Environmental Microbiology (2009) 11(2), 289-299

doi:10.1111/j.1462-2920.2008.01760.x

Reverse dissimilatory sulfite reductase as
phylogenetic marker for a subgroup of sulfur-oxidizing

prokaryotes

OnlineOpen: This article is available free online at www.blackwell-synergy.com

Alexander Loy, Stephan Duller," Christian Baranyi,’
Marc MuBmann,' Jorg Ott,? Itai Sharon,® Oded Béja,*
Denis Le Paslier,’ Christiane Dahl® and

Michael Wagner!

Departments of 'Microbial Ecology and 2Marine Biology,
Universitédt Wien, AlthanstraBBe 14, A-1090 Wien, Austria.
3Department of Computer Science and *Faculty of
Biology, Technion-Israel Institute of Technology,

Haifa 32000, Israel.

SCNRS UMR 8030 and Genoscope, 2 rue Gaston,
Crémieux CP 5706, 91057 Evry, France.

8Institut fiir Mikrobiologie und Biotechnologie,
Rheinische Friedrich-Wilhelms-Universitdt Bonn,
Meckenheimer Allee 168, D-53115 Bonn, Germany.

Summary

Sulfur-oxidizing prokaryotes (SOP) catalyse a central
step in the global S-cycle and are of major functional
importance for a variety of natural and engineered
systems, but our knowledge on their actual diversity
and environmental distribution patterns is still rather
limited. In this study we developed a specific PCR
assay for the detection of dsrAB that encode the
reversely operating sirohaem dissimilatory sulfite
reductase (rDSR) and are present in many but not all
published genomes of SOP. The PCR assay was used
to screen 42 strains of SOP (most without published
genome sequence) representing the recognized
diversity of this guild. For 13 of these strains dsrAB
was detected and the respective PCR product was
sequenced. Interestingly, most dsrAB-encoding SOP
are capable of forming sulfur storage compounds.
Phylogenetic analysis demonstrated largely congru-
ent rDSR and 16S rRNA consensus tree topologies,
indicating that lateral transfer events did not play an
important role in the evolutionary history of known
rDSR. Thus, this enzyme represents a suitable phy-
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logenetic marker for diversity analyses of sulfur
storage compound-exploiting SOP in the environ-
ment. The potential of this new functional gene ap-
proach was demonstrated by comparative sequence
analyses of all dsrAB present in published meta-
genomes and by applying it for a SOP census in
selected marine worms and an alkaline lake sediment.

Introduction

Phylogenetically diverse members of the domains Bacte-
ria and Archaea employ reduced sulfur compounds as
electron donors for growth and exploit this capability to
successfully compete with other prokaryotes in various
ecosystems. Surprisingly, a variety of sulfur oxidation
pathways does exist in members of this guild (see Kelly
et al., 1997; Kletzin et al., 2004; Friedrich et al., 2005 for
reviews) complicating the development of so-called func-
tional gene assays for the detection and phylogenetic
assignment of sulfur-oxidizing prokaryotes (SOP) in
environmental samples. Recently published assays have
focused on aprBA (apsBA) (Meyer and Kuever, 2007) and
soxB (Meyer et al., 2007), but in addition to incomplete
coverage of the SOP diversity, these marker genes are
not ideal because their evolutionary history was influ-
enced by massive lateral gene transfer (LGT) and/or gene
duplication events. Other potential marker genes present
in many SOP are dsrAB coding for reversely operating
sirohaem dissimilatory sulfite reductase (rDSR). This
enzyme is homologous to, but phylogenetically clearly
distinguishable from the dissimilatory (bi)sulfite reductase
that catalyses the energy-conserving reduction of sulfite
to sulfide in anaerobic sulfite/sulfate-reducing prokaryotes
(SRP) (Molitor etal., 1998; Zverlov et al., 2005; Stahl
et al., 2007; Loy et al., 2008). These sirohaem dissimila-
tory sulfite reductases in SOP and SRP generally are
heterotetramer proteins with an o3, quaternary structure.
The o- and B-subunits are encoded by the neighbouring
and paralogous genes dsrA and dsrB, respectively (Dahl
et al., 1993; Karkhoff-Schweizer et al., 1995), which are
part of the large, contiguous dsrABEFHCMKLJOPNRS
gene cluster in Allochromatium vinosum.

