when a proof attempt is taking a long time, the user

has to decide whether to abort it or to wait longer—hoping to

get some counterexample information that may help debug

the failed verification attempt.

Nowadays, SMT solvers are not limited to so-called auto-

active [24] tools such as OpenJML but also boost the level

of automation of interactive provers. The Isabelle proof as-

sistant, for instance, extensively uses its Sledgehammer fea-

ture to automate the most routine proof steps (which make

up a very large percentage of a typical proof). Once an SMT

solver manages to close the proof of some branch, Isabelle

performs proof reconstruction in order to generate a verifi-

able certificate of the SMT proof so that it can be soundly

integrated into the overall Isabelle proof. Team The Refin-

ers, using the Isabelle theorem prover, found the proof re-

construction step to be very time consuming in some cases,

13 Team VerCors T(w/o)o and Team Sophie & Wytse worked to-

gether to prepare one revised solution that merged both teams’ inde-

pendent work during the competition.
14 The proof obligation was generated automatically by Why3, but

the Coq proof steps were supplied manually.
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which even prevented them from completely closing the proof

of some steps in time during the competition—even when

they were confident in the SMT solver’s results.

Using a high-level programming language (for exam-

ple, one with an expressive type system) lets users focus

on verifying complex behavioral properties on top of basic

correctness properties (such as memory safety)—which are

guaranteed by the language’s semantics. In contrast, when

using a lower-level programming language, a large fraction

of verification effort has to be devoted to establishing such

basic properties—a time-consuming activity which may sti-

fle progress towards more advanced verification goals. We

witnessed this phenomenon during the competition, when

teams using C or other relatively low-level languages spent

the majority of the time at their disposal verifying mem-

ory separation properties, while their colleagues using high-

level languages could just assume them and jump right to the

key input/output properties required by the problem state-

ment.

VerifyThis has included a challenge involving concur-

rency since its 2015 edition. While it is probably still true

that the majority of program verification tools focus on se-

quential correctness, features to reason about concurrency

and parallelism are increasingly available. Despite this un-

deniable progress, verifying concurrent program remains for-

midably difficult, and even participants using a tool expressly

designed to reason about concurrency (such as VerCors and

Viper, both supporting a permission logic) spent a consider-

able amount of time choosing what kind of synchronization

primitive to use and how to model them in a formal way.

Model checkers are in a league of their own, since they

are more similar to the tools used in fully-automated veri-

fication competitions such as SV-COMP than to the auto-

active or interactive tools that most participants to Verify-

This prefer. A model checker performs proofs completely

automatically (crucially, it does not require users to sup-

ply invariants) and is very effective at finding errors when

they exist. Modeling concurrency is also typically straight-

forward, since the programming language of a model checker

is typically built around a transparent model of parallel pro-

cesses that communicate through shared memory, message

passing, or both. On the flip side, model checkers can only

explore finite state spaces, and hence cannot normally per-

form verification of algorithms on unbounded data struc-

tures. While these differences complicate judging teams us-

ing model checkers on par with others, we believe that hav-

ing teams using model checkers taking part in VerifyThis

adds depth to the competition, and strengthens the connec-

tions with other verification competitions while emphasiz-

ing its own peculiarity and focus.

Trends in tool usage. Table 2 updates the data about tools

used at VerifyThis [10]. A total of 23 tools were used in

VERIFYTHIS COMPETITION

2011 2012 2015 2016 2017 2018 2019 BY TOOL

AProVe 1 0 0 0 0 0 0 1

AutoProof 0 0 1 0 0 0 0 1

CBMC 0 0 1 0 0 0 0 1

CIVL 0 0 0 1 1 1 0 3

Coq 0 0 0 0 0 1 2 3

Dafny 1 2 3 5 1 1 0 13

ESC/Java2 0 1 0 0 0 0 0 1

F* 0 0 1 0 0 0 0 1

Frama-C 0 0 1 0 1 1 2 5

GNATProve 0 1 0 0 0 0 0 1

Isabelle 0 0 0 0 0 1 2 3

jStar 1 0 0 0 0 0 0 1

KeY 1 1 1 1 2 1 0 7

KIV 1 1 1 1 1 1 1 7

mCRL2 0 0 1 1 0 0 1 3

MoCHi 0 0 1 0 0 0 0 1

OpenJML 0 0 0 0 0 0 1 1

PAT 0 1 0 0 0 0 0 1

VCC 0 1 0 0 0 0 0 1

VerCors 0 0 1 1 1 2 2 7

VeriFast 0 1 1 1 0 1 0 4

Viper 0 0 0 1 0 1 1 3

Why3 1 2 1 2 3 1 1 11

BY COMPETITION 6 9 12 9 7 11 9

Table 2 Verification tools used in each VerifyThis competition. Num-

ber n in row t and column y means that n teams used tool t during Ver-

ifyThis y. The rightmost column (BY TOOL) reports the total number

of teams that used each tool; and the bottom row (BY COMPETITION)

reports how many different tools were used in each competition.

