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Abstract Robotic manipulation systems suffer from

two main problems in unstructured human environ-

ments: uncertainty and clutter. We introduce a plan-

ning framework addressing these two issues. The frame-

work plans rearrangement of clutter using non-prehensile

actions, such as pushing. Pushing actions are also used

to manipulate object pose uncertainty. The framework

uses an action library that is derived analytically from

the mechanics of pushing and is provably conservative.

The framework reduces the problem to one of combi-

natorial search, and demonstrates planning times on

the order of seconds. With the extra functionality, our

planner succeeds where traditional grasp planners fail,

and works under high uncertainty by utilizing the fun-

neling effect of pushing. We demonstrate our results

with experiments in simulation and on HERB, a robotic
platform developed at the Personal Robotics Lab at

Carnegie Mellon University.

Keywords Manipulation among movable obstacles ·
Manipulation under uncertainty · Non-prehensile

manipulation · Pushing

1 Introduction

Humans routinely perform remarkable manipulation tasks

that our robots find impossible. Imagine waking up in

the morning to make coffee. You reach into the fridge

to pull out the milk jug. It is buried at the back of the

fridge. You immediately start rearranging content —

you push the large heavy casserole out of the way, you
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carefully pick up the fragile crate of eggs and move it

to a different rack, but along the way you push the box

of leftovers to the corner with your elbow.

Humans perform such manipulation tasks everyday.

The variety of actual situations we encounter are end-

less, but our approach to them share common themes:

the list of manipulation primitives that we use are not

limited to grasping and include non-prehensile actions

such as pushing, pulling, toppling; we are fearless in re-

arranging clutter surrounding our primary task — we

care about picking up the milk jug and everything else

is in the way; we are acutely aware of the consequences

of our actions — we push the casserole with enough

control to be able to move it without ejecting it from

the fridge.

Successful robotic manipulation in human environ-

ments requires similar characteristics. In this work we

propose a framework for robotic manipulation that plans

a rearrangement of clutter, uses non-prehensile pushing

actions as well as grasping actions, and tracks the con-

sequences of actions by reasoning about the uncertainty

in object pose and motion.

We present an example scene in Fig. 1. The robot’s

task is retrieving the red can which is surrounded by

clutter. The robot first pushes the large box to the

side and then uses that space to grasp the red can.

It produces these actions autonomously using our plan-

ning framework. The planner identifies the objects to be

moved: in the example the box is chosen among other

objects in the scene. The box is a good choice but it

is a big object that does not easily fit inside the robot

hand, i.e. it is not graspable. Since our framework can

work with non-prehensile actions, the box can be moved

without grasping it.

Our planner reasons about the uncertainty before

and during the motion of objects. Fig. 2 illustrates
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Fig. 1 The planner rearranging clutter to reach to a goal object. Pushing actions are useful for moving large objects that do
not fit inside the hand, i.e. are not graspable. Planning time for the full sequence of actions in this example is 16.6 sec.

Fig. 2 The planner generates pushing actions that are robust to the pose uncertainty of objects. Uncertainty is represented
using copies of the same object at different poses. Planning time for the full sequence of actions in this example is 23.4 sec.

the problem of planning under object pose uncertainty

more clearly. One source of uncertainty is perception:

robot cameras are used to detect and estimate the poses

of objects but these pose estimates come with some

amount of error. The second source of uncertainty is

the action of the robot on an object: our predictions of

how an object moves when it is pushed are not exact.

Our framework accounts for both types of uncertainty

when generating manipulation plans. When possible,

our framework utilizes pushing actions to funnel large

amounts of uncertainty into smaller amounts. In Fig. 2

the uncertainty of the red can is funneled into the hand

using a pushing action before it is grasped.

The idea of rearranging objects to accomplish a task

has been around for a few hundred years. We encounter

this idea in games like the Tower of Hanoi (Chartrand

1985), the 15-Puzzle and numerous others. The blocks-

world problem (Winograd 1971) introduced this idea to

the AI community. STRIPS (Fikes and Nilsson 1971) is

a well-known planner to solve this problem. In robotics,

the problem is named planning among movable obsta-

cles. The general problem is NP-hard (Wilfong 1988).

Most of the existing planners work in the domain of

two-dimensional robot navigation and take advantage

of the low-dimensionality by explicitly representing, or

discretizing, the robot C-space (Ben-Shahar and Rivlin

1998b; Chen and Hwang 1991; van den Berg et al 2008).

These approaches are not practical for a manipulator

arm with high degrees of freedom (DOF). Another group

of planners are based on a search over different order-

ings to move the obstacle objects in the environment

(Ben-Shahar and Rivlin 1998a; Overmars et al 2006;

Stilman and Kuffner 2006). Planners that solve simi-

lar rearrangement problems in manipulation using real

robotic hardware are also known (Stilman et al 2007).

The planner from Stilman et al (2007) works back-

wards in time and identifies the objects that needs to

be moved by computing the swept volume of the robot

during actions. Recently, Kaelbling and Lozano-Perez

(2011) proposed a planner that also identifies obstacles

by computing swept volumes of future actions. In all of

these cases, the physical act of manipulating an object

is abstracted into a simple action, like pick-and-place.

While extremely successful and algorithmically elegant,

the simplified assumptions on actions severely restrict

versatility. For example, such an algorithm would pro-

duce a solution whereby the robot carefully empties the

contents of the fridge onto the countertop, pulls out

the milk jug and then carefully refills the fridge. A per-

fectly valid plan, but one that is inefficient, and often

impossible to execute with heavy, large, or otherwise

ungraspable objects.

Pick-and-place actions are, however, easy to ana-

lyze. Once an object is rigidly grasped, it can be treated

as an extension of the robot body, and the planning

problem reduces to one of geometry. Performing actions

other than pick-and-place requires reasoning about the

non-rigid interaction between the robot effector and the

object.

A separate thread of work, rooted in Coulomb’s for-

mulation of friction, uses mechanics to analyze the con-

sequences of manipulation actions (Mason 1986; Goyal
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et al 1991; Howe and Cutkosky 1996; Peshkin and Sander-

son 1988; Brost 1988). Mason (1986) investigates the

mechanics and planning of pushing for robotic object

manipulation. One of the first planners that incorpo-

rates the mechanics of pushing was developed by Lynch

and Mason (1996). Using the planner, a robot is able

to push an object in a stable manner using edge-edge

contact to a goal position. Goyal et al (1991) show that,

in the quasi-static case, the motion of a pushed object

is determined by the limit surface, which we use in pre-

dicting consequences of pushing actions. Manipulation

planners and robot actions that use these physical mod-

els have been developed (Lynch and Mason 1996; Lynch

1999a; Akella and Mason 1998; Peshkin and Sanderson

1988; Agarwal et al 1997; Hauser and Ng-Thow-Hing

2011; Kappler et al 2012). Our planner uses pushing to

address uncertainty and as a pre-grasp strategy, simi-

lar to these planners. A key difference of our framework

is its ability to address clutter through rearrangement

planning.

In this work we make an attempt at merging these

two threads of work: geometric rearrangement plan-

ning and mechanical modeling and analysis. We present

a framework that plans sequences of actions to rear-

range clutter in manipulation tasks. This is a general-

ization of the planner from Stilman et al (2007). But

our framework is not restricted to pick-and-place oper-

ations and can accomodate non-prehensile actions. We

also present mechanically realistic pushing actions that

are integrated into our planner.

Through the use of different non-prehensile actions,

our planner generates plans where an ordinary pick-

and-place planner cannot; e.g. when there are large,

heavy ungraspable objects in the environment. We also
show that our planner is robust to uncertainty.

