
Rent’s Rule Based Switching Requirements

[Extended Abstract]

André DeHon
Department of Computer Science, 256-80

California Institute of Technology
Pasadena, CA 91125

andre@acm.org

ABSTRACT
A Rent’s Rule characterization of recursive bisection cap-
tures a measure of the locality in a netlist or graph. From
this characterization, we know we can establish a lower bound
on layout area implied by wiring. When applying this lower
bound to the design of programmable or switched networks,
we are ultimately concerned for both the switching require-
ments and the wiring requirements. Switch requirements
are particularly important in conventional VLSI where (a)
a switchpoint consumes considerably more area than a wire
crossing and (b) switchpoints must reside on the active sur-
face, whereas wiring may take place on any of several wire
layers. The most straight-forward, limited-bisection switch-
ing networks have switching requirements which grow as
O(N2p), similar to wiring requirements. In practice, how-
ever, this leaves switching dominating wiring. We show that
there are limited-bisection networks with O(N) switching
growth and highlight some of the tradeoffs between wire
utilization and switching, routing complexity, routing guar-
antees, and switch latency within this design space.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Network Topology ; B.7.1 [Inte-
grated Circuits]: Types and Design Styles—VLSI

Keywords
Rent’s Rule, Switching Requirements, Hierarchical Networks

1. INTRODUCTION AND BACKGROUND

1.1 Conventional, Flat Switching Networks
We have a well developed theory and design space for

switching networks which can connect a number of sources
(N) to a number of sinks (M). In many common cases, the
sources and sinks are the same (N = M); we will use that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SLIP’01,March 31-April 1, 2001, Sonoma, California, USA.
Copyright 2001 ACM 1-58113-315-4/01/0003 ...$5.00.

Figure 1: 8×8 Crossbar

Figure 2: 16×16 Beneš Network

simplification for now, but the results have certainly been
generalized for the asymmetric case. This switching theory
assumes our only limitations are the number of inputs and
outputs, making no assumptions or restrictions about the
locality of communication.

From this switching theory, for example, we know:

• A crossbar (Figure 1) can connect any N inputs to N
outputs with N2 switches. The path from any input to
any output goes through a single series switch, but the
lines connecting input and output are each O(N) long
and have 2N switches connected to them which add
some amount of capacitive loading. There is exactly
one switch associated with each possible input to out-
put connection, so routing is trivial and guaranteed as
long as the input to output mapping is a permutation
(or a subset of a permutation).

• a Beneš network (Figure 2) can also route any permu-
tation and can do so with only O(N log(N)) switches
[1] [2]. It achieves this reduction in switches at the cost
of a multistage arrangement. Any path from input to
output goes through 2 logr(N)−1 switches (where r is
the radix of each switching stage; each switching stage

http://www.cs.caltech.edu/~andre/

Figure 3: 16×16 Omega Network

may be an r × r crossbar) on the path from input to
output and sees a constant amount of capacitive load-
ing (for constant r) per stage, making total capacitive
loading O(log(N)). Total wire length for any route
remains O(N). Assuming the permutation is known
prior to routing (offline routing), computing the con-
figuration of switches to realize any permutation on
a Beneš network is guaranteed and deterministic and
can be done in O(N log(N)) time.

• a banyan (e.g. butterfly, baseline, omega (Figure 3))
network retains the ability to route any single input to
output connection, but is not guaranteed to route any
permutation. It requires half as many switches as the
Beneš network [asymptotically, still O(N log(N))] and
half as many switches in any path between input and
output (logr(N)). Total wire length remains O(N)
and capacitive loading O(log(N)).

