Southern California Association of Marine Invertebrate Taxonomists

3720 Stephen White Drive San Pedro, California 90731

CNLIFORNIA TSSOCIATION MARINE NUERTEBRATE TNYOTO

October, 1991

Vol. 10, No. 6

NEXT MEETING:	Sea Pens
GUEST SPEAKER:	Dr. Eric Hochberg of the Santa Barbara Museum of Natural History
DATE:	November 18, 1991 Note this is the third Monday of the month.
LOCATION:	The Santa Barbara Museum of Natural History Santa Barbara, California

MINUTES FROM MEETING ON OCTOBER 28 & 29:

Dr. Jim Thomas began the meeting by responding to questions from a correspondence from Don Cadien. He described his relationship with the EPA regarding the development of appropriate biocriteria for the assessment of marine environmental quality. Dr. Thomas' role has been to advise the EPA on the importance of taxonomy in the selection of species as indicators. Indicator species must satisfy the following requirements in order to function as a biocriteria They must be ecologically significant, numerically species. abundant, and sensitive to a wide range of pollutants. His work with Dr. Barnard among the coral reefs of New Guinea suggests that Amphipods may be an appropriate group to use for biocriteria. Α committee has been set up to work on east coast species. A similar panel should be set up for the west coast. Dr. Thomas suggested that SCAMIT should get involved.

FUNDS FOR THIS PUBLICATION PROVIDED IN PART BY THE ARCO FOUNDATION, CHEVRON USA, AND TEXACO INC. SCAMIT newsletter is not deemed to be a valid publication for formal taxonomic purposes. He also proposed that SCAMIT apply for money from UNESCO to get taxonomist from other countries to host a workshop at a future meeting. This is especially encouraged for scientist from both eastern block and underdeveloped countries. UNESCO has visiting scientist funds available for this kind of project.

<u>Amphipod Workshop:</u> Ron Velarde, Don Cadien, Tony Phillips, and myself will be preparing the notes from the workshop. This will include a complete list of the specimens examined as well as their ultimate resolution. An address for requesting copies should appear in the November newsletter. All those in attendance will automatically receive a copy.

Dr. Elizabeth Harrison-Nelson of the Smithsonian Institution was also in attendance. A copy of her "Notes on Stenothoidae of Southern California" has been included in the newsletter. A list of the specimens looked at will be included in the workshop notes.

Other Information of Interest to SCAMIT Members: A draft of Don Cadien's "List of the Marine Amphipod fauna of the Temperate and Boreal Northeastern Pacific Ocean..." has been included with the newsletter for review and comment. A copy of Senate bill 58 establishing a national policy for the conservation of biodiversity has also been included.

FOURTH INTERNATIONAL POLYCHAETE CONFERENCE:

It will be held in Angers, France, July 27 through August 2, 1992. The following subjects will be covered:

- Taxonomy and comparative morphology.
- Biogeography and population genetics.
- Biology of populations.
- Culture, exploitation, and valorization.
- Reproduction and larval biology.
- Cytophysiology, cytotoxicology, and endocrinology.

A tentative schedule and registration form have been included in the newsletter.

CHRISTMAS PARTY DECEMBER 7:

Don't forget the Christmas party at the Cabrillo Marine Museum. It will be from 6 to 9 pm on December 7. Mark you calendars and bring the kids.

FUTURE MEETINGS:

On December 9 Karen Green will be leading a meeting on Sponges. It will be held at the Cabrillo Marine Museum. Please send any problem animals to:

> Karen Green 1537 Camino Corto Fallbrook, CA 92028.

The January meeting is on the sixth. Ron Velarde will be leading the meeting on Mysids. It will be held at the San Diego Museum of Natural History. Send your problem specimens to:

> Ron Velarde 4918 North Harbor Dr. #101 San Diego, CA 92106.

Note this is the first monday of the month.

SCAMIT OFFICERS:

If you need any other information concerning SCAMIT please feel free to contact any of the officers.

President	Ron Velarde	(619)226-0164
Vice-President	Larry Lovell	(619)945-1608
Secretary	Kelvin Barwick	(619)226-8175
Treasurer	Ann Martin	(213)648-5317

4 TH INTERNATIONAL POLYCHAETE CONFEREN ANGERS, 1992 (Preliminary Registration form)

		NAME	
Monday July 27	Scientific session.	ADDRESS	
	Arrangement of posters.		
	"Reception at the University".	TITLE OF PAPER (Provisional)	
Tuesday July 28	Scientific session.	TITLE OF POSTER (Provisional)	
	First poster session.	·····	
Wednesday July 29	Mid-conference excursions to the	- Registration 800 FF - Lunch Center of Congress 100 FF	
	Bourgneuf Bay and the Châteaux d'Anjou.	Dormitory "Centre du Lac de Maine"	
Thursday Julay 30	Scientific session.	single97 FFdouble69 FFtour persons56 FF	
	Second poster session.	Do you accept to be with another person in	your room : 🛛 yes 🛛 🗖 no
	After dinner meeting : Exploitation and	• Hotels :	
	valorisation of polychaetes.	Anjou *** (Ancient style) ingle 350 FF double 495 FF	Mercure *** (Modern style) Single double
Friday July 31	Scientific session.		
	Conference banquet.	Boule d'Or ** single 205 FF double 240 FF	
Saturday August 1	Scientific session in the morning.	• Excursions :	
	Coaches leave Angers at about 2 pm for	Mid Conference	Post Conference
	excursions.	Bourgneuf Bay 300 FF Guérande 300 FF Châteaux and Troglodyte Sites : 300 FF	Mont St Michel 750 FF
Sunday August 2	Excursions to the Mont St Michel Bay.	Return to : Patrick GILLET Laboratoire d'Ecologie Animale 3 Place A. Leroy 49008 ANGERS CEDEX 01 - FF	

Dates :

.

List of the Marine Amphipod fauna of the Temperate and Boreal Northeastern Pacific Ocean including literature records of occurrence between Bahia San Quintin, Baja California and the south side of the Aleutian Islands incorporating nomenclatural changes listed in Barnard and Karaman 1991 (comments keyed to Klink 1980) Donald B. Cadien, Marine Biology Laboratory -JWPCP, September 1991

Ampeliscidae Bate, 1857 Ampelisca Krøver, 1842 Ampelisca agassizi (Judd, 1896) Ampelisca compressa Holmes, 1903 Ampelisca vera J. L. Barnard, 1954 Ampelisca amblyopsoides J. L. Barnard, 1960 ¹Ampelisca brachycladus Roney, 1990 C Ampelisca brevisimulata J. L. Barnard, 1954 ¹Ampelisca careyl Dickinson, 1982 Ampelisca coeca Holmes, 1908 C Ampelisca cristata Holmes, 1908 Ampelisca cristata microdentata J. L. Barmard, 1954 Ampelisca eoa Gurjanova, 1951 Ampelisca catalinensis J. L. Barnard, 1954 Ampelisca eschrichti Krøyer, 1842 B Ampelisca pelagicus Stimpson, 1853 Ampelisca ingens Bate, 1862 Ampelisca dubia Boeck, 1871 Ampelisca propinqua Boeck, 1871 Ampelisca pacificus Gurianova, 1955 ¹Ampelisca fageri Dickinson, 1982 Ampelisca schellenbergi Shoemaker, 1933 of J. L. Barnard, 1954 Ampelisca furcigera Bulycheva, 1936 Ampelisca hancocki J. L. Barnard, 1954 ²Ampelisca hessleri Dickinson, 1982 B Ampelisca indentata J. L. Barnard, 1954 C Ampelisca lobata Holmes, 1908 Ampelisca articulata Stout, 1913 Ampelisca macrocephala Liljeborg, 1852 Ampelisca latipes Stephensen, 1928 Ampelisca milleri J. L. Barnard, 1954 Ampelisca pacifica Holmes, 1908 C Ampelisca plumosa Holmes, 1908 C Ampelisca pugetica Stimpson, 1864 Ampelisca californica Holmes, 1908 Ampelisca gnathia J. L. Barnard, 1954 Ampelisca macrodonta J. L. Barnard, 1954 Ampeliaca mora J. L. Barnard, 1967 Ampelisca romigi J. L. Barnard, 1954 C Ampelisca isocornea J. L. Barnard, 1954 Ampelisca romigi ciego J. L. Barnard, 1966 ⁴Ampelisca unsocalae J. L. Barnard, 1960

Byblis Boeck, 1871 Byblis barbarensis J. L. Barnard, 1960 Byblis bathyalis J. L. Barnard, 1966 Byblis brevirama Dickinson, 1983 Byblis longispina Dickinson, 1983 Byblis millsi Dickinson, 1983 ¹Byblis mulleni Dickinson, 1983 Byblis tannerensis J. L. Barnard, 1966 Byblis thyabilis J. L. Barnard, 1971 Byblis veleronis J. L. Barnard, 1954 Haploops Liljeborg, 1856 ¹Haploops lodo J. L. Barnard, 1961 Haploops tubicola Liljeborg, 1856 Haploops carinata Liljeborg, 1856 Haploops spinosa Shoemaker, 1931 Amphilochidae Boeck, 1871 Amphilochus Bate, 1862 Amphilochus litoralis Stout, 1912 Amphilochus "neapolitanus" Della Valle, 1893 of J. L. Barnard, 1962 Amphilochus picadurus J. L. Barnard, 1962 C Gitana Boeck, 1871 Gitana calitemplado J. L. Barnard, 1962 C Gitanopsis Sars, 1895 Gitanopsis vilordes J. L. Barnard, 1962 C Ampithoidae Stebbing, 1899 Ampithoe Leach, 1814 Pleonexes Bate, 1857 Ampithoe aptos (J. L. Barnard, 1969) C Pleonexes aptos J. L. Barnard, 1969 ¹Ampithoe kussakini Gurjanova, 1955 B Ampithoe lacertosa Bate, 1858 Ampithoe longimana Smith, 1873 Ampithoe plumulosa Shoemaker, 1938 Ampithoe ramondi Audouin, 1826 C ²Ampithoe sectimanus Conlan and Bousfield, 1982 B Ampithoe pollex Kunkel, 1910 of J. L. Barnard, 1954 Ampithoe simulans Alderman, 1936 ⁴Ampithoe dalli Shoemaker, 1938 B Ampithoe simulans Alderman 1936 of J. L. Barnard, 1965 Ampithoe valida Smith, 1873 Ampithoe shimijuensis Stephensen, 1944 Cymadusa Savigny, 1816 Cymadusa uncinata (Stout, 1912) Acanthogrubia uncinata Stout, 1912 Paragrubia uncinata Shoemaker, 1941

Peramphithoe Conlan and Bousfield, 1982 Peramphithoe humeralis (Stimpson, 1864) Peramphithoe lindbergi (Gurjanova, 1938) Ampithoe lindbergi Gurjanova, 1938 Ampithoe femorata Krøyer, 1845 of J. L. Barnard, 1952 ¹Peramphithoe mea (Gurjanova, 1938) B Ampithoe mea Gurianova, 1938 ²Peramphithoe plea (J. L. Barnard, 1965) Amphithoe plea J. L. Barnard, 1965 ²Peramphithoe tea (J. L. Barnard, 1965) Amphithoe tea J. L. Barnard, 1965 Anamixidae Stebbing, 1897 Anamixis Stebbing, 1897 Leucothoides Shoemaker, 1933 ²Anamixis pacifica (J. L. Barnard, 1955) C Leucothoides pacifica J. L. Barnard, 1955 ⁴Anamixis linslevi J. L. Barnard, 1955 Anisogammaridae Bousfield, 1977 Anisogammarus Derzhavin, 1927 ¹Anisogammarus pugettensis (Dana, 1853) Carineogammarus Bousfield, 1979 ≠Carinogammarus Stebbing, 1899 [baikalian] ¹Carineogammarus makarovi (Bulyscheva, 1952)B Anisogammarus schmitti Shoemaker, 1964 Eogammarus Birstein, 1933 ³Eogammarus confervicolus (Stimpson, 1856) ¹Eogammarus oclairi Bousfield, 1979 B ¹Eogammarus psammophilus Bousfield, 1979 B Locustogammarus Bousfield, 1979 ¹Locustogammarus levingsi Bousfield, 1979 B ¹Locustogammarus locustoides (Brandt, 1851) B Spinulogammarus Tzvetkova, 1972 ¹Spinulogammarus subcarinatus (Bate, 1862) B Aoridae Stebbing, 1899 Acuminodeutopus J. L. Barnard, 1959 Acuminodeutopus heteruropus J. L. Barnard, 1959 C Aoroides Walker, 1898 Aproides columbiae Walker, 1898 Aoroides californica Alderman, 1936 ¹Aoroides exilis Conlan and Bousfield, 1982 ¹Aoroides inermis Conlan and Bousfield, 1982 ¹Aoroides intermedia Conlan and Bousfield, 1982 ¹Aoroides spinosa Conlan and Bousfield, 1982 Aoroides columbiae Walker, 1898 of J. L. Barnard, 1954 Arctolembos Myers, 1979 ¹Arctolembos arcticus (Hansen, 1887) B Lembos arcticus (Hansen, 1887)

Bemlos Shoemaker, 1925 ²Bemlos audbettius (J. L. Barnard, 1962) C Lembos audbettius J. L. Barnard, 1962 ²Bemlos concavus (Stout, 1913) C Lembos concavus Stout, 1913 ²Bemlos macromanus Shoemaker, 1925 C Columbaora Conlan and Bousfield 1982 ¹Columbaora cyclocoxa Conlan and Bousfield, 1982 Grandidierella Coutiére, 1904 ¹Grandidierella japonica Stephensen, 1938 Paramicrodeutopus Myers, 1988 ²Paramicrodeutopus schmitti (Shoemaker, 1942) C Microdeutopus schmitti Shoemaker, 1942 Neohela Smith, 1881 ¹Neohela intermedia Coyle and Mueller, 1981 B ¹Neohela pacifica Gurjanova, 1953 B Neomegamphopus Shoemaker, 1942 Neomegamphopus roosevelti Shoemaker, 1942 C Rudilemboides J. L. Barnard, 1962 Rudilemboides stenopropodus J. L. Barnard, 1959 C Argissidae Walker, 1904 Argissa Boeck, 1871 Argissa hamatipes (Norman, 1869) Bateidae Stebbing, 1906 Batea Müller, 1865 Batea lobata Shoemaker, 1926 Batea transversa Shoemaker, 1926 Cheluridae Allman, 1847 Chelura Philippi, 1839 Chelura terebrans Philippi, 1839 Colomastigidae Stebbing, 1899 Colomastix Grube, 1861 Colomastix pusilla Grube 1864 of J.L. Barnard 1969 Corophiidae Dana, 1849 Corophium Latreille, 1806 Corophium acherusicum Costa, 1857 Corophium baconi Shoemaker, 1934 ¹Corophium brevis Shoemaker, 1949 B Corophium californianum Shoemaker, 1934 C ¹Corophium crassicorne Bruzelius, 1859 B Corophium insidiosum Crawford, 1937 ¹Corophium salmonis Stimpson, 1857 B Corophium spinicorne Stimpson, 1857 B Corophium uenoi Stephensen, 1932

Dexaminidae Stebbing, 1888 Atylidae Liljeborg, 1865 Anatylidae Bulycheva, 1955 Lepechinellidae Schellenberg, 1925 Atylus Leach, 1815 ¹Atylus brüggeni (Gurjanova, 1938) B ¹Atylus collingi (Gurjanova, 1938) B ¹Atvlus laevidensus J. L. Barnard, 1956 Atylus tridens (Alderman, 1936) C Nototropis tridens Alderman, 1936 Guernea Chevreux, 1887 Dexamonica J. L. Barnard, 1957 ¹Guernea nordenskioldi (Hansen, 1888) B Guernea reduncans (J. L. Barnard, 1957) Dexamonica reduncans J. L. Barnard, 1957 Lepechinella Stebbing, 1908 ³Lepechinella bierii J. L. Barnard, 1957 Polycheria Haswell, 1880 Polycheria osborni Calman, 1898 Dogielinotidae Gurianova, 1953 Proboscinotus Bousfield in Bousfield & Tzvetkova, 1982 ²Proboscinotus loguax (J.L. Barnard, 1966) Dogielinotus loquax J. L. Barnard, 1966 Eophliantidae J. L. Barnard, 1964 Lignophliantis J. L. Barnard, 1969 Lignophliantis pyrifera J. L. Barnard, 1969 C Eusiridae Stebbing, 1888 Calliopiidae Sars, 1893 Pontogeneidae Stebbing, 1906 Accedomoera J. L. Barnard, 1964 Accedomoera vagor J. L. Barnard, 1969 Accedomoera sp. A of Paquette [1990] B Eusiroides Stebbing, 1888 Eusiroides monoculoides (Haswell, 1880) Eusirus Krøyer, 1845 Eusirus longipes Boeck, 1871 Oligochinus J. L. Barnard, 1969 Oligochinus lighti J. L. Barnard, 1969 Oradarea Walker, 1903 ¹Oradarea longimana (Boeck, 1871) Paracalliopiella Tzvetkova & Kudrvashov, 1975 Callaska J. L. Barnard, 1978 ¹Paracalliopiella bungei (Gurjanova, 1951) B Halirages bungei Gurjanova, 1951 Paracalliopiella pratti (J.L. Barnard, 1954) Calliopiella pratti J. L. Barnard, 1954 Callaska pratti (J. L. Barnard, 1954)

