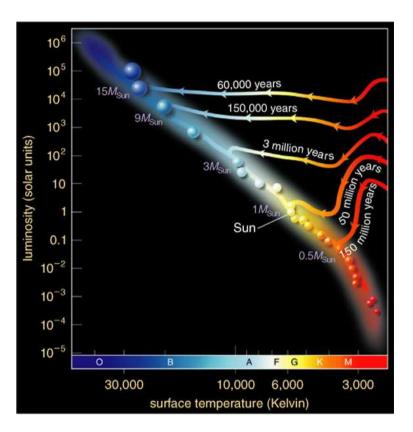
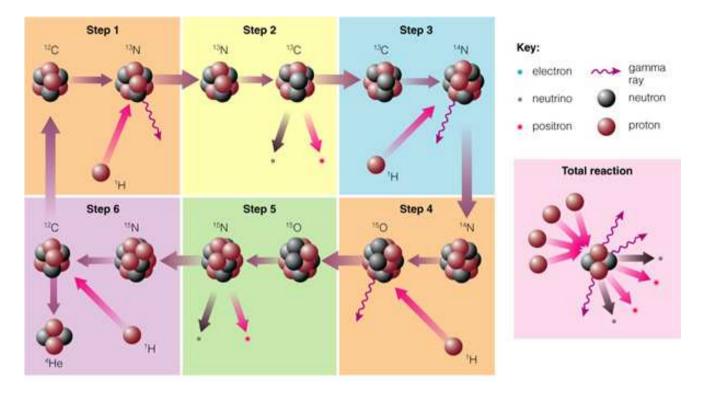

High Mass Stars

Dr Ken Rice


High mass star formation

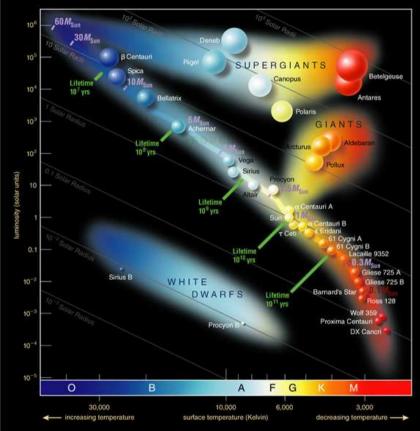
- High mass star formation is controversial!
- May form in the same way as low-mass stars
 - Gravitational collapse in molecular clouds.
- May form via competitive accretion
 - All stars form as low-mass stars.
 - Stars continue accreting gas until it is all depleted.
 - Some stars accrete more efficiently and grow to form high-mass stars.
- As with low-mass stars, hydrogen burning begins when the gravitational contraction makes the core hot enough for hydrogen fusion.
- Hydrogen fusion in a high-mass star differs to that in a low-mass star.
 - Low-mass star proton-proton chain
 - High-mass star CNO cycle.



High-mass stars

- Reach the main-sequence in less than 150000 years.
- Strong gravity compresses the hydrogen core to much higher temperatures than in low-mass stars.
- Fusion rate increases with temperature.
- In a high-mass star, hydrogen fusion occurs through the CNO cycle rather than through the proton-proton chain
 - Even though carbon, nitrogen and oxygen make up less than 2% of the material in stars, they can still act as catalysts for hydrogen fusion in high-mass stars.
- CNO cycle fuses hydrogen at a much higher rate than the proton-proton chain that occurs in low-mass stars.

CNO cycle


The end result of the CNO cycle is the same as for the proton-proton chain - 4 protons produce 1 helium atom and release energy - but the steps are different. Carbon, nitrogen and oxygen act as catalysts that speed up the reaction. They aid the reaction without being consumed.

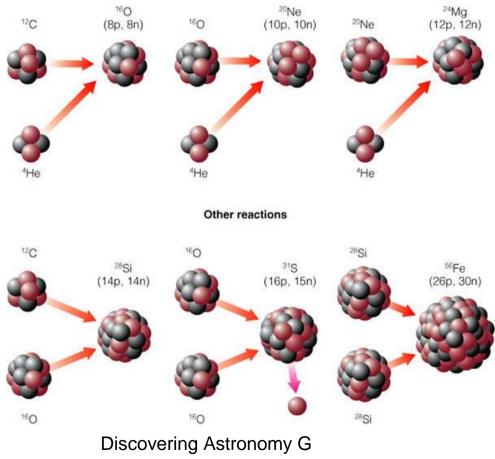
Becoming a supergiant

- The incredibly rapid fusion rates mean that high-mass stars cannot live very long.
 - A 25 solar mass star only spends a few million years on the main-sequence (Remember the sun spends 10 billion years on the main sequence).
- When the core hydrogen is exhausted a high-mass star behaves like a lowmass star, only faster.
- Hydrogen burning in shell around helium core
 - Outer layers expand producing a *supergiant* star.
- Core temperature increases helium burning in the core.
 - No helium flash thermal pressure remains high.
- Core helium burning lasts only a few hundred thousand years produces an inert carbon core.
 - Helium shell burning between core and hydrogen shell
- Core temperature reaches 600 million K carbon fusion starts
 - Core carbon burning lasts only a few hundred years.
- Carbon burning in a shell around the inert core.
- Core shrinks until it becomes hot enough to fuse even heavier elements.