While these networks allow us to reduce switching com-
plexity from N2 to O(N log(N)), they all still require wiring
area that goes as Ω(N2) in any two-dimensional layout. This
is easy to see using, for example, Thompson’s argument
about bisection width [12]. The minimum bisection width
of any of these networks is Ω(N), meaning in any layout,
there will need to be Ω(N) wires crossing between the two
halves of the layout. When we are limited to 2D-VLSI, this
means Ω(N) wires must cross the 1D-line that bisects the
chip. That places a lower bound of Ω(N) on the width of
the chip, if we assume a fixed number of wire layers. Since
this property holds recursively, we can make a similar argu-
ment for the next cut of the chip and establish that both
the width and height of the layout must be Ω(N), making
the entire chip area Ω(N2).

This result looks unfortunate, because it says that we can
reduce the switches, but, asymptotically, we are stuck with
a Ω(N2) wiring area. Alternately, it might say that we
would need Ω(N/ log(N)) wiring layers to even approach
the O(N log(N)) switching area limit.

1.2 Rent’s Rule Locality
Fortunately, we have empirical evidence, in the form of

Rent’s Rule [9], for example, which suggests there is addi-
tional structure to typical computations which we can ex-
ploit to avoid this limit. That is, the evidence from Rent’s
Rule suggests that the bisection bandwidth for a design does
not need to be O(N), but rather, can be O(Np) with p < 1
for typical designs. This gives us a model for capturing
the locality structure of a design—that is, we can look at
the bisection growth for a class of designs and characterize

their locality by p; this amounts to modeling non-local IO
requirements for a well-clustered sub-region as having geo-
metric growth (e.g. [3]).

This restricted bandwidth gives us leverage to design a
class of networks with lower wire growth and will allow us to
reduce the switching requirements. Using an argument like
Thompson’s in the non-switched case, we see we now need
only Ω(Np) wires in the bisection, this leads to a smaller
2D-VLSI area lower bound of Ω(N2p).

1.3 Implication on Switching Networks
Once we make this bisection restriction, we can ask what

the switching requirements are for these networks. This pa-
per highlights major points in this network design space;
owing to space limitations, we cannot comprehensively cover
the design space, but we can show a few major alterna-
tives that demonstrate the key tradeoffs involved. We show
that the most straightforward layouts also require O(N2p)
switches. Since switches are larger than wires in conven-
tional VLSI, we explore network organizations which allow
us to reduce the asymptotic switching requirements, some-
times at the cost of increased wiring, increased switch la-
tency, or reduced routing guarantees; these tradeoffs are
roughly analogous to the tradeoffs for flat networks reviewed
above.

This paper focuses on the case where we are trying to
understand how to build a universal network which will al-
low us to route any design with a characteristic (c,p) [from
Rent’s Rule IO=cNp]—or, strictly speaking, any design whose
recursive bisection is dominated by a geometric growth wiring
schedule given by the Rent Relationship and set of (c,p) pa-
rameters. A separate problem arises when we want to map
a design whose recursive bisection wire capacities exceed the
network’s limited bisection capacities. In such a case, the
design must be placed sparsely on the physical node sites
to meet the limited wiring capacity of the network. In ear-
lier work [5], I show one approach to accommodating such
mismatches, and use this to understand what Rent growth
parameters should be used in designing a network which
may see a variety of design characteristics.

2. SWITCHES
The large area of switches relative to wires is one of the

key reasons that we care about the number of switches re-
quired by a network. If the wire pitch is 5 to 8 λ, the area
of a wire crossing is 25–64λ2. Contrast this with roughly
1200λ2 for the static memory cell one would use to config-
ure a switch. Once you add a decent sized pass transistor to
make up a passive switch, 2500λ2 is a more typical switch-
point size. This alone makes for a factor of 40 difference in
area. This area would show up directly if we were simply
building a passive crossbar. In many case, we’ll want more
than just a pass gate for the switch. We may want to ac-
tively rebuffer the switch or even register it. Such switches
can easily be 5-10Kλ2. So, while asymptotic switch counts
may match asymptotic wire area, the large constant factor
area differences mean that we definitely need to watch the
switch count details. (See, for example, Figure 12.)