2 Framework

In this section we present our framework to rearrange

the clutter around a goal object. The framework uses

non-prehensile actions that respects quasi-static me-

chanics. It produces open-loop plans which are conser-

vative to the uncertainty in object poses. This uncer-

tainty may be coming from either the non-stable non-

prehensile actions or from the perception system that

initially detects the objects. The framework consists of

a high-level planner that decides on the sequence of ob-

jects to move and where to move them. The high-level

planner uses a library of lower level actions to plan the

actual robot trajectories that move the objects. The

lower-level actions are also open-loop and do not re-

quire sensor feedback during execution.

Fig. 3 An example scene. The robot’s task is picking up the
red can. The robot rearranges the clutter around the goal ob-
ject and achieves the goal in the final configuration. The robot
executes the series of actions shown in Fig. 4. We present the
planning process in Fig. 5.

We first present the high-level planning framework,

and then present the quasi-static pushing actions used

by the high-level planner.

2.1 Planning Framework

In a given scene with multiple movable objects and a

goal object to be grasped, the planner decides which

objects to move and the order to move them, decides

where to move them, chooses the lower-level actions to

use on these objects, and accounts for the uncertainty in

the environment all through this process. This section

describes how we do that.

We describe our framework with the example in

Fig. 3. The robot’s task is picking up the red can. There

are two other objects on the table: a brown box which

is too large to be grasped, and the dark blue dumbbell

which is too heavy to be lifted.

The sequence of robot actions shown in Fig. 4 solves

this problem. The robot first pushes the dumbbell away

to clear a portion of the space, which it then uses to

push the box into. Afterwards it uses the space in front

of the red can to grasp and move it to the goal position.

Fig. 4 also shows that the actions to move objects

are planned backwards in time. We visualize part of

this planning process in Fig. 5. In each planning step

we move a single object and plan two actions. The first

one (e.g. Push-grasp and Sweep in Fig. 5) is to manip-

ulate the object. The second one (GoTo in Fig. 5) is

to move the arm to the initial configuration of the next

action to be executed. We explain the details of these

specific actions in §2.1.6. We discuss a number of ques-

tions below to explain the planning process and then

present the algorithm in §2.1.5.

2.1.1 Which objects to move?

In the environment there are a set of movable objects,

obj. The planner identifies the objects to move by first

attempting to grasp the goal object (Step 1 in Fig. 5).
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Fig. 4 We show the snapshots of the planned actions in the order they are executed. The execution timeline goes from left
to right. Each dot on the execution timeline corresponds to a snapshot. Planning goes from right to left. Each dot on the
planning timeline corresponds to a planning step. The connections to the execution timeline shows the robot motions planned
in a planning step. Details of this planning process are in Fig. 5.

During this grasp, both the robot and the red can, as

it is moved by the robot, are allowed to penetrate the

space other objects in obj occupy. Once the planner

finds an action that grasps the red can, it identifies the

objects whose spaces are penetrated by this action and

adds them to a list called move. These objects need to

be moved for the planned grasp to be feasible. At the

end of Step 1 in Fig. 5, the brown box is added to move.

We define the operator FindPenetrated to iden-

tify the objects whose spaces are penetrated:

FindPenetrated(vol, obj) = {o ∈ obj | volume vol

penetrates the space of o}

In the case of identifying objects to put into move, vol is

the volume of space swept by the robot during its mo-

tion and by the object as it is manipulated. We compute

the volume of space an object occupies by taking into

account the pose uncertainty (§2.1.2).

In subsequent planning steps (e.g. Step 2 in Fig. 5)

the planner searches for actions that move the objects

in move. Again, the robot and the manipulated object

are allowed to penetrate other movable objects’ spaces.

We add the penetrated objects to move.

This recursive process continues until all the objects

in move are moved. The objects that are planned for

earlier should be moved later in the execution. In other

words, we plan backwards in identifying the objects to

move.

Allowing the actions to freely penetrate other ob-

jects’ spaces can result in a plan where objects are

moved unnecessarily. Hence, our planner tries to mini-

mize the number of these objects. This is described in

§2.1.6.

We also restrict the plans to monotone plans; i.e.

plans where an object can be moved at most once. This

avoids dead-lock situations where a plan to move ob-

ject A results in object B being moved, which in turn

Fig. 5 The planning timeline. Three snapshots are shown for
each planning step. The planner plans two consecutive arm
motions at each step, from the first snapshot to the second
snapshot, and from the second snapshot to the third snap-
shot. These motions are represented by blue dashed lines.
The purple regions show the negative goal regions (NGRs),
which are the regions the object needs to be moved out of
(§2.1.4). The object pose uncertainty is represented using a
collection of samples of the objects.

makes object A move, and so on. But more impor-

tantly restricting the planner to monotone plans makes

the search space smaller: the general problem of plan-

ning with multiple movable objects is NP-hard (Wil-

fong 1988). We enforce monotone plans by keeping a

list of objects called avoid. At the end of each suc-

cessful planning step the manipulated object is added

to avoid. The planner is not allowed to penetrate the

spaces of the objects in avoid. In Fig. 5 in Step 2 the
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avoid list includes the red can, in Step 3 it includes the

red can and the brown box.

2.1.2 How to address uncertainty?

Robots can detect and estimate the poses of objects

with a perception system (in our experiments we use

Martinez et al (2010)). Inaccuracies occur in pose esti-

mation, and manipulation plans that do not take this

into account can fail. Non-prehensile actions can also

decrease or increase object pose uncertainty. Our plan-

ner generates plans that are robust to uncertainty. We

explicitly represent and track the object pose uncer-

tainty during planning.

Given a probability density function, fo, over the

set of possible poses, we define the uncertainty region

of an object o as the set of poses it can be in such that

fo is larger than ε:

U(o) = {q ∈ SE(3)|fo(q) > ε}

We define the uncertainty region to be in SE(3) because

we assume no uncertainty in objects’ height and we

also assume that the objects are standing upright on a

surface.

Before the planning starts, the robot’s perception

system suggests a pose q̂o for each object o in the scene.

We estimate the initial pose uncertainty of o as a mul-

tivariate normal distribution centered at q̂o with the

covariance matrix Q. We estimate the covariance ma-

trix Q by empirically modeling the error profile of our

perception system (§3 presents the values we used to

build the matrix Q in our experiments). In the rest of

this paper we use U(o) specifically to refer to the initial

pose uncertainty of an object o.

The manipulation actions change the uncertainty of

an object o. We represent this as a trajectory νo:

νo : [0, 1]→ R

where R is the power set of SE(3). We call νo the evo-

lution of the uncertainty region of object o. νo[0] is the

same as U(o). νo[1] refers to the final uncertainty region

of the object after manipulation. Each manipulation ac-

tion outputs νo, i.e. how it evolves the uncertainty re-

gion of the object. §2.2.7 describes how νo is estimated

for pushing actions as a series of shrinking capture re-

gions.

We used random sampling to represent all uncer-

tainty regions. We present the number of samples we

use for different uncertainty levels in §3. Fig. 5 illus-

trates the pose uncertainty using such samples.

During planning, we compute the volume of space

an object occupies using U , not only the most likely

pose. Likewise we compute the space swept by a manip-

ulated object using νo. We define the operator Volume,

which takes as input an object and a region, and com-

putes the total 3-dimensional volume of space the ob-

ject occupies if it is placed at every point in the re-

gion. For example, Volume(o, U(o)) gives the volume

of space occupied by the initial uncertainty region of

object o.

