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Abstract 

 

Temperature-dependence correlations of vapor pressure and acentric factor for 

normalhydrogen(n-H2), orthohydrogen(o-H2) and parahydrogen(p-H2), have been 

formulated. The obtained correlations are statistically excellent. The characteristic parameters 

such as the Pitzer’s acentric factor, Riedel’s parameter, Filippov’s parameter have been 
determined for n-H2, o-H2 and p-H2. And, the curvatures of vapor pressure curve for n-H2,   

o-H2 and p-H2 have been determined in a wide range of temperature. It is found that the 

curvatures of vapor pressure curve for n-H2, o-H2 and p-H2 have a maximum at about 

17.11K, 17.12K and 17.00K, respectively. 
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Introduction 

Hydrogen(H2) is a contender for alternative energy. H2 fuel cell vehicles and H2 based low-

carbon fuels will contribute to the decarbonisation of the mobility sector, shipping and 

aviation. H2 is used as a rocket fuel. And, petroleum refining, semiconductor manufacturing, 

aerospace industry, fertilizer production, metal treatment, pharmaceutical, power plant 

generator, methanol production, commercial fixation of nitrogen from air, reduction of 

metallic ores use H2.  
o-H2 and p-H2 are nuclear spin isomers of H2. The nuclear spins of o-H2 are parallel and 

that of p-H2 are antiparallel. They are chemically identical. They have the same atomic and 
isotopic structure. They differ in the nuclear spin states of their atoms. The energy difference 
associated with nuclear spin transitions of H2 is about 0.1J.mol-1. However, this tiny change 
leads to different thermodynamic and spectroscopic properties of H2 molecules. The o-H2 and 
p-H2 are characterized by different values of specific heat, boiling point and heat of vapor 
formation. It follows from the Pauli’s principle that nuclear spin state and rotational state of 
the H2 molecule are correlated. This is attributed to the fact that the molecules of these gases 
are rotating differently. Conversion between two nuclear spin states of H2 molecule occurs 
extremely slowly as the transitions between symmetric and antisymmetric nuclear spin states 
are forbidden by the selection rule of quantum mechanics. Hence, p-H2 can be stored as a 
individual gas for longer periods. However, the use of paramagnetic catalysis promote the 
establishment of Boltzman’s thermodynamic equilibrium between o-H2 and p-H2 states for a 
given temperature at accelerated rate. The paramagnetic materials create a strong 
inhomogeneous magnetic field at the atomic scale. In such fields, the two H2 isomers are no 
longer equivalent. Hence, the spin-flip transitions between o-H2 and p-H2 are no longer 
forbidden. At room temperature, the n-H2 at thermal equilibrium consists of 75% o-H2 and 
25% p-H2. Knowledge about o-H2 to p-H2 conversion is important for the storage of liquid 



H2. Due to the energy difference associated with different rotational level, energy is released 
when o-H2 converts to p-H2 and energy is absorbed in the reverse process. 

The scientific and technical significance has led to numerous experimental and theoretical 
studies on the thermodynamic properties of H2[1-14]. The effect of o-H2 and p-H2 
composition on the performance of a proton exchange membrane fuel cell is calculated and 
experimentally studied[9]. Equation of state of o-H2 and p-H2 has been derived[10]. The 
influence of o-H2 and p-H2 conversion is considered to recommend the parameters for H2 
storage[11]. Sound velocity in liquid p-H2, dielectric constant of liquid p-H2 along the 
saturation line, surface tension of p-H2 in the temperature range from triple point to critical 
point and density of liquid p-H2 along saturation line have been determined[12]. In contrast to 
bulk metals, the nanoparticles of copper, silver and gold catalyze the low temperature o-H2 to 
p-H2 conversion[14]. p-H2  is employed in the NMR and MRI signal enhancement[15].  

