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Abstract
Multiple geological and climatic events have created geographical or ecological bar-
riers associated with speciation events, playing a role in biological diversification in 
North and Central America. Here, we evaluate the influence of the Neogene and 
Quaternary geological events, as well as the climatic changes in the diversification 
of the colubrid snake genus Rhadinaea using molecular dating and ancestral area 
reconstruction. A multilocus sequence dataset was generated for 37 individuals of 
Rhadinaea from most of the biogeographical provinces where the genus is distributed, 
representing 19 of the 21 currently recognized species, and two undescribed spe-
cies. Our analyses show that the majority of the Rhadinaea species nest in two main 
clades, herein identified as “Eastern” and “Southern”. These clades probably diverged 
from each other in the early Miocene, and their divergence was followed by 11 di-
vergences during the middle to late Miocene, three divergences during the Pliocene, 
and six divergences in the Pleistocene. The ancestral distribution of Rhadinaea was 
reconstructed across the Sierra Madre del Sur. Our phylogenetic analyses do not 
support the monophyly of Rhadinaea. The Miocene and Pliocene geomorphology, 
perhaps in conjunction with climate change, appears to have triggered the diversifi-
cation of the genus, while the climatic changes during the Miocene probably induced 
the diversification of Rhadinaea in the Sierra Madre del Sur. Our analysis suggests 
that the uplifting of the Trans- Mexican Volcanic Belt and Chiapan– Guatemalan high-
lands in this same period resulted in northward and southward colonization events. 
This was followed by more recent, independent colonization events in the Pliocene 
and Pleistocene involving the Balsas Basin, Chihuahuan Desert, Pacific Coast, Sierra 
Madre Occidental, Sierra Madre Oriental, Sierra Madre del Sur, Trans- Mexican 
Volcanic Belt, and Veracruz provinces, probably driven by the climatic fluctuations 
of the time.
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1  | INTRODUC TION

Inferring the evolutionary history of groups in a particular region 
is the first step in elucidating the processes by which the region's 
fauna originated (Colston et al., 2013). Multiple biogeographical 
and phylogeographical studies of groups with broad distributions 
through North and Central America are illustrative in this context 
(e.g., Bryson et al., 2011; Burbrink et al., 2008; Fritz et al., 2012; 
Hofmann & Townsend, 2017; Phillips et al., 2015). Within this area, 
the Mexican Transition Zone (MTZ) is a complex, distinguishable 
area where Neotropical and Nearctic biotas overlap, spanning the 
region from the southwestern deserts of the United States and 
northern Mexico to the dry and humid forests of the Nicaraguan 
lowlands (Morrone, 2010).

Across the North and Central American regions, multiple geo-
logical and climatic events resulting from a complex orogeny and 
paleoclimatic conditions acted as geographical or ecological barri-
ers associated with the speciation and diversification of many taxa 
(e.g., Bryson, et al., 2011; Daza et al., 2010; Ferrusquía- Villafranca & 
González- Guzmán, 2005; Vanzolini, 1970). Some of the events that 
are considered of major importance or that have received the most 
attention are as follows: (a) The Mississippi River Basin (MR) (Burbrink 
et al., 2000), which was involved in the divergence of many marine 
and terrestrial taxa during the Pleistocene (Soltis et al., 2006); (b) the 
last formation of three of the four major mountain ranges in Mexico 
(i.e., the Sierra Madre Occidental [SMOc], Sierra Madre Oriental 
[SMOr], and Sierra Madre del Sur [SMS]; Ferrusquía- Villafranca & 
González- Guzmán, 2005) during the Paleogene and early Neogene 
(Padilla y Sánchez, 2007), which probably predate the origin of 
most extant species (Bryson et al., 2012); (c) the formation of the 
Trans- Mexican Volcanic Belt (TVB) during the Neogene (~20– 1 mil-
lion years [Ma]) (Ferrari et al., 2012; Gómez- Tuena et al., 2007) in 
four major orogenic events (Ferrari et al., 2012) that undoubtedly 
affected both the timing and tempo of the biota diversification 
(Bryson et al., 2012a, 2012b); (d) the faulting and marine introgres-
sions across the Isthmus of Tehuantepec (IT) in southeastern Mexico 
around 3 Ma (Mulcahy et al., 2006), a region which is a narrow 
lowland area that has been identified as a biogeographical barrier 
for many upland taxa (Castoe et al., 2009); (e) the Nicaraguan de-
pression (ND), an area that presented different states of terrestrial 
conformation during the Neogene (2.5– 23 Ma) (Funk et al., 2009) 
and probably presented a lowland biogeographical barrier to some 
taxa (Daza et al., 2010); (f) the Panama Isthmus in southern Central 
America, another narrow area that was completely conformed 
during the Pliocene (3.5 Ma), which has separated numerous taxa 
between Central and South America (Mendoza et al., 2019); and 
(g) the climatic fluctuations during the Pleistocene (0.01– 2.5 Ma) 
(Vanzolini, 1970) that conditioned the diversification of a variety of 
taxa across the American continent through the repeated expansion 
and contraction of coniferous forests, leading isolated populations 
of forest- adapted taxa to speciation (Haffer, 1969, 1997).

These events, in addition to other physiographic conditions, 
such as river drainages within the major sierras, basins, and faults, 

are considered to act as biogeographical barriers (Bryson, Murphy, 
et al., 2011; Bryson et al., 2007; Daza et al., 2010; León- Paniagua 
et al., 2007), yet the effectiveness of these barriers in isolating lin-
eages throughout the past several million years remains to be clari-
fied (Bryson et al., 2012a, 2012b; García- Vázquez et al., 2018).

