De novo Biosynthesis and Whole-cell Catalytic Production of Paracetamol on a Gram Scale in Escherichia coli

Feifei Hou,¹ Mo Xian^{1*} and Wei Huang^{1,2*}

G272V/T290V (PB11)

Resource Description **Reference or source** Strains E. coli DH5a For cloning work Novagen *E. coli* BL21(DE3) For protein expression Novagen E. coli BL21(DE3)-pGro7 For protein expression In this study Escherichia coli str. K-12 substr. For genes cloning Novagen MG1655 PA-PABA For the production of PABA In this study PA1 For the production of *p*-acetamidophenol In this study For the production of *p*-acetamidophenol PA2 In this study PA3 For the production of *p*-acetamidophenol In this study PAB4 For the production of *p*-acetamidophenol In this study **PAB10** For the production of *p*-acetamidophenol In this study PAD4 For the production of *p*-acetamidophenol In this study PAE3 For the production of *p*-acetamidophenol In this study PADF2 For the production of *p*-acetamidophenol In this study plasminds Plasmid with ColE replication origin Novagen pET-duet-1 pACYC-duet-1 Plasmid with p15A replication origin Novagen Plasmid with pBR322 replication origin pET-28a Novagen pET28a-PANAT (P3) PANAT expressed from plasmid pET-28a In this study pETduet-ABH (P2) ABH expressed from plasmid pET-Duet-1 In this study pETduet-ABH60 (PB4) ABH60 expressed from plasmid pET-In this study Duet-1 Pathway constructed in pACYC-Duet-1 pETduet-ABH47 (PB3) In this study pETduet-ABH42 (PB2) Pathway constructed in pACYC-Duet-1 In this study pETduet-ABH37 (PB1) Pathway constructed in pACYC-Duet-1 In this study pETduet-ABH60^{T226V} (PB5) For site directed mutagenesis in ABH60 In this study pETduet-ABH60 G272V(PB6) For site directed mutagenesis in ABH60 In this study pETduet-ABH60 G290V(PB7) For site directed mutagenesis in ABH60 In this study pETduet-ABH60 For site directed mutagenesis in ABH60 In this study T226V/G272V(PB8) pETduet-ABH60^{T226V/T290V} (PB9) For site directed mutagenesis in ABH60 In this study pETduet-ABH60G272V/T290V For site directed mutagenesis in ABH60 In this study (PB10) PETduet-ABH60^{T226V/} For site directed mutagenesis in ABH60 In this study

Table S1. Strains and plasmids used in this study.

pET28a-PANAT ^{K211A} (PC1)	For site directed mutagenesis in PANAT	In this study
pET28a-PANAT ^{K211G} (PC2)	For site directed mutagenesis in PANAT	In this study
pACYCduet-aroF-pabAB-pabC	Pathway constructed in pACYC-Duet-1	In this study
PF3	Pathway constructed in pET-28a	In this study
PF4	Pathway constructed in pACYC-Duet-1	In this study

Table S2. Primers for strains construction in this study.

Primers	Sequence 5'-3'	Restrict enzyme sites	Purpose
ABHF	TAA <u>GGATCC</u> GATGAGTCAG	BamHI	Used for plasmid (pETduet-
	CAGG		ABH) construction
ABHR	TAA <u>CTCGAG</u> CAGAACGGC	XhoI	
	GCGC		
ABH60F	tcatcaccacagccaggatccGATGGT	BamHI	Used for plasmid (pETduet-
	GCAGGGCGAAC		ABH60) construction
ABH60	ggtttctttaccagactcgagTTGATG	XhoI	
R	GCTAATGCTTAAAC		
ABH47F	tcatcaccacagccaggatccGATGA	BamHI	Used for plasmid (pETduet-
	GCGAAGATGGT		ABH47) construction
ABH47	ggtttctttaccagactcgagCAGATG	XhoI	
R	CGCGCG GCT		
ABH42F	tcatcaccacagccaggatccGATGG	BamHI	Used for plasmid (pETduet-
	CGAGCGCGACC		ABH42) construction
ABH42	ggtttctttaccagactcgagCATAAT	XhoI	
R	GCTGCAGCC		
ABH37F	tcatcaccacagccaggatccGATGA	BamHI	Used for plasmid (pETduet-
	GCAATATTCGCG		ABH37) construction
ABH37	ggtttctttaccagactcgagCAGTTTG	XhoI	
R	CTCAGCAT		
PANAT	TAA <u>CATATG</u> GGCAGCAGCC	NdeI	Used for plasmid (pET28a-
F	ATCAT		PANAT) construction
PANAT	TAA <u>CTCGAG</u> CGCGCTAATT	XhoI	
R	AAGCCCGCT		
arofF	tcatcaccacagccaggatccGATGC	BamHI	Used for plasmid
	AGAAAGATGCGCTGAAC		(pACYCduet-aroF-pabAB-
arofR	tttctgcatgaattcggatccCTCCTTT	BamHI	<i>pabC</i>) construction
	TACGCAACGCGCGCGGTCA		
	G		
pabABF	ccacagccaggatccgaattcGATGC	EcoRI	
	GCGTGCTGATCATT		
pabABR	gcattatgcggccgc <u>aagctt</u> CGGAAA	HindIII	
	TTCCACACCCAGC		
pabCF	taagaaggagatata <u>catatg</u> ATGTTC	NdeI	
	CTGATTAACGGCCATAAAC		
pabCR	ggtttctttaccaga <u>ctcgag</u> ATTCGG	XhoI	

 Table S3. Sequences of the genes (aroF, pabAB, pabC, PANAT, ABH, ABH60, ABH47, ABH42, ABH37, mtrF) after codon optimization.

