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Abstract Most pharmaceutical formulation developments are complex and ideal formulations are

generally obtained after extensive experimentation. Machine learning is increasingly advancing many as-

pects in modern society and has achieved significant success in multiple subjects. Current research

demonstrated that machine learning can be adopted to build up high-accurate predictive models in

drugs/cyclodextrins (CDs) systems. Molecular descriptors of compounds and experimental conditions

were employed as inputs, while complexation free energy as outputs. Results showed that the light

gradient boosting machine provided significantly improved predictive performance over random forest

and deep learning. The mean absolute error was 1.38 kJ/mol and squared correlation coefficient was

0.86. The evaluation of relative importance of molecular descriptors further demonstrated the key factors

affecting molecular interactions in drugs/CD systems. In the specific ketoprofeneCD systems, machine

learning model showed better predictive performance than molecular modeling calculation, while molec-

ular simulation could provide structural, dynamic and energetic information. The integration of machine

learning and molecular simulation could produce synergistic effect for interpreting and predicting phar-

maceutical formulations. In conclusion, the developed predictive models were able to quickly and accu-

rately predict the solubilizing capacity of CD systems. Current research has taken an important step

toward the application of machine learning in pharmaceutical formulation design.
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1. Introduction

In pharmaceutical industry, the formulation developments intend to

optimize the excipient composition and process parameters to ac-
quire optimal formulations with satisfactory physicochemical and
biological characteristics1. However, the process of current formu-
lation development highly depends on the trial-and-error experi-
mentation by the experiences of individual formulation scientists.
Thus, the multivariable and complex nature of formulation design
seriously hinders the efficiency and success rate of product devel-
opment2,3. Moreover, the successful application of high-throughput
experimentation in the field of drug discovery in the past decade has
contributed to significant increase of active compounds, which put
forward constant pressure for the productivity of formulation
development4,5. Although the statistical experimental designs and
optimization techniques, such as orthogonal design or response
surface methodology, to some extent simplify the formulation
screening process, the extensive experimentation is still needed due
to the unpredictable formulation performance6. It is necessary to
seek for a high efficiency and accuracy methodology for the pre-
diction and virtual screening of pharmaceutical formulations.

Currently molecular simulation-based calculations in the
formulation development provide an alternative technique to the
traditional trial-and-error experiments. Numerous molecular
modeling methods, like molecular dynamics (MD), docking,
Monte Carlo and even quantum mechanics, have been extensively
applied3,7,8. The molecular modeling approaches are highly
capable of the explanation for the molecular mechanism for spe-
cific formulations and delivery systems, but have the limited
ability to distinguish key index in some specific formulations.
Another existed significant limitation is that the modeling systems
with limited molecule number may not represent the real experi-
ments due to the limited computing capability. These methods
have difficulties in making balance between time consumption and
accuracy8. In any case, from the wide studies performed to date, it
is highly necessary and urgent to build up predictive models which
allow a high-accuracy prediction in the pharmaceutical formula-
tions and contributing factors analysis.

Machine learning is able to learn from input data, automate
analytical model building and even update outputs as new data
becomes available by computer algorithms9,10. The latest
machine learning algorithmddeep learning garnered signifi-
cant attention, which is representation-learning methods with
multiple levels of representation11,12. These algorithms are
able to make high-accuracy predictions for the classification
and regression tasks, which lead to extensive application in the
bioinformatics and computational biology. However, the
application of machine learning in pharmaceutical research
especially formulations development, is still very limited13.
Given commercial confidentiality and long research periods,
the pharmaceutical datasets start out too small to guarantee
implementation of these algorithms. Despite many challenges,
two recent studies have advanced the application of machine
learning in the pharmaceutical field14e17. The remote liposome
study has used machine learning approaches to distinguish the
drug loading efficiency and to predict the drug loading on the
366 formulation dataset14. Another attempt was the combina-
tion of machine learning and nondestructive ultrasonic to
develop a predictive model for the tablet breaking force and
disintegration time for advancing the quality-by-design para-
digm18. Because of the complex nature of formulation design
process and multidimensionality of chemical structures, it is
really necessary to explore whether machine learning could be
further expanded into formulation prediction based on avail-
able data.

Current research selected the cyclodextrin (CD) complexation
systems as the model system for the predictive model development
because of its extensive application in pharmaceutical field, rela-
tively controllable variables and specific evaluation index. CDs can
accommodate varieties of non-polar molecules into the inner cavity
to form non-covalent host-guest inclusion complexes, which has
been successfully used in pharmaceutical formulations. The guest/
CDs binding process is not fixed or permanent, but dynamic and
reversible19. Complexation free energy or equilibrium constant is a
key index to evaluate the strength of hosteguest complexation and
disassociation/association stability of the complex, which can
decide the usage of a specific drugeCDs inclusion complex in the
formulation design20,21. Many experimental techniques have been
developed tomeasure the complexation free energy including phase
solubility measurements, calorimetric titration, nuclear magnetic
resonance chemical shift, freezing point depression, pH-metric
methods and so on, among which phase solubility method
described by Higuchi and Connors is the most widely used22e25.
However, these experimental measurements often bring serious
challenges for the pharmaceutical scientists because of the limited
synthetic amount of new compounds and the limited API’s solu-
bility at the early stage of drug discovery20.