We overload Volume to accept trajectories of re-

gions and robots too; e.g. Volume(o, νo) gives the vol-

ume of space swept by the uncertainty of the object

during its manipulation, and Volume(robot, τ) com-

putes the three-dimensional volume the robot occupies

during a trajectory τ . We compute this volume using

a high-resolution sampling of configurations along the

trajectory. We place three-dimensional models of the

robot links at the corresponding poses at all the sam-

pled points and sum them up to get the volume needed

by the full trajectory.

2.1.3 How to move an object?

At each planning step, our planner searches over a set

of possible actions in its action library. For example

in Step 1 of Fig. 5 the planner uses the action named

push-grasp, and in Step 2 it uses the action sweep. Push-

grasp uses pushing to funnel a large object pose uncer-

tainty into the hand. Sweep uses the outside of the hand

to push large objects. Each low-level action, in turn,

searches over different action-specific parametrizations

to move the object; e.g. different directions to push-

grasp an object, or different trajectories to use when

moving the arm from one configuration to the other.

We will describe the details of specific actions we use

(e.g. push-grasp and sweep) and the search over the

action-specific parametrizations in §2.1.6 and §2.2. Be-

low we present the general properties an action should

have so that it can be used by our high-level planner.

In grasp based planners robot manipulation actions

are simply represented by a trajectory of the robot arm:

τ : [0, 1] → C where C is the configuration space of

the robot. The resulting object motion can be directly

derived from the robot trajectory. With non-prehensile

actions this is not enough and we also need information

about the trajectory of the object motion: the evolution

of the uncertainty region of the object. Hence the inter-

face of an action a in our framework takes as an input

the object to be moved o, a region of goal configura-

tions for the object G, and a volume of space to avoid

avoidV ol; and outputs a robot trajectory τ , and the

evolution of the uncertainty region of the object during

the action νo:

(τ, νo)← a(o, G, avoidV ol) (1)
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The returned values τ and νo must satisfy:

– νo [1] ⊆ G; i.e. at the end all the uncertainty of the

object must be inside the goal region.

– Volume(robot, τ) and Volume(o, νo) must be collision-

free w.r.t avoidV ol; where robot is the robot body.

If the action cannot produce such a τ and νo, it returns

an empty trajectory, indicating failure.

We also use a special action called GoTo, that does

not necessarily manipulate an object, but moves the

robot arm from one configuration to another. GoTo is

also used to plan from the end of one object manipula-

tion action to the start of other.

2.1.4 Where to move an object?

The planner needs to decide where to move an object

— the goal of the action. This is easy for the origi-

nal goal object, the red can in the example above. It

is the goal configuration passed into the planner, e.g.

the final configuration in Fig. 3. But for subsequent

objects, the planner does not have a direct goal. In-

stead the object (e.g. the box in Step 2 of Fig. 5) needs

to be moved out of a certain volume of space in or-

der to make the previously planned actions (Step 1 in

Fig. 5) feasible. We call this volume of space the nega-

tive goal region (NGR) at that step (shown as a purple

region in Fig. 5) 1. Given an NGR we determine the

goal G for an object o by subtracting the NGR from all

possible stable poses of the object in the environment:

G← StablePoses(o)−NGR.

The NGR at a planning step is the sum of the vol-

ume of space used by all the previously planned actions.

This includes both the space the robot arm sweeps and

the space the manipulated objects’ uncertainty regions

sweep. At a given planning step, we compute the neg-

ative goal region to be passed on to the subsequent

planning step, NGRnext, from the current NGR by:

NGRnext ← NGR+Volume(robot, τ)+Volume(o, νo)

where τ is the planned robot trajectory, o is the manip-

ulated object, and νo is the evolution of the uncertainty

region of the object at that planning step.

2.1.5 Algorithm

In our problem, a robot whose configurations we denote

by r ∈ C ⊆ Rn interacts with movable objects in the set

obj. We wish to generate a sequence of robot motions

plan that brings a goal object goal ∈ obj into a goal

1 Note that the NGR has a 3D volume in space. In Fig. 5
it is shown as a 2D region for clarity of visualization.

Algorithm 1:

plan← Rearrange(o, G,NGR, move, avoid, rt+2)

o: The goal object;

G: The goal region; i.e. set of acceptable configu-

rations o should end up in;

NGR: The negative goal region as described in

§2.1.4;

move: The list of objects as described in §2.1.1;

avoid: The list of objects as described in §2.1.1;

rt+2: The goal configuration for the robot after

manipulating the object.

1 repeat
2 a ← next action from action library
3 avoidV ol←

∑
i∈avoid

Volume(i, U(i))

4 (τ1, νo)← a(o, G, avoidV ol)
5 if τ1 is empty then
6 Continue at line 2
7 τ2 ←

GoTo(τ1[1], rt+2, avoidV ol + Volume(o, νo[1]))
8 if τ2 is empty then
9 Continue at line 2

10 τ ← τ1 + τ2
11 vol← Volume(robot, τ) + Volume(o, νo)
12 movenext ← move + FindPenetrated(vol, obj)
13 if movenext is empty then
14 return {τ}
15 NGRnext ← NGR+ vol
16 avoidnext ← avoid + {o}
17 foreach i ∈ movenext do
18 plan← Rearrange(i,StablePoses(i)−

NGRnext, NGRnext, movenext −
{i}, avoidnext, τ [0])

19 if plan is not empty then
20 return plan + {τ}
21 until all actions in action library are tried
22 return empty

pose qgoal ∈ SE(3). We initiate the planning process

with the call:

plan← Rearrange(goal, {qgoal}, {}, {}, {}, ∗)

The arguments to Rearrange are described in Alg. 1.

The ∗ passed as the last argument here means that the

final configuration of the robot arm does not matter as

long as the object is moved to qgoal.

Each recursive call to the Rearrange function is a

planning step (Alg. 1). The function searches over the

actions in its action library between lines 1-21, to find

an action that moves the goal object to the goal config-

uration (line 4), and then to move the arm to the initial

configuration of the next action (line 7). On line 11 it

computes the total volume of space the robot and the

manipulated object uses during the action. Then it uses

this volume of space to find the objects whose spaces

have been penetrated and adds these objects to the list

move (line 12). If move is empty the function returns
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the plan. On line 15 the function adds the volume of

space used by the planned action to the NGR. On line

16 it adds the current object to avoid. Between lines

17-20 the function iterates over objects in move mak-

ing recursive calls. If any of these calls return a plan,

the current trajectory is added at the end and returned

again (line 20). The loop between 17-20 effectively does

a search over different orderings of the objects in move.

If none works, the function returns an empty plan on

line 22, indicating failure, which causes the search tree

to backtrack. If the planner is successful, at the end of

the complete recursive process plan includes the tra-

jectories in the order that they should be executed.

2.1.6 Action Library

The generic interface for actions is given in Eq. 1. In

this section we briefly describe the actions in our ac-

tion library and explain how they satisfy this generic

interface. There are four actions in our action library:

Push-grasp, Sweep, GoTo, and PickUp.

– Push-grasp:

Push-grasping is a robust way of grasping objects

under uncertainty. It is a straight motion of the hand

parallel to the pushing surface along a certain di-

rection, followed by closing the fingers. In effect, a

push-grasp sweeps a region on the pushing surface,

so that wherever an object is in that region, at the

end of the push it ends up inside the hand, ready to

be grasped.

For a given object, the capture-region of a parametrized

push-grasp is the set of all object poses that results

in a successful grasp. Example capture regions are

shown in Fig. 6 and Fig. 9. We compute capture

regions using a realistic quasi-static pushing analy-

sis. We use the capture regions to decide whether

a push-grasp will succeed given an object and its

uncertainty region.

We present a detailed analysis of push-grasping in

§2.2, where we also explain how to compute and use

capture regions.