In standard VLSI, we can use additional metal layers to
increase the effective density of wire crossings. For example,
with 4 metal layers, and a 7λ wire pitch, we could have two
wire crossing in the same 49λ2 of area. However, switches,
in current technology, requires space on the substrate, so

Figure 4: 16 Node Tree of Meshes

we cannot stack two switches in a 2500λ2, regardless of the
number of metal layers. So, while we may increase the wiring
layers to increase the wiring density, we get no such increase
in switch density. This further suggests the need to keep
switch requirements significantly, and perhaps asymptoti-
cally, below wire crossings.

3. LIMITED-BISECTION SWITCHING

3.1 Leighton’s Tree of Meshes
One realization of these limited-bisection bandwidth net-

works is Leighton’s Tree of Meshes (Figure 4) [10]. Each
level of the tree is connected with an N × M mesh, where
the M and N can be chosen to provide the desired growth
rate in the tree. For example, if we are trying to achieve a
p = 0.5 growth rate and the lower channel has M=10, then
the upper channel would have 10 × 20.5 ≈ 10 × 1.4 ≈ 14
wire channels. By keeping the 1 : 20.5 ratio on each mesh,
we realize a network whose bandwidth grows geometrically
according to Rent’s Rule with a p = 0.5. The mesh allows us
to route connections from children subtrees up the network,
and vice versa, and allows connections to cross between a
pair of sibling subtrees. We will call the mesh a switchbox
and will be looking at alternate scheme to realize the switch-
ing function throughout this section. We denote the number
of wires into the base of the switchbox as W (e.g. W = 10
in this example).

Strictly speaking, this network may need channel capaci-
ties which are a constant factor larger than the design it is
trying to route. That is, if we construct the network to a
(c′,p), where c′ = k×c, any design dominated by a (c,p) Rent
Relationship will be routable. For Leighton’s construction
k = 4 [3].

For p > 0.5, a Tree of Meshes network with N nodes
will require O(N2p) switches. This is easy to see since the
top-level mesh will be Np ×

(
N
2

)p
. If we recursively sum

all the switches in the network, we will see that the total
number of switches converges to this asymptote. For p =
0.5, the number of switches is O(N log(N)), and the number
of switches converges to O(N) for p < 0.5. By a similar
argument, the number of switches in the worst-case path
across the network will be O(Np) for p > 0.5. Since this

W
�

W

 Sibling
Crossover

Parent−Children
 Connections

Figure 5: Switchbox Topology for Crossbar, N-
choose-M , and Beneš-based Networks: this replaces
the mesh switchbox used by the Tree of Meshes.

Root

Right

Left

Figure 6: Parent-to-child Connections using 14-
choose-10 Depopulated Crossbars: this arrangement
allows each child to independently select any subset
of 10 signals from the 14 parent signals.

class of networks supports locality, routes only have to go
through the root switchbox for the least common ancestor
which contains both the source and the sink, making many
paths much shorter than the worst case.

3.2 N-choose-M variation
As an alternative to the Tree of Meshes, we can use depop-

ulated, crossbar-like switchboxes for each of the tree stages
in place of Leighton’s mesh switchbox (Figure 5). If we fully
populate the crossbars so that we have a W × (2p) W cross-
bar for each child channel connecting to the parent and a
W ×W connection between the two child channels, we get
guaranteed routability with no constant overhead—that is,
any design whose recursive bisection IO capacities do not
dominate the network’s channel capacities can be routed. It
is also easy to see we have the same asymptotic growth in
total switches as the Tree of Meshes. Now, however, we only
have 2 log2(N)− 1 switches in the worst case path between
any source and sink.