Mutagenesis studies of this genetically accessible
anoxygenic phototroph provided insights into the cellular
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function of rDSR and other proteins of the dsrgene cluster
(Pott and Dahl, 1998; Dahl etal., 2005; Libbe etal.,
2006; Sander et al., 2006). Purple sulfur bacteria of the
family Chromatiaceae like A. vinosum produce sulfur
stored in periplasmic sulfur globules as an obligate inter-
mediate during the oxidation of sulfide and thiosulfate
(Pott and Dahl, 1998). rDSR and other proteins encoded
in the dsr gene cluster are absolutely required for the
oxidation of stored sulfur to the final product sulfate. In
contrast, the dsr mutants analysed so far are not affected
with respect to oxidizing sulfide to sulfur, thiosulfate to
tetrathionate and sulfite to sulfate under photolithoau-
totrophic conditions. Growth of the mutants is also not
impaired under photoorganotrophic conditions. Currently,
a model is promoted that implies transport of sulfur from
the periplasmic sulfur globules to the cytoplasm via a
perthiolic carrier molecule. The protein DsrL, which exhib-
its NADH:acceptor oxidoreductase activity (Y. Libbe and
C. Dahl, unpubl. data) and carries a thioredoxin motif
typical for disulfide reductases, is a candidate for catalys-
ing reductive release of sulfide from the carrier in the
cytoplasm. rDSR could then oxidize sulfide to sulfite, fol-
lowed by further oxidation to sulfate catalysed by other
enzymes (Dahl, 2008; Grimm et al., 2008). Thus, rDSR
seems to mediate a specific physiological step that might
be confined to a phylogenetically diverse group of SOP
building up stores of elemental sulfur or polysulfides.

In this study, we developed based on published dsrAB
sequences of SOP a specific PCR assay and applied it for
screening of a taxonomically diverse collection of SOP
strains. The screening results showed that dsrAB-carrying
SOP are mainly restricted to sulfur-storing SOP of
the phyla Proteobacteria and Chlorobi. Comparative
sequence analysis of 16S rRNA and rDSR demonstrated
largely consistent tree topologies suggesting that dsrAB
are suitable phylogenetic markers for those SOP capable
of sulfur storage. Initial application of the rDSR functional
gene approach to published metagenomes, bacterial
symbionts of marine worms and an Austrian alkaline lake
sediment revealed several novel insights. For example, a
specific clade of dsrAB-containing gammaproteobacterial
SOP was found to be widely distributed and abundant in
ocean surface waters. Furthermore, novel alphaproteo-
bacterial SOP were detected to live in association with
the marine flatworm Paracatenula, while a Thiobacillus-
related group of betaproteobacterial SOP dominated the
dsrAB library from the lake sediment.

Results and discussion
dsrAB in recognized SOPs

A double-tracked approach was performed to identify
dsrAB in recognized SOP. In the first step, more than 900

completed and yet unfinished publicly accessible genome
sequences were screened for the presence of dsrAB by
BLAST (Altschul et al., 1990). Comparative analysis of all
available rDSR sequences revealed the presence of four
phylogenetically distinct clusters (Fig. 1). In accordance
with previous studies (Sabehi et al., 2005; Meyer and
Kuever, 2007; Loy et al., 2008), all rDSR sequences from
SOP formed a highly supported monophyletic branch that
was clearly separated from archaeal and bacterial SRP,
which indicated an evolutionary adaptation of the enzyme
to function in the oxidative part of the sulfur cycle. In the
second step, new degenerate PCR primers fully comple-
mentary to all available full-length dsrAB sequences from
SOP (Table 1, Fig. 1) were designed and applied for
screening of 42 SOP strains from various taxa (Table S1).
This effort added 11 new dsrAB sequences (and addition-
ally confirmed the presence of dsrAB in two of the tested
strains for which genome sequences were available) to
the database which now consists of diverse alpha-, beta-
and gammaproteobacterial SOP, including many, but not
all of the tested members of the families Chromatiaceae
and Ectothiorhodospiraceae and most of the green sulfur
bacteria (Chlorobiaceae) (Table S1). Regarding the latter
family, absence of dsrAB in Chlorobium ferrooxidans
and Chloroherpeton thalassium reflects their inability or
reduced ability to grow on elemental sulfur (Frigaard and
Bryant, 2008). Slow oxidation of extracellular elemental
sulfur by C. thalassium despite the lack of a rDSR
has been attributed to an as yet unknown alternative
sulfur-oxidizing system, potentially involving ribulose-1,5-
biphosphate carboxylase/oxygenase analogous to the
function of this enzyme in Chlorobaculum tepidum
(Hanson and Tabita, 2001; Frigaard and Bryant, 2008).
In agreement with the essential function of rDSR
for oxidation of sulfur globule deposits in A. vinosum
(Dahl et al., 2005), the unifying feature of most dsrAB-
containing SOP is their ability to build up periplasmic
(e.g. Chromatiaceae) (Imhoff, 2006a) or extracellular (e.g.
Ectothiorhodospiraceae, Chlorobiaceae) (Imhoff, 2006b;
Overmann, 2006) reserves of elemental sulfur, allowing
for growth under periods of low environmental supply of
reduced sulfur compounds. Consistent with this observa-
tion, rDSR co-occurs with an incomplete thiosulfate- and
other reduced sulfur compounds-oxidizing multienzyme
system (Sox) in some SOP (Friedrich et al., 2005; Hensen
et al., 2006; Meyer et al., 2007). In particular, the absence
of the putative sulfur dehydrogenase Sox(CD). leads to
the build-up of sulfur deposits, which are subsequently
oxidized via the rDSR pathway. The correlation between
absence of soxCD and presence of dsrAB in SOP was
confirmed in this study (data not shown) by BLAST analysis
of all available SOP genomes (with the possible exception
of Magnetospirillum species and Thiobacillus denitrifi-
cans, which contain open reading frames with low
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Fig. 1. Consensus tree illustrating the four, evolutionary distinct DsrAB protein families and the coverage of dsrAB-targeted DSR1F-DSR4R
and rDSR1F-rDSR4R primers. The tree was determined using publicly available, full-length dsrAB sequences and an indel filter (697
alignment positions). Filled and open circles indicate lineages with > 90% and 80—-90% parsimony bootstrap support respectively. Bar indicates
10% sequence divergence as estimated from distance-matrix analysis. Organisms that have two copies of dsrAB or have potentially acquired
their dsrAB via LGT are depicted in bold. The second dsrAB of C. tepidum is a putative pseudogene and is not shown.