Paramoera Miers, 1875 ¹Paramoera bousfieldi Staude, 1987 (nomen nudum) B ¹Paramoera bucki Staude, 1987 (nomen nudum) B ¹Paramoera carlottensis Bousfield, 1958 B ¹Paramoera columbiana Bousfield, 1958 B Paramoera leucophthalma Staude, 1987 (nomen nudum) B Paramoera mohri J. L. Barnard, 1952 ¹Paramoera serrata Staude, 1987 (nomen nudum) B ¹Paramoera suchaneki Staude, 1987 (nomen nudum) B Pontogeneia Boeck, 1871 Pontogeneia inermis (Krøyer, 1838) Pontogeneia intermedia Gurianova, 1938 Pontogeneia ivanovi Gurjanova, 1951 B Pontogeneia opata J. L. Barnard, 1979 Pontogeneia minuta J. L. Barnard, 1959 Pontogeneia rostrata Gurjanova, 1938 Rhachotropis Smith, 1883 Rhachotropis cervus J. L. Barnard, 1957 Rhachotropis clemens J. L. Barnard, 1967 Rhachotropis distincta (Holmes, 1908) Rhachotropis inflata (Sars, 1882) Rhachotropis natator (Holmes, 1908) Rhachotropis oculata (Hansen, 1887) ¹Rhachotropis sp. A SCAMIT, 1987 Gammaridae Leach, 1813 Gammarus Fabricius, 1775 Lagunogammarus Sket, 1971 Gammarus setosus Dementieva, 1931 B Lagunogammarus setosus (Dementieva, 1931) Gammaroporeiidae Bousfield, 1979 Gammaroporeia Bousfield, 1979 ¹Gammaroporeia alaskensis (Bousfield and Hubbard 1968) B Micruropus alaskensis Bousfield and Hubbard 1968 Haustoriidae Sars, 1882 Eohaustorius J. L. Barnard, 1957 Echaustorius brevicuspis Bosworth, 1973 B Echaustorius estuarinus Bosworth, 1973 B ¹Eohaustorius sawyeri Bosworth, 1973 Echaustorius sencillus J. L. Barnard, 1962 C Echaustorius washingtonianus (Thorsteinson, 1941) Hvalidae Bulvcheva, 1957 Allorchestes Dana, 1849 Allorchestes angusta Dana, 1856 ¹Allorchestes bellabella J. L. Barnard, 1974 B ¹Allorchestes carinata Iwasa, 1939 B ¹Allorchestes sp. A of Cadien [1991] B

Hyale Rathke, 1837 Hvale anceps (J.L. Barnard, 1969) Allorchestes anceps J. L. Barnard, 1969 Hyale californica J. L. Barnard, 1969 Hyale grandicornis californica J. L. Barnard, 1969 Hvale canalina J. L. Barnard, 1979 C Hyale rubra rubra Thomson, 1879 of J. L. Barnard 1969 Hyale frequens (Stout, 1913) Allorchestes frequens Stout, 1913 Hyale rubra frequens (Stout 1913) Hyale nigra Haswell, 1880 of J. L. Barnard 1962 Hyale plumulosa (Stimpson, 1857) ¹Hvale pugettensis (Dana, 1853) Parallorchestes Shoemaker, 1941 Parallorchestes ochotensis (Brandt, 1851) Iphimediidae Boeck, 1871 Acanthonotozomatidae Stebbing, 1906 Coboldus Krapp-Schickel, 1974 ²Coboldus hedgpethi (J.L. Barnard, 1969) Iphimedia hedgpethi (J. L. Barnard, 1969) Panoploea hedgpethi J. L. Barnard, 1969 Epimeria Costa, 1851 ¹Epimeria cora J. L. Barnard, 1971 ¹Epimeria yaquinae McCain, 1971 Iphimedia Rathke, 1843 Panoploea Thomson, 1880 Iphimedia rickettsi (Shoemaker, 1931) Panoploea rickettsi Shoemaker, 1931 Odius Liljeborg, 1865 1Odius kelleri Brüggen, 1907 Isaeidae Dana, 1853 Ampelisciphotis Pirlot, 1938 Gaviota J. L. Barnard, 1958 Ampelisciphotis podophthalma (J.L. Barnard, 1958) C Gaviota podophthalma J.L. Barnard, 1958 Amphideutopus J. L. Barnard, 1959 Amphideutopus oculatus J. L. Barnard, 1959 Cheirimedeia J. L. Barnard, 1962 ¹Cheirimedeia macrocarpa americana Conlan, 1983 B ¹Cheirimedeia macrodactyla Conlan 1983 B ¹Cheirimedeia similicarpa Conlan 1983 B ¹Cheirimedeia zotea J. L. Barnard 1962 C Cheiriphotis Walker, 1904 4Cheiriphotis "megacheles" (Giles, 1885) of J. L. Barnard, 1962 Chevalia Walker, 1904 ⁴Chevalia inaequalis (Stout, 1913) C Chevalia aviculae Walker, 1904 of J. L. Barnard, 1962

Gammaropsis Liljeborg, 1855 Eurystheus Bate, 1857 Gammaropsis (s.s.) Liljeborg, 1855 ⁵Gammaropsis effrena (J.L. Barnard, 1964) C Megamphopus effrenus J. L. Barnard, 1964 Gammaropsis ellisi Conlan, 1983 B Gammaropsis martesia (J. L. Barnard, 1964)C Megamphopus martesia J. L. Barnard, 1964 ¹Gammaropsis shoemakeri Conlan, 1983 B Gammaropsis lobata Shoemaker, 1942 ≠ Gammaropsis lobata (Chevreux, 1920) Gammaropsis thompsoni (Walker, 1898) Maeroides thompsoni Walker, 1898 Eurystheus thompsoni (Walker, 1898) Gammaropsis tenuicornis Holmes, 1904 Gammaropsis (Megamphopus) Norman, 1869 ⁵Gammaropsis mamola (J. L. Barnard, 1962) C Megamphopus mamolus J. L. Barnard, 1962 Gammaropsis (Podoceropsis) Boeck, 1861 ¹Gammaropsis amchitkensis Conlan, 1983 B Gammaropsis angustimana Conlan, 1983 B Gammaropsis barnardi Kudryashov and Tzvetkova, 1975 ¹Gammaropsis chionoecetophila Conlan, 1983 B Gammaropsis ociosa (J. L. Barnard, 1962)C Kermystheus ociosa J. L. Barnard, 1962 ¹Gammaropsis setosa Conlan, 1983 B Pareurystheus Tzvetkova, 1977 Paraeurystheus Tzvetkova, 1977 of Conlan, 1983 1.2 Pareurystheus alaskensis (Stebbing, 1910) B Eurystheus dentatus Holmes, 1908 ≠ Eurystheus dentatus Chevreux, 1900 Cheirimedia alaskensis (Stebbing, 1910) of J. L. Barnard and Karaman, 1991 Paraeurystheus dentatus (Holmes, 1908) of Conlan 1983 Pareurystheus tzvetkovae Conlan 1983 B Photis Krøyer, 1842 Photis bifurcata J. L. Barnard, 1962 Photis brevipes Shoemaker, 1942 Photis californica Stout, 1913 of J. L. Barnard, 1954 Photis californica Stout, 1913 ¹Photis chiconola J. L. Barnard, 1962 Photis conchicola Alderman, 1936 Photis elephantis J. L. Barnard, 1962 ¹Photis fishmanni Gurjanova, 1938 B Photis lacia J. L. Barnard, 1962 Photis macinerneyi Conlan 1983 Photis macrotica J. L. Barnard, 1962 ¹Photis oligochaeta Conlan, 1983 B ¹Photis pachydactyla Conlan, 1983 B Photis parvidons Conlan, 1983 ¹Photis reinhardi Krøyer, 1842 B

Photis Kroyer, 1842 [continued] ¹Photis spinicarpa Shoemaker, 1942 Photis sp. A of MBC [1976] C ¹Photis sp. B of Paquette [1987] C ¹Photis sp. C of Diener [1988] C Photis viuda J. L. Barnard, 1962 Protomedeia Krøyer, 1842 Protomedeia articulata J. L. Barnard, 1962 ¹Protomedeia fasciata Krøyer, 1842 B Protomedela grandimana Brüggen, 1905 B ¹Protomedeia penates J. L. Barnard, 1966 ¹Protomedeia prudens J. L. Barnard, 1966 ¹Protomedeia stephenseni Shoemaker, 1955 B Ischyroceridae Stebbing, 1899 Bonnierella Chevreux, 1900 Bonnierella linearis californica J. L. Barnard, 1966 Cerapus Say, 1817 4Cerapus "tubularis" Say, 1817 [at least two new species in California] Ericthonius Milne-Edwards, 1830 Ericthonius brasiliensis (Dana, 1853) ²Ericthonius rubricornis (Stimpson, 1853) Ericthonius difformis Milne-Edwards, 1830 of NEP authors Ericthonius hunteri (Bate, 1862) of NEP authors Ischyrocerus Krøyer, 1838 Ischyrocerus anguipes Krøyer, 1838 ²Ischyrocerus claustris (J. L. Barnard, 1969) Microjassa claustris J. L. Barnard, 1969 ²Ischyrocerus litotes (J. L. Barnard, 1954) Microjassa litotes J. L. Barnard, 1954 Ischyrocerus pelagops J. L. Barnard, 1962 Ischyrocerus serratus Gurjanova, 1938 B Ischyrocerus sp. A J. L. Barnard, 1969 1 Ischvrocerus sp. B J. L. Barnard, 1969 Jassa Leach, 1814 ¹Jassa borowskyae Conlan, 1990 B 1" Jassa "californica Boeck 1871 [to as yet undescribed new genus] ¹Jassa caritoni Conian, 1990 B 2.4 Jassa marmorata Holmes, 1903 Jassa falcata (Montagu, 1808) of J. L. Barnard, 1958 [in part]; J. L. Barnard, 1969 [in part] 2.4 Jassa morinoi Conlan, 1990 Jassa falcata (Montagu, 1808) of J. L. Barnard, 1958 [in part]; J. L. Barnard, 1969 (thick form from stations other than 38-D-3) 2,4 Jassa myersi Conlan, 1990 Jassa falcata (Montagu, 1808) of J. L. Barnard, 1969 (thin form) ¹Jassa oclairi Conian, 1990 B ¹Jassa shawi Conlan, 1990 B 2.4 Jassa slatteryi Conlan, 1990 Jassa falcata (Montagu, 1808) of J. L. Barnard, 1958 [in part]; J. L. Barnard and Reish, 1959; J. L. Barnard, 1960; J. L. Barnard, 1969 (thick form from Station 38-D-3) ¹Jassa staudei Conian, 1990 B

> Key - 1. = not included 2.= new name 3. = family changed 4. = status changed 5. = new orthography B = boreal occurrance only C= Californian occurrance only

Parajassa Stebbing, 1899 Parajassa angularis Shoemaker, 1942 Ventojassa J. L. Barnard, 1970 Ventojassa ventosa (J. L. Barnard, 1962) Eurystheus ventosa J. L. Barnard, 1962 Leucothoidae Dana, 1852 Leucothoe Leach, 1814 Leucothoe alata J. L. Barnard, 1959 Leucothoe spinicarpa (Abildgaard, 1789) Liljeborgiidae Stebbing, 1899 Liljeborgia Bate, 1862 ²Liljeborgia pallida Bate, 1857 Liljeborgia brevicornis (Bruzelius, 1859) Liljeborgia cota J. L. Barnard, 1962 Liljeborgia geminata J. L. Barnard, 1969 Liljeborgia kinahani Bate, 1862 of J. L. Barnard 1962 Listriella J. L. Barnard, 1959 Listriella albina J. L. Barnard, 1959 Listriella diffusa J. L. Barnard, 1959 Listriella eriopisa J. L. Barnard, 1959 Listriella goleta J. L. Barnard, 1959 Listriella melanica J. L. Barnard, 1959 ¹Listriella sp. A SCAMIT, 1987 Lysianassidae Dana, 1849 Acidostoma Liljeborg, 1865 Acidostoma hancocki Hurley, 1963 Allogaussia Schellenberg, 1926 Allogaussia recondita Stasek, 1958 Anonyx Krøyer, 1838 Lakota Holmes, 1908 Anonyx adoxus Hurley, 1963 ¹Anonyx comecrudus J. L. Barnard, 1971 ¹Anonyx laticoxae Gurjanova, 1962 B ⁵Anonyx lilljeborgi Boeck, 1871 Lakota carinata Holmes, 1908 Aristias Boeck, 1871 ¹Aristias veleronis Hurley, 1963 ¹Aristias sp. A SCAMIT, 1985 Aruga Holmes, 1908 ⁴Aruga holmesi (J.L. Barnard, 1955) ⁴Aruga oculata Holmes, 1908 Centromedon Sars 1895 ¹Centromedon pavor J.L. Barnard, 1966 Cyclocaris Stebbing, 1888 ¹Cyclocaris guilelmi Chevreux, 1899 Cyphocaris Stebbing, 1888 ¹Cyphocaris anonyx Boeck, 1871 ¹Cyphocaris challengeri Stebbing 1880 ¹Cyphocaris faurei K. H. Barnard, 1916 ¹Cyphocaris rtchardi Chevreux, 1905

Dissiminassa J. L. Barnard and Karaman, 1991 ²Dissiminassa dissimilis (Stout, 1913) Lysianassa dissimilis (Stout, 1913) Eurythenes S.I. Smith, 1882 Katius Chevreux, 1905 ¹Eurvthenes obesus (Chevreux, 1905) Katius obesus Chevreux, 1905 Hippomedon Boeck, 1871 Hippomedon coecus (Holmes, 1908) ¹Hippomedon columbianus Jarrett & Bousfield, 1982 ¹Hippomedon subrobustus Hurley, 1963 Hippomedon tenax J. L. Barnard 1966 ¹Hippomedon sp. A of Diener [1990] ¹Hippomedon tricatrix J. L. Barnard, 1971 Hippomedon zetesimus Hurley, 1963 Hirondellea Chevreux, 1889 Hirondellea fidenter J.L. Barnard 1966 Koroga Holmes, 1908 ¹Koroga megalops Holmes, 1908 Lepidepecreella Schellenberg, 1926 Lepidepecreella charno J.L. Barnard, 1966 Lepidepecreoides K. H. Barnard, 1931 ¹Lepidepecreoides nubifer J. L. Barnard, 1971 Lepidepecreum Bate & Westwood, 1868 Lepidepecreum garthi Hurley, 1963 Lepidepecreum gurjanovae Hurley, 1963 ¹Lepidepecreum kasatka Gurjanova, 1962 ¹Lepidepecreum sp. A of SCAMIT, 1985 C Macronassa J. L. Barnard and Karaman, 1991 ²Macronassa macromera (Shoemaker, 1916) Lysianassa macromera (Shoemaker, 1916) ²Macronassa pariter (J. L. Barnard, 1969) Lysianassa pariter J.L. Barnard, 1969 Metacyphocaris Tattersall, 1906 ¹Metacyphocaris helgae Tattersall, 1906 Ocosingo J.L. Barnard, 1964 Fresnillo J.L. Barnard, 1969 Ocosingo borlus J.L. Barnard, 1964 ⁴Fresnillo fimbriatus J.L. Barnard, 1969 Opisa Boeck, 1876 ¹Opisa eschrichti (Krøyer, 1842) B Opisa tridentata Hurley, 1963