aroF
ATGCAGAAAGATGCGCTGAACAACGTGCATATTACCGATGAACAGGTGCTGATGACCCCGG
AACAGCTGAAAGCGGCGTTTCCGCTGAGCCTGCAGCAGGAAGCGCAAATTGCGGATAGCCG
CAAAAGCATTAGCGATATTATTGCGGGCCGCGATCCGCGCCTGCTGGTTGTTTGT
GTAGCATTCATGATCCGGAAACCGCGCTGGAATATGCGCGCCGCTTTAAAGCGCTGGCGGC
GGAAGTTAGCGATAGCCTGTATCTGGTGATGCGCGTGTATTTTGAAAAACCGCGCACCACC
GTGGGCTGGAAAGGCTTAATTAACGATCCGCATATGGATGG
GCCTGCAGATTGCGCGCAAACTGCTGCTGGAACTGGTGAACATGGGCCTGCCGCTGGCGAC
CGAAGCGTTAGATCCTAACAGCCCGCAATATCTGGGCGATCTGTTTAGCTGGAGCGCGATT
GGCGCGCGCACCACCGAAAGCCAAACCCATCGTGAAATGGCGAGCGGCTTAAGCATGCCG
GTGGGCTTTAAAAACGGCACCGATGGCAGCCTGGCGACCGCGATTAATGCGATGCGCGCGG
CAGCACAACCTCATCGTTTTGTGGGCATTAATCAGGCGGGCCAGGTGGCGTTATTACAGAC
CCAAGGTAATCCGGATGGTCATGTGATTCTGCGCGGCGGCAAAGCGCCGAATTATAGCCCG
GCGGATGTGGCGCAATGCGAAAAAGAAATGGAACAGGCGGGCCTGCGCCCGAGCTTAATG
GTTGATTGTAGCCATGGCAACAGCAACAAAGATTATCGCCGCCAGCCGGCGGTGGCGGAAA
GCGTTGTTGCGCAAATTAAAGATGGCAACCGCAGCATTATTGGCCTGATGATTGAAAGCAA
CATTCACGAAGGCAACCAGAGCAGCGAACAGCCGCGCAGCGAAATGAAATATGGCGTGAG
CGTGACCGATGCGTGCATTAGCTGGGAAATGACCGATGCGCTGCTGCGCGAAATTCATCAG
GATCTGAACGGCCAGCTGACCGCGCGCGTTGCG
pabAB
ATGCGCGTGCTGATCATTGATAACTACGACAGCTTCACCTTTAATCTGGCGACCTATGTGGA
AGAAGTGACCGGTGCGGCACCAACCGTTGTTCCAAATGATGCGCAGATTGATGAAACCCTG
TTTGATGCGGTGATTATTAGCCCGGGTCCAGGTCATCCAGGTGTTGCGGCGGATTTTGGTAG
TTGCCGCGGCGTTATTGAACGTGGCCTGGTTCCAGTTTTGGGTGTGTGCCTGGGCCATCAAG
GTATTGCGCTGGCACATGGTGGTGCAGTTGGTCCAGCACCAGTTCCAGTTCATGGTCAGGTG
ACCCGCATTCATCATGATGGCAGCGAACTGTTTGATGCGATTCCGCCGCAGTTTGATGCGGT
GCGCTATCATAGTCTGGTGGCGACCGATTTGCCACCGGAATTGGAAGTTACCGCGCGTACC
GGCGATGGTTTGATTATGGCGCTGCGCCATCGCGAATTACCACAGTGGGGGCGTGCAGTTTC
ATCCGGAAAGCATTGGCGGCCAGTTTGGCCATCGCATTATGGCGAATTTTCTGAGTCTGGCG
CGTCGTCAAGCACATCGTTGGGAAAATTACCGAACATGTGGTGGAAACCAGCGTTGATCCGG
CGGCGGTGTTTGAAACTCTGTTTGCGGGCAGCGAACATGCGTTTTGGCTGGATGATCCGCAG
GGCACCACCTATATGGGTGATGCGAGCGGTCCACATGCACGTATTCGCACCCATCGTGTGG
GTGAAGGCGAACTGTTTGATTGGCTGCGCGATGATCTGCGCCGTAATCGTGTTGCGCCAGGT
GTTGGCTTTCGCTTAGGTTGGGTGGGCTATCTGGGCTATGAAATGAAAGCGGAATGCGGCG
TGGATAATCGTCATGCGAGCAGCCATCCAGATGCGCATCTGATTTTTGCGGATCGCGCGATT
GCGATTGAACCAGGCCGCGTGTGGTTAATGGCACTGGGCGAACAGGGTGAATGGTTTGCGG
AAATGACTGCGGCGCTGGGTCAATTACGTCCACCACGTGCAGCGGCGCGCCAGCAGCGCA
ATTGACCGTTCGTGATGATCGCGATAGCTATCTGGATATGATTGCGCGCGC
ATTACCCGCGGCGAAAGCTATGAAATTTGCCTGACCACCCAATTGCGTGCG
TTGATCCGTTGGCGGCGTATTTAGCTCTGCGTGCGGCGAATCCAACCAGCTATGGCAGCTTT
CTGCAGTTGGGCGAAATGGCGGTTTTAAGCAGCAGCCCGGAACGCTTTATTACCATTGATG
CGAGCGGTCGCGTTGAAAGCAAACCGATTAAAGGTACCCGCCCACGTGGTAGCACCGAACA

pabC

PANAT

ATGACTCCTCTGACCCCTGAACAGACCCATGCGTATCTGCATCATATTGGCATTGATGATCC TGGTCCTCCGAGCCTGGCGAATTTAGATCGCCTGATCGATGCGCATTTACGCCGCGTGCGGT TTGAAAACCTGGATGTGCTGCTGGTGGATCGCCCGATTGAAATTGATGCGGACAAAGTGTTTGC GAAAGTGGTGGAAGGTAGCCGTGGCGGCTATTGCTTTGAACTGAACAGCCTGTTTGCGCGT CTGTTACTGGCGTTAGGCTATGAACTGGAACTGCTGGTGGCACGTGTTCGTTGGGGGTTACC TGATGATGCGCCGTTAACCCAGCAGAGCCATTTAATGCTGCGCCTGTATCTGGCGGAAAGGC GAATTTCTGGTGGATGTGGGCTTTGGTTCAGCGAACCCGCCTCGTGCATTACCTTTACCGGG CGATGAAGCAGATGCGGGTCAGGTTCATTGTGTTCGCCTGGTGGATCCTCATGCGGGGCTTAT ATGAAAGCGCGGTGCGTGGTCGTAGCGGTTGGTTACCTCTGTATCGCTTGATCTGCGCCCG CAGCTGTGGATTGATTATATTCCGCGCAACTGGTATACCAGCACCCATCCGCATAGCGTGT TCGCCAGGGTCTGAAAGCGGCGATTACCGAAGGTGATCTGCGTCTGACCTTAGCGGATGGT CTGTTTGGTCAGCGTGCGGGGGTAACGGTGAAACCCTGCAGCGTCAGTTACGCGATGTGGAAG AACTGCTGGATATTCTGCAGACCCGCTTACTTGTTACGTCTGGATCCGGCGTCAGAAGTTCCT GCACTGGCGCGTCGTTTAGCGGGCTTAATTAGCGCGCTCGAG