similarities to SoxC and SoxD of Paracoccus pantotro-
phus GB17, Accession No. X79242).

dsrAB as phylogenetic marker for SOPs

A phylogenetic approach (Koonin et al., 2001) was con-
ducted to test for LGT of dsrAB among SOP. Under the
explicit assumption that 16S rRNA genes of the analysed
species were not influenced by LGT (see, e.g. Yap et al.,
1999; Acinas et al., 2004 for exceptions to this assump-
tion) and are thus indicative for the organisms’ phylogeny,
the rDSR and 16S rRNA trees were directly compared for
topological inconsistencies. These analyses were based
on identical data sets to avoid sampling artefacts and on
consensus trees, which ameliorate problems of the indi-
vidual treeing algorithms and thus can be considered
reliable, but conservative phylogenetic estimates (Ludwig
et al.,, 1998).

16S rRNA and rDSR tree topologies were largely con-
gruent, demonstrating that LGT of dsrAB played no
major role in the evolutionary history of the analysed
SOP (Fig.2). Two minor topological incongruences

© 2008 The Authors

were noted within the Gammaproteobacteria (Thiothrix
nivea) and within the Chlorobiaceae (Chlorobium
phaeobacteroides BS1), potentially indicating genetic
exchange among members of the same class and family
respectively (Fig. 2). Although much care was taken to
minimize analytical biases in phylogeny inference, these
minor discordances could have also been caused by
unavoidable differences in the 16S rRNA and rDSR
sequence data sets (e.g. differing numbers of phyloge-
netically informative positions). A more refined phyloge-
netic analysis of the Chlorobiaceae with family-specific
sequence conservation filters also yielded highly poly-
tomic 16S rRNA and rDSR subtrees. Thus the phyloge-
netic fine structure within Chlorobiaceae could not be
resolved (data not shown). No evidence for additional
dsrAB copies was obtained in cases where multiple
dsrAB clones per species were sequenced. Out of those
SOP whose genomes are completely sequenced
(Table S1), only C. tepidum contains two nearly identical
dsrAB copies, of which, one has an authentic frameshift
in dsrB and is thus likely not functional (Eisen etal.,
2002). Thiobacillus denitrificans has in addition to its
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Table 1. dsrAB-targeted primers for SOP.

Primer?

Sequence (5’-3')°

Number of
primer variants

Perfectly matching target organism/sequence
(accession number)°®

Reference

rDSR1Fa

rDSR1Fb
rDSR1Fc

rDSR4Ra

AARGGNTAYTGGAARG

TTYGGNTAYTGGAARG
ATGGGNTAYTGGAARG

CCRAARCAIGCNCCRCA

32

32
16

32

Allochromatium vinosum (U84760)

Alkalilimnicola ehrlichei MLHE1 (NC_008340)

Mediterranean Sea BAC MED13k9 (DQ068067)

Sargasso Sea shotgun clone (AACY01045584)
Magnetospirillum magnetotacticum MS-1 (NZ_AAAP01003703)
Candidatus Vesicomyosocius okutanii HA (NC_009465)
Candidatus Ruthia magnifica Cm (NC_008610)

Thiobacillus denitrificans ATCC 25259 (NC_007404)

