A peer-reviewed version of this preprint was published in PeerJ on 12 January 2018.

View the peer-reviewed version (peerj.com/articles/4221), which is the preferred citable publication unless you specifically need to cite this preprint.

Erasmus DJ, Yurkowski EA, Huber DPW. 2018. DNA barcode-based survey of Trichoptera in the Crooked River reveals three new species records for British Columbia. PeerJ 6:e4221 https://doi.org/10.7717/peerj.4221

DNA barcode-based survey of Trichoptera in the Crooked River reveals three new species records for British Columbia

Daniel J Erasmus Corresp., 1, Emily A Yurkowski, 1, Dezene PW Huber Corresp., 2

¹ Biochemistry and Molecular Biology, University of Northern British Columbia, Prince George, British Columbia, Canada

² Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, British Columbia, Canada

Corresponding Authors: Daniel J Erasmus, Dezene PW Huber Email address: erasmus@unbc.ca, huber@unbc.ca

Anthropogenic pressures on aquatic systems have placed a renewed focus on biodiversity of aquatic macroinvertebrates. By combining classical taxonomy and DNA barcoding we identified 39 species of caddisflies from the Crooked River, a unique and sensitive system in the southernmost arctic watershed in British Columbia. Our records include three species never before recorded in British Columbia: *Lepidostoma togatum* (Lepidostomatidae), *Ceraclea annulicornis* (Leptoceridae), and *Cheumatopsyche harwoodi* (Hydropsychidae). Three other specimens may represent new occurrence records and a number of other records seem to be substantial observed geographic range expansions within British Columbia.

1 DNA barcode-based survey of Trichoptera in the Crooked River reveals three new species

2 records for British Columbia

- 3 Daniel J. Erasmus^{1*}, Emily A.Yurkowski¹, and Dezene P. W. Huber^{2*}
- ⁴ ¹Biochemistry and Molecular Biology and
- ⁵ ²Ecosystem Science and Management Program
- 6 University of Northern British Columbia, Prince George, British Columbia, Canada
- 7 *Corresponding authors: erasmus@unbc.ca, huber@unbc.ca
- 8

9 Abstract

Anthropogenic pressures on aquatic systems have placed a renewed focus on biodiversity of 10 aquatic macroinvertebrates. By combining classical taxonomy and DNA barcoding we identified 11 12 39 species of caddisflies from the Crooked River, a unique and sensitive system in the southernmost arctic watershed in British Columbia. Our records include three species never 13 before recorded in British Columbia: Lepidostoma togatum (Lepidostomatidae), Ceraclea 14 annulicornis (Leptoceridae), and Cheumatopsyche harwoodi (Hydropsychidae). Three other 15 specimens may represent new occurrence records and a number of other records seem to be 16 substantial observed geographic range expansions within British Columbia. 17

18

19 **INTRODUCTION**

With accelerating anthropogenic climate change there is a renewed interest in assessing
 biodiversity in freshwater ecosystems (Parmesan 2006). Freshwater ecosystems are especially
 under cumulative threats as their summer temperatures rapidly warm, with increased demand for

23	fresh water, and by industrial in riparian zones (Meyer et al. 1999). Assessing insect biodiversity
24	is a challenging, but vital, activity in the face of these changes in order to understand aquatic
25	food webs, ecosystem services, and for use in aquatic environmental monitoring (Burgmer et al.
26	2007; Dobson and Frid 2009; Cairns and Pratt 1993). DNA barcoding combined with classical
27	taxonomy can help to speed up this process (DeSalle et al. 2005). The Barcode Of Life Database
28	(BOLD) currently contains DNA barcodes for more than 260, 000 species including ~4555
29	Trichoptera species, and facilitates the identification of species based on a portion their
30	cytochrome oxidase I (COI) DNA genes. In addition, recent comprehensive work on barcode-
31	assisted Trichoptera taxonomy (Zhou et al. 2009, 2010a,b, 2011, 2016) provides a solid
32	foundation for biodiversity assessments of caddisflies in North America.
33	Trichoptera, Ephemeroptera (mayflies), Plecoptera (stoneflies), and often aquatic Diptera
34	(true flies) are used in well-developed indices as indicator of aquatic ecosystem health (Lenat
35	and Barbour 1994). Due to their taxonomic richness, differential susceptibility to pollutants, and
36	abundance in almost all water bodies worldwide, shifts in their number or taxonomic diversity
37	both temporally and/or geographically are often used as indicators of disturbance (Houghton
38	2004; Pond 2012). However monitoring work is best accomplished with good information on
39	which species are present. Due to a lack of historical sampling in some areas, managers often
40	must rely on regional (often province- or state-level) checklists that may or may not represent the
41	taxonomic and functional diversity of smaller areas or specific sensitive systems.
42	The Crooked River (Figure 1) is the southernmost Arctic watershed lotic system in British
43	Columbia. It flows north from Summit Lake (which is just on the north side of the continental
44	divide) to McLeod Lake, connecting a series of lakes along the way. From there its water flows
45	via other systems to eventually end up in the Williston Reservoir – a massive hydroelectric