ABH

ATGAGTCAGCAGGAACGTACCCGCGTGGCAATTGTGGGTGCAGGTATTGTGGGTCTGACCC TGGCCATTGCACTGAATGCCTTTGATAAAGAACGTAAACTGGCAATTGATATCTATGAAAA TGCAAGCGAACTGGCAGAAATTGGTGCCGGCATTAATGTTTGGCCGCGCACCCTGGCAATT TTTAAACAGATTGGTGTGGAAGATGCCCTGATTCCGCTGCTGGATCATATTCCGGATCTGGA ACCGCGTATTATTTTGGTATTCGTAAAGGTGACGAAAAGAATGGCTATCAGGTTTATGATA CCATGAATAATGGCGGTGCACTGCGCGTTCATCGTGCCCATCTGCAGAATACCCTGATTCAG CATCTGCCGCTGCCGGGCAGTAAAGTGACCGAAATTAATAGCATTTGTGGCTTTCATCTGGG CCATAATCTGATTGATTATAGTCATCATAGCAGCAGTGGCCAGGGTCCGCTGACCCTGCATT TTAGCGATGGCAAACCGAGTCGCACCTGTGATATTCTGGTGGGCGCAGATGGCATTAAGAG

ABH60

ATGAGTCAGCAGGAACGTACCCGCGTGGCAATTGTGGGTGCAGGTATTGTGGGTCTGACCC TGGCCATTGCACTGAATGCCTTTGATAAAGAACGTAAACTGGCAATTGATATCTATGAAAA TGCAAGCGAACTGGCAGAAATTGGTGCCGGCATTAATGTTTGGCCGCGCACCCTGGCAATT TTTAAACAGATTGGTGTGGAAGATGCCCTGATTCCGCTGCTGGATCATATTCCGGATCTGGA ACCGCGTATTATTTTGGTATTCGTAAAGGTGACGAAAAGAATGGCTATCAGGTTTATGATA CCATGAATAATGGCGGTGCACTGCGCGTTCATCGTGCCCATCTGCAGAATACCCTGATTCAG CATCTGCCGCTGCCGGGCAGTAAAGTGACCGAAATTAATAGCATTTGTGGCTTTCATCTGGG CCATAATCTGATTGATTATAGTCATCATAGCAGCAGTGGCCAGGGTCCGCTGACCCTGCATT TTAGCGATGGCAAACCGAGTCGCACCTGTGATATTCTGGTGGGCGCAGATGGCATTAAGAG TACCCTGCGTCATCTGTTTCTGCCGCGCCTGCCGAATCCGGAAAAATATCTGAATTGCTATG CGTGAGCCCGGGCCATCGTGCCCTGACACATCCGGGCCTGATGTATAGCGGTAAAAGTGCC TATGCCGTGGTGTATCCGGTGAGTAATGGTAAATTCATTAATGTTGTGGCCATTGTGCATGA TAATCCGACCAATAGCACCGTGTGGCCGGGGTCCGTGGCGTATGGATGTGACCCAGAGTGAA TTTTTCGAAGTTTATAAAGGTTGGGATGAAGAAGTTCTGGATCTGATTCGCTGTGTGGATAA ACCGACCAAATGGGCCCTGCATGCACTGGATCATCTGGATGTTTATGCCAAAGGCCGTGTTT TTCTGATGGGCGATGCCGCACATGCAATGCTGCCGCATCTGGGTGCAGGCGCCCATGTTGGT ATGGAAGATGCCTATATTCTGGCCAGTCTGATTACCCATAGTAGTACCCCGATTTGGCCGAG CACCCAGCATGTGAGTGAAATTGCCAATATCTATAATACCATGCGCATTCCGCGCGCAGTTA GCATGAGTAATAGCACCGATGAAGCAGGTTATCTGTGTAATCTGGAAAATCCGGGTCTGGA AGAATTCAAAGTTGGCGATCATATTCCTAAAGAACTGCTGATTCAGACCGCCCGTACCATG GAAAAGAAATGGGCATGGACCACCACCTATGCCGATGAAGATCGCATTAAGGCAATTAGTC TGCTGGAAGGTCCGCGCGCCGTTCTG

ABH47

ATGAGCGAAGATGGTCGCACCCGCATTGCGATTGTGGGCGCGGGGTATTGTGGGCCTGAGTT TGGCGGTGACCCTGAATGCGTTTGATACCGAACAGAAATTTGTGATCGATATGTACGAGAG CGCGCCGGAACTGAGCGAAATTGGCGCGGGGGTATTAATGTGTGGCCGCGCACCTGGCAAATT CTGAAAGAAATTGGCATGGAAGAGACCCTGGAACCGCTGTTTGATCATCGCCCGGATCTGG AACGCCGCGTGGTTTTTGAAGCGCGCAAAGCGGATCAGCGCACCGGCTTTAAAGTGGTGGA TGTGATGAAAGATGGCGGCGTGCTGCGCATTCATCGCGCGGGATTTTCAGCGCAGCCTGCTG AAACATCTGCCGGTGGCGGGGTAGCAGCACCAAAATTAATACCACCTGCACCCTGCATCTGA