Orchomene Boeck, 1871 Tryphosa Boeck, 1871 ¹Orchomene abvssorum (Stebbing, 1888) ⁵Orchomene anaquelus J.L. Barnard, 1964 Orchomene decipiens (Hurley, 1963) Orchomene holmesi (Hurley, 1963) ¹Orchomene limodes Meador & Present, 1985 Orchomene magdalenensis (Shoemaker, 1942) ¹Orchomene minutus (Krøyer, 1846) B ¹Orchomene nugax (Holmes, 1904) B Orchomene obtusus (Sars, 1895) Orchomenella affinis Holmes, 1908 ⁵Orchomene pacificus (Gurjanova, 1938) Orchomene pinguis (Boeck, 1861) Pachynus Bulycheva, 1955 Pachynus barnardi Hurley, 1963 Paracallisoma Chevreux, 1903 ¹Paracallisoma coecum (Holmes, 1908) Scopelocheirus coecus Holmes, 1908 Prachvnella J.L. Barnard, 1964 Prachvnella lodo J.L. Barnard, 1964 Psammonyx Bousfield, 1973 ¹Psammonyx longimerus Jarrett and Bousfield, 1982 B Rimakoroga Barnard & Karaman, 1987 ²Rimakoroga rima (J.L. Barnard, 1964) C Pseudokoroga rima J.L. Barnard 1964 Schisturella Norman, 1900 Thrombasia J.L. Barnard, 1966 Schisturella cocula J.L. Barnard, 1966 Schisturella dorotheae (Hurley, 1963) Anonyx dorotheae Hurley, 1963 Schisturella tracalero (J.L. Barnard, 1966) Thrombasia tracalero J.L. Barnard, 1966 ¹Schisturella totorami J.L. Barnard, 1967 Schisturella zopa J.L. Barnard, 1966 Socarnes Boeck, 1871 Socarnes hartmani Hurley, 1963 Socarnoides Stebbing, 1888 Socarnoides illudens Hurley, 1963 Sophrosyne Stebbing 1888 ¹Sophrosyne robertsoni Stebbing & Robertson, 1891 Tryphosella Bonnier, 1893 ²Tryphosella index (J.L. Barnard, 1966) Tryphosa index J.L. Barnard, 1966 Uristes Dana, 1849 Uristes californicus Hurley, 1963 C ¹Uristes dawsoni Hurley, 1963 C Uristes entalladurus J.L. Barnard, 1963 C ¹Uristes perspinus J. L. Barnard, 1971

12

Key - 1. = not included 2.= new name 3. = family changed 4. = status changed 5. = new orthography B = boreal occurrance only C= Californian occurrance only

Valettiopsis Holmes, 1908 ⁵Valettiopsis dentata Holmes, 1908 Wecomedon Jarrett and Bousfield, 1982 Wecomedon similis Jarrett and Bousfield, 1982 B ¹Wecomedon wecomus (J. L. Barnard, 1971) Hippomedon wecomus J. L. Barnard, 1971 Megaluropidae Thomas and Barnard, 1986 Gibberosus Thomas and Barnard, 1986 2.3 Gibberosus devanevi Thomas and Barnard, 1986 C Megaluropus longimerus Schellenberg 1925 of NEP authors [part] 2.3 Gibberosus myersi (McKinney, 1980) Megaluropus myersi McKinney, 1980 Megaluropus longimerus Schellenberg 1925 of NEP authors [part] Resupinus Thomas and Barnard, 1986 ¹Resupinus coloni Thomas and Barnard, 1986 C n. gen. of SCAMIT, 1987 ¹n.gen. n. sp. of SCAMIT, 1987 C Megaluropus agilis Hoek, 1889 of J. L. Barnard, 1963 Melitidae Bousfield, 1973 Ceradocus Costa, 1853 ³Ceradocus spinicaudus (Holmes, 1908) Dulichiella Stout, 1912 ³Dulichiella appendiculata (Say, 1818) Melita appendiculata (Say, 1818) Dulzura J. L. Barnard, 1969 ³Dulzura sal J. L. Barnard, 1969 C Elasmopus Costa, 1853 ³Elasmopus antennatus (Stout, 1913) C ³Elasmopus bampo J. L. Barnard, 1979 C Elasmopus rapax Costa 1853 of J. L Barnard, 1962 in part ³Elasmopus holgurus J. L. Barnard, 1962 C ³Elasmopus mutatus J. L. Barnard, 1962 C Elasmopus rapax mutatus J. L. Barnard 1962 ³Elasmopus serricatus J. L. Barnard, 1969 C Elasmopus rapax serricatus J. L. Barnard 1969 Eriopisa Stebbing, 1890 ¹Eriopisa elongata (Bruzelius, 1859) Hornellia Walker, 1904 2.3 Hornellia occidentalis (J. L. Barnard, 1959) C Metaceradocus occidentalis J. L. Barnard, 1959 Lupimaera Barnard and Karaman 1982 ^{2,3}Lupimaera lupana (J. L. Barnard, 1969) Maera lupana J. L. Barnard, 1969 C

Maera Leach, 1814 ³Maera danae (Stimpson, 1853) Maera loveni Bruzelius, 1859 of J. L. Barnard, 1962 ¹Maera grossimana (Montagu, 1808) B Maera prionochira Brüggen 1907 B ³Maera reishi J. L. Barnard, 1979 Maera inaequipes Costa, 1851 of J. L. Barnard, 1959 ³Maera simile Stout, 1913 Maera inaequipes Costa, 1851 of J. L. Barnard, 1954 ¹Maera vigota J. L. Barnard, 1969 C Melita Leach, 1814 ¹Melita californica Alderman, 1936 ³Melita dentata (Krøver, 1842) ³Melita desdichada J. L. Barnard, 1962 ¹Melita kodiakensis J. L. Barnard, 1964 B ¹Melita obtusata (Montagu, 1813) B ³Melita oregonensis J. L. Barnard, 1954 ³Melita sulca (Stout, 1913) Netamelita J. L. Barnard, 1962 ³Netamelita cortada J. L. Barnard, 1962 Melphidippidae Stebbing, 1899 Melphidippa Boeck, 1871 Melphidippa amorita J. L. Barnard, 1966 Melphisana J. L. Barnard, 1962 Melphisana bola J. L. Barnard, 1962 C Mesogammaridae Bousfield, 1977 Paramesogammarus Bousfield, 1979 ¹Paramesogammarus americanus Bousfield, 1979 B Najnidae J. L. Barnard, 1972 Najna Derzhavin, 1937 Najna kitamati J. L. Barnard, 1962 Najna ?consiliorum Derzhavin, 1937 of J. L. Barnard, 1962 Oedicerotidae Liljeborg, 1865 Aceroides Sars, 1895 ¹Aceroides latipes (Sars, 1882) B 1Aceroides sp. A of MBC, 1984 Arrhis Stebbing, 1906 ¹Arrhis luthkei Gurjanova, 1936 B Bathymedon Sars, 1895 Bathymedon covilhani J. L. Barnard, 1961 ¹Bathymedon flebilis J. L. Barnard, 1967 Bathymedon kassites J. L. Barnard, 1966 Bathymedon pumilus J. L. Barnard, 1962 Bathymedon roquedo J. L. Barnard, 1962 Bathymedon vulpeculus J. L. Barnard, 1971 Finoculodes J. L. Barnard, 1971 ¹Finoculodes omnifera J. L. Barnard, 1971

14

Monoculodes Stimpson, 1853 ¹Monoculodes carinatus (Bate, 1856) B Monoculodes crassirostris Hansen, 1888 B Monoculodes emarginatus J. L. Barnard, 1962 Monoculodes glyconica J. L. Barnard, 1962 Monoculodes hartmanae J. L. Barnard, 1962 Monoculodes latissimanus Stephensen, 1931 Monoculodes murrius J. L. Barnard, 1962 Monoculodes necopinus J. L. Barnard, 1967 Monoculodes norvegicus (Boeck, 1861) Monoculodes perditus J. L. Barnard, 1966 ¹Monoculodes recandesco J. L. Barnard, 1967 Monoculodes spinipes Mills, 1962 Oediceroides Stebbing, 1888 ²Oediceroides morosa (J. L. Barnard, 1966) Oediceropsis morosa J. L. Barnard, 1966 ²Oediceroides trepadora (J. L. Barnard, 1961) Oediceropsis trepadora J. L. Barnard, 1961 Oediceropsis Liljeborg, 1865 Oediceropsis elsula J. L. Barnard, 1966 Synchelidium Sars, 1895 Synchelidium micropleon J. L. Barnard, 1977 C Synchelidium rectipalmum Mills, 1962 Synchelidium shoemakeri Mills, 1962 Westwoodilla Bate, 1862 Westwoodilla caecula (Bate, 1857) 4Westwoodilla acutifrons (Sars, 1895) Pardaliscidae Sars, 1882 Caleidoscopsis Karaman, 1974 ¹Caleidoscopsis tikal (J. L. Barnard, 1963) Pardaliscopsis tikal J. L. Barnard, 1963 Halice Boeck, 1871 ¹Halice ulcisor J. L. Barnard, 1971 Halicoides Walker, 1896 ¹Halicoides lolo (J. L. Barnard, 1971) Pardisynopia lolo J. L. Barnard, 1971 ²Halicoides synopiae (J. L. Barnard, 1962) Pardisynopia synopiae J. L. Barnard, 1962 Halice synopiae (J. L. Barnard, 1962) Nicippe Bruzelius, 1859 Nicippe tumida Bruzelius, 1859 Pardalisca Krøyer, 1842 ¹Pardalisca cuspidata Krøyer, 1842 ¹Pardalisca tenuipes Sars, 1895 Pardaliscella Sars, 1895 Pardaliscella symmetrica J. L. Barnard, 1959 ¹Pardaliscella yaquina J. L. Barnard, 1971 Pardaliscoides Stebbing, 1888 Pardaliscoides fictotelson J. L. Barnard, 1966

Rhynohalicella Karaman, 1974 Rhynohalicella halona (J. L. Barnard, 1971) Halicella halona J. L. Barnard, 1971 Tosilus J. L. Barnard, 1966 Tosilus arrovo J. L. Barnard, 1966 Phliantidae Stebbing, 1906 Pariphinotus Kunkel, 1910 Heterophlias Shoemaker, 1933 2,4.5 Pariphinotus escabrosus (J. L. Barnard, 1962) C Heterophlias seclusus escabrosa J. L. Barnard, 1962 Phoxocephalidae Sars, 1891 Coxophoxus J. L. Barnard, 1966 Coxophoxus hidalgo J. L. Barnard, 1966 C Eobrolgus J. L. Barnard, 1979 ¹Eobrolgus chumashi J. L. Barnard and C. M. Barnard, 1981 ¹Eobrolgus pontarpioides (Gurjanova, 1953) B Eobrolgus spinosus (Holmes, 1903) Paraphoxus spinosus Holmes, 1903 Evakia J. L. Barnard, 1979 ⁵Evakia calcarata (Gurjanova, 1938) B Paraphoxus calcaratus (Gurjanova, 1938) ⁵Evakia robusta (Holmes, 1908) Paraphoxus robustus Holmes, 1908 Foxiphalus J. L. Barnard, 1979 ¹Foxiphalus aleuti J. L. Barnard and C. M. Barnard, 1982 Foxiphalus apache J. L. Barnard and C. M. Barnard, 1982 Foxiphalus cognatus (J.L. Barnard, 1960) Paraphoxus cognatus J. L. Barnard, 1960 ¹Foxiphalus golfensis J. L. Barnard and C. M. Barnard, 1982 Foxiphalus major (J. L. Barnard, 1960) Paraphoxus obtusidens major J. L. Barnard, 1960 Foxiphalus obtusidens (Alderman, 1936) Paraphoxus obtusidens (Alderman, 1936) Foxiphalus similis (J. L. Barnard, 1960) Paraphoxus similis (J. L. Barnard, 1960) ¹Foxiphalus xiximeus J. L. Barnard and C. M. Barnard, 1982 C Grandifoxus J. L. Barnard, 1979 ¹Grandifoxus acanthinus Coyle, 1982 B ¹Grandifoxus aciculatus Coyle, 1982 B ¹Grandifoxus grandis (Stimpson, 1856) B Paraphoxus milleri Thorsteinson, 1941 ¹Grandifoxus lindbergi (Gurjanova, 1953) B ¹Grandifoxus longirostris (Gurjanova, 1953) B ¹Grandifoxus vulpinus Coyle 1982 B

Harpiniopsis Stephensen, 1925 Harpiniopsis emeryi J. L. Barnard, 1960 Harpiniopsis epistomata J. L. Barnard, 1960 Harpiniopsis fulgens J. L. Barnard, 1960 Harpiniopsis galera J. L. Barnard, 1960 Harpiniopsis naiadis J. L. Barnard, 1960 ¹Harpiniopsis percellaris J. L. Barnard, 1971 Harpiniopsis petulans J. L. Barnard, 1966 Harpiniopsis profundis J. L. Barnard, 1960 ¹Harpiniopsis triplex J. L. Barnard, 1971 Heterophoxus Shoemaker, 1925 Heterophoxus oculatus (Holmes, 1908) Leptophoxus Sars, 1895 Leptophoxus falcatus icelus J. L. Barnard, 1960 Mandibulophoxus J. L. Barnard, 1957 Mandibulophoxus gilesi J. L. Barnard, 1957 C Metaphoxus Bonnier, 1896 Metaphoxus frequens J. L. Barnard, 1960 Metharpinia Schellenberg, 1931 ¹Metharpinia coronadoi J. L. Barnard, 1980 C Metharpinia floridana (Shoemaker, 1933) Paraphoxus floridanus (Shoemaker, 1933) Metharpinia jonesi (J. L. Barnard, 1963) Paraphoxus jonesi J. L. Barnard, 1963 C Parametaphoxus Gurjanova, 1977 ²Parametaphoxus fultoni (Scott, 1890) Metaphoxus fultoni (Scott, 1890) ²Parametaphoxus homilis (J. L. Barnard, 1960) Phoxocephalus homilis J. L. Barnard, 1960 Paraphoxus Sars, 1895 Paraphoxus oculatus (Sars, 1879) Pseudharpinia Schellenberg, 1931 Pseudharpinia excavata (Chevreux, 1887) Harpiniopsis excavata (Chevreux, 1887) Harpiniopsis sanpedroensis J. L. Barnard, 1960 Rhepoxynius J. L. Barnard, 1979 Rhepoxynius abronius (J. L. Barnard, 1960) Paraphoxus abronius J. L. Barnard, 1960 Rhepoxynius bicuspidatus (J. L. Barnard, 1960) Paraphoxus bicuspidatus J. L. Barnard, 1960 Rhepoxynius daboius (J. L. Barnard, 1960) Paraphoxus daboius J. L. Barnard, 1960 Rhepoxynius fatigans (J. L. Barnard, 1960) Paraphoxus fatigans J. L. Barnard, 1960 Rhepoxynius heterocuspidatus (J.L. Barnard, 1960) Paraphoxus heterocuspidatus J. L. Barnard, 1960 1 Rhepoxynius homocuspidatus J. L. Barnard and C. M. Barnard, 1982 Rhepoxynius lucubrans (J. L. Barnard, 1960) Paraphoxus lucubrans J. L. Barnard, 1960

Rhepoxynius J. L. Barnard, 1979 [continued] ²Rhepoxvnius menziesi J. L. Barnard and C. M. Barnard, 1982 ⁴Rhepoxynius epistomus (Shoemaker, 1938) Paraphoxus epistomus (Shoemaker, 1938) of J. L. Barnard, 1960 Trichophoxus epistomus (Shoemaker, 1938) Rhepoxvnius stenodes (J. L. Barnard, 1960) Paraphoxus stenodes J. L. Barnard, 1960 ¹Rhepoxynius sp. A SCAMIT, 1987 C Rhepoxynius tridentatus (J. L. Barnard, 1954) Paraphoxus tridentatus (J. L. Barnard, 1954) ¹Rhepoxvnius tridentatus pallidus (J. L. Barnard, 1960) Rhepoxynius variatus (J. L. Barnard, 1960) Paraphoxus variatus J. L. Barnard, 1960 ¹Rhepoxynius vigitegus (J. L. Barnard, 1971) Paraphoxus vigitegus J. L. Barnard, 1971 Platyischnopidae Barnard and Drummond, 1979 Eudevenopus Thomas and Barnard, 1983 ¹Eudevenopus metagracilis (J. L. Barnard, 1964) C Platyischnopus metagracilis J. L. Barnard, 1964 Tiburonella Thomas and Barnard, 1983 ¹Tiburonella viscana (J. L. Barnard, 1969) C Platyischnopus viscana J. L. Barnard, 1969 Pleustidae Stebbing, 1888 Dactylopleustes Karaman and J. L. Barnard, 1979 ¹Dactylopleustes echinoicus (Tzvetkova, 1975) B ¹Dactylopleustes sp. A of Paquette, 1986 C Parapleustes Buchholz, 1874 Incisocalliope J. L. Barnard 1959 ²Parapleustes behningi (Gurjanova, 1938) ⁴Parapleustes nautilus J. L. Barnard, 1969 Parapleustes commensalis Shoemaker, 1952 C Parapleustes den J. L. Barnard, 1969 ¹Parapleustes gracilis Buchholtz, 1874 B Parapleustes oculatus (Holmes, 1908) Neopleustes oculatus Holmes, 1908 Parapleustes pugettensis (Dana, 1853) Incisocalliope newportensis J. L. Barnard, 1959 Parapleustes bairdi Boeck, 1871 Pleusirus J. L. Barnard, 1969 Pleusirus secorrus J. L. Barnard 1969 Pleustes Bate, 1858 ¹Pleustes cataphractus obtusirostris Gurjanova, 1938 B ¹Pleustes cataphractus typicus Gurjanova, 1951 B ⁵Pleustes depressus Alderman, 1936 ¹Pleustes panoplus (Krøver, 1838) B Pleustes platypa J. L. Barnard & Given, 1960 Pleusymtes J. L. Barnard, 1969 Pleusymtes coquilla J. L. Barnard, 1971 Pleusymtes subglaber (J. L. Barnard & Given, 1960) Sympleustes subglaber J. L. Barnard & Given, 1960