reservoir in the Rocky Mountain Trench that represents one of the largest anthropogenic 46 landscape modifications on earth. The Crooked River is named for all the oxbows due to its slow 47 meandering flow. This river is also fed by underground springs – Livingston Springs in Crooked 48 River Provincial is a well-known spring that supplies the river with water year round and 49 moderates annual temperature shifts. An extinct volcanic cone – currently named Teapot 50 Mountain – is situated at its headwaters, likely providing mineral nutrient inputs. As a bona fide 51 spring creek, the Crooked River has a very flat gradient with swamp and marshland along much 52 of its shoreline. During freshet the river floods these marshes bringing more nutrients into the 53 54 system.

The Crooked River has been heavily used by European settlers for transport and trade for 55 much of their history in British Columbia (McKay 2000) - and it was doubtless used prior to that 56 by First Nations groups for sustenance and as a settlement location. These human-caused impacts 57 continue to this day in an increasing manner. The river is in direct path of planned pipelines 58 originating from northeastern British Columbia and Alberta that will run toward the Pacific 59 coast. In addition the area has been logged for years resulting in a network of resource roads and 60 bridges. A major highway and a rail line also run along much of its length, and are at times only 61 a few meters from the river's main channel. Our searches have revealed no recorded biodiversity 62 surveys on the Crooked River. In addition, to our knowledge no comprehensive recent 63 assessment has been done on Trichoptera in central or northern British Columbia. It is therefore 64 65 important to develop a baseline of aquatic species present in the Crooked River for ongoing and future monitoring work on this river and nearby systems. 66

67

68 METHODS AND MATERIALS

69	We collected specimens on a biweekly basis from eight locations ($CR2 - 54.484^{\circ}N$, -
70	122.721°W, CR2B – 54.484°N, -122.721°W, CR3 – 54.643°N, -122.743°W, CR4 – 54.388°N, -
71	122.633°W, CR5 – 54.478°N, -122.719°W, CR6 – 54.328°N, -122.669°W, CR100BR –
72	54.446°N, -122.653°W, CR108 – 54.458°N, -122.722°W) along the edge of the Crooked River,
73	British Columbia between May and August 2014 using both hand and kick-net methods. We
74	completed collections under the British Columbia Ministry of Environment Park Use Permit
75	#107171 where required. We preserved specimens in 80% ethanol upon collection. We classified
76	all 2204 caddisfly specimens that we collected to the lowest possible taxonomic ranking (genus
77	or family) based on published morphological keys (Wiggins 1977; Clifford 1991; Schmid 1998).
78	We selected morpho-species based on that visual identification and 214 specimens were
79	subsequently sent to the Biodiversity Institute of Ontario (BIO) and its Barcode of Life Database
80	(http://www.boldsystems.org) in Guelph, Ontario, to have their barcode region (COI) sequenced
81	for further classification. We received back 185 useable sequences (>400 bp., <5 miscalls, no
82	contamination detected). We vouchered all specimens set for sequencing at the Centre for
83	Biodiversity Genomics at the University of Guelph. We identified specimens based on the CO1
84	5' region using the BOLD platform with MUSCLE sequence alignments and a Kimura-2-
85	parameter distance model. The data for all collected specimens is available as project CRTRI at
86	http://v4.boldsystems.org/index.php/MAS_Management_DataConsole?codes=CRTRI.
87	We cross-referenced the Crooked River Trichoptera species list that we obtained from
88	analysis of our BOLD data using checklists, museums records and databases from the following:
89	Canadian National Collection of Insect, Arachnids and Nematodes (http://www.canacoll.org/);
90	Strickland Museum at the University of Alberta; Beaty Biodiversity Museum at the University of
91	British Columbia; Electronic Atlas of the Wildlife of British Columbia

