Semantic Web 0 (0) 1 1
10S Press

Defeasibility in Answer Set Programs with
Defaults and Argumentation Rules 1

Hui Wan@ Michael Kifer®™ Benjamin Grosof®@

& IBM T.J Watson Research Center, USA
E-mail: hwan@us.ibm.com

b Stony Brook University, USA

E-mail: kifer @cs.stonybrook.edu

¢ Vulcan Inc., USA

E-mail: BenjaminG @vulcan.com

Abstract. Defeasible reasoning has been studied extensively in the last two decades and many different and dissimilar approaches
are currently on the table. This multitude of ideas has made the field hard to navigate and the different techniques hard to compare.
Our earlier work on Logic Programming with Defaults and Argumentation Theories (LPDA) introduced a degree of unification
into the approaches that rely on the well-founded semantics. The present work takes this idea further and introduces ASPDA
(Answer Set Programs via Argumentation Rules) — a unifying framework for defeasibility of disjunctive logic programs under
the Answer Set Programming (ASP). Since the well-founded and the answer set semantics underlie almost all existing approaches
to defeasible reasoning in Logic Programming, LPDA and ASPDA together can closely approximate most of those approaches.
In addition to ASPDA, we obtained a number of interesting and non-trivial results. First, we show that ASPDA is reducible to
ordinary ASP programs. Second, we study reducibility of ASPDA to the non-disjunctive case and show that head-cycle-free
ASPDA programs reduce to the non-disjunctive case—similarly to head-cycle-free ASP programs, but through a more complex
transformation. We also shed light on the relationship between ASPDA and some of the earlier theories such as Defeasible Logic
and LPDA.

Keywords: Logic Programming, Defeasible Reasoning, Argumentation Theory, Argumentation Rules, Answer Sets, Stable
Model

1. Introduction to defeasibility based on a wide variety of intuitions
and techniques. The difficulties in relating and com-
Defeasible reasoning is a form of non-monotonic paring the different approaches have been discussed

reasoning where logical axioms are true “by default”
but their truth status may be undercut or even negated
by other, conflicting axioms. This type of reasoning
has been an important application of logic program-
ming. It was applied to model policies, regulations,
and law; actions, change, and process causality; Web
services; and aspects of inductive/scientific learning .))
[38I373312312125126)). However, there is a bewildering ble reasoning, called LPDA, which abstracts the intu-

multitude of dissimilar and incompatible approaches itions about defeasibility into what we C‘?‘H argumen-
tation theories. In LPDA, an argumentation theory is

a set of logic axioms that express the arguments for or

'This work is part of the SILK (Semantic Inference on Large R g . . P i g
Knowledge) project sponsored by Vulcan Inc. It was also partially against defeating various rules in the knowledge base.
supported by the NSF grant 0964196. These arguments often depend on the particular appli-

in [22I8112/40] among others. Combining the various
theories of defeasible reasoning with other advances in
logic-based knowledge representation, such as HilLog
[10] and F-logic [29], has also been a problem.

Our earlier work [40] addressed some of these is-
sues by introducing a general framework for defeasi-

1570-0844/0-1900/$27.50 (© 0 — IOS Press and the authors. All rights reserved

2 Wan, Kifer and Grosof / Defeasibility in Answer Set Programs with Defaults and Argumentation Rules

cation domain and user intent. An argumentation the-
ory should be viewed not as part of a knowledge base
but rather of its semantics. This approach enables a
uniform syntax and semantics for a wide variety of de-
feasible theories, which could be used in harmony and
simultaneously in the same knowledge base. LPDA, as
defined in [40], was developed on the basis of the well-
founded models [[18]] and was able to unify a number
of approaches to defeasible reasoning that are based
on the well-founded semantics. However, a large num-
ber of works on defeasible reasoning are based on the
stable model semantics [[20], which has very different
properties and is not capturable by well-founded mod-
els. Furthermore, general defeasible reasoning in the
presence of disjunctive information appears to require
even more general semantics, the answer set seman-
tics [19].

The present work takes the idea of LPDA further
and introduces ASPDA—an analogous framework for
defeasibility of disjunctive logic rules through argu-
mentation rules []_-] based on Answer Set Programming
(ASP). In this way, LPDA and ASPDA together unify
and extend most of the existing theories of defeasible
reasoning in Logic Programming.

Extension of the semantics of LPDA to ASP with
head-disjunctions turned out to be elegant but not
straightforward. The relationship between ASPDA and
the regular ASP also proved to be non-obvious. First,
we show that ASPDA can be expressed by regular ASP
programs. A polynomial reduction has been recently
given in [16]. Then we study the class of head-cycle-
free programs with disjunctive heads and show that
a related notion exists for ASPDA. By analogy with
the classical case, such programs can be reduced to
non-disjunctive programs under the defeasible stable
model semantics, although the transformation is more
complicated than in the case of the regular ASP. The
blowup in the program size is still linear, however.

To avoid possible confusion, we should mention
from the outset that argumentation rules are related to
argumentation theories of Dung et al. [[14]]. We briefly
discuss the relationship in Section 3]

A preliminary report on this work appeared in [41].
Compared to that earlier paper, the present paper de-
velops the main concepts to a fuller extent, provides all
proofs, and includes extensive examples of instantia-

! Earlier [40] we used the term “argumentation theories” but re-
named it to avoid possible confusion with a similar and related term
used in Dung et al. [14].

tions of ASPDA to illustrate the inner workings of the
ASPDA framework.

The rest of this paper is organized as follows.
Section [2] illustrates defeasible reasoning under the
answer-set semantics using the well-known Turkey
Shoot example [32]. Section [3| defines the syntax and
semantics of defeasible disjunctive logic programs
and presents a number of interesting results about re-
ducibility to the regular logic programming and to the
non-disjunctive case. Section 4] gives two examples of
argumentation rulesets for ASPDA. One is an adapta-
tion of GCLP [24/40] to ASPDA, a theory that is used
in all examples throughout this paper. Another is an ar-
gumentation ruleset that closely simulates Defeasible
Logic [1]]. Sections [5] and [6] discuss related work and
conclude the paper.

2. Motivating Example

The example in Figure [T]is adapted from the Texas
Turkey Shoot game example in [32]. We use the usual
syntax of logic programming with the only difference
that rules are tagged with @tag symbols and head-
disjunctions are allowed. Variables are prefixed with
the symbol “?”.

In the scenario described in the example, one of
the guns is known to be loaded initially, but it is not
known which. The objective is to find a plan to kill
the turkey by shooting one or both guns assuming that
the shooter can observe the effects of his actions. Let
gl and g2 be the constants representing the guns.
Numerals are used in the example to represent time
points, and the initial time point is assumed to be 1. For
instance, shoot (gl, 1) and shoot (gl, 2) repre-
sent the actions of shooting the gun g1 at time points 1
and 2. In the example, some of the rules have tags, e.g.,
kpld and shtl, and the predicate #overrides
specifies priorities among some of these tagged rules.

We distinguish between the classical-logic-like ex-
plicit negation neg and the default negation naf (which
in this paper will have the answer-set semantics). Lit-
erals L and neg L are assumed to be incompatible and
cannot both appear in a consistent model. The pred-
icate #opposes specifies additional contradictions,
such as the inability for the turkey to be both dead and
alive at the same time.

We can now explain how defeasible reasoning
works in the above example. The rule tagged with
kpld is a frame persistence axiom stating that a
loaded gun stays loaded unless some other action ex-

Wan, Kifer and Grosof / Defeasibility in Answer Set Programs with Defaults and Argumentation Rules 3

Fig. 1. Turkey-shoot example

@kpld loaded (?Gun, ?Time+1)
@kpunld neg loaded (?Gun, ?T+1)
@dd neg alive (?Time+1)
@liv alive (?Time+1)

/I A gun becomes unloaded after being fired

shoot (gl,1).

shoot (g2, 2)
/I axioms for contradiction and rule priorities

#overrides (shtl, kpld).
#overrides (sht2, 1iv).

:— loaded (?Gun, ?Time) .
:— neg loaded (?Gun, ?T) . //Frame axiom 2
:— neg alive (?Time) .
:— alive (?Time) .

@shtl neg loaded (?Gun, ?Time+l) :- shoot (?Gun, ?Time) .
/I The turkey becomes dead after a loaded gun is fired at it
@sht2 neg alive (?Time+1) :— shoot (?Gun, ?Time) A loaded(?Gun, ?Time) .
/! Axioms for the initial state
alive (1) . // The turkey is alive initially
Qunld neg loaded(gl, 1) V neg loaded(g2,1). //One gun isunloaded initially

@ld loaded(gl, 1) V loaded(g2,1).
// Fire g1 at time 1

/I If g1 is unloaded at time 1, fire g2 at time 2.
:— naf loaded(gl,1).

#opposes (alive (?Time), neg alive (?Time)) .

// Frame axiom 1

// Frame axiom 3
// Frame axiom 4

/I One gun is loaded initially

plicitly changes this state of affairs. The rule sht1l
states that if a gun is fired then it becomes un-
loaded in the next state. This rule has a higher pri-
ority than the frame axiom kpld due to the axiom
#overrides(shtl,kpld). The rule that has the tag
1liv is another frame axiom stating that a live turkey
remains alive by default. This rule is defeated by the
higher-priority rule tagged with sht 2, which says that
if a loaded gun is fired at the turkey, then the turkey is
dead in the next state. Note that our program has dis-
junctions in the heads of the rules labeled unld and
1d), so the initial state of the game is uncertain.