GCCATCGCTTAGTGGATTATGGCCCGACCCCAAGCAGCAGCAGCGCGCAACATAGCGGTCC GGTTACCTTATATTTTACCGATAAACCGTGCGCGATTATTGACCATCTGATTCTGGTGCCGT GCATTCGCCAGCCGACCAAATGGCCATTGCAACGTTTGAATCATCTGGATCTGTATGCGGA AGGCCGCGTGATTCTGATTGGCGATGCGGCGCATGCGATGGTGCCACATCAAGGCGCGGGT GCGGGTGTTGGTATTGAATATATGGGTAAAGAAAAGCACGCGGTGGTGTATCCGATTAGCG GCGGCAAACTGATTAATATTGTGGCGACCGTGCATGATCGCAGCAAAGAAGGCACCGTGTA TGAAGGCACCGGCAATCAGGAAGTGACCCAGAGCGAATTTTTTAGCCATTTTAGCGGCTGG GCTTGAATCATCTGGATCTGTATGCGGAAGGCCGCGTGATTCTGATTGGCGATGCGGCGCAT GCGATGGTGCCACATCAAGGTGCGGGTGCGGGTGTTGGTATTGAAGATGCGTATATTCTGG CGAGCCTGCTGACCCAGACCAGCGAAAGCCATCCGTTACCAATGCAGCGCATTAGCCATCT GGTGGATGTGTATAATACCGTGCGCGTGCCGCTGGCGACCAGCTTTGCGAAAGCGAGCATT AATCAGGGCCGCTATTATGGCCTGGAAGCGCCGGGTTTTGAACATATTAAAGAAGGCGATG ATGTGCCGCGCGATAAACTGACCGCGCTGTTACGCTTAGCGGATGATAATTGGAGCTGGAC CACCAGCAATCCGGAAAGCGATAAAAAACGCGCGCGATGGAACTGCTGCAGGAAAGCCGCGC GCATCTG

ABH42

ATGGCGAGCGCGACCCAAAAACCGTTGCGTGTTGCGATTGTGGGCGCGGGGCATTGGTGGTT TAATGTTGACCATTGCGCTGCAGCATATGGATAAAGCGAAAAAACTGGATATCCACGTGTA CGAGGCGGCGCCGGCACTGGGTGAAATTGGTGCAGGTATTAATCTGTGGCTGCGCAGCTGG CCGATGAAAGCCGCCTGGTTTTTCAACTGCGCAAAAGCGATCAGCGCGAAGGCGAAGCGTT AAGCGATCTGATGATGAAAGGCGGCACCATGCGCTTTCATCGCGCGGCGTTACAAAAGCG CTGCTGGCACGTGTTGGTGATTGTGTTAGCCTGAGCCGCCGCTTGGTTACCTATGCGGAATA TGAAAATCATGTGGAGCTGGAATTTCAGGACGGCTTTATTGTGAATTGCGATGTGCTGATTG CGGCGGATGGCATTAAAAGCGTGGTGCGCAAACAGTTTATGAAAAGCCTGGCGAAAGGCA CCTATATTGTGAATAGCGATCCGGTGTGGACCGGCACCTATGCGTATCGCGGTTTGTTGAGC CATGAAGCGATTGAACGCGAATTTCCGGGCCATCGCGCGACCAAAAATGCGGTGATTTATT GCGGCAAATATAAGCACCTGGTGGTGTATCCGCTGAGCAATGGCCGCGATACCAATGTGGT GCGACCCAAGATGAATTGCGTGCGCAGTATATTGGCTGGGAAGATGAAGTGCAGGCGCTGA TTAATTGCATTGAAACCCCGACCAAATGGGCGATTAATAATCTGGACCCGCTGGAACGCTTT GCGGCGCATCGTGTTTTTCTGGCGGGTGATAGCGCGCATGCGATGACCCCACATCAAGGCG CGGGTGCGGGTCAAGCGATTGAAGATGCGTATATTCTGGCGAGCCTGCTGACCGCGGAAGG CGCGAGTCGTAAAGATATTCCGCGTATTGCGGAAGTGTATAATAAAATTCGCTGCCCGGCG GCGAATGCGATTCTGATGGCGAGCCGTGATCAGGGCAAATGGTGTGAACTGGATCATCCGG AACTGGAAGGCGTGAATGAAGGCGATATTCTGCCGAAAGAACGCCTGGAAGGCCTGTGCC GTGATATTAGCCAAGCGTGGGAATGGGTGTGGAAAACCAGCGCGGAAACCGATCGCCGCG AAGCGATTCGTATGCTGGGCGAAAAAGAAGTGGGCGGCTGCAGCATTATG

ABH37

GCACCAGCCATTTTGGTAAACGCCTGGTGGCGTATGATGCGCCGGTTAGCGGTCCAATTACC AAAGCACCGTGCGCGCGATTATGTATAGCAATCTGGTGAAAGAAGGCAAGATTACCAAAG AGGAAGTGCTGGAACCGAATCCGGTGTGGAGCGGCACCGTTGCGTATCGTGGTTTAATTAG CAAAGAACGCCTGGAAGCGAAAATTCTGGGCCATCGCGCGCTGACCCGTGCGGTTTTGCAT ATGGGTAAAAATAAACACCTGATCATCTTCCCGATCAACGACGCGCTGATTAACGTGGTGG CGTTTTGCAGCGATTTTAGCAAAGAAGGCACCCAGTATAGCGAAGATAGCGGCGATTGGGT GGTGGATGTGCCGAAAGAAGAACTGCTGCAGCAGTATGAAGGCTGGGAACCGGAAGTGAT AGCACCTATGTGAGTGGTCATGTTGCGATTCTGGGCGATAGCGCGCATGCGATGACCCCGC ATTTAGGCAGTGGTGCGGGTCAAGCGATTGAAGATGCGTATATTCTGGCGGCGCTGCTGGC GAATCCGAAATGCACTTTAGCGAGCTTACCGCGCGTGTTGCAGATTTATGATGAAGTGCGC CGCCCGAAAGCGAATAATGTGTGGGAATCTGAGCCGCAAAAATGGCAGCATGTATGAATTTG CGGGCCCGGTGTGCGGCGAATTTCGCTTACATGATGATAATTTTAATAGCGAGAGCCTGGC GAAAATCGCGAAAGTGGTGATGGAAAATTATGAGTGGGCGTGGAATACCAGCGCGGAAGA AGATCGCAATCAGGCGGTGAGCATGCTGAGCAAACTG

