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Abstract: During the autumn of 2017, a study was conducted to assess the zooplankton community
composition in three sections (two latitudinal, going from Japan to the equator, and one longitudinal
on the equator) of the Western Pacific Ocean. A total of 384 species of zooplankton adults and
21 groups of zooplankton larvae were identified, with copepods being the predominant taxon.
The common dominant species across the three sections were Acrocalanus gibber, Canthocalanus
pauper, Oithona similis, Paracalanus aculeatus, and Oncaea venusta. Zooplankton abundance was the
highest in the equator section, with a mean abundance of 258.94 ± 52.57 ind./m3. Comparatively,
a low abundance was recovered from the Subtropical Countercurrent (STCC) region, while the
highest abundance holding stations were located in the eastern equatorial and North Equatorial
Countercurrent (NECC) regions. Pearson’s correlation, canonical correspondence analysis, and other
methods were used to analyze the relationship between environmental factors and zooplankton. We
found that the Shannon–Wiener diversity index and Pielou’s uniformity index were significantly
correlated (p < 0.05) with concentrations of nitrite and chlorophyll a. The distribution of zooplankton
was also limited by nutrients, chlorophyll a, and dissolved oxygen. In addition, we reveal differences
in the abundance of species in the equatorial and latitudinal seas. We found that not only temperature
and nutrient salinity, but also ocean currents and the movement of water masses, influence the
distribution of zooplankton communities in the Western Pacific.
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1. Introduction

The presence of many atolls, island groups, and seamounts in the Western Pacific
Ocean [1,2] has altered the trajectory of ocean circulation, resulting in a variety of complex
vertical hydrographic features and current patterns [3], including in the major oceanic
circulations such as the Kuroshio Current System and the Equatorial Current System. In
addition, the equatorial Western Pacific Ocean possesses the largest warm water mass in
the global ocean, the Western Pacific Warm Pool (WPWP). The WPWP, with an annual
mean surface seawater temperature of not less than 28 ◦C, has a profound impact on global
climate change, especially in China and Southeast Asia, by heating seawater, transferring
radiant heat to the atmosphere, and using latent heat to transport evaporative heat [4].
The Western Pacific is of great interest due to its unique geography, ocean circulation,
and special climatic characteristics [5]. Its unique environment nurtures unique ecological
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habitats, and the complex currents also make the region a biodiversity hotspot [6,7] and a
source of global marine life [8,9], containing a high level of biodiversity [10,11].

As an intermediate part of the marine food chain [12], zooplankton play an important
role in marine ecosystems [13] and in marine biogeochemical cycles [14]. Moreover, the
zooplankton can be used for surveillance of large economic fish communities in the pelagic
marine ecosystem [15,16]. Due to the complex geography of the Western Pacific and the
importance of zooplankton, there is a growing interest in the study of zooplankton in the
open waters of the Western Pacific Ocean. For example, in recent years, Dai et al. [17]
conducted a zooplankton survey of Philippine waters in winter based on the Zooscan
instrument and found that zooplankton abundance distribution was highest in the North
Equatorial Countercurrent zone (NECC) and lowest in the Northern Equatorial Current
zone (NEC). Similarly, a fall study by Yang et al. [18] in the same area yielded similar results,
with the highest zooplankton abundance distribution in the NECC zone and then the NEC
zone, and the lowest in the Subtropical Countercurrent zone (STCC). The abundance
of zooplankton communities generally increases with latitude in summer studies along
160◦ E, as found by Sun et al. [19]. However, the latitudinal span between these studies is
large and does not provide a good fit to the overall zooplankton distribution in the region.
Also, compared to studies in the Central and Eastern Pacific [20–22], there is relatively little
information on zooplankton in the Western Equatorial Pacific.

This study was carried out in the Western Pacific along 143◦ E, east of Japan at 146◦ E
and the equator, focusing on the zooplankton community composition and the factors
regulating it. The aim of the present work was to reveal the community composition of
zooplankton in the equatorial Western Pacific and to enrich zooplankton research in the
Western Pacific.