Magnetococcus sp. MC-1 (NC_008576)
Chlorobaculum tepidum TLS (NC_002932)
Chlorobium limicola DSM 245 (AAHJ01000040)
Chlorobium phaeobacteroides BS1 (AAIC01000113)
Chlorobium phaeobacteroides DSM 266 (CP000492)
Chlorobium clathratiforme BU-1 (NZ_AAIK01000042)
Chlorobium chlorochromatii CaD3 (NC_007514)
Chlorobium luteolum DSM 273 (NC_007512)
Prosthecochloris aestuarii DSM 271 (AAIJO1000019)
Chlorobium phaeovibrioides DSM 265 (CP000607)
Halorhodospira halophila SL1 (NC_008789)

Magnetococcus sp. MC-1 (NC_008576)
Chlorobaculum tepidum TLS (NC_002932)
Chlorobium limicola DSM 245 (AAHJ01000040)
Chlorobium phaeobacteroides BS1 (AAIC01000113)
Chlorobium phaeobacteroides DSM 266 (CP000492)
Chlorobium clathratiforme BU-1 (NZ_AAIK01000042)
Chlorobium chlorochromatii CaD3 (NC_007514)
Chlorobium luteolum DSM 273 (NC_007512)
Prosthecochloris aestuarii DSM 271 (AAlIJ01000019)
Chlorobium phaeovibrioides DSM 265 (CP000607)

This study

This study
This study

This study

rDSR4Rb GGRWARCAIGCNCCRCA 64

Allochromatium vinosum (U84760)

This study

Alkalilimnicola ehrlichei MLHE1 (NC_008340)

Mediterranean Sea BAC MED13k9 (DQ068067)

Sargasso Sea shotgun clone (AACY01045584)
Magnetospirillum magnetotacticum MS-1 (NZ_AAAP01003703)
Thiobacillus denitrificans ATCC 25259 (NC_007404)
Halorhodospira halophila SL1 (NC_008789)

Candidatus Vesicomyosocius okutanii HA (NC_009465)
Candidatus Ruthia magnifica Cm (NC_008610)

a. rDSR primer mix (concentration of each primer in the PCR: rDSR1Fa, 3.2 uM; rDSR1Fb, 3.2 uM; rDSR1Fc, 1.6 uM; rDSR4Ra, 3.2 uM; and

rDSR4Rb, 6.4 uM).

b. Sequences are indicated in IUPAC nomenclature; | = base analogue inosine; degenerate positions are marked in bold.
c. Primer were developed based on all full-length dsrAB sequences that were available at GenBank.

clustered dsrAB two dsrA copies (78-83% DsrA
sequence identity) that are unexpectedly not linked with
a corresponding dsrB (Beller etal., 2006) and would
thus not be amplified with the developed primer set.
16S rRNA-conform topology of the rDSR tree of SOP
(Fig. 2) can be explained by two evolutionary scenarios.
The first scenario suggests that rDSR was an early
invention of a last common SOP ancestor, which
occurred prior to the diversification of the phyla Proteo-
bacteria and Chlorobi. Genes encoding rDSR were ver-
tically transmitted in the further course of evolution. The
patchy distribution of dsrAB-containing SOPs in the tree
of life can be attributed to subsequent evolutionary
eradication of dsrAB from most proteobacterial descen-
dants and members of most bacterial phyla. However,
congruent tree topologies cannot rule out an early LGT
between the Chlorobi and Proteobacteria. We further

attempted, but failed to determine the deepest branch in
the rDSR tree of SOP by reciprocal rooting of DsrA
versus DsrB. Both wings of the paralogous DsrA/DsrB
tree were highly polytomic due to the strongly reduced
number of informative sites in this analysis (Fig. S1).
Thus, a second hypothesis, previously postulated
by Frigaard and Bryant (2008), can also plausibly
explain the dsrAB distribution pattern among SOP. In
this scenario, Chlorobi acquired dsrAB via ancient LGT,
which allowed them to exploit new niches and led to
enhanced diversification of this lineage. The absence of
dsrAB in the deep-branching family member C. thalas-
sium was interpreted in this scenario as indication
that the last common ancestor of the Chlorobi lacked
dsrAB.

Independent of whether such an early LGT of dsrAB
among Proteobacteria and Chlorobi occurred or not, the

© 2008 The Authors
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Chiorobfum clathratiforme BU1, AAIK01000026 —

Fig. 2. Comparison of DsrAB and 16S rRNA consensus trees of SOP. DsrAB trees were calculated using an indel filter (551 alignment
positions). Filled and open circles indicate lineages with > 90% and 80-90% parsimony bootstrap support respectively. Bar indicates 10%
sequence divergence as estimated from distance-matrix (DsrAB) or maximum-likelihood (16S rRNA) analysis. Sulfur-oxidizing prokaryote
species that are inconsistently positioned in the two trees are labelled by an asterisk. o, Alpha-; B, Beta-; and y, Gammaproteobacteria.

