Electronic Supplementary Information

Insights into the Polymorphic Transformation Mechanism of

Aluminum Hydroxide during Carbonation of Potassium aluminate

Solution

You-Fa Jiang, Cheng-Lin Liu*, Jin Xue, Ping Li, Jian-Guo Yu* National Engineering Research Center for Integrated Utilization of Salt Lake Resource, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, China.

Table of contents

Page

Fig. S1 Raman spectra of potassium aluminate solutions at room temperature.	S2
Fig. S2. Carbonation rate of potassium aluminate solution carbonated	
under Expt 1~6.	S3
Table S1. The sampling time for initial crystalline product and final product	under
different experimental conditions.	S5
Table S2. The relative fractional amount of bayerite and gibbsite during carbonat	ion of
potassium aluminate solutions.	S6
Fig. S3. The representative XRD patterns of precipitates obtained in different san	npling
time.	S7
Fig. S4. Variation of alkaline concentration during carbonation process	
under Expt 1~6.	S 8
Fig. S5. Variation of supersaturation ratio during carbonation process	
under Expt 1~6.	S12
Fig. S6. Growth rate of gibbsite and bayerite during carbonation process under E	Expt 1,
2, 4 and 5.	S14
Supplementary references	S15

^{*} Tel./fax: +86-021-64252170. E-mail: (C.L.) liuchenglin@ecust.edu.cn. E-mail: (J.Y.) jgyu@ecust.edu.cn.

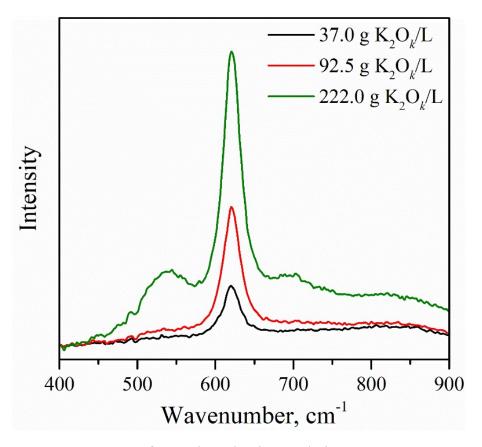


Fig. S1 Raman spectra of potassium aluminate solutions at room temperature.

Raman spectra of pregnant liquors in the region of interest (400-900 cm⁻¹) is shown in Fig. S1. The pregnant liquors of three different concentrations adopted in this work appears to exhibit different constituents especially for the concentrated solutions. One significant band centred on ~620 cm⁻¹ is present ignorance of the solution concentration, which is assigned to the symmetric v_1 -AlO₄ stretching of the pseudotetrahedral Al(OH)^{$\overline{4}$}.¹ As the solution concentration reaches 222.0 g K₂O_k/L (Bayer conditions), two new modes emerge on both sides of the Al(OH)^{$\overline{4}$} bonds. It is widely accepted that the sidebands are attributed to the formation of oxygen-bridged dimer:²