2. Materials and Methods

From 6 October to 7 December 2017, we conducted a trawl survey of zooplankton
from 0 to 200 m in the Western Pacific using the WP2 net (200-µm mesh, 0.2 m2 mouth
size) aboard the scientific vessel Dongfanghong 2. A calibrated flowmeter (Hydrobios) was
equipped on the WP2 net to measure the volume of filtered seawater. As shown in Figure 1,
the survey area was divided into three sections: Section 1 (S1, located at the east of the
Japan along 146◦ E), Section 2 (S2, assigned to the longitude of 143◦ E) and Section 3 (S3,
assigned along the equator). A total of 59 net samples were eventually collected.

The net samples were collected in 500-mL polyethylene (PE) bottles, fixed with 5%
formaldehyde solution (final concentration), and kept in the dark until they were brought
back to the laboratory for further analysis. Prior to microscopic analysis, large zooplankton,
such as jellyfish of the spinifex phylum, were picked out and counted in their entirety. For
microscopic analysis, at least 1% of the total volume of the remaining sample (depending
on the sample density) was placed in the DSJ plankton counting frame. Zooplankton
abundances (ind./m3) for each station were calculated using the total volume of filtered
water, expressed as ind./m3. A total of 59 subsamples were examined under the microscope
(Motic Panthrea L and Motic SMZ-168 SERIES) at 40–100× magnification to identify them
to the lowest possible taxonomic level. Temperature and salinity were measured during
the voyage using a Seabird CTD 911. The temperature and salinity of the water column
were calculated by means of a trapezoidal integration of the different levels of seawater
temperature and salinity. The pH of the water sample was determined using a pH meter.
Dissolved oxygen (DO) was determined immediately by the Winkler method after the CTD
arrived on deck. Nitrate, nitrite, ammonium, phosphate, and silicate were also analyzed on
board by spectrometric methods [23]. The dissolved inorganic carbon [21] concentration
was measured using a Shimadzu TOC-L analyzer equipped with an ASI-V auto-sampler,
using the total inorganic carbon mode.
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Equatorial Current (NEC), North Equatorial Countercurrent (NECC), and Equatorial Undercurrent (EUC). 
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Figure 1. Sampling stations of the 2017 Western Pacific Cruise; the appropriate locations of the differ-
ent currents are described according to Hu et al. and categorized into S1, S2, and S3 transects based
on the shadow environment of the station circulation. Surface currents include the Kuroshio Current
(KC), Subtropical Countercurrent (STCC), Northern Equatorial Current (NEC), North Equatorial
Countercurrent (NECC), and Equatorial Undercurrent (EUC).

As a measure of the diversity of the zooplankton community, we analyzed the dom-
inance index, the Shannon–Wiener diversity index, Pielou’s evenness index, Simpson’s
diversity index, and Margalef’s diversity index (Y, H′, J, D, and Dm, respectively) as
follows [24]:

Y =
ni
N

fi
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Pi log2 Pi
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log2 S
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(S− 1)

ln N
where S represents the zooplankton species in each sample, also known as species richness;
N represents the total number of cells in all samples, ni represents the number of cells of the
ith species, Pi represents the cell abundance of the ith species, Pi = ni/Ni, and fi represents
the frequency of occurrence of the ith species in a single sample.

Ocean Data View 4.10 was used for figures depicting the horizontal distribution of
zooplankton. The relationship between zooplankton and environmental parameters was
analyzed by the canonical correspondence analysis (CCA; Canoco 4.5). The multidimen-
sional scaling (MDS) was constructed using Primer 6.0. The Pearson correlation was
analyzed using Statistical Product and Service Solutions (SPSS).
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3. Results
3.1. Hydrography of the Study Area

The ocean circulation pattern in the study area is drawn according to the previous
literature [25,26] and represented in Figure 1. The water column was integrated with the
temperature and salinity at the upper 200 m layer in the survey area, and the results are
shown in Figure 2. Under the influence of the warm pool in the Western Pacific Ocean,
the temperature of the seawater at the equator is mostly greater than 27.5 ◦C [27], and
the temperature of the seawater decreases with the increase in latitude. In contrast, the
waters with little variation in salinity and relatively low salinity were at 5–12◦ N and west
of the equatorial section. The whole study area was divided into three main transects
(Figure 3). Section 1 (S1) is mainly located east of Japan (146◦ E). There is an obvious
trend of decreasing seawater temperature at the surface of this section with increasing
latitude. This section is affected by the Oyashio Undercurrent and the Kuroshio Current,
which resulted in a significant temperature and salinity change at ST0706 and ST0707. The
temperature and salinity in this area were lower than at the other stations (Figure 3).
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Section 2 (S2) was assigned to the longitude of 143◦ E, which mainly passes through
the ocean circulation, including the North Equatorial Current, the North Equatorial Coun-
tercurrent, and the South Equatorial Current (Figure 1). It can be seen from the S2 cross-
sectional temperature and salinity profiles that there was an upward current between 3◦

and 10◦ N. This also explains why the temperature and salinity of the sea area around
5–10◦ N in horizontal distribution (Figure 2) are lower than those of the surrounding
stations (Figure 3).