– Sweep:

Sweep is another action we use to move obstacles

out of negative goal regions. Sweep uses the out-

side region of the hand to push an object. Sweeping

can move objects that are too large to be grasped

(Fig. 7a). Similar to Push-grasp, we parametrize a

Sweep by a direction and distance to push.

A push-grasp requires a minimum pushing distance

because it has to keep pushing the object until it

completely rolls into the hand. Since sweeping only

needs to move an object out of a certain volume of

space, it does not require a particular pushing dis-

tance. But we still use the capture region to guar-

antee that the object will not escape the push by

rolling outside during the sweep. When computing

the capture region for sweep (Fig. 7b) we use a re-

alistic model for the side of the fingers but approx-

imate the other side with a straight line located at

the end of the wrist link.

The sweep action can also address initial object pose

uncertainty. Similar to Push-grasp, we check that

the capture region of the Sweep includes all the

poses sampled from the uncertainty region of the

object (Fig. 7b).

– GoTo: The GoTo action moves the robot arm from

one configuration to the other. The search space of

the GoTo action is the configuration space of the

arm. To implement this action we use an exten-

sion of the Rapidly-Exploring Random Tree (RRT)

(Lavalle and Kuffner 2000) planner, namely the Con-

strained Bi-directional RRT planner (CBiRRT) (Beren-

son et al 2009a).

The GoTo action either does not manipulate an ob-

ject or moves an already grasped object. At the end

the object pose is derived from the forward kine-

matics of the arm.

– PickUp: This is the prehensile manipulation of an

object. We implement PickUp as a Push-grasp fol-

lowed by a GoTo.

2.2 Push-grasping

In this section we present details of push-grasping.

2.2.1 The push-grasp

The push-grasp is a straight motion of the hand par-

allel to the pushing surface along a certain direction,

followed by closing the fingers (Fig. 8). We parametrize

(Fig. 9(a)) the push-grasp G(ph, a, d) by:

– The initial pose ph = (x, y, θ) ∈ SE(2) of the hand

relative to the pushing surface.

– The aperture a of the hand during the push. The

hand is shaped symmetrically and is kept fixed dur-

ing motion.

– The pushing direction v along which the hand moves

in a straight line. In this study the pushing direction

is normal to the palm and is fully specified by ph.

– The push distance d of the hand measured as the

translation along the pushing direction.

We execute the push-grasp as an open loop action.

We make certain assumptions while modeling and

executing push-grasps:
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(a) Capture Region (b) Object poses af-
ter the push

(c) Uncertainty (d) Push grasp (e) Push grasp (f) Push grasp

Fig. 6 (a) The capture region of a for a rotationally symmetric bottle for a push-grasp. Every point corresponds to a bottle
position where the coordinate frame of the bottle is at its center. (b) Uncertainty region of the object after the push, before
closing the fingers. (c-f) A push-grasp funneling the uncertainty into the hand.

(a) Example sweep (b) Capture Region

Fig. 7 (a) Sweeping can move objects that are too large to
be grasped. (b) The capture region of the sweep action for
the a cylindrically symmetric bottle.

– The interaction between the robot hand and the ob-

ject is quasi-static, meaning that the inertial forces

are negligible.

– The objects do not topple easily. To prevent objects

from toppling, the robot pushes them as low as pos-

sible.

– The robot has the three-dimensional models of the

objects.

– The coefficient of friction between the objects and

the pushing surface is uniform.

– Additionally, our model of how a pushed object moves

is most realistic if the object’s pressure distribution

has rotational symmetry. This includes not only cir-

cularly symmetric distributions, but also rectangles,

equilateral triangles; any distribution that repeats

itself in a revolution about the center of pressure

Howe and Cutkosky (1996).

2.2.2 The Capture Region of a Push-Grasp

A successful push-grasp is one whose execution results

in the stable grasp of an object. Given the push-grasp,

the object’s geometry and physical properties, which

we term O, and the object’s initial pose, we can uti-

lize the mechanics of manipulation described before to

predict the object’s motion. Coupling the simulation

with a suitable measure of stability, like caging or force-

closure, we can compute the set of all object poses that

results in a stable push-grasp. We call this set the cap-

ture region C(G,O) ⊂ SE(2) of the push-grasp.

We use a simulation of quasi-static pushing to com-

pute a capture region. We performs this simulation of-

fline once for each object.

Howe and Cutkosky (1996) show that the limit sur-

face can be approximated by a three-dimensional ellip-

soid. We use the aspect ratio of this ellipsoid, in cal-

culating the normal to a point on it. The equatorial

radii are found by calculating the maximum friction

force (fmax) that the supporting surface can apply to

the object, which occurs when the object is translating.

The polar radius is found by calculating the maximum

moment (mmax) that the supporting surface can ap-

ply, which occurs when the object is rotating around

its center of friction. Then the quasi-static motion of

the object is determined by the ratio c = mmax/fmax.

The mass of the object and the coefficient of friction

between the object and the supporting surface (µs) are

multipliers in both the numerator and denominator of

this fraction, and cancel out. Hence, as long as the el-

lipsoid approximation holds, we do not need to know

the object mass or µs to predict the motion (These pa-

rameters simply inflate or deflate the ellipsoid but do

not change the normal at a point on it). The pressure

distribution supporting the object on the surface and

the coefficient of friction between the robot finger and

the object, µc, do affect the motion of the object. We
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Fig. 8 An example push-grasp of an object in contact with the surrounding clutter.

(a) (b) (c) (d)

Fig. 9 (a) Parametrization of a push-grasp. (b) The capture region of a radially symmetric bottle is the area bounded by the
black curve. We divided the plane into different regions using the green dashed lines. (c) Capture regions for push-grasps of
different distances. (d) 3D capture region of a rectangular box.

compute capture regions conservatively with respect to

these parameters, so that the capture region will be

valid for a wide range of values these parameters can

take. For a cylindrical object the conservative capture

region is given by assuming the pressure distribution to

be at the periphery of the object, and assuming µc to
have a very large value. A proof of this is presented in

Appendix A.

We present the capture region of a juice bottle pro-

duced by our pushing simulation in Fig. 9(b), which is

a 2D region as the bottle is radially symmetric. The

capture region is the area bounded by the black curve.

The shape of the curve represents three phenomena.

The part near the hand (inside regions IV, V, and VI)

is the boundary of the configuration space obstacle gen-

erated by dilating the hand by the radius of the bottle.

The line at the top (inside region II) represents the edge

of the fingers’ reach. We conservatively approximate the

curve traced out by the fingers while they are closing

by the line segment defining the aperture.

Regions I and III of the capture region curve are

the most interesting. Let us consider the left side of

the symmetric curve. If an object is placed at a point

on this curve then during the push-grasp the left finger

will make contact with the object and the object will

eventually roll inside the hand. If an object is placed

slightly to the left of this curve, then the left finger

will push that object too, but it will not end up inside

the hand at the end of the push: it will either roll to

the left and out of the hand or it will roll right in the

correct way but the push-distance will not be enough

to get it completely in the hand. We can observe the

critical event at which the object starts to slide on the

finger, producing a discontinuity on the upper part of

the curve.

We also present the three-dimensional capture re-

gion of a rectangular box in Fig. 9(d). We compute it

by computing the two-dimensional regions of the object

at different orientations.

2.2.3 Efficient Representation of Capture Regions

Each push-grasp G for an object O produces a unique

capture region C(G,O). By computing C(G,O) rela-

tive to the coordinate frame of the hand, we can re-

duce the dependence to the aperture a and the pushing

distance d. Every other capture region is obtained by

a rigid transformation of the hand-centric capture re-

gion. This can be formally stated as C(G(ph, a, d), O) =

T (ph)C(G(0h, a, d), O).
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Fig. 10 Given an object pose, the minimum required push-
ing distance d to grasp that object can be found using a pre-
computed capture region of a push-grasp with pushing dis-
tance Dmax. In the figure, d = 0 for P1 since it is already
in the hand; P2 can not be grasped with a push shorter than
Dmax since it is outside the capture region; for P3 and P4
the required pushing distances can be found by computing
d = Dmax − d3sub and d = Dmax − d4sub respectively.