mtrF

ATGAGCCAGACCGATGCGCGTCGTAGCGGTCGTTTTCTGCGTACCGTTGAATGGCTGGGCA CGGTGGGCGCGTATTTTGGCCTGAGCGTTCCTGATCCGCGCCCGGTTGGTGCAAAAGGTCGC GCGGATGATGGCTTAATTCATGTGGTGAGCCTGCTGGATGCGGATGGCCTGATTAAAATTCT GACCCATACCGTGAAAAACTTCACCGGCTTTGCGCCGCTGGGCACCGTTTTAGTGAGCCTGT TAGGCGTGGGTATTGCGGAGAAAAGCGGCCTGATTAGCGCGTTAATGCGCCTGTTATTAAC CAAAAGCCCGCGCAAACTGACCACCTTTATGGTGGTGTTTACCGGCATTCTGAGCAACACC GCGAGCGAACTGGGCTATGTGGTGCTGATTCCGCTGAGCGCGGTGATTTTTCATAGCCTGGG CCGCCATCCGCTGGCGGGTTTAGCGGCGCGCGTTTGCGGGTGTTAGCGGTGTTATAGCGCG AATCTGTTTCTGGGCACCATTGATCCGCTGCTGGCGGGCATTACCCAGCAGGCGGCGCAAA TTATTCATCCGGATTATGTGGTGGGCCCGGAAGCGAACTGGTTCTTTATGGCGGCGAGCACC TTTGTGATTGCGCTGATTGGCTATTTTGTGACCGAAAAGATTGTGGAGCCGCAGCTGGGCCC GTATCAGAGCGATTTAAGCCAGGAAGAAAAAGATATTCGCCATAGCAACGAAATTACCCCG CTGGAATATAAAGGCCTGATTTGGGCGGGGCGTGGTGTTTATTGCGCTGAGCGCGTTACTGGC GTGGAGCATTGTGCCGGCGGATGGCATTCTGCGCCATCCGGAAACCGGCCTGGTTGCGGGT TCACCATTTTTAAAAAGCATTGTGGTGTTTATCTTCCTGCTGTTTGCGCTGCCGGGCATTGTG TATGGCCGCATTACCCGCAGCCTGCGCGGGGGAACGTGAAGTTGTTAACGCGATGGCGGAAA GCATGAGCACCCTGGGCTTATATCTGGTGATTATCTTCTTTGCGGCGCAGTTTGTGGCGTTCT TTAACTGGACCAACATTGGCCAGTATATTGCGGTGAAAGGCGCGGTGTTTCTGAAAGAAGT GGGCCTGGCGGGCAGCGTGCTGTTTATTGGCTTTATTCTGATTTGCGCGTTTATCAACCTGA TGATTGGCAGCGCGTCGGCGCAGTGGGCCGTTACCGCGCCTATTTTGTTCCGATGCTGATG CTGGCGGGCTATGCGCCGGAAGTGATTCAGGCGGCATATCGCATTGGCGATAGCGTGACCA ACATTATTACCCCGATGATGAGCTATTTTGGCCTGATTATGGCGACCGTGATGAAATATAAA AAGGACGCGGGCGTGGGCACCCTGATTAGCATGATGCTGCCGTATAGCGCGTTTTTCCTGAT TGCGTGGATTGCGCTGTTTTGCATTTGGGTGTTTGTGCTGGGCCTGCCGGTGGGCCCTGGTG CGCCTACCTTGTATCCTGCGCCTTAA

Table S4. Primers for	point mutation	(ABH and PANAT) in this study.
------------------------------	----------------	----------------	------------------

primers S	Sequence 5'-3'	Purpose
-----------	----------------	---------

ABH60226F	TTGGAAGAAGTGTATCCGGG	Used for plasmid (pETduet-ABH60 T226V)
ABH60226R	CGATGGCCCGGATACACTTC	construction
ABH60272F	CCAGCAATGATACCGTGGTG	Used for plasmid (pETduet-ABH60 T272V)
ABH60272R	GCCTTTCCACACCACGGTAT	construction
ABH60290F	TTTTTTCACGTGTATCAGGGC	Used for plasmid (pETduet-ABH60 T290V)
ABH60290R	TCAAAGCCCTGATACACGTG	construction
PANAT211AF	GCGGCGGCGATTACCGAAG	Used for plasmid (pET28a-PANAT _{K211A})
PANAT211A	ATCCGGATATAGTTCCTCCTTT	construction
R	С	
PANAT211CF	CAGGGTCTGTGTGCGGCGAT	Used for plasmid (pET28a-PANAT _{K211C})
PANAT211C	GTAATCGCCGCACACAGACC	construction
R		
PANAT211GF	CAGGGTCTGGGCGCGGCGAT	Used for plasmid $(pET28a-PANAT_{K211G})$
PANAT211G	TAATCGCCGCGCCCAGACC	construction
R		
PANAT211DF	AGGGTCTGGATGCGGCGATT	Used for plasmid (pET28a-PANAT _{K211D})
PANAT211D	GGTAATCGCCGCATCCAGAC	construction
R		
PANAT211SF	AGGGTCTGAGCGCGGCGAT	Used for plasmid ($pET28a-PANAT_{K211S}$)
PANAT211SR	GTAATCGCCGCGCTCAGAC	construction
PANAT211QF	CAGGGTCTGCAGGCGGCGAT	Used for plasmid $(pET28a-PANAT_{K211Q})$
PANAT211Q	GGTAATCGCCGCCTGCAGAC	construction
R		
PANAT211VF	CAGGGTCTGGTTGCGGCGAT	Used for plasmid (pET28a-PANAT _{K211V})
PANAT211V	GGTAATCGCCGCAACCAGAC	construction
R		
PANAT211W	GGGTCTGTGGGCGGCGATT	Used for plasmid ($pET28a-PANAT_{K211W}$)
F		construction
PANAT211W	TCGGTAATCGCCGCCCACAG	
R		
PANAT211HF	AGGGTCTGCATGCGGCGATT	Used for plasmid (pET28a-PANAT _{K211H})
PANAT211H	CGGTAATCGCCGCATGCAG	construction
R		
PANAT211RF	GGTCTGCGTGCGGCGATTAC	Used for plasmid ($pET28a-PANAT_{K211R}$)
PANAT211R	CGGTAATCGCCGCACGCAG	construction
R		
PANAT211PF	AGGGTCTGCCTGCGGCGAT	Used for plasmid $(pET28a-PANAT_{K211P})$
PANAT211PR	GGTAATCGCCGCAGGCAGAC	construction
PANAT211LF	AGGGTCTGTTAGCGGCGATT	Used for plasmid (pET28a-PANAT _{K211L})
PANAT211LR	GGTAATCGCCGCTAACAGAC	construction
PANAT211IF	CAGGGTCTGTTTGCGGCGAT	Used for plasmid $(pET28a-PANAT_{K2111})$
PANAT211IR	GGTAATCGCCGCAAACAGAC	construction
PANAT211TF	CAGGGTCTGACTGCGGCGAT	Used for plasmid (pET28a-PANAT _{K211T})
PANAT211TR	GTAATCGCCGCAGTCAGAC	construction
PANAT211YF	CAGGGTCTGTATGCGGCGAT	Used for plasmid (pET28a-PANAT _{K211Y})