The S3 section was assigned along the equator and was mainly influenced by the
equatorial undertow and the southern equatorial current. The seawater temperature was
above 27 ◦C from the surface to 75 m (Figure 3). With increasing depth, the temperature
gradually decreases from about 30 ◦C at the surface to about 15 ◦C in the 200 m water
layer, and vertical stratification was found below 100 m. Above the 50-m layer, the salinity
was low in the west and high in the east, and spreads eastward along the depth, probably
due to the influence of high-temperature low-salinity water in the Western Pacific warm
pool [28] and the upwelling of high-salinity water in the subsurface layer by the south
equatorial current in the east [29].
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3.2. Zooplankton Species Composition

A total of 384 species of zooplankton and 21 groups of zooplankton larvae were
identified in this survey. The zooplankton adults included 28 species of Protozoa, 18 species
of Coelenterata, 6 species of Annelida, 16 species of Mollusca, 265 species of Arthropoda,
21 species of Chaetognatha, and 31 species of Chordata. Among the zooplankton adults,
copepods contributed 217 species, accounting for 56.51% of the total number of species
in the surveyed area and 81.89% of the total number of arthropod species. On average,
78 ± 16 number of species were identified per station, with the highest number of species
(118) at station ST0727. Copepods had the highest numbers of species in the equatorial
section with 56 + 12, followed by the S1 section with 52 + 13; the lowest number of species
was in the S3 section with 48 + 11.

3.3. Zooplankton Abundance Distribution

The density of zooplankton in the surveyed area ranged from 118.3 to 452.2 ind./m3,
with an average density of 253.3 ± 65.0 ind./m3. The abundance of zooplankton is shown
in Figure 4. High abundance values are mainly observed in the NECC region and the
eastern equatorial region, while low abundance values are found in the STCC region, which
is similar to the findings of Yang et al [18]. Among the zooplankton, the density of cope-
pods ranged from 88.7 to 383.8 ind./m3, with an average density of 180.2 ± 53.3 ind./m3,
accounting for 71.1% of the total abundance of zooplankton. Therefore, the distribution of
zooplankton was mainly determined by the copepods [17].
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Among the three sections, only 310 species of zooplankton were identified on the S1 sec-
tion, with an average abundance of 204.9 ± 45.7 ind./m3. A total of 364 species of zooplank-
ton were identified on the S2 section, with an average abundance of 258.9 ± 52.6 ind./m3,
and 346 species of zooplankton were identified on the S3 section, with an average abun-
dance of 275.3 ± 52.6 ind./m3. The S2 section had the highest number of species, while
the S3 section had the highest average abundance. The top ten dominant species for each
cross-section are shown in Table 1. The three cross-sectional common dominant species
were Acrocalanus gibber, Paracalanus aculeatus, Oncaea venusta, Canthocalanus pauper, and
Oithona similis.

Table 1. Temperature, salinity, and dominant species in the S1, S2, and S3 cross-sections.

Section

S1 S2 S3

Location 146◦ E, 24–36◦ N 143◦ E, –1◦–22◦ N 0◦ N, 142–163◦ E
Temperature (◦C) 13.24–23.20 13.24–23.20 13.24–23.20

Salinity 34.12–35.06 33.65–35.00 34.88–35.34

The top 10
dominant

species
(order of dominance from

greatest to least)

Acrocalanus gibber Acrocalanus gibber Acrocalanus gracilis
Paracalanus aculeatus Canthocalanus pauper Paracalanus aculeatus

Mecynocera clausi Oithona similis Farranula gibbula
Oncaea venusta Paracalanus aculeatus Canthocalanus pauper

