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Abstract

Urs Graf applied Laplace transform to Sato’s hyperfunctions. In this paper
we have proved an Abelian- Tauberian type theorem for Laplace transform of
Hyperfunctions.
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INTRODUCTION
Mikio Sato[6] has introduced the idea of hyperfunctions to mention his generalization
of the concept of ordinary and generalized functions.Urs Graf use Sato’s idea, which
uses the classical complex function theory to generalize the notion of function of a real
variable and has applied various transforms like Laplace transform, Fourier transform,
Hilbert transform, Mellin transforms, Hankel transform to a class of hyperfunctions in
his book ’Introduction to Hyperfunctions and their Integral transforms’. [1]
Tauberian theory was first developed by Norbert Wiener[7] in 1932. Various types
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of abelian tauberian theorems are proved by many authors for integral transforms.
Using Wieners’s Tauberian theorem, Shikao Ikehara proved a Tauberian theorem for
Dirichlet series, which is known as Wiener Ikehara Theorem. In 1980, using contour
integration, Newmann invented new method to prove Tauberian theorems. Korevaar
further developed Newmann’s method.
In this paper we have proved Abelian Tauberian theorem for the integral of Laplace
transform for hyperfunction of bounded exponential growth using the Abelian
Tauberian theorem for Laplace transform of meaure functions[5].

1. PRELIMINARIES

We denote the upper and lower half-plane of the complex plane C by C+ = {z ∈ C :

Iz>0},C− = {z : Iz<0} respectively.

Definition 1.1[1]: For an open interval I of the real line, the open subset N(I) ⊂ C is
called a complex neighborhood of I , if I is a closed subset of N(I).
We let N+(I) = N(I)∩C+ and N−(I) = N(I)∩C−. O(N(I)\ I) denotes the ring of
holomophic functions inN(I)\I . For a given interval I a function F (z) ∈ O(N(I)\I)

can be written as

F (z) =

F+(z) for z ∈ N+(I),

F−(z) for z ∈ N−(I)

where F+(z) ∈ O(N+(I)) and F−(z) ∈ O(N−(I)) are called upper and lower
componet of F (z) respectively. In general the upper and lower component of F (z)

need not be related to each other. If they are analytic continuations from each other we
call F (z) a global analytic function onN(I) and we can write F+(z) = F−(z) = F (z).

Defintion 1.2[1]: Two functions F (z) and G(z) in O(N(I) \ I) are equivalent if for
z ∈ N1(I) ∩ N2(I) , G(z) = F (z) + φ(z), with φ(z) ∈ O(N(I)) where N1(I) and
N2(I) are complex neighborhoods of I of F (z) and G(z) respectively.

Definition 1.3[1]: An equivalence class of functions F (z) ∈ O(N(I) \ I) defines
a hyperfunction f(x) on I . Which is denoted by f(x) = [F (z)] = [F+(z), F−(z)].
F (z) is called defining or generating function of the hyperfunction. The set of all
hyperfunctions defined on the interval I is denoted by B(I).

B(I) = O(N(I) \ I) \O(N(I))
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A real analytic function φ(x) on I is defined by the fact that φ(x) can
analytically be continued to a full neighborhood U containing I i.e. we then have
φ(z) ∈ O(U). For any complex neighborhood N(I) containing U we may then write
B(I) = O(N(I) \ I) \ A(I), where A(I) is the ring of all real analytic functions on
I . Thus a hyperfunction f(x) ∈ B(I) is determined by a defining function F (z) which
is holomorphic in an adjacent neighborhood above and below the interval I , but is only
determined upto a real analytic function on I .
The value of a hyperfunction at a regular point x is

f(x) = F (x+ i0)− F (x− i0) = lim
ε→0+

{F+(x+ iε)− F−(x− iε)}

provided the limit exists.

Example[1]: Dirac delta function at x = 0 is represented in terms of hyperfunction
as δ(x) = [ −1

2πiz
]. Here the defining function is F (z) = −1

2πiz
.F (z) is defined except at

z = 0. At z = 0, F (z) has an isolated singularity, which is a pole of order 1. For every
real number x 6= 0 the limit limε→0+ {F+(x+ iε)− F−(x− iε)} exists and equal to 0.