PANAT211Y	GGTAATCGCCGCATACAGAC	construction
R		
PANAT211M	CAGGGTCTGATGGCGGCGAT	Used for plasmid (pET28a-PANAT _{K211M})
F		construction
PANAT211M	GGTAATCGCCGCCATCAGAC	
R		
PANAT211NF	CAGGGTCTGAATGCGGCGAT	Used for plasmid ($pET28a-PANAT_{K211N}$)
PANAT211N	GGTAATCGCCGCATTCAGAC	construction
R		
PANAT211FF	CAGGGTCTGTTTGCGGCGAT	Used for plasmid $(pET28a-PANAT_{K211F})$
PANAT211FR	GGTAATCGCCGCAAACAGAC	construction

Figure S1. *In vitro* characterization of ABH. a) SDS-PAGE of isolated ABH and whole cell. The size of protein ABH and chaperone GroEL are about 55 kD and 60 kD, respectively. M: marker (solarbio. PR1910, MOPS buffer); line1: purified target protein (300 mM imidazole elution from Ni-NTA); line2: *E. coli* BL21 (DE3)-pGro7-ABH whole-cell; line3: control, *E. coli* BL21 (DE3)-pGro7 whole-cell. Criterion MOPS gel (12% precast, Biorad) was used. b) LC-MS analysis of the reaction mixtures of PABA and ABH. I: PABA (**3**) and ABH; ii: PABA (**3**); iii: 4-Ap (**2**) standard. c) Characterization of 4-Ap by ESI-MS.

Figure S2. *In vitro* characterization of PANAT. a) SDS-PAGE of purified PANAT (about 37 kD). Criterion MOPS gel (12% precast, Biorad) was used. b) LC-MS analysis of the reaction mixtures of 4-Ap and PANAT. I: 4-Ap (2) and PANAT; ii: 4-Ap (2); iii: *p*-Acetaminophen (APAP, 1) standard. c) Characterization of APAP by ESI-MS.

Figure S3. *In vivo* production of APAP (1) in *E. coli* PA1 using the plasmids P1-P2-P3, measured by HPLC after **48h.** a) Construction of *E. coli* cells expressing AroF; PabAB; PabC; PANAT; ABH. Gray filled rectangle: AroF gene; brown filled rectangle: PabAB gene; green filled rectangle: PabC gene; purple filled rectangle: PANAT gene; red filled rectangle: ABH; light purple rectangle: ribosome binding site (RBS). b) Engineered *E. coli* cells for the production of APAP in different mediums (M9, LB-G, and LB-Gly, respectively). P15A: pACYC-Duet-1; pBR322: pET-28a; ColE1: pET-Duet-1; arrow: T7 promoter. Proteins: AroF, DAHP synthetase feedback inhibited by tyrosine; PabAB, *p*-aminobenzoic acid synthase; PabC, 4ADC lyase; ABH, 4-aminobenzoate hydroxylase; PANAT, arylamine N-acetyltransferase. The data shown in b are from three experiment replicates and are expressed as the mean value ± SD.

Figure S4. Sequence alignment of ABH (BAA07468.1) with ABH37 from *Fibularhizoctonia* sp. CBS 109695 (RXW22381.1), ABH42 from *Psathyrella aberdarensis* (RXW22381.1), ABH47 from *Leucoagaricus sp. SymC.cos* (KXN83799.1), and ABH60 from *Agaricus bisporus var. bisporus* H97 (XP 006456258.1).

Table S5. Schematic of strains harboring constructed plasmids for APAP biosynthesis. Gray filled rectangle: AroF gene; brown filled rectangle: PabAB gene; green filled rectangle: PabC gene; purple filled rectangle: PANAT gene; red filled rectangle: ABH or ABH homologous protein or ABH mutants; light purple rectangle: ribosome binding site (RBS). Recombinant *E. coli* PAB1, PAB2, PAB3, PAB5, PAB6, PAB7, PAB8, PAB9, PAB11 harboring constructed plasmids P1-P3-PB1, P1-P3-PB2, P1-P3-PB3, P1-P3-PB5, P1-P3-PB6, P1-P3-PB7, P1-P3-PB8, P1-P3-PB9, P1-P3-PB11, respectively.