Canthocalanus pauper Oncaea venusta Oncaea venusta
Oithona similis Nannocalanus minor Oithona similis

Lucicutia flavicornis Clausocalanus furcatus Acrocalanus gibber
Oncaea mediterranea Farranula concinna Acartia negligens

Parvocalanus crassirostris Cosmocalanus darwinii Cosmocalanus darwinii
Acrocalanus gracili Farranula rostrata Oithona plumifera

3.4. Diversity Indices of the Zooplankton Community

Different indices of biodiversity can express the diversity of a zooplankton community
or assemblage in different ways, but the best way to evaluate the diversity of a community
is to use these indices in combination [24]. In general, from the five selected diversity
indices, the species richness has the same trend as the Margalef index, providing an initial
indication of the diversity of communities in the surveyed sea area. On the other hand, the
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values of diversity index (H′) and Pielou’s Evenness Index (J) showed similar distribution.
For instance, as shown in Figure 5, at stations ST0734 and ST0735, the values of S and
Dm are modest and in the middle of the range, whereas H’, J, D, and abundance were
higher. On the contrary, although the species density was high at ST0315 (Figure 5), all five
parameters showed low diversity indices (circled in Figure 5), which was caused by the
large enrichment of zooplankton larvae (especially copepod larvae) at this site. H′ and J
reached maxima (4.40 and 0.65, respectively) at ST0742 in the eastern part of the equatorial
section, indicating the stability of the ecosystem. However, there was no clear trend in the
latitudinal distribution of zooplankton communities due to the complexity of the Western
Pacific Gyre, especially the multiple and complex circulations that may be related to the
oceanic environment in which they live. Overall, the community diversity at the equatorial
section of the surveyed area was higher than the latitudinal sections.
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3.5. The Relationship between Zooplankton and the Environment

The results of the MDS analysis for all 59 samples are shown in Figure 6, in which
station ST0706, affected by the KC, can be distinguished from the other stations according
to a 30% similarity (Figure 6A). With the exception of station ST0706, the other stations
were subjected to further MDS analysis, as shown in Figure 6B. Spatially, the zooplankton
community group is more clearly influenced by the different circulations in the equatorial
flow system when the similarity reaches 70%. The NECC group is clearly separate from
the other groups, indicating that the zooplankton community structure of the NECC is
significantly different from that of the other circulations. The STCC group is partially
intersected with the EC group because both EC and STCC are flow systems with high
transparency and STCC activity is reduced in the autumn [30]. The division of these groups
indicates a strong link between zooplankton community structure and the circulation.
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A comparative analysis of the organisms and the environment allows us to identify
the key factors that influence zooplankton growth, which is vital for a healthy and stable
ecosystem [31]. The CCA method was used to analyze the relationship between envi-
ronmental parameters and dominant species, and the results are shown in Figure 7. The
zooplankton community in this area can be roughly divided into two types, one associated
with ammonium and dissolved oxygen (DO) (green circles) and the other with nutrients,
chlorophyll a, and environmental factors. In addition, the growth of zooplankton can be
closely related to nutrient. From Table 2 we can also see that zooplankton distribution
was significantly correlated with nitrite and food (p < 0.05), while the total distribution of
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copepods was also significantly correlated with dissolved oxygen (DO) (p < 0.01). However,
copepods differ according to environmental factors. For example, Clausocalanus arcuicor-
nis is more biased toward high nitrite, and Lucicutia flavicornis is more biased toward
high-dissolved-oxygen environments.
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perature; S represents salinity; A represents total alkalinity; 1–20 are as follows: 1—Acartia negligens,
2—Canthocalanus pauper, 3—Cosmocalanus darwinii, 4—Nannocalanus minor, 5—Calocalanus pavo, 6—
Clausocalanus furcatus, 7—Clausocalanus farrani, 8—Clausocalanus arcuicornis, 9—Lucicutia flavicornis,
10—Mecynocera clausi, 11—Acrocalanus gibber, 12—Acrocalanus gracilis, 13—Paracalanus aculeatus, 14—
Paracalanus gracilis, 15—Paracalanus parvus, 16—Parvocalanus crassirostris, 17—Parvocalanus elegans,
18—Oithona plumifera, 19—Oithona setigera, and 20—Oithona similis.

Table 2. The Pearson correlation coefficients between biotic and abiotic variables in the survey area.