92 (http://ibis.geog.ubc.ca/biodiversity/efauna/); Natureserve (http://www.natureserve.org/);

93 Canadensys (http://www.canadensys.net/), Global Biodiversity Information Facility

94 (<u>http://www.gbif.org/</u>); the Royal Ontario Museum, and the Royal British Columbia Museum

95 (http://search-collections.royalbcmuseum.bc.ca/Entomology).

96

97 RESULTS & DISCUSSION

We used morphological keys to identify all 2204 collected specimens to family or genus, 98 after which we used successful barcodes and database searches to deduce the species identities of 99 185 individuals based on previous database annotations. In total we detected 41 caddisfly species 100 - found in 20 genera within 11 families - in the Crooked River system (Table 1). All barcode 101 data are available at the Barcode Of Life Database (BOLD). Thirty five of the 41 species we 102 103 identified were assigned to known species via database matches. Although originally arbitrary, a 2% threshold for delineating species within Trichoptera is considered to be a reliable approach 104 (Zhou et al. 2009). COI sequences from of specimens from the Crooked River with DNA 105 sequences matching 99.67% and 99.13% to Lepidostoma cinereum and Neophylax rickeri 106 respectively, were assigned to the aforementioned species. 107

Among the 34 specimens identified to species with 100% database matches are *Cheumatopsyche harwoodi, Lepidostoma togatum* and *Ceraclea annulicornis,* all three are new
species records for British Columbia. We found a larva of *Cheumatopsyche harwoodi* (synonym *C. enigma*) at CR4 on May 16th 2014 (Figure 2). On July 14th we found a larva for *Lepidostoma togatum* {synonyms *L. canadense* (Banks, 1899) *L. pallidum* (Banks, 1897) *Mormomyia togatum*(Hagen, 1861), *Pristosilo canadensis* (Banks, 1899), *Silo pallidus* (Banks, 1897)} at CR3 (Figure
3). On August 13th, 2014 we found a specimen of *Ceraclea annulicornis* {(synonyms:

115	Athripsodes annulicornis (Stephens, 1836), C. futilis (Banks, 1914), C. recurvata (Banks, 1908),
116	Leptocerus annulicornis (Stephens, 1836), L. futilis (Banks, 1914)} at CR3 (Figure 4).
117	We found specimens belonging to three genera that had no significant matches at the
118	species level on either the Barcode of Life Database or at NCBI; therefore we only provide
119	genus-level identifications (Table 1). A specimen we putatively assign as Micrasema had only
120	one match in BOLD Genbank Accession# KR145307 (Zhou et al., 2016), but much further
121	south, on southern Vancouver Island (Figure 5).
122	A specimen putatively belonging to the genus Hydroptila had a number of 100% matches
123	to the Crooked River Hydroptila sp. in the BOLD database (Zhou et al., 2016), but none
124	identified to species level. (Figure 6). Sequence alignments revealed 86% and 84. 74% similarity
125	to <i>H. rono</i> and <i>H. xera</i> respectively; both species are known to be present in British Columbia.
126	The other two known Hydroptila spp. in British Columbia, H. arctia and H. consimilis, are
127	substantially dissimilar from our specimen (81% and 82% match, respectively).
128	A third specimen putatively assigned to Lepidostoma resides in a BIN with only two
129	members (BOLD:ACL5324) -the Crooked River specimen and one other from British Columbia
130	(Genbank Accession # KX142483) (Figure 7).
131	These three specimens are thus most likely also new species records for British
132	Columbia. All known species in British Columbia belonging to Micrasema and Hydroptila have
133	DNA barcodes in BOLD, and ten of the 12 Lepidostoma species known to be in British
134	Columbia have DNA barcodes in BOLD. Only L. quercina and L. stigma do not, and it is
135	possible that our specimen belongs to one of these two species.
136	The presence of 41 species (20 genera, 11 families) of caddisflies in the Crooked River,
137	compares similarly to other rivers and regions. For instance sampling the Churchill, Manitoba

area – including the Churchill River, tundra ponds, lakes, and small streams – revealed 68
species (Zhou *et al.* 2009). Sampling of the Ochre River, Manitoba revealed 33 species (8
families, 17) (Cobb and Flannagan 1990). To our knowledge there is no study that provides
comprehensive species checklist of caddisflies for a specific tributary in British to which we
could compare our data more regionally.