Entry	Recombiant <i>E.</i> coli strains	plasmids
1	PAB1	P1 P15A AroF PabAB PabC
	(P1-P3-PB1)	P3 pBR322 PANAT
		PB1 ColE1 ABH37
2	PAB2 (P1-P3-PB2)	PB2 CoIE1 ABH42
3	PAB3 (P1-P3-PB3)	PB3 ColE1 ABH47
4	PAB5 (P1-P3-PB5)	PB5 ColE ABH60 ^{T226V}
5	PAB6 (P1-P3-PB6)	
6	PAB7 (P1-P3-PB7)	PB7 ColE ABH60 ^{G290V}
7	PAB8 (P1-P3-PB8)	PB8 ColE1 ABH60 ^{T226V/T272V}
8	PAB9 (P1-P3-PB9)	PB9 ColE1 ABH60 ^{T226V/T290V}
9	PAB11 (P1-P3-PB11)	PB11 CoIE1 ABH60 ^{T226V/G272V/T290V}

Figure S5. Titers of APAP: PAABA in PANAT strain and PANAT K211 (V, L, I, S, T, C, M, N, Q, and R respectively) mutant strains. Blue column: APAP, orange column: PAABA. PAB10 (PANAT); PAC9 (PANAT^{K211V}); PAC10 (PANAT^{K211L}); PAC11 (PANAT^{K211I}); PAC12 (PANAT^{K211P}); PAC13 (PANAT^{K211S}); PAC14 (PANAT^{K211T}); PAC15 (PANAT^{K211C}); PAC16 (PANAT^{K211M}); PAC17 (PANAT^{K211N}); PAC18 (PANAT^{K211Q}); PAC19 (PANAT^{K211R}). The data shown in Figure S5 are from three experiment replicates and are expressed as the mean value \pm SD.

Entry	Strains	АРАР: РААВА	APAP production (mM, mean value)	APAP production (mg/L, mean value)
1	PAC5 (K231W)	21.7	0.4699	71.03
2	PAC6 (K231F)	20	0.5077	76.74
3	PAC7 (K231H)	19.81	0.4884	73.83
4	PAC8 (K231Y)	19.85	0.4756	71.89
5	PAC9 (K231V)	5.76	0.5189	78.44
6	PAC10 (K231L)	14.38	0.6105	92.28
7	PAC11 (K231I)	10.58	0.5131	77.56
8	PAC12 (K231P)	9.25	0.49	74.07
9	PAC13 (K231S)	6.07	0.5627	85.06
10	PAC14 (K231T)	10.52	0.469	70.89
11	PAC15 (K231C)	15.1	0.4757	71.91
12	PAC16 (K231M)	11.06	0.4981	75.29
13	PAC17 (K231N)	10.62	0.4889	73.90
14	PAC18 (K231Q)	5.41	0.5692	86.04
15	PAC19 (K231R)	4.68	0.5025	75.96

Table S7. Kinetic parameters of PANAT and PANAT^{K211G}. The data shown in Table S7 are from three experiment replicates and are expressed as the mean value \pm SD.

Substrates	Enzymes	K _m (μM ⁻¹)	K_{cat} (S ⁻¹)	$K_{cat}/Km \ (\mu M^{-1} S^{-1})$
PABA	PANAT	613.51±6.8	0.20	3.21x10 ⁻⁴
	PANAT ^{K211G}	1014.67±11.34	0.05	4.63x10 ⁻⁵
4-AP	PANAT	596.69±3.66	0.59	9.84x10 ⁻⁴
	PANAT ^{K211G}	473.80±5.93	1.41	2.97 x10 ⁻³

Table S8. Schematic of strains (PAB10, PAD5 and PAD4) harboring constructed plasmids for APAP biosynthesis. Gray filled rectangle: AroF gene; brown filled rectangle: PabAB gene; green filled rectangle: PabC gene; purple filled rectangle: PANAT gene; red filled rectangle: ABH^{G272V/T290V}; dark green rectangle: EmrE; navy blue rectangle: AaeABRX; light purple rectangle: ribosome binding site (RBS). Recombinant *E. coli* PAB10, PAD5, PAD4 harboring constructed plasmids P1-P3-PB10, P1-P3-PDE, P1-P3-PD4, respectively.

Table S9. Schematic of strains harboring constructed plasmids for APAP biosynthesis. Gray filled rectangle: AroF gene; brown filled rectangle: PabAB gene; green filled rectangle: PabC gene; purple filled rectangle: PANAT gene; red filled rectangle: ABH^{G272V/T290V}; blue rectangle: scaffolds GBD_xSH3_yPDZ_z; light purple rectangle: ribosome binding site (RBS). Yellow triangle is the ligand to PDZ domain. Light blue round is the ligand to SH3 domain. Recombinant *E. coli* PAB10, PAE1, PAE2, PAE3, PAE4, PAE5 harboring constructed plasmids P1-P3-PB10, PE1-PE2-PE3, PE1-PE2-PE4, PE1-PE2-PE6, PE1-PE2-PE6, PE1-PE2-PE7, respectively.

Entry	Recombiant <i>E.</i> <i>coli</i> strain	plasmids
1	PAB10 (P1-P3-PB10)	P1 P15A AroF PabAB PabC
		PB10 ColE1 ABH60 ^{6272V/T290V} P3 pBR322 PANAT
2	PAE1 (PE1-PE2-PE3)	PE1 P15A AroF PabAB PabC
	(1 2 1 2 1 2 0)	PE2 CoIE1 ABH60 ^{G272V/T290V} PE3 pBR322 PANAT G ₀ S ₁ P ₁
3	PAE2 (PE1-PE2-PE4)	PE4 pBR322 PANAT G ₁ S ₁ P ₁
4	PAE3 (PE1-PE2-PE5)	PE5 pBR322 PANAT G ₁ S ₂ P ₂
5	PAE4 (PE1-PE2-PE6)	
6	PAE5 (PE1-PE2-PE7)	

Figure S6. The diagram for the APAP biosynthetic key enzymes scaffolding strategy. The GBD domain (GTPase binding domain) is from the actin polymerization switch N-WASP, the SH3 domain (Src homology 3 domain) is from the adaptor protein CRK), and the PDZ (PSD95/DlgA/Zo-1) domain is from the adaptor protein syntrophin. These domains were linked by flexible nine-residue glycine-serine linkers to construct scaffolds GBD_xSH3_yPDZ_z. ACY: PANAT (Arylamine N-acetyltransferase), ABH: 4-aminobenzoate hydroxylase, PabC: 4-amino-4-deoxychorismic acid lyase. Rectangle is the ligand to GBD, Circle is the ligand to SH3 domain, triangle is the ligand to PDZ domain.