The colubrid snakes of the genus Rhadinaea are slender, diurnal, 
medium-  to small- sized snakes that are characterized by longitudinal 
dark stripes along the dorsal scales (Figure 1), a small subpreocu-
lar scale inserted between the corners of two supralabial scales 
at the anteroventral edge of the orbit, the same number of longi-
tudinal dorsal scale rows throughout the body, and maxillary teeth 
without grooves posterior to the diastema (Myers, 1974, 2011; 
Palacios- Aguilar & García- Vázquez, 2020). Currently, 21 species 
of Rhadinaea are recognized and arranged into five morphological 
groups (García- Vázquez et al., 2018; Myers, 2011; Palacios- Aguilar 
& García- Vázquez, 2020). The genus is present in North and Central 
America from southeastern United States to Panama, with discon-
tinuities across the Chihuahuan Desert, southern Guatemala, El 
Salvador, Honduras, and central Nicaragua (Table 1) (Myers, 1974, 
2011). The most speciose and widely distributed of these groups is 
the decorata group, represented by 12 species mainly distributed 
over the Mexican Sierras (García- Vázquez, 2012; García- Vázquez 
et al., 2009; García- Vázquez, Pavón- Vázquez, et al., 2018; Luría- 
Manzano et al., 2014; Pérez- Higareda et al., 2002; Sánchez- García 
et al., 2019; Torres- Carvajal et al., 2019); the taeniata group is en-
demic to Mexico and is composed of three species distributed in 
central Mexico (Canseco- Márquez & Gutiérrez- Mayén, 2010; García- 
Sotelo et al., 2018; García- Vázquez, Pavón- Vázquez, et al., 2018; 
Myers, 1974); the flavilata group is comprised of two species with 
allopatric distributions in North America (Auth et al., 1999; Lares 
et al., 2013; Walley, 1999); and the calligaster and vermiculaticeps 
groups are restricted to Central America (Myers, 1974). In addition 
to these 21 species, the existence of two undescribed species has 
been suggested based on their morphology and previous analyses 
(pers. obs.).

F I G U R E  1   A living specimen of Rhadinaea taeniata, spotted 
in Sierra del Tigre, Quitupan, Jalisco, in 2013. Photography by 
Christoph I. Grünwald
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The systematics of Rhadinaea has been poorly studied, and, to 
date, the arrangements of Myers (2011) are predominant. A recent 
study (Palacios- Aguilar & García- Vázquez, 2020) using a mitochondrial 
fragment of DNA provides a comprehensive insight into the phyloge-
netic relationships of this Neotropical snake genera, supporting the 
reciprocal monophyly of Rhadinaea and Rhadinella (a former Rhadinaea 
group separated by morphological evidence by Myers [2011]), and 
a close relationship with Coniophanes as a sister group (as previ-
ously suggested by several authors; e.g., Bailey, 1939; Cadle, 1984; 
Myers, 1974; Zaher et al., 2019). Additionally, Rhadinophanes is a 
monotypic genus that is considered the sister group of Rhadinaea and 
Coniophanes (Cadle, 1984; Myers & Campbell, 1981), a relationship 
that has not been tested using molecular data. To explore their mono-
phyly and evolutionary history, Palacios- Aguilar and García- Vázquez 
(2020) suggest that it is necessary to include more representatives of 
the genera using more molecular markers.

To date, the five groups composing Rhadinaea are sorted out 
based on their color patterns, which are the most informative char-
acter to distinguish them, even among species within Rhadinaea 
(Myers, 1974, 2011). However, the reciprocal monophyly of the 
groups is still to be assessed (García- Vázquez, Pavón- Vázquez, 
et al., 2018). On the other hand, according to Myers (1974), the ori-
gin of Rhadinaea is related to the dispersal of an ancestor related to 
Rhadinella (former godmani group), in which geographical isolation 

and the subsequent evolution of terminal populations occurred, 
probably after unfavorable climatic changes or flooding that created 
barriers of lowland regions, such as the IT and the ND (Myers, 1974); 
yet, other geographical barriers corresponding to the distribution of 
the genus, such as the formation of the TVB or climatic events, are 
not discussed.

In this work, we describe the phylogenetic relationships of 
Rhadinaea to evaluate the role of major orogenic events and 
Pleistocene climatic fluctuations on lineage diversification. Samples 
of the five recognized groups and two undescribed species of 
Rhadinaea were included (R. cf. marcellae and R. cf. taeniata). Two 
mitochondrial and two nuclear loci were sequenced. We inferred 
the phylogenetic relationships and a time- calibrated tree from these 
data. Finally, ancestral ranges were reconstructed at each diver-
gence event. The resulting patterns of diversification are discussed 
in the context of mountain formations and climatic change.

2  | MATERIAL S AND METHODS

2.1 | Taxon sampling and laboratory methods

In this study, we cover 37 samples of Rhadinaea, including most of the 
currently recognized species of the genus (Figure 2; Appendix S1), 

F I G U R E  2   Sampling localities for the genetic samples used in this study (see Appendix S1). Black lines indicate political boundaries; red lines 
indicate biogeographic regions (Escalante et al., 2013; Löwenberg- Neto, 2014; Morrone et al., 2017). Alleghanian Region (ALLE); Balsas Basin 
(BB); Chiapas (CHIS); Chihuahuan Plateau (CHIH); Gatuso- Talamanca (G- T); Pacific Lowlands (PAC); Puntarenas- Chiriquí (P- CH); Sierra Madre 
Occidental (SMOc); Sierra Madre Oriental (SMOr); Sierra Madre del Sur (SMS); Trans- Mexican Volcanic Belt (TVB); and Veracruz (VER)
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with the exception of R. sargenti and R. vermiculaticeps, two species 
that are rarely found within biological collections. Samples from 
two undescribed species from the TVB were also included. To in-
crease geographic representativeness for species with a wide dis-
tribution range, a sample per biotic region was included, following 
the biogeographical regionalization of North America (Escalante 
et al., 2013), Mexico (Morrone et al., 2017), and Neotropical America 
(Löwenberg- Neto, 2014).

In order to test the monophyly of Rhadinaea, we added one rep-
resentative of Coniophanes imperialis, Rhadinella godmani, Rhadinella 
hempsteade, Rhadinella lachrymans, and Rhadinophanes monti-
cola given the evidence that they are close relatives to this genus 
(Cadle, 1984; Myers, 1974, 2011; Myers & Campbell, 1981). Finally, 
to time- calibrate our phylogenetic tree, sequences from three colu-
brid genera and two close relatives within Caenophidia were incor-
porated (Grazziotin et al., 2012; Pyron et al., 2011; Zaher et al., 2019; 
Appendix S1).