Lifetime of a massive star

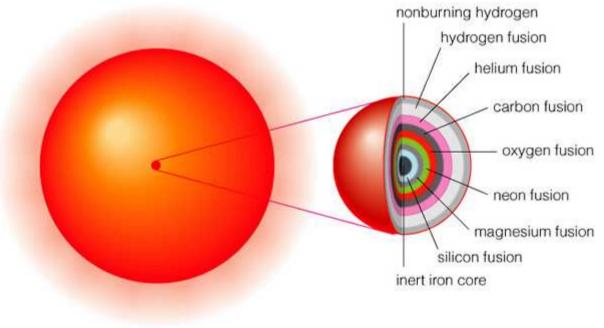
- Sun's lifetime ~ 10 billion years
- Consider a star 25 times the mass of the Sun
 - From H-R diagram its luminosity is 100000 times greater than the Sun's.
 - It therefore burns fuel (uses it's mass)
 100000 times faster than the Sun.
 - It has 25 times the mass of the Sun so its lifetime will be 25/100000 = 0.00025 times than the Sun's lifetime = 2.5 million years.

The Sun lives for 10 billion years

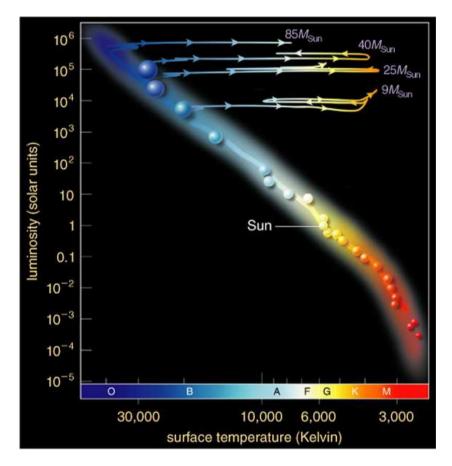

A star with a mass 25 times that of the Sun will live for about 2.5 million years.

Intermediate mass stars

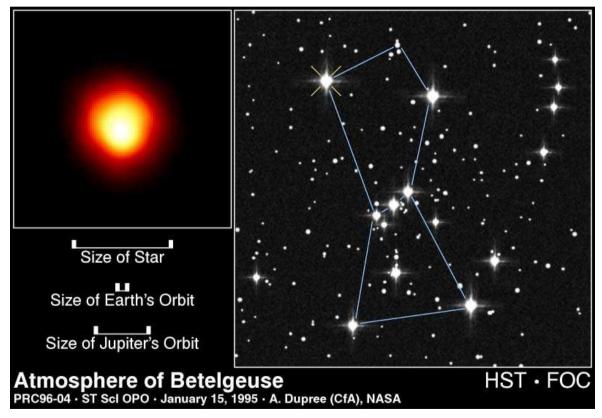
- Stars with masses between 2 and 8 solar masses.
- Initially behave like high mass stars
 - Nuclear burning occurs through CNO cycle rather than through the p-p chain.
- During the supergiant phase, however, degeneracy pressure prevents their cores from reaching the temperatures required to burn carbon or oxygen.
- Intermediate stars eventually blow away their upper atmospheres and end their lives as white dwarfs.


Advanced nuclear burning

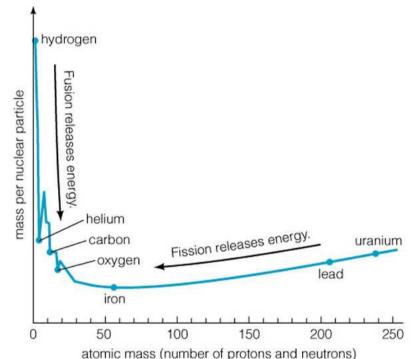
- Simplest are helium-capture reactions.
 - A helium nucleus is captured to produce another heavier element
 - e.g., carbon oxygen
- If the core temperature is high enough heavy nuclei may fuse
 together.
 Helium-capture reactions


Multiple shell burning

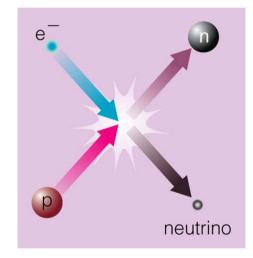
- Each time the core depletes the element it is fusing, it shrinks until it becomes hot enough for other fusion reactions.
- A new type of shell burning ignites between the core and the overlying shells of fusion.
- Near the end, the stars central regions resemble an onion.
- During the final few days, iron (Fe) begins to pile up in the siliconburning core.


