Increasing \& Decreasing Functions And Maxima \& Minima

STRICTLY INCREASING FUNCTION :

A function $f(x)$ is said to be a strictly increasing function on (a, b) if

$$
\mathrm{x}_{1}<\mathrm{x}_{2} \Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right)<\mathrm{f}\left(\mathrm{x}_{2}\right) \text { for all } \mathrm{x}_{1}, \mathrm{x}_{2} \in(\mathrm{a}, \mathrm{~b})
$$

Stricly Decreasing Function : A function $f(x)$ is said to be a strictly decreasing function on (a, b) if

$$
\mathrm{x}_{1}<\mathrm{x}_{2} \Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right)>\mathrm{f}\left(\mathrm{x}_{2}\right) \text { for all } \mathrm{x}_{1}, \mathrm{x}_{2} \in(\mathrm{a}, \mathrm{~b})
$$

By an increasing or a decreasing function we shall mean a strictly increasing or a strictly decreasing function.
Monotonic Function : A function $f(x)$ is said to be monotic on an interval (a, b). it is either increasing or decreasing on (a, b)
Definiton : A function $f(x)$ is said to be increasing on $[a, b]$ if it is increasing on (a, b) and it is also increasing at $x=a$ and $x=b$.
Necessary Condition: We observe that if $f(x)$ is an increasing function on (a, b) then tangent at every point on the curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$ makes an acute angle θ with the positive direction of x -axis.

$$
\therefore \tan \theta>0 \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}>0 \text { or } \mathrm{f}^{\prime}(\mathrm{x})>0 \text { for all } \mathrm{a} \in(\mathrm{a}, \mathrm{~b})
$$

If $f(x)$ is a decreasing function on (a,b), then tangent at every point on the curve $y=f(x)$ makes an obtuse angle θ with the positive direction of x -axis.

$$
\therefore \tan \theta<0 \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}<0 \text { or } \mathrm{f}^{\prime}(\mathrm{x})<0 \text { for all } \mathrm{x} \in(\mathrm{a}, \mathrm{~b})
$$

SUFFICIENT CONDITION

THEOREM : Let f be a differentiable real function defined on an open interval (a, b)
(i) If $\mathrm{f}^{\prime}(\mathrm{x})>0$ for all $\mathrm{x} \in(\mathrm{a}, \mathrm{b})$ then $\mathrm{f}(\mathrm{x})$ is increasing on (a, b)
(ii) If $\mathrm{f}^{\prime}(\mathrm{x})<0$ for all $\mathrm{x} \in(\mathrm{a}, \mathrm{b})$, then $\mathrm{f}(\mathrm{x})$ is decreasing on (a,b).

Properties of Monotonic Function :

(i) If $f(x)$ is strictly increasing function on an interval [a, b], then f^{-1} exists and it is also a strictly increasing function.
(ii) If $f(x)$ is strictly increasing function on an interval $[a, b]$ such that it is continuous, then f^{-1} is continuous on [$\mathrm{f}(\mathrm{a}), \mathrm{f}(\mathrm{b})]$.
(iii) If $f(x)$ is continuus on $[a, b]$ such that $f^{\prime}(c) \geq 0$ ($\left.f(c)>0\right)$ for each $c \in(a, b)$, then $f(x)$ is monotonically (strictly) increasing function on $[a, b]$
(iv) If $f(x)$ and $g(x)$ are monotonically (or stricly) increasing (or decreasing) functions on [a, b], then gof (x) is a monotonically (or strictly) increasing function on [a,b]
(v) If one of the two functions $f(x)$ and $g(x)$ is strictly (or monotonically) increasing and other a strictly (monotonically) increasing and other a strictly (monotonically) decreasing, then gof(x) is strictly (monotonically) decreasing on $[a, b]$.

MAXIMA AND MINIMA

Let $f(x)$ be a function with domain $D \subset R$. Then $f(x)$ is said to attain the maximum value at a point $a \in D$ if

$$
f(x) \leq f(a) \text { for all } x \in D
$$

In such a case, a is called the point of maximum and $f(a)$ is known as the maximum value or the greatest value.
Local Maximum : A function $f(x)$ is said to attain a local maximum at $x=a$ if there exists a neighbourhood.

$$
(\mathrm{a}-\delta, \mathrm{a}+\delta) \text { of a such that }
$$

$$
\mathrm{f}(\mathrm{x})<\mathrm{f}(\mathrm{a}) \text { for all } \mathrm{x} \in(\mathrm{a}-\delta, \mathrm{a}+\delta), \mathrm{x} \neq \mathrm{a}
$$

or

$$
\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{a})<0 \text { for all } \mathrm{x} \in(\mathrm{a}-\delta, \mathrm{a}+\delta), \mathrm{x} \neq \mathrm{a}
$$

In such a case $f(a)$ is called the local maximum value of $f(x)$ at $x=a$.