Partial sequences of the mitochondrial gene coding for the cy-
tochrome b (cytb), NADH dehydrogenase subunit 4 (ND4); complete 
sequences of the noncoding tRNA- His and tRNA- Ser; partial se-
quences of the noncoding tRNA- Leu; partial sequences of the nu-
clear genes coding for oocyte maturation factor (cmos) and dynein 
axonemal heavy chain 3 (DNAH3) were obtained for all the 37 in-
dividuals of Rhadinaea and five outgroup individuals. Loci were se-
lected as they previously showed to be informative at different levels 
of divergence between snakes (Bryson, García- Vázquez, et al., 2011; 
Bryson, Murphy, et al., 2011; Lawson et al., 2005; Myers et al., 2017). 
Primer sequences for cmos were given by Lawson et al. (2005) and 
Saint et al. (1998); for cytb by Burbrink et al. (2000), de Queiroz 
et al. (2002), and Slowinski and Lawson (2002); for DNAH3 by 
Townsend et al. (2008); and for ND4 by Arévalo et al. (1994), Forstner 
et al. (1995). Also, additional internal primers were designed in this 
study. See Appendix S2 for primer sequences, technical details on 
DNA sequencing, and sequence edition.

2.2 | Phylogenetic inference

With regard to testing incongruences among mitochondrial and 
nuclear loci, we performed Bayesian inference (BI) and maximum- 
likelihood (ML) separate analyses for each nuclear and mitochondrial 
locus. The best- fitting substitution models and partition schemes 
were selected jointly using the Bayesian information criterion in the 
software PartitionFinder 2 (Lanfear et al., 2016). BI analysis was con-
ducted using MrBayes 3.2.7a (Ronquist et al., 2012) with four Monte 
Carlo Markov chains (MCMC), sampling every 5,000 generations for 
100 million generations. Output parameters were visualized using 
Tracer 1.7.1 (Rambaut et al., 2018) to ascertain stationarity and con-
vergence. The first 25% of generations were discarded as burn- in to 
obtain a majority rule consensus tree using the command sumt. ML 
analysis was conducted using raxmlGUI (Silvestro & Michalak, 2012) 
under the GTRGAMMA model (Stamatakis, 2006) with 1,000 non-
parametric bootstrap replicates to assess nodal support.

Additionally, all nuclear and mitochondrial datasets were com-
bined into one dataset after independent analyses established the 
congruence between topologies and levels of support between the 
IB and the ML analyses, using the same partitions and models of evo-
lution suggested by PartitionFinder 2 (Lanfear et al., 2016), and the 
concatenated matrix was analyzed under BI and ML approaches fol-
lowing the above specifications and settings in each program. Nodes 
were considered strongly supported if their Bayesian posterior 
probability (pp) was ≥0.95 and their bootstrap (bs) value was ≥70% 
(Huelsenbeck & Rannala, 2004).

2.3 | Divergence times

Divergence dates and phylogeny were estimated simultaneously 
using a relaxed Bayesian molecular clock framework implemented in 
BEAST 2.4.8 (Bouckaert et al., 2014) using the concatenated data-
set. For this purpose, our multilocus dataset was analyzed with an 
uncorrelated lognormal clock and node constraints obtained from 
the fossil record under lognormal distributions, also including a 
single representative of each species, except for R. gaigeae, R. mon-
tana, and R. quinquelineata (see Discussion), based on the complete-
ness of the samples and variation within the sampled sequences 
(<9.2% uncorrected p distance values). The partitions and models 
for this analysis were estimated using bModelTest (Bouckaert & 
Drummond, 2017). Four fossil calibration points of Colubridae and 
related groups were used (see Appendix S3 for technical details on 
calibration points), while analyses were run for 100 million genera-
tions; samples were retained every 5,000 generations and a Yule 
birth- death prior was specified. Results were displayed in Tracer 
1.7.1 to confirm the proper mixing and likelihood stationarity of the 
MCMC analyses, appropriate burn- in, as well as adequate, effective 
sample sizes (>200 for each estimated parameter). After discarding 
the initial 20% of the samples as burn- in, the parameter values of the 
posterior samples were summarized on a maximum clade credibil-
ity tree using TreeAnnotator 1.8.2 (Rambaut & Drummond, 2014), 
setting the posterior probability limit to 0.1, and summarizing mean 
node heights.

2.4 | Ancestral area reconstruction

Ancestral ranges at each divergence event were reconstructed using 
the Bayesian binary Monte Carlo analysis (BBM) and dispersal– 
extinction– cladogenesis (DEC) implemented in RASP 2.0 (Yu 
et al., 2011). This program can determine the probability of an ances-
tral range at a node by averaging a posterior set of trees and thereby 
accounting phylogenetic uncertainty (Bryson et al., 2013). A total of 
16,000 post- burn- in trees and the condensed maximum clade cred-
ibility tree obtained in the BEAST analysis were loaded from the di-
vergence time analysis into RASP, removing the outgroups and the 
Rhadinella clade using the “remove selected groups” tool that is im-
plemented in the same program. According to the distribution of each 
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species (Table 1), each sample of the calibrated phylogeny was as-
signed to the following 14 terminal biogeographical regions (Escalante 
et al., 2013; Löwenberg- Neto, 2014; Morrone, 2017): (1) Alleghanian 
Region (ALLE); (2) Balsas Basin (BB); (3) Chiapas (CHIS); (4) Chihuahuan 
Plateau (CHIH); (5) Chocó- Darién (CH- DA); (6) Gatuso- Talamanca 
(G- T); (7) Pacific Lowlands (PAC); (8) Puntarenas- Chiriquí (P- CH); (9) 
Sierra Madre Occidental (SMOc); (10) Sierra Madre Oriental (SMOr); 
(11) Sierra Madre del Sur (SMS); (12) Trans- Mexican Volcanic Belt 
(TVB); (13) Veracruz (VER); and (14) Yucatán (YUC). The probabilities 
for the nodes in the phylogeny were estimated, whereas the analy-
sis was conducted for 10 million generations by sampling each 1,000 
using ten chains, and the first 25% of the generations were discarded 
as burn- in for BBM. For DEC analysis, we set the dispersal rate all 
equal among the defined areas, performing 100 replicas.