The problem is to infer that by firing one or both
guns in succession the shooter can kill the turkey de-
spite the uncertainty in the initial state. Note that due
to the disjunctions, other existing logic programming
approaches to defeasible reasoning cannot handle the
above situation, and this is precisely the motivation for
our current work. We will return to this example in
Section [d.3] after the necessary theory is developed.

3. Defeasible Reasoning with Argumentation
Rules

In this section we introduce the syntax and seman-
tics of disjunctive logic programming where defeasi-
bility is controlled by argumentation rules —sets of ax-
ioms (or arguments) that say when and why any par-
ticular rule should be considered as defeated and the

inference it sanctions as null and void. The main syn-
tactic difference from non-defeasible disjunctive logic
programming is that rules now have fags, and the main
semantic difference is that these rules can be defeated.

Let £ be a logic language with the usual connec-
tives A for conjunction, V for disjunction, and : -
for rule implication; and two negation operators: neg
for explicit negation and naf for default negation. The
alphabet of the language consists of: an infinite set
of variables, which are shown in the examples as al-
phanumeric symbols prefixed with the question mark
“?”; and a set of constant symbols, which can appear
as individuals, function symbols, and predicates. Con-
stants will be shown as alphanumeric symbols that are
not prefixed with a “?”. We assume that the language
includes two special propositional constants, t and f,
which stand for true and false, respectively. We also as-
sume the following order on these propositions: f < t.

We use the standard notion of terms in logic pro-
gramming. Atomic formulas, also called atoms, can be
quite general in form: they can be the usual atoms used
in ordinary logic programming; or the higher-order ex-
pressions of HilLog [10]]; or the frames of F-logic [29].
A literal has one of the following forms:

— An atomic formula.

- neg A and naf A, where A is an atomic formula.
nafneg A, where A is an atomic formula.
nafnaf . and negneg L, where L is a literal;
these are identified with L.

4 Wan, Kifer and Grosof / Defeasibility in Answer Set Programs with Defaults and Argumentation Rules

Let A denote an atom. Literals of the form A or neg A
(or literals that reduce to these forms after elimina-
tion of double negation) are called naf -free literals;
literals that reduce to the form naf A are called naf -
literals.

Definition 1 (Tagged rule) A tagged rule in a logic
language L is an expression of the form
Qr Ly V...V L, : — Body (D
where 1 is a term, called the tag of the rule; L, ...,
Ly (k > 0) are naf -free literals in L, called the head
literals of the rule; and Body, called the body of the
rule, is a conjunction of literals in E.E] As is common
in logic programming, we will often write A, B to rep-
resent the conjunction A \ B. A rule tag is not a rule
identifier: several rules can have the same tag.E]
A constraint is a special form of rule where £ is a
single head literal. We will usually omit f in such rules.
A formula is a literal, a Boolean combination of lit-
erals using conjunction and disjunction, or a rule. [

We will often omit showing rule tags when they are
immaterial.

Definition 2 (Ground terms and rules) A ground term
is a term that contains no variables, a ground literal
is a variable-free literal, and a ground rule is a rule
that has no variables. (]

Definition 3 (ASPDA) An answer-set program with
defaults and argumentation rules (an aspda, for
short) in a logic language L is a set of tagged rules
in L, which can be strict or defeasible. Sets or rules
that do not have disjunctions in the head will be called
non-disjunctive aspdas. Sometimes we will omit tags
when they are immaterial. (I

Strict rules are used as definite statements about the
world. In contrast, defeasible rules represent defeasible
defaults whose instances can be “defeated” by other
rules. Inferences produced by the defeated rules are
“overridden.”

We assume that the distinction between strict and
defeasible rules is specified in some way: either syn-
tactically or by means of a predicate. For instance, in

2 This is easy to generalize to allow Lloyd-Topor extensions [31.

3 This makes it easier to specify priorities and conflicts among
groups of rules as opposed to individual rules, as in FigureE] (look
for the tags move and frame).

Sectiond] we use the predicate #strict for that pur-
pose.

Aspdas are used in conjunction with argumenta-
tion rules, which are sets of rules that define conditions
under which some rule instances may be defeated by
other rules.

Definition 4 (Argumentation ruleset) Let L be a logic
language. An argumentation ruleset is a set, AT, of
strict rules in L of the form (I). We also assume

that the language L includes a binary predicate,

Sdefeated,r, which may appear in the heads of
some rules in AT.E] When confusion does not arise, we

will omit the subscript AT.

An aspda P is said to be compatible with AT if
Sdefeated,r does not appear in the rule heads in

P. O

In an argumentation ruleset all rules are strict, by
deﬁnitionE]The rules in AT will normally contain other
predicates, besides $defeated,y, that are used to
specify how the rules in P get defeated. We will
see full-fledged examples of argumentation rulesets in
Section[d] Note that an argumentation ruleset is also an
aspda.

Usually argumentation rules employ the concepts
of rule priority and contradictions among facts. Pri-
orities are often specified via predicates, such as
#overrides, which tell that some rules (or rule in-
stances) have higher priorities than other rules (e.g.,
#overrides(rule_tagl,rule_tag2)). Contradic-
tions are commonly expressed via predicates such as
#opposes, which tell that certain facts cannot be true
together (e.g., #opposes(price(ball, 20), price(ball,
30)). The $defeated predicate is then defined in
terms of #overrides, #opposes, and other pred-
icates. In this paper, we adopt the convention that the
predicates defined only by argumentation rules will be
prefixed with the $-sign, such as $conflict, and will
be in normal font, except Sdefeated, which will
be typeset in bold. The predicates used and/or defined
both by the argumentation rules and user programs will
be prefixed with the #-sign and will be in bold font.
Meta-predicates, such as body, will also be set in bold.
The predicates defined and used only by user programs

4 If sdefeated does not occur in the head of any rule then
the semantics of aspdas trivially reduce to ordinary logic program-
ming.

3 In principle, we could allow argumentation rules to be defeasi-
ble, but we will not do so in this paper.

Wan, Kifer and Grosof / Defeasibility in Answer Set Programs with Defaults and Argumentation Rules 5

will be denoted by alphanumeric symbols and will not
be marked in any special way.

In defining the semantics, we assume that the ar-
gumentation rules are ground. A grounded version of
AT with respect to a compatible aspda P is obtained
by appropriately instantiating the variables and meta-
predicates.

Note that the theory developed here permits differ-
ent subsets of the overall aspda to use different sets
argumentation rules AT with different Sdefeated,r
predicates. For instance, our implementation of the
logic programming framework with argumentation
rules for the well-founded semantics in an extended
version of FLORA-2 [28] supports multiple argumen-
tation rulesets.

3.1. Interpretations and Models

Definition 5 (Herbrand universe and Herbrand base)
Let P be an aspda and AT an argumentation ruleset
over language L.

— The Herbrand universe of P, denoted Uy, is the
set of all ground terms built using the constants
and function symbols that appear in L. When con-
fusion does not arise, we will simply write U,
omitting the language subscript.

— The Herbrand base of P, denoted B, (or sim-
ply B, when no ambiguity arises), is the set of all
ground naf -free literals that can be constructed
using the predicates in L. (I

Definition 6 (Herbrand interpretation) A Herbrand
interpretation, I, is a subset of B, i.e., a set of ground
naf -free literals. In addition, I must contain t and must
not contain f.

An interpretation is inconsistent relative to an atom A
if both A and neg A are in I. Otherwise, I is consis-
tent relative to A. An interpretation is consistent if it
is consistent relative to every atom and inconsistent if
it is inconsistent relative to some atom. O

Note that all interpretations considered in this paper
are Herbrand, so we will often neglect to mention
“Herbrandness” explicitly.

Next we introduce the notion of satisfaction of de-
feasible rules and strict rules by interpretations.

Definition 7 (Truth valuation) Let I be a Herbrand
interpretation, L a ground naf -free literal, and let F,
G be ground formulas. We define truth valuations that
map formulas to {t,f} as follows:

- I(L)=tif L e I I(L) = f otherwise.

- I(naf L) =~ I(L), where ~t =fand ~f = t.

- I(FAG)=min(I(F),I(Q)). Recall that f < t.

- I(FVG) =max(I(F),I(G)).

— Forastrictrule Qr F : - G, we define I(F : - G) =
t ifand only if I(F) > I(G).

Intuitively, a strict rule is true if its head is “more
true” than the body, i.e., either the head is true or
the body is false.

— For a defeasible rule Qr L,V ...V Ly : =G, we
defineI(Qr Ly V...V Ly : = G) =t ifand only
if I(L1V...VLg)> min(I(G),V) where V =
mazxi<;<pl(naf sdefeated(r, L;)).

That is, a defeasible rule Qr is true if either (i) it
is “defeated,” i.e., Sdefeated(r, L;) holds for
all L;; or (ii) its body is false; or (iii) if its head
is true. O

Definition 8 (Model of formula and rule) If F' is a
ground formula, I an interpretation, and I(F) = t,
then we write I |= F and say that I is a model of F' or
that F is satisfied in I.

