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1 Introduction

Graphical exploration for quantitative/qualitative data acts as the initial yet
essential step in modern statistical data analysis. Matrix visualization (Chen
(2002); Chen et al. (2004)) is a graphical technique that can simultaneously ex-
plore the associations of up to thousands of subjects, variables, and their inter-
actions, without first reducing dimension. Matrix visualization permutes the
rows and columns of the raw data matrix by suitable seriation (reordering) al-
gorithms, together with the corresponding proximity matrices. The permuted
raw data matrix and two proximity matrices are then displayed as matrix maps
through suitable color spectra, and the subject-clusters, variable-groups, and
interactions embedded in the data set can be visually extracted.

Since the introduction of Exploratory Data Analysis (EDA, Tukey (1977)),
boxplots, along with the scatterplot aided by interactive functionalities, have
served the statistical community as major graphical tools. These tools, to-
gether with various dimension reduction techniques, are useful for exploring
data structure when the number of variables is of moderate size, and when
structure is not too complex. Yet, with striking advances in computing, com-
munication, and high-throughput biomedical instruments, the number of vari-
ables can easily reach tens of thousands, and the need for practical data anal-
ysis remains. Dimension reduction tools often lose effectiveness when it comes
to visual exploration of information structure embedded in high dimensional
data sets. On the other hand, matrix visualization, integrated with comput-
ing, memory, and display, has great potential for visually exploring structure
that underlies massive and complex data sets.

We briefly review the literature of related work in the next section. The
foundation of matrix visualization under the framework of generalized asso-
ciation plots (GAP, Chen (2002)), with some related issues, is discussed in
Sections 3 followed, in Section 4 by some generalization. Section 5 gives an
example of matrix visualization with 400 variables (arrays) and 2000 samples
(genes). Comparisons of matrix visualization with other popular graphical
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tools, for efficiency over size of dimension, are then given in Section 6. Section
7 illustrates matrix visualization for binary data, while Section 8 discusses
generalizations and extensions. We conclude this chapter with some perspec-
tives on matrix visualization in Section 9.

2 Related Works

The concept of matrix visualization was introduced in Bertin (1967) as a
reorderable matrix for systematically presenting data structures and relation-
ships. Carmichael and Sneath (1969) developed taxometric maps for clas-
sifying OUT’s (operational taxonomy units) in numerical phenetics analy-
sis. Hartigan (1972) introduced the direct clustering of a data matrix, later
known as block clustering (Tibshirani (1999)). Lenstra (1974) and Slagle et
al. (1975) related the traveling-salesman problem and shortest spanning path
to the clustering of data arrays. The colour histogram of Wegman (1990) was
the first color matrix visualization in the statistical literature. Minnotte and
West (1998) extended the idea of colour histograms to the data image package
that was later used for outlier detection (Marchette and Solka (2003)).

Some matrix visualization techniques were developed for exploring prox-
imity matrices only: Ling (1973) looked for factors of variables by examin-
ing relationships through a shaded correlation matrix; Murdoch and Chow
(1996) used elliptical glyphs to represent large correlation matrices; Friendly
(2002) proposed corrgrams, similar to the reorderable matrix method, for
analyzing multivariate structure among the variables in correlation and co-
variance matrices. Chen (1996, 1999, and 2002) integrated visualization for
raw data matrix with two proximity matrices (for variables and samples) into
the framework of generalized association plots (GAP). The Cluster and Tree-
View packages by Eisen et al. (1998) are probably the most popular matrix
visualization packages because of the proliferation of gene expression profiling
for microarray experiments.

Permutation (ordering) of columns and rows for a data matrix, and prox-
imity matrices for variables and samples, is an essential step in matrix visual-
ization. Several recent statistical works have touched on the issue of reordering
of variables and samples: Chen (2002) proposed the concept of relativity of
a statistical graph; Friendly and Kwan (2003) discussed the idea of effect or-
dering of data displays; Hurley (2004) used scatterplot matrices and parallel
coordinate plots as examples to address the problem of placing interesting dis-
plays in prominent positions. Different terms (such as the reorderable matrix,
the heatmap, color histogram, data image and matrix visualization) have been
used in the literature for describing these related techniques. We use matrix
visualization (MV) to refer to them all.
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3 The Basic Principles of Matrix Visualization

We use the GAP (Chen (2002)) approach to illustrate the basic principles of
matrix visualization for continuous data, using the 6400 genes and 851 mi-
croarray experiments collected in the published yeast expression data database
for visualization and data mining (Marc et al. (2001)), and designated hence-
forth here as Data 0. Detailed descriptions of data pre-processing were given in
the yeast Microarray Global Viewer (http://transcriptome.ens.fr/ymgv/).
For illustration purposes, we selected 15 samples and 30 genes across these
samples as Data 1, where rows correspond to genes and columns to microarray
experiments (arrays). For various gene expression profile analyses, the roles
played by rows and columns are often interchangeable. This interchangeability
suits well into the GAP approach of matrix visualization where samples and
variables are treated symmetrically and can be interchanged directly.