3  | RESULTS

3.1 | Phylogenetic inference

Individual genealogies obtained using IB and ML did not share the 
same topology, as these genealogies show numerous nonsupported 
nodes and polytomies; however, we did not observe discordances 
between ML and IB reconstructions for each gene in shared sup-
ported nodes, where all of these were congruent (Appendix S4). 
Due to this situation, we assumed that the phylogenetic information 
that each sequence dataset provided could be combined to obtain a 
more accurate phylogeny, whereas congruent data can be combined 
to yield phylogenies that do not represent organismal history accu-
rately (Cunningham, 1997; Hipp et al., 2004).

The final concatenated dataset consisted of 2,899 aligned nucleotide 
positions. The partitions and models that best fitted the data were as fol-
lows: cytb third position and DNAH3 third position, GTR+G; cytb second 
position, tRNA- His, ND4 first position and ND4 third position, GTR+I+G; 
cytb second position and ND4 second position, TVM+I+G; tRNA- Ser, 
TVMEF+G; tRNA- Leu, TVMEF+G; cmos first position and DNAH3 first 
position, TRN+I+G; cmos second position, TRN+I; cmos third position, 
HKY+I; and DNAH3 second position, K81UF+I. All sequences were de-
posited in GenBank (Appendix S1). ML and BI concatenated analyses 
resulted in highly congruent phylogenetic trees, presenting the same 
topology strongly supporting most clades (Figure 3).

Our phylogenetic analyses did not support the monophyly of 
Rhadinaea (Figure 3), showing Rhadinaea calligaster as the sister taxon 
of Rhadinella, a relationship strongly supported in both analyses. The 
rest of the genus species were grouped into two strongly supported 
main clades, which are defined below: an eastern clade (Eastern clade, 
Figure 3) composed of mostly eastern species (Rhadinaea cuneata, R. 
flavilata, R. forbesi, R. gaigeae, R. laureata, R. macdougalli, R. cf. marcel-
lae, R. marcellae, R. montana, and R. quinquelineata), distributed across 
the ALLE, SMOc, SMOr, SMS, TVB, and VER; and a southern clade 
(southern clade, Figure 3) composed mostly of western and southern 
species (Rhadinaea bogertorum, R. decorata, R. fulvivittis, R. hesperia, R. 
myersi, R. nuchalis, R. omiltemana, R. pulveriventris, R. taeniata, and R. cf. 

taeniata), distributed across the BB, CH- DA, CHIH, CHIS, G- T, P- CH, 
PAC, SMOr, SMOc, SMS, TVB, and VER.

Within the Eastern clade, R. quinquelineata is paraphyletic with 
respect to R. gaigeae, and R. montana is paraphyletic with respect 
to R. gaigeae and R. quinquelineata, with a low support value in both 
analyses (Figure 3). These species represent the sister group of R. 
flavilata, and in turn, these last haplotypes represent the sister group 
of R. laureata; the sampled haplotypes of R. marcellae are recovered 
as monophyletic with a low support value in the BI analysis (Figure 3) 
and represent the sister group of R. cf. marcellae. These species are 
recovered as the sister group of R. macdougalli with a low support 
value in the BI analysis (Figure 3); and these species represent the 
sister group of R. cuneata + R. forbesi. Finally, the clade composed of 
R. flavilata, R. gaigeae, R. laureata, R. montana, and R. quinquelineata 
represents the sister group of the clade composed by R. cuneata, R. 
forbesi, R. macdougalli, R. marcellae, and R. cf. marcellae, a relationship 
that is strongly supported (Figure 3).

Within the southern clade, R. hesperia + R. nuchalis represent the 
sister group of R. myersi + R. omiltemana, with a low support value in 
the BI analysis (Figure 3). In turn, all of these species represent the 
sister group of R. fulvivittis + R. taeniata with a low support value in 
the BI analysis (Figure 3). R. cf. taeniata represents the sister group 
of these mentioned species as well as R. bogertorum. On the other 
hand, R. decorata is recovered as the sister group of R. pulveriventris 
with a low support value in the BI analysis (Figure 3). Finally, the 
clade composed by R. bogertorum, R. fulvivittis, R. hesperia, R. myersi, 
R. nuchalis, R. omiltemana, R. taeniata, and R. cf. taeniata represents 
the sister group of R. decorata + R. pulveriventris, a relationship that 
is strongly supported (Figure 3).

Coniophanes is observed as the sister group of Rhadinaea (except 
R. calligaster), which is a relationship strongly supported only in ML 
analysis. Rhadinophanes monticola is recovered as a sister group of 
Rhadinaea calligaster + Rhadinella, and this relationship is only sup-
ported in the ML analysis (Figure 3).

3.2 | Divergence times

Our multilocus analysis produced a reconstruction for Rhadinaea 
with moderate resolution and node support (75% of nodes with 
pp > 0.95). In the calibrated tree, the same clades as phylogenetic 
analyses were recovered, as well as the relationships between the 
clades. The dated phylogeny suggests that the diversification of 
Rhadinaea (except Rhadinaea calligaster) probably began in the early 
Miocene (20.9 Ma) (Figure 4) with a basal divergence between major 
clades (Eastern clade and southern clade) in the early Miocene 
(16.8 Ma). Several divergences appear to have occurred during 
the Miocene within Eastern and southern clades (Figure 4). In the 
Eastern clade, a basal divergence is observed between the clade 
composed of R. cuneata, R. forbesi, R. macdougalli, R. marcellae, and R. 
cf. marcellae, and the clade consisting of R. flavilata, R. gaigeae, R. lau-
reata, R. montana, and R. quinquelineata (14.3 Ma), followed by four 
splits among these species. In the southern clade, a basal divergence 
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is observed between the clade composed of R. bogertorum, R. ful-
vivittis, R. hesperia, R. myersi, R. nuchalis, R. omiltemana, R. taeniata, 
and R. cf. taeniata, and the clade consisting of R. decorata and R. 
pulveriventris (14.2 Ma), followed by five splits among these species. 
Our estimates placed the remaining divergences within the Eastern 
and southern clades during the Pliocene and Pleistocene (Figure 4).