The technological applications of hydrogen require the knowledge of its thermodynamic 

properties including its acentric factor. Acentric factor is a characteristic thermodynamic 

parameter of substances. It is a measure of nonsphericity of molecules[16,17]. It accounts[18] 

for the deviations in the thermodynamic properties of fluids consisting of non-spherical 

molecules from that of fluids made of spherical molecules. Acentric factor is a used as a 

parameter in the corresponding state principle[19]. The acentric factor is widely used in 

determining the thermodynamic properties of substances such as the compressibility 

factor[20-25], fluid phase equilibrium[26,27], virial coefficients[28,29], vapour 

pressure[30-32] and enthalpy of vaporization[17,33,34]. Hence, the knowledge of 

acentric factor of substances acquires significance. In recent years, several studies have 

been made on the acentric factors of various substances. Acentric factors are 

correlated[35] to molecular energies of n-alkanes. Artificial neural network group 

contribution method is used[36] to calculate the acentric factors of pure compounds. The 

values of acentric factors of limonene and linalool were optimized[37] to improve the 

performance of the SRE EoS. A new second order group contribution method has been 

developed[38] to predict the acentric factors of organic compounds. Using the normal 

boiling temperature, molecular weight and the number of atoms and bonds, empirical 

correlations are developed[39] to estimate the acentric factors of s-containing 

compounds. Two different intelligent systems are used to estimate[40] the acentric 

factors of binary and ternary mixtures of ionic liquids. New generalized models are 

introduced[41] to estimate the acentric factors of pure compounds.  Acentric factors of 

fluoroalkylsilane compounds have estimated[42] by a group contribution method. Acentric 

factor of carbon dioxide is required[43] by the cubic equations of state to predict the 

solid solute solubility in supercritical carbon dioxide. However, the studies on the 

acentric factors of H2 and their isomers, particularly their temperature dependence, are 

scarce.  

This work formulates the temperature-dependence correlations for the acentric factor, 

vapour pressure and the curvature of vapour pressure curve for n-H2, o-H2, p-H2 over a 

wide range of temperature upto the vicinity of their liquid-vapour critical point. 

Vapor pressure 

Analysis of the vapour pressure Pvp data[44,45] for n-H2, o-H2, and p-H2 shows that its 

temperature-dependence may be represented by a second degree polynomial. That is, 
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where Pvp is in MPa and T is in K. 

 The coefficients in Eq.(1) are 1A =1.3422, 2A =-0.1560 and 3A =0.0046. The correlation 

given by Eq.(1) is characterized by the correlation coefficient(R)  of 0.9976 and the 



coefficient of determination(R2) of 0.9952, respectively. The vapor pressure correlation given 

by Eq.(1) is depicted in Fig.1 along with the literature data[44,45]. 

 

 
Fig. 1 - Vapour pressure of n-H2, o-H2 and p-H2. 

 

Eq.(1) gives the temperature derivatives of vapour pressure as  
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For, n-H2, o-H2 and p-H2, the derivatives dP/dT and d2P/dT2  are  determined by Eqs.(2) and 

(3), respectively. The results are presented in the reduced coordinates T*=T/Tc and P*=P/Pc, 

in Tables 1-3 and depicted in Fig. 2 

 

 
Fig. 2 - dP*/dT* versus T* for n-H2, o-H2 and p-H2. 
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Curvature of vapor pressure curve 

The vapour pressure curve’s curvature at a particular temperature is a measure of how the 
surface bends away from its tangent plane at this point. The curvature of the vapour pressure 

curve is examined for the proposed Pvp correlation. The curvature (inverse of the radius of 

curvature) of the vapour pressure curve is defined[46] as 
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 For n-H2, o-H2 and p-H2, the curvature k is determined by Eq.(4) using the values of dP/dT 

and d2P/dT2 tabulated in Tables 1-3. The results are also given in Tables 1-3 and depicted in 

Fig. 3. The curvature of vapour pressure for n-H2, o-H2 and p-H2 is found have a maximum at 

temperatures 0.5162Tc, 0.5153Tc, and 0.5161Tc, respectively.  

 

 
Fig. 3 - Curvature of the vapour pressure curve for n-H2, o-H2 and p-H2. 

 

Table 1 - Curvature of vapour pressure curve k and acentric factor ω of n-H2. 