This study was proposed to develop high-accurate predictive
models of complexation free energy between CDs and guest
molecules based on a dataset of 3000 date points by three machine
learning techniques (e.g., light gradient boosting machine
[LightGBM], random forest [RF] and deep learning [DL]). The
relative contributions of molecular descriptors were analyzed to
infer underlying molecular interactions in the drugeCD
complexation systems. Furthermore, ketoprofen (KTP) was used
as a model drug and the KTPeCDs inclusion complexes were
studied by the experimental methods and the MD simulations. The
comparison of complexation free energy by experimental deter-
mination, simulation-based calculation and machine learning
model was further conducted.

2. Materials and methods

2.1. Dataset preparation and distribution

Thedata for the complexation free energy betweenCDs anda diverse
set of organic molecules were collected from published literatures
from the year 1990 to 2018. The literature data were considered
acceptable if they belonged to binary CD complexation system with
the complexation free energy or the equilibrium constant by phase
solubility study. When the experimental pH values were not clear or
reported as aqueous solution, they were considered to be neural
(pH Z 7). The temperatures were assumed to be room temperature
(TZ 25 �C) if the specific temperaturewas not noted or reported. The
available dataset was further processed to eliminate duplicates, to
eliminate entries for the same compounds with different complexa-
tion free energies in the same experimental conditions, as well as to
remove experiments under uncommonly used conditions (e.g.,
partially or completely organic solvent). The final dataset with 3000
formulations for the predictive model building contained 1320 guest
molecules and 8 CDs, of which the proportions of each CD were
shown in Fig. 1A. The complexation free energies between guest
molecules andCDsweredistributed over the range of0 to�40kJ/mol
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with the mean of �15.12 kJ/mol, as shown in Fig. 1B. The guest
molecule set contained a large amount of structurally diverse organic
compounds, such as phenols, ketones, alcohols, steroids, nitriles,
barbitals, and hydrochloride.

2.2. Molecular descriptors and dataset slitting

Both the guest molecules and CDs were characterized with an
appropriate set of molecular descriptors. The molecular de-
scriptors used in this study were computed using ALOGPS 2.1
program (VCCLAB, Virtual Computational Chemistry Labo-
ratory, http://www.vcclab.org) and ChemAxon program
(https://chemaxon.com/company)26. The total of 17 and 22
molecular descriptors were used to characterize the guest
molecules and CDs, respectively. These calculated molecular
descriptors were then combined with the corresponding
experimental conditions (described as above, pH value and
temperature) to assemble a hybrid set of molecular descriptors
for each entry in the dataset.

Relative distributions of data points used in the dataset were
shown in Fig. 1, which shows that the percentages of data points
for each CD in the dataset vary greatly. Thus, the dataset was split
by the method of stratified random sampling, which is a method of
sampling that random samples extracted from each CD group was
proportional to the size of the original group. The dataset was
randomly split into training set (80%), test set (10%) and
Figure 1 Relative distribution of data points in the full dataset: (A) T

distribution of complexation free energy between cyclodextrins and guest

(D) The XlogP3 distribution of guest molecules. The full dataset was comp

hydroxypropyl-b-cyclodextrin; RMCD, randomly methylated b-cyclodex

methyl)-b-cyclodextrin; SBE-b-CD, sulfobutylether-b-cyclodextrin.
validation set (10%), among which the data points of each CD
kept the same percentage as that in the original dataset. It guar-
anteed that the composition of subsets was representative and
avoided the unbalance in these three datasets. The test set is
completely independent from the training set and validation set.
Running a training set and validation set through an algorithm
teaches the model how to weigh different features, adjust their
parameters according to their likelihood of minimizing errors in
the results, while the test set serves to evaluate the generalization
ability of the predictive model.

2.3. Machine learning methods

Currently there have been developed many predicting methods in
machine learning. This research compared the predictive models
from three widely used algorithmsdLightGBM, RF and DL.
LightGBM was the first time to be used in the pharmaceutical
system.

LightGBM uses an open source gradient boosting decision tree
(GBDT) algorithm by Microsoft (http://lightgbm.apachecn.org/cn/
latest/). LightGBM is a fast, distributed and high-performance
gradient boosting framework with tree-based learning algorithm,
which has been extensively used for both classification and
regression tasks. It uses histogram-based algorithms, which
buckets continuous feature values into discrete bins27. Compared
with other decision tree algorithms, it can reduce the calculation
he percentage of experimental data for each cyclodextrin. (B) The

molecules. (C) The molecular weight distribution of guest molecules.

rised of 3000 data points with 1320 different structures. Hp-b-CD, 2-

trin; TMCD, (2,3,6-tri-O-methyl)-b-cyclodextrin; DMCD, (2,6-di-O-

http://www.vcclab.org/
https://chemaxon.com/company
http://lightgbm.apachecn.org/cn/latest/
http://lightgbm.apachecn.org/cn/latest/
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cost of the gain for each split and speed up training. Furthermore,
LightGBM grows tree leaf-wise and vertically, while most deci-
sion tree learning algorithms grow trees horizontally by level-
wise. In fact, LightGBM tends to obtain lower loss than level-
wise algorithms by choosing the leaf with max delta loss to
grow when holding leaf fixed28. Leaf-wise may cause over-fitting
when the dataset is small. The max_depth in LightGBM is an
important parameter in handling with over-fitting. In current
research, the max_depth for tree model was limited by set
max_depth to 4. The complexity of the tree model was controlled
by the parameter of num_leaves, which was set to 9. N_estimators
was used to control the number of boosted trees to fit, it was set to
800. The number of boosting iterations was set to 1000. When the
LightGBM was used on the sparse datasets, each parameter had a
small adjustment.