The divergence time estimates also show the divergence 
between Rhadinaea +Coniophanes and Rhadinaea calligas-
ter + Rhadinella + Rhadinophanes during the early Miocene (21 Ma) 
(Figure 4), and the divergence between Rhadinaea calligaster and 
Rhadinella occurs during the middle Miocene (11.4 Ma) (Figure 4).

3.3 | Ancestral area reconstruction

The BBM and DEC analyses using the dated multilocus phylogeny 
obtained in BEAST were conducted excluding R. calligaster (see 
Discussion). For the DEC analysis although some ambiguity and pos-
sible alternative resolutions exist, the results were consistent with 

BBM analysis (Appendix S5). Because BMM shows highest resolu-
tion at nodes, we considered it most likely for the hypotheses here. 
Also, the estimation of ancestral area marginal probabilities taking 
into account phylogenetic uncertainty (Bayesian- like) has been sug-
gested to reduce uncertainty in the biogeographical reconstruction 
(Nylander et al., 2008). However, we comment about the major dif-
ference of DEC respect to BBM.

The RASP analyses showed that the diversification of Rhadinaea 
likely began in the early Miocene in an ancestor widely distributed 
across the SMS, approximately 16.8 Ma (Figure 5). The Eastern clade 
distributed across ALLE, SMOc, SMOr, SMS, TVB, and VER split be-
tween 0.8 and 14.8 Ma into 12 lineages (Figure 5). During the Miocene, 
an initial vicariant event in the SMS split the most recent common an-
cestor (MRCA) of R. flavilata, R. gaigeae (SMOr), R. laureata, R. montana 
(SMOr, VER), and R. quinquelineata (SMOr, TVB) from the MRCA of 
R. cuneata, R. forbesi, R. macdougalli, R. marcellae, and R. cf. marcellae 
(14.8 Ma), this event was recovered as a dispersal event by DEC; fol-
lowed by four colonization events during the late Miocene: one by 
the MRCA of R. flavilata, R. gaigeae (SMOr), R. montana (SMOr, VER), 

F I G U R E  3   Phylogeny of Rhadinaea 
(BI analyses are shown) and close groups 
inferred from maximum- likelihood and 
Bayesian inference analyses from the 
DNA concatenated matrix. Black dots 
represent strongly supported nodes 
(bootstrap value ≥70; Bayesian posterior 
probability value ≥0.95). Numbers at other 
nodes are bootstrap/Bayesian posterior 
probability values for poorly supported 
nodes in one or both analyses (marked 
with a slash)
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and R. quinquelineata (SMOr, TVB) from SMS to ALLE (not resolved 
in DEC), and R. laureata from SMS to SMOc and TVB (11.2 Ma); fol-
lowed by the dispersal of the MRCA of R. gaigeae (SMOr), R. montana 
(SMOr, VER), and R. quinquelineata (SMOr, TVB) from ALLE to SMOr 
(8.9 Ma); another by the MRCA of R. macdougalli, R. marcellae, and R. 
cf. marcellae from SMS to VER (6.8 Ma); followed by the dispersal of 
R. macdougalli from VER to SMS (5.6 Ma) (Figure 5), for these last two 
events DEC suggest an ancestral area comparted on SMS and VER.

During the Pliocene, one vicariant event took place in the SMOr 
between R. montana (SMOr) and the MRCA of R. gaigeae (SMOr), R. 
montana (VER), and R. quinquelineata (SMOr, TVB) (5.1 Ma). During 
the Pleistocene, a vicariant event is observed in the SMOr between 
R. gaigeae (SMOr) and R. quinquelineata (SMOr) (1.4 Ma), as well as 
four colonization events (Figure 5): BBM suggests two events from 
SMOr to VER (R. montana VER) (2.2 Ma) and TVB (R. quinquelineata 
TVB) (1.5 Ma); however, DEC suggests an ancestral area of R. montana 
(VER) and R. quinquelineata (TVB) comparted on SMOr and VER, and 
SMOr and TVB, respectively; from SMS to TVB and VER, involving R. 

forbesi and R. cuneata, respectively (2.3 Ma) (DEC suggests an ances-
tral area comparted on SMS and VER); and from VER to SMOr and 
TVB, involving R. marcellae and R. cf. marcellae, respectively (0.8 Ma) 
(DEC suggests an ancestral area comparted on TVB and VER).

The southern clade distributed across BB, CH- DA, CHIH, CHIS, 
G- T, P- CH, PAC, SMOr, SMOc, SMS, TVB, and VER split between 1.3 
and 14.2 Ma into 10 lineages (Figure 5). During the middle Miocene, 
a dispersal event is observed from the SMS to P- CH by BMM and 
a vicariant even between SMS by DEC, involving the MRCA of R. 
decorata and R. pulveriventris (14.2 Ma), followed by the dispersal 
from P- CH to CH- DA, CHIS, G- T, PAC, SMOr, SMS, and VER by R. 
decorata and to G- T by R. pulveriventris (13.2 Ma) (Figure 5). During 
the late Miocene, a single dispersal event took place from SMS to 
TVB involving R. cf taeniata (9.1 Ma), as well as three vicariant events 
inside the SMS: a first split between R. bogertorum and the MRCA 
of R. fulvivittis, R. hesperia, R. myersi, R. nuchalis, R. omiltemana, R. 
taeniata, and R. cf. taeniata (10.8 Ma); a second split between the 
MRCA of R. fulvivittis and R. taeniata, and the MRCA of R. hesperia, 

F I G U R E  4   Divergence time estimates for Rhadinaea from the multilocus dataset in BEAST. Bars indicate 95% highest posterior densities 
of divergence dates, with mean estimates in a million years ago (Ma) at the nodes. Nodes with black dots are strongly supported nodes, and 
numbers near other nodes are Bayesian posterior probability values for poorly supported nodes. Alleghanian Region (ALLE); Balsas Basin 
(BB); Chiapas (CHIS); Gatuso- Talamanca (G- T); Pacific Lowlands (PAC); Puntarenas- Chiriquí (P- CH); Sierra Madre Oriental (SMOr); Sierra 
Madre del Sur (SMS); Trans- Mexican Volcanic Belt (TVB); and Veracruz (VER)
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R. myersi, R. nuchalis, and R. omiltemana (7.9 Ma); and a split between 
the MRCA of R. hesperia and R. nuchalis from the MRCA of R. myersi 
and R. omiltemana (7.3 Ma) (Figure 5).