3.1 Presentation of Raw Data Matrix

The first step of matrix visualization for continuous data is the production
of a raw data matrix X30×15, and two corresponding proximity matrices for
rows, R30×30, and columns, C15×15, calculated with user-specified similarity
(or dissimilarity) measures. The three matrices are then projected through
suitable color spectra to construct corresponding matrix maps in which each
matrix entry (raw data or proximity measurement) is represented by a color
dot. The left panel of Figure 1 shows the raw data matrix of log2 transformed
ratios of expressions coded by a bi-directional green-black-red spectrum for
Data 1, with Pearson correlations for between arrays relations coded by a
bi-directional blue-white-red spectrum, and Euclidean distances for between
genes relations coded by a uni-directional rainbow spectrum.

In the raw data matrix map, a red (green) dot in the ij-th position of
the map for X30×15 means the i-th gene at the j-th array is relatively up
(down) regulated. A black dot stands for a relatively non-differentially ex-
pressed gene/array combination. A red (blue) point in the ij-th position of
the C15×15 matrix map represents a positive (negative) correlation between
arrays i and j. Darker (lighter) intensities of color stand for stronger abso-
lute correlation coefficients while white dots represent no correlations. A blue
(red) point in the ij-th position of the R30×30 matrix map represents a rela-
tive small (large) distance between genes i and j while a yellow dot represents
a median distance.

Data Transformation

Transformations such as log, standardization (zero mean, unit variance), or
normalization (normal score transformation) may have to be applied to raw
data before the data map is constructed or proximity matrices calculated in
order to have meaningful visual perception of the data structure, or compara-
ble visual effects between displays. The transformation-visualization process
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may have to be repeated several times before the embedded information can
be fully explored.

Selection of Proximity Measures

Proximity matrices have two major functions: (1) to serve as the direct vi-
sual perception of the relationship among variables and between samples;
(2) to serve as the media for reordering of variables and samples for better
visualization of the three matrix maps. Selection of proximity measures in
matrix visualization plays a more important role than it does in numerical or
modelling analyses. Pearson correlation often serves as the between-variables
proximity measure, Euclidean distance is commonly employed for samples
(Figure 1). For potential nonlinear relationships, Spearman’s rank correlation
and Kendall’s tau coefficient can replace Pearson correlation in assessing the
between variable relationship while some nonlinear feature extraction meth-
ods such as the Isomap (Tenenbaum et al. (2000)) distance can be used to
measure the nonlinear between-sample distances. More sophisticated kernel
methods can also be applied when users see the necessity for them.

Fig. 1. Left: Unsorted data matrix (log ratio gene expression) map with two prox-
imity matrixes (Pearson correlation for arrays and Euclidean distance for genes)
maps for Data Set 1. Right: Elliptical seriations applied to the three matrix maps
on the left panel.

Color Spectrum

The selection of an appropriate color spectrum can be critical and is user
dependent in visualization and information extraction of data and proxim-
ity matrices. The selection of a suitable color spectrum should focus on the
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capacity for expressing numerical nature individually and globally in the ma-
trices. Our above mentioned choices for gene expression profiles might well
give way to others in different circumstances. Thus, illustrated in Figure 2 is
a correlation matrix map of fifty psychosis disorder variables (Chen (2002))
coded with four different bi-directional color spectra. While displays (a) and
(b) appear more agreeable to human perception, displays (c) and (d) actually
provide better resolution for distinguishing different levels of correlation in-
tensities. The relative triplet color codes (red, green, blue) in the RGB cube
for these four color spectra are shown in Figure 3.

Fig. 2. Four color spectra applied to the same correlation matrix map for fifty
psychosis disorder variables (Chen (2002)).

Display Conditions

Display condition is analogous to data transformation for colors. Usually, the
whole color spectrum is used to represent the complete range of values in the
data matrix (range matrix condition). The matrix condition can be switched
to row or column conditions for emphasizing individual variable distributions
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Fig. 3. Relative (red, green, blue) hues in the RGB cubes for the four color spectra
in Figure 2.

or subject profiles. For a bi-directional color spectrum (green-black-red for
differential gene expressions, blue-white-red for correlation coefficients), the
center matrix condition symmetrizes the color spectrum around the baseline
numeric value (1:1 for log2 ratio gene expression, zero for correlation coeffi-
cient). On occasion, we might like to downweight the effects of extreme values
in the data set, and the use of ranks as a replacement for numerical values is
a possibility. This is termed the rank matrix condition.