Random forest uses sklearn.ensemble RandomForestRegressor
(http://scikitlearn.org/stable/modules/generated/sklearn.ensemble.
RandomForestRegressor.html). RF is an ensemble method for
classification or regression tasks by using bootstrap samples of the
training data and random feature selection in tree construction29.
Each bootstrap samples grow a tree and the best split at each node
is defined among a randomly selected subset of mtry descriptors

30.
When the data is limited, random forest estimates the ensemble
prediction performance by performing a type of cross-validation
in parallel with the bootstrap procedure with the out-of-bag
data22. The RF prediction of new data is made by aggregating
the prediction of the ensemble. In addition to built-in estimation of
prediction accuracy, RF can also calculate the importance of each
molecular descriptor based on the out-of-bag predictions with
each descriptor permuted22,30. During the data training, n_esti-
mators controlled the number of trees in the forest was set to 300,
while max_depth controlled the maximum depth of the tree was
set to 14. When looking for the best split, the number of features
(max_features) to consider was set to 32. Min_sample_split,
represented the minimum number of samples required to split an
internal node, was set to 2. Min_samples_leaf, controlled the
minimum number of samples required to be at a leaf node, was set
to 3.

Deep Learning using Keras deep learning library in python
(http://keras.io/). DL is a form of machine learning method, which
comprises of multiple processing layers to learn representations of
data with multiple levels of abstraction12. Unlike simple artificial
neural networks, DL has multiple hidden layers with different
weights, and then passes the signals successively deeper in the
network until the output layer. During training procedure, the deep
network trains the first layer as an auto-encoder with the training
sets as the input until the average of the objective function stops
decreasing, and then trains the second layer as an auto-encoder
taking the first layer’s output as the input. The process is iter-
ated for the desired number of layers and finally the output of the
last layer as the input for the prediction layer31. In this research,
the neural network included three hidden layersdthe first layer
containing 512 neurons, the second layer containing 256 neurons,
and the third layer containing 64 neurons. The first three hidden
layers used Rectified Linear Units (ReLU) as the activate function,
while the last layer used a linear function. The number of samples
that going to be propagated through the network was controlled by
the batch_size, which was set to 16. The parameter of epoch
indicated the times of the entire dataset passed through the neural
network, which was set to 3600. During the training process, it
would shuffle data for each epoch to have different data for each
batch.
2.4. Model selection and comparison

The predictive performance had been characterized by three sta-
tistics, which were the mean absolute error (MAE), the root means
square error (RMSE) and the squared correlation coefficient (R2).
They were defined as:
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where yobsi and ypredi were the experimentally observed and theo-
retically predicted complexation free energy between molecule i
and corresponding CD, respectively. yobs,mean was the mean of
experimental value and n was the number of data points.

2.5. Experimental study of KTPeCDs inclusion complexes

2.5.1. Materials and reagents
a-, b-, and g-CD were purchased from J&K Scientific Co.,
Ltd. (Beijing, China). 2-Hydroxypropyl-b-cyclodextrin (Hp-b-CD;
FW Z 1541.54 g/mol, purity > 99%), dimethyl-b-cyclodextrin
(DMe-b-CD,FWZ 1331 g/mol, purity> 99%), and sulfobutylether-
b-cyclodextrin (SBE-b-CD; FW Z 2242.01 g/mol, purity > 99%)
were purchased from Shanghai Aladdin Bio-Chem Technology Co.,
Ltd. (Shanghai, China). Ketoprofen (KTP, purity > 99%) was pur-
chased from Dongkangyuan Technology Co., Ltd. (Wuhan, China).
All other chemicals in the study were of analytical grade.

Phase solubility study was performed to determine the binding
constant (K ) according to the methods described by Higuchi and
Connors24. Excess amounts of KTP were added to 3 mL of various
concentrations of aqueous CDs solutions. The concentration of
three parent CDs were between the ranges of 0 to 15 mmol/L,
while the concentration of the other three CD derivatives were 0 to
9 mmol/L. The mixtures were shaken at 37 � 0.5 �C for two days
until equilibrium. Afterward, the samples were filtered through a
0.45 mm Millipore filter and then assayed by UV spectropho-
tometer at 260 nm. The binding constant (K, L/mol) of the
KTPeCD complex was calculated from the phase solubility dia-
grams using Eq. (4) and the complexation free energy (DG, kJ/
mol) could be further calculated according to Eq. (5).