In summary, our assessment of the Trichoptera inhabiting the Crooked River revealed three new species records for British Columbia. Specifically, to our knowledge this is the first report of *Cheumatopsyche harwoodi, Lepidostoma togatum* and *Ceraclea annulicornis*. Our results also suggest two more, and possibly three, new species records. This baseline biodiversity data is vital for ongoing monitoring and management of this unique and highly impacted located system and provides new data for managers and conservationists working in this understudied system.

150

ACKNOWLEDGEMENTS: We thank Claire Shrimpton for assistance in the field. Museum
databases were provided by the Beaty Biodiversity Museum at the University of British
Columbia (Karen Needham and Chris Ratzlaff), the Royal British Columbia Museum (Claudia
Copley and Joel Gibson), the Strickland Museum at the University of Alberta (Bryan Brunet and
Felix Sperling), and the Royal Ontario Musuem (Doug Currie, Antonia Guidotti, Brad Hubley,
and Brenna Wells. This research was funded by the University of Northern British Columbia, the
Canada Research Chairs Program, and the Canada Foundation for Innovation.

158

159

REFERENCES

160	Burgmer T., Hillebrand, H., and Pfenninger, M. 2007. Effects of climate-driven temperature
161	changes on the diversity of freshwater macroinvertebrates. Oecologia 151:93-103
162	

- Cairns, J. Jr. and Pratt, J. R. 1993. A History of Biological Monitoring Using Benthic
- 164 Macroinvertebrates. In -Freshwater Biomonitoring and Benthic Macroinvertebrates, D. M.
- 165 Rosenberg and V. H. Resh, eds., Chapman & Hall, NY. p. 10-27

166

- 167 Clifford, H. F. 1991. *Aquatic Invertebrates of Alberta*. The University of Alberta Press,
- 168 Edmonton, AB, 314-352.

169

- 170 Cobb, D.G., and Flannagan, J. F. 1990. Trichoptera and substrate stability in the Ochre River,
- 171 Manitoba. *Hydrobiologica* **206**: 29-38.

172

- 173 DeSalle, R., Egan, M. G., and Siddall, M.2005. The unholy trinity: taxonomy, species
- delimitation and DNA barcoding. *Philosophical Transactions of the Royal Society B: Biological*
- 175 Sciences 360: 1905-1916.

176

Dobson, M. and Frid, C. 2009. Rivers. In -Ecology of Aquatic systems. Oxford University Press,
Oxford, UK. p. 45-83

- 180 Houghton, D. C. 2004. Biodiversity of Minnesota caddisflies (Insect: Trichoptera): Delineation
- and characterization of regions. *Environmental Monitoring and Assessment* **95**: 153-181.

183	Lenat, D. R., and Barbour, M. T.1994. Using benthic macroinvertebrate community structure for
184	rapid, cost-effective, water quality monitoring: rapid bioassessment. In - Biological monitoring
185	of aquatic systems. Edited by S. L. Loeb and A. Spacie. Lewis Publishers, NY, USA
186	McKay, B. 2000. Crooked River rats: The adventures of pioneer rivermen. Hancock House
187	Publishers Ltd., Surrey, British Columbia, Canada.
188	
189	Meyer, J., L., Sale, M. J., and Mulholland, P. J. 1999. Impacts of climate change on aquatic
190	ecosystem functioning and health. JAWRA 35: 1373-1386.
191	
192	Parmesan, C. 2006. Ecological and Evolutionary Responses to Recent Climate Change. Annu.
193	<i>Rev. Ecol. Evol. Syst.</i> 37 : 637-669.
194	
195	Pond, G. J. 2012. Biodiversity loss in Appalachian headwater streams (Kentucky, USA):
196	Plecoptera and Trichoptera communities. Hydrobiologia 679: 97-117.
197	
198	Schmid, F. 1998. The Insects and Arachnids of Canada. Part 7. Genera of the Trichoptera of
199	Canada and Adjoining or Adjacent United States. NRC Research Press, Ottawa, Ontario,
200	Canada. p.319.
201	

Wiggins, G. B. 1977. *Larvae of the North American Caddisfly Genera (Trichoptera)*. University
of Toronto Press, Toronto, Ontario, Canada. p. 381.