T* 
dP*/dT* 

Eq.(5) 

d2P*/dT2* 

Eq.(6) 

k
 

Eq.(4) 


 

Eq.(8) 


 
Eq.(9) 

dω/dT* 

Eq.(10) 

d2ω/dT*2 

Eq.(11) 

0.4555 -0.4369 6.0138 4.6272 0.9798 0.941 -5.7761 8.4398 

0.4707 -0.3187 6.0138 5.2015 0.8744 0.8544 -5.6481 8.4398 

0.4859 -0.2004 6.0138 5.6688 0.7749 0.7697 -5.5201 8.4398 

0.5010 -0.0822 6.0138 5.9533 0.6807 0.6869 -5.3921 8.4398 

0.5162 0.0361 6.0138 6.0020 0.5915 0.6061 -5.2641 8.4398 

0.5314 0.1543 6.0138 5.8052 0.5067 0.5272 -5.1361 8.4398 

0.5466 0.2726 6.0138 5.4008 0.4260 0.4503 -5.0080 8.4398 
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0.5617 0.3908 6.0138 4.8590 0.3492 0.3753 -4.8800 8.4398 

0.5769 0.5091 6.0138 4.2561 0.2758 0.3023 -4.7520 8.4398 

0.5921 0.6274 6.0138 3.6555 0.2056 0.2311 -4.6240 8.4398 

0.6072 0.7456 6.0138 3.0986 0.1384 0.162 -4.4960 8.4398 

0.6224 0.8639 6.0138 2.6060 0.0740 0.0948 -4.3679 8.4398 

0.6376 0.9821 6.0138 2.1840 0.0122 0.0295 -4.2399 8.4398 

0.6527 1.1004 6.0138 1.8294 -0.0472 -0.0339 -4.1119 8.4398 

0.6679 1.2186 6.0138 1.5351 -0.1044 -0.0953 -3.9839 8.4398 

0.6831 1.3369 6.0138 1.2923 -0.1595 -0.1547 -3.8559 8.4398 

0.6982 1.4551 6.0138 1.0926 -0.2126 -0.2122 -3.7279 8.4398 

0.7134 1.5734 6.0138 0.9281 -0.2639 -0.2678 -3.5998 8.4398 

0.7286 1.6916 6.0138 0.7925 -0.3135 -0.3214 -3.4718 8.4398 

0.7437 1.8099 6.0138 0.6802 -0.3615 -0.3731 -3.3438 8.4398 

0.7589 1.9282 6.0138 0.5869 -0.4079 -0.4229 -3.2158 8.4398 

0.7741 2.0464 6.0138 0.5089 -0.4529 -0.4707 -3.0878 8.4398 

0.7892 2.1647 6.0138 0.4436 -0.4966 -0.5165 -2.9598 8.4398 

0.8044 2.2829 6.0138 0.3884 -0.5390 -0.5605 -2.8317 8.4398 

0.8196 2.4012 6.0138 0.3417 -0.5802 -0.6025 -2.7037 8.4398 

0.8347 2.5194 6.0138 0.3019 -0.6203 -0.6425 -2.5757 8.4398 

0.8499 2.6377 6.0138 0.2679 -0.6593 -0.6806 -2.4477 8.4398 

0.8651 2.7559 6.0138 0.2386 -0.6973 -0.7168 -2.3197 8.4398 

0.8803 2.8742 6.0138 0.2134 -0.7343 -0.751 -2.1916 8.4398 

0.8954 2.9925 6.0138 0.1915 -0.7705 -0.7832 -2.0636 8.4398 

0.9106 3.1107 6.0138 0.1724 -0.8058 -0.8136 -1.9356 8.4398 

0.9258 3.2290 6.0138 0.1557 -0.8404 -0.842 -1.8076 8.4398 

0.9409 3.3472 6.0138 0.1411 -0.8742 -0.8684 -1.6796 8.4398 

0.9561 3.4655 6.0138 0.1282 -0.9074 -0.8929 -1.5516 8.4398 

0.9713 3.5837 6.0138 0.1168 -0.9400 -0.9155 -1.4235 8.4398 

0.9864 3.7020 6.0138 0.1066 -0.9721 -0.9361 -1.2955 8.4398 

 

Table 2 - Curvature of vapour pressure curve k and acentric factor ω of o-H2.  