VerifyThis competitions to date. A team has used one sin-

gle tool in all cases except for a single-person team that

used two tools (Dafny and KeY) during VerifyThis 2018.

Teams winning the “best overall” award used one of three

tools: Isabelle, VeriFast, and Why3—each tool used by two

awardees. The tools used by winners of “best student team”

include Dafny, KIV, mCRL2 (one winning team each), Ver-

Cors (two winning teams), and Why3 (five winning teams).

Several tools were singled out for having a “distinguished

feature” that deserved an award because it was apt to tackle

some verification challenges: CIVL, GNATProve, Isabelle,

KIV, MoCHi, VerCors, Viper, and Why3.

5.3 What Makes a Challenge Difficult?

We used various criteria to classify the 21 challenges used

at VerifyThis to date—three in each edition excluding Veri-

fyThis 2014, which was run a bit differently among partici-

pants to a Dagstuhl Seminar. We classified each challenge

according to which VerifyThis competition it belongs to,

whether it appeared first, second, or third in order of com-

petition, how much time was given to solve it, whether it

targets a sequential or concurrent algorithm, what kind of

input data it processes (array, tree, linked list, and so on),

whether the main algorithm’s output involves the same kind

of data structure as the input, whether the challenge’s main

algorithm is iterative or recursive (or if the algorithm is only

outlined), and whether the input data structure is mutable
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PROBLEM COMPETITION ORDER TIME SEQUENTIAL INPUT OUTPUT ALGORITHM MUTABLE PARTIAL COMPLETE

Maximum by elimination VT11 1 60 sequential array simple iterative immutable 83 67

Tree maximum VT11 2 90 sequential tree simple outlined immutable 100 17

Find duplets in array VT11 3 90 sequential array simple find immutable 83 50

Longest common prefix VT12 1 45 sequential array simple iterative immutable 100 73

Prefix sum VT12 2 90 sequential array complex outlined immutable 73 9

Delete min node in binary search tree VT12 3 90 sequential tree same recursive mutable 18 0

Relaxed prefix VT15 1 60 sequential array same iterative immutable 79 7

Parallel GCD by subtraction VT15 2 60 concurrent scalar same iterative mutable 79 14

Doubly linked lists VT15 3 90 sequential linked list same outlined mutable 71 7

Matrix multiplication VT16 1 90 sequential matrix same iterative immutable 86 43

Binary tree traversal VT16 2 90 sequential tree simple iterative mutable 79 7

Static tree barriers VT16 3 90 concurrent tree simple iterative mutable 79 7

Pair insertion sort VT17 1 90 sequential array same iterative mutable 100 10

Odd-even transposition sort VT17 3 90 concurrent array same iterative mutable 60 0

Tree buffer VT17 4 90 sequential tree same recursive immutable 40 20

Gap buffer VT18 1 60 sequential array same iterative mutable 91 36

Count colored tiles VT18 2 90 sequential array same recursive immutable 55 18

Array-based queue lock VT18 3 90 concurrent array simple iterative mutable 27 9

Monotonic segments and GCG sort VT19 1 90 sequential array same iterative immutable 85 15

Cartesian trees VT19 2 90 sequential array complex iterative immutable 69 15

Sparse matrix multiplication VT19 3 90 concurrent matrix same iterative immutable 85 0

Table 3 For each challenge PROBLEM used at VerifyThis: the COMPETITION when it was used; the ORDER in which it appeared; how much TIME

(in minutes) was given to participants to solve it; whether the main algorithm is SEQUENTIAL or concurrent; the main INPUT data type; whether

the OUTPUT data type is of the same kind as the input, simpler, or more complex; when the ALGORITHM was given in pseudo-code, whether it

was iterative or recursive (if it was not given, whether it was outlined or participants had to find it based on the requirements); whether the input

is MUTABLE or immutable; and the percentages of participating teams that were able to submit a partial or COMPLETE solution.

or immutable. For each challenge, we also record what per-

centage of participating teams managed to submit a partial

or complete correct solution. Table 3 shows the results of

this classification.

To help us understand which factors affect the complex-

ity of a verification problem, we fit a linear regression model

(with normal error function) that uses competition, order,

time, sequential, input, output, algorithm, and mutable as

predictors, and the percentage of complete solutions as out-

come.15 Using standard practices [14], categorical predic-

tors that can take n different values are encoded as n− 1 bi-

nary indicator variables—each selecting a possible discrete

value for the predictor. Fitting a linear regression model pro-

vides, for each predictor, a regression coefficient estimate

and a standard error of the estimate; the value of the predic-

tor has a definite effect on the outcome if the corresponding

coefficient estimate differs from zero by at least two stan-

dard errors.

Our analysis suggests that the competition challenges

were somewhat simpler in the early editions compared to

the recent editions (starting from VerifyThis 2015): the co-

efficients for indicator variables related to predictor compe-

tition for the years 2015–2017 and 2019 are clearly nega-

tive, indicating that belonging to one of these editions tends

to decrease the number of correct solutions. Similarly, the

later a challenge problem appears in a competition the fewer

teams manage to solve it correctly. This is to be expected, as

the first challenge is normally the simpler and more widely

15 We could also perform a similar analysis using the percentage

of partial solutions as outcome. However, what counts as “partially

correct” is a matter of degree and depends on a more subjective

judgment—which would risk making the analysis invalid.

accessible one, and participants get tired as a competition

stretches over several hours.