Key - 1. = not included 2.= new name 3. = family changed 4. = status changed 5. = new orthography B = boreal occurrance only C= Californian occurrance only

Stenopleustes Sars, 1895 Stenopleustes monocuspis J. L. Barnard & Given, 1960 Podoceridae Dana, 1849 Dulichia Krøyer, 1843 ¹Dulichia rhabdoplastis McCloskey, 1970 B ¹Dulichia tuberculata Boeck, 1871 B Dulichiopsis Laubitz, 1977 ¹Dulichiopsis remis (J. L. Barnard, 1964) B Dulichia remis J. L. Barnard, 1964 Dyopedos Bate, 1857 ¹Dvopedos arcticus (Murdoch, 1885) ¹Dvopedos bispinus (Gurjanova, 1930) B ¹Dvopedos monacanthus (Metzger, 1875) Dulichia monacantha Metzger, 1875 Paradulichia Boeck, 1871 ¹Paradulichia typica Boeck, 1871 B Podocerus Leach, 1814 Podocerus brasiliensis (Dana, 1853) Podocerus cristatus (Thomson, 1879) Podocerus fulanus J. L. Barnard, 1962 C ¹Podocerus spongicolus Alderman, 1936 Pontoporeiidae Dana, 1855 Pontoporeia Krøyer, 1842 ¹Pontoporeia femorata Krøyer, 1842 B Stegocephalidae Dana, 1855 Stegocephalus Krøyer, 1842 ¹Stegocephalus hancocki Hurley, 1956 C Stenothoidae Boeck, 1871 Mesometopa Gurjanova, 1938 ¹Mesometopa esmarki (Boeck, 1871) Mesometopa neglecta rova J. L. Barnard, 1966 C ¹Mesometopa sinuata Shoemaker, 1964 Metopa Boeck, 1871 ¹Metopa cistella J. L. Barnard, 1969 Metopa dawsoni J. L. Barnard, 1962 ¹Metopa glacialis (Krøyer, 1842) B Metopa samsiluna J. L. Barnard, 1962 ¹Metopa sp. A of Cadien [1988] C Metopella Sars, 1895 Metopella aporpis J. L. Barnard, 1962 ¹Metopella sp. A of Cadien [1989] B Parametopella Gurjanova, 1938 Parametopella ninis J. L. Barnard, 1962 Proboloides Della Valle, 1893 ¹Proboloides pacifica (Holmes, 1908) B Proboloides tunda J. L. Barnard, 1962 C Stenothoe Dana, 1852 Stenothoe estacola J. L. Barnard, 1962 Stenothoe frecanda J. L. Barnard, 1962 ¹Stenothoe marina Bate, 1857 Stenothoe valida Dana, 1852

Stenothoides Chevreux, 1900 Stenothoides bicoma J. L. Barnard, 1962 Stenothoides burbanki J. L. Barnard, 1969 Stenula J. L. Barnard, 1962 Stenula incola J. L. Barnard, 1969 Stenula modosa J. L. Barnard, 1962 Zaikometopa J. L. Barnard and Karaman, 1987 ¹Zaikometopa ervthrophthalmus (Coyle and Mueller, 1981) B Metopelloides erythrophthalmus Coyle and Mueller, 1981 Stilipedidae Holmes, 1908 Astyridae Pirlot, 1934 Astvra Boeck, 1871 ¹Astvra abyssi Boeck, 1871 Stilipes Holmes, 1908 ¹Stilipes distincta Holmes, 1908 Synopiidae Dana, 1853 Tironidae Boeck, 1871 Bruzelia Boeck, 1871 Bruzelia ascua J. L. Barnard, 1966 Bruzelia tuberculata Sars, 1883 Garosvrrhoe J. L. Barnard, 1964 Garosyrrhoe bigarra (J. L. Barnard, 1962) Syrrhoites bigarra J. L. Barnard, 1962 Svrrhoe Goës, 1866 Svrrhoe crenulata Goës, 1866 Syrrhoe longifrons Shoemaker, 1964 ¹Syrrhoe oluta J. L. Barnard, 1972 ¹Svrrhoe sp. A SCAMIT, 1987 C Svrrhoites Sars, 1895 ¹Svrrhoites columbiae J. L. Barnard, 1972 ¹Svrrhoites sp. B of Cadien [1986] C Tiron Liljeborg, 1865 Tiron biocellata J. L. Barnard, 1962 Tiron tropakis J. L. Barnard, 1972 Talitridae Leach, 1813 Megalorchestia Bousfield, 1982 ²Megalorchestia benedicti (Shoemaker, 1930) Orchestoidea benedicti Shoemaker, 1930 ²Megalorchestia californiana (Brandt, 1851) Orchestoidea californiana (Brandt, 1851) ²Megalorchestia columbiana (Bousfield, 1958) Orchestoidea columbiana Bousfield, 1958 ²Megalorchestia corniculata (Stout, 1913) Orchestoidea corniculata Stout, 1913 ²Megalorchestia minor (Bousfield, 1958) Orchestoidea minor Bousfield, 1958 ²Megalorchestia pugettensis (Dana, 1853)

Paciforchestia Bousfield, 1982 ¹Paciforchestia klawei (Bousfield, 1961) C Parorchestia klawei Bousfield, 1961 Platorchestia Bousfield, 1982 Platorchestia chathamensis Bousfield, 1982 B Transorchestia Bousfield, 1982 ¹Transorchestia enigmatica (Bousfield and Carlton, 1967) Orchestia enigmatica Bousfield and Carlton, 1967 Orchestia chilensis Milne-Edwards, 1840 of Bousfield, 1975 Traskorchestia Bousfield, 1982 ²Traskorchestia georgiana (Bousfield, 1958) Orchestia georgiana Bousfield, 1958 ¹Traskorchestia ochotensis (Brandt, 1851) B Orchestia ochotensis Brandt, 1851 ²Traskorchestia traskiana (Stimpson, 1857) Orchestia traskiana Stimpson, 1857 Urothoidae Bousfield, 1978 Urothoe Dana, 1852 ¹Urothoe denticulata Gurjanova, 1951 B ¹Urothoe rotundifrons J. L. Barnard, 1962 ³Urothoe varvarini Gurjanova, 1953

S.58

To establish a national policy for the conservation of biological diversity; to support environmental research and training necessary for conservation and sustainable use of biotic natural resources; to establish mechanisms for carrying out the national policy and for coordinating related activities; and to facilitate the collection, synthesis, and dissemination of information necessary for these purposes.

IN THE SENATE OF THE UNITED STATES

JANUARY 14 (legislative day, JANUARY 3), 1991 Mr. MOYNIHAN introduced the following bill; which was read twice and referred to the Committee on Environment and Public Works

A BILL

To establish a national policy for the conservation of biological diversity; to support environmental research and training necessary for conservation and sustainable use of biotic natural resources; to establish mechanisms for carrying out the national policy and for coordinating related activities; and to facilitate the collection, synthesis, and dissemination of information necessary for these purposes.

Be it enacted by the Senate and House of Representa tives of the United States of America in Congress assembled,
 SECTION 1. SHORT TITLE.

4 This Act may be cited as the "National Biological Di-5 versity Conservation and Environmental Research Act".

	2		3
1	SEC. 2. FINDINGS.	1	servation management, thus hampering the efficiency
2	The Congress finds that-	2	of resource policy and management decisions;
3	(1) the Earth's biological diversity is being re-	3	(8) existing conservation laws focus on the protec-
4	duced at a rate without precedent in human history;	4	tion of individual species that have already suffered de-
5	(2) most losses of biological diversity caused by	5	clines, rather than emphasizing ecosystem management
6	human activity are unintended and largely avoidable;	6	to sustain diversity across a range of species;
- 7	(3) while the most rapid loss of biological diversity		(0) existing laws and programs relevant to the
8	is occurring outside the United States, it is also a scri-	8	loss of biological diversity in the United States are
9	ous problem within this country;	9	largely uncoordinated and inadequate, and sometimes
10	(4) reduced biological diversity may have serious	10	result in duplication of efforts, conflicts in goals, and
11	consequences for human welfare as resources for re-	11	gaps in geographic and taxonomic coverage;
12	search and agricultural, medicinal, and industrial devel-	12	(10) a comprehensive and coordinated Federal
13	opment are irretrievably lost;	13	strategy is needed to arrest the loss of biological diver-
14	(5) reduced biological diversity may also endanger	14	sity and also, where possible, to restore biological di-
15	the functioning of ecosystems and critical ecosystem	15	versity both through natural recovery and active man-
16	processes that moderate climate, govern nutrient cycles	16	agement;
17	and soil conservation and production, control pests and	17	(11) increased biological and ecological research is
18	diseases, and degrade wastes and pollutants;	18	needed to provide the knowledge to maintain biological
19	(6) reduced biological diversity will diminish the	19	diversity, to protect and manage ecosystems, and to
20	raw materials available for scientific and technical ad-	20	ensure the sustainable use of natural resources; and
21	vancement, including the development of improved va-	21	(12) maintaining biological diversity through habi-
22	rieties of cultivated plants and domesticated animals;	22	tat preservation is often less costly and more effective
23^{+}	(7) existing information regarding the abundance	23	than efforts to save species once they become endan-
24	and distribution of biological diversity is inadequate,	24	gered.
25	often inaccessible, and frequently inapplicable to con-		

S 58 IS

			õ
1	4 SEC. 3. DEFINITIONS.	1	ing multiple biological communities and associated spe-
2	For purposes of this Act—	2	cies;
3	(1) the term "biological diversity" means the full	3	(6) the term "species diversity" means the rich-
4	range of variety and variability within and among	. 4	ness and variety of native species in a particular loca-
5	living organisms and the ecological complexes in which	5	tion of the world; and
6	they occur, and encompasses ecosystem or community	6	(7) the term "State" means each of the several
7		7	States, the District of Columbia, the Commonwealth of
	diversity, species diversity and genetic diversity;	8	Puerto Rico, the United States Virgin Islands, Guam,
8	(2) the terms "conserve", "conserving", and	9	the Commonwealth of the Northern Mariana Islands,
9	"conservation" refer to protective measures for main-	10	American Samoa, and any other commonwealth, terri-
10	taining existing biological diversity and active measures	11	tory, or possession of the United States.
11	for restoring diversity through management efforts, in	12 SE	C. 4. PURPOSES.
12	order to protect, restore, and enhance as much of the	13	It is the purpose of this Act—
13	variety of native species and communities as possible in	14	(1) to conserve biological diversity;
14	abundances and distributions that provide for their con-	15	(2) to require explicit assessment of effects on bio-
15	tinued existence and functioning, including, at a mini-	16	logical diversity in all environmental impact statements
16	mum, the viability of existing populations;	17	required to be prepared pursuant to the National Envi-
17	(3) the term "ecosystem or community diversity"	18	ronmental Policy Act of 1969;
18	means the distinctive assemblages of species and eco-		(3) to establish a Federal strategy for the conser-
19	logical processes that occur in different physical set-	19	
20	tings of the biosphere and distinct parts of the world;	. 20	vation of biological diversity;
21	(4) the term "genetic diversity" means the differ-	21	(4) to establish mechanisms for encouraging and
22	ences in genetic composition within and among popula-	22	coordinating Federal, State, and private efforts to con-
23	tions of a given species;	23	serve biological diversity and natural environments;
24	(5) the term "regional ecosystem" means an area		
25	which is sufficiently large that it is capable of sustain-		

S 58 IS

	6
1	(5) to undertake a nationally coordinated effort to
2	collect, synthesize, and disseminate adequate data and
3	information for—
4	(A) the understanding of biological diversity;
5	(B) assessing the rate and scale of the deple-
6	tion of biological diversity; and
7	(C) identifying elements of biological diversi-
8	ty that are in significant decline or otherwise war-
9	rant special attention;
10	(6) to support basic and applied research neces-
11	sary for the conservation of biological diversity; and
12	(7) to promote better understanding of the impor-
13	tance of biological diversity and foster actions that pre-
14	vent biological impoverishment and conserve biological
15	diversity and natural resources.
16	SEC. 5. NATIONAL BIOLOGICAL DIVERSITY AND ENVIRON-
17	MENTAL POLICY.
18	(a) POLICY.—It is the public policy of the United States
19	that conservation of biological diversity is a national goal,
20	and conservation efforts are a national priority.
21	(b) CONSISTENCY OF FEDERAL ACTION.—The actions,
22	policies, and programs of all Federal agencies shall be con-
23	sistent with the goal of conservation of biological diversity, to
24	the maximum extent practicable.

1	(c) CONSERVATION OF BIOLOGICAL DIVERSITY OR
2	FEDERAL LANDS AND WATERS All Federal lands and
3	waters shall be managed to conserve biological diversity
4	within the context of the purposes for which those areas we
5	established.
6	(d) Environmental Impact Statements
7	(1) REGULATIONS.—Not later than one year after
8	the date of the enactment of this Act, the Council on
9	Environmental Quality shall issue regulations which
10	establish requirements for agencies to assess the im-
11	pacts of Federal agency actions on biological diversity
12	in preparing environmental impact statements under
13	section 102 of the National Environmental Policy Act
14	of 1969.
15	(2) IDENTIFICATION OF COMMUNITIES, SPECIES,
16	and populations in significant decline. $-\ln$
17	preparing the regulations required under paragraph (1),
18	the Council on Environmental Quality shall identify, in
19	consultation with the National Center for Biological
20	' Diversity and Conservation Research established under
21	section 9 (hereafter in this Act referred to as the
22	"Center") those biotic communities, species, and popu-
23	lations that appear to be in significant decline or in im-
24	minent danger of loss of viability, or are otherwise of
25	special concern.

S 58 IS

7

	8		9
1	(e) AGENCY REVIEW PROCESS.—Each Federal depart-	1	SEC. 7. INTERAGENCY WORKING COMMITTEE ON BIOLOGICAL
2	ment or agency shall, with the advice and assistance of the	2	DIVERSITY.
3	Council on Environmental Quality, within 1 year after the	3	(a) ESTABLISHMENT There is established an Inter-
4	date of the enactment of this Act-	-1	agency Working Committee on Biological Diversity thereaf-
5	(1) review its programs, both individually and cu-	õ	ter in this Act referred to as the "Interagency Committee").
6	mulatively, for consistency with the conservation of bi-	6	(b) MEMBERSHIP.—The Interagency Committee shall
7	ological diversity in accordance with this Act, paying	7	consist of 1 representative each from
8	particular attention to biotic communities, species, and	8	(1) the Bureau of Land Management;
9	populations identified under subsection (d)(2); and	9	(2) the National Park Service;
10	(2) report the results of such review to the Presi-	10	(3) the Fish and Wildlife Service;
11	dent, the Council on Environmental Quality, and the	11	(4) the Forest Service;
12	Congress.	12	(5) the Department of Defense;
13	(f) REVIEW OF ENVIRONMENTAL IMPACT STATEMENT	13	(6) the National Oceanic and Atmospheric Admin-
14	BY EPAIn reviewing environmental impact statements	1.4	istration;
15	under the National Environmental Policy Act of 1969, the	15	(7) the Environmental Protection Agency;
16	Administrator of the Environmental Protection Agency shall	16	(8) the Department of Energy;
17	take into account the impacts of the proposed action on bio-	17	(9) the Center;
18	logical diversity.	18	(10) the Council on Environmental Quality; and
19	SEC. 6. EFFECT ON OTHER LAWS.	19	(11) any other agency or department of the
20	Nothing in this Act shall be construed to amend or oth-	20	' United States that the President, or the Chairman of
21	erwise alter any requirement to maintain biological diversity	21	the Interagency Committee, considers appropriate.
22	under any other Act.	22	Each such representative shall be designated by the head of
		23	the entity named.

(c) CHAIRMAN.---The member of the Interagency Com-2425 mittee representing the Council on Environmental Quality 26 shall serve as Chairman of the Interagency Committee.