phylogeny of currently known rDSR from SOP clearly
demonstrates the suitability of dsrAB/DsrAB as molecular
phylogeny marker (Fig. 2). It is thus possible to assign,
with high likelihood, an unknown, environmental dsrAB
sequence to a certain SOP phylum or class, if the
sequence branches clearly within the respective taxon.
In contrast, the phylogeny of an uncultured organism rep-
resented by an environmental rDSR sequence that
branches outside a defined taxon would remain ambigu-
ous, but could provide important guidance for monitoring
enrichment and isolation of such a novel SOP.

dsrAB-carrying SOPs in the environment

The dsrAB approach was applied to investigate the
diversity and abundance of SOP in all published meta-
genomes (status July 2007). Initially, we surveyed the
7.7 million sequence reads from the Global Ocean Sam-
pling expedition (Rusch et al., 2007) for traces of dsrAB.
Eighty-three dsrAB-containing scaffolds/reads were iden-
tified, which derived from 25 geographically distinct sam-
pling sites (out of 44 samples, including multiple samples
for the Sargasso Sea station) representing different
marine surface environments. These 83 sequences
showed more than 90% amino acid identity to each other
and to the rDSR sequence encoded on the BAC clone

© 2008 The Authors

MED13k9 from the Mediterranean Sea (Fig. 3). Because
of the additional presence of a gene for proteorhodopsin
and phylogenetic marker genes on clone MED13k9, this
BAC was proposed to originate from a putative pho-
totrophic gammaproteobacterium (Sabehi et al.,, 2005).
We used two previously established metrics to calculate
the abundance of these dsrAB-carrying microorganisms
in the ocean water samples from the Global Ocean Sam-
pling data (Yutin et al.,, 2007). The dsrAB-carrying popu-
lations composed up to 4.3% of the total microbial
community in the planktonic size fraction along the
Global Ocean Sampling transect (Fig.4). The wide-
spread occurrence, relative high abundance and the
close phylogenetic relationship indicate that all these
dsrAB sequences represent different types of the same
cosmopolitan gammaproteobacterial group, which pre-
sumably fulfils an important ecological function for sulfur
and carbon cycling in the photic zone of the oceans
(Sabehi et al., 2005).

We also identified several partial dsrAB sequences in
another metagenomic library from an enrichment per-
forming anaerobic ammonium oxidation (Strous et al.,
2006). These dsrAB fragments did not derive from the
anaerobic ammonium-oxidizing bacterium Candidatus
Kuenenia stuttgartiensis, but were unfortunately exclu-
sively located on single reads or short contigs. Thus
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Chromatiaceae

QOlavius algarvensis Gamma 1 symbiont Cont1690, AASZ01000000 AASZ01001690
B Olavius algarvensis Gamma 1 symbiont Cont4984, AASZ01000000 AASZ0100498
Symbiont of Stilbonema majum 2, EU155051
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Alkafmmmcola ehrlichei, NZ2_AALK01000002

Halorhodospira halophila, CP000544

Candidatus Ruthia magnifica, NC_008610
Candidatus Vesicomyosocius okutanii, NC_009465

Chlorobi

Fig. 3. Maximum-likelihood (TREE PUZZLE) tree showing the affiliation of all environmental DsrAB sequences. Sequences shorter than 1500
nucleotides (indicated by dotted branches) were added to the tree without changing the overall tree topology by using the ARB parsimony
interactive option. Environmental sequences are in bold. Sequences from (putative) sulfur-oxidizing symbionts are highlighted in black. Bar
indicates 10% sequence divergence. o, Alpha-; B, Beta-; and y, Gammaproteobacteria. GOS, sequences from the global ocean sampling
expedition (Rusch et al., 2007); ANAMMOX, sequences from the metagenome library of an enrichment performing anaerobic oxidation of
ammonium (Strous et al., 2006). Bootstrapping was based on sequences longer than 1499 nucleotides. Filled and open circles indicate
lineages with > 90% and 80-90% parsimony bootstrap support respectively. Bar indicates 10% sequence divergence.

additional physically linked genes providing physiological
or phylogenetic information about the respective organ-
isms could not be unveiled. The retrieved dsrAB
sequences were relatively dissimilar to each other and
formed independent branches in the rDSR tree, although
their exact position could not be unambiguously resolved
due to their short length (Fig. 3). While some sequences
clustered with Proteobacteria, others could not be
assigned to any phylogenetic group. It has been shown
previously that the majority of 16S rRNA gene-containing
sequence fragments that did not belong to Candidatus
K. stuttgartiensis were loosely affiliated with the phylum
Chlorobi (Strous et al., 2006). However, none of the

dsrAB sequences from the enrichment clustered with
this phylum. The main source of reduced sulfur for these
unknown rDSR-containing microorganisms is most likely
decaying biomass, as no reduced sulfur compounds are
added to the medium. Considering that nitrate is a
medium component, organic sulfur from lysed cells
could fuel an autotrophic or mixotrophic denitrifying SOP
community (M. Strous, pers. comm.). Elucidating the
phylogeny and physiological function of the dsrAB-
containing microorganisms in the anaerobic enrichment
remains subject of further study.