A quick look at the W × (2p) W crossbar switch for each
parent to child connection suggests that we have more switch-
ing freedom than we strictly need. In particular, the cross-
bar allows us to connect any of the W lower channel signals
to any of the (2p) W upper channel signals, whereas we only

Figure 7: Single Crossover in p = 0 Case: the routed
(highlighted) connections show an example where
the physical network needs to have 1.5× more wires
in each channel than the design in order to be fully
routable.

really need to make sure that each lower channel signal is
connected to some signal in the upper channel. That is, we
do not really need a full crossbar; we simply need to select
a subset M = W of signals from a set N = (2p) W . This
can be done with an N -choose-M depopulated crossbar as
shown in Figure 6 (for details, see [4]; this result was sepa-
rately developed by Fujiyoshi et al. [7]). This arrangement
needs only M×(N−M+1) switches. In our case, that means
W × ((2p) W −W + 1). When p > 0 and W is large, the
number of switches is roughly (2p − 1) W 2. This reduces the
constant factor required for these switchboxes, which is im-
portant in practice, but retains the same asymptotic growth
we derived above.

By making a similar observation, the W×W child crossover
can be reduced to W 2/2 switches. Here we again note that
the exact wire is irrelevant; it is only important that we con-
nect one channel from each child for each crossover connec-
tion. Wu and colleagues show that each channel need only
fanout to half of the sibling channels in order to guarantee
full connections [13]. For large p, if we exploit the crossbar
connections between the root and the children when rout-
ing siblings (meaning some connections will go through two
switches in making a sibling-to-sibling cross connection), we
can reduce the number of crossover switches further.

An option to even further reduce crossover switches is to
use a single switch for each sibling connection. That is, we
number each channel coming in from the two siblings from
top to bottom and provide a switch only between the chan-
nels numbered in the same manner. This switching scheme,
however, can prevent us from being able to use all the wires
in the channel. Used in conjunction with the N -choose-M
switches above, it means some wires may be used on only one
sibling side of the switchbox. Since sibling channels are only
connected to a single other channel, it may leave orphaned
connections on both sides of the channel. The practical ef-
fect is that channels will need to be a constant size larger
than the wiring they need to support. This constant is 1.5
for p = 0 [14], and decreases with increasing p.

Note that the 3-way switchbox and the optimal 3-way
greedy routing switchbox from [13] are degenerate cases of
the N -choose-M switching scheme described here for the
case where p = 0. Figure 7 shows the single crossover 3-way
switchbox and demonstrates how this switch reduction may
underutilize the physical wires by a constant factor of 1.5.

3.3 Beněs Switching
In the aforementioned networks we pay O(W 2) switches

for each of our intermediate switchboxes. We can, however,
use our knowledge about tradeoffs in flat networks to reduce
the switching cost.

First, we can replace each of the “crossbars” in the switch-
box formulation of Figure 5 with Beneš networks. This re-
duces the total number of switches in the switchboxes to
O(W log(W)). Note that the switching networks between
child and parent will be asymmetric, but we can easily imag-
ine building a ((2p) W)-endpoint Beneš network and pruning
the unused nodes on the child side of the network. This has
an important effect. The total number of switches now con-
verges to only O(N) as shown in Figure 8. Note, however,
that the switchbox area will remain Ω(W 2) in 2D-VLSI due
to wiring since we have previously established that all of the
flat networks have O(N) bisection bandwidth. Also note
that the Ω(W 2) switchbox wiring does not increase the to-
tal wiring lower bound from the Ω

(
N2p

)
bound which is

true for all of these limited-bisection networks.
With the Beneš switching, the problem remains fully rout-

able and can be done so deterministically in O(N) time.
Note that we simply need to route each of Beneš switches
in the network, which we can do in O(W log(W)) time, so
the routing time analysis is the same summation as we just
performed to count total switches (i.e. Figure 8). The major
drawback of this scheme is that routes will now have to cross
O(log2(N)) switches in the worst-case path between a source
and a sink.

We can, in theory, use superconcentrators to achieve a
linear number of switches in the child to parent path [11].
This leaves us with Beneš switches for the crossover, and the
superconcentrators still have O(log(W)) delay in the child
to parent connection in every switchbox. This variation does
not change the asymptotic bounds we have already achieved.