H-R life tracks

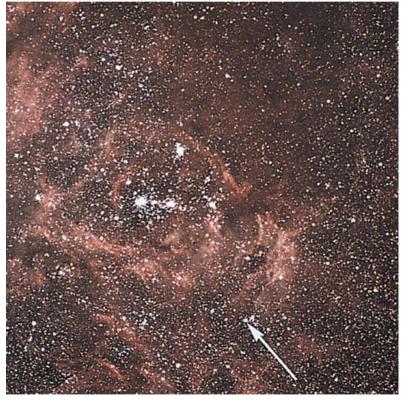
- Despite the dramatic events in the interior, the high-mass stars's outer appearance changes slowly.
- Each time core fusion ceases, shell burning intensifies, further inflating the outer layers.
- Each time the core flares up, the star contracts slightly, but the luminosity stays about the same.
- The star zigzags across the top of the H-R diagram
 - Temperature changes luminosity almost constant.
- In the most massive stars, the core changes happen so quickly that the outer layers don't have time to respond.
- When at the far right of the H-R diagram, the star is known as a red supergiant.


Betelgeuse

- Red supergiant could be very near the end of it's life!
- About 6 million years old with a mass between 12 and 17 solar masses.
- Located in the constellation of Orion, about 427 light years from the sun.
- One of the only stars for which we can actually measure its radius 650 solar radii.


The problem with Iron

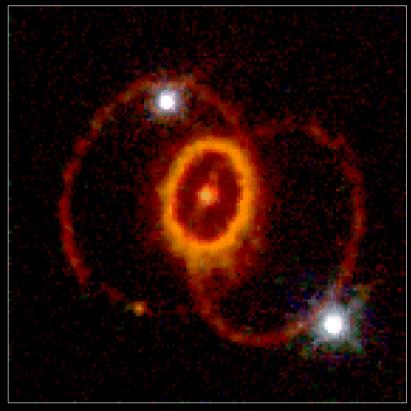
- During the final stages of a high-mass star's life, iron builds up in the core.
- Iron is unique in that it is the one element from which it is not possible to generate any kind of nuclear energy
 - Core iron burning does not occur
- Elements lighter than iron release energy through nuclear fusion.
- Elements heavier than iron release energy through nuclear fission.
- Iron has the lowest mass per nucleon cannot release energy through fission or fusion!
- **Remember** $E = mc^2$


The death of a high-mass star

- With iron piling up in the core, it has no hope of generating any energy by the fusion of this iron.
- Core supported initially by degeneracy pressure.
- Once gravity pushes the electrons past the quantum mechanical limit, they combine with protons to form neutrons releasing neutrinos.
 - Degeneracy pressure disappears gravity wins.
- Within seconds, the iron core collapses into a ball of neutrons just a few kilometres across.
- Collapse halts due to the neutrons degeneracy pressure.
- Collapse releases an enormous amount of energy
 - Supernova
- Neutron core remains as a neutron star.
- If the remaining mass is large enough gravity may overcome neutron degeneracy pressure to produce a *black hole*.

Supernova 1987 A

- No supernova in our own galaxy since 1604.
- In 1987 there was a supernova in the Large Magellanic Cloud known as supernova 1987 A.

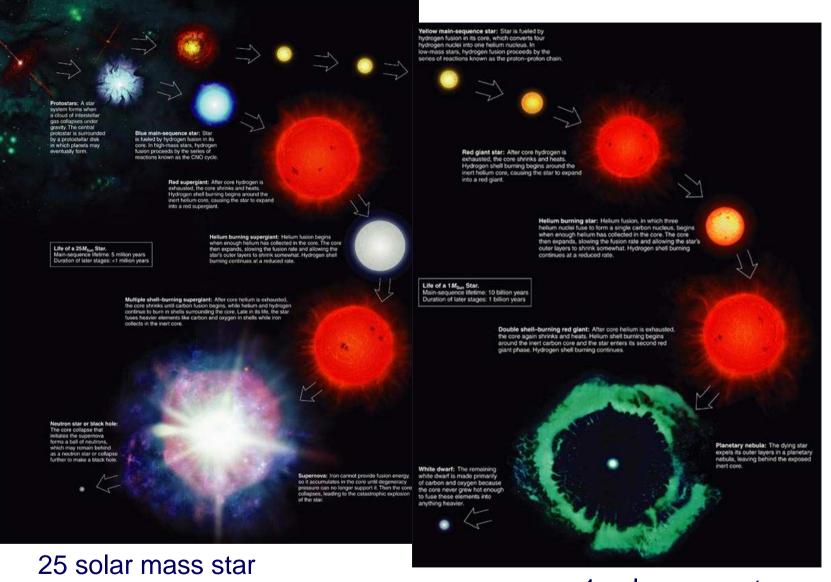

Before

After

Supernova 1987 A now

- Three glowing rings of gas now surround the location of supernova 1987 A.
- These glow because the gas was heated by ultraviolet light from the supernova.
- It was predicted that debris from the supernova would collide with the inner ring making it glow even brighter. This has indeed happened.

