
Page 1/18

Geometric Deep learning Prioritization and validation of cannabis
phytochemicals as anti-HCV non- nucleoside direct-acting inhibitors
Ssemuyiga Charles  

 
Kampala International University

Mulumba Pius Edgar 
Kampala International University

Research Article

Keywords: Graph Neural network, Deep learning, Hepatitis C virus, Cannabis sativa, and Molecular simulation dynamics

Posted Date: February 21st, 2024

DOI: https://doi.org/10.21203/rs.3.rs-3961716/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.   Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-3961716/v1
https://doi.org/10.21203/rs.3.rs-3961716/v1
https://creativecommons.org/licenses/by/4.0/


Page 2/18

Abstract
Introduction:

The rate of acute hepatitis C increased by 7% between 2020 and 2021, after the number of cases doubled between 2014 and 2020. With the current
adoption of pan-genotypic HCV therapy, there is a need for improved availability and accessibility of this therapy. However, double and triple DAA-
resistant variants have been identi�ed in genotypes 1 and 5 with resistance-associated amino acid substitutions (RAASs) in NS3/4A, NS5A, and
NS5B 1. The role of this research was to screen for novel potential NS5B inhibitors from the cannabis compound database (CBD) using Deep
Learning.

Methods

Virtual screening of the CBD compounds was performed using a trained Graph Neural Network (GNN) deep learning model. Re-docking and
conventional docking were used to validate the results for these ligands since some had rotatable bonds > 10. 31 of the top 67 hits from virtual
screening and docking were selected after ADMET screening. To verify their candidacy, six random hits were obtained for FEP/MD and Molecular
Simulation Dynamics.

Results

The top 200 compounds from the deep learning virtual screening were selected, and the virtual screening results were validated by re-docking and
conventional docking. The ADMET pro�les were optimal for 31 hits. Simulated complexes indicate that these hits are likely inhibitors with suitable
binding a�nities and FEP energies. Phytil Diphosphate and glucaric acid were suggested as possible ligands against NS5B.

Introduction
The primary cause of chronic hepatitis, cirrhosis, and hepatocellular carcinoma (HCC) is the hepatitis C virus (HCV). Approximately 3% of the global
population have a chronic HCV infection, and for 10–30 years, 30% of carriers are predicted to experience signi�cant liver-related illnesses, such as
HCC 2. The number of cases of acute hepatitis C that have been reported has increased by 129% since 2014 3.

HCV is an enveloped + ssRNA hepacivirus of the Flaviviridae family with 7 known genotypes in addition to unknown genotypes having several
subtypes that mostly affect the liver. Its 9.6Kb genome is �anked by 5' and 3' UTRs with a single ORF that codes for a polyprotein with 3,000 amino
acids4 and is post-translationally processed by cellular and viral proteases to yield 11 viral proteins composed of seven nonstructural proteins (NS)
which are the two proteins necessary for the formation of the virion (p7 and NS2), as well as �ve proteins that make up the cytoplasmic viral
replication complex (NS3, NS4A, NS4B, NS5A, and NS5B), and three structural proteins (one nucleocapsid protein and two envelope proteins). Also
encoded by the core region is an alternative open reading frame protein (ARFP) or F protein, whose function is still unknown 5.

NS5B is a 66 kDa heart-shaped catalytic component of the HCV replication complex, and owing to selectivity and non-toxicity, it makes a good
therapeutic target due to the lack of mammalian counterparts. Like other polymerases, it has the palm, thumb, and �nger domains surrounding the
enzyme active site in the palm domain 6. Many anti-HCV Direct Acting Antivirals (DAAs) that are either nucleotide inhibitors (NIs) or non-nucleotide
inhibitors (NNIs) targeting NS5B are in development 7,8. At least 4 allosteric inhibitory sites have been reported (thumb site I or II, palm site I or II) 9