T* 
dP*/dT* 

Eq.(5) 

d2P*/dT2* 

Eq.(6) 

k
 

Eq.(4) 


 

Eq.(8) 


 
Eq.(9) 

dω/dT* 

Eq.(10) 

d2ω/dT*2 

Eq.(11) 

0.4548 -0.4311 5.9104 4.5770 0.9845 0.9454 -5.7825 8.4398 

0.4699 -0.3138 5.9104 5.1337 0.8792 0.8588 -5.6548 8.4398 

0.4851 -0.1965 5.9104 5.5837 0.7797 0.7742 -5.5270 8.4398 

0.5002 -0.0793 5.9104 5.8551 0.6856 0.6915 -5.3992 8.4398 

0.5153 0.0380 5.9104 5.8976 0.5964 0.6107 -5.2715 8.4398 

0.5305 0.1553 5.9104 5.7029 0.5116 0.5319 -5.1437 8.4398 

0.5456 0.2725 5.9104 5.3081 0.4310 0.455 -5.0159 8.4398 

0.5608 0.3898 5.9104 4.7804 0.3396 0.38 -4.8882 8.4398 

0.5759 0.5071 5.9104 4.1932 0.2807 0.307 -4.7604 8.4398 

0.5910 0.6243 5.9104 3.6073 0.2105 0.2359 -4.6326 8.4398 

0.6062 0.7416 5.9104 3.0628 0.1433 0.1667 -4.5049 8.4398 

0.6213 0.8589 5.9104 2.5803 0.0789 0.0995 -4.3771 8.4398 

0.6364 0.9761 5.9104 2.1658 0.0170 0.0342 -4.2494 8.4398 

0.6516 1.0934 5.9104 1.8168 -0.0425 -0.0291 -4.1216 8.4398 

0.6667 1.2107 5.9104 1.5265 -0.0997 -0.0906 -3.9938 8.4398 

0.6819 1.3279 5.9104 1.2866 -0.1549 -0.1501 -3.8661 8.4398 

0.6970 1.4452 5.9104 1.0888 -0.2081 -0.2076 -3.7383 8.4398 



0.7121 1.5625 5.9104 0.9258 -0.2594 -0.2632 -3.6105 8.4398 

0.7273 1.6797 5.9104 0.7911 -0.3091 -0.3169 -3.4828 8.4398 

0.7424 1.7970 5.9104 0.6795 -0.3571 -0.3687 -3.3550 8.4398 

0.7575 1.9143 5.9104 0.5867 -0.4036 -0.4185 -3.2272 8.4398 

0.7727 2.0315 5.9104 0.5091 -0.4487 -0.4664 -3.0995 8.4398 

0.7878 2.1488 5.9104 0.4439 -0.4924 -0.5124 -2.9717 8.4398 

0.8030 2.2661 5.9104 0.3889 -0.5348 -0.5564 -2.8439 8.4398 

0.8181 2.3834 5.9104 0.3423 -0.5760 -0.5985 -2.7162 8.4398 

0.8332 2.5006 5.9104 0.3026 -0.6161 -0.6386 -2.5884 8.4398 

0.8484 2.6179 5.9104 0.2686 -0.6552 -0.6768 -2.4606 8.4398 

0.8635 2.7352 5.9104 0.2393 -0.6932 -0.7131 -2.3329 8.4398 

0.8787 2.8524 5.9104 0.2140 -0.7302 -0.7475 -2.2051 8.4398 

0.8938 2.9697 5.9104 0.1921 -0.7663 -0.7799 -2.0773 8.4398 

0.9089 3.0870 5.9104 0.1730 -0.8016 -0.8104 -1.9496 8.4398 

0.9241 3.2042 5.9104 0.1563 -0.8361 -0.8389 -1.8218 8.4398 

0.9392 3.3215 5.9104 0.1416 -0.8699 -0.8655 -1.6940 8.4398 

0.9543 3.4388 5.9104 0.1287 -0.9030 -0.8902 -1.5663 8.4398 

0.9695 3.5560 5.9104 0.1173 -0.9355 -0.9129 -1.4385 8.4398 

0.9846 3.6733 5.9104 0.1071 -0.9674 -0.9337 -1.3107 8.4398 

 

Table 3 - Curvature of vapor pressure curve k and acentric factor ω of p-H2. 