Resolution of a Statistical Graph

If the data matrix or proximity matrices contain potential extreme values, the
relative structure of the extreme values to the main data cloud will dominate
the overall visual perception of the raw data map and the proximity matrix
maps. The problem can be handled by using rank conditions or by compressing
the color spectrum to a suitable range. Variously, we can apply a logarithm
or similar transformation to reduce the outlier effect or to simply remove the
outlier.
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3.2 Seriation of Proximity Matrices and Raw Data Matrix

Without suitable permutations (orderings) of the variables and samples, ma-
trix visualization is of no practical use in visually extracting information (Fig-
ure 1, Left Panel). It is necessary to compute meaningful proximity measures
for variables and samples, and to apply suitable permutations to these matri-
ces before matrix visualization can reveal information structure of the given
data set. We discuss below some concepts and criteria for evaluating the per-
formances of different seriation algorithms in reordering related matrices.

Relativity of a Statistical Graph

Chen (2002) proposed a concept, the relativity of a statistical graph, for evalu-
ation of general statistical graphic displays. The idea is that of placing similar
(different) objects at closer (more distant) positions in a statistical graph. In
a continuous display, such as the histogram or a scatterplot, relativity always
holds automatically. An illustration is the histogram, in Figure 4, of the Petal
Width variable and a scatterplot of Petal Width and Petal Length variables
for 150 Iris flowers (Fisher (1936)). Two flowers coded in × and ◦ are placed
next to each other on these two displays automatically, because they share
similar petal widths and lengths. Friendly and Kwan (2003) proposed a similar
concept for ordering information in general visual displays which they called
the effect-ordered data display. Hurley (2004) also studied related issues with
examples in scatterplot matrices and parallel coordinate plots.

The relativity concept does not usually hold for a matrix visualization
or parallel coordinate plot type of display since one can easily destroy the
property with a random permutation. It is a common practice to apply various
permutation algorithms to sort the columns and rows of the designated matrix
so that similar (different) samples/variables are permuted at closer (distant)
rows/columns.

Fig. 4. Concept of Relativity of a Statistical Graph for a continuous data set (the
Iris data).
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Global Criterion: Robinson Matrix

It is usually desired to permute a matrix to resemble as closely as possible a
Robinson matrix (Robinson (1951)) because of the smooth and pleasant visual
effect on examining permuted matrix maps. A symmetric matrix is called a
Robinson matrix if its elements satisfy rij ≤ rik if j < k < i and rij ≥
rik if i < j < k. If the rows and columns of a symmetric matrix can be
permuted to those of a Robinson matrix, we call it pre-Robinson. For a nu-
merical comparison, three anti-Robinson loss functions (Streng, (1978)) are
calculated for each permuted matrix, D = {dij}, for the amount of deviation
from a Robinson form with distance-type proximity:

AR(i) =
p∑

i=1

[
∑

j<k<i

I(dij < dik) +
∑

i<j<k

I(dij > dik)],

AR(s) =
p∑

i=1

[
∑

j<k<i

I(dij < dik) · |dij − dik|+
∑

i<j<k

I(dij > dik) · |dij − dik|],

AR(w) =
p∑

i=1

[
∑

j<k<i

I(dij < dik)|j−k||dij−dik|+
∑

i<j<k

I(dij > dik)|j−k||dij−dik|].

AR(i) counts only the number of anti-Robinson events in the permuted
matrix; AR(s) sums the absolute value of anti-Robinson deviations; AR(w)
is a weighted version of AR(s) penalized by the difference of column indices
of the two entries.

Elliptical Seriation

Chen (2002) introduced a permutation algorithm called rank-two elliptical
seriation that extracts the elliptical structure of the converging sequence of
iteratively formed correlation matrices using eigenvalue decomposition. Given
a p-dimensional proximity matrix D, a sequence of correlation matrices R =
(R(1), R(1), · · ·) is iteratively formed from it. Here R(1) is the correlation matrix
of the original proximity matrix D, and R(n) is the correlation matrix of
R(n−1) for n > 1. The iteratively formed sequence of correlation matrices
gradually cumulates the variation information to the leading eigenvectors. At
the iteration with rank two, there are only two eigenvectors left with non-zero
eigenvalues, and all information is reduced to the ellipse spanned by the two
eigenvectors. Every object has its relative position on this two-dimensional
ellipse, and a unique permutation is obtained. The elliptical seriation usually
identifies very good global permutations, and is useful for identifying global
clustering patterns and smooth temporal gene expression profiles (Tien et al.
(2006)) by optimizing the Robinson criterion.
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Local Criterion: Minimal Span Loss Function

The minimal span loss function MS =
∑n−1

i=1 di,i+1 for a permuted matrix
D = {dij} focuses on the optimization of local structures. The idea is to find a
shortest path through all data elements as in the travelling salesman problem.
The local seriation method produces tighter blocks than the global method
does around the main diagonal of the proximity matrix. In addition, we can
combine the anti-Robinson measure and minimal span loss into a measure in
which a band along the diagonal of a proximity matrix is selected with width
w (0 < w < n) and the anti-Robinson measurement is computed within that
band.