In addition to the above mentioned dsrAB sequences
of SOP in metagenomic data sets, a considerable
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Fig. 4. Inferred abundances of dsrAB-carrying microorganisms along the global ocean sampling expedition transect. Numbering and
categorization of the different samples are according to Yutin and colleagues (2007). Please note that the size of the planktonic fraction from
which shotgun data were generated was 0.1-0.8 um for all samples, except samples 2, 3 and 4 (0.22—-0.8 um), 5 (3.0-20 um), 6 and 30
(0.8-3.0 um). Samples 5, 6 and 7 are different size fractions from the same station (Rusch et al., 2007).

A. Grey and white bars indicate the total number of sequence reads and the number of dsrAB-associated reads per sampling site respectively.
B. Relative abundance of dsrAB read equivalents in each sample. Bars represent the average ratio between the number of reads associated
with dsrAB and the number of reads associated with three universal single-copy genes (recA, gyrA and rpoB). Error bars represent the range

of results.

number of all currently available dsrAB sequences stem
from sulfur-oxidizing bacterial symbionts of eukaryotic
hosts (Fig. 3). rDSR- and 16S rRNA-derived phylogenies
of these symbionts are generally in good accordance
with each other (Fig. 3; Rinke et al.,, 2006; Woyke et al.,
2006; Kuwahara etal., 2007; Markert etal., 2007
Newton et al., 2007) and the presence of dsrAB in these
symbiotic SOP can be explained by their ability to form
sulfur deposits. In the present study we extended the
dsrAB data set for uncultured SOP living in association
with eukaryotes by analysing two flatworms and one
nematode species. Consistent with their 16S rRNA phy-
logeny (J. Ott, unpubl. data), rDSR sequences from the
Paracatenula and the Stilbonema worm symbionts were
affiliated with the Alpha- and the Gammaproteobacteria
respectively (Fig. 3). The universal occurrence of dsrAB
in phylogenetically distinct SOP symbionts and the high
abundance of rDSR in the proteome of the endo-
symbiont of the deep-sea tube worm Riftia pachyptila
(Markert et al., 2007) provide collective evidence that
this enzyme is essential to sulfur-based energy conser-

© 2008 The Authors

vation in mutualistic associations of bacteria with their
eukaryotic hosts.

In addition to SOP symbiont analyses, the dsrAB
approach was applied to investigate the SOP diversity in
a sediment sample from an alkaline Austrian lake (lake
Herrnsee). This habitat was selected, because presence
of SOP in similar ecosystems has been reported previ-
ously (Sorokin and Kuenen, 2005). In total 22 dsrAB
clones were recovered from the sediment and their phy-
logenetic analyses revealed four clusters (Fig. 3), based
on a dsrAB sequence identity cut-off of 90%. A homolo-
gous coverage of 97% clearly indicated that sufficient
clones were analysed to cover the expected diversity in
the gene library (Singleton et al., 2001). The cluster that
comprised most of the sequences derived from betapro-
teobacterial Thiobacillus-related species, while the other
three clusters could be assigned to the Gammaproteo-
bacteria (Fig. 3). Cultivated, haloalkaliphilic SOP from
soda lakes typically belong to the Gammaproteobacteria
(Sorokin and Kuenen, 2005). Also Thiobacillus species
can grow at a wide range of pH values, but it should be
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kept in mind that other alkaliphilic, non-dsrAB-containing
SOP might also be of importance in the basic (pH 9)
sediment of the lake Herrnsee. However, given that (i)
rDSR is potentially involved in oxidation of polysulfides/
elemental sulfur and (ii) polysulfides are stable at high pH
and therefore considered important substrates for SOP
under these conditions (Sorokin and Kuenen, 2005), it is
tempting to speculate that the detected dsrAB-containing
SOP are involved in polysulfide oxidation.

Conclusions

In this study a dsrAB reference ARB database that con-
tains all previously published and newly determined
sequences from cultivated and uncultivated SOP was
established (free for download at http://www.microbial-
ecology.net/download.asp). Although the number of
database entries is still relatively low, their generally 16S
rBRNA-conform phylogeny suggests that dsrAB was
mainly inherited vertically among SOP and is thus a useful
phylogenetic marker for those SOP which contain these
genes. Equipped with the newly developed primer set for
amplification of dsrAB from phylogenetically diverse SOP
(e.g. Proteobacteria and Chlorobi), microbial ecologists
are now able to retrieve such dsrAB sequences from the
environment and to assign them to known phyla and
classes or to novel lineages, as demonstrated by the
described proof-of-principle experiments. This study thus
extends the functional gene toolbox for monitoring
members of defined microbial guilds in the environment
and will help to better understand the biogeography and
ecology of rDSR-containing SOP.