K1:1Z
slope

S0ð1� slopeÞ ð4Þ

DGZ �RT InK1:1 ð5Þ

where S0 was the intrinsic solubility of KTP in distilled water, and
the slope was obtained from the phase solubility curve by linear
regression between KTP and CD concentration. R is the gas
constant, and T is Kelvin temperature.

http://scikitlearn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
http://scikitlearn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
http://keras.io/
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2.6. Molecular dynamic simulation of KTPeCDs inclusion
complexes

The molecular dynamic (MD) simulations of KTPeCDs inclusion
complexes were carried out by using AMBER14 software package
and Generalized Amber Force Field (GAFF)32. The initial struc-
tures were generated by docking KTP with various CDs by
AutoDock Tools package and then these structures were loaded
into LEAP model to construct the solvated systems by using the
TIP3P water box with 20 Å radius33. All systems were equili-
brated in the NPT ensembles at T Z 310 K and P Z 1 bar, and
then ran MD simulation for 100 ns with a time step of 2 fs. The
molecular mechanics with a PossioneBoltzmann/surface area
solvent (MM-PBSA) method was used to calculate the binding
affinity “DGbinding”. The binding entropy (DS ) was calculated by
normal mode analysis using the ptraj program in AMBER Tools.
The binding enthalpy (DE ) comprising of electrostatic energy
(ELE), van der Waals (VDW), non-polar and polar contributions
to solvation (PBSOL), were calculated for the complexes ac-
cording to Eq. (6). The binding free energy (DG) was further
calculated according to Eq. (7).

DEZ DEELE þDEVDW þDEPBSOL ð6Þ

DGZDE� T,DS ð7Þ

3. Results and discussion

3.1. Predictive performance of three machine learning methods

With these 3000 data points available in hand, the predictive ac-
curacies of three machine learning model were evaluated by using
80% of the data as training set and 10% of the data as validation set
to predict the remaining 10% dataset (as test set). Fig. 2 showed the
scatter plots of the predicted vs. observed complexation free energy
on full dataset by three machine learning methods and the detailed
statistical performance of the predictive models for CDs
complexation free energy were presented in Table 1. For the
LightGBM model, the MSE and RMSE of the training set was
1.41 and 1.94 kJ/mol, respectively, with a coefficient (R2) value of
0.86. Generally, the predictive accuracy of the built model highly
relied on the similarity degrees of the molecules to be predicted
and the molecules in the training set. In order to measure the built
model’s generalizability, an independent and new test set was
performed to calculate. While applying the LightGBM model for
calculations on the test set, MAE, RMSE and R2 were 1.38 kJ/mol,
1.83 kJ/mol and 0.86, respectively. Thus, the built LightGBM
model showed reasonable statistical criteria for new dataset.
Turning to random forest model, it did not show overfitting and
also had achieved good predictive performance on both the training
set and test set. However, the predictive performance of the random
forest model did not exceed that of the LightGBM model. The
statistical performance of the deep learning predictive models
showed the MAE for the training set was 3.34 kJ/mol with a R2

value of 0.76, and the MAE for the testing set was 3.36 kJ/mol with
a R2 value of 0.62. Compared with LightGBM model and random
forest model, deep learning model showed a relatively poor pre-
dictive performance.

Although three predictive models shown high prediction ac-
curacy both in the training and test set, there still were large
deviations for some data points between the observed values and
predicted values in the test set, especially when the value of
complexation free energy was less than �20 kJ/mol, as shown in
Fig. 2. Significant proportion of the deviations may be caused by
the value distribution of complexation free energy in the original
dataset, as show in Fig. 1B. The value of complexation free energy
in the original data set between �5 and �20 kJ/mol accounted for
more than 90% data points in the full dataset. Therefore, the
imbalance distribution of dataset had a serious influence on the
model construction and the predictive accuracy. In addition, the
size of the dataset also had a great impact on the model con-
struction and its predictive accuracy, which had been verified by
the following research on the sparse data.

By comparing with the statistical performance of the pre-
dictive models on the training and test set, the LightGBM model
can deliver high predictive accuracy without succumbing to
overfitting. Moreover, LightGBM has the unique advantages
with a faster training speed, higher efficiency and better accuracy
than any other boosting algorithm because its histogram algo-
rithm can produce much more complex trees by leaf-wise split
approach rather than a level-wise approach. But the biggest
challenge for the LightGBM algorithm is that it is sensitive to
overfitting, especially on the small dataset. Therefore, the pa-
rameters of the LightGBM model should be carefully tested,
such as the maximum depth of tree, the minimum number of the
records for a leaf, and the fraction of data to be used for each
iteration, etc.

Random forest has become one of the most widely used ma-
chine learning algorithms in the pharmaceutical researches
because it can be used for both classification and regression tasks.
In addition, random forest also has another two advantages, which
attract the pharmaceutical scientists to bring this algorithm in their
research. One advantage is that random forest can randomly
sample the data and construct decision trees and aggregate many
decision tress to limit overfitting, which is one of the biggest
problem in machine learning30. The other advantage is that
random forest can rank the relative importance of each feature on
the prediction. Recently, Ahneman et al.10 used various machine
learning techniques to predict the reaction performance in CeN
cross-coupling. The results showed that the random forest algo-
rithm provided better predictive performance than the other five
techniques. The random forest algorithm was also used to rank the
important descriptors and the relative experiments verified its
effectiveness.