with their mechanisms of action detailed elsewhere 10–15. However, these allosteric inhibitors have several drawbacks including low potency in
enzymatic assays 16, lack of cellular potency during an HCV sub-genomic replicon assay 17, high lipophilic character, and low genetic barrier to
resistance 17. It is possible for distinct forms of HCV with various amino acid changes that confer treatment resistance to coexist inside the same
host in the context of quasispecies. While some alterations are not linked to drug resistance, others can result in a phenotypic decrease in
susceptibility to one or more antiviral drugs. 18 documented several substitutions with no discernible antiviral resistance to Dasabuvir and
Sofosbuvir. Multi-drug-resistant RAASs variants of NS3/4A in GP1 and GP5 along with DAA-speci�c NS3/4A, NS5A, and NS5B were identi�ed pan-
genotypically 1. Resistance to daclatasvir and sofosbuvir was conferred by L2003M and S2702T of NS5B, respectively. D1194A NS3/4A was triple
DAA (simeprevir, faldaprevir, and asunaprevir) resistant. Double-drug resistant variants included R1181K (faldaprevir and asunaprevir), A1182V and
Q1106K/R (faldaprevir and simeprevir), T1080S (faldaprevir and telaprevir), while single drug-resistant variants were V1062L (telaprevir), D1194E/T
(simeprevir), D1194G (asunaprevir), S1148A/G (simeprevir), and Q1106L (Boceprevir) of NS3/4A were determined 1. Many NS5B RAASs in genotypes
1, 3, 4, and 5 have been reported 1. Other mutations in NS5B that were related to DAAs resistance include E237G, S282R, L320F, V321A, and V321I 19.
S282T induces high sofosbuvir-resistance, Q309R is a ribavirin-associated resistance, E237G was identi�ed in the successfully ampli�ed non-
responder sample 20.

With a multiverse of biochemical compounds (cannabinoids and non-cannabinoids (Phenolics, Terpenes, and Alkaloids)), cannabis spp has been
reported by several communities to have medicinal activities against several disease-causing pathogens21 including HCV. HCV Population had lower
rates of diabetes and obesity when they consumed cannabis, however, whether this translates into lower mortality should be investigated 22. It has
been observed to address key challenges like nausea, and depression in HCV Patients. Some individuals receiving therapy for HCV may bene�t
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virologically and symptomatically from modest cannabis use by helping them stick to the di�cult medication regimen 23,24. Faster decay of HIV RNA
among cannabis users who were HCV co-infected and reduced risk of steatosis was observed 25,26. The advantages of using cannabis for treating
HCV from a biological and clinical standpoint, as well as the e�cacy of this treatment, should be investigated in bigger study populations. Since
there is no known vaccine or treatment for this virus, there is an urgent need for effective ways to manage and eventually eradicate this illness. This
work aimed to investigate, using in-silico methodologies, if cannabis chemicals could block NS5B from HCV.

Materials and Methods
The protein structure was downloaded from pdb (PDB ID: 3FQL) while cannabis small molecules were downloaded from the Cannabis Compound
Database (CBD).

Geometric deep learning Virtual screening.

PDBbind database 27 protein-ligand complexes were used as inputs for training the model. Complexes that were also part of CASF-2016 28 and those
that failed pre-processing were excluded. The remaining complexes were randomly divided into training (14,000) and test (2,367) sets. The detailed
representation of ligand molecules is as in 29 and the protein targets were processed using a pipeline described by 30. Two separate residual graph
convolutional neural networks with the same architecture, one for the ligand and the other for the target, were used to extract features to build the
model, the extracted features were concatenated and used to build a mixed-density network (MND).

Initially, a linear layer is used to project the node and edge features to a 128-dimensional embedding. Each node and edge was updated using a
series of three GNNs depending on the nodes that were next to them and the kinds of edges that connected them. The GNN initially updates each
edge in the graph by using a multi-layer perceptron (MLP) on the concatenation of the edge features and the features of the two connecting nodes
and the updated edge features are used to update the node feature 29. The modi�ed edge and node features can be utilized as input for a
subsequent convolution round because they contain information about not only the core atom but also its surrounding neighbors. 3 convolutions
were used. The node and edge features were then processed by the remaining GNN blocks 29.

After being pairwise concatenated, the node features recovered by the GNNs and residual GNNs for the ligand and target are fed into an MND 31.
Concatenated target and ligand node information are combined to construct a hidden representation by the MND using an MLP. The MND's outputs
are computed using the hidden representation. Furthermore, by connecting neighboring nodes, the retrieved ligand node properties were utilized to
forecast the type of bond and atom, aiding in the learning of molecular structures and speeding up the training. Every MLP that is utilized consists of
a linear layer, batch normalization, and an ELU activation function. A dropout rate of 0.1 was employed 29.

Training
The Adam optimizer was utilized to update the model weights at a learning rate of 0.002. The loss function was minimized during model training. 16
protein-ligand complexes were used as the batch size for 150 epochs of training the model. A potential speci�c to a given target-ligand complex was
de�ned using the loss function. This potential was then used to score the target-ligand complex's three-dimensional structure by summing over all
possible pairs, calculating the negative log-likelihood for each target-ligand node pair, and calculating the distances separating each target node
from each ligand node in that particular conformation. The likelihood of �nding the target-ligand combination in that particular conformation
increases with a decreasing value 28,29.