During the Pliocene, BBM and DEC recovered two colonization 
events from SMS to other ancestral areas took place (Figure 5): to BB 
and TVB (R. taeniata) (5.1 Ma); and to BB, CHIH, PAC, SMOc, and TVB 
(R. hesperia) (5.3 Ma). During the Pleistocene, a single vicariant event 
is observed in the SMS between R. myersi and R. omiltemana (1.3 Ma).

4  | DISCUSSION

4.1 | Phylogenetic relationships within Rhadinaea

Our molecular- based phylogeny generally does not support the 
traditional taxonomy of Rhadinaea according to morphology 
(Myers, 1974, 2011). Our analyses place Rhadinaea calligaster as the 
sister group of Rhadinella (Figures 3 and 4). This relationship is not 

F I G U R E  5   Dated multilocus phylogeny for Rhadinaea showing BBM analysis ancestral area reconstructions. Sampled localities are 
color- coded to match the biogeographical regions in the inset box. Alleghanian Region (ALLE); Balsas Basin (BB); Chihuahuan Desert 
(CHIH); Chiapas (CHIS); Chocó- Darién (CH- DA); Gatuso- Talamanca (G- T); Puntarenas- Chiriquí (P- CH); Pacific Lowlands (PAC); Sierra Madre 
Occidental (SMOc); Sierra Madre Oriental (SMOr); Sierra Madre del Sur (SMS); Trans- Mexican Volcanic Belt (TVB); Veracruz (VER); Yucatán 
(YUC); Null, Null range probability. The colored pie charts in the nodes represent the probability of the ancestral area
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surprising due to the complex morphology within Rhadinaea mem-
bers (Myers, 1974), which makes it difficult to accurately diagnose 
the members of this genus given the lack of exclusive diagnostic 
characters and the existence of variable morphological traits, such 
as the form of the neck collar, pigmentation, and longitudinal pat-
terns of the dorsal scales (Myers, 1974; Sánchez- García et al., 2019). 
This situation has resulted in the further modification of the scien-
tific understanding of the composition of the genus (Myers, 2011; 
Palacios- Aguilar & García- Vázquez, 2020). About this, Myers (1974) 
described the relationships of this monospecific group as obscure 
and mentioned that morphological features like a bilobated hemipe-
nis, the absence of a subpreocular scale, and a pale bar from the eye 
to the corner of the mouth indicate an ancestry from the godmani 
group (now Rhadinella). This relationship is plausible, given our re-
sults. Therefore, this leads us to infer that Rhadinaea is not mono-
phyletic, in contrast with the results obtained by Palacios- Aguilar 
and García- Vázquez (2020). Whereas Rhadinaea and Rhadinella are 
recovered as reciprocally monophyletic in their study, here we only 
retrieved the monophyly of Rhadinella, which is yet to be verified 
including a larger number of taxa.

The classification of the species of Rhadinaea into groups de-
fined by Myers (1974, 2011) shows inconsistencies that involve the 
decorata, flavilata, and taeniata groups. Our phylogenetic hypoth-
esis presented the decorata and taeniata groups as polyphyletic 
and the flavilata group as paraphyletic (Figures 3 and 4), indicating 
that the relationships among these species need a further revision 
due to the low nodal support in the clades containing these species 
and that they probably do not represent natural groups. Following 
these observations, we also suggest that the phylogenetic position 
of R. calligaster needs to be revisited in order to confirm the close 
relationship with Rhadinella observed in our analyses, taking into 
account the evidence that suggests that this group may represent 
another Rhadinella species.

We recovered the majority of the species with more than one 
sample as monophyletic with strong support values, except for 
Rhadinaea marcellae (Figures 3 and 4). The species that did not show 
a monophyletic pattern are R. montana and R. quinquelineata, and 
appeared to be paraphyletic groups (Figures 3 and 4). This pattern 
might be the result of an unclear delimitation of these species, as 
previously suggested by Dixon et al. (2011), with respect to the 
previously proposed morphological series consisting of R. gaigeae, 
R. montana, and R. quinquelineata (Dixon et al., 2011; Myers, 1974), 
species that show a very similar morphology and are codistributed 
over the SMOr (Canseco- Márquez et al., 2004; Medina- Romero 
et al., 2016; Myers, 1974). Because of this situation, we decided to 
include each haplotype of these species in divergence time esti-
mation and ancestral area reconstruction analyses to explore their 
relationships and diversification. Furthermore, we suggest that addi-
tional studies of these taxa including better sampling, additional loci, 
and explicit testing of alternative species hypotheses using coales-
cent methods for species delimitation (e.g., Fujita et al., 2012; Yang 
& Rannala, 2010) are needed to properly address their status and 
kinship.

Concerning the closest relatives of the genus, it has been shown 
that Rhadinaea is closely related to Amastridium, Coniophanes, 
Rhadinella, and Tantalophis (Daza et al., 2010; Palacios- Aguilar & 
García- Vázquez, 2020; Pyron et al., 2013). Pyron et al. (2013) found 
a strong relationship between Rhadinaea and Coniophanes and be-
tween both genera and Rhadinella, according to Palacios- Aguilar and 
García- Vázquez (2020). In our study, these last two relationships 
were recovered in the analyses, even though the relationship of 
Coniophanes as the sister group of Rhadinaea is not well supported 
in the BI analysis. We attribute this poorly supported relationship to 
the differences in our sampling, respecting the number of individ-
uals of each genus. Still, there is more consistent evidence of this 
kinship in other works that included a larger number of Coniophanes 
samples (Palacios- Aguilar & García- Vázquez, 2020). Regarding the 
relationship with Rhadinophanes monticola, in our phylogeny it was 
recovered as the sister group of Rhadinella + Rhadinaea calligaster 
with a low support value in the BI analysis. Due to the complex mor-
phology of this species and uncertainty in its phylogenetic position 
(Myers & Campbell, 1981), we cannot assess whether this species is 
more closely related to Rhadinella or Rhadinaea calligaster given the 
low support value in our analyses (Figure 3), in which we note that 
Rhadinophanes monticola is not closely related to the main clades 
of Rhadinaea we identified herein (Figures 3 and 4). This outcome 
could be clarified, considering a broader perspective, including other 
related colubrid species, as in other studies (e.g., Daza et al., 2010; 
Pyron et al., 2013).