To illustrate the effects of the pushing distance d

on the shape of a capture region, we overlaid the cap-

ture regions produced by different pushing distances in

Fig. 9(c). We can see that as the pushing distance gets

smaller, the upper part of the larger capture region (re-

gions I, II, and III in Fig. 9(b)) is shifted down in the

vertical axis. To understand why this is the case, one

can divide a long push into two parts, and think of the

last part as an individual push with the remaining dis-

tance.

This lets us pre-compute the capture region for a

long push distance, Dmax, and use it to produce the

capture regions of shorter pushes. Given all the other

variables of a push-grasp, our planner uses this curve to

compute the minimum push distance d required by an

object at a certain pose (Fig. 10). The cases to handle

are:

– If the object is already inside the hand (see P1 in

Fig. 10), no push is required; d = 0m.

– Else, if the object is outside the capture region (see

P2 in Fig. 10) there is no way to grasp it with a

push shorter than Dmax. Reject this object.

– Else, the minimum pushing distance required can

be found by using the formula

d = Dmax − dsub

where dsub is the distance between the object and

the top part of the capture region curve along the

pushing direction v (see P3 and P4 in Fig. 10). dsub
can be interpreted as the value we can shorten the

push-distance Dmax such that the object is exactly

on the boundary of the capture region.

In our implementation we use Dmax = 1m as an

overestimate of the maximum distance our robot arm

can execute a pushing motion.

The effect of changing the hand aperture, a, is straight-

forward. Referring again to the regions in Fig. 9(b),

changing a only affects the width of the regions II and

V, but not I and III. Therefore, we do not need to com-

pute capture regions for different aperture values. Note

that this is only true assuming the fingertips are cylin-

drical in shape, hence the contact surface shapes do not

change with different apertures. If the fingertip contact

surfaces dramatically change with different apertures

of the hand, one can compute the capture regions for a

predefined set of different apertures.

2.2.4 Validating Capture Regions

We ran 150 real robot experiments to determine if the

precomputed models were good representations of the

motion of a pushed object, and whether they were really

conservative about which objects will roll into the hand

during a push.

To validate the capture region, we repeatedly exe-

cuted a push of the same d and placed the object in

front of the hand at different positions on a grid of res-

olution 0.01m (Fig. 11b). Then we checked if the object

was in the hand at the end of a push. The setup and

two example cases where the push grasp failed and suc-

ceeded are shown in Fig. 11c.

The results (Fig. 11a) show that, the simulated cap-

ture region is a conservative model of the real capture

region. There are object poses outside the region for

which the real object rolled into the hand (green circles

outside the black curve); but there are no object poses

inside the curve for which the real object did not roll

into the hand. This is in accordance with our expec-

tations, since, for the system parameters that are hard

to know (the pressure distribution underneath the ob-

ject, and the coefficient of friction between the finger

and the object) our simulation of pushing uses conser-

vative values. This guarantees success, in the sense that

our planner always overestimates the pushing distance

needed. But this is a tight overestimate, as can be seen

in Fig. 11a.

2.2.5 Overlapping Uncertainty and Capture Regions

The overlap between a capture region and an uncer-

tainty region indicates whether a push-grasp will suc-

ceed under uncertainty. To guarantee that a push-grasp
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(a) Simulation and real-world experi-
ments. Green circles: real world suc-
cesses; red crosses: real world failures.

(b) Push-grasping validation setup (c) Two example cases where the push fails
(top row), and succeeds (bottom row).

Fig. 11 Capture region generated with our push-grasping simulation and validated by robot experiments. 150 validation tests
were performed in total.

will succeed it is sufficient to make sure that the un-

certainty region of the goal object is included in the

capture region of the push-grasp.

We illustrate this idea in Fig. 12. Here the robot

detects a juice bottle (Fig. 12a). We illustrate the un-

certainty region of the juice bottle in Fig. 12b, and the

capture region of the push-grasp in Fig. 12c. If the un-

certainty region is completely included in the capture

region as in Fig. 12c, then we can guarantee that the

push-grasp will succeed.

The uncertainty and capture regions are two-dimensional

in Fig. 12 only because the bottle is radially symmet-

ric. In general, these regions are three-dimensional, non-

convex and potentially even disjoint (e.g. multi-modal

uncertainty regions). Checking inclusion/exclusion of

two generic three-dimensional regions is a computation-

ally expensive problem.

We use a sampling strategy to overcome this prob-

lem. We draw n random samples from the uncertainty

region, and check if all of these samples are in the cap-

ture region of a push-grasp. Samples are drawn accord-

ing to the probability distribution of the uncertainty

region: poses of higher probability also have a higher

chance of being sampled.

2.2.6 Finding a successful push-grasp

The planner searches for a push-grasp such that the

hand can grasp all the samples drawn from the un-

certainty region of the object, and the resulting hand

motion can be executed with the arm.

Given a goal object in the environment, the planner

searches for a push grasp by changing the parameters

v, a, and the lateral offset in approaching the object, o.

The lateral offset o changes the initial pose of the hand

by moving it along the line perpendicular to the pushing

(a) Detected object(b) Uncertainty re-
gion

(c) Capture region

Fig. 12 If the uncertainty region of an object is included in
the capture region of a push-grasp, then the push-grasp will
be successful.

direction v. During the search, these parameters are

changed between certain ranges, with a user defined

step size. v changes between [0, 2π); a changes between

the maximum hand aperture and the minimum hand

aperture for the object; and o is changed between the

two extreme positions, where the object is too far left

or right relative to the hand.

The push-grasp is allowed to penetrate the space of

other movable objects as explained in §2.1.1. But we

try to minimize the number of such objects to get more

efficient plans. Therefore we compute a heuristic value

for the different directions to push-grasp an object. We

rotate the robot hand around the goal object and check

the number of objects it collides with. We prefer direc-

tions with a smaller number of colliding objects.

2.2.7 Evolution of uncertainty region during pushing

We use the capture region to also represent the evolu-

tion of the uncertainty region of a manipulated object,

νo.

As explained in §2.2.3 we can use a capture region

for a push of length d to compute capture regions for
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Table 1 Planner Performance.

No Clutter Medium Clutter High Clutter

TSR PG TSR PG TSR PG

σ1
10 10

0.01 0.02
10 10

0.01 0.04
5 8

0.54 1.98

σ2
9 10

0.52 0.58
9 10

1.02 1.17
0 5

1.97 12.93

σ3
0 10

0.86 1.00
0 10

1.61 5.17
0 3

3.22 28.16

σ4
0 5

0.86 1.44
0 0

1.63 3.91
0 0

3.08 7.46

shorter pushes (Fig. 9(c)). Using the same formulation,

at any future point before the end of a push, we con-

struct the capture region for the remaining distance. A

push with a pushing distance d is executed only if its

capture region contains the initial uncertainty region of

the object, which indicates that the evolved uncertainty

of the object will always stay in the subsequent capture

regions until the object is inside the hand at the end

of the push. Hence, we discretize a push into smaller

steps, and use these series of capture regions to conser-

vatively approximate the evolution of the uncertainty

region, νo, of the object o.