Definition 1.4[1]: A hyperfunction f(x) is called holomorphic at x = a, if the
lower and upper component of the defining function can analytically be continued to a
full(two- dimensional) neighborhood of the real point a i.e. the upper/ lower component
can analytically be continued across a into the lower/upper half-plane.

Definition 1.5[1]: Let f(x) = [F+(z), F−(z)] be a hyperfunction, holomorphic at both
end points of the finite interval [a, b], then the (definite)integral of f(x) over [a, b] is
defined and denoted by∫ b

a

f(x)dx =

∫
γ+a,b

F+(z)dz −
∫
γ−a,b

F−(z)dz = −
∮
(a,b)

F (z)dz

where the contour γ+a,b runs in N+ from a to b above the real axis, and the contour γ−a,b
is in N− from a to b below the real axis.

Example[1]:
∫∞
−∞ δ(x− a)dx = −

∮ −1
2πi(z−a)dz = 1

Definition 1.6[1]: Let Σ0 be the largest open subset of the real line where the
hyperfunction f(x) = [F (z)] is vanishing. Its complement K0 = R \ Σ0 is said to
be the support of the hyperfunction f(x) denoted by suppf(x).
Let Σ1 be the largest open subset of the real line where the hyperfunction f(x) = [F (z)]

is holomorphic. Its complement K1 = R \ Σ1 is said to be the singular support of the
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hyperfunction f(x) denoted by singsuppf(x).
Consider open sets J = (a, 0) ∪ (0, b) with some a<0 and some b>0 and compact
subsets K =

[
a
′
, a
′′] ∪ [b′ , b′′] with a<a′ ≤ a

′′
<0 and 0<b

′ ≤ b
′′
<b. Also consider

the following open neighborhoods [−δ,∞) + iJ and (−∞, δ] + iJ of R+ and R−
respectively for some δ>0

Introduce the subclass O (R+) of hyperfunctions f(x) = [F (z)] on R satisfying
(i) The support suppf(x) is contained in [0,∞)

(ii) Either the support suppf(x) is bounded on the right by a finite number β>0 or
we demand that among all equivalent defining functions, there is one, F (z) defined in
[−δ,∞) + iJ such that for any compact K ⊂ J there exist some real constant M ′

>0

and σ′ such that |F (z)| ≤M
′
eσ
′
Rz holds uniformly for all z ∈ [0,∞) + iK

Because suppf(x) ⊂ R+ and since the singular support singsuppf is a subset of the
support, we have singsuppf ⊂ R+. Therefore f(x) is a holomorphic hyperfunction
for all x<0. Moreover, the fact that F+(x + i0) − F−(x − i0) = 0 for all x<0 shows
that F (z) is real analytic on the negative part of the real axis. Hence f(x) ∈ O(R+)

implies that χ(−ε,∞)f(x) = f(x) for any ε>0.

Definition 1.7[1]: We call the subclass of hyperfunctions O(R+) the class of rightsided
originals.
In the case of an unbounded support suppf(x), let σ = infσ

′ be the greatest lower
bound of all σ′ where the infimum is taken over all σ′ and all equivalent defining
functions satisfying (ii). This number σ− = σ−(f) is called the growth index of
f(x) ∈ R+. It has the properties
(i)σ− ≤ σ

′

(ii) For every ε>0 there is a σ′ with σ− ≤ σ
′ ≤ σ− + ε and an equivalent defining

function F (z) such that |F (z)| ≤M
′
eσ
′
Rz uniformly for all z ∈ [0,∞) + iK.

In the case of a bounded support supp f(x),we set σ−(f) = −∞

Definition 1.8[1]: The Laplace transform of a right-sided original f(x) = [F (z)] ∈
O(R+) is now defined by

f̂(s) = L[f(x)](s) = −
∫ (0+)

∞ e−szF (z)dz.

