

Questions we will answer in this class

1. What is the fundamental basis of geomorphology?

5. How do landscape materials get from valley floors to their ultimate sink (oceans or lakes)

6. How do glaciers modulate landscape development?

Disequilibrium of Holocene sediment yield in glaciated British Columbia

Michael Church & Olav Slaymaker Department of Geography, University of British Columb Vancouver, British Columbia, Canada V6T 1W5

It is generally supposed that specific sediment yield—the quantity of sediment passing a monitored river cross-section per unit area drained upstream of that section—declines as the area drained increases¹⁻³. Part of the sediment mobilized from the land surface is supposed to go back into storage at field edges, and on footslopes and floodplains. In contrast, we show here that data from British Columbian rivers reveal a pattern of increasing specific sediment yield at all spatial scales up to 3×10⁴ km². This results from the dominance of secondary remotilization of Quaternary sediments along river valleys over primary demudation of the land surface. The result controverts the conventional model which has been derived from studies of small, highly disturbed agricultrail catchments. The rivers are still responding to the last glaciton, giving a landscape relaxation fing greater than 10 kyr. This holds profound implications for geomorphological theory and for studies of erosion.

Why Study Geomorphology?

Why Study Geomorphology?

- 1. Earth's surface is our home!
- All earth's organisms rely on physical characteristics of earth's surface as habitat.
- Many transport processes (landslides, debris flows, floods, dust stroms) are significant natural hazards

Why Study Geomorphology?

- 1. Earth's surface is our home
- All earth's organisms rely (in varying degrees) on physica characteristics of earth's surface as its habitat.
- 3. Many transport processes (landslides, debris flows, floods, dust storms) are significant natural hazards

One more reason: Where is this topography?

Distributary Fan: "Smoking Gun" Evidence for Persistent Water Flow and Sediment Deposition on Ancient Mars – NASA Press release on 3 November 2003

Major themes through the history of Geomorphology

Early contributions to geomorphology

Leonardo da Vinci (1452-1519) studied the topography of the Arno River basin, drew the first contour map of a whole river basin, and believed that rivers carved their valleys and shaped topography.

Italian and French hydraulic engineers developed the study of rivers in the late 17th century to address flooding problems along rivers draining the Alps. Della Natura de' Fiumi BOIOHAMUM "The Nature of Rivers" First Book on Rivers was published by Domenico Gugleilmini in 1697. The book discusses the nature of rivers and their parts, the motion of water, confluents and estuaries, banks, and materials and NORICI application.

Return to Catastrophism: J. Haren Bretz and the

Mid-20th century frequency and magnitude of geomorphic processes

There is a competition between the Frequency and Magnetude of geomorphic events

The most frequent events do not do the greatest amount of work (not surprising)

The largest events do the lots of work, but they are infrequent.

Moderately sized transport events do the most geomorphic work in the landscape as a consequence of the frequency of moderate sized events

Persistence wins!

APPLIED STRESS, X

FIG. 1.-Relations between rate of transport, applied stress, and frequency of stress application.

From: Wolman, M. G. & Miller, J. P. (1960). Magnitude and frequency of forces in geomorphic processes. Journal of Geology, 68, 54-74.

Effects of Dam Construction on River Channels

Effects of Dam Construction on River Channels

Dating methods frequently used by geomorphologists			
Method	Туре	Age Range (years)	Requirements/Assumptions
Radiocarbon (¹⁴ C)	Numeric dating	10^2 to 5×10^4	Organic material present in interpretable geologic context
Cosmogenic nuclides	Numeric dating	10^2 to 10^6	Continuous exposure of noneroding surface that was free of cosmogenic nuclides before exposure
Luminescence	Numeric dating	10^3 to 10^6	Quartz or feldspar exposed to light or heat before burial
U/Th	Numeric dating	10^3 to 10^5	Carbonate minerals
Dendrochronology	Numeric dating	10^{0} to 10^{4}	Wood from trees
K/Ar	Numeric dating	10^3 to 10^8	Potassium-bearing minerals
Lichenometry	Calibrated relative dating	10^1 to 10^3	Lichens on both unknown and dated calibration sites
Amino-acid racemization	Calibrated relative dating	10^3 to 10^5	Well-preserved shell material
Rock weathering	Relative dating	10^2 to 10^4	Dated surfaces for calibration
Soil development	Relative dating	10^2 to 10^6	Dated chronosequence for calibration

There are a wide array of techniques available to determine the age of landscapes, all of which have their own range over which they are accurate.