204

- 205 Zhou, X, Adamowicz, S. L., Jacobus, L. M., DeWalt, R. E., and Hebert, P. D. N. 2009. Towards
- a comprehensive barcode library for arctic life Ephemeroptera, Plecoptera, and Trichoptera of

207 Churchill, Manitoba, Canada. *Frontiers in Zoology* **6**:30.

208

209 Zhou, X., Jacobus, L. M., DeWalt, R. E., Adamowicz, S. J., Hebert, P. D. N. 2010a.

210 Ephemeroptera, Plecoptera, and Trichoptera fauna of Churchill (Manitoba, Canada): insights into

biodiversity patterns from DNA barcoding. *Journal of the North American Benthological Society*212 29: 814-837.

213

- 214 Zhou, Xin; Jacobus, Luke M.; DeWalt, R. Edward; Adamowicz, Sarah J.; Hebert, Paul D. N.
- 215 2010b. The Ephemeroptera, Plecoptera, and Trichoptera fauna of Churchill (Manitoba, Canada):

216 insights into biodiversity patterns from DNA barcoding Journal of the North American

217 Benthological Society 29(3):814-837

- 219 Zhou, X., Robinson, J.L., Geraci, C.J., Parker, C.R., Flint Jr, O.S., Etnier, D.A., Ruiter, D.,
- 220 DeWalt, R.E., Jacobus, L.M. and Hebert, P.D. 2011. Accelerated construction of a regional
- 221 DNA-barcode reference library: caddisflies (Trichoptera) in the Great Smoky Mountains
- 222 National Park. *Journal of the North American Benthological Society*, 30(1), pp.131-162.

223	Zhou, X., Frandsen, P.B., Holzenthal, R.W., Beet, C.R., Bennett, K.R., Blahnik, R.J., Bonada,
224	N., Cartwright, D., Chuluunbat, S., Cocks, G.V. and Collins, G.E., 2016. The Trichoptera
225	barcode initiative: a strategy for generating a species-level Tree of Life. Phil. Trans. R. Soc. B,
226	<i>371</i> (1702), p.20160025.
227	
228	
229	
230	
231	
232	
233	
234	
235	
236	
237	
238	
239	
240	
241 242	
242 243	
244	
245	
246	
247	

Figure 1: Map of sampling sites along the Crooked River, British Columbia. CR2: 54.485265°N, 122.717974°W; CR2B: 54.484474°N, -122.721257°W; CR3: 54.642963°N, -122.743021°W; CR4:
54.387709°N, -122.633217°W; CR5: 54.477975°N, -122.719000°W; CR6: 54.328038°N, 122.669236°W; CR100BR: 54.446455°N, -122.653129°W; CR108: 54.458511°N, -122.721828°W.

Figure 2: Larva identified as Cheumatopsyche harwoodi collected at CR4 on 16 May 2014. Lateral (A), ventral (B), dorsal (C), mouthparts (D), dorsolateral head capsule (E), lateral head capsule (F). This specimen is vouchered at the Biodiversity Institute of Ontario (specimen ID: BIOUG18684-B09). All images: Creative Commons BY-NC-SA (2017), Centre for Biodiversity Genomics Photography Group.

0.5 mm

0.5

B

D

F

0.5 mm

0.1 mm

0.1 mm

Α

E

C

Figure 4: Larva identified as *Ceraclea annulicornis* collected at CR3 on 13 August 2014. Dorsal
(A), dorsal head capsule (B), ventral (C), mouthparts (D). This specimen is vouchered at the
Biodiversity Institute of Ontario (specimen ID: BIOUG18683-B02). All images: Creative
Commons BY-NC-SA (2017), Centre for Biodiversity Genomics Photography Group.

0.5 mm

Figure 5: Larva assigned to *Micrasema* sp. collected at CR2 on 18 June 2014. Lateral (A),
dorsal (B), mouthparts (C), head (D). This specimen is vouchered at the Biodiversity Institute of
Ontario (specimen ID: BIOUG18683-F08). All images: Creative Commons BY-NC-SA
(2017), Centre for Biodiversity Genomics Photography Group.

