Anisotropic Friction Difference Principle of In-Pipe Machine

Article Preview

Abstract:

Paper deals with in-pipe machine which locomotes inside pipe for inspection purpose otherwise cable drawing into pipes. It uses bristled locomotion based on friction difference principle. The friction between bristle tip and inner pipe wall has anisotropic character. Knowledge of this anisotropic friction is a key to developing and optimizing of in-pipe machine based on this principle.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

306-312

Citation:

Online since:

November 2015

Export:

Price:

* - Corresponding Author

[1] O. Ostertag, E. Ostertagová, M. Kelemen, T. Kelemenová, J. Buša and I. Virgala, Miniature Mobile Bristled In-Pipe Machine, International Journal of Advanced Robotic Systems, Int J Adv Robot Syst, 2014, 11: 189 | doi: 10. 5772/59499.

DOI: 10.5772/59499

Google Scholar

[2] T. Idogaki, Characteristics of piezoelectric locomotive mechanism for an in-pipe micro inspection machine. Proc. of MHS'95, pp.193-198. Nagoya, Japan.

DOI: 10.1109/mhs.1995.494237

Google Scholar

[3] S. Aoschima, T. Tsujimuri, T. Yabuta, Design and analysis of a midget mobile robot using piezo vibration for mobility in a thin tube. Proc. of the International Conference on Advanced Mechatronics, Tokyo, 1989, pp.659-663.

Google Scholar

[4] Y. -J. Yum, H. Hwang, M. Kelemen, V. Maxim, and P. Frankovský, In-pipe micromachine locomotion via the inertial stepping principle, Journal of Mechanical Science and Technology 28 (8) (2014), 3237-3247.

DOI: 10.1007/s12206-014-0734-x

Google Scholar

[5] T. Izumikawa, H. Yaguchi, Novel Cableless Magnetic Actuator Capable of High-speed Locomotion in a Thin Pipe by Combination of Mechanical Vibration and Electromagnetic Force, Procedia Engineering, Volume 29, 2012, Pages 144–149.

DOI: 10.1016/j.proeng.2011.12.684

Google Scholar

[6] A. Vitko, L. Jurišica, M. Kľúčik, F. Duchoň, Context Based Intelligent Behaviour of Mechatronic Systems, Acta Mechanica Slovaca. - ISSN 1335-2393, Vol. 12, No. 3-B. (2008) pp.907-916.

Google Scholar

[7] A. Degani, H. Choset, M. T. Mason, DTAR—A Dynamic, Tube-Ascending Robot, IEEE Transactions on Robotics, Volume: 27 Issue: 2, April 2011, p.360 – 364.

DOI: 10.1109/tro.2011.2108628

Google Scholar

[8] A. Vitko, L. Jurišica, A. Babinec, F. Duchoň, M. Kľúčik, Some Didactic Problems of Teaching Robotics, Proceedings of the 1st International Conference Robotics in Education 2010. Bratislava, 16. -17. 9. 2010, Bratislava, Slovak University of Technology in Bratislava, ISBN 978-80-227-3353-3, (2010).

Google Scholar

[9] D. Koniar, L. Hargaš, M. Hrianka, The application of DICOM 7th standard in LabView, Proc. of Biom. Eng., Kladno (2007).

Google Scholar

[10] Li-Hong Juang, Ming-Ni Wu, Zhi-Zhong Weng, Object identification using mobile devices, Measurement, Volume 51, May 2014, Pages 100-111, (2014).

DOI: 10.1016/j.measurement.2014.01.029

Google Scholar

[11] M. Dekan, F. Duchoň, L. Jurišica, A. Vitko, A. Babinec, iRobot Create Used in Education, Journal of Mechanics Engineering and Automation. - ISSN 2159-5275. - ISSN 2159-5283. - Vol. 3, Iss. 4, 2013, pages 197-202, (2013).

DOI: 10.17265/2159-5275/2013.04.002

Google Scholar

[12] L. Hargaš, M. Hrianka, D. Koniar, and P. Izák, Quality Assessment SMT Technology by Virtual Instrumentation, Applied Electronics 2007, Pilsen, 5. – 6. 9. 2007, (2007), ISBN 987-80-7043-537-3.

Google Scholar

[13] P. Pásztó, P. Hubinský, Mobile Robot Navigation Based on Circle Recognition, Journal of Electrical Engineering, Vol. 64, No. 2 (2013), 84-91.

DOI: 10.2478/jee-2013-0012

Google Scholar