The image function f̂(s) of f(x) ∈ O(R+) is holomorphic in the right half-plane
Rs>σ−(f)

Similarly, we introduce the class O(R−) of hyperfunctions specified by
(i) The support suppf(x) is contained in R− = (−∞, 0]

(ii) Either the support suppf(x) is bounded on the left by a finite number α<0, or we
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demand that among all equivalent defining functions there is one, denoted by F (z)

and defined in (−∞, δ] + iJ such that for any compact subset K ⊂ J there are
some real constants M ′′

>0 and σ′′such that |F (z)| ≤ M
′′
eσ
′′
Rz holds uniformly for

z ∈ (−∞, 0] + iK.

Definition 1.9[1]: The set O(R−) is said to be the class of left-sided originals.
In the case of an unbounded support let σ+ = supσ

′′ be the least upper bound of all σ′′ ,
where the supremum is taken over all σ′′ and all equivalent defining functions satisfying
(ii). The number σ+ = σ+(f) is called the growth index of f(x) ∈ O(R−). It has the
properties
(i) σ′′ ≤ σ+.

(ii) For every ε>0 there is a σ′′ such that σ+ − ε ≤ σ
′′ ≤ σ+ and a definig function

F (z) such that |F (z)| ≤M
′′
eσ
′′
Rz uniformly for z ∈ (−∞, 0] + iK.

If the support suppf(x) is bounded, we set σ+(f) = +∞

Definition 1.10[1]: The Laplace transform of a left-sided original f(x) = [F (z)] ∈
O(R−) is defined by

f̂(s) = L[f(x)](s) = −
∫ (0+)

−∞ e−szF (z)dz.

The image function f̂(s) of f(x) ∈ O(R−) is holomorphic in the left half-plane
Rs<σ+(f)

Definition 1.11[1]: With g(x) ∈ O(R−) ,f(x) ∈ O(R+),h(x) = g(x) + f(x),

L[h(x)](s) = ĝ(x)(s) + f̂(x)(s), σ−(f)<Rs<σ+(g), provided σ−(f)<σ+(g).

Definition 1.12[1]: Hyperfunctions of the subclass O(R+) are said to be of bounded
exponential growth as x → ∞ and hyperfunctions of the subclass O(R−) are said to
be of bounded exponential growth as x→ −∞.
An ordinary function f(x) is called of bounded exponential growth as x→∞, if there
are some real constants M ′

>0 and σ′ such that |f(x)| ≤M
′
eσ
′
x for sufficently large x.

It is called of bounded exponential growth as x→ −∞, if there are some real constants
M
′′
>0 and σ′′ such that |f(x)| ≤M

′′
eσ
′′
x, for sufficently negative large x

A function or a hyperfunction is of bounded exponential growth, if it is of bounded
exponential growth for x → −∞ as well as for x → ∞ .Thus a hyperfunction or
ordinary function f(x) has a Laplace transform, if it is of bonded exponential growth,
and if σ−(f)<σ+(f)
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Proposition 1.13[1]: If f(x) = [F (z)] is a hyperfunction of bounded exponential
growth which is holomorphic at x = c, then

−
∫ (c+)

−∞ e−szF (z)dz =
∫ c
−∞ e

−sxf(x)dx,

−
∫ (c+)

∞ e−szF (z)dz =
∫∞
c
e−sxf(x)dx, thus

−{
∫ (c+)

−∞ e−szF (z)dz +
∫ (c+)

∞ e−szF (z)dz} =
∫∞
−∞ e

−sxf(x)dx

Proposition 1.14[1]: Let f(x) = [F (z)] be a hyperfunction of bounded exponential
growth with an arbitrary support and holomorphic at some point x = c. If in addition
σ− = σ−(χ(0,∞)f(x))<σ+ = σ+(χ(−∞,0)f(x)), then its Laplace transform is given by