Species DO pH Silicate Phosphate Nitrite Nitrate Ammonia DIC Temperature Chl. a

H’ −0.198 0.245 −0.018 0.114 0.280 * 0.062 −0.195 0.050 0.222 0.314 *
J −0.252 0.222 0.028 0.178 0.260 * 0.131 −0.180 0.104 0.200 0.319 *

Copepods −0.348 ** 0.057 −0.001 0.249 0.495 ** 0.127 −0.058 0.217 0.325 * 0.528 **
Canthocalanus

pauper −0.246 −0.148 0.047 0.168 0.233 0.119 0.053 0.132 0.238 0.244

Cosmocalanus
darwinii −0.200 −0.040 0.053 0.185 0.232 0.118 −0.059 0.147 0.210 0.314 *

Calocalanus
pavo −0.118 0.269 * −0.070 0.093 0.075 0.057 −0.177 0.092 0.105 0.230

Clausocalanus
arcuicornis −0.274 * 0.094 0.000 0.213 0.418 ** 0.101 −0.021 0.285 * 0.221 0.420 **

Lucicutia
flavicornis 0.285 * 0.088 −0.145 −0.289 * −0.070 −0.222 0.331 * −0.263 * −0.254 −0.075

Acrocalanus
gibber −0.337 ** −0.011 0.109 0.309 * 0.427 ** 0.246 −0.064 0.319 * 0.133 0.486

Paracalanus
aculeatus −0.275 * 0.143 0.055 0.263 * 0.369 ** 0.188 −0.083 0.332 * 0.164 0.427

Oithona similis −0.130 −0.069 0.043 0.131 0.413 ** 0.068 0.041 0.084 0.169 0.295
Farranula

gibbula −0.34** 0.065 −0.078 0.201 0.286 0.08 * −0.143 0.207 0.487 ** 0.249

Clausocalanus
ingens −0.364** 0.077 −0.014 0.0252 0.465** 0.162 −0.044 0.268 * 0.298 * 0.465 **

Clausocalanus
jobei −0.316* 0.048 0.078 0.0242 0.349** 0.159 −0.17 0.278 * 0.289 * 0.27 *

Note: * and ** represent significance at p < 0.05 and p < 0.01, respectively.
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3.6. Comparison of Equatorial Zooplankton Communities with S1 and S2

In terms of total abundance, the zooplankton abundance in S3 is higher than that in
S2, and the lowest abundance is in S1. However, this does not reveal the difference in
zooplankton community structure between the equatorial and latitudinal segments well.
Therefore, we selected the species with more than 30% occurrence between 59 stations to
compare the abundance between the two groups (S3 and S1, S3 and S2). A total of 11 species
of zooplankton were significantly different in abundance when comparing S3 with S1,
while nine species were significantly different when comparing S3 with S2. The results
of the significant (p < 0.05) differences in abundance between the two groups are shown
in Figure 8. In both sets of comparisons, there were significant differences in abundance
between the four species: Farranula gibbula, Clausocalanus ingens, Clausocalanus jobei,
and Microconchoecia curta. Of these, Farranula gibbula had the greatest difference in
abundance in both comparisons, with much greater abundance in S3 than in the other
two transects.
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4. Discussion
4.1. Comparison with Historical Data

Zooplankton diversity study in the Western Pacific Ocean is scarce and mostly con-
centrated in the South China Sea and around the Philippine Sea, while the open ocean
and equatorial waters are less well studied [6]. The zooplankton abundance found in this
research is within the range of values in the tropical and subtropical oceans [17,22,32]. Con-
sistent with previous observations in tropical and subtropical regions, copepods, especially
small copepods, make up the largest proportion of the zooplankton community [33]. This
is also in line with observations in many other sea areas. This is due to the fact that small
copepods have higher growth rates and have a large effect on the nutritional coupling
between the upper and lower trophic levels [32,34]. They are better suited than large
zooplankton to live in oligotrophic regions [35]. In contrast to previous studies, the area
surveyed also includes the equatorial sea section. This may be one of the reasons why the
number of species in the present study is somewhat higher than in the study of Dai et al.
Similar to the findings of Dai et al. [17] and Yang et al. [18], copepods and Chaetognaths are
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the dominant taxa in the Western Pacific. However, as shown in Table 3, the zooplankton
abundance in this survey was more consistent with the results of Yang et al. [18] and Sun
et al. [19] and much higher than the results of Dai et al. [17]. This may be related to the
different methods used in the survey [36,37]. In addition, as there is no absolute relation-
ship between the diversity indices [31], the reasons for the high enrichment of zooplankton
larvae (especially copepod larvae) in ST0315 need further study. Overall, compared to the
studies of phytoplankton in the Western Pacific, the information on zooplankton in the
Western Pacific is relatively scarce. Therefore, more survey material is needed to gain a full
understanding of the biodiversity of the area.