3.4 Linear Population
We can further reduce the switching requirement by only

connecting each channel wire, from siblings or from parents,
to a small, constant number of channels in the sibling or par-
ent channel of the switchbox. That is, rather than providing
full concentration between the various switchbox directions,
we only connect to a small number of channels and use the
fact that we have flexibility over multiple switchboxes to get
rich routing.

One example of this is Leiserson’s Butterfly Fat-Tree [8]
(Figure 9); a similar version is our “linear” population tree
(Figure 10). We call this “linear” because the number of
switches in each switchbox is linear in the channel width,
W . Using these topologies, we can program the growth rate
similar to Leighton’s Tree of Meshes; however, it is most
convenient to grow tree stages in quanta. In the scheme
used for HSRA, each stage would either be a 1:1 stage or
a 2:1 stage. By choosing which levels do (1:1) or do not
(2:1) reduce the total wires out of the top of the switchbox,
we can target a particular p value over multiple stages of
growth (Figure 11).

The number of switches in any of these linearly populated
networks converges to a constant independent of the number
of tree levels. For example, if we assume a 4-ary butterfly fat
tree with switches with 4 down links and 2 up links, as shown
in Figure 9, then the total number of switches is at most N

2
.

To see this, note that each group of 4 leaf nodes needs one

Here we show that the total number of switches in a limited-bisection network using Beneš
switchboxes is O(N). There are cW log (W) switches in each switchbox. Summing over all
switchboxes in the tree, we get:

Nswitch = c

(
1 · (Np) log (Np) + 2 ·

(
N

2

)p

log

((
N

2

)p)
+ 4 ·

(
N

4

)p

log

((
N

4

)p)
+ · · ·

+
N

2
·
(

N

N/2

)p

log

((
N

N/2

)p)
+ N ·

(
N

N

)p

log

((
N

N

)p))
This is better re-expressed using n = log(N) and extracting the common term p.

Nswitch = cp

(
N

(
2p

2

)n

· n + N

(
2p

2

)n−1

· (n− 1) + N

(
2p

2

)n−2

· (n− 2) · · ·

+N

(
2p

2

)
· 1 + N · 0

)
Now, if we pull out N and set r = 2

2p , we get:

Nswitch = cpN

log(N)∑
n=1

(n

rn

)
This is certainly less than the infinite sum where we do not bound n. We further note that the
ratio of consecutive terms in this series is:

n + 1/rn+1

n/rn
=

(
1

r

)(
n + 1

n

)
=

(
2p

2

)(
n + 1

n

)
For p < 1 and n > 2

2−2p , this ratio is strictly less than one. Hence, this series is bounded by
a geometric series and, consequently, the summation is asymptotically bounded by a constant.
Since the sum is a constant, we have a total number of switches which is simply a constant
times p and N , or O(N) switches. 2

Figure 8: Total Switch Accounting when using Beneš Networks in Switchboxes

1:1

2:11:1
2:1 p=0.5

2:1

1:12:1

2:1 p=0.67

1:1

2:12:1

2:1 p=0.75

Figure 11: Programming Growth for Tree of Meshes: note that the number of base channels (c) is 3 in all
these examples.

0 1

2 3
4

0 1

2 3
4

0 1

2 3
4

0 1

2 3
4

5
5

0 1

2 3
4

0 1

2 3
4

0 1

2 3
4

0 1

2 3
4

5
5

0 1

2 3
4

0 1

2 3
4

0 1

2 3
4

0 1

2 3
4

5
5

0 1

2 3
4

0 1

2 3
4

0 1

2 3
4

0 1

2 3
4

5
5

6
6

6
6

Figure 9: 4-ary Butterfly Fat-Tree

Figure 10: Hierarchical Network with Linear Switch
Population

switch at the lowest level (labeled 4 in Figure 9). At the
next level, we need half as many switches (every 4 switches
on the lower level needs 2 switches at the next level). This
relationship continues with each succeeding level requiring
half as many switches as the level before. Consequently, the
number of switches needed can be calculated as a classical
geometric series:

Nswitch =
N

4
+

1

2

(
N

4

)
+

1

4

(
N

4

)
+

1

8

(
N

4

)
+ · · · ≤ N

2

These linear organizations also allow us to have only a single
switch at each tree level, such that the total switches along
the worst-case path is again only 2 logr(N)− 1.