L[f(x)](s) = L[χ(−∞,c)f(x)](s) + L[χ(c,∞)f(x)](s) =∫ c
−∞ e

−sxf(x)dx+
∫∞
c
e−sxf(x)dx =

∫∞
−∞ e

−sxf(x)dx

Definition 1.15[1]: Consider hyperfunctions depending on a continuous parameter α
or an integral parameter k. The continuous parameter α varies in some open region ω
of the complex plane and α0 is a limit point of ω. Integral parameter k may vary in
N or Z.Then f(x, α) = [F (z, α)], α ∈ ω; fk(x) = [Fk(z)], k ∈ N or Z. We say that a
family of holomorphic functions F (z, α),or a sequence of holomorphic functions Fk(z)

defined on a common domain N ⊂ C converges uniformly in the interior of N to F (z)

as α → α0, or k → ∞, respectively if F (z, α) or Fk(z) converges uniformly to F (z)

in every compact sub domain of N. This uniform convergence in the interior of N is
also called compact convergence in N.

Definition 1.16[1]: Let f(x) = [F+(z), F−(z)] be defined on I such that, for every
k,equivalent defining functions Gk(z) of Fk(z) exist, such that G+k(z) and G−k(z)

are uniformly convergent in the interior of N+(I) and N−(I) to F+(z) and F−(z)

respectively. Then we write f(x) = limk→∞ fk(x), and say that the sequence of
hyperfunctions fk(x) converges in the sense of hyperfunctions to f(x). If a limit in
the sense of hyperfunctions exists, it is unique.

Definition 1.17: A function h : (0,∞) → (0,∞) is said to be slowly varying at
infinity if limp→∞

h(px)
h(p)

= 1 for all x>0
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2. ABELIAN -TAUBERIAN THEOREM FOR LAPLACE TRANSFORM OF
HYPERFUNCTIONS

We first develop the background for deriving the Continuity theorem of Hyperfunctions
which then leads to the Abelian-Tauberian theorem for Hyperfunctions.

2.1 Measurable Hyperfunctions

Definition 2.1.1: A hyperfunction f(x) = [F (Z)] = [F+(z), F−(z)] is said to be
a measurable hyperfunction if the defining function F (z) ∈ [F (z)] are all complex
Lebesgue measurable functions.

Note: Here onwards we are considering sequence of hyperfunctions (fn(x)) =

([Fn(z)]), where the sequence of defining functions (Fn(z)) are defined on a common
domain N ⊂ C

Lemma 2.1.2: (Fatou’s lemma for Hyperfunctions)
Let (fn(x)) = ([Fn(z)]) be a sequence of non-negative, real valued, holomorphic,
measurable hyperfunctions with compact support and having bounded exponential
growth. Then liminf

∫
fn(x)dx ≥

∫
liminffn(x)dx

Proof: Applying Fatou’s lemma for measurable functions to the sequence of defining
functions of (fn(x)) we get
liminf

∫
Fn(z)dz ≥

∫
liminfFn(z)dz

Also it holds for every Gn(z) ∈ [Fn(z)].
Hence the result follows.

Theorem 2.1.3:(Monotone Convergence Theorem for Hyperfunctions)
Let (fn(x)) = ([Fn(z)]) be a sequence of non-negative, real valued, holomorphic,
measurable hyperfunctions with compact support and having bounded exponential
growth.If (fn(x)) is monotonic increasing and (fn(x)) → f(x),where f(x) = [F (x)]

then
∫
f(x)dx = lim

∫
fn(x)dx

Proof: Let f(x) = limn→∞fn(x).Then by lemma 2.1.2 we have∫
f(x)dx =

∫
limfn(x)dx

=
∫
liminffn(x)dx

=
∫
liminfFn(z)dz

≤ liminf
∫
Fn(z)dz

= liminf
∫
fn(x)dx

Since (fn(x)) is monotonic increasing and (fn(x)) → f(x) in the sense of
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hyperfunction we have fn(x) ≤ f(x).
Hence