Benchmarking
The CASF-2016 benchmark 28, which includes 285 carefully chosen protein-ligand complexes, was used to evaluate this. The preprocessing of the
structures from this benchmark was identical to that of the training set. The power of screening and scoring was assessed 29.

Prediction of binding conformations
The relative location of the ligand in Euclidean space, the dihedral angles of all rotatable bonds in the molecule, and the Euler angles were used to
represent the ligand conformation as a vector. Differential evolution 32 was used to determine which ligand conformation would interact with the
target binding site most likely following the model, i.e., minimize the potential learned by the model for that particular complex. Using a population
size of 150, the global optimization was performed up to 500 iterations with a recombination constant of 0.8 and a mutation constant randomly
modi�ed from 0.5 to 1.0 in every generation. Euler angles and the dihedrals of rotatable bonds were limited to values between -𝜋 and 𝜋 without
seeding 29. The detailed geometric learning protocol can be accessed in the original publication 29. The deep neural network learns the parameters of
a mixture model that is employed as a probability density function. This probability density function is used to determine the most likely distance
separating a ligand atom from a speci�c point in the molecular surface of the binding site. The potential is determined as the combination of the
negative log-likelihood of all pairwise combinations of ligand atoms and points in the molecular surface. The optimal conformation is the one that
minimizes the potential, that is, the ligand conformation in which every atom is separated from the target surface by the most likely distance.
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Conventional docking

Structure preparation
The protein structure was cleaned and preprocessed by assigning bond orders using the CCd database, adding Hydrogens, creating zero bond orders,
and creating disul�de bonds as well as generation of het states using Epik 33 (PH 7 ± 2 units), water, and Ligands were removed and H-bond
assignment was done using PROPKA in Maestro 12.8 in the protein preparation wizard. The ligands were prepared by Ligprep 34. Brie�y, the ligands
were imported into the maestro workspace, and only those with a maximum of 300 atoms were subjected to OPLS4 Force force �eld 35, and
ionization was done using Epik 33 to generate possible states at PH = 7 ± 2 units.

Glide docking
The prepared structures were subjected to XP Glide 36 with only ligands of atoms and rotatable bonds equal to or below 300 and 100 respectively
were selected with a Vander Waals scaling factor of 0.8 and a partial charge cutoff of 0.15. The receptor was rigid with �exible ligand sampling and
to sample nitrogen inversions and ring conformations. Bias sampling torsion was set for all prede�ned functional groups and Epik state penalties
were added to docking scores. Post-docking minimization was performed with 10 poses per ligand with a threshold of rejecting minimized pose set
to 0.5KCal/mol.

Binding A�nity determination
SeeSAR 12.1.0 37 was used to perform binding a�nity calculations. A binding site was de�ned by the co-crystallized ligand in the receptor PDB �le
and copied to the docking mode after the generated protein and docking library were loaded into the Biosolveit workspace 37. Docking calculations
were done for each compound in a standard docking mode with defaulted settings and parameters. The a�nity of the generated poses was then
assessed and the best poses were selected based on these a�nities.

Binding energy is calculated from the HYDE score function (Eq. 1), which relies on intrinsically balanced terms of atom-speci�c desolvation,
hydration, and hydrogen bonds based on the logP atomic increment system 38, while also taking into account the Torsion angle values to the binding
conformation of the protein-ligand. The quotient of G and the number of non-hydrogen atoms in the molecule is used to de�ne a ligand's binding
a�nity (Eq. (2)) 39 and expressed as.

ΔGHyde = Σatom i [ΔGi Dehydn + ΔGi h -bonds]…..1

LE = ΔG⁄N………………………………….2
where ΔG = -RT ln Ki and N = number of non-hydrogen atoms.

The selection of the best poses was based on their visual HYDE scores while also considering a statistics-based torsional analysis.

ADMET Screening
All compounds were subjected to SeeSAR 37, AdmetLab2.0 40, and QikProp 41,42. The protocol used for SeeSar is as in the Binding Energy
determination above. The concatenated sdf �le was uploaded to the AdmetLab2.0 website (https://admetmesh.scbdd.com/) in the ADMET
screening mode. It employs a Multi-task Graph Attention (MGA) framework made up of input, Relation graph convolution network (RGCN) layers,
attention layer, and fully connected (FC) layers.