Local Minimum : A function $f(x)$ is said to attain a local minimum at $x=a$ if there exists a neighbourhood ($\mathrm{a}-\delta, \mathrm{a}+\delta$) of a such that $\mathrm{f}(\mathrm{x})>\mathrm{f}(\mathrm{a})$ for all $\mathrm{x} \in(\mathrm{a}-\delta, \mathrm{a}+\delta), \mathrm{x} \neq \mathrm{a}$ or $\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{a})>0$ for all $\mathrm{x} \in(\mathrm{a}-\delta, \mathrm{a}+\delta), \mathrm{x} \neq \mathrm{a}$
The value of the function at $x=$ a i.e. $f(a)$ is called the local minimum value of $f(x)$ at $x=a$

Theorem : A necessary condition for $f(a)$ to be an extreme value of a function $f(x)$ is that $f^{\prime}(a)=0$ in case it exists. A function may however attain an extreme value at a point without being derivable thereat. For example, the function $f(x)=|x|$ attains the minimum value at the origin even though it isnot derivable at $\mathrm{x}=0$.

Remark : Above condition is only a necessary condition for the point. $\mathrm{x}=\mathrm{a}$ to be an extreme point. It is not sufficient i.e. $f^{\prime}(a)$ does not necessarily imply that $x=a$ is an extreme point. For example for the function $f(x)=x^{3}, f^{\prime}(0)=0$ but at $x=0$ the function does not attain an extreme value.

Remark: The value of x for which $f^{\prime}(x)=0$ are called stationary values or critical values of x and the corresponding values of $f(x)$ are called stationary or turning values of $f(x)$.

Theorem : (First derivative test for local maximum and minima) Let $f(x)$ be a function differentiable at $x=a$. Then,
(A) $\mathrm{x}=\mathrm{a}$ is a point of local maximum of $\mathrm{f}(\mathrm{x})$, if
(i) $\mathrm{f}^{\prime}(\mathrm{a})=0$ and
(ii) $f^{\prime}(x)$ changes sign from positive to negative as x passes through a i.e. $f^{\prime}(x)>0$ at every point in the left nbd ($\mathrm{a}-\delta, \mathrm{a}$) and $\mathrm{f}^{\prime}(\mathrm{x})<0$ at every point in the right nbd $(\mathrm{a}, \mathrm{a}+\delta)$ of a .
(B) $\mathrm{x}=\mathrm{a}$ is a point of local minimum of $\mathrm{f}(\mathrm{x})$, if
(i) $\mathrm{f}^{\prime}(\mathrm{a})=0$ and
(ii) $\mathrm{f}^{\prime}(\mathrm{x})$ changes sign from negative to positive as x passes through a i.e. $\mathrm{f}^{\prime}(\mathrm{x})<0$ at every point in the left nbd ($\mathrm{a}-\delta$, a) of a and $\mathrm{f}^{\prime}(\mathrm{x})>0$ at every point in the right nbd $(\mathrm{a}, \mathrm{a}+\delta)$ of a.
(C) If $f^{\prime}(a)=0$ but $f^{\prime}(x)$ does not change sign, that is $f^{\prime}(a)$ has the same sign in the complete nbd of a , then a is neither a point of local maximum nor a point of local minimum.
Theorem : (Higher order derivative test). Let f be a differentiable function on an interval I and let c be an interior point of I such that
(i) $\mathrm{f}^{\prime}(\mathrm{c})=\mathrm{f}^{\prime \prime}(\mathrm{c})=\mathrm{f}^{\prime \prime \prime}(\mathrm{c})=\ldots=\mathrm{f}^{\mathrm{n}-1}$ (c) $=0$ and
(ii) f^{n} (c) exists and is non-zero

Then,
(a) If n is even and f^{n} (c) $<0 \Rightarrow \mathrm{x}=\mathrm{c}$ is a point of local maximum.
(b) If n is even and f^{n} (c) $>0 \Rightarrow \mathrm{x}=\mathrm{c}$ is a point of local minimum
(c) If n is odd $\Rightarrow \mathrm{x}=\mathrm{c}$ is neither a point of local maximum nor a point of local minimum.

Point of inflection : An arc of a curve $y=f(x)$ is called concave upward if, at each of its points, the arc lies above the tangent at the point. An arc of a curve $y=f(x)$ is called concave downward if, at each of its points, the arc lies below the tangent at the point.

Definition : A point of inflection is a point at which a curve is changing concave upward to concave downward, or vice-versa.

A curve $y=f(x)$ has one of its points $x=c$ as an inflection point
If f "(c) $=0$ or is not defined and
If f " (x) changes sign as x increases through $x=c$.
The later condition may be replaced by f " $(\mathrm{c}) \neq 0$ when f " $\mathrm{m}(\mathrm{c})$ exists.
Thus, $\mathrm{x}=\mathrm{c}$ is a point of inflection if $\mathrm{f}^{\prime \prime}(\mathrm{c})=0$ and $\mathrm{f}^{\prime \prime \prime}(\mathrm{c}) \neq 0$.
Critical point : A point $\mathrm{x}=\alpha$ is a critical point of a function $\mathrm{f}(\mathrm{x})$ if $\mathrm{f}^{\prime}(\alpha)=0$ orf ${ }^{\prime}(\alpha)$ does not exist.