- B A 0.5 mm 0.5 mm C D 0.1 mm

Figure 6: Larva assigned to *Hydroptila* sp. collected at CR2 on 18 June 2014. Lateral (A), dorsal
(B), mouthparts (C), head (D). This specimen is vouchered at the Biodiversity Institute of
Ontario (specimen ID: BIOUG18683-A06). All images: Creative Commons BY-NC-SA
(2017), Centre for Biodiversity Genomics Photography Group.

Figure 7: Adult assigned to *Lepidostoma* sp. collected at CR2 on 4 August 2014. Lateral (A),
dorsal (B), mouthparts (C), head (D). This specimen is vouchered at the Biodiversity Institute of
Ontario (specimen ID: BIOUG18683-G10). All images: Creative Commons BY-NC-SA
(2017), Centre for Biodiversity Genomics Photography Group.

A

- **Table 1:** Trichoptera collected along the Crooked River, British Columbia and associated COI
- 559 DNA barcode-assigned identifications along with date ranges of collection. Locations of
- 560 collection sites are given in the footnotes. All sequence data are available in public repositories
- as listed, and all specimens are vouchered at the University of Guelph Centre for Biodiversity
- 562 Genomics.

Family	Genus	Species ¹	Sample IDs ²	BIN	NCBI accession ³	Collection site(s) ^⁴	Collection date range [°]	Notes
Brachycentridae	Brachycentrus	americanus	BIOUG18684-B11 and 22 others	BOLD:ABX6535	KX144627	CR2, CR2B, CR4, CR108	11-JUN to 13-AUG	
		occidentalis	BIOUG18683-H05 and 5 others	BOLD:AAE0281	KX144012	CR3, CR100BR	04-JUN to 13-AUG	
	Micrasema	bactro	BIOUG18683-F09.1	BOLD:AAC4650	KX143689	CR4	11-JUN	
		sp.	BIOUG18683-F08	BOLD:ACC4912	KX142261	CR2	18-JUN	Potential new BC record
Hydropsychidae	Arctopsyche	grandis	BIOUG18683-A11.1 and 6 others	BOLD:AAB3049	KX143192	CR2, CR108	09-JUL to 13-AUG	
	Cheumatopsyche	analis	BIOUG18684-B10	BOLD:AAA5695	KX144608	CR100BR	28-JUL	
		harwoodi	BIOUG18684-B09	BOLD:AAA2316	KX141182	CR4	16-MAY	New BC record
		sp.	BIOUG18684-E05	BOLD:ACE5262	KX142965	CR108	09-JUL	
		sp.	BIOUG18684-E08 and 4 others	BOLD:AAA3891	KX142829	CR3	29-JUL to 13-AUG	
	Hydropsyche	alhedra	BIOUG18683-H03 and 2 others	BOLD:AAC1650	KX143172	CR4, CR108	04-JUN to 11-JUN	
		alternans	BIOUG18683-C12 and 14 others	BOLD:AAA3236	KX140968	CR3, CR100BR	10-JUN to 13-AUG	
		cockerelli	BIOUG18683-A03	BOLD:AAC3057	KX143078	CR4	16-MAY	
		morosa	BIOUG18684-E01 and 5 others	BOLD:AAA3679	KX143491	CR3	28-JUL	
		slossonae	BIOUG18684-E06 and 12 others	BOLD:AAA2527	KX143429	CR2, CR4, CR100BR, CR108	11-JUN to 13-AUG	
Hydroptilidae	Hydroptila	arctia	BIOUG18683-F10.1	BOLD:AAE5200	KX141605	CR108	25-JUN	
		sp.	BIOUG18683-A06	BOLD:AAK3416	KX142062	CR2	18-JUN	Potential new BC record
Lepidostomatidae	Lepidostoma	pluviale	BIOUG18684-D07.1 and 3 others	BOLD:ACF2295	KX142857	CR100BR	18-JUN to 13-AUG	
		sp.	BIOUG18683-G10	BOLD:ACL5324	KX144650	CR2	4-AUG	Potential new BC record
		togatum	BIOUG18684-D02	BOLD:AAA2325	KX144002	CR3	14-JUL	New BC record
		cinereum	BIOUG18683-C07.1 and 3 others	BOLD:AAK7943	KX142572	CR2, CR2B, CR4	25-JUN to 4-AUG	