Molecular Simulation Dynamics
All simulations were done in GROMACS 2021.4 43. The protein topology was generated using AMBER99SB 44 force �eld from pdb2gmx module while
ligands were parametrized by using Generalized Amber Force Field (GAFF2) 45 at antechamber website. The complexes were placed in the
hexahedral box using gmx editconf, solvation was done using gmx solvate, TIP3P water molecules were added to the systems, and Na+ and Cl− ions
were added using genion to a concentration of 0.15M. Equilibration was done with steps set to 20,000 in 10ns at 298K and 1atm with position
restraints Force Constant set to 700KJmol− 1. This allowed water molecules and ions to move freely. Production MD simulations lasted for 100ns
and they were monitored by checking system energies during the simulations. Pymol, vmd, and Gromacs binaries 43 were used for the analysis of the
results.

MM/G(P)BSA calculations
Three energetic terms are taken into account in the computation of binding energy when determining the free energy of complex formation in
conjunction with MD simulations: 1) variations in the system's potential energy in a vacuum; 2) polar and apolar solvation of the various species;
and 3) the entropy related to complex development during the gaseous phase.

The Uni-GBSA-based tool unigbsa-traj was utilized to do MM/PBSA (Molecular Mechanics/ Poisson-Boltzmann Surface Area) calculations
automatically for every simulated system 41,46. The formula for estimation of free energy is explained in detail in 41,47,48.
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Free Energy Perturbation (FEP) Calculations
The CHARMM-GUI Free Energy Calculator and NAMD were used to calculate absolute free energy 42,49,50. The simulated ligands (docked postures)
were uploaded as a single concatenated SDF �le, and CHARMM General Force Field (CGenFF v1.x) 51 was used for ligand parametrization and
topology construction to build the NAMD inputs and post-processing scripts. Counter ions (KCl) were used to neutralize all of the systems that were
collected to produce input �les and post-process scripts. Applying restraining potentials to limit the ligand's location in a receptor during FEP/MD
allowed for the calculation of binding free energy using the double decoupling approach. With the resulting inputs, the TIP3P water model and
Langevin piston pressure were applied to the system's NPT ensemble at 300K and 1atm. The FE values were captured in history �les obtained via
FEP lambda replica exchange MD (λ-REMD) using simple overlap sampling (SOS). By measuring the FE values throughout the last 6ns, the �nal FE
values from 10ns FEP/λ-REMD simulations were computed 42. The sequence of the used Methods is shown in Fig. 1.

Results and Discussion
Geometric deep learning Virtual Screening.

The results show that all optimal binding conformations had negative values (Fig. 2 and Table 1) and only the best 100 molecules were considered
for further studies based on their potential scores, with malic acid having the best score of -286.78, however, the complexes of those ligands with
many rotatable bonds (10≤) could not achieve successful optimizations and terminated after 500 iterations (Fig. 1), this is because an increase in
rotatable bonds is associated with the ine�ciency of the optimization algorithms when working with a large number of degrees of freedom. These
ligands justi�ed the need for conventional docking methods integration, all compounds having rotatable bonds above 10 underwent the same re-
docking process 52 and average potential scores were reported.

Conventional docking and Binding A�nity determination.

The results of docking and binding a�nity determination are shown in Table 1 and they agree with the results of geometric learning, validating the
compounds under investigation. Phytyl diphosphate had the best score of -12.275Kcalmol− 1, but iso-citric acid had the best ligand e�ciency of
-3.100. The compounds had acceptable values of Binding a�nities 37 with Isovitexin having the highest value (Table 1).

ADMET screening
The results for some important selected properties are presented in Table 1, and the summary for all properties is shown in Fig. 3 and Supplementary
File 2, because the presence of PAINS alert is not enough to justify the elimination of a hit candidate 41, Compounds with pain alerts were only
eliminated if at least other 4 ADMET properties were out of range (except the number of bonds, which was not considered as an ADMET property).
The Synthetic Accessibility Score (SA Score) quanti�es how simple it is to synthesize drug-like compounds. A score of less than 6 indicates that the
compound is simple to synthesize 40,42. An estimate of the hazardous dosage threshold of substances in humans can be obtained from the
maximum recommended daily dose (FDAMDD). The likelihood of being toxic is the output value, and it ranges from 0-0.3 for excellent (less likely to
be harmful); 0.3–0.7 for medium; and 0.7-1.0 for poor (more likely to be toxic) 40. The mutagenicity test is the Ames test. The most used test for
determining a compound's mutagenicity is the mutagenic effect, which closely correlates with carcinogenicity. The numbers indicate the probability
of being harmful; 0-0.3 indicates excellent (less likely to be mutagenic), 0.3–0.7 indicates medium, and 0.7-1.0 indicates poor (more likely mutagenic)
40. A fathead minnow LC50FM is de�ned as the concentration of the test chemical in water which results in 50% of the minnows dying after 96
hours. For LC50FM, the unit is − log10[(mg/L)/(1000*MW)] 40. One reliable sign of DNA damage and other cellular stressors is the activation of p53.
The output values of SR-p53 are the probabilities of being active, with 0-0.3 representing excellent (likely inactive), 0.3–0.7 representing medium, and
0.7-1.0 representing poor (most likely active) 40. The rest of the computed ADMET properties are presented in Supplementary File 237,40 and their
tSNE distribution is in Figure S1.