This linear population may come at the cost of routability
and wire utilization. It is clear from the 3-way single-switch
sibling-crossover case (Figure 7) that we will not be able to
use every wire in the network perfectly. However, even if we
had to pay a small constant factor in wire utilization (e.g. we
had to guarantee to have 2× as many available wires in each
channel as wires in the netlist), this tradeoff between wires
and switches would still be a net win, as shown in Figure 12.
We have empirical evidence that a small constant overhead
is adequate to route typical benchmark circuits. However,
we have not yet proved the existence or non-existence of
a constant mapping ratio. Our working hypothesis is that
there may not be a constant mapping ratio, but that typ-
ical circuits do have additional structure which makes this
work. These represent important open questions in our un-
derstanding of switching requirements for these networks.

These networks with a linear number of switches are par-
ticularly attractive when we consider multi-level wiring. Since
the number of switches per node converges to a constant in-
dependent of N , it may be possible to layout the networks
so that they take up a fixed amount of active substrate area
and support the super-linear interconnect requirements with
additional metal layers. For the linear populated network,
like the Butterfly Fat Tree (p = 0.5), I have shown [6] that it
is possible to layout the network in Θ(N) active area using
Θ(log(N)) wiring layers.

4. NETWORK ARITY
So far, I have described and shown most of these limited-

bisection networks as two-ary trees—that is, each switchbox
has only two children. Another topological option is to vary
the arity of the switching nodes. In general, increasing the
arity will decrease the number of switchboxes, and hence
switches, on the path between the worst-case source and sink
pair. For example, going from a 2-ary network to a 4-ary
network will cut the number of series switches in half for the
linear and N -choose-M populated networks. If we are try-
ing to maintain the same wiring guarantees for a given set of
(c, p) parameters, the flattened network will have more wires
in some intermediate channels than the non-flattened net-
work since bandwidth reduction only occurs at the switch-
boxes which are now less frequent. Flattening from 2-ary to
slightly larger arity may be able to reduce the total number
of switches in the network in some cases, but, asymptoti-
cally, increased arity will increase switch count. Flattening
by any constant amount will only change the constants.

N -choose-M both Linear
c = 5 p = 0.67 c = 10

(wires shown) (wires not shown)

Figure 12: Area Comparison for a 1024 Node Network: this shows that even if we cannot use all the wires in
a linearly populated network, typical constants work out that the total area is still less than that of a network
which provides switching so that all wires can be used perfectly. This comparison assumes two metal layers
dedicated to routing. The non-black area in the N-choose-M case shows the horizontal and vertical wire
layers. It should be clear from these diagrams, that additional metal layers would not substantially reduce
the area of the N-choose-M layout since it is already switch dominated; the linear layout is clearly wire-channel
dominated and could be reduced if additional metal layers were available for routing.

5. SUMMARY
Limited-bisection networks designed with growth accord-

ing to Rent’s Rule, allow us to reduce switch requirements as
well as wire requirements. Since switches are large relative
to wires and can only exist on the substrate in VLSI, switch
area can easily dominate the wiring area in these networks.
We showed a number of design points in this space, with
switch areas which range from O(N2p), matching wire area
asymptotes when we have fixed wire layers, down to O(N)
switch area, which may permit O(N) layout area with suf-
ficient metalization.

6. REFERENCES

[1] V. Beneš. Permutation groups, complexes, and
rearrangeable multistage connecting networks. Bell
System Technical Journal, 43:1619–1640, July 1964.