Deep learning uses multi-layered artificial neural network to
characterize the input features at different levels and then opti-
mizes the model performance through various training skills. In
fact, deep learning algorithm can not only build the predictive
models, but also have the potential to automatically learn repre-
sentations from data without introducing hand-coded rules or
human domain knowledge. Therefore, compared with simple
artificial neural networks and other machine learning techniques,
deep learning can learn directly from raw data and be more useful
for more complex problems. However, many parameters in deep
learning algorithms have to be tuned and large amount of data is
needed to come up with somewhat generalizable models. Gener-
ally speaking, the predictive accuracy of the models increases with
increased data. In the pharmaceutical formulation research, how-
ever, the available datasets are quite small, which greatly limit
further application of deep learning. Our group compared the
predictive performance of single-layer neural network model and



Figure 2 Scatter plot of predicted vs. observed complexation free energy on full dataset by three machine learning methods. The predicted

results of (A) LightGBM model, (B) random forest model, and (C) deep learning model. For all the models, an 80/10/10 split of training,

validation and test set was used to measure the predictive performance.
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deep learning model for predicting the disintegration time of oral
disintegrating tablets. The raw data comprised of 145 formula-
tions. Due to small dataset, the accuracy of the prediction was
Table 1 Statistical performance of the predictive models for

CDs complexation free energy.

Method Statistical

parameter

Training

set

Validation

set

Test

set

LightGBM R2 0.86 0.87 0.86

MAE (kJ/mol) 1.41 1.28 1.38

RMSE (kJ/mol) 1.94 1.63 1.83

RF R2 0.83 0.83 0.81

MAE (kJ/mol) 1.54 1.39 1.54

RMSE (kJ/mol) 2.17 1.89 2.11

DL R2 0.76 0.63 0.62

MAE (kJ/mol) 2.53 2.41 2.56

RMSE (kJ/mol) 3.34 3.12 3.36

RF, random forest; DL, deep learning.
only 80% on the test set15. Although deep learning has strong
predictive potential, the challenges for pharmaceutical researchers
is the limited data in the formulation prediction. Meanwhile, the
black-box of deep learning models cause many criticisms because
it is difficult to provide the explanation between input variables
and the built model. Thus, there is still lots of work to successfully
introduce deep learning into the pharmaceutical formulation
research.

As the results shown in Table 1, all three models of LightGBM,
random forest and deep learning showed high predictive accuracy
for the complexation free energy between CDs and guest mole-
cules. Based on the comparison of the MAE and R2, the predictive
performance of LightGBM model was the best, followed by the
random forest model, and then deep learning. Meanwhile, the
LightGBM algorithm had the highest efficiency as well as the
fastest training speed than another two algorithms. Furthermore,
LightGBM algorithm can also directly calculate the feature
importance, which helped to guide theoretical analysis. Thus, the
LightGBM model was the optimal model for the following
research.
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3.2. Predictive performance of LightGBM model on sparse data

Machine learning is a sub-field of artificial intelligence and data
science for new algorithms and the predictions. It is generally
accepted that gathering as much and high-quality data as possible
is the key to ensure high predictability of machine learning al-
gorithms. However, it is really difficult to obtain a large quantity
of formulation data in pharmaceutics because of long research
cycle and high cost in formulation development. Therefore, it is
significantly important to explore the exact relationship between
the size of dataset and the predictive accuracy of a machine
learning algorithm in the formulation prediction.

Current research has investigated the predictive performance of
the LightGBM model with sparse data, varying from 3000, 2500,
2000, 1500, 1000 to 500. Each dataset was split by the method of
stratified random sampling as described above. Predictive per-
formance on sparse data by the method of LightGBM for the
training and test set was shown in Fig. 3. In the training set, the
value of MAE did not change significantly with the decrease of the
dataset, fluctuating between 1.3 and 1.65 kJ/mol, and the R2 value
had small fluctuation between 0.8 and 0.9. For the test set, how-
ever, it was clearly demonstrated that a gradual erosion in the
predictive accuracy occurred from 3000 to 500. The value of MAE
increased dramatically with the decrease of dataset, from 1.38 to
2.28 kJ/mol, while the value of R2 also decreased significantly
with the decrease of dataset, from 0.86 to 0.58. Results showed
that the LightGBM predictive model still had good performance
on the training set even when the data points in dataset decreased
to 500, which demonstrated that the molecular descriptors used in
the current research could exactly captured the properties of input
variables. But the predictive performance on the test set became
significantly worse with the smaller dataset size, which showed
that the LightGBM model had a poor generalization ability on
small dataset.

In fact, machine learning tends to encounter predictive limi-
tation when substantially different guest molecules are used in the
testing set. Even though some predictive models for complexation
free energy between CDs and guest molecules had been built in
previously published papers, these models were limited to the
dataset with no more than 300 data point20,34. In current research,
the full dataset with 3000 data points had about 1320 different
chemical structures, which highly contributed to the high-
accuracy predictive ability. Therefore, one method for maxi-
mizing the extrapolative ability of a model with limited formu-
lation data maybe spread the training data across its interesting
chemical space.