Molecular Dynamics Simulation Studies
The potential of six protein-ligand complexes as NS5B inhibitors was demonstrated by the formation of stable complexes by each of the simulated
complexes.

The analysis of Root Mean Square Deviation (RMSD) evaluates the long-term structural stability of biomolecular simulations.

Table I: The summary of the results of virtual screening, molecular docking, and ADMET studies. Fun: A potential speci�c to a given target-ligand
complex, SA Score: Synthetic Accessibility Score, LC50FM: 96-hour fathead minnow LC50, FDAMDD: maximum recommended daily dose, Ames:
Mutagenicity test, SR-p53: Probability of being p53 actives.
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Generic Name Fun Docking
score
(KCalmol− 

1)

Glide
ligand
e�ciency
ln

Glide
XP
Hbond

QikProp
Stars

Binding
A�nity
Range
(mM)

SA
Score

LC50FM FDAMDD Ames SR-
p53

rPhytyl
diphosphate

-197.87 -12.275 -2.811 -2.000 3 0.198–
19.699

4.851 5.102 0.905 0.004 0.004

***Apigenin-7-o-p-
coumarylglucoside

-256.98 -12.038 -2.541 -4.427 5 1.2E6–
1.2E9

4.081 5.818 0.122 0.686 0.969

Isocitric acid -204.56 -11.050 -3.100 -2.480 3 1E3–1E5 3.356 3.261 0.006 0.021 0.004

*rLPA (18:0/0:0) -187.45 -11.050 -2.530 -2.384 3 139–
13835

3.463 3.18 0.765 0.015 0.009

Glucaric acid -263.768 -10.667 -2.931 -2.664 2 57–5628 4.092 2.556 0.004 0.02 0.004

*rLPA
(18:1(11Z)/0:0)

-242.98 -10.621 -2.432 -2.102 3 70986-
7052884

3.664 2.805 0.887 0.024 0.008

*rLPA
(18:2(9Z,12Z)/0:0)

-214.19 -10.210 -2.338 -1.310 3 0.768-76 3.846 3.58 0.947 0.004 0.01

rSativic acid -194.50 -10.062 -2.408 -1.777 3 19-1933 3.524 3.041 0.019 0.028 0.017

rLPA
(18:1(9Z)/0:0)

