### **ETH** zürich

## Exploratory modelling of stochastic land use cover change (LUCC) future scenarios for spatial planning

**Other Conference Item** 

Author(s): <u>Roman Garcia, Orlando Marcel</u> (b; <u>Black, Benjamin</u> (b; Zeindl Cronin, Emma; <u>Adey, Bryan T.</u> (b)

Publication date: 2023-10-31

Permanent link: https://doi.org/10.3929/ethz-b-000642413

Rights / license: Creative Commons Attribution 4.0 International Exploratory modelling of stochastic land use cover change(LUCC) future scenarios for spatial planning

8 November 2023

Orlando Román, Benjamin Black, Emma Zeindl and Prof. Bryan Adey ETH Zürich Singapore ETH Centre



(FCL) FUTURE CITIES LABORATORY Transportation and urban development feedbacks

- Planning under uncertainty methods usually consider that decisions and uncertainties are independent.
- Transportation is closely linked to urban development.
- Land Use/Transportation interactions have been studied for decades with increasing levels of complexity.



(FCL) FUTURE CITIES LABORATORY How does a LUCC model work?

- Landscapes or Land Use maps are analyzed to estimate their changes
- A cartographic dataset of drivers are analyzed in their ability to explain Land Use changes.
- Spatial transition probability maps are estimated.
- Changes are allocated through cellular automata algorithms



From Dinamica EGO, Guidebook 2.0 (Leite-Filho et al., 2020)

#### Previous uncertainty research in LUCC modelling

| Bosoarch Itom                   | Sources of Uncortainty                       | Burposo               | Inclusion of planning | Inclusion of model |
|---------------------------------|----------------------------------------------|-----------------------|-----------------------|--------------------|
| Research item                   | Sources of Oncertainty                       | Fuipose               | decisions             | stochasticity      |
| (White & Engelen, 1997)         | Parameter Uncertainty                        | Model Evaluation      | No                    | Yes                |
| (Kocabas & Dragicevic, 2006)    | Data uncertainty                             | Model Evaluation      | No                    | No                 |
| (Dendoncker et al., 2008)       | Data and Future uncertainty                  | Model Evaluation      | No                    | No                 |
| (Pontius & Neeti, 2010)         | Future uncertainty                           | Model Evaluation      | No                    | No                 |
| (Ligmann-Zielinska & Sun, 2010) | Parameter Uncertainty                        | Model Evaluation      | No                    | No                 |
| (Pan et al., 2010)              | Data Uncertainty                             | Model Evaluation      | No                    | No                 |
| (García et al., 2011)           | Model structure uncertainty                  | Model Evaluation      | No                    | Yes                |
| (Verburg et al., 2013)          | Future uncertainty                           | Model Evaluation      | No                    | No                 |
| (van Vliet et al., 2013)        | Parameter uncertainty                        | Model Evaluation      | No                    | Yes                |
| (Li et al., 2014)               | Parameter and Model structure uncertainty    | Model Evaluation      | No                    | Yes                |
| (Schmitz et al., 2014)          | Model structure and Future uncertainty       | Model Evaluation      | No                    | No                 |
| (Liao et al., 2016)             | Parameter and Model structure uncertainty    | Model Evaluation      | No                    | Yes                |
| (Gao et al., 2016)              | Future uncertainty                           | Model Refinement      | No                    | No                 |
| (Grinblat et al., 2016)         | Data uncertainty                             | Model Evaluation      | No                    | No                 |
| (Tayyebi et al., 2016)          | Data uncertainty                             | Model Evaluation      | No                    | No                 |
| (Prestele et al., 2016)         | Data, Model structure and Future uncertainty | Model Evaluation      | No                    | No                 |
| (Verstegen et al., 2016)        | Model structure and Future uncertainty       | Model Evaluation      | No                    | No                 |
| (Gao & Bryan, 2017)             | Future uncertainty                           | Exploratory Modelling | Yes                   | No                 |
| (Alexander et al., 2017)        | Data, Model structure and Future uncertainty | Model Evaluation      | No                    | No                 |
| (Hewitt & Díaz-Pacheco, 2017)   | Data and Model structure uncertainty         | Model Evaluation      | No                    | Yes                |
| (Boulila et al., 2017)          | Parameter uncertainty                        | Model Evaluation      | No                    | No                 |
| (Şalap-Ayça et al., 2018)       | Parameter and Operational uncertainty        | Model Evaluation      | No                    | No                 |
| (Ligmann-Zielinska, 2018)       | Parameter and Operational uncertainty        | Model Refinement      | Model Refinement No   |                    |
| (Ferchichi et al., 2018)        | Parameter and Model structure uncertainty    | Model Refinement      | No                    | No                 |
| (Palmate et al., 2022)          | Data uncertainty                             | Model Refinement No   |                       | No                 |
| (García-Álvarez et al., 2022)   | Model structure uncertainty                  | Model Evaluation      | No                    | No                 |
| (Aydin et al., 2022)            | Future uncertainty                           | Exploratory Modelling | No                    | No                 |
| (Mannucci et al., 2023)         | Future uncertainty                           | Exploratory Modelling | No                    | No                 |