S 58 IS

S 58 IS-2

	10		11
1	(d) FUNCTION.—The function of the Interagency Com-	1	progress of the agencies represented on the Interagen-
2	mittee shall be to prepare a coordinated Federal strategy for	2	cy Committee in implementing the Strategy;
3	conservation of biological diversity described in section 8.	3	(4) specific management measures to be taken by
-4	(e) DISSOLUTION.—The Interagency Committee shall	4	each agency represented on the Interagency Commit-
5	be dissolved after the submission to the Congress of the Fed-	5	tee pursuant to plans and criteria developed under
6	eral strategy required under section 8.	6	paragraphs (1), (2), and (3) with respect to
ĩ	SEC. 8. FEDERAL BIOLOGICAL DIVERSITY STRATEGY.	7	(A) conservation through protective measures
8	(a) DEVELOPMENT.—The Interagency Committee shall	8	to maintain existing biological diversity, and
9	develop a coordinated Federal strategy for the conservation	9	through active measures to restore biological di-
10	of biological diversity (hereafter in this Act referred to as the	10	versity;
11	"Strategy").	11	(B) provisions for the long-term viability of
12	(b) CONTENTS.—The Strategy shall contain—	12	ecosystems and ecosystem processes;
13	(1) a coordinated interagency plan for conserving	13	(C) maintenance of gene pools through a
14	biological diversity in the United States, particularly on	14	combination of in situ and ex situ techniques;
15	federally-managed lands, including a specific descrip-	15	(D) use of demonstration areas, such as bio-
16	tion of the roles and responsibilities of each agency	16	sphere reserves;
17	represented on the Interagency Committee for imple-	17	(E) consistency of policies in international ac-
18	menting the plan;	18	tions of Federal agencies;
19	(2) the identification of regional ecosystems within	19	(F) the identification of priorities for conser-
20	the United States, and an interagency plan for coordi-	20	vation;
21	nating Federal management of such ecosystems for the	21	(G) economic incentives to encourage the
22	purpose of conserving biological diversity;	22	conservation of biological diversity;
23	(3) a comprehensive set of criteria (including time	23	(II) the development of broad-based educa-
24	frames and objective measures) for evaluating the	24	tion programs on the importance of biological di-
		25	versity and the necessity of conservation;

.

12				
1	(I) cooperation and coordination with non-			
2	Federal sectors; and			
3	(J) training and education of agency person-			
4	nel in ecological reserach, monitoring, and sys-			
5	tematics; and			
6	(5) an interagency plan for conducting research on			
ī	biological diversity, identifying the roles and responsi-			
8	bilities of each agency represented on the Interagency			
9	Committee, other Federal agencies, and the Center, in-			
10	cluding—			
11	(A) the identification of research priorities			
12	which affect more than one agency;			
13	(B) the development of coordinated research			
14	programs for the conservation and restoration of			
15	biological diversity;			
16	(C) enhancement of scientific knowledge			
17	through improved biological surveys;			
18	(D) research to identify factors limiting popu-			
19	lation viability or persistence;			
20	(E) improvements of management techniques			
21	based on scientific knowledge; and			
22	(F) the identification of habitats of special			
23	concern, and the development of plans to protect			
24	those areas.			

(c) PUBLIC PARTICIPATION .---- The public shall be pro-2 vided with opportunities to participate in the preparation of, and to comment on, the Strategy and any regional ecosystem 3 management plans. 4

13

1

15

(d) REPORTS.-(1) Within two years the date of the 56 enactment of this Act, the Secretary shall be submitted to the 7 President and the Congress by the Chairman of the Inter-8 agency Committee.

9 (2) At least once every two years after the submission of 10 a report under paragraph (1), the head of each agency repre-11 sented on the Interagency Committee shall submit to the 12 Congress a report detailing progress in the implementation of 13 the Strategy, including written comments by the public.

14 SEC. 9. NATIONAL CENTER FOR BIOLOGICAL DIVERSITY AND

CONSERVATION RESEARCH.

16(a) ESTABLISHMENT AND PURPOSE.—There is estab-17 lished within the Smithsonian Institution, in cooperation with 18 the Environmental Protection Agency, a National Center for Biological Diversity and Conservation Research (the Center), 19 whose purpose shall be to set research priorities, to provide 20leadership and coordination for the understanding and promo-2122 tion of knowledge of the biota and the effect of human activi-23ties on the biota, and to make this knowledge accessible to 24 the people of the United States and others working to con-

S 58 IS

	14		15
I	serve biological diversity throughout the world. The Center	1	(4) to identify taxonomic groups, ecological com-
2	shall be administered by a Director.	-)	munities, and geographical areas in need of study, and
3	(b) FUNCTIONS.—The functions of the Center shall	3	to develop a strategic plan for, initiate, and provide fi-
4	be	-4	nancial support toward an ongoing survey of the biota;
5	(1) to summarize and enhance the knowledge of	õ	(5) to provide for the conducting of research,
6	the distribution, status, and characteristics of the biota	6	through grants, contracts, or otherwise, by Federal,
7	in a manner that can be used in conservation and man-	ī	State, and private agencies, institutions, organizations,
8	agement;	8	and individuals;
9	(2) to prepare, with the assistance of agencies and	9	(6) to provide information useful to the Interagen-
10	other sources, lists and, where appropriate, maps of	10	cy Committee in the preparation of the Strategy;
11	(A) biotic communities, species, and popula-	11	(7) to make recommendations to Federal agencies
12	tions that appear to be in significant decline or in	12	and others on the technical management of data collec-
13	imminent danger of loss of viability, or are other-	13	tion, storage, and retrieval;
14	wise of special concern;	14	(8) to provide training and technical assistance to
15	(B) areas of outstanding ecological or biotic	15	Federal agencies and others regarding collection and
16	importance; and	16	interpretation of biological data; and
17	(C) factors, including ownership status and	17	(9) to raise additional funds as necessary to sup-
18	applicable laws, affecting the protection of such	18	port the activities of the Center.
19	communities, species, and populations;	19	(c) STRUCTURE AND MEMBERSHIP
20	(3) to publish information, such as floral and	20	(1) ADVISORY BOARD.—The Center shall have an
21	faunal treaties, resource inventories, vegetation maps,	21	advisory board, which shall independently assist in set-
22	atlases, and guides for practical use of biological infor-	22	ting the policies for and directing the Center.
23	mation, and especially publications that synthesize in-	23	(2) MEMBERSHIP.—(A) the advisory board shall
24	formation relevant to national goals of understanding	24	consist of 17 members, including-
25	and conserving biological diversity;		

_

S 58 IS

	16		17
1	(i) 1 representative of the Smithsonian Insti-	1	(xiii) 1 representative of private organizations
2	tution;	2	that maintain large data bases oriented toward bi-
3	(ii) 1 representative of the Fish and Wildlife	3	ological conservation;
· 4	Service;	-1	(xiv) 2 scientists from nonprofit research in-
5	(iii) 1 representative of the National Oceanic	5	stitutions or universities; and
6	and Atmospheric Administration;	6	(xv) 2 representatives from institutions with
7	(iv) 1 representative of the National Park	7	collections of biological specimens.
8	Service;	8	(B) Members listed under clauses (xii) through (xv)
9	(v) 1 representative of the Department of	9	of subparagraph (A) shall be appointed by the Presi-
10	Energy;	10	dent from a list of nominees recommended by the Na-
11	(vi) 1 representative of the National Science	11	tional Academy of Sciences.
12	Foundation;	12	(3) TERMS.—Members of the advisory board shall
13	(vii) 1 representative of the Agricultural Re-	13	serve for terms of 5 years, and may serve more than
14	search Service;	14	one term.
15	(viii) 1 representative of the Environmental	15	(4) Compensation of members.—
16	Protection Agency;	16	(A) NONGOVERNMENT MEMBERS Each
17	(ix) 1 representative of the Forest Service;	17	member of the advisory board that is not other-
18	(x) 1 representative of the Bureau of Land	18	wise in the service of the Federal Government
19	Management;	19	shall, to the extent provided for in advance in ap-
20	(xi) 1 representative of the Army Corps of	20	propriations Acts, be paid actual travel expenses
21	Engineers;	21	and per diem in lieu of subsistence expenses in ac-
22	(xii) 1 representative of the State biological	22	cordance with section 5703 of title 5, United
23	surveys;	23	States Code, when such member is away from the
	•	24	member's usual place of residence.

			10
1	(B) GOVERNMENT MEMBERS.—Each	1	advisory board, and to remain available until expended
2	member of the advisory board that is otherwise in	2	as specified in appropriations Acts.
3	the service of the Federal Government shall serve	3	SEC. 10. NATIONAL ACADEMY OF SCIENCES.
4	without compensation in addition to that received	. 4	The Council on Environmental Quality shall retain the
5	for such other service, but while engaged in the	5	National Academy of Sciences—
6	work of the Advisory Board, such member shall,	6	(1) to provide scientific and technical advice and
7	to the extent provided for in advance in appro-	7	counsel in the preparation of the Strategy to ensure
8	priations Acts, be paid actual travel expenses, and	8	that the best possible scientific information is used in
9	per diem in lieu of subsistence expenses in accord-	9	developing the Strategy; and
10	ance with subchapter I of chapter 57 of title 5,	10	(2) to provide a general reference and scientific
11	United States Code, when away from the mem-	11	and technical advisory resource for the Nation in mat-
12	ber's usual place of residence.	12	ters relating to conservation and biological diversity.
13	(5) CHAIRMAN.—The members of the advisory	13	SEC. 11. BUY-AMERICAN REQUIREMENT.
14	board shall select 1 member to serve as chairman.	14	(a) DETERMINATION BY ADMINISTRATOR.—If the Ad-
15	(6) FUNDING ARRANGEMENTS.—The Director of	15	ministrator, with the concurrence of the Secretary of Com-
16	the Center shall make appropriate arrangements for	16	merce and the United States Trade Representative, deter-
17	necessary administrative and clerical support of the ad-	17	mines that the public interest so requires, the Administrator
18	visory board, in consultation with the chairman of the	18	is authorized to award to a domestic firm a contract made
19	advisory board.	19	pursuant to the issuance of any grant made under this Act
20	(7) AUTHORIZATION OF APPROPRIATIONS.—	20	that, under the use of competitive procedures, would be
21	There are authorized to be appropriated to carry out	21	awarded to a foreign firm, if
22	this section \$10,000,000 for fiscal year 1991,	22	(1) the final product of the domestic firm will be
23	\$10,000,000 for fiscal year 1992, and \$10,000,000 for	23	completely assembled in the United States;
24	fiscal year 1993, to be derived from funds otherwise		
25	authorized for the Federal agencies represented on the		

18

19

20

1 (2) when completely assembled, not less than 51 2 percent of the final product of the domestic firm will be 3 domestically produced; and

4 (3) the difference between the bids submitted by
5 the foreign and domestic firms is not more than 6 per6 cent.

7 In determining under this subsection whether the public in8 terest so requires, the Administrator shall take into account
9 United States international obligations and trade relations.
10 (b) LIMITED APPLICATION.—This section shall not
11 apply to the extent to which—

12 (1) such applicability would not be in the public13 interest;

14 (2) compelling national security considerations re-15 quire otherwise; or

16 (3) the United States Trade Representative deter17 mines that such an award would be in violation of the
18 General Agreement on Tariffs and Trade or an inter19 national agreement to which the United States is a
20 party.

21 (c) LIMITATION.—This section shall apply only to con22 tracts made related to the issuance of any grant made under
23 this Act for which—

24 (1) amounts are authorized by this Act to be made

25 available; and

21

1 (2) solicitations for bids are issued after the date

2 of the enactment of this Act.

З (d) REPORT TO CONGRESS.--The Administrator shall 4 report to the Congress on contracts covered under this sec-5 tion and entered into with foreign entities in fiscal years 1990 6 and 1991 and shall report to the Congress on the number of 7 contracts that meet the requirements of subsection (a) but which are determined by the United States Trade Represent-Я 9 ative to be in violation of the General Agreement on Tariffs 10 and Trade or an international agreement to which the United 11 States is a party. The Administrator shall also report to the 12Congress on the number of contracts covered under this Act 13 and awarded based upon the parameters of this section. (e) DEFINITIONS.—For purposes of this section— 14 15 (1) the term "Administrator" means the Administrator of the Environmental Protection Agency; 16(2) the term "domestic firm" means a business 17 18 entity that is incorporated in the United States and 19 that conducts business operations in the United States; 20and (3) the term "foreign firm" means a business 21entity not described in paragraph (2). 2223SEC. 12. INTERNATIONAL CONSERVATION ACTIVITIES. (a) The Agency for International Development, Depart-2425 ment of State, Fish and Wildlife Service, National Park

S 58 IS

Service, National Marine Fisheries Service, Environmental
 Protection Agency, Forest Service, and Department of Agri culture are directed to encourage conservation of biological
 diversity globally through—

5 (1) fully supporting and coordinating implementa6 tion of existing obligations and programs that contrib7 ute to the conservation of biological diversity globally,
8 including—

(A) Convention on Trade in Endangered 9 Species (CITES); 10 (B) World Heritage Convention; 11 (C) Convention on Nature Protection and 12 13 Wildlife Preservation in the Western Hemisphere; (D) Convention on Wetlands of International 14 Importance, Especially as Waterfowl Habitat 15 16 (Ramsar); and

17 (E) Man and the Biosphere Program—
18 United States;

(2) supporting basic and applied research towards
understanding ecological systems and applying that
knowledge for sustainable development and the conservation of biological diversity internationally, including
cooperative research and scientific exchange with governmental, educational and research institutions;

	23
1	(3) increasing training, education, and technical
2	assistance related to conservation of biological diversity
3	and sustainable development;
4	(4) providing assistance that promotes sustainable
5	development and global environmental stability includ-
6	ing research on and implementation of
7	(A) alternative land use practices in areas
8	adjacent to natural areas of significant ecological
9	value;
10	(B) measures to increase productivity of de-
11	graded and altered lands and waters in order to
12	relieve the pressures on natural ecosystems; and
13	(5) cooperating with one another and with appro-
14	priate international organizations and governments in
15	developing and in implementing these obligations, re-
16	search, and conservation programs.
17	(b) The Agency for International Development is direct-
18	ed to hire, as opportunity permits through attrition or other-
19	wise, United States direct-hire technical staff in environmen-
20	tal and natural resources with extensive formal training in
21	conservation of biological diversity and sustainable develop-
22	ment.
23	(c) The Congress finds that sections 118 and 119 of the

23 (c) The Congress finds that sections 118 and 119 of the
24 Foreign Assistance Act provide a significant basis for ad25 dressing the problems of tropical deforestation and loss of

biological diversity. The Congress reaffirms its support for
these provisions and directs that AID give high priority to
their implementation.

Ο

NOTES ON STENOTHOIDAE OF SOUTHERN CALIFORNIA Paula Rothman and Elizabeth Harrison-Nelson

The writers searched Barnard and Barnard, 1990, for Stenothoid amphipods reported from the study area and reviewed the pertinent literature. They have provided a key to the genera listed for southern California and included copies of selected articles with figures.

A list of genera of Stenothoids found along the western North American coast from Alaska to Baja California is provided, however detailed information is not given for this expanded list.

Stenothoids from the southern California coast (Pt. Concepcion to Mexican Border):

<u>Mesometopa neglecta roya</u> <u>Metopa dawsoni</u> <u>Metopa (Prometopa) samsiluna</u> <u>Metopa sp.</u> <u>Metopella aporpis</u> <u>Parametopella ninis</u> <u>Proboloides tundra</u> <u>Stenothoe estacola</u> <u>S. frecanda</u> <u>S. valida</u> <u>Stenothoides bicoma</u>

Stenothoids from North American coast from Alaska to Baja California:

<u>Mesometopa esmarki</u> <u>Metopella aporpis</u> <u>Proboloides pacifica</u> <u>Stenothoe adhaerans</u> <u>S. aequicornis</u> <u>S. alinga</u> <u>Stenothoides bicoma</u> <u>S. burbanki</u> <u>Stenula incola</u> <u>S. nodosa</u> LITERATURE CITED FOR SOUTHERN CALIFORNIA STENOTHOIDS

- Barnard, J.L. 1953. On Two New Amphipod Records from Los Angeles Harbor. Bulletin of the Southern California Academy of Sciences, 52:83-87, plate 15.
- _____. 1962a. Benthic Marine Amphipoda of Southern California: Families Aoridae, Photidae, Ischyroceridae, Corophiidae, Podoceridae. Pacific Naturalist, 3:1-72, 32 figures.
- _____. 1962b. Benthic Benthic Marine Amphipoda of Southern California: Families Amphilochidae, Leucothoidae, Stenothoidae, Argissidae, Hyalidae, Pacific Naturalist, 3:116-163, 23 figures.
- _____. 1964. Los Anfipodos bentonicos marinos de la Costa Occidental de Baja California. Revista de la Sociedad Mexicana de Historia Natural, 24:205-274, 11 figures, 5 tables.
- _____. 1966a. Submarine Canyons of Southern California. Part V. Systematics: Amphipoda. Allan Hancock pacific Expeditions, 27(5):1-166, figures 1-46.
- _____. 1966b. Benthic Amphipoda of Monterey Bay, California. Proceedings of the United States National Museum, 119(3541): 1-41, figures 1-7.
- _____. 1969. Gammaridean Amphipoda of the Rocky Intertidal of California: Monterey Bay to La Jolla. U.S. National Museum Bulletin 258: 1-230, figures 1-65.
- Barnard, J.L. and C.M. Barnard. 1990. Geographic Index to Marine Gammaridea (Amphipoda). Washington, D.C. 20560: Division of Crustacea, Department of Invertebrate Zoology, NMNH, Smithsonian Institution.
- Barnard, J.L. and Gordan S. Karaman. 1991. The Families and Genera of Marine Gammaridean Amphipoda (except marine Gammaroids). Records of the Australian Museum, Supplement 13 (parts 1,2).

