
Administrivia

• Lab 1 (due Thursday) Errata:
- Grab new grading script from

� � � � �� � ��� 	
�� � � �� � � ��� �� �
� � � �

- Few differences in new version of Bochs (check email)

– p. 1/20

Roadmap

• Today:
- Quick review of UNIX (substituting current API)

- Discuss Multics paper

- Discuss UNIX as a reaction to multics

• Next time:
- Discuss original UNIX developers’ reaction to what UNIX

became

– p. 2/20

PDP-11 Virtual Memory

• PDP-11 was hardware for first version of UNIX with
multiprogramming

• 64K virtual memory, 8K pages

• 8 Instruction page translations, 8 Data page
translations

• Swap 16 machine registers on each context switch

– p. 3/20

I/O through the file system

• Applications “open” files/devices by name
- I/O happens through open files

•

� � � �� � � ��� 	�
 � �
 � 	��

� � � ��
 �� � � � �
���

- � � � � � : ��
�

�� �� � , ��
�

! � �� � , ��
�

�� ! �
- ��

�
" �# $% : create the file if non-existent

- ��
�

& " �: (w. ��
�

" �# $%) create if file exists already

- ��
�

% �' � ": Truncate the file

- ��
�

$((# � � : Start writing from end of file

-) *
� : final argument with ��
�

" �# $%

• Returns file descriptor—used for all I/O to file

• Historical note: Needed � � �
 � to create files

– p. 4/20

Error returns

• What if �� � � fails? Returns -1 (invalid fd)
• Most system calls return -1 on failure

- Specific kind of error in global int � � � � *
•

� � �� � � � � � � � � � � � � � � � 	� for possible values
- 2 = # � � # � % “No such file or directory”

- 13 = # $ " " # � “Permission Denied”

•

� � � � � � function prints human-readable message
- 	� � � * � 	
 � � � � � � �
 ��

→ “ � � � � � � � � � * � � � � � � � � * �
 � � � � * � �”

– p. 5/20

Original UNIX File System

• Each FS breaks partition into three regions:
- Superblock (parameters of file system, free ptr)

- i-list – table of metadata (i-nodes) for all files

- File and directory data blocks

- All composed of 512-bytes blocks

• Directories very much like ordinary files
- Except user code can’t directly write them

• Free blocks kept in a linked list

• Today: Many optimizations, but still based on
i-nodes

– p. 6/20

Inodes

data

data

data

data

name
i-number

...

contents

directory

...

inode

...

indirect
block

...
double indir
indirect ptr

...

metadata

...

...

data ptr
data ptr

data ptr
data ptr

. . .

– p. 7/20

Device nodes

• File namespace also gives access to some devices
- Open what looks like a file, to gain access to device

• Examples (on my machine, others will vary):
-

�
� � � �� � � – reads like EOF, writes like a data sink

-

�
� � ��� � � * – reads like an infinite stream of 0 bytes

-

�
� � � � – reads from or writes to current terminal

-

�
� � � � �
� � – access raw disk sectors

-

�
� � � � �
� � – CD-ROM device

-

�
� � � � �
 � * – send audio samples to sound card

-

�
� � � � �) *� �� – mouse

-

�
� � � � 	 � – lets you snoop packets on the network

– p. 8/20

Permissions

• Not every process can open every file
• Each process has a set of credentials

- User ID (typically 32-bit number, unique per login account)

- Group ID, group list (32-bit numbers)

• Files have permissions, too. E.g.,:
- (Link count = 1), User ID is 0, group ID 7

-r-xr-xr-x 1 0 7 79 Apr 14 10:32 /usr/bin/true

• Three sets of “rwx” bits, for user, group, and other
- read/write/execute on normal files

- on directories, “x” means traverse (cd or access any file)

- on dirs, must have “w” to create, rename, or delete files

– p. 9/20

Unix root user

• Unix user ID 0 is privileged “root” user
- Can perform most system calls without access checks

- E.g., open any file

- Can change owner of files

- Can Change its own UID or group list

• Not to be confused with privileged kernel
- Kernel runs with CPU in special “privileged” mode

- Allows access to special instructions, I/O registers, etc.