∫
fn(x)dx ≤

∫
f(x)dx

Then limsup
∫
fn(x)dx ≤

∫
f(x)dx

So
∫
f(x)dx ≤ liminf

∫
fn(x)dx ≤ limsup

∫
fn(x)dx ≤

∫
f(x)dx

Thus
∫
f(x)dx = lim

∫
fn(x)dx

Theorem 2.1.4:(Dominated Convergence Theorem for Hyperfunctions)
Let (fn(x)) = ([Fn(z)]) be a sequence of non-negative, real valued, holomorphic,
measurable hyperfunctions with compact support and having bounded exponential
growth.If |fn(x)| ≤ g(x), where g(x) = [G(z)] is a real valued hyperfunction and
limn→∞fn(x) = f(x), f(x) = [F (z)] then f(x) is integrable and lim

∫
fn(x)dx =∫

f(x)dx

Proof:Applying Dominated convergence theorem for measurable functions to the
sequence (Fn(z)) of defining functions of (fn(x)) we have F (z) is integrable and
lim

∫
Fn(z)dz =

∫
F (z)dz

Then using the convergence in the sense of hyperfunctions we get f(x) is integrable
and lim

∫
fn(x)dx =

∫
f(x)dx.

Theorem 2.1.5:(Bounded convergence theorem for Hyperfunctions)
Let (fn(x)) = ([Fn(z)]) be a sequence of non-negative, real valued, holomorphic,
measurable hyperfunctions with compact support and having bounded exponential
growth,defined on (0,∞). If |fn(x)| ≤ P and limn→∞fn(x) = f(x), f(x) = [F (z)]

then
lim

∫∞
0
fn(x)dx =

∫∞
0
f(x)dx

Proof: Follows from Bounded convergence theorem for real valued measurable
functions

2.2 Continuity Theorem for Hyperfunction

Lemma 2.2.1:
Let f(x) = [F (z)] and g(x) = [G(z)] are two holomorphic hyperfunctions of bounded
exponential growth with Laplace transforms f̂(s) = L[f(x)](s) and ĝ(s) = L[g(x)](s).
If they have a common vertical strip of convergence then f̂(s) = ĝ(s) implies
f(x) = g(x)

Proof:Suppose f̂(s) = ĝ(s)

⇒ L[f(x)](s) = L[g(x)](s)

⇒
∫∞
0
e−szF (z)dz =

∫∞
0
e−szF (z)dz
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⇒
∫∞
0
e−sz(F (z)−G(Z))dz = 0

⇒ F (z)−G(z) = 0

⇒ [F (z)] = [G(z)]

⇒ f(x) = g(x)

Theorem 2.2.2:(Continuity theorem for Hyperfunctions)
Let (fn(x)) = ([Fn(z)]) be a sequence of non-negative, real valued, holomorphic,
measurable hyperfunctions with compact support and having bounded exponential
growth,defined on (0,∞).
(a) Let f(x) = [F (z)] be a measurable hyperfunction with support contained in (0,∞)

such that fn(x) → f(x) for all ponts x at which fn’s and f are holomorphic. If
there exists t ≥ 0 such that supn≥1L[fn(x)](t)<∞ then L[fn(x)](s) → L[f(x)](s)

as n→∞ for all s>t
(b) Suppose there exists t ≥ 0 such that L[fn(x)](s) → L[f(x)](s) as n → ∞ for
all s>t then fn(x) → f(x) for all ponts x at which fn’s and f are holomorphic if the
Laplace transforms of fn’s and f have a common vertical strip of convergence.
Proof:
(a) Let M = supn≥1L[fn(x)](t)<∞.Then for any s>t and x ∈ (0,∞)∫∞
0
e−sxfn(x)dx →

∫∞
0
e−sxf(x)dx by dominated convergence theorem for

hyperfunctions.
Let s>t and ε>0 such that f is holomorphic at y ∈ (0,∞) with Me−(s−t)y ≤ ε.∫ y
0
e−sxfn(x)dx ≤ L[fn(x)](s)

≤
∫ y
0
e−sxfn(x)dx+ e−(s−t)y

∫∞
y
e−txfn(x)dx

≤
∫ y
0
e−sxfn(x)dx+ ε

Then
∫ y
0
e−sxf(x)dx ≤ liminfn→∞L[fn(x)](s)

≤ limsupn→∞L[fn(x)](s)