		unicolor	BIOUG18684-H04 and 8 others	BOLD:AAC5923	KX142875	CR4, CR108	11-JUN to 4-AUG	
Leptoceridae	Ceraclea	alagma	BIOUG18683-F06 and two others	BOLD:AAA5876	KX143301	CR6, CR100BR, CR108	16-MAY to 14-JUL	
		annulicornis	BIOUG18683-B02	BOLD:AAA5429	KX142035	CR3	13-AUG	New BC record
		cancellata	BIOUG18684-A01	BOLD:ABZ0710	KX143326	CR4	4-AUG	
		nigronervosa	BIOUG18683-H09 and 1 other	BOLD:AAC3781	KX141154	CR100BR	10-JUN	
		resurgens	BIOUG18683-F07.1 and 2 others	BOLD:ACG9704	KX142221	CR3	14-JUL to 28-JUL	
Limnephilidae	Amphicosmoecus	canax	BIOUG18683-D09 and 5 others	BOLD:AAE2491	KX143314	CR2B, CR4, CR100BR	11-JUN to 9-JUL	
	Clistoronia	magnifica	BIOUG18683-F05 and 1 other	BOLD:AAC1848	KX141495	CR3, CR4	28-JUL to 13-AUG	
	Dicosmoecus	atripes	BIOUG18683-G05 and 2 others	BOLD:AAC5045	KX140940	CR4	11-JUN	
		gilvipes	BIOUG18684-H07 and six others	BOLD:AAI9526	KX142636	CR2B, CR4, CR100BR	16-MAY to 9-JUL	
	Limnephilus	externus	BIOUG18683-F12 and 1 other	BOLD:AAA2803	KX141731	CR2B, CR6	11-JUN to 18-JUN	
	Onocosmoecus	unicolor	BIOUG18684-H04 and 8 others	BOLD:AAC5923	KX142875	CR4, CR108	11-JUN to 4-AUG	
	Psychoglypha	alascensis	BIOUG18683-G07 and 7 others	BOLD:ACH0278	KX141905	CR4, CR5	9-MAY to 4-AUG	
		subborealis	BIOUG18683-D11.1 and 2 others	BOLD:AAE0945	KX144814	CR4	9-JUL to 4-AUG	
Philopotamidae	Wormaldia	gabriella	BIOUG18684-C03 and 4 others	BOLD:AAC1539	KX143731	CR2, CR108	21-JUL to 13-AUG	
Phryganeidae	Agrypnia	improba	BIOUG18683-C01	BOLD:ACK0044	KX143489	CR2	13-AUG	
Polycentropodidae	Neureclipsis	bimaculata	BIOUG18683-A08 and 3 others	BOLD:AAE2683	KX141945	CR3	14-JUL to 28-JUL	
	Plectrocnemia	cinerea	BIOUG18684-A08	BOLD:AAA3441	KX141515	CR6	14-JUL	
Rhyacophilidae	Rhyacophila	brunnea	BIOUG18683-B12 and 11 others	BOLD:AAB3088	KX141430	CR4, CR100BR, CR108	18-JUN to 2-AUG	
		sp.	BIOUG18684-A07 and 3 others	BOLD:ACL4744	KX140935	CR2, CR100BR	13-AUG	
Uenoidae	Neophylax	rickeri	BIOUG18683-G08	BOLD:AAG9543	KX144032	CR4	4-JUN	

1- determined from morphological keys and BOLD database match.

2- if more than one specimen, longest sequence from BOLD with an NCBI accession number; other sample data are available at BOLD CRTRI project DOI:

3- for the sample specified in the fourth column.

4- CR2 - 54.484°N, -122.721°W; CR2B - 54.484°N, -122.721°W; CR3 - 54.643°N, -122.743°W; CR4 - 54.388°N, -122.633°W; CR5 - 54.478°N, -122.719°W; CR6 - 54.328°N, -122.669°W;

CR100BR – 54.446°N, -122.653°W; CR108 – 54.458°N, -122.722°W

5- first collection date and (if applicable) last collection date in 2014.