3 Experiments and Results

3.1 Push-grasping Experiments

In this section we present our experiments with the

push-grasping action. We will present our experiments

with the complete framework in §3.2. We conducted ex-

periments in simulation and on HERB (Srinivasa et al

2009) to evaluate the performance of our planner. Sim-

ulation experiments are performed in OpenRAVE (Di-

ankov and Kuffner 2008).

3.1.1 Robotic Platform

HERB has two 7-DoF WAM arms and 4-DoF Barrett

hands with three fingers. A camera is attached to the

palm to detect objects and estimate their poses.

3.1.2 Planner performance

We compared the performance of our push-grasp plan-

ner with another grasp planner that can handle un-

certainty about the object pose. We used the uncer-

tainty task space regions (TSRs) algorithm from Beren-

son et al (2009b). In our implementation, to supply the

TSRs with a set of hypotheses we used samples from

Fig. 13 A high-clutter scene where the TSR planner fails
but push-grasp planner is able to find a plan.

the uncertainty region of our objects. We used the same

number of samples that we use for our push-grasp plan-

ner.

Table 1 presents results in simulation comparing the

performance of our push-grasp planner (PG) and the

Uncertainty TSR planner. We categorize scenes as no

clutter (1 object), medium clutter (2-3 objects placed

apart from each other), and high clutter (3-4 objects

placed close to each other). For each category we cre-

ated ten different scenes. For each scene we added in-

creasing amount of uncertainty, where σ1 is no uncer-

tainty, and σ4 is the highest uncertainty.

In each cell of Table 1 we present four numbers.

The top left number indicates in how many of the ten

scenes Uncertainty TSR planner was able to come up

with a plan. The same value for the Push-Grasp plan-

ner is in the top right. We indicate the average planning

time in seconds, for TSR, on the lower left corner. The

same value for the push-grasp planner is at the lower

right. We used three-dimensional multivariate normal

distributions (in x, y, and θ) as the uncertainty regions.

We modeled each dimension as mutually independent

and used the following standard deviations in object

translation and rotation for different uncertainty levels:

σ1: no uncertainty; σ2: (0.005m, 0.034rad); σ3: (0.02m,

0.175rad); σ4: (0.06m, 0.785rad). The number of sam-

ples, n, we used for these uncertainty levels are: 1, 30,

50, 50.

Table 1 shows that the push-grasp planner is able

to plan in environments with higher uncertainty. When

the uncertainty is high, the Uncertainty TSR planner is

not able to find any static pose of the hand that grasps

all the samples of the object. The push-grasp planner,

on the other hand, is not limited to static grasps, and

can sweep larger regions over the table than any static

hand pose can. Note also that a push-grasp with no

real pushing (d = 0) is possible, hence the push-grasp

planner is able to find a solution whenever the TSR

planner finds one.

We can see from Table 1 that push-grasp planner

also performs better in high clutter. One example scene

of high clutter, where push-grasp planner is able to find

a grasp but the Uncertainty TSR planner cannot, is
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presented in Fig. 13. Here the goal object is right next

to other objects. The Uncertainty TSR planner cannot

find any feasible grasps in this case since any enveloping

grasp of the object will collide with the obstacle objects.

In this case, the push-grasp planner comes up with the

plan presented in Fig. 13, which moves the object away

from the clutter first and then grasps.

The planning times also shown in Table 1. We see

that in environments where the Uncertainty TSR plan-

ner succeeds, the push-grasp planning times are com-

patible. Push-grasp planner takes a longer but reason-

able amount of time (tens of seconds) in difficult envi-

ronments where Uncertainty TSR planner fails.

3.1.3 Real Robot Experiments

We conducted two sets of experiments on our real robot.

In the first, we used the actual uncertainty profile of

our object pose estimation system. In the second set of

experiments, we introduced higher noise to the detected

object poses.

In the first set of experiments we created five scenes,

detected the objects using the palm camera and planned

to grasp them using both the Uncertainty TSR planner

and our push-grasp planner. As described in §2.1.2 we

empirically modeled the uncertainty profile of our ob-

ject pose estimation system as a multivariate normal

distribution. We assumed each dimension to be mutu-

ally independent and used the standard deviation val-

ues σ: (0.007m, 0.07rad) to build the covariance matrix

Q. The number of samples we used, n, was 30. Uncer-

tainty TSR planner was able to find a plan three out

of five times, and the push-grasp planner was able to

find a plan four out of five times. All the executions of

these plans were successful. Again the Uncertainty TSR

planner was not able to find a plan when the goal ob-

ject was right next to another obstacle object, making

it impossible to grasp the goal object without colliding

with the obstacles.

In another set of experiments on the real robot we

introduced higher uncertainty by adding noise to the

positions of the objects reported by the object detec-

tion system. For Gaussian noise in translation with σ =

0.02m and n = 50, the Uncertainty TSR planner was

not able to find a plan for any of the five scenes, while

the push-grasp planner found a plan and successfully

executed them in three of the five scenes. The failures

were due to the collision of the arm with the clutter

while moving the end-effector to the starting pose of

the push-grasp. In the next section we present our ex-

periments with the complete framework, where the arm

motions are also planned by taking into account the un-

certainty in the environment.

Execution of some of the push-grasps can be seen in

Fig. 14. Videos of our robot executing push-grasps are

online at

www.cs.cmu.edu/˜mdogar/pushgrasp

3.2 Planning Framework Experiments

This section describes our experiments with the com-

plete framework, including not only the Push-grasp but

also the Sweep, GoTo, and PickUp.

We created scenes in simulation and in real world.

The robot’s goal was to retrieve objects from the back

of a cluttered shelf and from a table. We used everyday

objects like juice bottles, poptart boxes, coke cans. We

also used large boxes which the robot cannot grasp.

We present snapshots from our experiments in the

figures of this section. The video versions can be viewed

at

www.cs.cmu.edu/˜mdogar/pushclutter

3.2.1 Pushing vs. Pick-and-Place

Here, we compare our planner in terms of the efficiency

(planning and execution time) and effectiveness (whether

the planner is able to find a plan or not) with a plan-

ner that can only perform pick-and-place operations. To

do this, we used our framework algorithm to create a

second version of our planner, where the action library

consisted of only the PickUp and GoTo actions, similar

to the way traditional planners are built using Transfer

and Transit operations. We modified the PickUp action

for this planner, so that it does not perform the pushing

at the beginning, instead it grasps the object directly.

We call this planner the pick-and-place planner, and

our original planner the pushing planner.

An example scene where we compare these two plan-

ners is given in Fig. 15. The robot’s goal is to retrieve

the coke can from among the clutter. We present the

plans that the two different planners generate. The push-

ing planner sweeps the large box blocking the way. The

pick-and-place planner though cannot grasp and pick

up the large box, hence needs to pick up two other ob-

jects and avoid the large box. This results in a longer

plan, and a longer execution time for the pick-and-place

planner. The planning time for the pick-and-place plan-

ner is also longer, since it has to plan more actions.

These times are shown on the figure.

In the previous example the pick-and-place planner

was still able to generate a plan. Fig. 16 presents a

scene where the pick-and-place planner fails: the large

ungraspable box needs to be moved to reach the goal

object, the can. The pushing planner generates a plan

and is presented in the figure.



14 Mehmet R. Dogar, Siddhartha S. Srinivasa

Fig. 14 Example push-grasps executed by our robot.

Fig. 15 The plans that the pushing planner and the pick-and-place planner generates in the same scene are presented. The
pushing planner is more efficient as it is able to sweep the large box to the side. The pick-and-place plan needs to move more
objects and takes more time to execute. The planning time is also more for the pick-and-place planner (27.8 sec vs. 16.6 sec)
as it needs to plan more actions.
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Fig. 16 An example plan to retrieve a can behind a large ungraspable box on a shelf. The robot first pushes the ungraspable
large box to the side and then reaches in to get the can out.