Experimental procedures
Reference organisms and environmental samples

Cultures of reference organisms where obtained from
the Deutsche Sammlung von Mikroorganismen und Zellkul-
turen (DSMZ; Braunschweig, Germany) or from colleagues
at other institutes (Table S1). Sediment samples from the
alkaline lake Herrnsee (47°44’40”N, 16°46"10”E) were col-
lected during October 2004, immediately put on ice and
stored at —20°C upon arrival in the lab. This alkaline pool is
located in Eastern Austria within the area of the National
Park Neusiedler See-Seewinkel (Eiler et al., 2003) and dis-
played the following biogeochemical signature (all values
are per gram dry weight of sediment): pH 8.9, organic
carbon 9 mg, total nitrogen 895 g, nitrate 11 ug, ammo-
nium 45 pug, organic nitrogen 839 ug, chloride 3151 ug,
sulfate 2687 ug and phosphate 431 ug (K. Hace and S.
Licker, pers. comm.). The nematode Stilbonema sp. and
the two flatworms Paracatenula spp. were collected in
shallow subtidal sand at Carrie Bow Cay (Belize) 16°48'N,
88°05'W and were immediately stored in absolute ethanol
at 4°C.

DNA isolation

Pure culture DNA was isolated by using the DNeasy Blood
and Tissue Kit (Qiagen, Vienna, Austria). Briefly, harvested
cells were incubated at 37°C with proteinase K for 3 h and
the DNA was extracted according to the protocol for Gram-
negative bacteria. Genomic DNA from the sediment sample
was extracted by using the PowerSoil™ DNA Isolation Kit
(MO BIO Laboratories, Carlsbad, USA), according to the
manufacturer’s instructions.

PCR, cloning and sequencing

Whole cells of reference organisms or extracted DNA
were employed as template for PCR. The general amplifi-
cability of DNA from pure culture and environmental
samples was analysed by PCR using the general bacterial
16S rRNA gene-targeted primers S-D-Bact-0008-a-S-18
and S-*-Proka-1492-a-A-19 (Loy etal., 2005). A positive
PCR result was interpreted as indicating the absence
of PCR inhibitory substances. PCR amplification of an
approximately 1.9-kb-large dsrAB fragment was performed
with mixtures of the rDSR1F and rDSR4R primers. The
concentrations of primers rDSR1Fa, rDSR1Fb, rDSR1Fc,
rDSR4Ra and rDSR4Rb were adjusted to achieve an
equimolar concentration of 100 nM for each primer variant
in the PCR (Table 1). PCR mixtures additionally contained
one unit of recombinant Tag DNA Polymerase, 1x Taq
buffer with KCI, 2 mM MgCl (Fermentas, St. Leon-Rot,
Germany) and 20 mM tetramethylammonium chloride
(Sigma, Deisenhofen, Germany) in a total volume of
50 ul. Standard thermal cycling was carried out by an
initial denaturation step at 94°C for 1 min, followed by 35
cycles of denaturation at 94°C for 40 s, annealing at 48°C
for 40 s and elongation at 72°C for 2 min. Cycling was com-
pleted by a final elongation step at 72°C for 10 min. A rela-
tively low annealing temperature of 48°C was chosen in
order to potentially allow for amplification of novel dsrAB
from SOP with mismatches in the primer binding sites
(Loy et al., 2004). Negative controls without template were
included in all PCR amplification experiments. The pres-
ence and sizes of the amplification products were deter-
mined by agarose (1%) gel electrophoresis. Ethidium
bromide-stained bands were digitally recorded by using
a video documentation system (Cybertech, Hamburg,
Germany). It is noteworthy that in addition to the expected
1.9kb PCR fragment, many shorter (and sometimes
also some longer) fragments were also obtained using
the degenerated dsrAB-targeted primers (Wagner etal,
2005).

For subsequent sequencing, dsrAB-PCR products were
processed for ligation into the cloning vector pCR-XL-TOPO
of the TOPO XL cloning kit (Invitrogen GmbH, Karlsruhe,
Germany) as described previously (Loy et al., 2004). Primer
DSR874F (5-TGYATGCAYTGYYTVAAYG-3’, numbering
according to dsrAB of A. vinosum, U84760) was additionally
designed for sequencing of the internal dsrAB sequence part
from all SOP.