If R is a ground rule Qr Ly V ...V Ly : =G, I an
interpretation, and I(R) = t, then we write I = R and
say that I is a model of R or that R is satisfied in I.

We write I =P ifI |= R for every R € P. O

Definition 9 (Model of aspda w.r.t. argumentation
theory) Given an aspda P, an argumentation ruleset
AT, and an interpretation M, we say that M is a model
of P with respect to the argumentation ruleset AT (or a
model of (P, AT), for short), written as M |= (P, AT),
ifM =P and M = AT. O

Definition 10 (Minimal model) A minimal model of
(P,AT) is a model M of (P,AT) such that no proper
subset of M is a model of (P, AT). O

3.2. Stable Model and Answer-set Semantics

In this section, we extend the stable model semantics
[20] and the answer-set semantics [[19] to ASPDA. We
start with non-disjunctive aspdas and stable models.

Definition 11 (ASPDA quotient, non-disjunctive case)
Let Q be a non-disjunctive aspda, and let J be a Her-
brand interpretation for Q. The ASPDA quotienf] of

Q by J, written as % is defined by the following se-

quence of steps:

6 In regular ASP theory, the term reduct is normally used. We
later use the term reduction in a different sense, so quotient is used
here to avoid confusion.

6 Wan, Kifer and Grosof / Defeasibility in Answer Set Programs with Defaults and Argumentation Rules

1. Delete every rule R € Q such that there is a naf -
literal of the form naf A in R’s body and A € J;
2. Delete every defeasible rule of the form
(Qr L : - Body) € Q
such that $defeated(r, L) € J.
3. Remove all naf -literals from the remaining rules.
4. Remove all tags from the remaining rules.

Note that 9 is a normal (non-defeasible) logic pro-

gram without naf. |

When dealing with stable models, it is often as-
sumed that interpretations are consistent [19]. All the
definitions and results in this section extend to this case
straightforwardly.

Definition 12 (Stable model) A Herbrand interpreta-
tion M is a stable model of a non-disjunctive aspda
‘P with respect to the argumentation theory AT, if M is
a minimal Herbrand model of %AT.

Note that %AT is a Horn logic program, so here mini-
mal models are meant in the sense of the regular Horn
logic, not in the sense of Definition[I0} O

The next theorem shows that non-disjunctive aspdas
can be implemented using ordinary logic programming
systems that support the stable model semantics (e.g.,
DLV [30]).

Theorem 1 (Reduction for stable model semantics)
Let P be a non-disjunctive aspda and AT an argu-
mentation ruleset. Then the following two sets coin-
cide:

— The set of stable models of ‘P with respect to AT.
— The set of stable models of the ordinary logic pro-
gram P’ U AT, where P’ is obtained from P by
converting every defeasible rule
(Q@r L :-Body) € P
into the plain rule of the form
L :—Body A naf sdefeated(r,L)
and removing all the remaining tags; and AT
is obtained from AT by simply removing all the
tags. (I

Proof: Let S be a Herbrand interpretation for P U AT.
According to Deﬁnition PUTAT is obtained through
the following steps:

1. Delete every rule R € P UAT such that there is
a naf-literal of the form naf A in R’s body and
AcS;

2. Delete every defeasible rule of the form
(@Qr L :-Body) € PUAT
such that $defeated(r,L) € S.
3. Remove all naf -literals from the remaining rules
in P UAT.
4. Remove all tags from the remaining tagged rules
in P UAT.

Note that this makes P%AT into an ordinary logic pro-
gram.

According to the definition of Quotient in the or-
dinary stable model semantics [20], the quotient of
P’ UAT by S, is obtained through the following steps:

1. Delete every rule R € P’ U AT such that there is
a naf -literal of the form naf A in R’s body and
AeS;

2. Remove all naf -literals from the remaining rules
in P UAT'.

From the above it can be safely inferred that the AS-
PDA quotient PUTAT is the same set of ordinary logic
rules as the (ordinary) quotient of P’UAT by S. For in-
stance, consider a defeasible rule @Qr L : — Body in P.
If $defeated(r,L) € S, this rule will be deleted by
the process of construction of PUTAT . The correspond-
ing rule

L :—Body A naf Ssdefeated(r,L)
will be deleted by the construction of the (ordinary)
quotient of P’ UAT by S.

The claim now follows from the above and the defi-
nitions of stable models in ASPDA and in the classical
case (Definition[T2]and the one in [20]). O

For rules with disjunctions in the head, stable mod-
els are called answer sets and we will now general-
ize the above semantics to such rules. In generalizing
aspdas to disjunctive rules, the main difficulty is to
find an analog of the reduction theorem (Theorem|TI)).

Example 1 Consider a disjunctive program that has
the following defeasible rules:

@rl a V b V c.
@r2 d V e.

The ordinary stable models of this program are {a, d},
{a, e}, {b,d}, {b,e}, {c,d}, and {c,e}. Suppose now
that the proposition a cannot be true when either d or
e holds, and that b is also incompatible with e. These
constraints are specified as the following facts:

Wan, Kifer and Grosof / Defeasibility in Answer Set Programs with Defaults and Argumentation Rules 7

#opposes (a,d) .
#opposes (a, e) .
#opposes (b, e) .

Suppose, in addition, that rule r1 has a higher priority
than r2, which we specify using the fact

#overrides (rl, r2).

Intuitively, {a,d}, {a,e}, and {b,e} can no longer
be models due to the incompatibility constraints, while
the models {b,d}, {c,d}, and {c, e} are still possible.
At the same time, one might feel that {a} is also a suit-
able model because r1 overrides r2, the proposition a
makes r1 true, and a is incompatible with both heads
in rule r2.

As it turns out, {a} may or may not be a defeasi-
ble stable model—it all depends on the associated ar-
gumentation rules. It would be a stable model of our
aspda if the argumentation ruleset had the following
rule instances:

$defeated(r2,d) : -
#overrides(rl, r2) A #opposes(a,d) A a.
$defeated(r2,e) :—

#toverrides(rl,r2) A #opposes(a,e) A a. [

The following definitions generalize Definition [T1]
to disjunctive aspdas and make the intuition behind
Example [T] precise.

Definition 13 (ASPDA quotient, disjunctive case) Let
Q be a disjunctive aspda, and let J be a Herbrand
interpretation for Q. We define the ASPDA quotient of

Q by J, written as % by the following sequence of

steps:

1. Delete every rule R € Q that has a literal of the
formnaf A in R’s body where A € J;

2. For every defeasible rule of the form Qr L; V
... V Ly : —Body in Q, delete every L; such that
Sdefeated(r,L;) € J. If all the Li’s are
deleted, delete the entire rule.

3. Remove all naf -literals from the remaining rules.

4. Remove all tags from the remaining tagged rules.
O

Definition[I2)is generalized in a natural way:

Definition 14 (Answer set) A Herbrand interpreta-
tion M is an answer set of a disjunctive aspda P
with respect to the argumentation ruleset AT, if M is a
minimal Herbrand model of %AT . O

The analog of Theorem I]is as follows.

Theorem 2 (Reduction for the answer-set semantics)
Let P be a (disjunctive) aspda and AT an argumen-
tation theory. Then the following two sets coincide:

— The set of answer sets for the aspda P with re-
spect to AT.

— The set of answer sets for the ordinary logic pro-
gram P! UAT, where

o P’ is obtained from P by

o converting every defeasible rule
(QrL; V..V1, :-Body) € P
into a collection of plain rules of the form

\/iGKLi i BOdy/\
/\ naf sdefeated(r,L;)
icK
A /\ $defeated(r,L;)
JEN-K

for each non-empty subset K C N, where
N={1,..,n}
o removing all the remaining tags.

o AT is obtained from AT by simply removing all
the tags.

Proof: Let S be a Herbrand interpretation of P U AT.
By Deﬁnition PUAT js constructed by the following
steps:

1. Delete every rule R € P UAT that has a literal of
the form naf A in R’s body, where A € S;

2. For every defeasible rule of the form @Qr L; Vv
... V Ly : —=Body in P U AT, delete every L; such
that Sdefeated(r,L;) € S. If all the L;’s are
deleted, delete the entire rule.

3. Remove all naf -literals from the remaining rules.

4. Remove all tags from the remaining tagged rules.

Note that PUTAT is an ordinary disjunctive logic pro-
gram. For future reference, let us denote it Q;.

By definition of the quotient in the ordinary answer
set semantics [19], the quotient of P’ U AT by S, is
obtained from P’ U AT’ by these steps:

(i) Delete every rule R € P’ U AT that has a literal
of the form naf A in R’s body where A € S;
(i1) Remove all naf -literals from the remaining rules.

Let us denote the resulting logic program with Q. We
will call the rules in Q7 and Qs the reducts of the orig-
inal rules in P U AT and P’ U AT, respectively.

Now consider arule R (Qr L; V...VL, : -Body) € P.

Wan, Kifer and Grosof / Defeasibility in Answer Set Programs with Defaults and Argumentation Rules

— If there is a literal of the form naf A in R’s body
and A € S, R would be deleted and its reduct will
be neither in Q1 nor Q,.