3.2.2 Addressing uncertainty

One of the advantages of using pushing is that push-

ing actions can account for much higher uncertainty

than direct grasping approaches. To demonstrate this

we created scenes where we applied high uncertainty

to the detected object poses. Fig. 2 presents an exam-

ple scene. Here the objects have an uncertainty region

with σ: (0.02m, 0.05rad) and n = 20. The pick-and-

place planner fails to find a plan in this scene too, as

it cannot find a way to guarantee the grasp of the ob-

jects with such high uncertainty. The pushing planner

generates plans even with the high uncertainty.

4 Discussion and Future Work

We presented a framework for manipulation in clutter.

This framework uses non-prehensile, as well as prehen-

sile, actions to rearrange the environment. In this sec-

tion we present a discussion around the limitations of

this framework and possible extensions to it.

Conservative nature of backward chaining: Our planner
starts from the goal and plans backwards. At any step

we take into account all uncertainty associated with

previously planned actions. This is reflected in the neg-

ative goal regions for our planner. When the uncertainty

about the consequence of an action is large, this is re-

flected as a large negative goal region in the following

planning steps. If the NGR becomes too large, the plan-

ner can run out of space to move objects to. This is a

result of our planner being conservative with respect to

uncertainty. In future work, we will explore the idea of

risk-taking actions as a solution to this problem.

Unknown spaces: Clutter does not only block a robot’s

links from reaching into certain parts of the space, but it

also blocks its sensors (e.g. the cameras and laser scan-

ners). In other words clutter does not only create un-

reachable spaces but also creates invisible or unknown

spaces. If the robot cannot see behind a large box, there

is no way for it to know if there is another object sit-

ting there. If the robot needs to use the space behind

that box, what can it do? Our existing framework as-

sumes that these spaces are free. This assumption does

not have to be correct and can result in failures during

execution. To solve this problem we can take an active

approach where the robot manipulates objects to see

the space behind.

Actions with Sensor Feedback: The actions presented in

this paper are open-loop. To guarantee success they are

conservative with respect to uncertainty. In future work

we plan to use sensor feedback during pushing. One

challenge when implementing this push-grasping strat-

egy will be finding a good flow of sensor feedback. Cam-

eras on a robot’s head are usually obstructed by the

robot hand during manipulation. Therefore our main

focus will be using tactile sensors and force/torque sen-

sors on the end-effector of the robot.

Other non-prehensile actions The framework we present

in this paper opens up the possibility to use different

non-prehensile manipulation actions as a part of the

same planner. Therefore we view different non-prehensile

actions, such as the ones described below, as possible

primitives that can be integrated into our framework.
Lynch (1999b) uses toppling as a manipulation primi-

tive. Berretty et al (2001) presents an algorithm to plan

a series of pulling actions to orient polygons. Diankov

et al (2008) use caging to open doors as an alterna-

tive to grasping the handle rigidly. Chang et al (2010)

present a system that plans to rotate an object on the

support surface, before grasping it. Omrcen et al (2009)

propose a method to learn the effect of pushing actions

on objects and then use these actions to bring an object

to the edge of a table for successful grasping.

Pushing Multiple Objects Simultaneously: When a robot

rearranges clutter using our existing framework it ma-

nipulates objects one by one. If there are n objects

blocking the way to achieve the primary goal, the robot

executes n distinct actions to move them. If the robot

could simultaneously move some of these objects out of

the way, it would achieve its goal in a faster way. In

future work we plan to use pushing actions that can

move multiple objects simultaneously.
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5 Conclusion

In this paper we presented a framework for manipula-

tion in clutter. The framework consists of a high-level

rearrangement planner, and a low-level library of non-

prehensile and prehensile actions. We presented the de-

tails of how we implement a non-prehensile action, the

push-grasp. We plan to extend this framework such that

it can use sensor feedback, it can actively look for parts

of the space that are occluded, and it can move multiple

objects simultaneously in rearranging clutter.

A Computing conservative capture regions

We compute the capture region for a push-grasp using a push-
ing simulation. This simulation assumes that an object’s limit
surface can be approximated with an ellipsoid in the force-
moment space as in Howe and Cutkosky (1996).

As described in §2.2.2 two parameters of this simulation
affect the boundaries of the computed capture region: the
pressure distribution between the object and the support sur-
face, ρ; and the coefficient of friction between the robot finger
and the object, µc. These values are difficult to know and we
assume that our robot does not know the exact values for any
object.

When we run our simulation we generate capture regions
that are conservative with respect to these parameters; i.e.
capture regions that work for a range of reasonable values of
µc and ρ. For µc such a reasonable region is given by the
values between a very small value (a very slippery contact
between the robot finger and the object), and a very high
value (a high friction contact). The pressure distribution ρ can
take any rotationally symmetric shape, but it is limited by
the boundaries of the object making contact with the support
surface.

One way to achieve a conservative capture region is by dis-
cretizing the values a parameter can take, running the simula-
tion for each of the values, and then intersecting the resulting
capture regions to find a capture region that works for all the
values. But for certain object shapes we can do better.

For a cylindrical object the conservative capture region
can be found simply by running the simulation for specific
values of µc and ρ. For µc if we choose a very high value the
computed capture region will also be valid for any lower value.
For ρ if we choose a pressure distribution that is completely at
the periphery of the cylinder (like a rim), the capture region
will be valid for any other rotationally symmetric pressure
distribution that is closer to the center of the cylinder. This
is equivalent to saying that, as µc gets smaller or as ρ gets
concentrated around the center, the required pushing distance
for the push-grasp will decrease. In this section we prove this
claim.

In Fig. 17 we present some of the force and velocity vec-
tors that determine how a cylinder moves under quasi-static
pushing. The following notation will be used:

– n̂ is the unit normal at the contact between the finger
and the object.

– fL and fR are the left and right edges of the friction cone.
The friction cone is found by drawing the vectors that
make the angle α = arctanµc with n̂.

– f is the force applied to the object by the finger. The
direction of f is bounded by the friction cone.

Fig. 17 Some of the force and velocity vectors we will be
using in our proof. In the figure the finger is pushing the
cylinder towards right.

– v and ω are the linear and angular velocities of the ob-
ject at its center. v and ω can be found by computing the
force and moment at the center of the object due to f ,
finding the corresponding point on the limit surface, and
taking the normal to the limit surface. Our ellipsoid ap-
proximation of the limit surface dictates that v ‖ f (Howe
and Cutkosky (1996)).

– mL and mR are the left and right edges of the motion
cone. The edges of the motion cone are found by:
– taking one of the edges of the friction cone, say the

left edge;
– computing the force and moment it creates at the

object center;
– using the limit surface to find the corresponding linear

and angular velocity of the object, in response to this
force and moment;

– using the linear and angular velocity at the center of
the object to find the velocity at the contact point.
This gives the left edge of the motion cone; the right
one is found by starting with the right edge of the
friction cone.

– v̂d is the unit vector pointing in the opposite direction of
ω × r where r is the vector from the center of the object

to the contact; v̂d = (ω×r)

|ω×r| .

– vp is the velocity of the pusher/finger at the contact
point. The voting theorem (Mason (1986)) states that
vp and the edges of the friction cone votes on the di-
rection the object will rotate. For a cylinder the friction
cone edges always fall on different sides of the center of
the object, and vp alone dictates the rotation direction;
vp.(ω × r) > 0. In terms of v̂d this means vp.v̂d < 0.

– vc is the velocity of the object at the contact point; vc =
v + ω × r.

– The grasp-line is the line at the fingertip orthogonal to
the pushing direction. The push-grasp continues until the
object center passes the grasp-line.