Table 3. The comparison of zooplankton with the historical data.

Time Research Area
References

Method and
Nesh Size

Depth
Number of
Species and

Larvae

Abundance
(ind./m3) Reference

Nov.–Dec. 2012 120–130◦ E,
0–20◦ N

ZooScan
500 um 0–200 m - 11–116 Dai et al. [17]

Aug.–Oct. 2014 120◦–135◦ E,
0–20◦ N

Microscope
200 um 0–300 m 259

Subregional
average:

86.09–311.98
Yang et al. [18]

June–July
2014

160◦ E
4◦ S–46◦ N

Microscope
200 um 0–200 m 498 45.11–439.84 Sun et al. [19]

Oct.–Dec. 2017 142–164◦ E,
–1–36◦ N

Microscope
200 um 0–200 m 405 118.33–452.22 this study

4.2. Relationship between Ocean Current Factors and Zooplankton

Among the three transects surveyed in the study, S1 had the lowest mean zooplankton
abundance and the lowest number of species. S2 had the highest number of species, but
its abundance was lower than the S3 transect’s. In tropical and subtropical waters such as
the eastern Indian Ocean, there have also been instances of high abundance of three cross-
sectional co-dominant species, such as Paracalanus aculeatus, Oncaea venusta, Canthocalanus
pauper, and Cosmocalanus darwinii [38,39].

From the temperature and nutrient distribution (Chen et al., unpublished), it was
evident that mixed alternating water masses of Kuroshio edge and tide-friendly subduction
occurred at 35◦ N to 36◦ N (Figure 2). In mixed surface waters, zooplankton abundance
is likely to be greater due to advection of zooplankton into the region [40]. But since the
northern end of the S1 section is located at the edge of a mixed water mass, the Kuroshio
edge and Kuril cold subduction had less impact on zooplankton abundance in this area
and did not play a significant role in promoting zooplankton growth. As seen in Figure 8,
the zooplankton community structure at station ST0706 was less similar to the community
structure at other stations. So, we suggest that the edge of the mixed water column affects
the composition of the zooplankton community structure. The southern end of the S1
section is affected by the STCC region. Although the STCC vorticity is cyclical [41], the
vorticity is weaker in October. However, zooplankton abundance was affected and was
the lowest in the entire survey area, similar to the results of previous studies [18]. Section
S2 straddles the equatorial flow system in the Western Pacific Ocean, with the northern
end in the STCC region, which, together with the southern end of S1, forms the area of
lowest zooplankton abundance in the entire area surveyed. There is a strong thermal leap
in the lower NEC that limits the upwelling of nutrient-rich water below the leap, resulting
in low salt levels in the upper leap [42]. It was the nutrient limitation that led to the low
zooplankton abundance in the NEC region of the survey [43]. Zooplankton abundance
was high around 3–10◦ N (NECC region) and where considerable upwelling was observed
(Figure 3). Peterson et al. demonstrated by a two-cell zonal circulation pattern according to
which zooplankton abundance is highest where upwelling is strongest [44]. This survey is
in line with these observations as the zooplankton abundance in the NECC region reaches
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its highest levels at the station with strong upwelling (6◦ to 7◦ N latitude). Furthermore,
the influence of the upwelling probably affects the entire NECC region as the zooplankton
community structure here differs from that in other circulating regions (Figure 6). For S1
and S2, zooplankton abundance was the highest in the NECC region and lowest in the STCC
region, in agreement with the results of Yang et al. [18]. However, this is not consistent
with the findings of Sun et al. [19] that community abundance generally increases with
increasing latitude [19]. However, a decreasing value of zooplankton abundance between
20◦ N and 30◦ N can also be seen in the graphs in their study.