— If no such literal naf A exists in R then Body
of the reduct of R does not contain naf -literals.
Let Ky C {1,...,n} be a subset such that S F
naf Sdefeated(r,L;), foralli € Ky, and S E
$defeated(r,L;), for all j ¢ K,. Then, if
Ko # {},

e O; would contain the rule V;¢g,L; : — Body —
the reduct of R.

e P’ U AT would contain a set of rules of the
form

\/iEKLi T BOdY/\
/\ naf Sdefeated(r,L;)
€K
A /\ $defeated(r,L;)
JEN-K

for each non-empty subset K C N = {1,...,n}.
During the construction of Qo, after step (i) the
only remaining rules will be of the form

\/iEKLi M BOdy/\
/\ naf sdefeated(r,L;)
icK
A /\ $defeated(r,L;)
JEN-K

for each K such that K C K. After step (ii),
the reducts of R that will remain in Q5 would
be:

\/iEKLi Hi BOdyA
/\ $defeated(r,L;)
JEN-K

for each K such that K C Ky. Among
these rules, only one rule, Vieg,Li : —Body A
Njen—x, Sdefeated(r,L;), can possibly have
a body entailed by S. Furthermore, S entails
this rule if and only if S entails Vi ¢k, L; : —Body,
which is a reduct of R in Q;.

If Ky = {} then, for i=1,...,n,
S F $defeated(r,L;). Therefore:

e Q; has no reducts of R. So, the entire rule is
deleted in step 2 (of ASPDA quotient).

e P’ UAT must contain the rules of the form

ViekLi :— Body A
/\ naf sdefeated(r,L;)
€K
A /\ $defeated(r,L;)
JEN-K

for each non-empty subset K C N = {1,...,n}.
Each such rule contains at least one literal
naf sdefeated(r,L;) in the rule body. Since
Ky = {} implies that all such literals are false
in S, step (i) in the construction of Qs elimi-
nates all the above rules. So, neither Q1 nor Qo
will have any reducts of R.

It can now be seen that S is a minimal Herbrand
model of Q; if and only if S is a minimal Herbrand
model of Q. In other words, S is an answer set for
the aspda P with respect to AT if and only if S is an
answer set for the ordinary logic program P’ UAT .

With this theorem, it is now straightforward to verify
that the answer sets for the aspda in Example (1] are
precisely as described there.

Theorem [2] shows that a reduction exists from AS-
PDA to ASP, but that particular reduction is exponen-
tial in size with respect to the original program. With
a little more care, a polynomial reduction can be con-
structed, as has been recently shown by Faber [16].

3.3. Reduction to the Non-disjunctive Case

In ordinary answer-set programming, some disjunc-
tive rules can be reduced to the non-disjunctive case
via the so-called shifting transformation. This transfor-
mation would replace the rule L; V ... V L, : —Body
with n new rules

Ly :- Body A A
1<j<n, j#i

nafL;)

where 1 < ¢ < n. We will use shift(P) to denote
such transformation of a (non-defeasible) disjunctive
logic program. For example, consider a program con-
sisting of one rule p V q V s :— body, the shifting of
the program is

p :— body A naf g A naf s.
q :— body A naf p A naf s.
s :— body A naf g A naf p.

Wan, Kifer and Grosof / Defeasibility in Answer Set Programs with Defaults and Argumentation Rules 9

Ben-Eliyahu and Dechter [4] have shown that the
above shifting transformation is an equivalence trans-
formation for so called head-cycle free programs[] We
reproduce that definition below adjusting it for disjunc-
tive aspdas.

Definition 15 /4] The dependency graph Gp, of a
ground aspda P, is a directed graph where nodes are
ground literals. An edge going from literal L to literal
L' exists if and only if there is a rule in which L ap-
pears positively in the body and L' is a head literal. An
aspda is head-cycle free if and only if its dependency
graph does not contain directed cycles that connect lit-
erals belonging to the head of the same rule. (I

In the above example, if p, g, s have only negative
occurrences (or no occurrences at all) in body then the
aspda consisting only of the rule

QrpVqVs :- body

is head-cycle free.

Under certain restrictions, the head-cycle free prop-
erty for P U AT can be reduced to head-cycle freedom
for P. For example, if the literals that appear in rule
heads in AT do not appear in any rule body in P, and
AT is non-disjunctive, then P U AT is head-cycle free
if and only if P is head-cycle free. This is satisfied in
the argumentation ruleset ATPE in Section It is
also satisfied in the argumentation ruleset AT CLP in
Section if #overrides and #opposes do not
appear in rule bodies in P (which normally is the case).

An interesting question is whether a shifting trans-
formation analogous to ordinary answer-set program-
ming exists, and an equivalence result holds for dis-
junctive aspdas.

Definition 16 Ler P be a disjunctive aspda. We de-
fine t-shifting of P, t_shift(P), as a non-disjunctive
aspda obtained from P by replacing each rule of the
form (Qr Ly V...VL, : —Body) € P withn new rules

@r L; :-BodyA f\ nafLy
1<j<n, j#1

where 1l < i <n. O

Surprisingly, it turns out that ¢_shi ft(P) is not equiv-
alent to P even for head-cycle free aspdas. To see
this, consider the following rule set, P**:

7 The works [I3121]] developed similar shifting techniques.

@rl a V b V c.
Qr2 d.
Qr3 c.

Suppose that the associated argumentation rules im-
ply $defeated(rl,c) and does not imply any other
$defeated(...) facts involving the above rules. Then
P<* would have the following answer sets: {a,d, c}
and {b, d, c}. In contrast, the above t-shifting transfor-
mation yields the following non-disjunctive aspda,

t_shift(Pe*):
:— naf b A naf c.

Qrl a
@rl b :- naf a A naf c.
@rl ¢ :— naf a A naf b.
@r2 d.
@r3 c.

which has only one answer set: {d, c} with respect to
the argumentation ruleset. This shows that ¢_shi ft is
not an equivalence transformation under ASPDA.

Fortunately, a result similar to Ben-Eliyahu and
Dechter’s does hold for disjunctive aspdas, but for a
slightly different shifting transformation.

Definition 17 The ASPDA shifting of an aspda P,
written as aspda_shift(P), is a non-disjunctive
aspda obtained from P by replacing each strict rule
with its t-shifting and replacing each defeasible rule of
the form (Qr Ly V ... V L, : —Body) € P with n new
defeasible rules and 2n new strict rules as follows:

@r Ly:-BodyA [\ lit(r,Ly).
1<j<n, j#i 3
it(r,Ls) : - nafLs. 3)
lit(r,L;) :— $defeated(r,L;).

where 1 < i < n. Here lit(r,L;), 1 < i < n, are
literals of the form newsym; (Vars;), where newsym;
is a fresh predicate name that depends only on r and
L;, while Vars;, the argument vector of the literal, is
a vector of variables that occur in r and L;. We omit
the rule tags for strict rules here. (|

Theorem 3 Let P be an aspda and let AT be an ar-
gumentation ruleset such that P U AT is head-cycle
free. There is a one-to-one relationship between the
answer sets of P with respect to AT and the answer
sets of aspda_shi ft(P) with respect to t_shi ft(AT).
Namely, a Herbrand interpretation S is an answer set
of P with respect to AT if and only if f(S) is an answer
set of aspda_shift(P) with respect to t_shift(AT),
where f(S) = S U{lit(r, L) | P contains a rule with

10 Wan, Kifer and Grosof / Defeasibility in Answer Set Programs with Defaults and Argumentation Rules

tag v and with L in its head (possibly as a disjunct), so
that either $defeated(r,L) € Sor L ¢ S}.

Proof: The proof consists of establishing five equiva-
lences, which we denote <, ..., 5.

S is an answer set of P with respect to AT

<1
P UAT
S

S is a minimal Herbrand model of Q1 =
<2

S is an answer set of
Qs = shift(Q1) = shift(

<3

PUAT

)

S is a minimal Herbrand model of
_Q _ shift(Pg)

Q3 5 5

4
f(S) is a minimal Herbrand model of

aspda_shift(P)Ut_shift(AT)

Qi = £(5)

<5

f(S) is an answer set of aspda_shi ft(P) with
respect to t_shi ft(AT).

In proving each equivalence, we will choose an ar-
bitrary defeasible rule R of the form @Qr L; V ... V
L, : —Body in P and an arbitrary strict rule ' € P U
AT, and then look at what happens to these rules af-
ter applying the quotient and shifting transformations
to them. As in the proof of Theorem [2] we can as-
sume that the bodies of R and T do not contain naf -
literals (they are evaluated away in the quotients on
both sides).

Let Ky be {k | S E naf Sdefeated(r,Ly), 1 <
k<n}landlet Kibe{k| Ly €S, 1<k<n}.

(<1): This follows from Definition[14]

(&2): By definition, every defeasible rule R € P
gives rise to the following single rule R; in the quo-
tient Q;:

\/ L; : —Body “

i€k,

If |Ko| = 0, R gives rise to no rule.

The strict rules 7" € P U AT give rise to 77 in Qy
where 77 has the same head and body as 7" but the tag
is stripped off. By definition, all rules in Q; are either
Rys or Tys and are obtained in the above way. So, Q1
consists of the rules of the form (4) or of the strict rules
from P U AT that lost their tag.

