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ABSTRACT: In this study, a total of 52 endophytic actinobacteria were isolated from 6 species of Acanthaceae
plants collected in Thailand. Most actinobacteria were obtained from the root part. Based on 16S rRNA gene
analysis and phylogenetic tree, these actinobacteria were classified into 4 families (Nocardiaceae, Micromonosporaceae,
Streptosporangiaceae and Streptomycetaceae) and 6 genera including Actinomycetospora (1 isolate), Dactylosporangium
(1 isolate), Nocardia (3 isolates), Microbispora (5 isolates), Micromonospora (10 isolates) and Streptomyces (32 isolates).
The result of antimicrobial activity screening indicated that 8 isolates, including 1 Actinomycetospora and 7 Streptomyces,
exhibited antimicrobial activity against tested microorganisms. In addition, the selected Streptomyces sp. 5R010 showed
antagonistic activity against fungal plant pathogens including Fusarium sp., Colletotrichum sp. and Sclerotium sp.
Therefore, this study demonstrated that the Acanthaceae plant species harbored the endophytic actinobacteria which
can be used as the source of the antimicrobial compound.
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INTRODUCTION

Microorganisms, especially actinobacteria, are the
primary source of the bioactive natural products
which is driving drug discovery [1]. In the past cen-
tury, numerous actinobacteria have been isolated
from soil and used as the producer of key drugs such
as actinomycin, avermectin, erythromycin, gentam-
icin, neomycin, platensimycin, streptomycin and
vancomycin. Although many drugs are developed
from the actinobacteria, the discovery of novel lead
compounds has decreased because of the redun-
dancy of the samples. Consequently, it is extremely
necessary to investigate the untapped microorgan-
isms to drive natural product research.

Actinobacteria are well known to contain valu-
able economically important microorganisms for a
long time because of their ability to produce a large
number of bioactive secondary metabolites [2].
Actinobacteria are one of the major soil microbiota.

However, they are widely distributed in other var-
ious environments such as marine sediment, fresh-
water, insects and plants. In the past decade, the
untapped habitats, especially endophytic, have be-
come a promising source of novel actinobacteria [3].

Endophytes are the microorganisms that spend
at least parts of their life cycle inside the plant
tissues without having a negative impact on the host
plants [4]. These microbes, especially actinobacte-
ria, have a massive potential to produce a number
of novel compounds that find wide-range appli-
cation as agrochemicals, antibiotics, immunosup-
pressants, antiparasitics and anticancer agents [5].
A huge diversity of secondary metabolites of acti-
nobacteria may occur because of the natural adap-
tation to the environments [6]. Recently, many
of novel actinobacteria such as Asanoa endophyt-
ica, Phytoactinopolyspora endophytica, Phytohabi-
tans kaempferiae and Streptomyces oryzae have been
isolated from various plant species [7–10].
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Acanthaceae is a family of dicotyledonous flow-
ering plants containing approximately 210 genera
and nearly 4000 species. These plants are widely
distributed in tropical and subtropical regions [11].
At present, many plant species in this family, for
example Andrographis paniculata, Barlelia lupulina,
Clinacanthus nurans and Thunbergia laurifolia, have
been used for Thai traditional medicines. However,
the actinobacteria associated with this plant family
are rarely reported. Therefore, the objectives of this
study were to study the diversity of endophytic acti-
nobacteria associated with the Acanthaceae plant
and to screen the antimicrobial activity of the acti-
nobacterial isolates

MATERIALS AND METHODS

Plant collections and isolation of actinobacteria

Plant samples were collected and planted in the
botanical garden of the Department of Biology, Fac-
ulty of Science, Ramkhamhaeng University prior
to isolation. In this study, 6 species of plants
in the Family Acanthaceae including Andrographis
paniculata, Asystasia gangetica, Berleria lupulina,
Clinacanthus nutans, Justicia subcoriacea and Ruellia
squarrosa were collected.