The pure culture status of dsrAB-containing reference
organisms was checked by 16S rRNA gene amplification and
direct sequencing.
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Identification of dsr gene sequences in public databases

DsrAB protein sequences from A. vinosum (Accession No.
U84760) were used for BLAST searches of homologues in the
genome database (containing 914 finished and unfinished
genomes; July 2007) at GenBank (Ye et al., 2006). DsrAB
proteins encoded in the metagenome library of Candidatus
K. stuttgartiensis (Strous et al., 2006) were identified by
BLASTX. Gene sequences of dsrAB in the metagenomic data-
bases at the Joint Genome Institute (Markowitz et al., 2006),
GenBank and CAMERA (Seshadri et al., 2007) were identi-
fied by nucleotide BLAST using the dsrAB sequences of
A. vinosum and the Mediterranean Sea BAC clone MED13k9
(DQ068067) as query.

Comparative sequence analysis and
phylogeny inference

Phylogenetic analyses were performed by using the ARB
program package (Ludwig etal, 2004). 16S rRNA se-
quences from reference strains were identified or imported in
the ARB-SILVA database SSURef_89_tree_silva_opt.arb
(Pruesse etal., 2007). The 16S rRNA consensus tree is
based on maximume-likelihood (AXML; TREE PUZZLE with
HKY model of substitution), maximum-parsimony (PHYLIP
DNA parsimony with and without bootstraps, 1000
re-samplings) and distance-matrix (ARB neighbour joining
with Jukes-Cantor correction) trees. Individual trees were
calculated based on 16S rRNA alignment positions
(n=1283) conserved in more than 50% of the Bacteria.

All dsrAB sequences were imported into a dsrAB/DsrAB-
ARB database for SRP maintained at the Department of
Microbial Ecology, University of Vienna (Zverlov etal,
2005). Deduced amino acid sequences were manually
aligned. Nucleic acid sequences were aligned according to
the amino acids alignment. Specific indel filters which
exclude ambiguously aligned regions of insertions and dele-
tions were created by visual inspection of the alignments.
The remaining of 697 (representing the complete dsrAB
locus) and 551 amino acid positions (representing the dsrAB
fragment that is amplified by the rDSR1F and rDSR4R
primers) were used for phylogenetic inference of DsrAB
sequences from SOP. For paralogous rooting, DsrA
sequences were aligned against DsrB sequences by CLUST-
ALX and subsequent manual adjustment. Paralogous trees
were calculated using indel filters for full-length (226 amino
acid positions) and partial sequences (132 amino acid posi-
tions). Dsr protein trees were inferred by using maximum-
likelihood (TREE PUZZLE with JTT; PHYLIP ProML with
JTT; MOLPHY ProtML with JTT), maximum-parsimony
(PHYLIP protein parsimony with and without bootstraps,
1000 re-samplings) and distance-matrix (PHYLIP distance
matrix with FITCH, JTT, global rearrangements, and ran-
domized input order of sequences; ARB neighbour joining
with Kimura correction) methods. Consensus trees were
based on maximum-likelihood (ProML, ProtML), maximum-
parsimony and distance-matrix trees and were drawn by
using established protocols (Ludwig etal, 1998). The
dsrAB/DsrAB-ARB database is freely available for download
at http://www.microbial-ecology.net/download.asp).
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Calculating abundances of dsrAB-containing
microorganisms along the Global Ocean
Sampling transect

The number of ‘dsrAB-associated reads’ and the relative
abundance of ‘dsrAB read equivalents’ among sequences
from the Global Ocean Sampling expedition were calculated
as outlined previously (Yutin etal, 2007). Briefly, the
number of ‘dsrAB-associated reads’ is the total number of
reads that compose dsrAB-containing scaffolds in a sample.
For inferring the relative abundance of ‘dsrAB read equiva-
lents’, three universal phylogenetic marker genes, typically
occurring only once per genome, recA (encoding recombi-
nase A), gyrA (encoding DNA gyrase subunit A) and rpoB
(encoding DNA-directed RNA polymerase, B-subunit), were
used for normalization.

Bacterial nomenclature

Names of bacterial and archaeal taxa were used according to
the Taxonomic Outline of the Bacteria and Archaea (TOBA
Release 7.7) (Garrity etal., 2007) and the International
Journal of Systematic and Evolutionary Microbiology.

Accession numbers

Newly determined dsrAB sequences were deposited at
GenBank under the Accession Nos EU155020-EU155055.
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version of this article:

Fig. S1. Paralogous consensus tree based on an alignment
of DsrA to DsrB. Individual trees were calculated with full-
length sequences from 18 known SOP and with an indel filter
(226 alignment positions). Filled and open circles indicate
lineages with >90% and 80-90% parsimony bootstrap
support respectively. o, Alpha-; B, Beta-; and y, Gammapro-
teobacteria. Additional analyses that included shorter
sequences (90 references, 132 alignment positions) essen-
tially produced trees of similar topology.

Table S1. Sulfur-oxidizing prokaryotes analysed in this
study.
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