T* 
dP*/dT* 

Eq.(5) 

d2P*/dT2* 

Eq.(6) 

k
 

Eq.(4) 


 

Eq.(8) 


 
Eq.(9) 

dω/dT* 

Eq.(10) 

d2ω/dT*2 

Eq.(11) 

0.4190 -0.7439 6.0372 3.1182 1.2615 1.1579 -6.0848 8.4398 

0.4250 -0.6968 6.0372 3.3345 1.2124 1.1211 -6.0335 8.4398 

0.4554 -0.4611 6.0372 4.5212 0.9804 0.9418 -5.7773 8.4398 

0.4706 -0.3433 6.0372 5.1082 0.8748 0.8551 -5.6492 8.4398 

0.4858 -0.2254 6.0372 5.6046 0.7752 0.7703 -5.5211 8.4398 

0.5009 -0.1076 6.0372 5.9339 0.6809 0.6875 -5.3930 8.4398 

0.5161 0.0102 6.0372 6.0362 0.5916 0.6066 -5.2648 8.4398 

0.5313 0.1281 6.0372 5.8916 0.5067 0.5277 -5.1367 8.4398 

0.5465 0.2459 6.0372 5.5282 0.4260 0.4507 -5.0086 8.4398 

0.5617 0.3638 6.0372 5.0105 0.3491 0.3756 -4.8805 8.4398 

0.5768 0.4816 6.0372 4.4152 0.2756 0.3025 -4.7524 8.4398 

0.5920 0.5994 6.0372 3.8094 0.2054 0.2313 -4.6243 8.4398 

0.6072 0.7173 6.0372 3.2392 0.1382 0.1621 -4.4961 8.4398 

0.6224 0.8351 6.0372 2.7300 0.0738 0.0948 -4.3680 8.4398 

0.6376 0.9529 6.0372 2.2905 0.0120 0.0295 -4.2399 8.4398 

0.6527 1.0708 6.0372 1.9196 -0.0475 -0.0339 -4.1118 8.4398 

0.6679 1.1886 6.0372 1.6108 -0.1046 -0.0954 -3.9837 8.4398 

0.6831 1.3065 6.0372 1.3556 -0.1598 -0.1549 -3.8556 8.4398 

0.6983 1.4243 6.0372 1.1454 -0.2129 -0.2124 -3.7274 8.4398 

0.7135 1.5421 6.0372 0.9723 -0.2642 -0.268 -3.5993 8.4398 

0.7286 1.6600 6.0372 0.8295 -0.3138 -0.3217 -3.4712 8.4398 

0.7438 1.7778 6.0372 0.7114 -0.3618 -0.3734 -3.3431 8.4398 

0.7590 1.8956 6.0372 0.6132 -0.4082 -0.4232 -3.2150 8.4398 

0.7742 2.0135 6.0372 0.5313 -0.4532 -0.471 -3.0869 8.4398 

0.7894 2.1313 6.0372 0.4627 -0.4969 -0.5169 -2.9587 8.4398 

0.8045 2.2491 6.0372 0.4048 -0.5393 -0.5608 -2.8306 8.4398 

0.8197 2.3670 6.0372 0.3558 -0.5805 -0.6028 -2.7025 8.4398 



0.8349 2.4848 6.0372 0.3142 -0.6206 -0.6429 -2.5744 8.4398 

0.8501 2.6027 6.0372 0.2785 -0.6596 -0.681 -2.4463 8.4398 

0.8653 2.7205 6.0372 0.2479 -0.6976 -0.7172 -2.3182 8.4398 

0.8804 2.8383 6.0372 0.2215 -0.7346 -0.7514 -2.1900 8.4398 

0.8956 2.9562 6.0372 0.1986 -0.7708 -0.7837 -2.0619 8.4398 

0.9108 3.0740 6.0372 0.1787 -0.8061 -0.814 -1.9338 8.4398 

0.9260 3.1918 6.0372 0.1613 -0.8407 -0.8424 -1.8057 8.4398 

0.9412 3.3097 6.0372 0.1461 -0.8745 -0.8688 -1.6776 8.4398 

0.9563 3.4275 6.0372 0.1326 -0.9077 -0.8933 -1.5495 8.4398 

0.9715 3.5454 6.0372 0.1208 -0.9403 -0.9158 -1.4213 8.4398 

0.9867 3.6632 6.0372 0.1103 -0.9724 -0.9364 -1.2932 8.4398 

1.0000 3.7664 6.0372 0.1020 -1.0001 -0.9529 -1.1810 8.4398 

 