Tree Seriation

The hierarchical clustering tree with a dendrogram (Eisen et al. (1998)) is
the most popular method for two-way sorting the gene-by-array matrix map
employed in gene expression profiling. The ordering of terminal nodes gener-
ated by an agglomerative hierarchical clustering tree automatically keeps good
local grouping structure, since the tree dendrogram is constructed through
a sequential bottom-up merging of ”most similar” sub-nodes. On the other
hand, a divisive hierarchical clustering tree usually keeps better global pat-
terns through a top-down splitting of ”most heterogeneous” substructures.
Divisive hierarchical clustering trees are rarely used due to their computa-
tional complexity.

Flipping of Intermediate Nodes

One critical issue in applying the leaves of the dendrogram in sorting the
rows/columns of an expression profile matrix is the flipping of the interme-
diate nodes. As illustrated in Figure 5 with a schematic dendrogram (Figure
5a), the n− 1 intermediate nodes (red points) for a dendrogram of n objects
can be flipped independently (Figure 5b) resulting in 2(n−1) different dendro-
gram layouts (Figure 5c, for example) and corresponding permutations for the
n objects with identical proximity matrices (Pearson correlation or Euclidean
distance) and the same tree linkage method (single, complete, average or cen-
troid). The flipping mechanism of intermediate nodes can be guided either
by an external or internal reference list. For example, the Cluster software
developed by Eisen’s lab (1998) guides the tree flips based on the average
expression level. He also suggests one can use the results of a one-dimensional
SOM to guide the tree seriation. This makes the tree seriation as close to the
external references as possible. In Alon et al. (1999), it is suggested that one
order the leaf nodes according to the similarity between a node and its par-
ent’s siblings. Bar-Joseph (2001) proposed the fast optimal leaf ordering for
hierarchical clustering that maximizes the sum of the similarities of adjacent
leaves in the ordering. These are two examples of internal references.
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Fig. 5. Flipping mechanism for intermediate notes of a dendrogram.

4 Generalization and Flexibility

4.1 Summarizing Matrix Visualization

Sorted matrix maps are capable of displaying the raw expression pattern and
the association structures among genes and arrays. One can go one step fur-
ther to identify clusters in the permuted matrix maps using the dendrogram
branching structure or other partitioning methods, such as the converging se-
quence of Pearson’s correlation matrices (Chen (2002)) and block searching
(Hartigan (1972)). Once the partitioned matrix maps are obtained (Figure 6,
Left Panel), a summarizing matrix visualization which Chen (2002) coined
sufficient matrix vsiualization can be constructed by representing individ-
ual data points and proximity measures in each identified subject-subject,
variable-variable and subject-variable block by the summary statistic (means,
medians or standard deviations) for that particular block.

The three maps in Figure 6, Right Panel summarize the sufficient informa-
tion of the data matrix and the corresponding proximity matrices for the gene
expression profiles in the Left Panel. In the sufficient MV of Figure 6, Right
Panel, users can easily extract the within and between correlation structure
for the three array-groups, the relative clustering pattern of the four gene-
clusters, and the interaction behavior of the four gene-clusters on the three
array-groups. Three essential steps are necessary to ensure the effectiveness
of a sufficient MV in extracting the overall information structure embedded
in the original data matrix and two proximity matrices: (1) appropriate per-
muted variables and samples; (2) carefully derived partitions for variables and
samples; and (3) representative summary statistics.

4.2 Sediment Display

The sediment display of a row data matrix for rows (columns) is constructed
by sorting the column (row) profiles for each row (column) independently
according to its magnitude. This display expresses the distribution structure
for all rows (columns) simultaneously. The middle panel of Figure 7 has the
sediment display for all 30 gene expression profiles, while the right panel has
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Fig. 6. Left: Partitioned data and proximity matrix maps for Data Set 1. Right:
Sufficient data and proximity matrix maps.

the expression distributions for each of the 15 selected arrays. The sediment
displays for genes and arrays convey similar information to that given by a
boxplot when the color strips at the quartile positions are extracted.

Fig. 7. Sediment displays for genes (middle panel) and arrays (right panel) for the
permuted data matrix (left panel) of Data Set 1.

4.3 Sectional Display

The purpose of a sectional display is to exhibit only those numerical values
that satisfy certain conditions in the data or the associated proximity maps.
For example, one can choose to ignore the values below some threshold by not
displaying the corresponding color dots. For a permuted distance map, one
can emphasize more coherent neighboring structure by displaying only the
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corresponding neighbors dynamically. Figure 8 has a series of such sectional
displays for the distance matrix for genes in Figure 1, Right Panel (and Figure
6, Left Panel).

Fig. 8. Sectional displays for the permuted gene distance map. Only distances
smaller than the threshold, ε, are displayed.

Fig. 9. Original (left) and restricted (right) displays for the permuted gene distance
map in Figure 8 with an outlying gene added.