On the other hand, higher quality data contributed to higher
predictive accuracy. In pharmaceutical industry, formulation data
can be gathered from the published literature and patents,
pharmaceutical companies or self-measured data. However, very
little data can be shared from pharmaceutical companies
because of confidentiality. Moreover, very few applications of
high-throughput screening methods in formulation development
leads to very limited self-measured data. The CD formulation
data in current research was collected from the published
literature, but almost all datasets from the published literature
are flawed, such as missed, repeated, experimental or analytical
errors. Furthermore, the reproductivity crisis of scientific liter-
ature leads to worse situation of the reliability of data. Thus, the
preparation of high-quality dataset is the key step in machine
learning process.
3.3. Molecular descriptor contributions for LightGBM model

In order to reveal the molecular mechanism and facilitate the
future formulation design of drugeCD complexes, the relative
importance of molecular descriptors in the model construction
were calculated. Fig. 4 listed the ranking of relative importance of
the molecular descriptors in the LightGBM model for the pre-
diction of complexation free energy, which based on the used
times of the feature in the model.

It can be clearly remarked that the major contribution to the
complexation free energy stemmed from the guest molecules,
followed by experimental conditions and CDs. The top five
important molecular descriptors with the contribution value above
700 in the LightGBM model were minimum projection radius_x,
solvent accessible surface area_x, complexity_x, XLogP3_x and
maximum projection radius_x. The minimum projection radius_x
and maximum projection radius_x both characterized the size of
guest molecules, where the minimum projection radius was more
important. The geometrical or steric parameters of guest mole-
cules are decisive rather than chemical factors because the guest
compounds with proper size are accommodated into the inner
cavity of CDs. During the process of the molecular dynamic
simulation of drugeCD complexes, the preferred binding orien-
tation of guest molecules are that the smaller ends have priority to
insert into the inner cavity of CDs. Therefore, the minimum
projection radius played the most important role in the complex-
ation process.

Solvent accessible surface area_x is the surface area of the
guest molecules accessible to a solvent. In the CD complex-
ation process, the solvent accessible surface area of guest
molecules is closely related to the transfer free energy from
the aqueous environment to the non-polar CD inner cavity.
The process that guest molecules displace the polar water
molecules from the apolar CD cavity is an energetically
favorable interactions, which can help to shift the equilibrium
to form the inclusion complexation. In general, one of the
main driving force of CD complexation is the release of
enthalpy-rich water molecules from the inner cavity, and to
gain an apolareapolar association between guest molecules
and inner cavity35.

XLogP3_x is the partition coefficient, which represents the
ratio of concentrations of the guest molecules in a mixture of
water and oil at equilibrium. The value of XLogP3 is proportional
to the hydrophobicity of a molecule, which is related to the hy-
drophobic interaction during the drugeCD complexation process.
Guest molecules with strong hydrophobicity can contribute to the
stability of the CD complexation system because of the favored
hydrophobic effect. The complexity_x of the guest molecules in
current research is defined as the topological complexity, which
can be characterized as a steric descriptor of guest molecules by
the number of atoms or bonds, branching and cyclicity, etc. To
some extent, it represents the flexibility or the rigidity of guest
molecules contributing to the CD complexation36. In a word, three
of the five most important molecular descriptors were the steric
descriptors of guest molecules, while another two were hydro-
phobic descriptors.

Apart from the five most important descriptors, molecular
weight_x, topological polar surface area_x and van der Waals
surface area_x of the guest molecules also correlated with the
complexation free energy. pH value of the experimental condi-
tions with the contribution value over 600 also showed the



Figure 3 Training and test set performance of the LightGBM model with sparse data. The data points were gradually reduced from 3000 to 500

and the smaller datasets were randomly extracted from the full datasets. A gradual increase of MAE and a significant drop of R2 occurred with the

decrease of dataset size.

1248 Qianqian Zhao et al.
importance because most of the guest molecules were either weak
acids or weak bases. The ionization of drug molecules has a great
influence on the complexation process. For example, the acidic
molecule has weak complexation capability in the alkaline solu-
tion than neutral environment. Therefore, the value of complex-
ation free energy was strongly affected by pH or the temperature
of the experimental conditions.

3.4. Experimental determination of KTPeCDs complexation
free energy

Phase solubility study has been a widely applied technique to
determine the complexation free energy for the drugeCD inclusion
complexes. Phase solubility curves of KTP with different CDs in
distilled water at 37 � 0.5 �C clearly dedicated that the aqueous
solubility of KTP linearly increased with the increasing concen-
trations of CDs except for a-CD with a low value of R2 (shown in
Table 2), which could be identified asAL type

24. Concerning that the
value of all the slopes in KTPeCD solubility curves was less than
unity, the stoichiometry may be supposed to be 1:1 (except for a-
CD). In order to avoid the deviations of intercepts, the stability
constants were calculated based on the intrinsic solubility of KTP.
The complexation free energywas calculated to�18.178 kJ/mol for
Hp-b-CD,�18.021 kJ/mol for DMe-b-CD and�17.876 kJ/mol for
SBE, which showed no big difference between KTP and these three
b-CD derivatives. But the calculated binding free energy between
KTP and three parent CDs showed an order of b-CD
(�16.489 kJ/mol) < g-CD (�11.986 kJ/mol) < a-CD. Therefore,
the solubilization effect of CD derivatives on KTP was significantly
stronger than that of native CDs.