 $2Al(OH)_4^- \rightleftharpoons (OH)_3Al - O - Al(OH)_3^{2-} + H_2O$

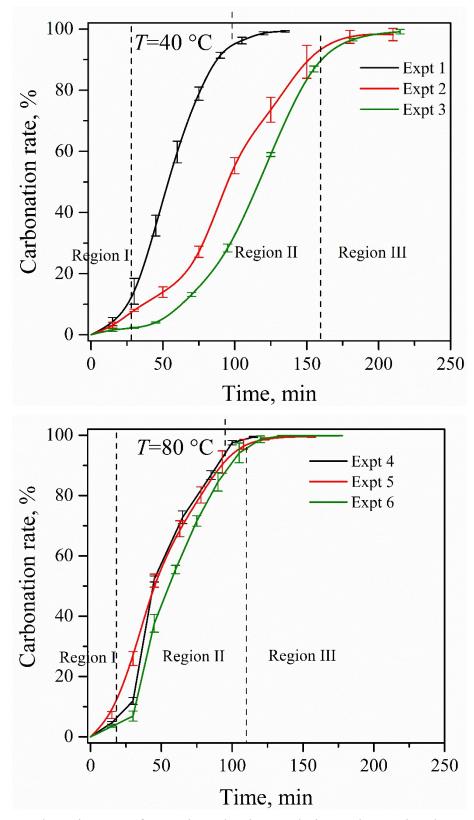


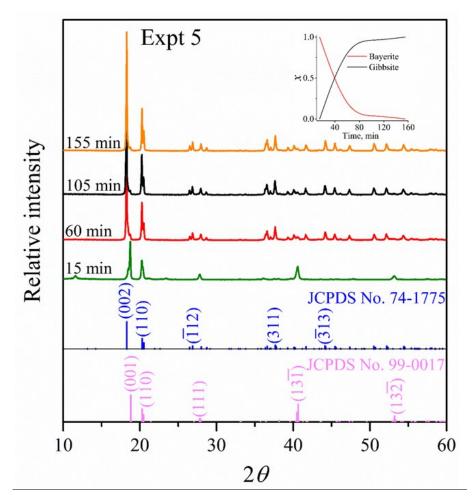
Fig. S2. Carbonation rate of potassium aluminate solution carbonated under Expt 1~6.

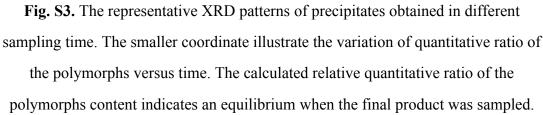
The representative plots of carbonation rate versus time, presented in Fig. S2, show three distinct regions. In region I, the carbonation rate increases slowly with time especially for experiments at 40 °C. This result indicates the dominant reaction between

the free hydroxide ions and added protons originated from the water-soluble reaction of CO_2 in the early stage of decomposition. In region II, a linear relationship between carbonation rate and time with a sharp slope is present. Owing to the continuous introduction of CO_2 , a high level of supersaturation is maintained during the carbonation process. The majority of alumina in solutions is precipitated according to the following reactions:

> $Al(OH)^{-}_{4}(aq) \rightleftharpoons Al(OH)_{3}(s) + OH^{-}(aq)$ $OH^{-}(aq) + H^{+}(aq) \rightleftharpoons H_{2}O$

In region III, the carbonation rate approaches approximately 100% and slows down.

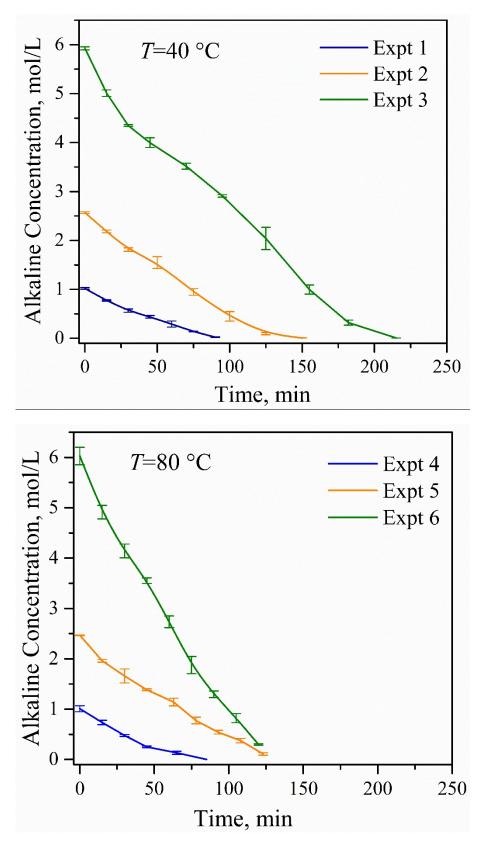
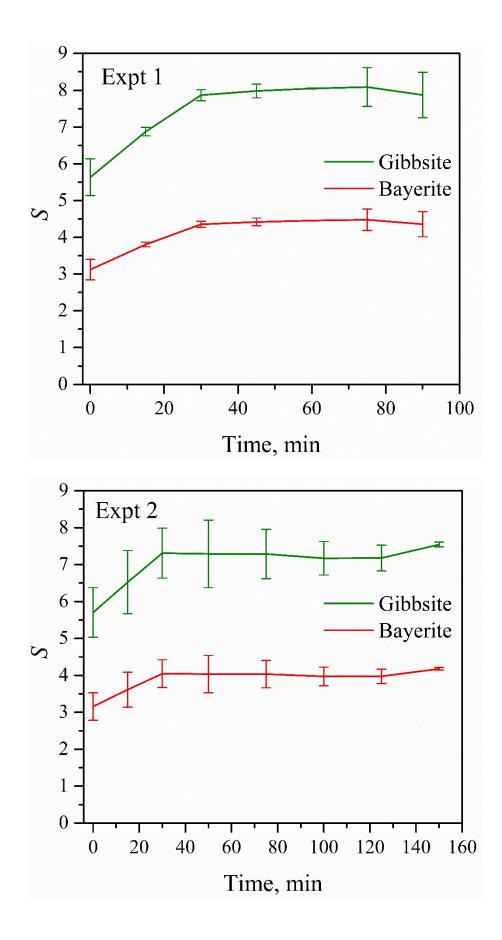