4.4 Restricted Display

Outlying data points or proximity measures may mask detailed color reso-
lutions. The situation can be improved by displaying only rank conditions
instead of original magnitudes, or by compressing the color spectrum to rep-
resent only the main body of the data values, i.e., one displays data values that
fall in some range of the data using the whole color spectrum. Figure 9 Left
Panel shows the restricted display of Figure 8 with an artificial outlier obser-
vation added. The relative large distance of this outlier to other observations
exhausts the color spectrum and masks the main feature embedded in the dis-
tance matrix. The right panel of Figure 9 uses the whole rainbow spectrum to
represent only the distance range between 0 and 14 and thus reveals the main
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three-group structure. A nonlinear color mapping (for the distances) like the
one implemented in MANET (Unwin (1998)) can also resolve the problem.

5 An Example

Construction of An MV Display

Many microarrays in Data Set 0 have many missing values because of technical
issues and because different experiments studied different sets of genes in the
yeast genome. Two thousand genes with four hundred arrays with relatively
fewer missing values were then selected from the original Data Set 0, resulting
in Data Set 2. Illustrated in Figure 10 is the MV display of Data Set 2.
Pearson’s correlation coefficient is used for measuring both the between genes
and between arrays association, as commonly practiced in gene expression
profile analysis. Average linkage clustering trees are then grown on the two
correlation matrices for genes and arrays. Relative positions of the terminal
nodes of the two dendrograms are then applied to sort the corresponding
correlation matrix maps and the data matrix map (gene expression profile).
The basic gene clustering structure and array (experiments) grouping patterns
can be identified using these tree sorted matrix maps.

The enlarged permuted data matrix map for gene expression profiling is
displayed in Figure 11. Red dots represent relatively high expression of mes-
sage RNA of gene/experiment combinations, green dots display relatively low
expression ones, with black dots designating relatively little differential ex-
pression. Missing values are coded in white so one can see that many arrays
(experiments) still contain some missing observations. Such an MV display
presents each gene expression profile as a horizontal strip of color dots across
all arrays (experiments), and the important visual information is carried by
the relative variation of hues of colors.

Without suitable permutations to sort the similar genes at closer rows and
identical arrays next to each other so that the relativity property holds, an MV
display is basically useless. From this two-way permuted display, one looks for
horizontal strips of genes that share similar expression profiles, and vertical
strips of arrays that exhibit close experimental results. The blocks of the two
directions illustrate the interaction patterns of gene-clusters and experiment-
groups. All of the numerical information is displayed in this raw expression
profile map (with proximity maps for genes and arrays and corresponding
dendrograms). Careful and patient examination of these color maps can lead
to valuable insights on embedded information structure.

Examination of An MV Display

As with other visualization tools, proper training and experience is need to
get the most information out of these complex matrix visualization displays.
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Fig. 10. Average linkage trees (for both genes (rows) and arrays (columns)) per-
muted data matrix (log2 ratio gene expression) with two proximity matrix maps
(Pearson correlation for both genes and arrays) for Data Set 2.

While examining a complex MV display such as that in Figures 10 and 11,
several general steps are to be taken:

1. For column (array) proximity matrix:
a) Search for coherent clusters of arrays along the main diagonal of

the correlation (maybe distance for other circumstances) matrix with
darker red points. Two dominant array groups of arrays can be identi-
fied around the middle and at the lower-right corner of the correlation
matrix with several small but coherent clusters scattered along the
main diagonal. Let’s denote these two major groups of arrays as A1
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Fig. 11. Enlarged expression profile matrix map of Figure 10 (missing observations
are coded in white).
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and A2. The arrays grouped into these clusters must have similar ex-
pression patterns across all the 2000 genes (to be examined at later
steps).

b) Look for interactions between the array-clusters at off-diagonal lo-
cations. Various types of between-cluster correlation patterns with
sub-structures can also be easily pined down.

c) The arrays represent many different biological assays for various func-
tions of Saccharomyces cerevisiae yeast such as cell-cycle control,
stress (environmental changes, relevant drug-affected), metabolic/genetic
control, transcriptional control and DNA-binding (http://transcript-
ome.ens.fr/ymgv/). Different biomedical assays activate and sup-
press expression patterns of certain functional groups of genes. We
need to integrate these biological/medical knowledge with the nu-
merical/graphical findings in 1.a) and 1.b) for validating known in-
formation and more importantly for exploring and interpreting novel
interesting patterns.

d) Both hierarchical clustering trees for arrays and genes also provide
partial visual exploration of the data and proximity structure but not
as comprehensive as direct visualization of the two proximity matrix
maps since the dendrograms only keep partial information of the prox-
imity matrices from which they are constructed.

2. For row (gene) proximity matrix:
a) Similar procedures as in 1.a) and 1.b) for arrays (columns) have to

be repeated here for the genes (rows) proximity matrix. Of particu-
lar interest is the dichotomous pattern of these 2000 genes. The up-
regulated (red) genes at the upper half and the down-regulated (green)
genes at the bottom half of the A2 arrays are responsible for this di-
chotomous structure. We shall denote these two clusters of genes as
G1 and G2. Several small sub-clusters of genes within G1 and G2 can
also be identified along the main diagonal.

b) It is necessary to go one step further to consult various annotation
databases for more detailed interpretations and explanations of the
potential clusters of genes identified this way. Some of the genes are
not annotated yet. Their potential functions can be roughly deter-
mined through the positively correlated (up-regulated) gene-clusters
and negatively correlated (down-regulated) patterns.