-216.31 -9.978 -2.285 -2.568 3 1.515-150 3.664 3.257 0.889 0.006 0.009

**pCynaroside -196.45 -9.935 -2.225 -3.695 2 29-2868 3.924 4.845 0.031 0.757 0.835

pCannabisin A -222.58 -9.873 -2.064 -2.558 5 34041-
3382134

2.817 4.116 0.493 0.494 0.809

**pQuercetin-o-
glucoside

-277.72 -9.621 -2.140 -5.511 4 6179-
613939

4.008 4.785 0.02 0.809 0.781

Gluconic acid -268.92 -9.602 -2.694 -3.600 2 3393-
337072

4.06 -0.392 0.002 0.053 0.003

Cannabitriol -264.72 -8.908 -2.112 -1.184 0 2728-
2710000

3.799 5.268 0.82 0.113 0.568

Malic acid -286.78 -8.808 -2.755 -1.628 4 596-
59228

2.893 2.579 0.011 0.02 0.004

Quinic acid -222.48 -8.736 -2.450 -3.300 2 15396-
1529705

3.598 0.807 0.016 0.031 0.003

rcannabisin d -222.08 -8.722 -1.806 -2.754 4 7398-
735004

3.412 5.418 0.946 0.791 0.811

pOrientin -256.86 -8.627 -1.932 -4.613 5 947-
94045

4.072 5.014 0.012 0.822 0.714

Isocann�avin B -204.54 -8.540 -1.988 -1.567 0 3103-
308292

2.724 5.884 0.303 0.521 0.893

**Apigenin-7-o-
glucoside

-256.76 -8.522 -1.922 -1.790 1 83708-
8316933

3.804 4.804 0.019 0.693 0.871

pN-trans-
Caffeoyltyramine

-266.49 -8.499 -2.077 -1.912 0 8.240–
819

2.061 4.611 0.64 0.386 0.82

3-[2-(3-Isoprenyl-4-
hydroxy-5-
methoxy-
phenyl)ethyl]-5-
methoxyphenol

-209.68 -8.456 -2.004 -1.296 1 269-
26722

2.454 5.3 0.827 0.017 0.845

Cannabistilbene I -196.04 -8.378 -2.026 -0.136 0 5.135-510 2.361 5.545 0.917 0.023 0.465

pQuercetin -201.67 -8.360 -2.043 -2.400 0 9.593-953 2.545 5.222 0.31 0.657 0.888

Cannabidiolic acid -228.47 -8.282 -1.945 -1.180 0 185-
18368

3.626 5.699 0.787 0.023 0.513

rArachidic acid -148.87 -8.237 -2.013 -1.158 5 10.4–
1037

1.665 4.743 0.014 0.005 0.034
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Generic Name Fun Docking
score
(KCalmol− 

1)

Glide
ligand
e�ciency
ln

Glide
XP
Hbond

QikProp
Stars

Binding
A�nity
Range
(mM)

SA
Score

LC50FM FDAMDD Ames SR-
p53

Etofenoprox -176.93 -8.220 -1.897 0.000 2 0.440-44 2.025 6.485 0.782 0.186 0.005

Delta-9-tetrahydro
cannabinolic acid
A

-279.84 -8.202 -1.926 -1.380 1 1028-
102145

3.617 5.55 0.689 0.012 0.413

*Resmethrin -232.34 -8.053 -1.909 0.000 1 11-1133 3.317 7.826 0.631 0.022 0.002

**Astragalin -222.78 -8.016 -1.795 -2.564 2 3225-
320374

3.884 4.732 0.011 0.775 0.853

Isovitexin -197.23 -8.002 -1.805 -2.446 3 619407-
61541783

4.081 5.818 0.122 0.686 0.969

rSofosbuvir -201.60 -6.887 -1.503 -0.494 0 64-6368 4.375 4.036 0.9 0.371 0.02

* This compound has an ester and may undergo hydrolysis at high or low pH.

** This compound contains an acetal/aminal-like group (X-CH(R)-Y where X, Y are N, S, or O) that may be acid/base labile, releasing an aldehyde.

*** Both ester and acetal/ aminal-like groups.

r Rotatable bonds above 10.

p PAINS alert (1)

It estimates the typical difference between an atom's location in a molecular structure and its reference structure 42,53. The RMSDs of each system
show that during the experiment, every simulated complex reached stability (Figs. 4A and S2A). Comparatively, the glucaric acid complex was more
stable than the other compounds. The observed RMSD differences between the complexes and their corresponding proteins exhibit a variation that is
driven by the ligand. When utilizing 1D RMSD, it is easy to believe that two structures that have the same RMSD from a reference frame are similar,
but in practice, they can differ signi�cantly. Alternatively, signi�cantly more information can be obtained by computing the RMSD of each frame in
the trajectory to all other frames in the other trajectory to give 2D RMSD 41. Pairwise RMSDs of each trajectory were calculated to itself and the
results are shown in Figure S5, the diagonal represents 0 (RMSD of a structure to its self), and all the structures had RMSDs ≤ 1.8Ao, over simulation
showing that the complexes were stable over simulation and had nearly same states but not identical except Phytyl diphosphate complex had more
re-visited states than other complexes (Figure S5). These results agree with 1D RMSD results and show that the glucaric acid complex was more
stable evidenced by lower RMSD values.

Root Mean Square Fluctuation (RMSF) analysis is another way to understand the �exibility and dynamic behavior of individual atoms or residues
within a biomolecular system as well as their contribution to the �exibility of the whole molecule 54. The main interacting residues have minimum
RMSF values during simulation time compared to the ligand-free protein, supporting their stability and interactions with the simulated compounds,
while the RMSF of non-interacting residues shows somewhat greater oscillations (Fig. 4C). The distribution of the rmsf further supports the stability
of all complexes (Figure S4D).