Experimental condition		Expt	Expt	Expt	Expt 4	Expt	Expt	Expt	Expt	Expt
		1	2	3	4	5	6	7	8	9
Sampling time, min	Initial crystalline product	15	15	15	15	15	15	30	30	15
	Final product	135	210	215	115	155	175	120	185	230

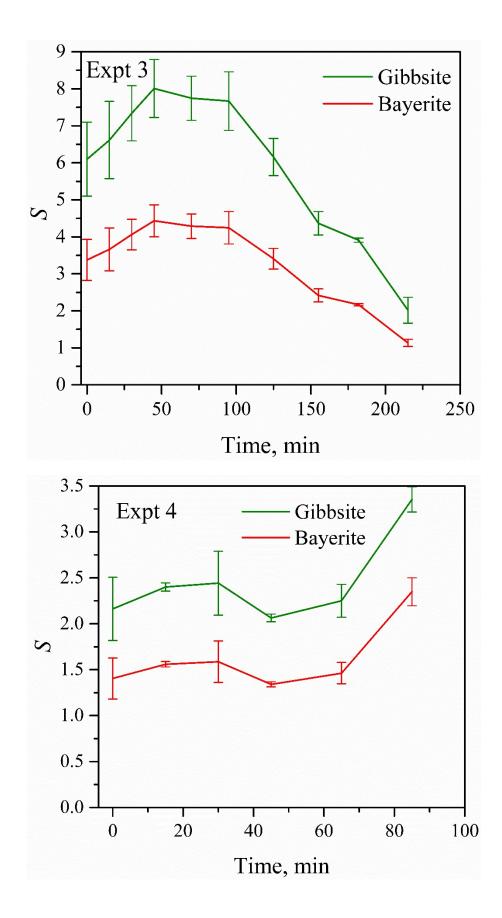

Table S1. The sampling time for initial crystalline product and final product under

different experimental conditions

r											
Experimental		Expt									
condition		1	2	3	4	5	6	7	8	9	
Initial	Bayerite	1	1	1	1	1	1	0.52	0.81	0.54	
crystalline product Final product	Gibbsite	0	0	0	0	0	0	0.48	0.19	0.46	
	Bayerite	1	0.81	0.39	0.63	0.01	0.02	007	0.11	0.09	
	Gibbsite	0	0.19	0.61	0.37	0.99	0.98	0.93	0.89	0.91	

Table S2. The relative fractional amount of bayerite and gibbsite during carbonation of potassium aluminate solutions


Fig. S4. Variation of alkaline concentration during carbonation process under Expt 1~6.

Calculation of supersaturation ratio (S):

$$S_{\rm X} = \frac{S_{\rm X}}{C_{\rm Solution}},$$

$$S_{\rm X} = K_{\rm sp, X}(T) \times [\rm OH^{-}], mol/L$$

where *S* denotes the supersaturation ratio, $^{S_{X}}$ the saturation concentration, X gibbsite or bayerite, $^{C_{Solution}}$ the solution concentration, $^{K_{sp, X}}(T)$ the solubility product and [O H⁻] the alkaline concentration.