Acentric factor 

 

Pitzer’s acentric factor P  is defined[47] such that its value is zero for spherical 

molecules. That is, 

)7.0    (log1 **

10 =−−= TatPvpP         (7) 

where cvpvp PPP / * = . 

On the other hand, the acentric factor   being a measure of deviation in the properties of 

nonspherical molecules from that of spherical molecules. This deviation depends on 

temperature. Hence, Eq.(7) may be generalized to get the temperature-dependent acentric 

factor as  

)(log1)( *

10 vpPT −−=
         

(8) 

Using the data on *

vpP obtained by the correlation given by Eq.(1) for n-H2, o-H2 and p-H2, 

their acentric factors are calculated by Eq.(8). The results are presented in Tables 1-3 and 

depicted in Fig. 4  

 

 
Fig. 4 - Acentric factor of n-H2, o-H2 and p-H2. 

 

0.4 0.5 0.6 0.7 0.8 0.9 1.0

-1.0

-0.5

0.0

0.5

1.0

1.5

T
*

 n-H
2
   Eq.(8)

 n-H
2
   Eq.(9)

 o-H
2
   Eq.(8)

 o-H
2
   Eq.(9)

 p-H
2
   Eq.(8)

 p-H
2
   Eq.(9)



For n-H2, o-H2 and p-H2, the values of ω may be fitted to a second degree polynomial in 

temperature. That is, 

 
2

321

**
TBTBBω ++=

          (9) 

 

The coefficients in Eq.(1) are 1B  = 4.4480, 2B = -9.6208 and 3B = 4.2199. The correlation 

given by Eq.(9) is characterized by the  correlation coefficient(R) of 0.9992 and the 

coefficient of determination(R2) of 0.9985, respectively. 

 

Eq.(9) gives the temperature derivatives of acentric factor as  
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For n-H2, o-H2 and p-H2, the derivatives dω/dT* and d2ω/dT*2 are determined by Eq.(10) 

and (11), respectively. The results are presented in Tables 1-3 and depicted in Fig.5  

 

 

Fig. 5 - dω/dT* versus 
*

T for n-H2, o-H2 and p-H2. 

 

Riedel’s parameter 

Riedel’s parameter R  is a measure of the temperature-dependence of vapour pressure in the 

vapour-liquid critical region. It determines the slope of the fluid-phase equilibrium curve in 

the critical region. The Riedel’s parameter R is correlated[48] to the Pitzer’s acentric factor 
P by 

811.5919.4 += PR 
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Pitzer’s acentric factor P  and Riedel’s parameter R  for n-H2, o-H2 and p-H2 are 

determined by Eqs.(7) and (12). The obtained values are given in Table 4. For comparison, 

the values of p
 and R calculated through other correlations are also presented in Table 4. 

 

Table 4 - The Pitzer’s acentric factor and the Riedel’s parameter for n-H2, o-H2 and p-H2. 