- root-owned processes are still just regular user processes

– p. 10/20

Example: Unix login process

• Login process runs with UID 0 (root)
• Asks for username and password

- Checks against system password file

- Keeps asking until valid password supplied

• Once password matches
- Look up numeric UID and GIDs in system files

- Set the GID list

- Set the UID (this drops privileges)

- Execute the user’s shell

– p. 11/20

Operations on file descriptors

•

� � � � �
 � � � � � � ��� � � � � � � � �

� � � � � � � � � ���
- Returns number of bytes read

- Returns 0 bytes at end of file, or -1 on error

•

� � � � � � � � � � � � � ��� � � � � � � � �

� � � � � � � � � ���

- Returns number of bytes written, -1 on error

•

� � �
�

� � � � � � � � � � � ��� � � ��
� � � � �

� � � � 	 � �� � ���

- � �� � �� : 0 – start, 1 – current, 2 – end
- Returns previous file offset, or -1 on error

•

� � � � � � � � � � � � � � � �

•

� � � � � � �� � � � � � � � �

- Guarantee that file contents is stably on disk

– p. 12/20

File descriptor numbers

• File descriptors are inherited by processes
- When one process spawns another, same fds by default

• Descriptors 0, 1, and 2 have special meaning
- 0 – “standard input” (�
 � � in ANSI C)

- 1 – “standard output” (�
 *� �
�

	 � � � � in ANSI C)

- 2 – “standard error” (�
� � �
�

	� � � * � in ANSI C)

- Normally all three attached to terminal

– p. 13/20

Creating processes

•

� � � � � � � � � � � � � �

- Create new process that is exact copy of current one

- Returns process ID of new proc. in “parent”

- Returns 0 in “child”

•

� � � �
 � � � � � � � � � � � ���

� � � � �
 � �

� � � �� � � �

- 	 �
 – process to wait for, or -1 for any

- � � – will contain exit value, or signal

- * 	 – usually 0 or !� � � $� �

- Returns process ID or -1 on error

• Historical note: before waitpid/wait, more complex
messaging primitive used

– p. 14/20

Deleting processes

•

� � � � � � � � � � � � � �
 � �� ���

- Current process ceases to exist

- � � � � shows up in � � � 	 �
 (shifted)

- By convention, � � � � of 0 is success, non-zero error

•

� � � � �� � � � � � � � ���

� � � � � � ���
- Sends signal � � � to process 	 �

- �� �% # �� most common value, kills process by default

(but application can catch it for “cleanup”)

- �� �� � � � stronger, kills process always

– p. 15/20

Running programs

•

� � � � � �� � � ��� 	�
 � � � � � � � 	
 �
 � � � � � 	
 � � � �� ���

- 	 � * � – full pathname of program to run

- � � � � – argument vector that gets passed to)� � �

- � � � 	 – environment variables, e.g., ($% �, � � � #

• Generally called through a wrapper functions
•

� � � � � �� �� ��� 	�
 � � � � � � � 	
 �
 � � � ���

- Search ($% � for prog

- Use current environment

•

� � � � � �� � � ��� 	�
 � � � � � � � 	
 �
 � � � � � �
���

- List arguments one at a time, finish with � ' � �

– p. 16/20

Manipulating file descriptors

•

� � � � �� � � � � � �� � � ��
�

� � � � � � � � ���

- Closes �� � �
, if it was a valid descriptor

- Makes �� � �
 an exact copy of *�
 �

- Two file descriptors will share same offset
(� �� � � on one will affect both)

•

� � � �� � �� � � � � � ��� �
�

�� � �� �

� � � �
 � �

- Sets close on exec flag if � � � = 1, clears if � � � = 0

- Makes file descriptor non-inheritable by spawned programs

– p. 17/20

Example: run prog w. � � �� stdin

if (!(pid = fork ())) {

int fd = open ("/dev/null", O_RDONLY);

if (fd > 0) {

dup2 (fd, 0);

close (fd);

}

execlp ("prog", "prog", "arg1", NULL);

perror ("prog");

_exit (1);

}

waitpid (pid, &stat, 0);

printf ("prog exited %snormally\n", stat ? "ab" : "");

[note: no error checking here]

– p. 18/20

Pipes

•

� � � � � � � � � � � � �� � � � ���

- Returns two file descriptors in �
 � � � �

and �
 � � � �

- Writes to �
 � � � �

will be read on �
 � � � �

- When last copy of �
 � � � �

closed, �
 � � � �
will return EOF

- Returns 0 on success, -1 on error

• Operations on pipes
- � � �
/ � � � � / �� * �� – as with files

- When �
 � � � �

closed, � � �
 	 �
 � � � � �

returns 0 bytes

- When �
 � � � �

closed, � � � � 	 �
 � � � � �

:
- Kills process with �� �(� (# , or if blocked
- Fails with EPIPE

– p. 19/20

Example multics segments

0,0,5 >sl1>hcs_ Gate into ring 0

1,1,5 >sl1>ms_ Gate into ring 1

1,5,5 >sss>ls Standard system command

4,4,4 >udd>m>vv>fred Random user’s program

– p. 20/20

	Administrivia
	Roadmap
	PDP-11 Virtual Memory
	I/O through the file system
	Error returns
	Original UNIX File System
	Inodes
	Device nodes
	Permissions
	Unix root user
	Example: Unix login process
	Operations on file descriptors
	File descriptor numbers
	Creating processes
	Deleting processes
	Running programs
	Manipulating file descriptors
	Example: run prog w. 	exttt {/dev/null} stdin
	Pipes
	Example multics segments