When a challenge’s main algorithm is only outlined, or

is given in pseudo-code but is recursive, and when the in-

put is a mutable data structure, participants found it harder

to complete a correct solution. While the difficulty of deal-

ing with mutable input is well known—and a key challenge

of formal verification—different reasons may be behind the

impact of dealing with naturally recursive algorithms. One

interpretation is that verification tools are still primarily

geared towards iterative algorithms; a different, but related,

interpretation is that VerifyThis organizers are better at gaug-

ing the complexity of verifying iterative algorithms, as op-

posed to that of recursive algorithms that may be easy to

present but hard to prove correct.

Sequential algorithms, as opposed to concurrent ones,

are associated with harder problems. Since the association is

not very strong, it is possible that this is only a fluke of the

analysis: sequential algorithms are the vast majority (76%)

of challenges and thus span a wide range of difficulties; the

few challenges involving concurrent algorithms have often

been presented in a way that they offer a simpler, sequential

variant (see for example challenge 3 in Section 4)—which

may be what most teams go for.

The input data structure also correlates with the ease of

verification. Unsurprisingly, when the algorithm’s input is a

scalar more teams are successful; but, somewhat unexpect-

edly, success increases also when the input is a linked list

or a tree. It is possible that the organizers are well aware of

the difficulty of dealing with heap-allocated data structures,

and hence stick to relatively simple algorithms when using

them in a verification challenge. Another possibility is that
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linked lists and trees just featured a few times (compared

to the ubiquitous arrays), and hence their impact is more of

a statistical fluke. Input in matrix form is associated with

harder problems too; this is probably because most verifi-

cation tools have no built-in matrix data types, and repre-

senting bidimensional data using arrays or lists is possible

in principle but may be cumbersome.

5.4 Lessons Learned for Future Competitions

Most verification tools are somewhat specialized in the kinds

of properties and programs they mainly target; such special-

ization normally comes with a cost in terms of less flexibility

when tackling challenges outside their purview. VerifyThis

organizers try to select challenges that target different do-

mains and properties, so that no participants will be exclu-

sively advantaged. However, this may also indicate that it

may be interesting to see the participation of teams using dif-

ferent approaches. While only one team has used two differ-

ent verification tools in the history of VerifyThis, teams us-

ing verification frameworks that integrate different libraries

and features effectively have at their disposal a variety of

approaches. For instance, Team The Refiners used a refine-

ment library for Isabelle only in one challenge, whereas they

stuck to Isabelle’s mainstream features for the rest of the

competition. In order to promote eclectic approaches to ver-

ification, organizers of future events may introduce a new

award category that rewards the teams that displayed the

widest variety of approaches during the competition.

VerifyThis challenges are made publicly available after

the competition every year, and several team members took

part in more than one competition. Therefore, the most com-

petitive and ambitious teams are aware of the kinds of prob-

lems that will be presented, and may be better prepared to

solve them in the limited time at their disposal. We have

evidence of at least one team that went one step further

preparing for the competition this year: Team Bashers cre-

ated an Isabelle library to reason about concurrency, expect-

ing a challenge of the same flavor as those given in recent

years. These observations may give new ideas to organiz-

ers of future events to design verification challenges that

are interesting but also feasible. For example, they could an-

nounce before the competition (in the call for participation)

some topics that will appear in the verification challenges,

or some program features that participants will be expected

to deal with—but without mentioning specific algorithms or

problems. Researchers and practitioners interested in partic-

ipating may then use this information to focus their prepara-

tion.

Following the recurring suggestions of previous organiz-

ers, we used a questionnaire to help compare solutions and

judge them. This was of great help and we hope future or-

ganizers can improve this practice even further. While our

questionnaire was primarily made of open questions and col-

lected qualitative data, it may be interesting to complement

it with quantitative information about the challenges and the

solutions—such as the size of specifications, implementa-

tion, and other tool-specific annotations. Collecting such in-

formation consistently year after year could also pave the

way for more insightful analyses of the trends in the evolu-

tion of verification technology as seen through the lens of

verification competitions (perhaps along the lines of what

we did in Section 5.3).

We are always pleased to see how committed partici-

pants are, and how much effort they put into their work dur-

ing and after the competition. One sign of this commitment

is that most teams (see Section 5.1 for details) were avail-

able to substantially revise their solutions during the weeks

and months after the competition, so that we could publish

a complete solution that shows the full extent of the capa-

bilities of their tools. It may be interesting to find ways to

give more visibility to such additional work—for example,

publishing post proceedings where teams can describe in de-

tail their work and how it was perfected. Since not all par-

ticipants may be able to commit to such an extra amount

of work, this may be organized only occasionally, and con-

tributing to it should be on a voluntary basis.
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