Correlation 
p
   

 
R

 
    Eq.(12) 

n-H2 o-H2 p-H2 n-H2 o-H2 p-H2 

This Work -0.2170 -0.2175 -0.2220 4.7438 4.7411 4.7191 

Brandani (B.II)[52] -0.2565 -0.2497 -0.2511 4.5493 4.5830 4.5757 

Empirical correlation[49] -0.2565 -0.2491 -0.2506 4.5494 4.5856 4.5783 

Edmister[49]
 

-0.2502 -0.2427 -0.2442 4.5803 4.6169 4.6096 

Brandani (B.I)[52] -0.2447 -0.2382 -0.2397 4.6074 4.6392 4.6320 

Ambrose-Walton(II)[52] -0.2287 -0.2222 -0.2240 4.6859 4.7179 4.7092 

CSGC-Reidel Equation[50] -0.2270 -0.2204 -0.2221 4.6946 4.7267 4.7184 

Lee-Kesler[49] -0.2242 -0.2178 -0.2195 4.7082 4.7398 4.7314 

Twu et al.[52] -0.2232 -0.2169 -0.2187 4.7131 4.7442 4.7353 

Ambrose-Walton(I)[51] -0.2098 -0.2037 -0.2053 4.7789 4.8089 4.8011 

 

To evaluate the performance characteristics of Eqs.(11) and (12), percentage errors in the 

Pitzer’s acentric factor and the Riedel’s parameter determined in this work compared to other 
correlations are given in Table 5. 

  

Table 5 –Percentage error in the Pitzer’s acentric factor and the Riedel’s parameter. 

Correlation for comparison 
Percentage error% in p

 Percentage error% in R  

n-H2 o-H2 p-H2 n-H2 o-H2 p-H2 

Brandani (B.II)[52] 12.8793 15.4144 11.6135 -3.4511 -4.2748 -3.1354 

Empirical correlation[49] 12.6908 15.4128 11.4268 -3.3913 -4.2743 -3.0768 

Edmister[49]
 

10.4002 13.2834 9.1203 -2.6898 -3.5690 -2.3771 

Brandani (B.I)[52] 8.6964 11.3331 7.3907 -2.1965 -2.9605 -1.8812 

Ambrose-Walton(II)[52] 2.1259 5.1483 0.8980 -0.4926 -1.2361 -0.2101 

CSGC-Reidel Equation[50] 1.3344 4.4119 0.0694 -0.3061 -1.0492 -0.0161 

Lee-Kesler[49] 0.1191 3.2273 -1.1389 -0.0269 -0.7559 0.2599 

Twu et al.[52] -0.2874 2.7956 -1.5008 0.0646 -0.6512 0.3409 

Ambrose-Walton(I)[51] -6.7681 -3.3988 -8.1186 1.4103 0.7340 1.7077 

 

Filippov’s parameter 

 

Filippov’s parameter F  is another measure of the temperature-dependence of vapour 

pressure in the vapour-liquid critical region. It is defined[48] by 
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(13) 

 

Filippov’s parameter for n-H2, o-H2 and p-H2 are determined by Eq. (13).  And its value 

for n-H2, o-H2 and p-H2 is 7.2909, 7.3207 and 7.0853, respectively. 

 

 



Correlations between P , R , F and the critical compressibility factor cZ  

 

The correlations between various characteristic parameters of substances are of significance 

due to their ability to predict their properties and to reveal the underlying theory. In this 

respect, Pitzer’s acentric factor, Riedel’s parameter, Filippov’s parameter for n-H2, o-H2 and 

p-H2 obtained in this work and the critical compressibility factor[53-58] are shown in Figs. 

6a, 6b, 6c, 6d and 6e.  

 

 
 

As seen, these parameters for n-H2, o-H2 and p-H2 may be correlated by a second degree 

polynomial of the form: 
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Where X andY  are characteristic parameters such as p
, R , F and cZ

. The coefficients in 

Eq.(14) are presented in Table 6. 

 

Table 6 - The coefficients in Eq.(14). 

