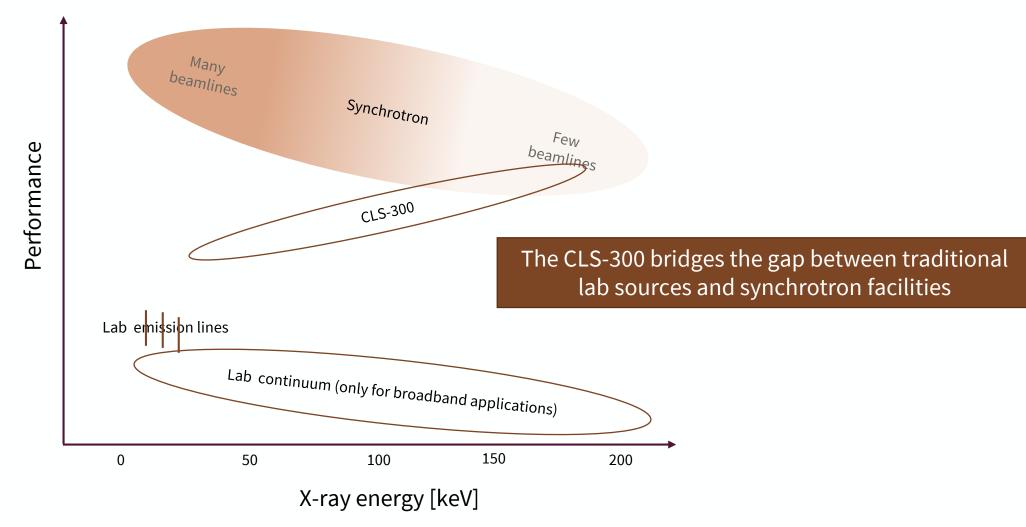
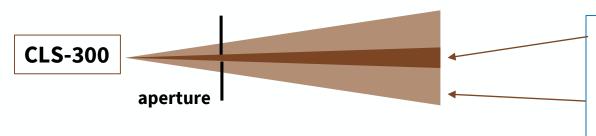


Inverse Compton Scattering (ICS) X-rays

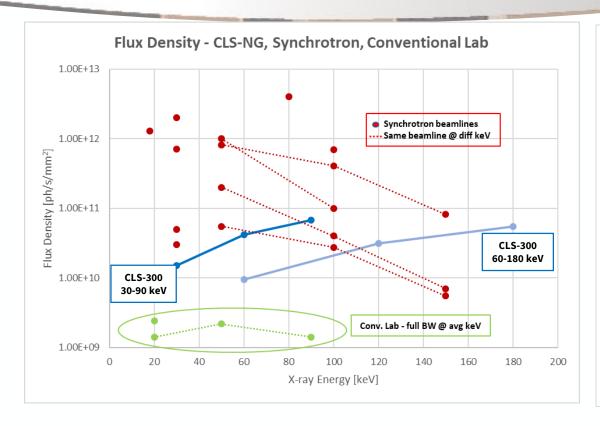

- ICS allows shrinking a synchrotron to laboratory size while maintaining many of the beam properties
- A relativistic electron collides with a high-power laser photon
- The laser photon is back-scattered and its wavelength shifted into the X-ray regime

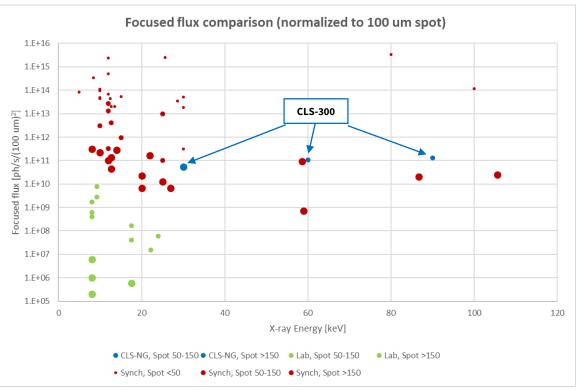
The X-ray Source Landscape



Lyncean CLS X-ray Source Beam Parameters

	CLS – 300 Performance Target			
Stored electron energy (max)	~100 MeV			
Optical cavity wavelength	2 μm		1 μm	
X-ray energy range (keV)	~30 – 90		~60 – 180	
Brightness (1/s mrad ² mm ² 0.1%BW)	~4 x 10 ¹² @ 90 keV		~4 x 10 ¹² @ 180 keV	
Divergence (mrad)	1	4	1	4
Bandwidth (FWHM)	1.5 - 2.5%	6 - 15%	1.5 -2.5%	6 - 15%
Flux @ max energy (ph/s)	~4 x 10 ¹¹	~4 x 10 ¹²	~4 x 10 ¹¹	~4 x 10 ¹²


- Two configurations possible
 - 2 μm wavelength optical cavity
 - 1 µm wavelength optical cavity
- Possible to switch between configurations
 - Requires Lyncean support
 - 3 to 5 days of downtime



- Narrow BW + low divergence configuration for focused beam applications
- Larger divergence + high flux configuration for imaging applications

Comparison: CLS-300 vs synchrotron and lab sources

- CLS-NG is particularly competitive at high energies, where synchrotron flux typically drops off and where fewer beamlines exist
- Focused beams not practical with lab sources above ~25 keV, where no suitable emission lines exist
- Notes:
 - Synchrotron beamlines typically tunable but plot shows single energy data points where flux data is available
 - For synchrotron, we present multilayer monochromator data where available (dE/E ~1e-2) but some data points are for crystal monochromators (dE/E ~ 1e-4)

Applications with Synchrotron-level Results

DIFFRACTION

- Macromolecular crystallography
 Protein Structure
- Single crystal diffraction
 Structure / orientation
- Powder diffraction
 Material / phase identification

IMAGING / TOMOGRAPHY

- Absorption Contrast
 Quantitative density, elemental contrast
- Spectroscopic Imaging Elemental concentration, functional labels
- Grating Phase Contrast
 Sub-resolution structure, quantitative phase
- Propagation Phase Contrast
 Low-contrast high-resolution features

SCATTERING

- Small angle x-ray scattering
 Size / shape of nano-scale objects
- Pair distribution function short-medium term order

SPECTROSCOPY

- X-ray Fluorescence Mapping Elemental distribution
- Absorption / Fluorescence Spectroscopy
 Chemical state, coordination

Access to multiple modalities -> Comprehensive characterization

illuminating X-ray science