The Radius of Gyration (Rg) is a measure of the compactness or spread of a biomolecular structure in three-dimensional space valuable for
analyzing the overall shape and structural �uctuations of biomolecules 41,54. A relatively constant Rg value fundamentally signi�es a stably folded
structure and a reduction in Rg signi�es an increase in stability 41,42,54. All of the simulated systems had Rg values between 23.7 and 24.2 Ao,
indicating their stability. The simulation revealed a fairly progressive reduction in the gyration radius over time, indicating a gradual increase in the
compactness and stability of all systems (Fig. 4D). The distribution of Rg also shows that the Glucaric acid complex is more stable relative to other
complexes (Figure S3C).

Solvent Accessible Surface Area (SASA) is a measure of the surface area of a biomolecule that is accessible to solvent molecules. It plays a crucial
role in analyzing the interactions between biomolecules and their surrounding solvent environment 41. A higher value suggests an increase in the
protein's volume, indicating lower stability, whereas stable proteins typically exhibit minimal �uctuation throughout the simulation. The binding of a
small molecule can alter the solvent-accessible surface area (SASA) and signi�cantly impact the protein's structure 41. The SASA consistently
decreased across all systems during the 100ns simulation (Figure S2B). This decrease in SASA indicates a rise in compactness, consequently
indicating enhanced stability across all systems. The parallel patterns observed in both SASA and Rg a�rm the validity of the molecular dynamics
simulation outcomes 41. Their distribution also shows that all systems were stable over simulation with the glucaric acid complex being more stable
than others (Figure S3C and S3D).
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During the simulation, the minimum distances between active site residues and ligands were calculated. Since most of the time, these minimum
distances were less than 3Ao, a conventional hydrogen bond can still form as long as the acceptor and donor are orientated correctly (Figure S3A).

Non-bonded Molecular Mechanics (MM) interaction energy between the Ligands and their receptor was calculated to evaluate the magnitude of the
interaction between the ligand and the protein 55,56. The total interaction energy for all the systems was negative over 100ns simulation with the
complex of phytyl-diphosphate having the lowest energy values (Figs. 4B and S3B). Vander Waals forces are short-range interactions that include
London dispersion forces and dipole-dipole interactions, they enable the close interaction between the nonpolar regions of the ligand and the protein,
ensure complex shape complementarity, predict the strength of the protein-ligand interaction with higher energy indicating stronger binding 57.
Apigenin coumaryl glucoside had the best values while that of Isocitric acid was the worst, a fact justi�ed by their size and proximity to the protein
groups (Figure S9). The stability of the complex and total binding energy can be enhanced by the long-range electrostatic interactions, which can
direct protein molecules toward their pre-binding orientations 58. Phytyl Diphosphate had the best values of electrostatic energy while apigenin
coumaryl glucoside had the worst values since the former has phosphate groups which results in strong electrostatic interaction energy. These
energies are good predictions of binding a�nity since they are considered while computing those a�nities. The simulated complexes remained
stable throughout the simulation according to this data (Figure S2C and S2D). But it's crucial to remember that this quantity is neither a binding
energy nor a free energy 55. Figure 5 displays the speci�cs of the molecular interactions that occur in the middle of the simulation. The summary and
distribution of all these energy terms are shown in Figures S3B, S4A, S4B, and S4C.

PCA (Principal Component Analysis) was performed particularly on alpha carbon data from the last 25ns to acquire insights into the dynamic
behavior of both the complexes, incorporating structural and energy data. This analysis aimed to explore the conformational range of the complexes,
distinguishing various regions within the energy landscape explored during the MD simulation. The complexes de�ned discrete conformational
clusters and suggested stability by occupying compact subspaces. A graph illustrating the motion and displacement of atomic �uctuations within
the complexes was created by utilizing eigenvectors 1 and 2. The �rst few eigenvalues had greater values, and the remaining eigenvalues were in a
declining order 41. All complexes showed PC ranging from ~ 15 to ~-15 (Figure S6). The simulation results of the apo-protein are shown in Figure
S10. Interacting residues have increased positive correlation, as indicated by the Dynamic Cross-Correlation (DCC) data, indicating that they are
interacting with the target. Residues located in the active site showed slightly elevated positive cross-correlation peaks upon ligand binding,
suggesting a high occupant binding a�nity (Figure S8) 41.