Actinobacteria were isolated from leaves, stems,
and roots of each plant sample. Plant samples
were washed to remove soil from the samples. The
three-step surface sterilization was used to elimi-
nate the surface microbes. Briefly, a 5-min wash
in 3% NaOCl, followed by a 1-min wash in 95%
ethanol and a final wash with a sterile distilled water
2 times. A 0.5 g of the surface-sterilized materi-
als was aseptically ground with 5 ml of extraction
solution [12]. Then, 0.1 ml of plant suspension
was spread on humic acid-vitamin agar [13], starch
casein nitrate agar [14] and proline agar [15] sup-
plemented with nalidixic acid (25 mg/l) and cyclo-
heximide (50 mg/l) to control the growth of Gram-
negative bacteria and fungi, respectively. The plates
were incubated at 30 °C for 14 days. The colonies of
actinobacteria were collected and purified on ISP2
medium.

Identification of actinobacteria

The identification of actinobacteria was performed
by 16S rRNA gene analysis. The genomic
DNA of actinobacteria was extracted from the
mycelia grown in yeast-dextrose broth (1 g glu-
cose; 1 g yeast extract; 100 ml water, pH 7.0–7.2)
at 30 °C for 3–7 days [16]. The amplifica-
tion was carried out using standard primers

(5′-GAGTTTGATCCTGGCTCAG-3′) and 1530R (5′-
GTTACCTTGTTACGACTT-3′) with the initial incu-
bation of 3 min at 94 °C followed by 30 cycles of
1 min at 94 °C, 1 min at 50 °C and 2 min at 72 °C and
followed by a 3 min final extension at 72 °C [17, 18].
The nucleotide of the PCR product was sequenced
using the sequencing service (Macrogen, Korea).
The nucleotide sequence was manually analyzed us-
ing BioEdit software (Ibis Biosciences). BLAST was
determined using the EzbioCloud database [19].
Phylogenetic analysis was constructed using MEGA
7.0 software [20]. The tree topology was evaluated
using the bootstrap test [21].

Antimicrobial activity screening

Antimicrobial activity of actinobacterial isolates was
determined using the agar disc diffusion method.
Briefly, each actinobacterium was cultured in ISP2
broth pH 7.0 in shaking condition at 180 rpm 30 °C
for 14 days. Then, one volume (equivalent to cul-
ture broth volume) of 95% ethanol was added and
shook at 180 rpm for 1 h followed by centrifuge at
4500 rpm for 10 min. The supernatant was collected
and preserved at −20 °C. To prepare the tested disc,
the sterile paper disc was dipped into each broth
library and air-dried in the biosafety cabinet. The
sterile ISP2 broth added with one volume of ethanol
was used as the negative control.

Six microorganisms including 3 Gram-positive
bacteria: Staphylococcus aureus, Bacillus subtilis and
Kocuria rhizophila, and 2 Gram-negative bacteria:
Escherichia coli and Pseudomonas aeruginosa, and
a yeast, Candida albicans, were used as the tested
microorganisms. The tested bacteria and yeast
were activated on Mueller-Hinton agar (MHA) and
sabouraud dextrose agar (SDA) for 27 h at 37 °C
and 30 °C, respectively. To prepare a microbial
suspension, the turbidity of each tested microor-
ganism in normal saline solution was adjusted to
0.5 McFarland standards. Then, the tested bacteria
and yeast were swabbed on the surface of MHA and
SDA, respectively. The prepared paper disc was put
on the surface of media swabbed with the tested
microorganisms and incubated for 24 h at 37 °C
and 30 °C for bacteria and yeast, respectively. The
inhibition zone was observed and documented.

Antagonistic activity against phytopathogenic
fungi of the selected strain

The co-cultivation method was used to determine
the antagonistic activity of the selected actinobac-
teria against 6 phytopathogenic fungi including
Colletotrichum gloeosporioides, Colletotrichum sp.,
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Fig. 1 Diversity of actinobacteria isolated from Acan-
thaceae plant species. (a) Pie chart represented the per-
centage of actinobacterial genera within the total number
of isolates. (b) The number of actinobacteria isolated
from different plant species.

Curvularia oryzae, Fusarium sp., Lasiodiplodia theo-
bromae and Sclerotium sp.