[2] V. Beneš. Mathematical Theory of Connecting
Networks and Telephone Traffic. Academic Press, New
York, NY, 1965.

[3] S. Bhatt and F. T. Leighton. A framework for solving
vlsi graph layout problems. Journal of Computer
System Sciences, 28:300–343, 1984.

[4] A. DeHon. Entropy, counting, and programmable
interconnect. In Proceedings of the 1996 International
Symposium on Field Programmable Gate Arrays.
ACM/SIGDA, February 1996. See extended version
<http://www.cs.caltech.edu/∼andre/abstracts/
entropy fpga96.html>.

[5] A. DeHon. Balancing interconnect and computation in
a reconfigurable computing array (or, why you don’t
really want 100% lut utilization). In Proceedings of the
International Symposium on Field Programmable Gate
Arrays, pages 69–78, February 1999.

[6] A. DeHon. Compact, multilayer layout for butterfly
fat-tree. In Proceedings of the Twelfth ACM
Symposium on Parallel Algorithms and Architectures
(SPAA’2000), pages 206–215. ACM, July 2000.

[7] K. Fujiyoshi, Y. Kajitani, and H. Niitsu. Design of
minimum and uniform bipartites for optimum
connection blocks of fpga. IEEE Transactions on
Computer-Aided Design of Integrated Circuits,
16(11):1377–1383, November 1997.

[8] R. I. Greenberg and C. E. Leiserson. Randomness in
Computation, volume 5 of Advances in Computing
Research, chapter Randomized Routing on Fat-Trees.
JAI Press, 1988. Earlier version MIT/LCS/TM-307.

[9] B. S. Landman and R. L. Russo. On pin versus block
relationship for partitions of logic circuits. IEEE
Transactions on Computers, 20:1469–1479, 1971.

[10] F. T. Leighton. New lower bound techniques for vlsi.
In Twenty-Second Annual Symposium on the
Foundations of Computer Science. IEEE, 1981.

[11] N. Pippenger. Superconcentrators. SIAM Journal of
Computing, 6(2):298–304, 1977.

[12] C. Thompson. Area-time complexity for vlsi. In
Proceedings of the Eleventh Annual ACM Symposium
on Theory of Computing, pages 81–88, May 1979.

[13] Y.-L. Wu, D. Chang, M. Marek-Sadowska, and
S. Tsukiyama. Not necessarily more switches more
routability. In Proceedings of the 1996 Asia Pacific
Design Automation Conference, 1996.

[14] Y.-L. Wu, S. Tsukiyama, and M. Marek-Sadowska.
Graph based analysis of 2-d fpga routing. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 15(1):33–44, January 1996.

Web links for this document: <http://www.cs.caltech.

edu/research/ic/abstracts/rentsw_slip01.html>

http://www.cs.caltech.edu/~andre/abstracts/entropy_fpga96.html
http://www.cs.caltech.edu/~andre/abstracts/entropy_fpga96.html
http://www.cs.berkeley.edu/projects/brass/documents/fixedws_fpga99.html
http://www.cs.berkeley.edu/projects/brass/documents/fixedws_fpga99.html
http://www.cs.berkeley.edu/projects/brass/documents/fixedws_fpga99.html
http://www.cs.caltech.edu/research/ic/abstracts/fold_spaa2000.html
http://www.cs.caltech.edu/research/ic/abstracts/fold_spaa2000.html
http://www.cs.caltech.edu/research/ic/abstracts/rentsw_slip01.html
http://www.cs.caltech.edu/research/ic/abstracts/rentsw_slip01.html

	Introduction and Background
	Conventional, Flat Switching Networks
	Rent's Rule Locality
	Implication on Switching Networks

	Switches
	Limited-Bisection Switching
	Leighton's Tree of Meshes
	N-choose-M variation
	Beneš Switching
	Linear Population

	Network Arity
	Summary
	REFERENCES