During quasi-static pushing, the contact between the fin-
ger and the object can display three different modes: sepa-
ration, sticking, or sliding. The case of separation is trivial,
in which the finger moves away from the object resulting in
no motion for the object. In the case of sticking contact the
contact point on the finger and the contact point on the ob-
ject moves together, i.e. vp = vc. This happens when f falls
inside the friction cone, and correspondingly when vc falls
inside the motion cone. In sliding contact the object slides on
the finger as it is being pushed. In this case f aligns with the
friction cone edge opposing the direction the object is sliding
on the finger. Similarly vc aligns with the motion cone edge
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Fig. 18 The relation between v, vp, and vc during sliding
contact.

opposing the direction the object is sliding on the finger. vp

is outside of the motion cone.
What follows is a series of lemmas and their proofs; which

we then use to prove our main theorem.

Lemma 1 During sticking and sliding contact v.n̂ = vp.n̂.

Proof During sticking contact vp = vc, which implies

vp.n̂ = vc.n̂

We know that vc = v + ω × r. Then,

vp.n̂ = (v + ω × r).n̂

Since (ω × r).n̂ = 0,

vp.n̂ = v.n̂

During sliding contact, the relation between vc and vp is
given by

vc = vp + vslide

where vslide is the velocity the object slides on the finger.
Taking the projection of both sides along the contact normal
gives

vc.n̂ = (vp + vslide).n̂

Sliding can only happen along the contact tangent. For a
cylindrical object, this means vslide.n̂ = 0. Then,

vp.n̂ = vc.n̂

This is also illustrated in Fig. 18. The rest of the proof pro-
ceeds the same as the sticking contact case. ut

Lemma 2 During sticking contact, as we change ρ such that
it is concentrated closer to the center of the cylinder, the
magnitude of the angular velocity, |ω|, will get larger.

Proof As ρ concentrates at the center, the limit surface ellip-
soid gets a more flattened shape at the top and bottom. This
implies that for the same force and moment applied to the
object, the ratio |ω|/|v| will get larger (Howe and Cutkosky
(1996)).

We can express |v| as,

|v| =
√

(v.v̂d)2 + (v.n̂)2

and using Lemma 1,

|v| =
√

(v.v̂d)2 + (vp.n̂)2 (2)

During sticking contact vp = vc, hence

vp = v + (ω × r)

Since (ω × r) = −|ω||r|v̂d we have

vp = v − |ω||r|v̂d

Rearranging and projecting both sides onto v̂d gives:

v.v̂d = vp.v̂d + |ω||r|

Inserting this into Eq. 2,

|v| =
√

(vp.v̂d + |ω||r|)2 + (vp.n̂)2

Except |ω|, the terms on the right hand side are independent
of ρ. Since vp.v̂d < 0, as |ω| increases |v| decreases, and vice
versa. Then the only way |ω|/|v| can increase is when |ω|
increases. ut

Lemma 3 For a given configuration of the object and the
finger, if we change the pressure distribution ρ such that it
is concentrated closer to the center of the object, the change
in v will have a non-negative projection on v̂d.

Proof We will look at different contact modes separately. The
separation mode is trivial. The object will not move for both
values of ρ. The change in v will have a null projection on
v̂d.

Assume that the contact mode is sliding. Then f will be
aligned with one of the friction cone edges; let’s assume fR
without loss of generality. Since v ‖ f , then v is also a vector
with direction fR

v = |v|̂fR
where f̂R is the unit direction along fR. Inserting this into
the result from Lemma 1 we have

|v|̂fR.n̂ = vp.n̂

Then

|v| =
vp.n̂

f̂R.n̂

Multiplying both sides with f̂R we have

v =
vp.n̂

f̂R.n̂
f̂R

None of the terms get affected by a change in ρ, i.e. the change
in v will have a null projection on v̂d.

As ρ concentrates at the center, |ω|/|v| will get larger.
The motion cone edges will then get more and more aligned
with the direction of ω×r, making the motion cone wider. At
the point when the motion cone edge reaches vp the contact
is no more a sliding contact but a sticking one.

When the contact is sticking we have vp = vc = v+ω×r.
Then

v = vp − (ω × r)

If we rewrite (ω × r) using the direction v̂d, we get

v = vp + |ω||r|v̂d

Except |ω|, the terms on the right hand side are independent
of ρ. By Lemma 2, we know that as ρ concentrates around
the center of the object, |ω| increases; i.e. the change in v has
a positive projection on v̂d. ut
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Fig. 19 v changes along with the edge of the friction cone
as µc is decreased.

Now we look at the effect of µc, the friction coefficient
between the object and the finger.

Lemma 4 For a given configuration of the object and the
finger, if we decrease the value of µc, the change in v will
have a non-negative projection on v̂d.

Proof Again we look at the two contact modes separately.
The sticking contact case is trivial. f is inside the friction

cone. If we decrease µc, the friction cone will get narrower, but
as long as it does not get narrow enough to leave f outside, the
contact is still sticking. There is no effect to the velocities of
the motion, including v. The change in v has a null projection
on v̂d.

If we continue to decrease µc at one point the contact
will become sliding. f will be at the edge of the friction cone
and the friction cone will get narrower as we decrease µc.
Without loss of generality, let’s assume f is along fR. Since
v ‖ f , v will also move with fR. Pictorially v will change as
in Fig. 19, resulting in a change along v̂d. Formally, in the
proof of Lemma 3 we showed that during sliding contact

v =
vp.n̂

f̂R.n̂
f̂R

By the definition of the friction cone we have

f̂R = cos (arctanµc)n̂− sin (arctanµc)v̂d

Replacing this into the equation above and noting that v̂d.n̂ =
0 we have

v =
vp.n̂

cos (arctanµc)
(cos (arctanµc)n̂− sin (arctanµc)v̂d)

Then we have

v = (vp.n̂)n̂− (vp.n̂)µcv̂d

Except µc itself, the terms on the right hand side are inde-
pendent of µc. The contact mode requires that vp.n̂ > 0.
Hence, as µc decreases the change in v will be positive in the
direction of v̂d.

ut

Now we are ready to state and prove our main theorem.

Theorem 1 For a cylindrical object under quasi-static push-
ing, where the quasi-static motion is approximated by the el-
lipsoid limit surface (Howe and Cutkosky (1996)), as µc gets
smaller or as ρ gets concentrated around the center, the re-
quired pushing distance for a push-grasp will decrease or stay
the same (but not increase).

Fig. 20 Independent of µc and ρ, the finger and the object
goes through the same set of relative configurations during
the push-grasp.

Proof The push-grasp starts at a certain configuration be-
tween the finger and the object, and continues until the ob-
ject’s center passes the grasp-line at the fingertip and orthog-
onal to the pushing direction (Fig. 20). Since we assume that
µc is uniform all around the object, we can ignore the rota-
tion of the cylinder and simply consider its position relative
to the finger. Then, independent of ρ or µc, the finger and the
object will go through all the configurations between rstart

to rfinal during the push-grasp. We will show below that the
velocity the object center moves towards the grasp-line never
decreases as µc gets smaller or as ρ gets concentrated around
the center.

For a given configuration of the object and the finger, the
object center’s velocity is given by v (ω does not have an
effect). We can express v using its components

v = (v.n̂)n̂ + (v.v̂d)v̂d

Lemma 1 tells us that the component of v along n̂ is fixed
for different ρ or µc:

v = (vp.n̂)n̂ + (v.v̂d)v̂d

Hence, the only change in the object center’s motion happens
along v̂d. Lemma 3 and 4 states that the change in v will be
non-negative along v̂d. ut
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