Qs is constructed from Q; via shifting of ordinary
(non-defeasible) disjunctive rules. A rule R; of the
form (4) produces | K| rules of the form

L; : —Body A /\ nafL; (5)
jEKo,jyfi

for i € K. The strict rule T} € Q; gives rise to the
rules shift(Th).

Since, by assumption, Q; does not contain naf-
literals, S is a minimal Herbrand model of Q; iff S is
an answer set of Q1. Observe that:

— @, is an ordinary (non-defeasible) disjunctive
logic program,

— PUAT is head-cycle free, so Q1 = P%AT is head-
cycle free,

Therefore, as shown in [4]13l21]], S is an answer set of
Q; iff S is an answer set of Qo = shift(Q1).
Qo contains no rules other than those in @) and

(&3): Q3 = % is constructed according to Defini-

tion Strict rules in Qs all have the form Lé(ﬂ)
and defeasible rules are obtained as follows:

3-a. If |[K3 N Ko| > 2, the rules of the form (3)) yield
nothing in Q3. Indeed, for each rule in @, there
must exist at least one j satisfying j € Ky, j # 1,
and L; € S, so every such rule will be deleted
after Step 1 in Definition[T3]

3-b. If |K; N Ky = 1, yields {L; : —Body |
where i € K; NKo} in Q3. This is because every
rule in (§) such that i ¢ K is deleted in Step 1 in
Definition [I3] and the rules such that i ¢ K are
deleted in Step 2. The naf -literals in the remain-
ing rule are deleted in Step 3.

3-c. If |[K1NKg| = 0, (3) yields the rules {L; : — Body |
i € Ko} in Q3. This is because the rules in (5)
such that i ¢ K are deleted in Step 2 of Defi-
nition [I3| while the naf -literals in the remaining
rules are deleted in Step 3.

(&5): The fifth equivalence in the proof of the theo-
rem is a direct consequence of Definition SO we
dispense with this case before the fourth equivalence.

Wan, Kifer and Grosof / Defeasibility in Answer Set Programs with Defaults and Argumentation Rules 11

(&4): Qs is divided into two subsets: Q;ff , which con-
sists of rules obtained from the defeasible rules in 95,
and Qgt which consists of rules obtained from the strict
rules in Q.

Q, is divided into ij and ij the same way. Q4
is obtained from aspda_shift(P) Ut_shift(AT) by
applying the steps in Definition [T1] Recall that each
defeasible rule R € P gives rise to a collection of rules
of the form (3)) in aspda_shi ft(P), which in Q4 be-
come

Li 1= Body A Ajcjcy i lit(r,Ls). (6)

for each 1 € Kj;

lit(r,Ly) : — Sdefeated(r,L;). (7
foreach1 < j < n;

lit(r, Ly). (8)

for each j ¢ K. All these rules constitute Qif .

Each strict rule T € P U AT gives rise to the set of

rules % in Q4. These rules constitute th.
The difference between ¢_shift(T") used in Q4 and

shift(Ty) used in Qs is just that 7" has a tag while

T7 does not. The quotient operation removes tags, so

t_shift(T shift(T . .
_shift(T) _ shift(Th) Because every rule in Q5 is of

S
the form % for some 7' and every rule in Q§t

has the form Lé(ﬂ) for some 7' (which is obtained

from 7" by tag removal), we have:

f(S) is a Herbrand model of Q3" iff
S is a Herbrand model of Q3. ®)

Now consider the defeasible rules in fof . Since
and (8) are the only rules that define lit(r, L;), it fol-
lows that f(S) k= lit(r,L;), Vj € Ki N Ky, and
f(S)): |it(7‘, Lj), VJ g K1 N Ko. Under f(S),

4-a. If |K; N K| > 2, the rules in @ yield noth-
ing in Qy, since for each ¢ € K, every rule @
has some body literal lit(r, L;) such that f(5) =
|it(’l‘, Lj).

4-b. If |[Ky N Ko| = 1, (6) gives rise to a single rule
L; : —Body, where i € K1 N K. Indeed, any rule
in (6) such that ¢ ¢ K; N K, has some body literal
lit(r, L;) such that f(.S) p& lit(r, L;).

4-c. If | K1 N Ky =0, @ gives rise to the following
rules {L; : -Body | i € Ko}, which is obtained
by the same argument as before.

Every rule in Qﬁff comes from @) or (7) or (8) and
all the rules of the form (7) and (8) are satisfied in
f(S). By comparing (3-a),(3-b),(3-c) with (4-a), (4-b),
(4-¢), it follows that

f(S) is a Herbrand model of Q% iff

10

S is a Herbrand model of ng . (10
From (I0) and (9) we obtain

f(S) is a Herbrand model of Q iff (11

S is a Herbrand model of Oj.

To complete the proof for the equivalence (<), it
remains to show that f(S) is a minimal model of Q4
if and only if so is .S for Q.

Minimality of f(S): if S is a minimal Herbrand
model of Qj, then VA € f(S), f(S) — {A} cannot be
a Herbrand model of Q4 because:

- if A € S, the minimality of S for Q3 implies
that there must be a rule Ry of the form () or
% such that S — {A} %~ R;. By the pre-
viously established correspondence between the
rules in Q3 and Qy, there is a rule Ry € Q4 of
the form or % which, by construction,
must be such that f(S) — {A} [~ Ra.

- if A = lit(r, L) for some r and L, there must be
some rule R of the form (4-b) or (4-c) such that
F(S)—{A} ¥ R, so f(S) also cannot be a model
of Qy in this case.

Minimality of S: if f(S) is a minimal Herbrand
model of Qy, then for any A € S, S — {A} cannot be
a Herbrand model of Q. If it were a model then, by
(11), f(S—{A}) C f(S) must be a Herbrand model of
Q,, contrary to the assumption that f(.S) is a minimal
Herbrand model of Q.

This concludes the proof of (<4) and of the theo-
rem. |

4. Examples of Argumentation Rulesets

We will now introduce two very different sets of
argumentation rules and then discuss how the choice
of an argumentation ruleset affects the semantics on a
number of simple knowledge bases.

12 Wan, Kifer and Grosof / Defeasibility in Answer Set Programs with Defaults and Argumentation Rules

4.1. A-GCLP [24/40]

Our first example is an ASPDA counterpart for the
argumentation theory proposed in [40]], which captures
generalized courteous logic programs [24] under the
well-founded semantics [[18]]. We will call this theory
A-GCLP and will denote it by ATAYCLY Tt is this ar-
gumentation ruleset that was tacitly assumed in all the
earlier examples in this paper.

In ATAGCLP , the predicate Sdefeated, which
plays a key role in the semantics of aspdas, is
defined in terms of the predicates #opposes and
#overrides. These predicates are defined by the
knowledge engineer within the knowledge base via
sets of facts and rules. The argumentation rules only
impose some constraints on #opposes.

The $defeated predicate is defined as follows: A
rule is defeated if it is refuted by some other unde-
feated rule. In the ATs below, aspda rules are repre-
sented by pairs of variables 77, 7L (possibly with sub-
scripts or primes) where 77" ranges over rule tags and
?L over rule heads.

$defeated(?T,7L) :- sdefeats(?T’,7L',7T,?L).

The auxiliary predicate $defeats is defined as follows:

$defeat3(?T1, ?Ll, ?TQ, ?LQ) H
$refuteS(?T1, ?le ?Tz, ?Lg) AN
naf sdefeated(?71,7L1) A
naf #strict(?7s,?Ls).

The predicate #strict is used here to distinguish
strict rules from the defeasible ones. The predicate
srefutes indicates when one rule refutes another.
Refutation of a rule means that a higher-priority rule
implies a conclusion that is incompatible with the con-
clusion implied by the first rule. This is defined as fol-
lows:

$refutes(?T1, TL41,7T5, 7L2) e
$C0nﬂiCt(?T1, ?Ll, ?TQ, 7L2) A 7L1
A #overrides(?Ty, 7Ly, 715, 7Ls).

The definition of a conflict between two rules, repre-
sented by the predicate sconflict above, relies in turn
on the notion of a candidate. A candidate rule-instance
is one whose body is true in the knowledge base:

scandidate(?T,?L) :—- body(?T,?L,?B) A 7B.

Here the meta-predicate body binds ? B to the body of
a rule with the tag 77T and head 7 L.

Conflicting rules are now defined as follows: rules
are in conflict if they are both candidates and the liter-
als in them are incompatible:

$Conf|iCt(?T1, ?Ll, ?TQ, ?LQ) H
$candidate(?11,?L,) A $candidate(?T%,7L2)
A #opposes(?Ly,7Ls).

Recall that the #opposes information is sup-
plied by the knowledge engineer. However, argumen-
tation rules may include additional background ax-
ioms. In our case, ATACCLY supplies the following
background axioms for #opposes:

#opposes(?L;,7Ly) :— #opposes(?Ly,7Lq).
#opposes(?L, neg 7L).
:— 7L; A 7Ly A #opposes(?Li,7Ls).