The selected actinobacterium was cultured on
one side of the ISP2 agar plate and incubated at
30 °C for 7 days. Then, the 7-day-old of the tested
phytopathogenic fungi grown on SDA agar were
cut by the cork borer (6 mm in diameter) and
transferred to the opposite of the prepared acti-
nobacterium plate and incubated at 30 °C for 7–
10 days. The inhibition zone around the actinobac-
terial colony indicated fungal inhibition. The fungi
grown on ISP2 agar without actinobacteria were
used as the growth control of the fungi.

RESULTS AND DISCUSSION

Diversity of actinobacteria

In this study, 52 actinobacteria were isolated from
leaves, stems and roots of 6 species of Acanthaceae
plants. In this number, 49 isolates were obtained
from roots, followed by 2 and 1 isolate obtained
from leaves and stem, respectively. The results

of this study are similar to the previous studies
showing that nearly all the plants harbor endo-
phytes [22]. Janso and Carter [23] discussed that
actinobacteria could be isolated from every tissue
type of samples; however, root and bark had the
highest isolate-to-sample ratio.

On the basis of BLAST result and phyloge-
netic tree analysis, actinobacteria obtained in this
study were identified and categorized into 4 families
(Nocardiaceae, Micromonosporaceae, Streptosporan-
giaceae and Streptomycetaceae) and 6 genera in-
cluding Actinomycetospora (1 isolate), Dactylospo-
rangium (1 isolate), Nocardia (3 isolates), Microbis-
pora (5 isolates), Micromonospora (10 isolates) and
Streptomyces (32 isolates) (Figs. 1 and 2, Table 1).
Based on this study, the most abundant genus found
in Acanthaceae plants were Streptomyces (61%) fol-
lowed by Micromonospora (19%) and Microbispora
(10%) (Fig. 1). The pattern of the diversity of
culturable actinobacteria of this study, of which
Streptomyces are the predominant species, is similar
to the previous report [24]. In 2012, Kim et al [25]
isolated 61 endophytic actinobacteria, comprising
15 genera including Streptomyces, Micromonospora,
Rhodococcus, Microbispora, Micrococcus, Microbac-
terium, Streptacidiphilus, Arthrobacter, Dietzia, Ki-
tasatospora, Herbiconiux, Mycobacterium, Nocardia,
Rathayibacter and Tsukamurella, from the native
herbaceous plant species of Korea. In that study,
they found that members of the genus Streptomyces
comprised 45.9% of the total isolates and were
followed by Micromonospora (18.8%). In the study
of Janso and Carter [23], 123 isolates of endo-
phytic actinobacteria, including 17 genera, were
isolated from the tropical native plants in Papus
New Guinea and Mborokua Island, Solomon Island.
The community of endophytic actinobacteria may
vary according to the host plant. Jiang et al [26]
isolated 101 endophytic actinobacteria from 5 dif-
ferent mangrove plants including Avicennia marina,
Aegiceras corniculatum, Kandelia obovota, Bruguiera
gymnorrhiza and Thespesia populnea. Based on 16S
rRNA gene, these actinobacteria were distributed in
15 families and 28 genera including Actinoplanes,
Agrococcus, Amnibacterium, Brachybacterium, Bre-
vibacterium, Citricoccus, Curtobacterium, Dermacoc-
cus, Glutamicibacter, Gordonia, Isoptericola, Jani-
bacter, Kineococcus, Kocuria, Kytococcus, Leucobac-
ter, Marmoricola, Micrococcus, Microbacterium, Mi-
cromonospora, Mycobacterium, Nocardioides, Nocar-
dia, Nocardiopsis, Pseudokineococcus, Sanguibacter,
Streptomyces and Verrucosispora. In addition, Widi-
antini and Franco [27] reported that the dominant
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Fig. 2 Neighbor-Joining phylogenetic tree based on 16S rRNA gene of the actinobacterial isolates and closely related
actinobacterial type strains shown that the isolates were clustered within 4 families and 6 genera. Numbers at the
nodes indicate bootstrap values based on 1000 replicates.
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Table 1 Closest BLASTN matches for the 16S rDNA sequence and antimicrobial activity of the actinobacterial isolates.