X  Y
 0a

 1a  2a  R  
2

R  

R  F  -19733.2 8336.07 -880.042 0.9999 0.9998 

F
 

p
 -13.0951 3.5589 -0.2459 0.9999 0.9998 

cZ
 R  -3681.39 24181.7 -39630 0.9999 0.9998 

cZ
 p

 -97.8133 640.25 -1050 0.9999 0.9998 

cZ
 F  -467.133 3095.08 -5075 0.9999 0.9998 



 

And, the ratios RF  /  and PF  / for n-H2, o-H2 and p-H2 are presented in Table 7. 

  

Table 7 - RF  /  and PF  / for n-H2, o-H2  and p-H2. 

Parameter n-H2
 o-H2

 p-H2
 

R

F




 
1.5369 1.5441 1.5014 

p

F




 
-33.5986 -33.5812 -31.9158 

 

Results and analysis 

  

Eq.(1) and Fig.1 reveal that the  vapor pressure of n-H2, o-H2 and p-H2 has a parabolic 

dependence on temperature. This vapor pressure correlation is characterized by the 

correlation coefficient R of 0.9976 and the coefficient determination R2 of 0.9952. That’s the, 
the vapor pressure-temperature correlation formulated in this work is excellent from the 

statistical consideration. Hence, this correlation may be used as a basis for determining other 

thermodynamic properties of n-H2, o-H2 and p-H2. Based on Eq.(1), the acentric factors of  

n-H2, o-H2 and p-H2 have been determined over a wide range of temperature. It is shown that 

the temperature dependence of the acentric factor for n-H2, o-H2 and p-H2 may be represented 

by a second degree polynomial with the correlation coefficient R of 0.9992 and the 

coefficient determination R2 of 0.9985. Thus, the acentric factor correlation given by Eq.(7) is 

an excellent one from the statistical view point. 

  The Pitzer’s acentric factors for n-H2, o-H2 and p-H2 are found to be -0.2170, -0.2175 

and -0.2220, respectively. The percentage errors in the obtained values of the Pitzer’s acentric 
factor of n-H2, o-H2 and p-H2 compared to that of other known correlations[49-52] are in the 

range of about 0.07% to 15%. That is, the correlation given by Eq. (9) reliably accommodates 

the Pitzer’s acentric factors of n-H2, o-H2 and p-H2 from the literature[49-52]. The values of 

the Riedel’s parameters for n-H2, o-H2 and p-H2 are 4.7438, 4.7411 and 4.7191, respectively. 

The percentage errors in the obtained values of the Riedel’s parameter of n-H2, o-H2 and p-H2 

compared to that of other known correlations[49-52] are in the range of about -0.02% to -

4.28%. The values of the Filippov’s parameter for n-H2, o-H2 and p-H2 are found to be 

7.2909, 7.3207 and 7.0853, respectively. The ratio of the Filippov’s parameter to the Riedel’s 
parameter for n-H2, o-H2 and p-H2 is about 1.53, 1.54 and 1.50, respectively. And, the ratio of 

the Filippov’s parameter to the Pizter’s acentric factor for n-H2, o-H2 and p-H2 is about          

-33.03,-33.58 and -31.92, respectively. As seen from Eq.(14) and Table 6, the Pitzer’s 
acentric factor, Riedel’s parameter, Filippov’s parameter and the critical compressibility 

factor of n-H2, o-H2 and p-H2 may be correlated by a second degree polynomial. For n-H2,    

o-H2 and p-H2, the curvature of the vapor pressure curve is found to have a maximum at 

17.11K, 17.12K and 17.00K, respectively.  

 

Conclusion 

 

Temperature-dependence correlations of vapor pressure and acentric factor for n-H2, o-H2 

and p-H2, have been formulated. The obtained correlations are statistically excellent. The 

characteristic parameters such as the Pitzer’s acentric factor, Riedel’s parameter, Filippov’s 
parameter have been determined for n-H2, o-H2 and p-H2. And, the curvatures of vapor 

pressure curve for n-H2, o-H2 and p-H2 have been determined in a wide range of temperature. 



It is found that the curvatures of vapor pressure curve for n-H2, o-H2 and p-H2 have a 

maximum at about 17.11K, 17.12K and 17.00K, respectively. 
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