The first is a symmetry axiom that states that opposi-
tion is a reciprocal relation. The second axiom states
that literals and their negations are in opposition to
each other. The third axiom is a constraint that says
that opposing literals cannot be both true in the same
possible world.

The relation #overrides is also mostly defined
by the knowledge engineer. However, ATAGCLE als0
supplies a background axiom that establishes prefer-
ence for strict rules over defeasible ones:

toverrides(?Ty,7L1,7T5,7Ls) :—
#strict(?Tl, ?Ll) A naf #St]’.‘ict(?jé7 ?Lg)

Overriding is often specified via tags instead of tag-
head pairs, and this was the form of overriding that we
mostly used in the examples. The relationship between
overriding through tag-head pairs and overriding via
tags is defined by the following rule:

toverrides(?Ty, 7Ly, 7Ty, 7Ls) : -
#toverrides(?Ty, ?T5) A
head(?Tl, ?Ll) A head(?Tz, ?LQ)

Here head is a meta-predicate that relates tags to the
heads of the rules labeled with those tags. The body-
occurrence of #overrides is the overriding relation
over tags and the head occurrence is the overriding re-
lation over tag-head pairs.

Similarly, #strict is also often specified over tags
and the following axiom relates that to strictness at the

Wan, Kifer and Grosof / Defeasibility in Answer Set Programs with Defaults and Argumentation Rules 13

level of tag-head pairs.

#strict(?T,?L) : -

#strict(?T) A head(?T,?7L).

Having defined this argumentation ruleset precisely,
we can now come back to Example [T| and verify that
the aspda there has four answer sets as claimed:

{a},{b,d},{c,d},{c,e}.
4.2. Defeasible Logic [1I]

Our second argumentation ruleset is intended to
closely approximate Defeasible Logic under the stable
model semantics as defined in [1]]. [ﬂ

Defeasible Logic partitions all rules into strict, de-
feasible, and defeaters. The defeater rules are used
only to defeat other rules, but they themselves do not
produce any inferences. In our terms, this means that
defeater rules are defeated defeasible rules whose only
purpose is to block inferences produced by other rules.
Strict and defeater rules are specified via the predicates
#strict and #defeater. Other important restric-
tionsﬂin [[L] are that it does not support disjunctions in
the rule heads; opposition among literals is limited to
p and neg p, for each p; it does not use default nega-
tion, so all literals are naf -free; and the rule tags are
also rule identifiers, so no two rules have the same tag.
This implies that rule tags uniquely determine rule’s
head and body and lets us simplify the argumentation
rules by considering tags only and ignoring rule heads
in most cases.

We can now formulate the argumentation rules,
which we denote as ATPE, for Defeasible Logic un-
der the stable model semantics as defined in [[1]].

$defeated(?T,7L) : -

sconflict(?7, ?T") A

head(?7",7L") A sdefinitely(?L).
$defeated(?7,7L) :— #defeater(?T).
Sdefeated(?T,7L) :— Soverruled(?T).

Here head is a meta-predicate that binds 7 L to the head
of a rule with Id 75.

8 [[]] uses two kinds of semantics for meta rules: the Kunen se-
mantics and the stable model semantics, they yield different results
for programs with cycle in the dependency graph.

9 There are also other variants of Defeasible Logic, e.g., [3l,
which include rules with head disjunctions and other features.

The predicate sdefinitely is defined as follows:

sdefinitely(?L) :-
#strict(?T) A head(?T,7L) A
body(?T,?B) A each_definite(?B).

Asin A-GCLP, body is a meta-predicate that binds 7B
to the body of a rule with tag ?7"; each_definite(?B)
is a meta predicate; it is true when sdefinitely(?B) is
true or when 7B is bound to a conjunction, conj, and
sdefinitely(c) is true for each conjunct ¢ € conj. If ¢
is a tag corresponding to a fact, then we assume that
this is a rule whose body is an empty conjunct (i.e., (),
which is commonly identified with true in logic), so
body(t,()) holds and each_definite(()) is thus true. In
this way, facts provide the base case for the recursive
definition of $definitely(?L).

The predicate $candidate is defined as before ex-
cept that it now depends only on rule tags rather than
tags and heads:

scandidate(?T") :- body(?T,?B) A7B.

It remains to define Soverruled, which relies on the
notion of candidacy and conflict, as in ATAGCLP

soverruled(?T) :-
sconflict(?T, ?T") A scandidate(?T") A
naf srefuted(?7").
srefuted(?1”) : -
sconflict(?T,?7") A scandidate(?T) A
toverrides(?T,?T’) A naf #defeater(?T).
sconflict(?T,?7") : -
head(?T,?L) A head(?T”", neg?L).

At this point it is instructive to retrospect on the dif-
ferences between the two sets of argumentation rules
presented here. First, there are differences in syntax
and in how priorities over the rules are specified:

1. ATP does not support naf or disjunction in rule
heads;

2. ATASCLP js more general in that tags are not re-

quired to be distinct and inclusion of variables in

the tags provides one more level of differentiation

among rule instances.

The other main difference is in the way $defeated
is defined. In ATAGCLP, arule 7S is defeated if it is
overridden by another rule 7R such that that ? R con-
flicts with ?S. In contrast, in ATDL, a rule 77 is de-
feated if it conflicts with a rule that is not overridden.

14 Wan, Kifer and Grosof / Defeasibility in Answer Set Programs with Defaults and Argumentation Rules

This leads to significant differences in the behavior of
the two argumentation rulesets for the examples dis-
cussed in Section[d.3]

4.3. Examples

We now discuss a number of examples to help better
understand the ASPDA semantics and the differences
between the argumentation rulesets presented earlier.
In all the examples, rules that have explicit tags are
assumed to be defeasible and the rules without the tags
are assumed strict.

Example 2 Consider again the turkey-shoot example
presented in Section

Under the ATACCTY argumentation rules, this ex-
ample set has two answer sets. One is
{neg loaded(gl,1), loaded(g2, 1), negalive(3)}
and the other is

{1loaded(gl, 1), neg loaded(g2,1), negalive(3)}.

Thus, ATAGCEP yields the expected result.

As to the ATPY argumentation rules and the logic
in [l1]], this theory does not support disjunctions in rule
heads directly. However, we can work around this issue
by applying the shifting transformation. Shifting is ap-
plicable here because head-disjunctions in the turkey-
shoot example are head-cycle-free. Under this trans-
form, ATPL vields the same result as ATAGCLP

Example 3 Figure |2| describes a scenario where a
toxic discharge into a river caused massive reduction
in fish population.

Here both ATAGCLE and ATPL lead to the same
conclusion:

{ fishCount (s0+1, Squamish, trout, 400),

fishCount (s0+2, Squamish, trout,0) }
This is the expected result, meaning that up to the mo-
ment of the toxic discharge, the Squamish river had
400 trouts and then all of them died.

Interestingly, the same conclusion would be reached
under LPDA [40]—a sibling of ASPDA developed for
the well-founded semantics—if we use either the very
same argumentation ruleset ATPL which we used
here, or ATSCLP 4 ruleset analogous to ATAGCLP
but designed for the well-founded semantics [40)].

Thus, in this example, both ATAGCLE ang ATPT
yield the same result and this is also true under the
well-founded semantics. ([

Example 4 [40] Figure [3] specifies part of a game
where blocks are moved from square to square on a
board.

The argumentation rules ATACLY yunder ASPDA
and ATSCLP ynder LPDA both give the same ex-
pected result in this case:

{loc(0,block4, square?),

loc(1l,block4, square?7),

loc(2,block4, square?7),

loc(3,block4, square3) }. O

Again, ATPL does not handle this example directly,
since the syntax in [1|] does not include naf. However,
[3\] shows that na f can be simulated using a transform
that relies on neg only. Under this transform, ATPL
vields the same result as the other two theories. (]

Example 5 Figure 4| shows a scenario where a cycle
exists in the #overrides relation between a pair of
opponents.

Under ASPDA, ATPL vields an answer set in which
both a and b are true. Indeed, one can verify that
the following literals are true
srefuted (r1, a),
srefuted (r2, b),
naf soverruled (r1, a),
naf soverruled (r2, b),
naf Sdefeated (rl, a), and
naf Sdefeated (r2, b).

Hence this program has only one answer set, in which
both a and b are true.

The intuition is: Each of the two rules r1 and r2
has some rule that overrides it, so both of them are
refuted; Since refuted rules cannot be used to overrule
any other rule, there is no rule overruled, and there is
no rule defeated.

However, ATASCLY does not produce this an-
swer set. Indeed, consider an interpretation in which
both a and b are true. We can infer that
srefutes (r1,a, r2,b), srefutes(r2,b, rl,a)
are true, but
naf Sdefeated (rl, a), naf Sdefeated (r2, b)
cannot both be true. This shows that a and b cannot
both be true. So {a,b} is not an answer set. Instead,
there are two answer sets: in one a is true and in the
other b is true.

The intuition is: r1 and r2 refutes each other, it
cannot be decided which defeats the other, in one pos-
sible world r1 defeats r2 and a is true, and in the
other r2 defeats r1 andb is true.