4.2 | Historical biogeography

Based on our results of BBM and DEC, it appears that colubrid snakes 
of the genus Rhadinaea have had a relatively long history in North 
and Central America. The SMS is an extensive mountain system that 
has been present in the Mexican territory since its formation due 
to the Laramide geologic activity (DeMets & Stein, 1990) and has 
presented significant geological changes during the Late Cretaceous 
to the Miocene (23– 100.5 Ma) (Nieto- Samaniego et al., 2006). 
This region is known to present a high biological diversity and a 
high number of endemisms (Blancas- Calva et al., 2010; Escalante 
et al., 2002; Navarro- Sigüenza et al., 2009) including amphibians 
and reptiles (Flores- Villela, 1993). About the MRCA of Rhadinaea 
and the first divergences of the main clades herein identified in the 
SMS during the Miocene (7.3– 16.8 Ma) (Figure 5), we infer that these 
divergences could be due to the discontinuity of the pine– oak for-
ests and cloud forests present in this biogeographical area to date 
(Rocha- Méndez et al., 2019; Santiago- Alvarado et al., 2016), which 
has experienced changes during similar times (Ornelas et al., 2010, 
2013). This mosaic- like landscape has been associated with centers 
of diversification along elevational gradients and is believed to be 
closely related to some divergences between some vertebrate taxa 
(e.g., Chlorospingus [García- Moreno et al., 2004], Eupherusa [Rocha- 
Méndez et al., 2019], Plestiodon [Pavón- Vázquez et al., 2018], 
Sarcohyla [Caviedes- Solis & Leaché, 2018]) within the SMS, probably 
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as a consequence of the climatic changes during the Miocene that 
produced a long- term cooling interrupted by warm intervals, es-
pecially the middle Miocene climatic optimum (MCO) (17– 14 Ma; 
Zachos, 2001). These divergences predate the diversification of all 
species inside the Eastern and southern clades and point toward a 
close relationship between the habitat preferences of the majority 
of the species of Rhadinaea as a primarily montane genus associated 
with pine– oak and humid forests (García- Vázquez, Pavón- Vázquez, 
et al., 2018; Myers, 1974), and the heterogeneity of the SMS (Bryson 
et al., 2017; Luna- Vega et al., 1999; Santiago- Alvarado et al., 2016).

In this same period, two dispersal events from the SMS to other 
areas took place. First, we note inside the Eastern clade a north-
ward dispersal of the MRCA of R. flavilata, R. gaigeae, R. montana, 
and R. quinquelineata (Figure 4), which became widespread during 
the middle Miocene. This event corresponds temporally with the 
first episode of volcanic and orogenic activity that originated the 
TVB in the central portion of Mexico (Bryson et al., 2012a, 2012b; 
Ferrari et al., 2012; Ferrusquía- Villafranca & González- Guzmán, 
2005; Gómez- Tuena et al., 2007). This mountain system is known for 
its influence on the diversification of various montane taxa, creating 
new montane habitats (Bryson et al., 2012b) and probably allowing 
further colonization of more mesic- adapted lineages (e.g., García- 
Vázquez, Nieto- Montes de Oca, et al., 2018; Milstead, 1960) such 
as R. flavilata, in coordination with the low temperatures posterior 
to the MCO (Zachos, 2001). Secondly, we observe a dispersal event 
during the Miocene inside the southern clade toward the south by 
the MRCA of R. decorata and R. pulveriventris (Figure 5). This diver-
gence is generally consistent with the formation of the Chiapan– 
Guatemalan highlands of northern Central America, which formed 
during two different time intervals (Campbell, 1999). The uplift of 
the extensive northern Central American plateau occurred during 
the late Miocene to early Pliocene, from approximately 10– 3.8 Ma 
(Rogers et al., 2002). Additionally, the formation in the late Pliocene 
of a younger chain of volcanoes along the western portion of the 
Central American plateau (Williams, 1960) had a significant im-
pact on the local biota, both through extinction and the resulting 
climatic change, creating cloud forest conditions on the windward 
(south) slopes and rain shadow conditions in the interior valleys 
(Campbell, 1999). Moreover, an abrupt turnover from xeric, subhu-
mid vegetation to humid forests occurred in south- central Chiapas 
and extended along the coast to south- central Guatemala (Campbell 
& Vannini, 1988). These wetter conditions over the Pacific coast of 
southwestern Guatemala and southeastern Chiapas could be suit-
able for cooler- adapted lineages such as Rhadinaea. Nevertheless, 
even if this scenario seems plausible, we cannot fully explain the in-
vasion of the MRCA of R. decorata and R. pulveriventris toward the 
P- CH region nested in the lower Central American highlands as a 
single dispersal event, which is also inhabited by other unsampled 
species such as R. sargenti and R. vermiculaticeps. However, there 
is evidence of a similar colonization pattern in pit vipers (Castoe 
et al., 2009), where significant biogeographic barriers in Central 
America, such as the Motagua– Polotchic fault (Marshall, 2007) and 
the Nicaraguan Depression (Marshall, 2007; Rogers et al., 2002), 

played an essential role in the diversification of several taxa 
(Campbell, 1999; Devitt, 2006; Parra- Olea et al., 2004; Perdices 
et al., 2005; Savage, 1982), probably this explain the vicariance event 
found by DEC analysis.

Along with these critical orogenic events, the Miocene climate 
change appears to have played an important role, sparking evolu-
tionary radiations in some successful modern lineages, including 
colubrid snakes, and segregating the species along latitudinal and 
altitudinal environmental gradients (Greene, 1997; Van Devender & 
Spaulding, 1979). These conditions probably have had an influence 
in other colonization events during this time within the Eastern and 
southern clades, such as the colonization of the SMOr by the MRCA 
of R. gaigeae, R. montana, and R. quinquelineata (Figure 5), as well as 
a posterior divergence in the SMOr, perhaps produced by changing 
ecosystems associated with the wetter climate during this period 
through the Northern Mexican highlands (Bryson et al., 2013, 2017; 
Retallack, 2001) as seen in other reptile groups (e.g., Gerrhonotus 
[García- Vázquez, Nieto- Montes de Oca, et al., 2018]). Similarly, 
these changes could influence the dispersal toward the SMOc and 
the TVB by R. laureata, toward VER by the MRCA of R. macdougalli, 
R. marcellae, and R. cf. marcellae and toward SMS by R. macdougalli of 
the Eastern clade; and R. cf. taeniata of the southern clade (Figure 5). 
This last hypothetical species is only known from the westernmost 
portion of the TVB in Sierra San Juan, a too complex area with a 
high number of endemisms (Escalante & Llorente, 1985; Miranda & 
Luna- Vega, 2006).