3.5. MD simulation calculation of KTPeCDs complexation free
energy

The MM-PBSA is a widely used method to calculate the
complexation free energies for the CD complexation in the solvent
by MD simulation. The calculated complexation free energy and
energy components of KTPeCD inclusion complexes by MD
simulations were shown in Table 3. The binding free energy by the
MM-PBSA showed the order of Hp-b-CD < Me-b-CD < SBE-b-
CD < b-CD < g-CD < a-CD, which was well in agreement with
the order determined by the phase solubility study. However, the
absolute values by the MD simulation were relatively larger than
those of the experimental determinations because MD simulations
were performed in the ideal state without any consideration for the
aggregation of CD molecules. In addition, KTP molecule could



Figure 4 The relative importance of the molecular descriptors in the LightGBM model. Molecular descriptor with the suffix of x represented

the descriptor of guest molecules, while with the suffix of y meant the descriptor of cyclodextrins. pH and T (K) represented the experimental

conditions in the phase solubility study. The relative importance of molecular descriptors was determined by the measuring the number of times of

the features used in the LightGBM model.
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not be entrapped by the inner cavity of a-CD and the KTP-a-CD
system did not obtain equilibrium. Thus, the binding free energy
of the KTP-a-CD system could not be calculated.

The final binding free energy was made up of four energy
components: non-bonded ELE, VDW, PBSOL and total entropy.
The VDW showed the highest contribution to the stability of the
complexes, followed by TDS and the ELE. In fact, the inclusion of
a guest molecules in the CD cavity is the displacement of
entrapped polar water molecules from the hydrophobic inner
cavity by the polar guest molecules. Thus, the complexation
equilibrium was driven by the favorable electrostatic energy and
Table 2 Phase solubility study of ketoprofen with different CDs in

System Equation

KTP-a-CD y Z 0.007x þ 1.157

KTP-b-CD y Z 0.397x þ 1.038

KTP-g-CD y Z 0.103x þ 0.999

KTP-Hp-b-CD y Z 0.559x þ 0.744

KTP-DMe-b-CD y Z 0.544x þ 1.046

KTP-SBE-b-CD y Z 0.530x þ 1.423

aStability constant.
bCorrelation coefficient.
cGibbs free energy at the temperature of 37 � 0.5 �C.
van der Waals, which was closely related to the geometric prop-
erties, ionized conditions, hydrogen bond donors or acceptors of
the guest molecules. The dis-favorable solvation free energy
stemmed from two factors: (1) the polar/apoplar interaction be-
tween entrapped water molecules and the CD inner cavity, and (2)
the polar/apoplar interaction between free water molecules and
guest molecules, which heavily depended on the hydrophobic
properties of guest molecules. According to the analysis of rela-
tive importance of the molecular descriptors (shown in Fig. 4), six
of top ten important descriptors in predicting the complexation
free energy were the geometric properties, while three reflected
distilled water at 37 � 0.5 �C.
Kc

a (L/mol) R2b DGc (kJ/mol)

6.408 0.578 N/A

598.523 0.993 �16.489

104.388 0.983 �11.986

1152.340 0.985 �18.178

1084.530 0.999 �18.021

1025.145 0.993 �17.876



Table 3 Calculated complexation free energy and energy components of KTPeCD inclusion complexes by MD simulation.

System ELE VDW PBSOL PBTOT (kcal/mol) TDS (kcal/mol) DG (kcal/mol) DG (kJ/mol)

a-CD N/A N/A N/A N/A N/A N/A N/A

b-CD �7.82 �25.91 16.95 �16.78 �13.21 �3.57 �14.94

g-CD �9.41 �26.38 18.71 �17.08 �13.81 �3.27 �13.68

Hp-b-CD �10.33 �33.21 23.41 �20.14 �14.06 �6.08 �25.44

DMe-b-CD �6.89 �29.06 16.7 �19.24 �14.28 �4.96 �20.75

SBE-b-CD �10.25 �27.45 19.02 �18.68 �13.44 �4.94 �20.67

ELE, electrostatic energy as calculated by the MM force field; VDW, van der Waals contribution from MM; PBSOL, non-polar and polar con-

tributions to solvation; PBTOT, binding enthalpy; TDS, total Entropy. Temperature has been multiplied in as 310 K.
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the hydrophobic properties and one related to the ionized condi-
tions of guest molecules. Thus, the analytical results of machine
learning model further elucidated the factors and specific prop-
erties governing the binding free energy of the drugeCD
complexation, which provided deep insight into the molecular
interaction between the guest molecules and CDs.