For the reader who is familiar with LPDA, which
is based on the well-founded semantics, we will go
through the same example under the argumentation
rules ATGCLY q sibling of ATACCLY mentioned
earlier. The rules comprising ATSCLF let us draw the

Wan, Kifer and Grosof / Defeasibility in Answer Set Programs with Defaults and Argumentation Rules 15

Fig. 2. Fish die-off example

/* Initial facts, and an “exclusion” constraint that fish count has a unique value */

occupies (trout, Squamish) .

fishCount (s0, Squamish, trout, 400) .

#opposes (fishCount (?s, ?r, ?f, ?Cl), fishCount (?s,?r,?f,?C2)) :=— 2Cl != ?C2.
/* Action/event description that specifies causal change, i.e., effect on next state */

@event fishCount (?s+1,7?r,?f,0) :- occurs(?s,toxicDischarge,?r) A occupies(?f,?r).

/* Persistence (“frame”) axiom */

@frame fishCount (?s+1,?r,?f,?C) :— fishCount (?s,?r,?f,?C).
/* Action axiom has higher priority than frame axiom */

#overrides (event, frame) .

/* An action instance occurs */

occurs (s0+1, toxicDischarge, Squamish) .

Fig. 3. Block moving example

/* moving a block from ?from to ?to, if ?io is free; after the move, ?from becomes free */
@move loc(?s+1, ?blk,?to) :-—
move (?s, ?blk, ?2from, ?to) A loc(?s,?blk, ?from) A naf loc(?s,?,?to).
@move neg loc(?s+1l, ?blk, ?from) :-—
move (?s, ?blk, ?2from, ?to) A loc(?s,?blk, ?from) A naf loc(?s,?,?to).
/* frame axioms: location of a block keeps the same */
@frame loc(?s+1,?blk, ?pos) :— loc(?s,?blk, ?pos).
@frame neg loc(?s+1, ?blk, ?pos) :— neg loc(?s, ?blk, ?pos) .
/* each location is free, by default */
@dloc neg loc(?s, ?blk, ?pos) .
/* no block can be in two places at once */
#opposes (loc(?s, ?blk, ?y),loc(?s,?blk,?z)) :—- posn(?y) A posn(?z) A ?y != 2z.
/* move-action beats frame axioms; move & initial state beats default location */
#overrides (move, frame) .
#overrides (move, dloc) .
#overrides (frame, dloc) .
/* Facts: 16 squares. */
posn (squarel). posn(square2). posn(squarel6).

/* initial state */

@state loc(0,block4, square?).
#overrides (state,dloc) .

/* State 2: block4 moves from square7 to square3 */
move (2,block4, square’, square3) .

Fig. 4. Cycle of #overrides
Qrl a.

QAr2 b.
#opposes (a, b) .
#overrides (rl, r2) .
#overrides (r2,rl) .

16 Wan, Kifer and Grosof / Defeasibility in Answer Set Programs with Defaults and Argumentation Rules

following conclusions:

srefutes (r1,a, r2,b),

srefutes (r2,b,rl,a),

srefuted (r1, a), and

srefuted (r2,b).

It now follows that:

$defeats (r1,a, r2,b),

sdefeats (r2,b, r1, a)

are true. Consequently, the rules with tag-head pairs
rl,a and r2,b are both defeated, so both a and b
are false in LPDA. This is somewhat in line with the
behavior we saw from ATAGCLY ynder ASPDA, but
differences should have been expected, since there is
always a unique well-founded model under LPDA. []

Our last example illustrates the semantics of AS-
PDA on a number of simple “edge” cases, which are
unlikely to be found in practice. The example shows
that our semantics is quite reasonable even for such
unusual aspdas.

Example 6 Let an aspda consist of only one rule:
Qr a.
We will look at this aspda under several different ar-
gumentation rulesets.
With respect to the argumentation ruleset
Sdefeated(r,a).

our aspda has one answer set where $defeated(r,a)

is true and a false.
For the argumentation ruleset
Sdefeated(r,a) : - a.
the above aspda has no answer sets.
Finally, if the argumentation ruleset is
Sdefeated(r,a) : —nafa.
then there are two answer sets:

- $defeated(r,a) is true and a is false.
— ais true and $Sdefeated(r, a) is fulse. O

5. Comparison with Other Work

Although a great deal of work has been devoted to
various theories of defeasible reasoning, only a few
considered disjunctive information or tried to unify the
different frameworks for such reasoning. The notable
exceptions are the works [224114150619]], which had
goals similar to ours. Due to the large volume of lit-
erature on defeasible reasoning, we will focus on the
above works, since they are related to our work most
closely. We refer the reader to a survey [12] for a dis-
cussion of the various individual theories of defeasibil-

1ty.

Defeasible reasoning with disjunctive information
in the propositional case was studied in [6]. Bucca-
furri et al. [9]] introduced a variant of disjunctive logic
programning with inheritance, called DLP<. A key
feature in such inheritance systems is overriding of
the inherited information by more specific informa-
tion, which can be viewed as a specialized form of de-
feasible reasoning. Nonmonotonic inheritance can be
represented by means of argumentation rules, although
we have not studied the extent to which this is possible
in DLP<.

The logic of prioritized defaults [22] also does not
use the notion of argumentation rules, but it allows
for multiple theories of defaults for different applica-
tion domains. This is analogous to allowing argumen-
tation rulesets to vary. However, defaults are defined
via meta-theories and the semantics in [22]] is given by
meta-interpretation. What we call an “argumentation
ruleset” is implicit in the meta-interpreters, and no in-
dependent model theory is given. In contrast, our ap-
proach abstracts all the differences between the various
theories for defaults to the notion of an argumentation
ruleset with a simple interface to the user-provided do-
main description, the predicate $defeated. Our ap-
proach is model-theoretic and it covers both the well-
founded semantics [40] and answer sets (the present
paper). It unifies the theories of Courteous Logic Pro-
gramming, Defeasible Logic, Prioritized Defaults, and
more.

Delgrande et al. [11] propose a framework for or-
dered logic programming, which can use a variety of
preference handling strategies. For each strategy, this
approach devises a transformation from ordered logic
programs to ordinary logic programs. Each transfor-
mation is custom-made for the particular preference-
handling strategy, and the approach was illustrated by
showing transformations for several strategies, includ-
ing two described in earlier works [42J15]].

Unlike ASPDA, the framework of Delgrande et al.
does not come with a unifying model-theoretic seman-
tics. Instead, the definition of preferred answer sets dif-
fers from one preference-handling strategy to another.
One of the more important conceptual differences be-
tween our work and [11] has to do with the nature of
the variable parts of the two approaches. In our case,
the variable part is the argumentation ruleset, which is
a set of definitions for concepts that a human reasoner
might use to argue why certain conclusions are to be
defeated. In case of [[11]], the variable part is the trans-
formation, which encodes a fairly low-level mecha-
nism: the order of rule applications required to gener-

Wan, Kifer and Grosof / Defeasibility in Answer Set Programs with Defaults and Argumentation Rules 17

ate the preferred answer setm It is also important to
note that each program transformation in [11] needs
a compiler that contains hundreds of lines of Prolog
code, while our approach requires no new software,
and each argumentation ruleset typically contains 20-
30 rules.

Eiter et. al. [[15]] set out to unify approaches to de-
feasible reasoning. Specifically, they present an adapt-
able meta-interpreter, which can be designed to sim-
ulate the approaches described in [8l42]] among oth-
ers. This framework is not as flexible as ASPDA and
is fundamentally different from it: while ASPDA cap-
tures the essence of other approaches via argumenta-
tion rules, [[15] captures these approaches in a less di-
rect way, with the help of meta-interpretation.

The term “argumentation theory” was used to de-
note concepts that are related but significantly differ-
ent from those studied in the present paper [7U17/34].
In these works, argumentation theories refer to proofs
or sets of supporting premises rather than to rules that
specify the notion of defeasibility. The focus of [7] is
non-monotonic logic in general, while [17] is a pro-
cedural approach to defeasible reasoning. It is unclear
whether these approaches can be captured as argumen-
tation rules in our framework.

Argumentation theories were also used in a number
of more closely related papers [35136127114]]. The fo-
cus of these works is development of the actual con-
cepts that argumentation theories operate with. For in-
stance, [35] uses Default Logic [39] to formalize the
notions of defeat, defensible arguments, etc. Our work
has a different focus in that we develop a general se-
mantics for defeasible reasoning rather than dwelling
on particular approaches to argumentation. The differ-
ent argumentation rulesets (such as those in Section)
are examples of the application of our general theory of
defeasibility. These examples rely on some of the con-
cepts that are analogous to those developed in [35114]).
For instance, the rulesets presented in Section [4] rely
on the notion of defeated arguments, although those
notions are not exactly the ones in [35/14].