Key to the Genera of Stenothoidae reported from Southern California

(Abbreviated from Barnard and Karaman, 1991)

*Not reported from study area.

1.	Article 2 of pereopod 7 rectolinear
2.	Telson thickened and fleshy
3.	Article 2 of pereopods 5-7 weakly expanded, not fully rectolinear
4.	Pleonite 4 with dorsal process
5.	Palp of maxilla 1 biarticulate <u>Probolisca</u> Palp of maxilla 1 uniarticulate 6
6.	Mandibular palp absent
7.	Mandibular palp 2-3 articulate
8.	Article 2 of pereopod 6 not expanded or expanded less than on pereopod 7
9.	<pre>Article 2 of pereopods 5-7 evenly but weakly expanded</pre>
10.	Pleonite 3 with dorsal process <u>Mesoproboloides</u> Pleonite 3 smooth
11.	Mandibular palp 0-1 articulate
	Article 2 of pereopod 7 tapering, basally expanded <u>Mesometope</u> Article 2 of pereopod 7 evenly expanded
13.	Palp of maxilla 1 uniarticulate
14.	Mandibular palp absent
15.	Mandibular palp 2-3 articulate

16.	Mandibular palp absent
17.	An nna 2 as long as antenna 1, coxa 2 b eled anteroventrally
18.	Mandibular palp 1-articulate
19.	Accessory flagellum 2-articulate
20.	Carpus of gnathopod 1 relatively short and lobate, propodus elongate and expanded

,

Mesometopa neglecta roya, new subspecies

(Fig. 41)

References to typical subspecies:

[Metopa neglecta Hansen.—Sars 1895: 274-275, pl. 97, fig. 2. Metopella neglecta (Hansen).—Gurjanova 1951: 473-474, fig. 310. Mesometopa neglecta (Hansen).—Shoemaker 1955a: 24, figs. 8a-f.]

Description: Lateral cephalic lobe sharp as in Mesometopa neglecta Hansen (Sars. 1895: pl. 97, fig. 2), eye small, composed of 8 to 10 large ommatidia loosely arranged; antennae reaching to end of fifth pereonite; mandibular palp 2-articulate, appearing to be absent on one mandible and present on other; palp of maxilla 1 uniarticulate; gnathopod 1 simple, article 7 not setose; gnathopod 2 small, article 6 trapezoidal, expanded distally, palm oblique, sharply defined by a small cusp, bearing two large defining spines; article 2 of pereopods 3-4 very slender; article 2 of pereopod 5 broad proximally, suddenly constricted on distal half; articles 4 and 5 of pereopods 3-5 very slender, not produced distally; third pleonal epimeron projecting strongly posteriorly; telson with 2 marginal spines on each side.

Holotype: AHF No. 5920, female, 3.0 mm.

Type locality: Station 6806, Santa Cruz Canyon, California, 33°-56'-06" N, 118°-52'-17" W, 221 m, December 22, 1959.

Material: Four specimens from the type locality.

Remarks: Mesometopa gibbosa Shoemaker (1955a) should be removed to the genus Mctopella Sars because the second article of pereopod 5 is slender. The remaining 3 species, Mesometopa esmarki (Boeck), M. extensa Gurjanova and M. neglecta (Hansen), differ among themselves more than the present material differs from M. neglecta, so these specimens are relegated to subspecific status. The larger, fewer, and more loosely compacted ommatidia of the new subspecies differ from, the more numerous, smaller, more compacted ommatidia of the stem species and the proximal and distal portions of article 2 on pereopod 5 are more sharply differentiated. The palm of gnathopod 2 has a small medial cusp, not reported for M. neglecta neglecta. Probably the eye differences are a reflection of the greater depth recorded for the new subspecies.

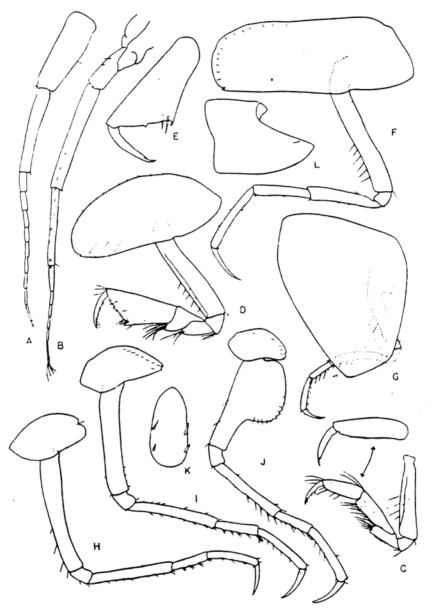


Figure 41 Mesometopa neglecta roya, new subspecies. Holotype, female, 3.0 mm, sta. 6806: A,B, antennae 1, 2; C, gnathopod 1; D,F, gnathopod 2; F,G,H,I,J, percopods 1, 2, 3, 4, 5, percopod 2 reduced in size; K, telson; L, third pleonal epimeron.

Metopa dawsoni, new species Figs. 10, 11

DIACNOSIS OF MALE: Gnathopod 1 with article 6 about half as long as article 5 and both articles with their edges parallel, its article 7 short, about a third as long as article 6, bearing 4-5 setules along inner margin, its article 2 slender, its article 4 not strongly produced behind; gnathopod 2 with nearly transverse palm defined by a large deflexed tooth which points medially when not flattened on the microscopic slide, its palm with a large excavation and a multitoothed process near finger hinge, its article 7 failing to reach the defining tooth, its article 3 produced anteriorly, its article 4 unusual in forming a thin, transparent process on the medial side of article 5 and bearing an anterior spine, its article 5 bearing minute denticulation along anterior edge; antenna 1 slightly longer than antenna 2; accessory flagellum forming a minute bump; coxa 4 not sinuate along lower margin; third pleonal epimeron slightly attenuated and quadrate at lower corner; telson with 3 lateral spines on each side; fourth article of peraeopods 4-5 stout.

FEMALE: Article 6 of gnathopod 2 longer than in the male. about two thirds as long as article 5; gnathopod 2 like that of male but principal palmar excavation much smaller, the defining tooth much smaller and not deflexed so that the palm is largely formed of the toothed portion seen in the male, the finger nearly reaching end of palm, its article 3 more strongly produced than in male.

HOLOTYPE: AHF No. 598, male, 3.0 mm.

TYPE LOCALITY: Station 6098, off Pt. Fermin, 33-38-45 N, 118-14-45 W. 24 fms, February 19, 1959.

MATERIAL: 36 specimens from 12 stations.

RELATIONSHIP: The genus Metopa is large, with 46 species. A key to

Distribución: Ft. Arguello, de California a Bahía de San Cristóbal, Baja California, 12-160 metros.

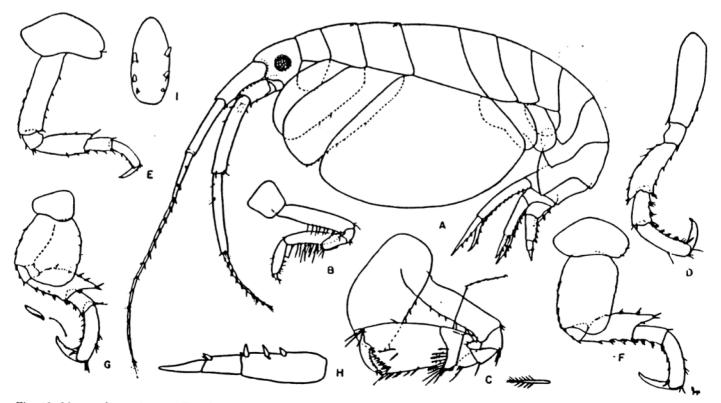


Fig. 10. Metopa dawsoni, n. sp. Fennale, 3.8 mm, sta. 5828: A, lateral view; B,C, gnathopods 1, 2; D,E,F,G, peraeopods 2, 3, 4, 5; H, uropod 3; I, telson.

the species was published by Gurjanova (1951). The genus Prometopa Schellenberg (1926) is referred to Metopa by Gurjanova (1948) but separated in her generic key again in 1951. Prometopa differs from Metopa by the presence of an indistinctly biarticulate accessory flagellum. The new species herein has a minute, 1-jointed accessory flagellum. By retaining the genus Prometopa, it is possible to state that the genus Metopa is confined to the northern hemisphere.

Metopa dawsoni differs from several other species in the genus by minor characteristics as follows: From its closest relative, Metopa wiesei Gurjanova (see 1951), it differs by the different angle of projection of the last tooth on the finger-hinge process of male gnathopod 2, (in M. wiesei it projects posteriorly whereas in M. dawsoni it projects distally) and by the much more elongated fifth article of gnathopod 1 and shorter article 7. From Metopa alderi (Bate) (see Sars 1895: pl. 86) it differs by the much more elongated fifth article of gnathopod 1, with more slender sixth article, the shorter seventh article, and the presence of telsonic spines. In gnathopod 1, M. dawsoni differs in like respect from M. spectabilis (see Sars 1895: pl. 87) and M. boeckii (see Sars 1895: pl. 88). The female of M. dawsoni resembles closely the female of M. robusta Sars (1895: pl. 96, fig. 1) but differs by the stouter first gnathopod and less strongly produced fourth articles of peraeopods 4-5.

ECOLOGY: This species has an overall density of 0.9 animals per square meter on the coastal shelf. It ranges in depth from 31 to 100 fathoms.

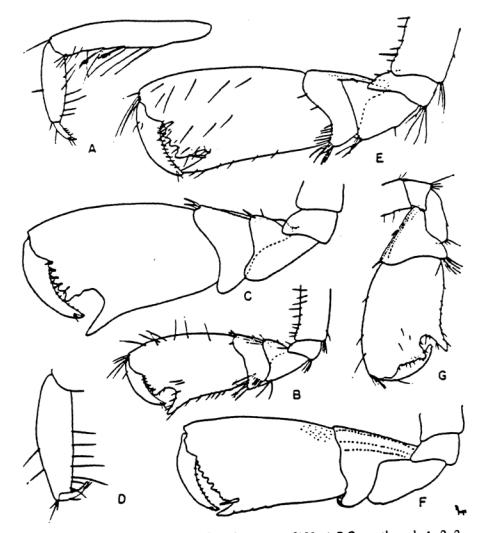


Fig. 11. Metopa dawsoni, n. sp. Male, 4.3 mm, sta. 6105: A.B.C. gnathopods 1, 2, 2. Female, 3.8 mm, sta. 5828: D.F. gnathopods 1, 2. Female, 5.0 mm, sta. 6132: E. gnathopod 2. Male, holotype, 3.0 mm, sta. 6098: G. gnathopod 2.

Metopa (Prometopa) samsiluna, new species (Fig. 42)

Diagnosis: Assigned to the subgenus Prometopa Schellenberg by possession of a vestigial accessory flagellum; mandibular palp 3-articulate, first maxillary palp uniarticulate; eyes absent; antennae very long, subequal, peduncular articles of both antennae elongated, article 2 of antenna 1 longer than article 1; coxa 2 very broad; gnathopod 1 short, with distinct palm, article 6 expanded, article 7 short. firting palm, not setose, article 4 strongly projecting posteriorly along article 5, article 2 strongly setose anteriorly; palm of gnathopod 2 with a large medial tooth, defining corner with large tooth; lobe on article 2 of percopods 4 and 5 narrow ag posterodistally, article 4 narrow, scarcely decurrent, telson spinose.

Holotype: AHF No. 6013, female, 4.5 mm. Unique.

Type locality: Station 0840, San Clemente Rift Valley, California, 32°-44'-35" N, 118°-12'-45" W, 1620 m, January 30, 1960.

Relationship: This species differs from M. boeckii Sars (1895: pl. 88) in the presence of the medial palmar tooth on the second gnathopodal palm, the narrower distoposterior lobes on article 2 of percopods 4-5, the broader second coxa and the shorter first gnathopod with a more projecting fourth article and more distinct palm.

From M. spectabilis Sars (1895: pl. 87) this species differs in the equal antennae.

Metopa alderi (Spence Bate) (Sars 1895: pl. 86) is closely related and M. samsiluna may be a form of M. alderi but it differs in the lack of eyes, the spinose telson, the longer antennae, the better developed medial palmar tooth of gnathopod 2 and the narrower distoposterior lobes on article 2 of percopods 4-5.

The new species resembles M. acquicornis Sars (1885), especially in the long, equal antennae and large coxa 2, but differs in the narrow, scarcely decurrent fourth articles of percopods 4 and 5 and the spinose telson.

Metopa layi Gurjanova (see 1951) has short articles 1 and 2 of antenna 1.

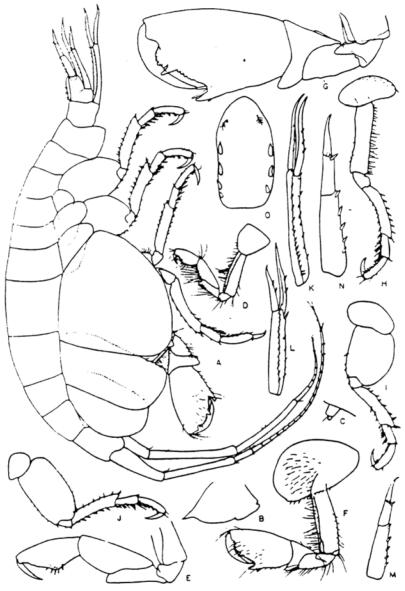


Figure +2 Metota samsiluna, new species. Holotype, female, 4.5 mm, sta. 6840: A interal view; B, epistome; C, accessory flagellum; D,F, gnatho-pod 1; F,G, gnathopod 2; 11,I,J, pereopods 3, 4, 5; K,L,M,N, uro-pods 1, 2, 3, 3; O, telson.

Metopa sp.

(Fig. +3)

Material: One female, 2.2 mm, from Station 6499, Monterey Canvon.

Relationship: This specimen has affinities with Metopa pusilla Sars (1895: pl. 90, fig. 1) and may be identified with it although minor differences are noted as follows: the first gnathopod is slightly stouter and article 4 does not project posteriorly as much; coxa 4 is more elongated antero-posteriorly.

From *M. longicornis* Sars (1895: pl. 90, fig. 2) this species differs in the strongly projecting posterodistal corner of article 4 on percopod 5. The female grathopod 2 of *M. terumana* Sars (1395: pl. 9), fig. 1) is more slender and the palm more oblique than in the present material, but the figures of that species in Stephensen (1931) are close to the material at hand. Article 2 of percopod 4 is stoater in *M. brazelii* Goës (Sars 1895: pl. 92, fig. 1) then in the present specimen. The posterior lobe of article 5 on female grathipod 2 is much stoater and longer in *M. invalida* Sars (1895: pl. 94, fig. 2). Neticle 4 of percopod 5 is much stoater in *M. acquirounis* Sars (1885: pl. 15, fig. 5). Article 6 of grathopod 1 is less tumid medially than in *M. bocchii* Sars (1895: pl. 88).

The specimen also bears comparison to M. layi Gurjanova (see 1951) but article 6 of gnathopod 1 in that species is slightly stouter.

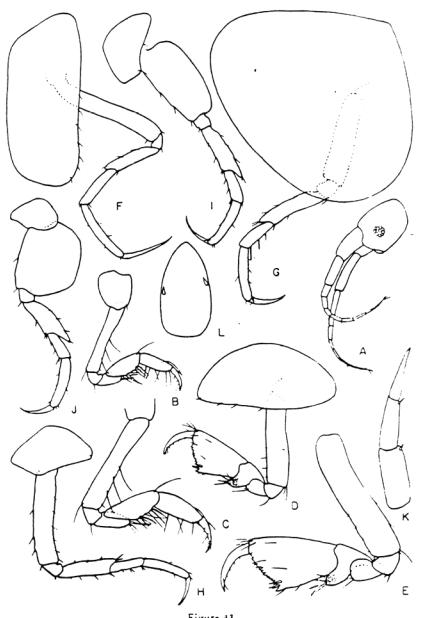


Figure +3 Metopa sp. Female, 2.2 mm, sta. 6499: A, head; B,C, gnathopod 1; D,E, gnathopod 2; F,G,H,I,J, percopods 1, 2, 3, 4, 5; K, uropod 3; L, telson.