4.3. Relationship between Other Factors and Zooplankton

Changes in zooplankton community structure and abundance reflect the dynamics of
the entire marine ecosystem. In particular, key species of zooplankton play a critical role
in controlling the overall condition of the marine ecosystem [7]. The distribution of zoo-
plankton communities is inextricably linked to environmental factors (abiotic factors) [45].
In this study, S3 was mainly distributed in the WPWP, and its mean temperature (26.5 ◦C)
was higher than the other two cross-sections (S1: 20.7 ◦C and S2: 25.0 ◦C). Several copepod
key species show a clear pattern linking temperature with their horizontal distribution.
For example, as seen in Table 2, there is a significant positive correlation between F. gibbula
and temperature (p < 0.01). That means that F. gibbula prefers a high-temperature marine
environment. Therefore, the abundance of F. gibbula in the S3 section was significantly
greater than in S1 and S2 (Figure 8); the same was true for C. ingens and C. jobei. This
indicates that temperature is one of the important factors affecting the horizontal distri-
bution of zooplankton [46]. In addition to temperature, nutrient salts also have an effect
on the structure of the zooplankton community. Wen-Tseng et al. have also shown that
L. flavicornis has a high abundance in high-nutrient waters close to KC [47]. In contrast,
in the present investigation, Table 2 shows that L. flavicornis is significantly associated
with phosphate, ammonium, and DIC, while in Figure 8 the abundance of L. flavicornis is
significantly higher in S1 than in S3. This is most likely due to the influence of high-nutrient
saline water at the northern station of the S1 section, brought about by KC.

As an intermediate part of the food chain [48], the distribution of zooplankton is
also affected by competition, predation, and the abundance of prey [45,49]. Dagg [50]
confirmed through model studies in the Gulf of Mexico that phytoplankton mortality due
to grazing is always high and that more than 95% of grazing is caused by microzooplankton
communities. White et al. [51] found a strong relationship between zooplankton biomass
and phytoplankton growth rate. In our survey the high average abundance of the S3 section
was largely dependent on high zooplankton abundance in the vicinity of station ST0305.
Also, in this sea survey, the phytoplankton density was highest at station ST0305 [52]. In
addition, although some species belong to the same genus, it is also possible that, as a result
of differences in body size and other morphologies (e.g., mouthparts) between species,
selection for the environment may vary, thus exhibiting different ecological taxa [53]. As
shown in Figure 6 with the example of the genus Clausocalanus, C. furcatus is dominant in
very oligotrophic waters, while C. acrcuicornis prefers salinity, which is consistent with the
findings of Peralba et al. [53]. Thus, although they are both tropical species in the broad
sense, they are indeed separate in terms of the population core [53], which confirms that
they have different environmental preferences.

However, the distribution of zooplankton communities is closely linked not only
to temperature and nutrients, but also to water masses and ocean circulation [54,55]. In
comparison, our study is deficient in some relevant physical data. So, in future studies,
physical data such as circulation and eddies should be included and reconciled to gain a
more complete understanding of the zooplankton community distribution in this area.

5. Conclusions

The zooplankton community of three transects in the Western Pacific Ocean was
investigated. The distribution of zooplankton differed significantly with the water currents.
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A total of 384 species of zooplankton adults were identified in this survey. The highest
abundance of zooplankton was found in the NECC and equatorial regions, followed by
the NEC region; the lowest abundance was in the STCC region. It was also found that
the difference in the abundance of the species F. gibbula, C. ingens, and C. jobei between S3
and the other two cross-sections was mainly due to differences in temperature. Therefore,
temperature influences the structure of the zooplankton community. In addition, nutrient
concentrations, dissolved oxygen, and chlorophyll can influence the distribution of domi-
nant species. Especially in the oligotrophic sea, small changes in nutrient concentrations
can promote the proliferation of the zooplankton community. In this survey, we found that
not only temperature and nutrient salinity, but also ocean currents and the movement of
water masses influence the distribution of zooplankton communities in the Western Pacific.

Although this research provides baseline data and information, Western Pacific zoo-
plankton still remain a mystery to us, especially the distribution of zooplankton throughout
the water column and eddies. Therefore, more community-based and long-term studies
are needed to further explore the role of zooplankton in marine biogeochemistry in the
Western Pacific Ocean.
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