≤
∫ y
0
e−sxf(x)dx+ ε

Letting y →∞ along holomorphic points of f(x) = [F (z)]∫∞
0
e−sxf(x)dx ≤ liminfn→∞L[fn(x)](s)

≤ limsupn→∞L[fn(x)](s)

≤
∫∞
0
e−sxf(x)dx+ ε

i.e.L[f(x)](s) ≤ liminfn→∞L[fn(x)](s) ≤ limsupn→∞L[fn(x)](s) ≤ L[f(x)](s)+ ε

Since ε>0 is arbitrary,
L[fn(x)](s)→ L[f(x)](s) as n→∞ for all s>t
(b) Suppose that L[fn(x)](s) → L[f(x)](s) as n → ∞ for all s>t and the Laplace
transforms of fn’s and f have a common vertical strip of convergence.By 2.6 Lemma
and dominated convergence theorem for hyperfunctions
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fn(x) =
∫∞
0
esxL[fn(x)](s)ds

→
∫∞
0
esxL[f(x)](s)ds

= f(x)

2.3 Abelian-Tauberian Theorem for Laplace Transform of
Hyperfunctions

Now we are going to prove abelian tauberian theorem for the Laplace transform of
hyperfunctions.To avoid formulas consisting of reciprocals we are introducing two
positive variables p and q such that pq = 1. Then q → 0 when p→∞

Theorem 2.3.1:
Let f(x) = [F (z)] be a measurable, holomorphic hyperfunction on (0,∞) having
compact support and bounded exponential growth.If the Laplace transform f̂(s) =

[f(x)](s) is bounded for s>0 then the following conditions are equivalent.

(a) L[f(x)](qs)L[f(x)](q) →
1

sα+1 as q → 0

(b) f(px)
f(p)
→ xα as p→∞

Also L[f(x)](q) ∼ f(p)α! , α ≥ 0 is an integer

Proof: (a)⇒ (b)
Suppose L[f(x)](qs)L[f(x)](q) →

1
sα+1 as q → 0. Then by theorem 2.2.2 f(px)

L[f(x)](q) →
xα

α!

Letting x = 1 we have f(p)
L[f(x)](q) →

1
α!

.......(1)

So α!f(p)
L[f(x)](q) → 1 as p→∞

L[f(x)](q) ∼ f(p)α!.......(2)

Substituting (2) in (1)

f(px)
f(p)α!

→ xα

α!
as p→∞, i.e.f(px)

f(p)
→ xα as p→∞

(b)⇒ (a)
Suppose f(px)

f(p)
→ xα as p→∞
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Then by theorem 2.2.2, L[f(x)](qs)
f(p)

→ α!
sα+1 ........(3)

But f(p) ∼ L[f(x)](q)
α!

........(4)

Substituting (4) in (3)

L[f(x)](qs)α!
L[f(x)](q) →

α!
sα+1 , i.e.L[f(x)](qs)L[f(x)](q) →

1
sα+1 as q → 0

We can express the above theorem in terms of slowly varying function also.

Theorem 2.3.2:
Let f(x) = [F (z)] be a measurable, holomorphic hyperfunction on (0,∞) having
compact support and bounded exponential growth. If the Laplace transform f̂(s) =

[f(x)](s) is bounded for s>0 then the following conditions are equivalent.
(a) L[f(x)](s) ∼ 1

sα+1h(1
s
) as s→ 0+

(b)f(x) ∼ xα+1

α!
h(x) as x→∞

where h : (0,∞) → (0,∞) is a slowly varying function at infinity and α ≥ 0 is an
integer
Proof:(a)⇒ (b)
Suppose L[f(x)](s) ∼ 1

sα+1h(1
s
) as s→ 0+

Then L[f(x)](
s
t
)

L[f(x)]( 1
t
)
∼ 1

sα+1

h( t
s
)

h(t)

∼ 1
sα+1 as t→∞

Using theorem 2.3.1 and putting q = 1
t

we have

f(t) ∼ L[f(x)]( 1
t
)

α!

∼ tα+1

α!
h(t) as t→∞

Similarly we can prove (b)⇒ (a)
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