Supernova 1987A Rings


Hubble Space Telescope Wide Field Planetary Camera 2

Supernova nucleosynthesis

- No elements more massive than iron can be created in the cores of massive stars.
- Supernovae have so much energy that elements heavier than iron can be created in supernova explosions.
 - The resulting elements have more energy than the initial elements so the process is endothermic.
- Supernova nucleosynthesis occurs through the r-process.
 - Nuclei bombarded by neutrons
 - Form unstable neutron rich nuclei
 - Unstable nuclei decay via beta decay to form stable nuclei with higher atomic number but the same atomic weight.

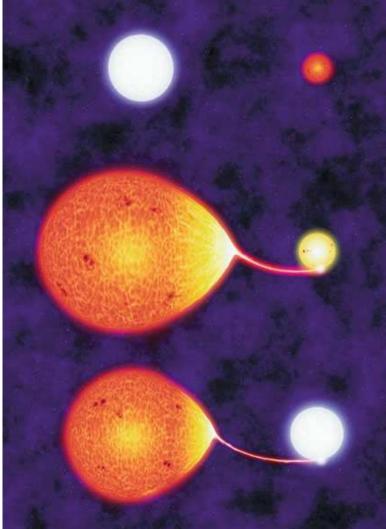
1													IIIA	IVA	VA	VIA	VIIA	0 ² He
2	³ Li	Be		of	ťt	ne	El	⁵B	°C	7 N	⁸ O	9 F	¹⁰ Ne					
3	¹¹ Na	¹² Mg	IIIB	IVB	VB	VIB	VIIB	¹³ Al	¹⁴ Si	¹⁵ P	¹⁶ S	¹⁷ CI	¹⁸ Ar					
4	¹⁹ K	Ca	21 Sc	22 Ti	²³ V	²⁴ Cr	²⁵ Mn	²⁶ Fe	27 Co	28 Ni	²⁹ Cu	30 Zn	³¹ Ga	Ge	33 As	³⁴ Se	³⁵ Br	³⁶ Kr
5	³⁷ Rb	³⁸ Sr	³⁹ Y	⁴⁰ Zr	41 Nb	42 Mo	43 Tc	⁴⁴ Ru	⁴⁵ Rh	⁴⁶ Pd	47 Ag	⁴⁸ Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
6	Cs	56 Ba	⁵⁷ *La	⁷² Hf	⁷³ Ta	74 W	75 Re	⁷⁶ Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
7	⁸⁷ Fr	⁸⁸ Ra	89 +Ac	¹⁰⁴ Rf	¹⁰⁵ Ha	106 Sg	107 Ns	¹⁰⁸ Hs	¹⁰⁹ Mt	110 110	111 111	¹¹² 112	113 113					
*	Lanth Series		58 Ce	⁵⁹ Pr	60 Nd	⁶¹ Pm	62 Sm	Eu	Gd	⁶⁵ Tb	66 Dy	Ho	Er	⁶⁹ Tm	70 Yb	Lu		
+	+ Actinide Series			⁹¹ Pa	92 U	93 Np	⁹⁴ Pu	95 Am	⁹⁶ Cm	97 Bk	⁹⁸ Cf	⁹⁹ Es	¹⁰⁰ Fm	¹⁰¹ Md	102 No	103 Lr		

Stellar life cycles

Discovering Astronomy G

1 solar mass star

The evolution of binary stars


- Many stars have companions known as a binary system
 - I.e., gravitational bound to another star.
- In many cases the separation is large enough that the two stars evolve as if in isolation.
- This may not be the case in close binary systems.
- E.g. Algol the "demon star" in Perseus
 - Consists of two stars
 - 3.7 solar mass main-sequence star
 - 0.8 solar mass subgiant
 - Both stars born at the same time

Why is the low-mass star more evolved than the higher-mass star if they formed at the same time?

Close binary systems

- The higher mass star evolves more quickly than its lower-mass companion.
- When the more massive star becomes a red giant it may lose some of its mass to its normal, hydrogen-burning companion.
- As a result of this mass transfer, the red giant shrinks to a subgiant, and the normal star becomes the more massive of the two stars.