During the Pliocene, the last episodes of formation of the TVB 
(3– 7.5 Ma) (Ferrari et al., 2012; Gómez- Tuena et al., 2007) had a role 
in creating a highland that bisected the southern continuity of the 
SMOr (Espinosa et al., 2008) and created a complex area of high-
lands between the Sierra de Juarez, eastern TVB, and southern 
SMOr. Along with this physiographic change, a series of climatic fluc-
tuations occurred during the Pliocene and Pleistocene (ca. 0.1– 4 Ma) 
(Paillard, 2017; Vanzolini, 1970). These cool intervals are believed 
to have caused the expansion of some pine, pine– oak, and humid 
forests to lower elevations due to temperature fluctuations, provok-
ing an extension of the Mexican montane flora to lower elevations 
of at least 1,000 m (Jaramillo- Correa et al., 2009; McDonald, 1993; 
Ornelas et al., 2013; Sosdian & Rosenthal, 2009). Therefore, these 
orogenic and climatic factors in more recent conjunction are consid-
ered to be the processes that have had a more significant impact in a 
high number of montane taxa (as discussed in Bryson et al., 2012b), 
and throughout these Pliocene and Pleistocene periods, most extant 
species of Rhadinaea among the Eastern and southern clades origi-
nated and colonized other regions.

Within the MTZ, the contact between the SMOr, SMS, TVB, 
and VER regions is characterized by a very complex biotic inter-
change, presenting a significant amount of shared floristic and fau-
nistic elements (Espinosa et al., 2004; Marshall & Liebherr, 2000), 
some of which showed a recent dispersal to adjacent provinces 
during the Pliocene and Pleistocene (Cavender- Bares et al., 2011). 
In this sense, we can attribute the several colonization events in 
the MTZ involving the eastern species of R. cuneata, R. forbesi, R. 
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marcellae, R. cf. marcellae, R. montana, and R. quinquelineata through 
some hypothesized filter barriers (Anducho- Reyes et al., 2008; 
Bryson, Murphy, et al., 2011; Morafka, 2012), such as in other 
codistributed taxa (e.g., Bufo [Mulcahy et al., 2006], Gerrhonotus 
[García- Vázquez, Nieto- Montes de Oca, et al., 2018], Hyla [Bryson 
et al., 2010], Phrynosoma [Bryson et al., 2012a], Sceloporus [Bryson 
et al., 2012b] and gymnosperms, angiosperms, and pteridophytes 
[Luna- Vega et al., 1999]). For the southern species, this coloniza-
tion between biogeographical regions in the MTZ is also present 
in R. fulvivittis, R. hesperia, and R. taeniata between the BB, CHIH, 
PAC, SMS, SMOc, and TVB. Meanwhile, these dispersal patterns 
are observed in other taxa with similar distribution (e.g., Buarremon 
[Navarro- Sigüenza et al., 2008], Hyla [Bryson et al., 2010], Pituophis 
[Bryson, García- Vázquez, et al., 2011], Sarcohyla [Caviedes- Solis & 
Leaché, 2018], and Sceloporus [Bryson et al., 2012b]) and are be-
lieved to be driven by the aforementioned geologic and climatic 
factors.

Regarding the colonization events by R. decorata, we observe 
a similar southward pattern as in other snake taxa (Atropoides and 
Cerrophidion [Castoe et al., 2009]); therefore, we consider this final 
clade is incomplete due to our sampling with respect to the wide dis-
tribution of R. decorata. As such, the resolution of the biogeographic 
patterns also remains incomplete, and this same problem is present 
within other widely distributed species of Rhadinaea such as R. tae-
niata and R. hesperia.

Finally, as to the vicariant events involving some of the species 
present in both Eastern and southern clades, we attribute these 
divergences to different processes such as soft allopatry through 
ecological vicariance (Pyron & Burbrink, 2010), given nonidentical 
lineage ranges of R. gaigeae and R. quinquelineata in the SMOr, and 
the action of lowland barriers inside these biogeographical regions, 
such as river drainages of the Río Grande and the Río Santa Catarina 
(Pavón- Vázquez et al., 2018) in the case of the divergence between 
R. myersi and R. omiltemana in the SMS. These analyses are enlighten-
ing about the geographic origin and timing of most of the Rhadinaea 
species divergences and point toward an origin of the genus more 
related to the woodland dynamics in the SMS than other proposed 
biogeographical barriers present in southeastern Mexico such as the 
IT and ND.

5  | CONCLUSIONS

Biogeographical studies seek to explain the distribution of spe-
cies in terms of historical factors and climatic phenomena (García- 
Vázquez, Nieto- Montes de Oca, et al., 2018). The genus Rhadinaea 
has shown to be an insightful model in order to study these factors in 
a widely distributed group. Extreme climatic oscillations during the 
Pleistocene, a key driver of diversification between lineages in some 
taxa (León- Paniagua et al., 2007), as well as Miocene and Pliocene 
geomorphology in conjunction with climate change appear to have 
induced allopatric divergence on a relatively small spatial scale in this 

genus, and point toward a complex origin inside the heterogeneous 
area of the SMS and several diversification events among the TVB 
and adjacent provinces, providing an insight into the historical pro-
cesses responsible for the diversification in this complex system. The 
outcome also shows the necessity of further systematic exploration 
of the genus, as the morphological characters used may not be suf-
ficient to reconstruct the evolutionary history of Rhadinaea. On this 
issue, an integrative perspective using molecular and morphological 
data, taking into account historical information of the species, might 
shed some light for the systematics and evolution of these poorly 
known colubrid snakes.
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