3. For raw data (gene expression profile) matrix:
a) Many major and minor array-groups and gene-clusters have been

found in steps 1 and 2. In step 3 we use the raw data (gene expres-
sion profile) matrix map to search for the interaction patterns of the
gene-cluster on each array-group. It is also necessary to use vertical-
strips of expression profiles to contrast between array-group structure
variations and horizontal-strips to identify between gene-cluster dis-
tribution differences. With careful examination, one can associate cer-
tain pieces of expression block in raw data matrix to the formation of



Matrix Visualization 17

each array-group and gene-cluster and the between groups (clusters)
differentiation.

b) There are about 10000 (∼1.25%) missing observations in this data
matrix of 400 arrays with 2000 genes. One sees that the missing pat-
tern is not of random manner. Different array-group and gene-cluster
combinations are associated with various proportions of missing obser-
vations. The visualization of the missing structure greatly assists users
in choosing more appropriate missing value estimation or imputation
machanism for further analyses.

c) These visual information provide valuable insight into more advanced
studies such as the confirmation of existing metabolite pathways (see
Section 7 for an example) and exploration of novel pathways.

This paragraph only discusses some general issues in the examination of such
an MV display. There are actually many more interesting patterns to be ex-
plored with the input of expert knowledge and interaction with the biologists
who are familiar with related experiments of Saccharomyces cerevisiae yeast.
In Figure (10) and (11) we demonstrated an MV can easily handle thousands
of samples. An MV display can also handle thousands of variables since sam-
ples and variables are treated symmetrically in the MV framework.

6 Comparison with Other Graphical Techniques

In this section, we discuss the visualization efficiency of the scatterplot (SP),
the parallel coordinate plot (PCP)(Inselberg (1985), Wegman (1990)), and
matrix visualization (MV), based on the dimensionality of the data at small,
moderate, and large sample sizes.

Low Dimension

For one-dimensional data, a scatterplot and the PCP display amount to a
dotplot, while one-dimensional MV yields a colored bar chart. In any event, it
is unlikely that an alternative to the histogram can prove more popular in the
display of one-dimensional data. For two-dimensional data, a scatterplot is the
most efficient graphical display. While a PCP display relies on the n connect-
ing line segments between two vertical dotplot to represent the association
of the two variables, an MV displays each sample as a single row with two
color dots. The efficiency of scatterplots decreases with increasing dimension.
For three-dimensional data, a rotational scatterplot is commonly practiced for
extracting geometric structure through a sequence of two-dimensions scatter-
plots with changing angles controlled by the user. The usefulness of PCP and
MV displays of three-dimensional data is a subtle point, and the appropriate
permutation of variables is surely needed to enforce relativity for both types
of displays.
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Fig. 12. Scatter-plot matrix for the first thirty arrays of Data Set 2.

High Dimension

A scatterplot matrix (SM) is used to simultaneously visualize information
structure embedded in all C(p, 2) pairs of variables for data dimension larger
than three. Grand Tours (Asimov, (1985)) are sometimes undertaken in the
hope of extracting high- dimensional data structure through rotation of ran-
domly projected three-dimensional plots. Dimension reduction techniques,
such as principal component analysis, are also useful for displaying structural
information from high-dimensional data to low-dimensional displays. Figure
12 shows the scatterplot matrix display of the first 30 variables (arrays) in
Data Set 2, while Figure 13 gives the corresponding PCP for these data. We
note that a PCP display of high dimensional data with a large sample size
can simultaneously display all the samples, but it is usually necessary to use
some interactive mechanism for selecting subsets of samples in order to study
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the relative structure across all variables, as in Figure 13. Moreover, for these
plots, more than one pixel width is needed to display each variable.

Fig. 13. Parallel coordinate plot for the first thirty arrays of Data Set 2.

Generally, a scatterplot-matrix needs C(p, 2)×n dots to display a data set
with n samples measured on p variables, a PCP display needs p vertical lines
plus (p − 1) × n line segments, and an MV plots requires n × p dots. When
p becomes large, larger than 15 say, a scatterplot-matrix is basically useless.
A PCP display does well with up to a few hundred variables, but founder
at higher levels due to the space required for displaying the line segments
connecting sample points. on the other hand, a scatterplot-matrix wasted a
high proportion of display space. An MV display, on the other hand, uti-
lizes every column pixel for displaying a variable on a computer screen. PCP
has an advantage over MV on the sample side, but MV plots provide better
resolution.

Overall Efficiency

Schematically illustrated in Figure 14 is a diagram of efficiency against dimen-
sionality for conventional scatterplot (matrix) and dimension-free visualiza-
tion tools such as the parallel coordinate plot (PCP) and matrix visualization
(MV). While direct visual perception of geometric pattern makes scatterplots
most efficient for visualization of low-dimensional data, MV and PCP defi-
nitely have the advantages for visualization of data sets with fifteen or more
variables.
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Fig. 14. Schematic illustration for the relative efficiency of the Scatter-plot matrix,
the Parallel coordinates plot, and Matrix visualization, with varying numbers of
dimensions.