#### Lausanne Case Study – Transportation Networks and Strategic Sites



#### Lausanne Case Study – Land Use (100x100m pixels)



CITIES LABORATORY

#### Lausanne Case Study – Land Use Changes

|          |                                    | Change    |           |  |
|----------|------------------------------------|-----------|-----------|--|
| Land Use |                                    | 1992-2004 | 2004-2012 |  |
| 1        | Residential Low Density            | 14.4%     | 7.5%      |  |
|          |                                    |           |           |  |
| 2        | Residential Medium/High Density    | 2.2%      | 11.1%     |  |
|          | Industrial, Commercial, Public and |           |           |  |
| 3        | other buildings                    | 3.5%      | 3.4%      |  |
| 4        | Infrastructure                     | 2.7%      | 1.6%      |  |
| 5        | Recreational                       | 3.3%      | -0.6%     |  |
| 6        | Agriculture                        | -4.7%     | -3.5%     |  |
| 7        | Forest                             | 0.0%      | -0.1%     |  |
| 8        | Lakes and Rivers                   |           |           |  |
| 9        | Other unproductive                 |           |           |  |

CITIES

#### Drivers of change



(FCL) FUTURE CITIES LABORATORY

#### **Experimental Design**

| Uncertain Factor                                                                      | Pseudonym                                 | Min Value | Max Value | PDF       | Type of Uncertainty                  |
|---------------------------------------------------------------------------------------|-------------------------------------------|-----------|-----------|-----------|--------------------------------------|
| Annual transition rate from Residential<br>Low Density to Residential High<br>Density | Densification 1                           | 0.05%     | 0.20%     | Uniform   | External Factor                      |
| Annual transition rate from Agriculture<br>to Residential High Density                | Densification 2                           | 0.01%     | 0.04%     | Uniform   | External Factor                      |
| Annual transition rate from Agriculture<br>to Residential Low Density                 | Sprawl                                    | 0.22%     | 0.25%     | Uniform   | External Factor                      |
| Annual transition rate from Agriculture<br>to Industrial/Commercial                   | Industrial/Commercial<br>expansion        | 0.09%     | 0.12%     | Uniform   | External Factor                      |
| Annual transition rate from<br>Industrial/Commercial to Residential<br>Low Density    | Industrial/Commercial reduction           | 0.2%      | 0.4%      | Uniform   | External Factor                      |
| WOE of urban rail infrastructure                                                      | Influence of urban rail<br>infrastructure | -50%      | +50%      | Uniform   | External Factor/Planning<br>Decision |
| Development of new tramway                                                            | Tramway                                   | No        | Yes       | Bernoulli | Planning Decision                    |
| Development of new metro line 3                                                       | Metro Line 3                              | No        | Yes       | Bernoulli | Planning Decision                    |

#### Uncertainty Analysis - over 5000 simulations to 2050

- Visualization of spatial variability for the frequency of change
- 4 different Land use Classes: Residential Low Density, Residential High density, Industrial/Commercial and Agriculture.



10

LABORATORY

#### Global Sensitivity Analysis (GSA) – Sobol Indices

- Identification of the most important factors influencing the variability of model outcomes.
- Including planning decisions and stochasticity



#### Scenaro Discovery – Logistic regressions

- Evaluation of decision boundaries to achieve a target population with and without infrastructure.
- «Discovery» of the combination of factors that produce desirable and undesirable outcomes

Without new urban rail infrastructure

With new urban rail infrastructure



#### Conclusions

- LUCC modelling has addressed uncertainty mainly aiming to improve model accuracy and the credibility of future simulations.
- The use of LUCC models as devices for simulating a large ensemble of future scenarios is almost non-existent in the literature.
- For the first time, future trends, planning decisions and model stochasticity are investigated with sensitivity analysis in a LUCC model.
- We used Sobol indices and Scenario discovery for robust urban planning under uncertainty.
- Valuable insights for planning urban development and infrastructure under future uncertainty.







CL) FUTURE CITIES LABORATORY

### Thank you for your attention

Orlando Román (roman@ibi.baug.ethz.ch)

# fcl.ethz.ch

Singapore-ETH Centre (UEN 53444283L) is the registered business name of ETH Singapore SEC Ltd

(SEC) SINGAPORE-ETH CREATE ETH zürich





(FCL) FUTURE CITIES LABORATORY

F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L

L O F L O F L O F L O F L O F L O F L O F L O F L O F L O L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F L O F