The average binding free energy of simulated hits was estimated using MM/P/GBSA calculations, and the outcomes are in good agreement with
other studies. Since all energies were negative, proteins and ligands were strongly bound together (Table 2). Additionally, FEP/MD simulations were
performed; Table 2's results show that these ligands have su�cient binding a�nities, making them eligible for in-vitro research. To evaluate the
convergence and dependability of the �ndings, the FE values were averaged using the standard error of the mean (SOS). The SEM of all data is less
than 0.5kCal mol− 1, indicating that all systems have converged in less than 10ns 42,49,59.

Because of many RAASs in HCV proteins, reported DAAs resistance-enhancing RAASs were introduced in this protein with several combinations as
shown in Table S1 and these mutants were re-docked with the identi�ed compounds. 7 ligands still had signi�cant docking scores with Glucaric acid
having the highest values (Fig. 6 and Table S2). Paired 2-tailed t-tests to compare the wild type and mutants are also shown in tables S4, S5, S6, and
S7. These results show that the docking scores of many ligands are signi�cantly reduced except for the 7 ligands. This may suggest that some of
these compounds, with glucaric acid leading, may still bind the resistant phenotypes. Studies have demonstrated the hepatoprotective, anti-
in�ammatory, cholesterol-lowering, anti-oxidant, and anti-carcinogenic properties of glucaric acid and its derivative D-saccharic acid-1,4-lactone 60.

Table 2
The Table shows the results of MM_G/PBSA and FEP/MD energy calculations.

Ligand MM_GBSA (KCalmol− 1) MM_PBSA (KCalmol− 1) ΔG FE (k cal mol− 1)

Phytyl Diphosphate -57.331 -31.784 -9.45

Apigenin Coumarylglucoside -46.342 -20.304 -8.24

Isocitric Acid -43.111 -29.160 -9.06

LPA (18:0/0:0) -60.753 -32.981 -8.64

Glucaric Acid -66.876 -35.834 -7.32

LPA (18:1(11Z)/0:0) -53.496 -28.507 -7.86

With the pan genomic approach to HCV therapy, the candidates were also docked with NS3/4 protease (PDB ID: 3P8N), and the results are presented
in Table S3, 4 ligands including Glucaric acid had docking scores better than − 7.00KCalmol− 1. Having inhibitors inhibiting both proteins will be a
bonus for drug development. To further discover the global therapeutic world of glucaric acid, insight into the compound's potential pharmacological
targets and associated biological pathways was determined. This was done using Swiss Target Prediction to predict other possible targets of
Glucaric Acid. Results (Fig. 7) show that this compound may be active against several targets including the Neuronal acetylcholine receptor protein



Page 9/18

alpha-7 subunit (Probability = 0.765) and Squalene synthetase (Probability = 0.103). Inhibiting the former means that this compound can also be a
competitive antagonist at a neuromuscular junction and hence can competitively compete with bungarotoxin minimizing its blockade activities at
the junction 61 while inhibiting the latter is a potential therapeutic strategy for lowering cholesterol levels in individuals with hypercholesterolemia, as
well as Anti-Cancer Potential Since cholesterol, is essential for the formation of lipid rafts and cell signaling pathways involved in cancer cell
proliferation and survival, inhibiting squalene synthase can potentially inhibit tumor growth and metastasis 60,62. The identi�ed hits are shown in
Figure S11.

Conclusion
We have used geometric deep learning to screen for possible HCV inhibitors of NS5B from cannabis sativa natural compounds. These compounds'
data show that they may be potential DAAs against HCV. It is however very important to keep the RAASs in check, given that they represent the
biggest challenge to HCV treatments, and screening them and recommending treatment post their identi�cation will be a step ahead. The best hits
identi�ed were Glucaric acid and phytyl diphosphate, with the former retaining the ability to interact with mutants studied as well NS3/4 hence a
possibility of polypharmacology.
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Figure 1

The sequence of the steps followed in this study.
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Figure 2

The Results of geometric Deep learning showing the distribution of some key parameters. Fun: Statistical potential, nit: Number of iterations, and
rmsd: Root Mean Square Deviation.

Figure 3

The K-Means Cluster analysis of ADMET properties
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Figure 4

The results of molecular dynamics simulation. (A) Shows the variation of protein RMSDs from various complexes; (B) shows the total interaction
energy for each system during the simulation; (C) depicts the variation of RMSF during the simulation; and (D) displays the variation of Rg during the
simulation.
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Figure 5

A glance of the interactions between the selected compounds and the target. The participating residues and compounds are depicted in licorice, with
residues in green and compounds in pink, while the remaining protein is represented in a cartoon format.
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Figure 6

The results of docking the ligands into the active sites of mutants.
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Figure 7

The results show other possible targets for Glucaric acid.
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