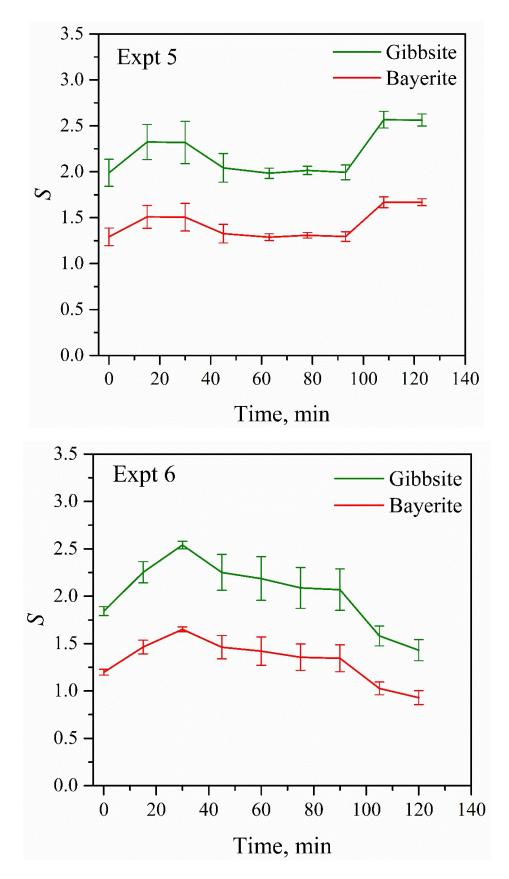
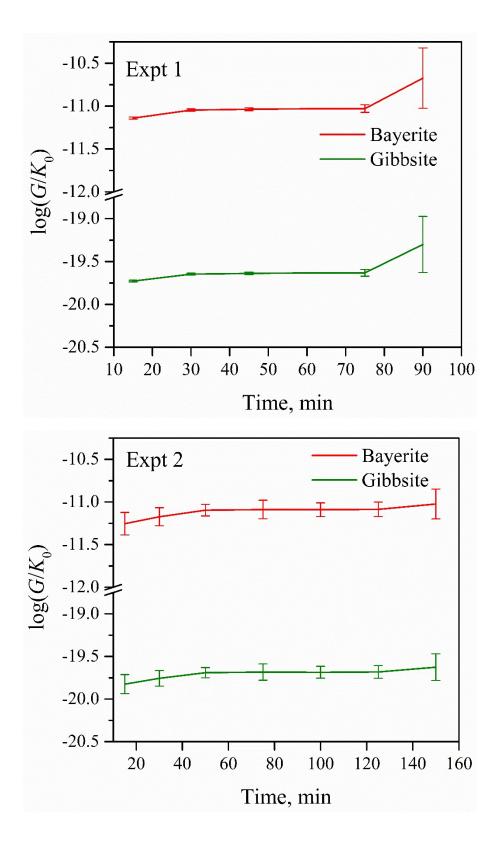



Fig. S5. Variation of supersaturation ratio during carbonation process under Expt 1~6.

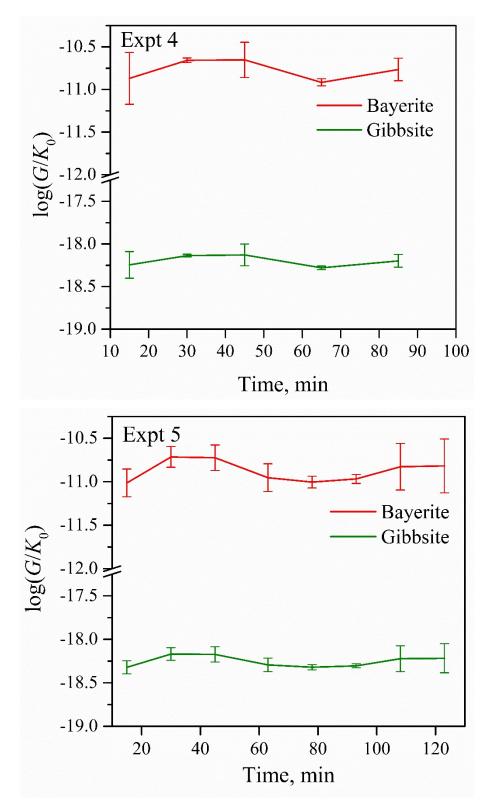


Fig. S6. Growth rate of gibbsite and bayerite during carbonation process under Expt 1,2, 4 and 5. The growth rate of bayerite is always several orders of magnitude higher than that of gibbsite, which indicates that growth of bayerite is kinetically favored.

Supplementary references:

- 1. P. Sipos, G. Hefter and P. M. May, *Talanta*, 2006, **70**, 761.
- 2. R. J. Moolenaar, J. C. Evans and L. McKeever, J. Phys. Chem., 1970, 74, 3629.