Missing Values

It is very difficult to display missing values in a scatterplot while one can
always displays missing values above or below the regular data range of each
variable for a PCP display. The MANET system by Unwin et al. (1996) can
be used to display missing information interactively. In an MV plot, a missing
value can be simply displayed at the corresponding position (row and column)
with a color that can be easily distinguished from the color spectrum of the
numerical values. The missing values of the gene expression profiles of Figures
10 and 11 are coded in white. With appropriate permutations for rows and
columns, the corresponding variable/sample combinations of missing structure
can be visually accessed. MV users can have a simple visual perception of the
missing mechanism (random or not, ignorable or nonignorable) of the data
(variables) before formal statistical modeling of missing values is implemented.

7 Matrix Visualization for Binary Data

While scatterplots, PCP, and MV displays have their own advantages and dis-
advantages over varying dimension size for continuous data structure, an MV
display is the only statistical graph that can meaningfully display binary data
sets over all dimensions. We use the KEGG (Kyoto Encyclopedia of Genes and
Genomes) metabolism pathways (http://www.genome.jp/kegg/pathway.html)
for Saccharomyces cerevisiae yeast to illustrate how an MV display can be
generalized to visually extract all important information embedded in mul-
tivariate binary data. The KEGG web site provides detailed information on
the 1177 related genes involved in 100 metabolism pathways of Saccharomyces
cerevisiae yeast. We simplified the complex information structure down to a
two-way binary data matrix of 1177 genes by 100 pathways. This binary data
matrix is called Data Set 3 in our study. A one (zero) encoded at the i-th row
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and j-th column of the matrix means the i-th gene is (not) involved in j-th
pathway activities.

7.1 Similarity Measure for Binary Data

The usual measurements for evaluating associations between samples and vari-
ables for continuous data, Euclidean distance and correlation coefficients, can-
not be applied directly to binary data sets. Two issues are noted here in the
selection of similarity measures for binary data in an MV display.

Symmetric and Asymmetric Binary Variables

A binary variable is considered symmetric if both of its states are equally
valuable, that is, there is no preference on which outcome should be coded
as 0 or 1. A binary variable is asymmetric if the outcomes of the states are
not equally important, such as the positive and negative outcomes of a disease
diagnosis. Conventionally the most important outcome, the rarer one, is coded
as 1, the other as 0. Thus, asymmetric binary variables are often considered
”monary” (as if there is only one state).

Sparseness and Dimensionality

Asymmetric binary variables are usually sparse in nature and it is difficult
to identify appropriate association measurement for assessing the relation-
ships among samples and between variables. Dimension reduction techniques
also fail in attempts at summarizing high-dimensional data structure in low-
dimensional fashion. Listed in Figure 15 are some commonly used similarity
measurements for binary data. For sparse data, it is common practice to use
the Jaccard coefficient instead of the simple matching coefficient.

7.2 Matrix Visualization of the KEGG Metabolism Pathway Data

The 1−Jaccard distance coefficient is used to compute the proximity matrices
for both genes and pathways in Figure 16. Elliptical seriations (Chen (2002))
are employed to permute the two 1−Jaccard distance matrices and the binary
pathway data matrix. One can easily see, from the binary data matrix map and
the proximity matrix map for genes, that there are many genes that are only
involved in the activities of a single pathway. We then exclude those genes from
further analysis, since they provide no association information. This reduces
the original 1177 genes by 100 pathways binary matrix to a 432 genes by
88 pathways matrix (some pathways are also excluded after the exclusions of
genes). When not enough horizontal or vertical pixels are available for MV
display, users can either use the scroll bars to visualize certain portion of
the display or to zoom out the display to visualize the overall structure with
averaging effect as in a typical computer graph.
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Fig. 15. Some similarity measures for binary data.

Average linkage clustering trees are then employed to sort the resulting
1−Jaccard distance matrices for genes and pathways and the corresponding
binary data matrix, see Figure 17. The association structure between genes
and among pathways can now be comprehended using the three corresponding
permuted matrix maps. In the upper left corner of the data matrix and the
upper-left corner of the proximity maps for genes and pathways, we can iden-
tify several groups of genes involved in activities of only a few pathways, and
several small groups of pathways that share highly similar groups of genes.
The rest of the genes and pathways have more complicated interactions of
activities. It is of course possible to further exclude pathways and genes with
simpler behavior, and to focus on the details of interactions of those more
active genes and pathways.