Although defeasibility for disjunctive logic pro-
grams has been considered in restricted settings before
[6l9], to the best of our knowledge, the present pa-
per is the only work that studies the semantics of such
logic programs in a general way. Defeasible disjunc-
tive rules should not be confused with disjunctive logic

10 Note that argumentation rules can also encode rule application
orderings.

programs under the answer-set semantics, as the latter
does not explicitly represent defeasibility as a high-
level concept but rather encodes it via default negation,
not unlike the reduction described in Theorem 2

6. Conclusions

This paper developed a novel theory of defeasible
disjunctive logic programming under the answer-set
semantics. It is a companion to our earlier work which
developed a general theory of defaults and defeasibil-
ity through argumentation rules but was based on the
well-founded semantics. Apart from the model theo-
retic semantics, and the reduction theorems, we have
shown that head-cycle free disjunctive defeasible pro-
grams can be reduced to non-disjunctive ones, which
mirrors an analogous result for non-defeasible disjunc-
tive rules with default negation. To illustrate the power
of the proposed framework, we gave two examples of
argumentation rulesets. One is an adaptation for stable
models of generalized courteous argumentation rules
given in [40] for well-founded models. This theory was
used in most of the examples in this paper. The second
argumentation ruleset was intended to show how AS-
PDA simulates other approaches to defeasible reason-
ing; in this case the defeasible logic of [1]. We gave
a detailed analysis of the behavior of the two argu-
mentation rulesets on a number of interesting exam-
ples and compared the results with the behavior that
would have resulted if we used defeasibility under the
well-founded semantics of [40].

References

[1] G. Antoniou, D. Billington, G. Governatori, and M. J. Maher.
Embedding defeasible logic into logic programming. Theory
and Practice of Logic Programming (TPLP), 6(6):703-735,
2006.

[2] G. Antoniou, D. Billington, and M. Maher. On the analysis
of regulations using defeasible rules. In Proc. 32nd Hawaii
International Conference on Systems Science, 1999.

[3] G. Antoniou, M. J. Maher, and D. Billington. Defeasible logic
versus logic programming without negation as failure. J. Log.
Program., 42(1):47-57, 2000.

[4] R. Ben-Eliyahu and R. Dechter. Propositional semantics for
disjunctive logic programs. Ann. Math. Artif. Intell., 12(1-
2):53-87, 1994.

[5] D. Billington, G. Antoniou, G. Governatori, and M. J. Maher.
An inclusion theorem for defeasible logics. ACM Trans. Com-
put. Log., 12(1):6, 2010.

[6] D. Billington and A. Rock. Propositional plausible logic: In-
troduction and implementation. Studia Logica, 67(2):243-269,
2001.

18 Wan, Kifer and Grosof / Defeasibility in Answer Set Programs with Defaults and Argumentation Rules

[7]1 A. Bondarenko, P. Dung., R. Kowalski, and F. Toni. An ab-
stract, argumentation-theoretic approach to default reasoning.
Artificial Intelligence, 93(1-2):63-101, 1997.

[8] G. Brewka and T. Eiter. Prioritizing default logic. In Intellec-
tics and Computational Logic — Papers in Honour of Wolfgang
Bibel, pages 27-45. Kluwer Academic Publishers, 2000.

[9] E. Buccafurri, W. Faber, and N. Leone. Disjunctive logic pro-
grams with inheritance. Theory and Practice of Logic Pro-
gramming (TPLP), 2(3):293-321, 2002.

[10] W. Chen, M. Kifer, and D. Warren. HiLog: A foundation for
higher-order logic programming. Journal of Logic Program-
ming, 15(3):187-230, February 1993.

[11] J. Delgrande, T. Schaub, and H. Tompits. A framework for
compiling preferences in logic programs. Theory and Practice
of Logic Programming, 2:129-187, 2003.

[12] J. Delgrande, T. Schaub, H. Tompits, and K. Wang. A
classification and survey of preference handling approaches
in nonmonotonic reasoning. Computational Intelligence,
20(12):308-334, 2004.

[13] J. Dix, G. Gottlob, and V. Marek. Reducing disjunctive to non-
disjunctive semantics by shift-operations. Fundamenta Infor-
maticae, XXVIII(1/2):87-100, 1996.

[14] P. Dung, R. Kowalski, and F. Toni. Assumption-based argu-
mentation. In I. Rahwan and G. Simari, editors, Argumenta-
tion in Artificial Intelligence, pages 199-218. Springer, Nyew
York, 2009.

[15] T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Computing
preferred answer sets by meta-interpretation in answer set
programming. Theory and Practice of Logic Programming,
3(4):463-498, 2003.

[16] W. Faber. A polynomial reduction from aspda to asp. In
M. Krotzsch and U. Straccia, editors, RR, volume 7497 of
Lecture Notes in Computer Science, pages 213-216. Springer,
2012.

[17] A. Garcia and G. Simari. Defeasible logic programming: an
argumentative approach. Theory Practice of Logic Program-
ming, 4(2):95-138, 2004.

[18] A. V. Gelder, K. Ross, and J. Schlipf. The well-founded seman-
tics for general logic programs. Journal of the ACM, 38:620—
650, 1991.

[19] M. Gelfond. Answer sets. In F. van Harmelen, V. Lifschitz,
and B. Porter, editors, Handbook of Knowledge Representa-
tion, pages 285-316. Elsevier, 2008.

[20] M. Gelfond and V. Lifschitz. The stable model semantics for
logic programming. In Proceedings of ICLP/SLP, pages 1070—
1080. MIT Press, 1988.

[21] M. Gelfond, H. Przymusinska, V. Lifschitz, and M. Truszczyn-
ski. Disjunctive defaults. In Proceedings of the Interna-
tional Conference on Knowledge Representation and Reason-
ing, pages 230-237, 1991.

[22] M. Gelfond and T. Son. Reasoning with prioritized defaults.
In Third International Workshop on Logic Programming and
Knowledge Representation, volume 1471 of Lecture Notes in
Computer Science, pages 164-223. Springer, 1997.

[23] G. Governatori, A. ter Hofstede, and P. Oaks. Defeasible logic
for automated negotiation. In Proc. Fifth CollECTeR Confer-
ence on Electronic Commerce, 2000.

[24] B. Grosof. A courteous compiler from generalized courteous
logic programs to ordinary logic programs. Technical Report
Supplementary Update Follow-On to RC 21472, IBM, July

1999.

[25] B. Grosof, Y. Labrou, and H. Chan. A declarative approach to
business rules in contracts: Courteous logic programs in xml.
In Proc. 1st ACM Conference on Electronic Commerce (EC-
99). ACM Press, 1999.

[26] B. Grosof and S. Russell. Shift of bias as non-monotonic rea-
soning. In P. Brazdil and K. Konolige, editors, Machine Learn-
ing, Meta-Reasoning, and Logics. Kluwer Academic Publish-
ers, Norwell, MA, 1990.

[27] N. Karacapilidis, D. Papadias, and T. Gordon. An argumenta-
tion based framework for defeasible and qualitative reasoning.
In Advances in Artificial Intelligence. XIIIth Brazilian Sympo-
sium on Artificial Intelligence, pages 1-10. Springer, 1996.

[28] M. Kifer. FLORA-2: An object-oriented knowledge base lan-
guage. The FLORA-2 Web Site. http://flora.sourceforge.net.

[29] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-
oriented and frame-based languages. Journal of ACM, 42:741—
843, July 1995.

[30] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri,
and F. Scarcello. The DLV system for knowledge represen-
tation and reasoning. ACM Transactions on Computational
Logic, 7(3):499-562, 2006.

[31] J. W. Lloyd and R. W. Topor. Making prolog more expressive.
J. Log. Program., 1(3):225-240, 1984.

[32] A.R. Morales, P. H. Tu, and T. C. Son. An extension to con-
formant planning using logic programming. In IJCAI, pages
1991-1996, 2007.

[33] L. Morgenstern. Inheritance comes of age: Applying non-
monotonic techniques to problems in industry. Artificial Intel-
ligence, 103:1-34, 1998.

[34] L. Pereira and A. Pinto. Reductio ad absurdum argumentation
in normal logic programs. In ArgNMR workshop at LPNMR,
pages 96-113, 2007.

[35] H.Prakken. An argumentation framework in default logic. An-
nals of Mathematics and Artificial Intelligence, 9(1-2):93-132,
1993.

[36] H. Prakken. A logical framework for modelling legal argu-
ment. In ICAIL '93: 4th Int’l Conf. on Artificial Intelligence
and Law, pages 1-9. ACM, 1993.

[37] H. Prakken. Logical Tools for Modelling Legal Argument. A
Study of Defeasible Reasoning in Law. Kluwer Academic Pub-
lishers, 1997.

[38] D. Reeves, B. Grosof, M. Wellman, and H. Chan. Towards a
declarative language for negotiating executable contracts. In
Proceedings of the AAAI-99 Workshop on Arti cial Intelligence
in Electronic Commerce (AIEC-99). MIT Press, 1999.

[39] R. Reiter. A logic for default reasoning. Artificial Intelligence,
13:81-132, 1980.

[40] H. Wan, B. Grosof, M. Kifer, P. Fodor, and S. Liang. Logic pro-
gramming with defaults and argumentation theories. In /CLP,
pages 432-448, 2009.

[41] H. Wan, M. Kifer, and B. Grosof. Defeasibility in answer
set programs via argumentation theories. In 4th International
Conference on Web Reasoning and Rule Systems (RR-2010),
Brixen, Italy, September 2010. Springer.

[42] K. Wang, L. Zhou, and F. Lin. Alternating fixpoint theory for
logic programs with priority. In First Int’l Conference on Com-
putational Logic (CL’00), number 1861 in Lecture Notes in
Computer Science, pages 164—178. Springer, 2000.