Entry	Recombiant <i>E.</i> <i>coli</i> strain		plasmids
1	PADF1 (PE3-PE2-PE4)	PF1	P15A AroF PabAB PabC
		PE2	CoIE1 ABH60 ^{G272V/T290V}
		PF4	pBR322 PANAT _{K211G} EmrE AaeABRX G ₁ S ₂ P ₂
3	PADF3 (PE5-PE6-PE7)	PF5	pBR322 AroF PabAB PabC
	(110-110-117)	PF6	pMB1 ABH60 ^{G272V/T290V} PANAT ^{K211G}
		PF7	
4	PADF4	PF8	ColE1 ABH60 ^{G272V/T290V} AroF PabAB PabC
	(FF7-FF0-FF9)	PF9	pBR322 PANAT ^{K211G}
		PF10	P15A EmrE AaeABRX G ₁ S ₂ P ₂
5	PADF5 (PF11-PF9-PF10)	PF11 .	ColE1 AroF PabAB PabC ABH60 ^{G272V/T290V}
6	PADF6	PF12	ColE1 ABH60 ^{G272V/T290V} PANAT ^{K211G}
	(PF1-PF12-PF13)	PF13	pBR322 EmrE AaeABRX G ₁ S ₂ P ₂

а

Figure S7. Improvement of APAP titers by gene module combinations. a) Schematic of strains harboring constructed plasmids for APAP biosynthesis. b) Engineered *E. coli* cells (PADF1, PADF3, PADF4, PADF5, and PADF6) for the production of APAP. P15A: pACYC-Duet-1; pBR322: pET-28a; ColE1: pET-Duet-1; arrow: T7 promoter. Gray filled rectangle: AroF gene; brown filled rectangle: PabAB gene; green filled rectangle: PabC gene; purple filled rectangle: PANAT^{K231G} gene; red filled rectangle: ABH60^{G272V/T290V} gene, dark green rectangle: EmrE; navy blue rectangle: AaeABRX; bule rectangle: G₁S₂P₂; light purple rectangle: ribosome binding site (RBS). Yellow triangle is the ligand to PDZ domain. Light blue round is the ligand to SH3 domain. The data shown in b are from three experiment replicates and are expressed as the mean value \pm SD.

а

Entry Recombiant <i>E.</i> coli strains			plasmids			
-	1	PA2 (P4)	P4 ColE1 ABH PANAT Arof PabAB PabC			
-	2	PA3 (P5)	P5 ColE1 ABH AroF PabAB PabC PANAT			
b		1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0				
		0.0	PA2 PA3			

Figure S8. *In vivo* production of APAP (1) in *E. coli* PA2 and PA3 using the gene clusters P4 and P5 respectively, measured by HPLC after 48h. a) Construction of *E. coli* cells expressing gene clusters (containing AroF, PabAB, PabC, PANAT, ABH). b) Engineered *E. coli* PA2 and PA3 for the production of APAP (1). ColE1: pET-Duet-1; arrow: T7 promoter. Proteins: AroF, DAHP synthetase feedback inhibited by tyrosine; PabAB, *p*-aminobenzoic acid synthase; PabC, 4ADC lyase; ABH, 4-aminobenzoate hydroxylase; PANAT, arylamine N-acetyltransferase. Gray filled rectangle: AroF gene; brown filled rectangle: PabAB gene; green filled rectangle: PabC gene; purple filled rectangle: PANAT gene; red filled rectangle: ABH; light purple rectangle: ribosome binding site (RBS). Recombinant *E. coli* PA2, PA3 harboring constructed plasmids P4, P5, respectively. The data shown in b are from three experiment replicates and are expressed as the mean value \pm SD.

Figure S9. Characterization of 2a, 3a, 2b, 3b, 2c, 3c, 2d, 3d, 3e by ESI-MS.

Table S10. The amino acid sequence of GBD domain, the SH3 domain, and the PDZ domain.

CDD
G GBD

TKADIGTPSNFQHIGHVGWDPNTGFDLNNLDPELKNLFDMCGISEAQLKDRETSKVIYDFIEKTG GVEAVKNELRRQAP

SH3

AEYVRALFDFNGNDEEDLPFKKGDILRIRDKPEEQWWNAEDSEGKRGMIPVPYVEKY PDZ

 $\label{eq:linear} LQRRRVTVRKADAGGLGISIKGGRENKMPILISKIFKGLAADQTEALFVGDAILSVNGEDLSSATHDEAVQALKKTGKEVVLEVKYMKEVSPYFK$

Figure S10. Fed-batch fermentation of PADF2. The strain PADF2 was inoculated into the fermentation medium with 20 g/L glucose (as described in section 2.9). When the cell density reached to an OD_{600} of 20 after nine hours of cultivation (The residual sugar concentration was about 2 g/L), the recombinant proteins were induced by 0.1 mM IPTG.

Dissolved oxygen level was maintained at 30% through automatic control of the agitation speed varying from 400 to 1000 rpm. The pH was regulated by the addition of $NH_3 \cdot H_2O$. Glucose (400 g/L) was added to maintain a low residual concentration of about 200 mg/L to avoid glucose inhibition. OD_{600} was marked with red triangle, residual glucose was marked with black circle, and APAP was marked with blue square.

References

- [1] Tsuji H, Ogawa T, Bando N, et al. Purification and properties of 4-aminobenzoate hydroxylase, a new monooxygenase from Agaricus bisporus[J]. Journal of Biological Chemistry, 1986, 261(28):13203-13209.
- [2] Westwood I M, Holton S J, Rodrigues-Lima F, et al. Expression, purification, characterization and structure of Pseudomonas aeruginosa arylamine Nacetyltransferase[J]. Biochemical Journal, 2005, 385(Pt 2):605-612.
- [3] Wang F, Zhao J, Li Q, et al. One-pot biocatalytic route from cycloalkanes to α, ω-dicarboxylic acids by designed *Escherichia coli* consortia[J]. Nature Communications, 2020, 11(1).
- [4] Koma D, Yamanaka H, Moriyoshi K, et al. Production of p-aminobenzoic acid by metabolically engineered Escherichia coli[J]. Bioscience Biotechnology & Biochemistry, 2014, 78(2):350-357.