8 Other Modules and Extensions of MV

We have so far introduced the fundamental framework for matrix visualiza-
tion in the GAP (Chen (2002)) approach to visualization of continuous and
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Fig. 16. Binary data matrix map for Data Set 3 (KEGG metabolite pathway
database with 1177 genes (rows) for 100 pathways (columns)) with two Jaccard
proximity matrices for genes and for pathways sorted by elliptical seriations on both
directions.

binary data matrices, with corresponding derived proximity matrices. We have
also presented some generalizations, such as the sufficient MV, the sediment,
sectional, and restricted displays. In practice, observed data can be highly
complex, to the degree that the basic matrix visualization procedures are not
rich enough to comprehend the data structure. In some situations one may
not be able to apply MV directly to the given data or proximity matrices.
This section discusses ongoing projects and future directions that will make
matrix visualization a more promising statistical graphical environment. One
important feature of the GAP (Chen (2002)) approach to matrix visualization
is that it usually contains four basic procedures: (1) color projection of the
raw data matrix; (2) computation of two proximity matrices for variables and
sample; (3) color projection of the two proximity matrices; and (4) permuta-
tions of variables and sample. Most of the extensions of MV have something
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Fig. 17. Binary data matrix for reduced Data Set 4 (432 genes (rows) for 88
pathways (columns)) with two Jaccard proximity matrices for genes and for path-
ways?sorted by?average linkage trees on both directions.

to do with the first two procedures. The aforementioned algorithms for the
other two steps can be simply adapted once the first two procedures are fixed.

8.1 MV for Nominal Data

It is much more difficult to create MV for nominal data than it is for binary
data, since one can use black/white to code 1/0 if the binary data is of asym-
metric nature and can use the Jaccard and other coefficient for binary data
to derive the between variables and between sample relationships. There is no
natural way to guide the color-coding for multivariate nominal data in such a
way that the color version of relativity of a statistical graph still holds (Chang
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et al. (2002)). Derivation of meaningful between-variable and between-sample
proximity measures for nominal data is another challenging issue. Chen (1999)
and Chang et al. (2002) utilized the Homals (de Leeuw (1998)) algorithm and
developed a categorical version of matrix visualization that naturally resolved
the two critical problems.

8.2 MV for Covariate Adjustment

Quite often covariate data, such as gender and age, are collected in a study
in addition to the variables of primary interest. When effects of covariates are
at issue, covariate adjustment has to be taken into consideration much as in a
formal statistical modelling process. Wu and Chen (2006) introduced a unified
regression model approach which partitions the raw data matrix into model
and residual matrices, and ordinary MV can be applied on these two derived
matrices. The covariate adjustment process is accomplished through the esti-
mation of conditional correlations. For a discrete covariate, a correlation ma-
trix for variables is decomposed into within- and between-component matrices.
When the covariate is continuous, the conditional correlation is equivalent to
the partial correlation under the assumption of joint normality.

8.3 Data with Missing Values

The relativity of a statistical graph (Chen (2002)) is the main concept in seri-
ation algorithms for constructing meaningful clustered matrices. This property
can be used for developing a weighted pattern method to impute the miss-
ing values. The initial proximity measurements for rows and columns with
missing values can be computed with pair-wise complete observations first,
then imputed values are estimated and updated iteratively for the subsequent
proximity calculations and imputation.

8.4 Modelling of Proximity Matrices

Many statistical modelling procedures try to visually explore the high- dimen-
sional pattern embedded in a proximity matrix that records pair-wise similar-
ity or dissimilarity for a set of objects through a low-dimensional projection.
Multidimensional scaling, hierarchical clustering analysis, and factor analy-
sis are three such statistical techniques. Four types of matrices are usually
involved in the modelling process of these statistical procedures. The input
proximity matrix is transformed into a disparity matrix prior to fixing the
statistical model that summarizes the information into the output distance
matrix. A stress (residual) matrix is calculated for assessing the badness-of-fit
of the modelling. Such a study aims at creating a comprehensive diagnosis
environment for statistical methods through various types of matrix visual-
ization for the numerical matrices involved in the modelling process.
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9 Conclusion

Matrix visualization is the color order-based representation of data matrices.
It is of benefit to employ human vision for exploration of the structure in
a matrix in the pursuit of further appropriate mathematical operations and
statistical modelling. A good matrix visualization environment helps us gain
comprehensive insights into the underlying process. Rather than rely solely on
numerical characteristics, matrix visualization is suggested as a preliminary
step in modern exploratory data analysis and is a continuing and active topic
of research and application.

A matrix visualization displays provide five levels of information: (1) raw
scores for every sample/variable combination; (2) an individual sample score
vector across all variables, and an individual variable vector across all sam-
ples; (3) an association score for every sample-sample and variable-variable
relationship; (4) a grouping structure for variables and a clustering effect for
sample; and (5) an interaction pattern of sample-clusters on variable-groups.

With the capacity for displaying thousands of variables in a single picture,
the flexibility for working with all types of data, and the ability for handling
the various manifestations of extraordinary data patterns (missing value, co-
variate adjustment), we believe matrix visualization has the opportunity to
become one of the major graphical tools for the new generation of exploratory
data analysis (EDA).
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