3.6. Comparison of the experimental, theoretical and predicting
results of KTPeCDs complexes

To demonstrate the predictive performance of built LightGBM
model relative to typical MD simulation calculation, the com-
parison of complexation free energy between KTP and CDs pro-
vided by the experimental determination, MD simulation
calculation and LightGBM prediction were performed as shown in
Fig. 5. Taking the experimental results as a reference, LightGBM
model showed high accuracy predictability with the MAE value of
1.282 kJ/mol, while the MD simulation calculation presented a
large deviation with the MAE value of 3.206 kJ/mol. Traditional
development of CD formulations primarily relies on the experi-
mental trial-and-error and limited understanding of the physico-
chemical properties of guest molecules, which lead to high cost
and long research process. Simulation-based calculation and data-
driven predictive model provide alternatives to experimental
determination as implementation of pre-formulation screens. Due
to the limitation of computing capacity and empirical force field,
molecular simulations encounter the difficulty to mimic the real
experimental process and thus generate larger deviation. However,
molecular modeling is able to provide the structural, dynamic and
energetic information of the CDs systems. Thus, among these
Figure 5 Complexation free energy between ketoprofen and

various cyclodextrins by the experimental determination (DG_Ex-

periment), MD simulation calculation (DG_MD simulation) and

LightGBM prediction (DG_LightGBM).
three major strategies of formulation design, machine learning
predictive model demonstrated significant advantages, not only
with high predicting accuracy and efficiency, but also increasing
understanding about the molecular interaction of the drugeCD
complexation process. On the other hand, the main difficulty of
data-driven machine learning model is large amount of reliable
data. The integration of these three approaches (experiment, mo-
lecular modeling and data-driven machine learning) will be the
main challenge in the next step.

Linear regression is the traditional tool to establish a predicting
model in CD systems20. Katritzky and co-workers built QSAR
multiple regression models with a dataset of 218 compounds to
predict the complexation free properties between diverse guest
molecules and b-CDs37. Many other published reports also
applied multiple linear regression analysis to build predicting
models between guests and a-CDs/g-CDs36e39. Even though
some of these models showed good fit between input variables and
complexation free energy, their application range were severely
limited because their predictive ability was generally applicable to
only guest molecules with similarly chemical structures10,40,41.

In addition, there were several prediction models by the ma-
chine learning methods, most of the predicting results for the test
set were significantly poorer than those for the training set because
of very limited dataset of no more than 300 data points, which
made susceptible to overfitting and chance correlation42. Mean-
while, previous efforts primarily focused on the native CDs, while
there were very few applications of machine learning to predict
the complexation free energy of CD derivatives. Merzlikine and
co-workers22 applied cubist and random forest to build up the b-
CDs and SBE-b-CDs complexation models, which was the first
study to establish a predictive model for b-CDs derivatives.
Furthermore, these predictive models were only applicable for one
specific CDs, not general to all CDs. The dataset of current
research comprised of 3000 data points with 1320 different
structures of chemicals. Thus, the prediction models presented
high accuracy both on the training and test set, which demon-
strated the generalization ability of prediction models was
significantly better than those of the past models.

Until now, great efforts have been made to elucidate the
possible intermolecular interaction and molecular forces which
may contribute to the stability of the inclusion complexes43e45.
The binding forces for the formation and affinity of CD inclusion
complexes include hydrophobic interaction, van der Waals inter-
action, hydrogen bonding, relief of high-energy water, and relief
of conformational strain energy8,46,47. However, the relative
contributions and even the nature of the different forces in the
complexation process are still uncertain48,49. Thus, although
complexation free energy had been determined for thousands of
drugeCD complexes, it is still unable to fast and accurately
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predict the actual complexation free energy of a complexation
between a given CD and a given drug molecule in a given con-
dition, and then to identify whether the drugeCD complexation
could be feasible or successful in the formulations. In current
research, the relative importance of each molecular descriptor in
the LightGBM model for the prediction of complexation free
energy not only help us to understand the molecular mechanism
of CD complexation, but also to make a pre-formulation screening
for the complexation free energy between CDs and guest
molecules.
4. Conclusions

Vast resources and time are currently spending on the determi-
nation or calculation of complexation free energy between CDs
and molecules. The research successfully established predictive
models for the complexation free energy between CDs and guest
molecules by three machine learning methods. The LightGBM
model showed the highest prediction accuracy. The full dataset
comprised of 3000 formulation with 1320 different structures.
Therefore, the prediction models showed high predictive accuracy
and good generalization ability without succumbing to overfitting.
Furthermore, input variables included the molecular descriptors of
compounds and experimental conditions, which indicated that the
prediction models were not only applicable to specific CDs but to
all CDs. Introducing experimental conditions into input variables
to construct predictive models was also the first attempt in CD
systems, which has significantly practical guidance on the CD
formulation preparation. In addition, the predictive accuracy of
LightGBM model on the sparse data decreased with the decreased
size of dataset. The calculation of molecular descriptor contribu-
tions provided a clear framework about the factors that affect the
complexation free energy between the CDs and guest molecules.
Comparison with molecular modeling, the predictive models
showed better agreement with experimental determination. How-
ever, currently research was only applicable to the drugeCD bi-
nary systems. Our future research will build the predictive models
for the ternary or multiple-component CD systems and improved
understanding of the molecular mechanism of these systems by
integrated machine learning and molecular modeling techniques.

In a word, the inspiration from current research is that machine
learning method can help to rule out useless avenues of formu-
lation design and increase the efficiency of formulation researches,
which will be especially important to early drug discovery with
very scarce or expensive compounds and to the complicated
formulation composition. Moreover, the prediction models can
also help us to identify the key factors of formulation components
and process parameters. The integrated methodology of machine
learning and molecular modeling approaches will also help us to
simplify formulation design and improve the productivity of other
pharmaceutical formulation development.
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