Metopella aporpis, new species Figs. 12, 13

DIACNOSIS OF MALE: Articles of antenna 1 not produced; article 6 of gnathopod 1 shorter than article 5, simple, its edges parallel, its posterior edge with 4-5 long setae; article 7 of gnathopod 1 half as long as article 6, with 3-4 setae on posterior edge; palm of gnathopod 2 oblique, formed of a shallow quadrate excavation bounded on both sides by a long, sharp tooth, the posterior one forming the defining tooth, the anterior tooth being an extension from a minutely toothed process near the finger hinge; gnathopod 2 with article 7 nearly reaching end of palm, its article 4 forming a medial translucent lobe projecting anteriorly and appressed to the side of article 5. the anterior edge of article 5 with rows of minute denticles; peraeopod 1 much longer than peraeopod 2 and poorly spinose, peraeopod 2 having numerous stout posterior spines on article 5 and 6; telson with 2 lateral spines on each side near base.

Mandibular palp long, apparently biarticulate; first maxillary palp uniarticulate.

FEMALE: Gnathopod 2 with palm oblique, irregularly toothed, with one large medial tooth and a large defining tooth, the finger failing to reach end of palm; telson with 4 spines on each side near base.

HOLOTYPE: AHF No. 5729, male, 2.4 mm.

TYPE LOCALITY: Station 4834, near Pt. Mugu, 34-00-20 N, 119-01-45 W, 77 fms, rock bottom, February 6, 1957.

RELATIONSHIP: This species is closely related to Metopella pacifica (Holmes 1908), from Monterey, California, but differs by the simple, not subchelate, first gnathopod. The resemblance of second gnathopods is amazing, and one wonders if the configuration of gnathopod 1 as drawn for M. pacifica were correct.

The new species differs from *M. buynitzkii* Gurjanova (see 1951), *M. macrochira* Gurjanova (see 1951) and *M. carinata* (Hansen) (Gurjanova 1951) by the elongated fifth article of gnathopod 1 and by the quite different configuration of male gnathopod 2. It differs from *M*.

nasuta (Boeck) (in Sars 1895) by the unproduced first article of antenna 1; from M. neglecta (Hansen) (see Sars 1895) by the parallel edges of article 2 on peraeopod 5; from M. longimana (Boeck) (see Sars 1895) by the second male gnathopod, which in M. longimana has a nearly transverse palm; and from M. angusta Shoemaker (1949) by the palmar processes on male gnathopod 2.

MATERIAL: 5 specimens from 3 stations.

ECOLOGY: Known from 2 stations in southern California at depths of 46 and 77 fms and from Monterey Bay at 14 fms.

Distribution: Monterey Bay to San Cristobal Bay, Baja California, 24-140 m, south of Point Conception not shallower than 84 m.

Metopella (?) aporpis J. L. Barnard

Metopella aporpis J. L. Barnard 1962c: 142-145, figs. 12, 13.

Canyon material: 6805(3).

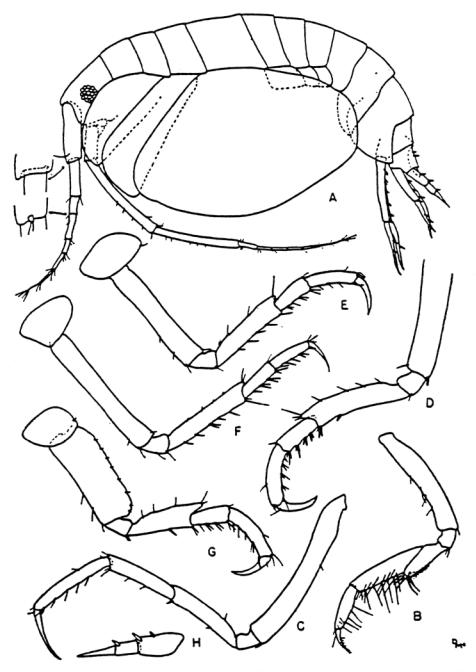


Fig. 12. Metopella aporpis, n. sp. Male, holotype, 2.4 mm, sta. 4834: A, lateral view; B, gnathopod 1; C,D,E,F,G, peraeopods 1, 2, 3, 4, 5; H, uropod 3.

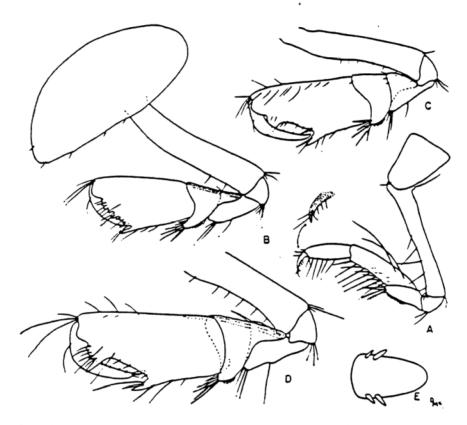


Fig. 13. Metopella aporpis. n. sp. Female, 2.5 mm, sta. 4834: A.B. gnathopods 1, 2. Male, holotype, 2.4 mm: C,D, medial and lateral view of gnathopod 2: E, telson.

Parametopella ninis, new species Figs. 14, 15

DIACNOSIS OF FEMALE: Gnathopod 1 slender, simple, its articles 5 and 6 equal in length, the hind margin of article 6 with 4 slender setae, the hind margin of article 7 with 3 slender setae; gnathopod 2 small, slender, its article 5 nearly two thirds as long as article 6, with broad hind lobe, becoming subacute at apex, the palm oblique, straight, defined by 2 spines; articles of antennae simple, not produced; telson with 2 lateral spines on each side.

MALE: Unknown.

HOLOTYPE: AHF No. 586, female. 1.9 mm.

TYPE LOCALITY: Station 5711. Santa Monica Bay, 33-55-54 N, 118-31-16 W. 31 fms, April 18, 1958.

RELATIONSHIP: This species differs from P. stelleri (see Gurjanova 1951) by the more slender first gnathopod, the slimness of the posterior setae of article 6, and the unproduced articles of the antennae as well as the second gnathopods which are known for the male in P. stelleri. It differs from P. cypris (Holmes 1905: 484) by the slightly longer fifth article of gnathopod 2 which has a broad hind lobe, not a slender, apically rounded, slightly constricted lobe as seen in P. cypris.

The writer cannot clearly discern the line separating urosome segments 5 and 6. Despite the large number of specimens no male was found; all specimens have brood plates.

MATERIAL: 37 specimens from 24 stations.

ECOLOGY: This species has an overall density of 0.5 animals per square meter on the coastal shelf. It is restricted to depths between 31 and 100 fathoms.

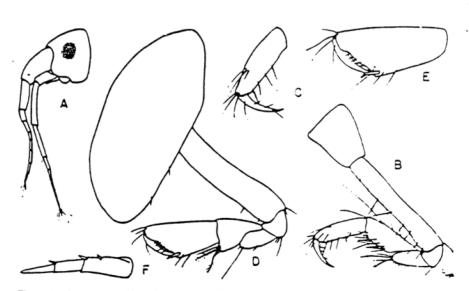


Fig. 15. Parametopella ninis. n. sp. Female, 2.3 mm, sta. 5163: A. head; B.C. gnathopod 1; D.E. gnathopod 2; F. uropud 3.

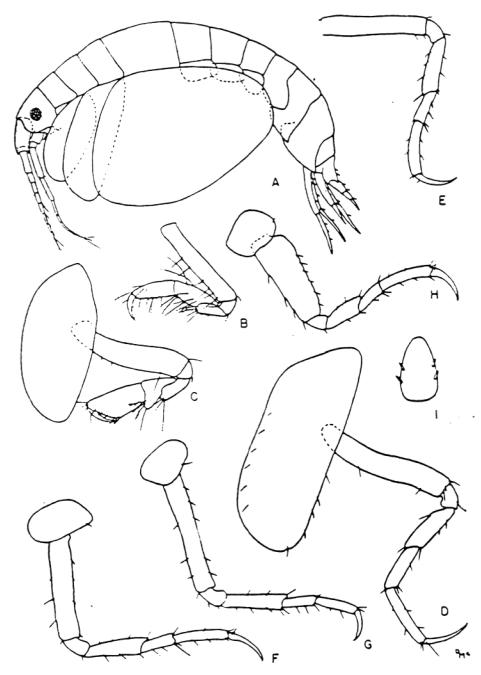


Fig. 1+. Parametopella ninis. n. sp. Female, holotype, 1.9 mm, sta. 5711: A, lateral view; B.C, gnathopods 1. 2, D.E.F.G.H, peraeopods 1, 2, 3, 4, 5; I, telson.

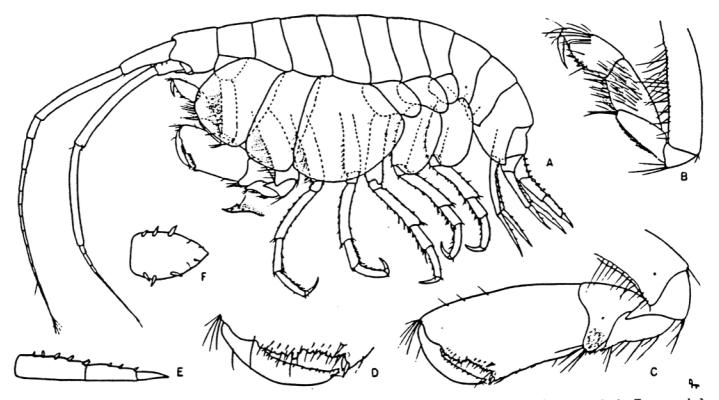
•

Genus Proboloides Della Valle Proboloides tunda, new species

Fig. 16

DIAGNOSIS: Eyes absent; antennae quite long; article 2 of first antenna 1.6 times as long as article 1; accessory flagellum absent; first gnathopod with article 6 three fourths as long as article 5, bearing a distinct palm which is defined by a group of 5 stout dispersed spines, its article 4 not strongly produced; gnathopod 2 with medial side of article 3 sharply produced forward, its article 4 with a sharp distally produced tooth, its article 6 of intermediate slenderness, its palm quite distinct, oblique, shorter than hind margin of article 6, with a flat-bottomed excavation for half its length, the entire length sculptured into bead-like processes, defined by a slight process bearing 2 spines; fourth articles of peraeopods 3-5 narrow, scarcely produced; telson with 3 lateral spines on each side.

Palp of mandible triarticulate, palp of maxilla 1 biarticulate.


HOLOTYPE: AHF No. 5910, male, 5 mm; no brood plates, no penial projections.

TYPE LOCALITY: Station 6809, off Santa Cruz Island, 33-54-39 N, 119-46-24 W, 302 fathoms, December 22, 1959, bottom of shale, mud, sand.

MATERIAL: Station 6809, (3 specimens; the two besides the holotype are in fragments).

RELATIONSHIP: Most species of *Proboloides* are distributed in the southern Hemisphere and most of them belong to the subgenus *Metopoides* which has a small accessory flagellum. In the northern Hemisphere apparently the only other species to have the narrow, unproduced fourth article of peraeopod 3 is *P. grandimanus* (Bonnier 1896, Bay of Biscay, 950 m) another deep water species like the present one. Bonnier has drawn that species with an eye on one drawing and none on the other, and mentions small round eyes in his description, but one wonders whether this might be part of the brain which resembles an eye on the present specimens. The second gnathopods of the new species differ considerably from those of *P. grandimanus*, and the latter is aberrant for its large first coxa and small second one.

· · . ·

٠

Fig. 16. Proboloides tunda, n. sp. ?Male, holotype, 5.0 mm, sta. 6809: A, lateral view; B,C,D, gnathopods 1, 2, 2; E, uropod 3; F, telson.

Proboloides tunda J. L. Barnard

(Fig. 44)

Proboloides tunda J. L. Barnard 1962c: 147-1+9, fig. 10.

Canyon material: 7041(2), 7290(3).

Remarks: The second gnathopod illustrated here is more fully developed than that shown by Barnard (1962b).

Provoloides tunda J. L. Barnard. Male, 3.5 mm, sta. 7290: gnathopod 2 and enlargement of palm.

Stenothoe estacola, new species Fig. 17

DIACNOSIS OF MALE: Gnathopod 1 with article 4 scarcely projecting behind, with article 6 almost twice as long as article 5, the palm quite oblique but well defined by 3 spines; gnathopod 2 rather small, stout, its article 6 not elongated, the palm oblique but well defined by a large shallow bump and with 3 small blunt cusps: telson with 3 lateral spines on each side; back not carinate; peduncle of uropod 3 shorter than ramus, the second article of ramus straight, armed with rows of minute serrations; fourth articles of peraeopods 3-5 of intermediate expansion.

FEMALE: Gnathopod 1 like that of male; gnathopod 2 smaller and more slender than in male, the palm lacking ornamentation, longer than hind margin of article 6 but well defined by several spines.

HOLOTYPE: AHF No. 556. male. 3.0 mm.

TYPE LOCALITY: Barnard sta. 6. Corona del Mar. California. February 6. 1955. intertidal wash of crustaceans from reef-like beds built by the polychaete worm. *Phragmatopoma* sp.

MATERIAL: Barnard stas, 4 (29), 6 (22), 23 (1).

RELATIONSHIP: This species differs from Stenothoe monoculoides (Montagu) (see Sars 1895: pl. 82, fig. 1, and Chevreux and Fage 1925: fig. 132) by the stouter male second gnathopod, its palm being armed with short cusps and by the multispinose telson: the female differs by its longer palm of gnathopod 2; from S. brevicornis Sars (1895: pl. 82, fig. 2) it differs by the shorter peduncle of uropod 3 and the less produced fourth article of gnathopod 1. From S. barronensis Shoemaker (1955) it differs by the relatively elongated sixth article of gnathopod 1 and the stouter second gnathopod with larger and fewer palmar cusps. From S. adhaerans Stebbing (1888: pl. 39) it differs by the defining spines on the palm of female gnathopod 2 and the much shorter peduncle of uropod 3.

ECOLOGY: An intertidal species recovered from Corona del Mar and Pt. Fermin in formalin washings of 3 kinds of materials, sponge (*Sphecio-spongia* sp.), beds of arenaceous encrusting polychaete. *Phragmatopoma* sp., and in calcareous algae.

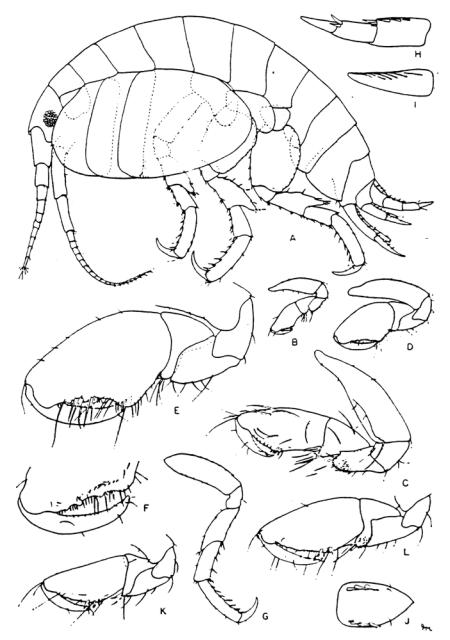


Fig. 17. Stenothoc estacola, n. sp. Holotype, male, 3.0 mm, Barnard sta. 6: A, lateral view, B.C. gnathopod 1, D.E.F. gnathopod 2, G. peracopod 1, H. uropod 3, I. detail of second ramal article of uropod 3, J. telson. Female, 2.0 mm, K.L. gnathopods 1, 2.

Stenothoe ?estacola J. L. Barnard FIGURE 61

²Stenothoe estacola J. L. Barnard, 1962c, p. 149, fig. 17.

No adults as fully developed as the male shown by Barnard (1962c) have been collected in the present survey. The original material was obtained at Pt. Fermin and Corona del Mar in mass washes of sponges, phragmatopomids, and corallines. Presumably the specimens assigned herein belong with that species, subadult males having gnathopod 2 in a youthful stage, showing minutely a single middle palmar hump, two of which occur in the adult originally described. All of the subadult specimens have antenna 1 very slightly longer than antenna 2 (by the length of 2 flagellar articles), and all members of the type series (reexamined), except the figured holotype, correspond. None of the present specimens, subadult females and males, has the pectinal rows on article 2 of the third uropodal ramus but faint indications of their presence are seen. Gnathopods of both sexes differ in their medial and lateral aspects rather strongly and several views contrasted to those drawn by Barnard (1962c) are included herein. The second maxilla has the inner and outer plates attached in tandem; the outer plate of maxilla 1 has only 6 spines, the size and arrangement of which seem unusual but which are duplicated in other species of stenothoids; the outer plate of the maxilliped is obsolete, the slight projection that is present being hidden by a spine, the inner plates being strongly fused at their bases but separated for about half their theoretical lengths.

MATERIAL.—GOLETA: *Phyllospadix*-pelvetiid grid, scarce (10 per sq. m.). PT. DUME: short brown algae, abundant (176 per sq. m.); coralline algae, abundant (330 per sq. m.); green-brown algae, rare; *Egregia*, rare. PT. FERMIN: Barnard station 23, October 21, 1949, abundant in calcareous algae. corona del mar: *Phyllospadix*-coralline grid, rare (4 per sq. m.); calcareous worm tubes, rare; tunicate colonies at base of *Phyllospadix* leaves, rare; tunicates and polychaete tubes, rare. LA JOLLA: sample 45-K-1 (1). CATALINA ISLAND: "Velero" station 1370, shore, 4 specimens.