Plant host Plant Isolation Accession BLAST match result Isolation Inhibition zone (mm)

material no. no. Closest species Similarity % media K B S P E C

Asystasia
gangetica Root

5R001 LC497879 M. chokoriensis DSM45160T 99.51 SCN – – – – – –
5R002 LC497878 M. maritima D10-9-5T 100 SCN – – – – – –
5R004 LC497877 M. maritima D10-9-5T 99.79 SCN – – – – – –
5R005 LC497876 M. chokoriensis DSM45160T 99.51 SCN – – – – – –
5R007 LC497873 M. tulbaghiae DSM 45142T 100 SCN – – – – – –
5R009 LC497875 M. tulbaghiae DSM 45142T 100 Proline – – – – – –
5R010 LC500018 S. sioyaensis NRRL-B5408T 99.72 HV – – – – – 16
5R011 LC497872 S. durhamensis NRRL-B3309T 99.41 HV 26 15 17 – – –
5R012 LC497874 N. xishanensis NBRC 101358T 99.93 HV – – – – – –
5R014 LC497871 N. bhagyanarayanae VRC07T 98.68 SCN – – – – – –

Justicia
subcoriacea

Root

3R002 LC497888 S. lannensis TA4-8T 99.93 SCN – – – – – –
3R003 LC497882 M. hainanensis 211020T 100 HV – – – – – –
3R004 LC497890 S. shaanxiensis CCNWHQ0031T 99.30 HV 21 21 27
3R006 LC497880 S. cyaneus NRRL B-2296T 98.91 HV – – – – – –
3R008 LC497886 M. chalcea DSM 43026T 99.65 proline – – – – – –
3R009 LC497889 N. bhagyanarayanae VRC07T 99.72 proline – – – – – –
3R010 LC497887 M. hainanensis 211020T 99.17 proline – – – – – –
3R011 LC497885 M. tulbaghiae DSM 45142T 99.44 SCN – – – – – –
3R012 LC497891 M. wenchangensis CCTCCAA 2012002T 99.44 SCN – – – – – –
3R014 LC497881 M. nigra DSM 43818T 98.25 SCN – – – – – –
3R015 LC497884 M. hainanensis 211020T 99.72 HV – – – – – –
3R016 LC497883 M. hainanensis 211020T 99.72 HV – – – – – –

Leaf 3L001 LC497892 Actinomycetospora corticicola 014-5T 99.62 Proline 22 19 18 – – –
3L002 LC497920 Dactylosporangium sucinum RY35-23T 99.58 Proline – – – – – –

Barleria
lupulina Root

7R002 LC497919 S. shenzhenensis 172115T 99.38 HV – – – – – –
7R004 LC497918 S. shenzhenensis 172115T 99.65 Proline – – – – – –
7R005 LC497917 M. hainanensis 211020T 99.86 Proline – – – – – –
7R006 LC497916 S. graminisoli JR-19T 99.93 HV – – – – – –
7R007 LC497908 S. chiangmaiensis T4A-1T 98.75 HV – – – – – –
7R008 LC497915 S. graminisoli JR-19T 99.51 HV – – – – – –
7R009 LC497914 S. graminisoli JR-19T 99.86 HV – – – – – –
7R011 LC497913 S. graminisoli JR-19T 99.86 starch – – – – – –
7R012 LC497912 S. graminisoli JR-19T 99.79 proline – – – – – –
7R013 LC497911 S. lilacinus NRRL 1968T 99.21 proline 15 – – – – –
7R014 LC497910 S. lusitanus NBRC 13464T 99.65 HV – – – – – –
7R015 LC497906 S. neopeptinius KNF 2047T 98.64 HV – – – – – –
7R016 LC497907 S. gilvifuscus KM229362T 98.21 HV – – – – – –
7R017 LC500017 S. shenzhenensis 172115T 99.45 HV – – – – – –
7R018 LC497909 S. shenzhenensis 172115T 99.58 HV – – – – – –

Ruellia
squarrosa Root

9R002 LC497898 S. parvulus NBRC 13193T 99.72 HV – – – – – –
9R003 LC497897 S. chartreusis NBRC 12753T 99.31 SCN 9.5 8 7 – – –
9R004 LC497895 S. chartreusis NBRC 12753T 99.38 proline 8.5 8 – – – –
9R005 LC497896 S. laurentii ATCC 31255T 99.31 HV – – – – – –
9R006 LC497894 S. chartreusis NBRC 12753T 99.38 proline – – – – – –
9R008 LC497893 S. collinus NBRC 12759T 99.93 HV 19 12 14 – – –

Andrographis
paniculata Root

6R001 LC497905 S. deccanensis DAS-139T 99.78 HV – – – – – –
6R002 LC497904 S. hawaiiensis NBRC 12784T 99.72 HV – – – – – –
6R003 LC497903 S. shenzhenensis 172115T 99.79 HV – – – – – –
6R004 LC497902 S. collinus NBRC 12759T 99.93 HV – – – – – –
6R005 LC497901 S. deccanensis DAS-139T 99.79 HV – – – – – –
6R006 LC497900 S. indiaensis NBRC 13964T 99.29 HV – – – – – –

Clinacanthus
rutans

Stem 8S001 LC500016 S. cavourensis NBRC 13026T 100 HV – – – – – –

K= Kocuria rhizophila; B= Bacillus subtilis; S= Staphylococcus aureus; P= Pseudomonas aeruginosa; E= Escherichia
coli; C= Candida albicans.

endophytic actinobacteria species isolated from rice
plants of Australia is Microbispora. The variable of
endophytic actinobacterial species in the different
plants may depend on factors such as host speci-
ficity, stage of the host, type of sample, geographical
condition, season, surface sterilant, culture condi-
tion and selective media [28, 29].

Antimicrobial activity

In this study, 8 isolates including 1 Actinomyce-
tospora and 7 Streptomyces exhibited antimicrobial
activity against tested microorganisms. Most of the
active isolates showed antimicrobial activity against
Gram-positive bacteria, but no activity was observed
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Fig. 3 Antimicrobial activity of the actinobacteria against
tested microorganisms.

against Gram-negative bacteria (Fig. 3, Table 1).
The antimicrobial activity of endophytic Strepto-
myces against Gram-positive bacteria has been doc-
umented in previous studies. Zhang et al [30]
studied antimicrobial activity of 65 endophytic acti-
nobacteria, isolated from Achyranthes bidentata,
Paeonia lactiflora, Radix Platycodi and Artemisiae
argyi, against penicillin resistant Staphylococcus au-
reus. They found that 12 strains, the majority
of which were Streptomyces spp., showed activity
against this pathogen. Although no actinobacte-
ria obtained from this study showed anti-Gram-
negative bacterial activity. Mingma et al [31] iso-
lated 317 actinobacteria from root and rhizospheric
soils of leguminous plants, and 64 of the isolates
(20.2%) showed antagonistic activity against soy-
bean pathogen Xanthomonas campestris pv. glycine.
In addition, 21 endophytic actinobacteria isolated
by Jiang et al [26] showed activity against P. aerug-
inosa. This evidence showed that anti-Gram-
negative bacteria could be observed in some endo-
phytic actinobacteria.

The production of novel antimicrobial metabo-
lites from endophytic actinobacteria has been doc-
umented in the various reports. These include
maklamicin, misamycin and diastaphenazine.

Maklamicin, a new spirotetronate-class polyke-
tide isolated from Micromonospora sp. GMKU326
— the endophytic actinobacteria from root nodule
of the legume Lupinus angustifolius, showed strong
to moderate antimicrobial activity against Gram-
positive bacteria including Micrococcus luteus, Bacil-
lus subtilis, B. cereus, Staphylococcus aureus and
Enterococcus faecalis with MIC values of 0.2, 1.7, 6.5,
13 and 13 µg/ml, respectively [32].