DISTRIBUTION.-Goleta to La Jolla, California, intertidal.

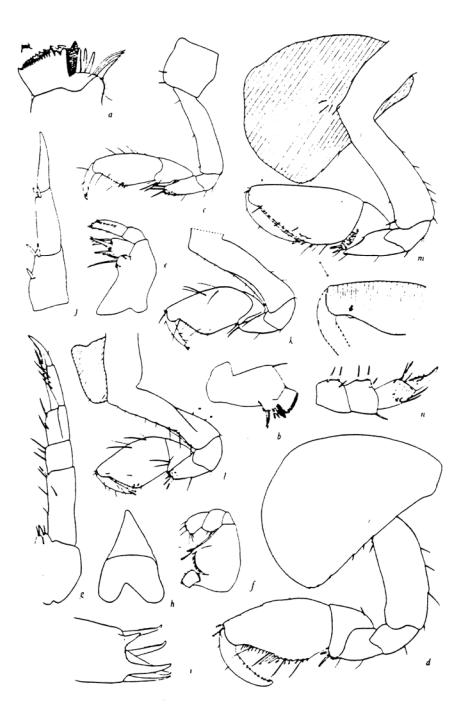


FIGURE 61.—Stenothoe estacola J. L. Barnard, male, 2.5 mm., station 46–G–10: a,b, m and ible; c,d, gnathopods 1, 2; c,f, maxillae 1, 2; g, maxilliped, palp terminally unflattened; h, upper lip; i, outer lobe of maxilla 1. Female, 2.4 mm., station 47–B–3: j, uropod 3; k,l, gnathopod 1, lateral and medial views; m, gnathopod 2; n, maxillipedal palp, flattened.

Stenothoe frecanda, new species Fig. 18

DIACNOSIS: Article 4 of gnathopod 1 strongly projecting distally and behind: gnathopod 2 with palm and hind margin contiguous, bearing near finger hinge a small tent-shaped process with 2 small ones distal to it (these less well developed in female), the palm lined with short setae, not denticulate, with article 7 as long as article 6, stout, lined on inner edge with short setae; telson with 3 lateral spines on each side; back not carinate; second article of ramus on uropod 3 straight, not geniculate, the peduncle slightly longer than ramus; fourth articles of peraeopods 3-5 of intermediate expansion.

HOLOTYPE: AHF No. 587. male. 3.6 mm. ·

Type LOCALITY: Station 5632, off San Mateo Pt., 33-22-50 N. 117-39-00 W. 36 fms. February 22, 1958.

MATERIAL: 23 specimens from 6 stations.

ECOLOGY: This species has an overall density of 0.3 animals per square meter on the coastal shelf, but is confined to depths of 35-50 fathoms where its frequency is 0.8 animals per square meter.

RELATIONSHIP: This species is related to Stenothoe valida Dana (see J. L. Barnard 1953) but differs by the distal palmar teeth of gnathopod 2 projecting perpendicularly to the palmar axis rather than obliquely from it. It differs from S. marina (Bate) (see Sars 1895: pl. 80) by the terminally stout finger of the gnathopods and by the greater similarity between male and female second gnathopods, as well as the non-denticulate condition of the palms.

Distribution: Monterey Bay to southern California shelf, 64-92 m.

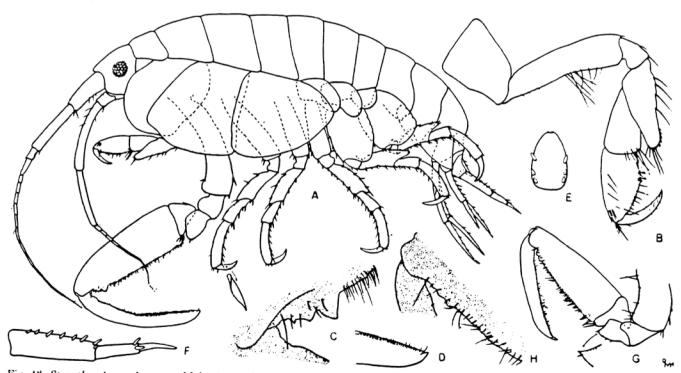


Fig. 18. Stenothor frecanda. n. sp. Male, 4.0 mm, sta. 6001: A, lateral view; B, gnathopod 1; C, palmar teeth of gnathopod 2. D, apex of article 7 of gnathopod 2; E, telson; F, uropod 3. Female, 4.0 mm, sta. 4935: G, gnathopod 2. H, palmar teeth of gnathopod 2.

Stenothoe valida Dana (Plate 15)

Stenothoe validus Dana (1852), Amer. Jour. Sci., ser. 2, vol. 14, p. 311; Dana (1853), U.S. Expl. Exped., vol. 14 II, pp. 924-925, pl. 63, figs. 1a-o; Bate (1862), Catalogue Amphipodous Crustacea, Brit. Mus., pp. 60-61, pl. 9, fig.-6.

Probolium polyprion Costa (1853), Rend. Real. Acad. Sci. Soc. Reale Borbonica, n.s., vol. 2, p. 173; Costa (1857), Amfip. Napoli, p. 199, pl. 2, fig. 3 (not seen).

Probolium megacheles Heller (1866), Denk. Akad. Wiss. Wien, vol. 26, pp. 13-14, pl. 2, figs. 1-2.

- Montagua Miersii Haswell (1880), Proc. Linn. Soc. N.S.W., vol. 4, p. 323, pl. 24, fig. 4; Haswell (1882), Catalogue Austral...... Crustacea. Austral. Mus., p. 226.
- Montagua longicornis Haswell (1880), Proc. Linn. Soc. N.S.W., vol. 4, pp. 323-324, pl. 24, fig. 5; Haswell (1882), Catalogue Austral..... Crustacea. Austral. Mus., p. 226.
- Probolium micrsii, Chilton (1885), Proc. Linn. Soc. N.S.W., vol. 9, pt. 4, p. 1043.
- Stenothoe adhaerans, Chilton (1891), Trans. N.Z. Inst., vol. 24, pp. 259-260 (not Stebbing, 1888, Rep. Sci. Res. HMS Challenger, vol. 29, p. 199).

Stenothoe ornata K. H. Barnard (1930) was distinguished by the denticulate ornamentation of coxae 3 and 4. Specimens at hand show a series of submarginal coxal ridges running at right angles to the margins plus minute, submarginal setules. These ridges compare favorably with those figured by Barnard for *Proboloides perlatus* (to which he makes reference, fig. 15). Barnard also refers to S. ornata as a possible synonym of Stenothoe miersii (Haswell) which Chilton (1923) considered a synonym of S. calida.

Chilton (1923) pointed out that Kunkel's (1910) female of *Stenothoe marina* (Bate) showed gnathopod 2 identical to some of his specimens of S. *valida* and this is true of the material at hand.

Kunkel's Stenothoe valida is considered dubious by the writer and should be reexamined for other affinities because of the shape of the second article of the ramus of uropod 3 and the teeth on the palm of gnathopod 2.

Stenothoc aucklandicus Stephensen (1927, Vid. Medd. Dansk Nat. Foren., vol. 83, p. 311) was based on female specimens but differs from females of material at hand by the shorter palm of gnathopod 2, plus defining spines; the cusp is situated at the middle of the palm rather than near the finger hinge. The writer considers S. aucklandicus to be a valid species.

As Chilton (1923) suggested, S. dollfusi Chevreux (1891, Bull. Soc. Zool. France, vol. 16, pp. 260-262, figs. 6-10) may be a form of S. calida although intergradations of the teeth of the male gnathopod 2 have not been described. The palm of the female gnathopod 2 is rather strongly excavated just proximal to the finger hinge and the ramus of uropod 2 is longer than the peduncle (see Chevreux and Fage, 1925, Faune de France, vol. 9, p. 135.)

Stenothoe valida as noted by Schellenberg (1938) appears to be S. cattai Stebbing (1906). This fact was ascertained when the writer examined more than twenty lots of Stenothoe from the Hawaiian Islands (lent through the courtesy of Dr. C. H. Edmondson, Bernice P. Bishop Museum) and found all of them to be S. cattai, a closely related species.

The males of the two species may be distinguished in the following ways: (1) the geniculate and ridged second article of the third uropodal ramus in S. cattai: in S. valida this article is straight and styliform; (2) the shape of the teeth on the palms of the second gnathopod differs slightly; (3) the third coxa of S. valida is very broad, while in S. cattai it is narrow, the sides being nearly parallel. The female of S. cattai differs from the male by the straight, stylus-like second article of uropod 3, similar to both males and females of S. valida, a factor which may have led to confusion between the two species.

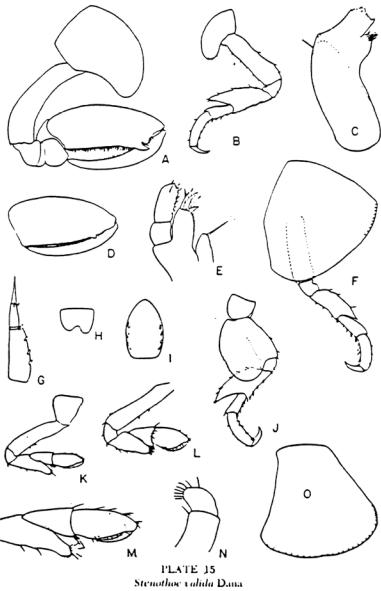
The females of S. cattai and S. calida may be distinguished by the following characters: (1) presence of a small, distal palmar tooth on gnathopod 2 of S. calida; (2) the lack of palmar defining spines on gnathopod 2 of S. calida; (3) the broader coxa 3 of S. calida. The latter character difference is not so pronounced in the females of the two species as in the males, the third coxal plate in the female of S. calida being intermediate in size between the male of S. calida and both sexes of S. cattai.

- Stenothoe valida, Della Valle (1893), Fauna Flora Golfes Neapel, vol. 20, pp. 566-568, pl. 58, figs. 74-78 (in part); Stebbing (1906), Das Tierreich, vol. 21, p. 194; Chevreux (1913), Bull. Inst. Oceanog., Monaco, no. 262, pp. 2-3; Chilton (1923), Rec. Austral. Mus., vol. 14, no. 2, pp. 95-100, fig. 5; Chevreux and Fage (1925), Faune de France, vol. 9, pp. 137-138, fig. 137 Hale (1927), Trans. Roy. Soc. So. Austral., vol. 51, p. 314, fig. 3; Schellenberg (1928), Trans. Zool. Soc. London, vol. 22, pt. 35, p. 641.
- Stenothoë valida, Graeffe (1902), Arb. Zool. Inst. Univ. Wien, vol. 13, p. 22.

Stenothoe micrsii, Stebbing (1906), Das Tierreich, vol. 21, p. 200; Stebbing (1910), Austral. Mus., Mem. 4, vol. 2, pt. 12, p. 637.

Stenothoe assimilis Chevreux (1908), Bull. Inst. Oceanog., no. 113, pp. 4-8, figs. 4-6; Barnard (1925), Ann. So. African Mus., vol. 20, pt. 5, pp. 345-346.

Stenothoë assimilis, Walker (1910), Proc. U.S. Nat. Mus., vol. 38, no. 1767, pp. 621-622, fig. 1.


Stenothoë validus, Walker (1910), Ann. Mag. Nat. Hist., ser. 8, vol. 6, pp. 31-32.

Stenothoc ornata Barnard (1930), Brit.-Antarctic Exped. 1910, Nat. Hist. Repts., Zool., vol. 8, p. 341, fig. 16.

- Stenothoe valida, Chevreux (1935), Res. Camp. Sci. Monaco, fase, 90, p. 81.
- Not Stenothoe valida, Kunkel (1910), Trans. Conn. Acad. Arts Sci., vol. 16, pp. 16-19, fig. 5.
- Not Stenothoc valida, Schellenberg (1938), Kungl. Svensk. Vetensapakad. Handl., ser. 3, vol. 16, no. 6, p. 21 (-S. cattai Stebbing).

MATERIAL EXAMINED. – Los Angeles-Long Beach Harbor, 28 lots on the hydroid *Tubularia crocca* (Agassiz), collected between April, 1950 and September, 1951.

REMARKS. – The large synonymy of this species has been due in part to the statement by Dana (1853) that the second article of the third peracopod was as broad as those of peracopods 4 and 5, thus leading Chevreux (1908) to describe *Stenothoe assimilis*. Walker (1910) and Chevreux (1913) pointed out the error made by Dana, the second article of peracopod 3 being very slender.

Male, 6 mm. Fig. a, gnathopod 2; b, peræopod 3; c. mandible; e, maxilla 1; f, peræopod 2; g, uropod 3; h, upper lip; i, telson; j, peræopod 5; k, gnathopod 1; m, end of gnathopod 1, enlarged; n, maxilla 2; o, coxa 3. Female, 4 mm. Fig. d, end of gnathopod 2, enlarged; 1, gnathopod 1.

Stenothoides Chevreux. new synonymy

Stenothoides Chevreux 1900: 55. Mesostenothoides Gurjanova 1938: 280.

DIAGNOSIS: Article 2 of peraeopods 3-4 slender; article 2 of peraeopod 5 broad; palp of mandible uniarticulate or absent; palp of maxilla 1 uniarticulate.

TYPE SPECIES: Stenothoides perrieri Chevreux (1900).

LIST OF SPECIES:

Stenothoides (?) bicoma, n. sp.

Stenothoides perrieri Chevreux

Mesostenothoides pirloti Gurjanova Mesostenothoides slastnikovi Gurjanova

Mesostenothoides stassinovi Gurjanova

Mesostenothoides uenoi Gurjanova

Stenothoides (?) bicoma, new species Fig. 8

DIACNOSIS OF MALE: Last two urosomal segments fused but pleon not otherwise aberrant as in some species assigned to Thaumatelsonidae (see previous discussion); telson bearing three lateral spines on each side; gnathopod 1 with article 5 longer than article 6. its article 7 simple, not setose, its article 4 scarcely produced; palm of gnathopod 2 oblique, bearing a large multitoothed process near finger hinge and a large, acute defining process, with the excavation between them being quadrate; antennae subequal in length; mandible lacking palp; palp of maxilla 1 uniarticulate.

FEMALE: Palm of gnathopod 2 slightly oblique, defined by a distinct tooth at hind corner and bearing along the palmar margin well-developed teeth. one of which is larger than the others.

HOLOTYPE: AHF No. 5616, male, 3.0 mm.

TYPE LOCALITY: Station 4785, near Pt. Conception. 34-27-00 N, 120-08-30 W, 30 fms, December 18, 1956. bottom of green silt.

MATERIAL: 90 specimens from 29 stations.

RELATIONSHIP: This species is distinguished among members of the genus Stenothoides by the elongated fifth article of the first gnathopod, but is otherwise particularly related to S. slastnikovi Gurjanova (see 1951) by the male second gnathopod.

ECOLOGY: This species has an overall density of 2.2 animals per square meter on the coastal shelf. It is distributed principally between the depths of 21 and 40 fms, but is found as shallow as 6 fathoms and as deep as 60 fathoms.

Stenothoides bicoma J. L. Barnard

Stenothoides (?) bicoma J. L. Barnard 1962c: 135-137, fig. 8. Canyon material: 4852(1), 6805(1).

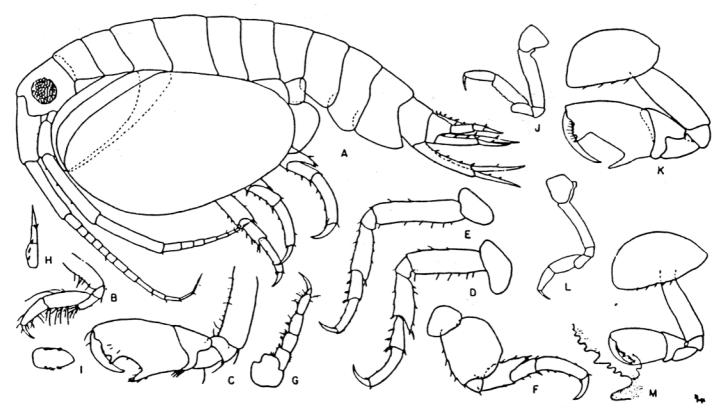


Fig. 8. Stenothoides bicoma, n. sp. Male, 1.5 mm, sta. 4845: A, lateral view; B,C, gnathopods 1, 2; D,E,F, peraeopods 3, 4, 5; G, maxilliped; H, uropod 3; I, telson. Male, 4 mm, sta. 5202: J,K, gnathopods 1, 2, minus setae. Female, 3.5 mm, sta. 5202: L,M, gnathopods 1, 2, minus setae.