Misamycin, a new anthracycline antibiotic, was

isolated from the culture broth of endophytic Strep-
tomyces sp. YIM66403. The compound exhibited
moderate antibacterial activity against S. aureus
with MIC value of 64 µg/ml. Besides antibacte-
rial activity, it showed cytotoxicity against various
human cell lines including human promyelocytic
leukemia HL-60, human hepatoma SMMC-7721,
non-small cell long cancer A-549, breast cancer
MCF-7 and human colorectal carcinoma SW4801
with IC50 values of 15.37, 16.34, 25.98, 20.71 and
9.75 µM, respectively [33].

Diastaphenazine, a new dimeric phanazine, was
isolated from the culture broth of endophytic Strep-
tomyces diastacicus subsp. ardesiacus from sterile
tissue of Artemisia annua. The compound showed
antimicrobial activity against Staphylococcus aureus
ATCC 25923, Escherichia coli ATCC 25922 and Can-
dida albicans ATCC 10231. In addition, it showed
weak cytotoxicity against 5 human tumor cell lines
including BGC-823, Hela, HCT116, HepG2 and
H460 with IC50 values of 14.9, 28.8, 65.2, 82.5 and
>100 µM, respectively [34].

In this study, the isolate 5R010, closely related
to Streptomyces sioyaensis NRRL-B5408T, showed
antifungal activity against C. albicans. This isolate
was selected to test the antagonistic activity against
phytopathogenic fungi.

Antiphytopathogenic fungi activity

Based on the co-cultivation method, the strain
5R010 showed antagonistic activity against Fusar-
ium sp., Colletotrichum sp. and Sclerotium sp., but no
activity was observed on Colletotrichum gloerospo-
riodes, Curvularia oryzae and Lasiodiplodia theobro-
mae (Fig. 4). It has been reported in several studies
that the endophytic actinobacteria can be used to
control plant diseases. Álvarez-Pérez et al [35] used
endophytic actinobacteria isolated from the root sys-
tem of the grapevine plants, Vitis vinifera, to reduce
nursery fungal graft infections caused by Diplodia
seriata, Dactylonectria macrodidyma, Phaeomoniella
chlamydospora and Phaeoacremonium minimum.
Taechowisan et al [36] reported that 3 endophytic
Streptomyces sp. showed strong inhibition for Col-
letotrichum musae and 5 were very active against
Fusarium oxysporum. The Streptomyces strain CEN6,
isolated from Centella asiatica, showed good antag-
onistic activity against Alternaria brassicicola; the
pathogen causes leaves spot of cabbage. The fungal
treated by this stain showed abnormal characteris-
tics including swelling and frequent septa [37]. The
use of endophytic Streptomyces platensis F-1, iso-
lated from Oryza sativa, as biofumigation to control
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Fig. 4 Antagonistic activity of the isolate 5R010 against phytopathogenic fungi (a) Lasiodiplodia theobromae,
(b) Curvularia oryzae, (c) Fusarium sp., (d) Sclerotium sp., (e) Colletotrichum gloeosporioides and (f) Colletotrichum
sp. The arrows ¹¹Ë and −→ indicate the colony of isolate 5R010 and fungal pathogens, respectively.

plant fungal disease was reported by Wan et al [38].
The volatile substance produced by the strain F-1
could effectively reduce the incidence and the sever-
ity of the disease caused by Botrytis cinerea, Rhi-
zoctonia solani and Sclerotinia sclerotiorum. Besides
the application as biocontrol, the novel antifun-
gal compounds such as dehydroxyaquayamycin B
and fistupyrone were isolated from endophytic
actinobacteria. Dehydroxyaquayamycin B, a new
C-glycosylated benz[α]anthraquinone, was isolated
from endophytic Streptomyces blastomycetica F4-20.
The compound showed fungicidal activity against
Valsa mali, Colletotrichum orbiculare and Fusarium
graminearum [39]. Fistupyrone, a new microbial
compound, isolated from the culture broth of endo-
phytic Streptomyces sp. TP-A0569 can inhibit the in
vivo infection of the seedlings of Chinese cabbage
by Alternaria brasicicola, the cause of Alternaria leaf
spot [40]. The antagonistic activity of the strain
5R010 found in this study revealed that this strain
may be used for the fungal biocontrol in the future.
In addition, the active compounds produced by this
strain should be characterized in further study.
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